1 /*
2 * SPDX-License-Identifier: MIT
3 *
4 * Copyright © 2019 Intel Corporation
5 */
6
7 #include <linux/sched/clock.h>
8
9 #include "i915_drv.h"
10 #include "i915_irq.h"
11 #include "intel_breadcrumbs.h"
12 #include "intel_gt.h"
13 #include "intel_gt_irq.h"
14 #include "intel_uncore.h"
15 #include "intel_rps.h"
16
guc_irq_handler(struct intel_guc * guc,u16 iir)17 static void guc_irq_handler(struct intel_guc *guc, u16 iir)
18 {
19 if (iir & GUC_INTR_GUC2HOST)
20 intel_guc_to_host_event_handler(guc);
21 }
22
23 static void
cs_irq_handler(struct intel_engine_cs * engine,u32 iir)24 cs_irq_handler(struct intel_engine_cs *engine, u32 iir)
25 {
26 bool tasklet = false;
27
28 if (unlikely(iir & GT_CS_MASTER_ERROR_INTERRUPT)) {
29 u32 eir;
30
31 /* Upper 16b are the enabling mask, rsvd for internal errors */
32 eir = ENGINE_READ(engine, RING_EIR) & GENMASK(15, 0);
33 ENGINE_TRACE(engine, "CS error: %x\n", eir);
34
35 /* Disable the error interrupt until after the reset */
36 if (likely(eir)) {
37 ENGINE_WRITE(engine, RING_EMR, ~0u);
38 ENGINE_WRITE(engine, RING_EIR, eir);
39 WRITE_ONCE(engine->execlists.error_interrupt, eir);
40 tasklet = true;
41 }
42 }
43
44 if (iir & GT_WAIT_SEMAPHORE_INTERRUPT) {
45 WRITE_ONCE(engine->execlists.yield,
46 ENGINE_READ_FW(engine, RING_EXECLIST_STATUS_HI));
47 ENGINE_TRACE(engine, "semaphore yield: %08x\n",
48 engine->execlists.yield);
49 if (del_timer(&engine->execlists.timer))
50 tasklet = true;
51 }
52
53 if (iir & GT_CONTEXT_SWITCH_INTERRUPT)
54 tasklet = true;
55
56 if (iir & GT_RENDER_USER_INTERRUPT) {
57 intel_engine_signal_breadcrumbs(engine);
58 tasklet |= intel_engine_needs_breadcrumb_tasklet(engine);
59 }
60
61 if (tasklet)
62 tasklet_hi_schedule(&engine->execlists.tasklet);
63 }
64
65 static u32
gen11_gt_engine_identity(struct intel_gt * gt,const unsigned int bank,const unsigned int bit)66 gen11_gt_engine_identity(struct intel_gt *gt,
67 const unsigned int bank, const unsigned int bit)
68 {
69 void __iomem * const regs = gt->uncore->regs;
70 u32 timeout_ts;
71 u32 ident;
72
73 lockdep_assert_held(>->irq_lock);
74
75 raw_reg_write(regs, GEN11_IIR_REG_SELECTOR(bank), BIT(bit));
76
77 /*
78 * NB: Specs do not specify how long to spin wait,
79 * so we do ~100us as an educated guess.
80 */
81 timeout_ts = (local_clock() >> 10) + 100;
82 do {
83 ident = raw_reg_read(regs, GEN11_INTR_IDENTITY_REG(bank));
84 } while (!(ident & GEN11_INTR_DATA_VALID) &&
85 !time_after32(local_clock() >> 10, timeout_ts));
86
87 if (unlikely(!(ident & GEN11_INTR_DATA_VALID))) {
88 DRM_ERROR("INTR_IDENTITY_REG%u:%u 0x%08x not valid!\n",
89 bank, bit, ident);
90 return 0;
91 }
92
93 raw_reg_write(regs, GEN11_INTR_IDENTITY_REG(bank),
94 GEN11_INTR_DATA_VALID);
95
96 return ident;
97 }
98
99 static void
gen11_other_irq_handler(struct intel_gt * gt,const u8 instance,const u16 iir)100 gen11_other_irq_handler(struct intel_gt *gt, const u8 instance,
101 const u16 iir)
102 {
103 if (instance == OTHER_GUC_INSTANCE)
104 return guc_irq_handler(>->uc.guc, iir);
105
106 if (instance == OTHER_GTPM_INSTANCE)
107 return gen11_rps_irq_handler(>->rps, iir);
108
109 WARN_ONCE(1, "unhandled other interrupt instance=0x%x, iir=0x%x\n",
110 instance, iir);
111 }
112
113 static void
gen11_engine_irq_handler(struct intel_gt * gt,const u8 class,const u8 instance,const u16 iir)114 gen11_engine_irq_handler(struct intel_gt *gt, const u8 class,
115 const u8 instance, const u16 iir)
116 {
117 struct intel_engine_cs *engine;
118
119 if (instance <= MAX_ENGINE_INSTANCE)
120 engine = gt->engine_class[class][instance];
121 else
122 engine = NULL;
123
124 if (likely(engine))
125 return cs_irq_handler(engine, iir);
126
127 WARN_ONCE(1, "unhandled engine interrupt class=0x%x, instance=0x%x\n",
128 class, instance);
129 }
130
131 static void
gen11_gt_identity_handler(struct intel_gt * gt,const u32 identity)132 gen11_gt_identity_handler(struct intel_gt *gt, const u32 identity)
133 {
134 const u8 class = GEN11_INTR_ENGINE_CLASS(identity);
135 const u8 instance = GEN11_INTR_ENGINE_INSTANCE(identity);
136 const u16 intr = GEN11_INTR_ENGINE_INTR(identity);
137
138 if (unlikely(!intr))
139 return;
140
141 if (class <= COPY_ENGINE_CLASS)
142 return gen11_engine_irq_handler(gt, class, instance, intr);
143
144 if (class == OTHER_CLASS)
145 return gen11_other_irq_handler(gt, instance, intr);
146
147 WARN_ONCE(1, "unknown interrupt class=0x%x, instance=0x%x, intr=0x%x\n",
148 class, instance, intr);
149 }
150
151 static void
gen11_gt_bank_handler(struct intel_gt * gt,const unsigned int bank)152 gen11_gt_bank_handler(struct intel_gt *gt, const unsigned int bank)
153 {
154 void __iomem * const regs = gt->uncore->regs;
155 unsigned long intr_dw;
156 unsigned int bit;
157
158 lockdep_assert_held(>->irq_lock);
159
160 intr_dw = raw_reg_read(regs, GEN11_GT_INTR_DW(bank));
161
162 for_each_set_bit(bit, &intr_dw, 32) {
163 const u32 ident = gen11_gt_engine_identity(gt, bank, bit);
164
165 gen11_gt_identity_handler(gt, ident);
166 }
167
168 /* Clear must be after shared has been served for engine */
169 raw_reg_write(regs, GEN11_GT_INTR_DW(bank), intr_dw);
170 }
171
gen11_gt_irq_handler(struct intel_gt * gt,const u32 master_ctl)172 void gen11_gt_irq_handler(struct intel_gt *gt, const u32 master_ctl)
173 {
174 unsigned int bank;
175
176 spin_lock(>->irq_lock);
177
178 for (bank = 0; bank < 2; bank++) {
179 if (master_ctl & GEN11_GT_DW_IRQ(bank))
180 gen11_gt_bank_handler(gt, bank);
181 }
182
183 spin_unlock(>->irq_lock);
184 }
185
gen11_gt_reset_one_iir(struct intel_gt * gt,const unsigned int bank,const unsigned int bit)186 bool gen11_gt_reset_one_iir(struct intel_gt *gt,
187 const unsigned int bank, const unsigned int bit)
188 {
189 void __iomem * const regs = gt->uncore->regs;
190 u32 dw;
191
192 lockdep_assert_held(>->irq_lock);
193
194 dw = raw_reg_read(regs, GEN11_GT_INTR_DW(bank));
195 if (dw & BIT(bit)) {
196 /*
197 * According to the BSpec, DW_IIR bits cannot be cleared without
198 * first servicing the Selector & Shared IIR registers.
199 */
200 gen11_gt_engine_identity(gt, bank, bit);
201
202 /*
203 * We locked GT INT DW by reading it. If we want to (try
204 * to) recover from this successfully, we need to clear
205 * our bit, otherwise we are locking the register for
206 * everybody.
207 */
208 raw_reg_write(regs, GEN11_GT_INTR_DW(bank), BIT(bit));
209
210 return true;
211 }
212
213 return false;
214 }
215
gen11_gt_irq_reset(struct intel_gt * gt)216 void gen11_gt_irq_reset(struct intel_gt *gt)
217 {
218 struct intel_uncore *uncore = gt->uncore;
219
220 /* Disable RCS, BCS, VCS and VECS class engines. */
221 intel_uncore_write(uncore, GEN11_RENDER_COPY_INTR_ENABLE, 0);
222 intel_uncore_write(uncore, GEN11_VCS_VECS_INTR_ENABLE, 0);
223
224 /* Restore masks irqs on RCS, BCS, VCS and VECS engines. */
225 intel_uncore_write(uncore, GEN11_RCS0_RSVD_INTR_MASK, ~0);
226 intel_uncore_write(uncore, GEN11_BCS_RSVD_INTR_MASK, ~0);
227 intel_uncore_write(uncore, GEN11_VCS0_VCS1_INTR_MASK, ~0);
228 intel_uncore_write(uncore, GEN11_VCS2_VCS3_INTR_MASK, ~0);
229 intel_uncore_write(uncore, GEN11_VECS0_VECS1_INTR_MASK, ~0);
230
231 intel_uncore_write(uncore, GEN11_GPM_WGBOXPERF_INTR_ENABLE, 0);
232 intel_uncore_write(uncore, GEN11_GPM_WGBOXPERF_INTR_MASK, ~0);
233 intel_uncore_write(uncore, GEN11_GUC_SG_INTR_ENABLE, 0);
234 intel_uncore_write(uncore, GEN11_GUC_SG_INTR_MASK, ~0);
235 }
236
gen11_gt_irq_postinstall(struct intel_gt * gt)237 void gen11_gt_irq_postinstall(struct intel_gt *gt)
238 {
239 const u32 irqs =
240 GT_CS_MASTER_ERROR_INTERRUPT |
241 GT_RENDER_USER_INTERRUPT |
242 GT_CONTEXT_SWITCH_INTERRUPT |
243 GT_WAIT_SEMAPHORE_INTERRUPT;
244 struct intel_uncore *uncore = gt->uncore;
245 const u32 dmask = irqs << 16 | irqs;
246 const u32 smask = irqs << 16;
247
248 BUILD_BUG_ON(irqs & 0xffff0000);
249
250 /* Enable RCS, BCS, VCS and VECS class interrupts. */
251 intel_uncore_write(uncore, GEN11_RENDER_COPY_INTR_ENABLE, dmask);
252 intel_uncore_write(uncore, GEN11_VCS_VECS_INTR_ENABLE, dmask);
253
254 /* Unmask irqs on RCS, BCS, VCS and VECS engines. */
255 intel_uncore_write(uncore, GEN11_RCS0_RSVD_INTR_MASK, ~smask);
256 intel_uncore_write(uncore, GEN11_BCS_RSVD_INTR_MASK, ~smask);
257 intel_uncore_write(uncore, GEN11_VCS0_VCS1_INTR_MASK, ~dmask);
258 intel_uncore_write(uncore, GEN11_VCS2_VCS3_INTR_MASK, ~dmask);
259 intel_uncore_write(uncore, GEN11_VECS0_VECS1_INTR_MASK, ~dmask);
260
261 /*
262 * RPS interrupts will get enabled/disabled on demand when RPS itself
263 * is enabled/disabled.
264 */
265 gt->pm_ier = 0x0;
266 gt->pm_imr = ~gt->pm_ier;
267 intel_uncore_write(uncore, GEN11_GPM_WGBOXPERF_INTR_ENABLE, 0);
268 intel_uncore_write(uncore, GEN11_GPM_WGBOXPERF_INTR_MASK, ~0);
269
270 /* Same thing for GuC interrupts */
271 intel_uncore_write(uncore, GEN11_GUC_SG_INTR_ENABLE, 0);
272 intel_uncore_write(uncore, GEN11_GUC_SG_INTR_MASK, ~0);
273 }
274
gen5_gt_irq_handler(struct intel_gt * gt,u32 gt_iir)275 void gen5_gt_irq_handler(struct intel_gt *gt, u32 gt_iir)
276 {
277 if (gt_iir & GT_RENDER_USER_INTERRUPT)
278 intel_engine_signal_breadcrumbs(gt->engine_class[RENDER_CLASS][0]);
279 if (gt_iir & ILK_BSD_USER_INTERRUPT)
280 intel_engine_signal_breadcrumbs(gt->engine_class[VIDEO_DECODE_CLASS][0]);
281 }
282
gen7_parity_error_irq_handler(struct intel_gt * gt,u32 iir)283 static void gen7_parity_error_irq_handler(struct intel_gt *gt, u32 iir)
284 {
285 if (!HAS_L3_DPF(gt->i915))
286 return;
287
288 spin_lock(>->irq_lock);
289 gen5_gt_disable_irq(gt, GT_PARITY_ERROR(gt->i915));
290 spin_unlock(>->irq_lock);
291
292 if (iir & GT_RENDER_L3_PARITY_ERROR_INTERRUPT_S1)
293 gt->i915->l3_parity.which_slice |= 1 << 1;
294
295 if (iir & GT_RENDER_L3_PARITY_ERROR_INTERRUPT)
296 gt->i915->l3_parity.which_slice |= 1 << 0;
297
298 schedule_work(>->i915->l3_parity.error_work);
299 }
300
gen6_gt_irq_handler(struct intel_gt * gt,u32 gt_iir)301 void gen6_gt_irq_handler(struct intel_gt *gt, u32 gt_iir)
302 {
303 if (gt_iir & GT_RENDER_USER_INTERRUPT)
304 intel_engine_signal_breadcrumbs(gt->engine_class[RENDER_CLASS][0]);
305 if (gt_iir & GT_BSD_USER_INTERRUPT)
306 intel_engine_signal_breadcrumbs(gt->engine_class[VIDEO_DECODE_CLASS][0]);
307 if (gt_iir & GT_BLT_USER_INTERRUPT)
308 intel_engine_signal_breadcrumbs(gt->engine_class[COPY_ENGINE_CLASS][0]);
309
310 if (gt_iir & (GT_BLT_CS_ERROR_INTERRUPT |
311 GT_BSD_CS_ERROR_INTERRUPT |
312 GT_CS_MASTER_ERROR_INTERRUPT))
313 DRM_DEBUG("Command parser error, gt_iir 0x%08x\n", gt_iir);
314
315 if (gt_iir & GT_PARITY_ERROR(gt->i915))
316 gen7_parity_error_irq_handler(gt, gt_iir);
317 }
318
gen8_gt_irq_handler(struct intel_gt * gt,u32 master_ctl)319 void gen8_gt_irq_handler(struct intel_gt *gt, u32 master_ctl)
320 {
321 void __iomem * const regs = gt->uncore->regs;
322 u32 iir;
323
324 if (master_ctl & (GEN8_GT_RCS_IRQ | GEN8_GT_BCS_IRQ)) {
325 iir = raw_reg_read(regs, GEN8_GT_IIR(0));
326 if (likely(iir)) {
327 cs_irq_handler(gt->engine_class[RENDER_CLASS][0],
328 iir >> GEN8_RCS_IRQ_SHIFT);
329 cs_irq_handler(gt->engine_class[COPY_ENGINE_CLASS][0],
330 iir >> GEN8_BCS_IRQ_SHIFT);
331 raw_reg_write(regs, GEN8_GT_IIR(0), iir);
332 }
333 }
334
335 if (master_ctl & (GEN8_GT_VCS0_IRQ | GEN8_GT_VCS1_IRQ)) {
336 iir = raw_reg_read(regs, GEN8_GT_IIR(1));
337 if (likely(iir)) {
338 cs_irq_handler(gt->engine_class[VIDEO_DECODE_CLASS][0],
339 iir >> GEN8_VCS0_IRQ_SHIFT);
340 cs_irq_handler(gt->engine_class[VIDEO_DECODE_CLASS][1],
341 iir >> GEN8_VCS1_IRQ_SHIFT);
342 raw_reg_write(regs, GEN8_GT_IIR(1), iir);
343 }
344 }
345
346 if (master_ctl & GEN8_GT_VECS_IRQ) {
347 iir = raw_reg_read(regs, GEN8_GT_IIR(3));
348 if (likely(iir)) {
349 cs_irq_handler(gt->engine_class[VIDEO_ENHANCEMENT_CLASS][0],
350 iir >> GEN8_VECS_IRQ_SHIFT);
351 raw_reg_write(regs, GEN8_GT_IIR(3), iir);
352 }
353 }
354
355 if (master_ctl & (GEN8_GT_PM_IRQ | GEN8_GT_GUC_IRQ)) {
356 iir = raw_reg_read(regs, GEN8_GT_IIR(2));
357 if (likely(iir)) {
358 gen6_rps_irq_handler(>->rps, iir);
359 guc_irq_handler(>->uc.guc, iir >> 16);
360 raw_reg_write(regs, GEN8_GT_IIR(2), iir);
361 }
362 }
363 }
364
gen8_gt_irq_reset(struct intel_gt * gt)365 void gen8_gt_irq_reset(struct intel_gt *gt)
366 {
367 struct intel_uncore *uncore = gt->uncore;
368
369 GEN8_IRQ_RESET_NDX(uncore, GT, 0);
370 GEN8_IRQ_RESET_NDX(uncore, GT, 1);
371 GEN8_IRQ_RESET_NDX(uncore, GT, 2);
372 GEN8_IRQ_RESET_NDX(uncore, GT, 3);
373 }
374
gen8_gt_irq_postinstall(struct intel_gt * gt)375 void gen8_gt_irq_postinstall(struct intel_gt *gt)
376 {
377 /* These are interrupts we'll toggle with the ring mask register */
378 const u32 irqs =
379 GT_CS_MASTER_ERROR_INTERRUPT |
380 GT_RENDER_USER_INTERRUPT |
381 GT_CONTEXT_SWITCH_INTERRUPT |
382 GT_WAIT_SEMAPHORE_INTERRUPT;
383 const u32 gt_interrupts[] = {
384 irqs << GEN8_RCS_IRQ_SHIFT | irqs << GEN8_BCS_IRQ_SHIFT,
385 irqs << GEN8_VCS0_IRQ_SHIFT | irqs << GEN8_VCS1_IRQ_SHIFT,
386 0,
387 irqs << GEN8_VECS_IRQ_SHIFT,
388 };
389 struct intel_uncore *uncore = gt->uncore;
390
391 gt->pm_ier = 0x0;
392 gt->pm_imr = ~gt->pm_ier;
393 GEN8_IRQ_INIT_NDX(uncore, GT, 0, ~gt_interrupts[0], gt_interrupts[0]);
394 GEN8_IRQ_INIT_NDX(uncore, GT, 1, ~gt_interrupts[1], gt_interrupts[1]);
395 /*
396 * RPS interrupts will get enabled/disabled on demand when RPS itself
397 * is enabled/disabled. Same wil be the case for GuC interrupts.
398 */
399 GEN8_IRQ_INIT_NDX(uncore, GT, 2, gt->pm_imr, gt->pm_ier);
400 GEN8_IRQ_INIT_NDX(uncore, GT, 3, ~gt_interrupts[3], gt_interrupts[3]);
401 }
402
gen5_gt_update_irq(struct intel_gt * gt,u32 interrupt_mask,u32 enabled_irq_mask)403 static void gen5_gt_update_irq(struct intel_gt *gt,
404 u32 interrupt_mask,
405 u32 enabled_irq_mask)
406 {
407 lockdep_assert_held(>->irq_lock);
408
409 GEM_BUG_ON(enabled_irq_mask & ~interrupt_mask);
410
411 gt->gt_imr &= ~interrupt_mask;
412 gt->gt_imr |= (~enabled_irq_mask & interrupt_mask);
413 intel_uncore_write(gt->uncore, GTIMR, gt->gt_imr);
414 }
415
gen5_gt_enable_irq(struct intel_gt * gt,u32 mask)416 void gen5_gt_enable_irq(struct intel_gt *gt, u32 mask)
417 {
418 gen5_gt_update_irq(gt, mask, mask);
419 intel_uncore_posting_read_fw(gt->uncore, GTIMR);
420 }
421
gen5_gt_disable_irq(struct intel_gt * gt,u32 mask)422 void gen5_gt_disable_irq(struct intel_gt *gt, u32 mask)
423 {
424 gen5_gt_update_irq(gt, mask, 0);
425 }
426
gen5_gt_irq_reset(struct intel_gt * gt)427 void gen5_gt_irq_reset(struct intel_gt *gt)
428 {
429 struct intel_uncore *uncore = gt->uncore;
430
431 GEN3_IRQ_RESET(uncore, GT);
432 if (INTEL_GEN(gt->i915) >= 6)
433 GEN3_IRQ_RESET(uncore, GEN6_PM);
434 }
435
gen5_gt_irq_postinstall(struct intel_gt * gt)436 void gen5_gt_irq_postinstall(struct intel_gt *gt)
437 {
438 struct intel_uncore *uncore = gt->uncore;
439 u32 pm_irqs = 0;
440 u32 gt_irqs = 0;
441
442 gt->gt_imr = ~0;
443 if (HAS_L3_DPF(gt->i915)) {
444 /* L3 parity interrupt is always unmasked. */
445 gt->gt_imr = ~GT_PARITY_ERROR(gt->i915);
446 gt_irqs |= GT_PARITY_ERROR(gt->i915);
447 }
448
449 gt_irqs |= GT_RENDER_USER_INTERRUPT;
450 if (IS_GEN(gt->i915, 5))
451 gt_irqs |= ILK_BSD_USER_INTERRUPT;
452 else
453 gt_irqs |= GT_BLT_USER_INTERRUPT | GT_BSD_USER_INTERRUPT;
454
455 GEN3_IRQ_INIT(uncore, GT, gt->gt_imr, gt_irqs);
456
457 if (INTEL_GEN(gt->i915) >= 6) {
458 /*
459 * RPS interrupts will get enabled/disabled on demand when RPS
460 * itself is enabled/disabled.
461 */
462 if (HAS_ENGINE(gt, VECS0)) {
463 pm_irqs |= PM_VEBOX_USER_INTERRUPT;
464 gt->pm_ier |= PM_VEBOX_USER_INTERRUPT;
465 }
466
467 gt->pm_imr = 0xffffffff;
468 GEN3_IRQ_INIT(uncore, GEN6_PM, gt->pm_imr, pm_irqs);
469 }
470 }
471