1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Framework for buffer objects that can be shared across devices/subsystems.
4 *
5 * Copyright(C) 2011 Linaro Limited. All rights reserved.
6 * Author: Sumit Semwal <sumit.semwal@ti.com>
7 *
8 * Many thanks to linaro-mm-sig list, and specially
9 * Arnd Bergmann <arnd@arndb.de>, Rob Clark <rob@ti.com> and
10 * Daniel Vetter <daniel@ffwll.ch> for their support in creation and
11 * refining of this idea.
12 */
13
14 #include <linux/fs.h>
15 #include <linux/slab.h>
16 #include <linux/dma-buf.h>
17 #include <linux/dma-fence.h>
18 #include <linux/anon_inodes.h>
19 #include <linux/export.h>
20 #include <linux/debugfs.h>
21 #include <linux/module.h>
22 #include <linux/seq_file.h>
23 #include <linux/poll.h>
24 #include <linux/dma-resv.h>
25 #include <linux/mm.h>
26 #include <linux/mount.h>
27 #include <linux/pseudo_fs.h>
28
29 #include <uapi/linux/dma-buf.h>
30 #include <uapi/linux/magic.h>
31
32 #include "dma-buf-sysfs-stats.h"
33 #include "dma-buf-process-info.h"
34
35 static inline int is_dma_buf_file(struct file *);
36
37 struct dma_buf_list {
38 struct list_head head;
39 struct mutex lock;
40 };
41
42 static struct dma_buf_list db_list;
43
dmabuffs_dname(struct dentry * dentry,char * buffer,int buflen)44 static char *dmabuffs_dname(struct dentry *dentry, char *buffer, int buflen)
45 {
46 struct dma_buf *dmabuf;
47 char name[DMA_BUF_NAME_LEN];
48 size_t ret = 0;
49
50 dmabuf = dentry->d_fsdata;
51 spin_lock(&dmabuf->name_lock);
52 if (dmabuf->name)
53 ret = strlcpy(name, dmabuf->name, DMA_BUF_NAME_LEN);
54 spin_unlock(&dmabuf->name_lock);
55
56 return dynamic_dname(dentry, buffer, buflen, "/%s:%s",
57 dentry->d_name.name, ret > 0 ? name : "");
58 }
59
dma_buf_release(struct dentry * dentry)60 static void dma_buf_release(struct dentry *dentry)
61 {
62 struct dma_buf *dmabuf;
63
64 dmabuf = dentry->d_fsdata;
65 if (unlikely(!dmabuf))
66 return;
67
68 BUG_ON(dmabuf->vmapping_counter);
69
70 /*
71 * Any fences that a dma-buf poll can wait on should be signaled
72 * before releasing dma-buf. This is the responsibility of each
73 * driver that uses the reservation objects.
74 *
75 * If you hit this BUG() it means someone dropped their ref to the
76 * dma-buf while still having pending operation to the buffer.
77 */
78 BUG_ON(dmabuf->cb_shared.active || dmabuf->cb_excl.active);
79
80 dmabuf->ops->release(dmabuf);
81
82 if (dmabuf->resv == (struct dma_resv *)&dmabuf[1])
83 dma_resv_fini(dmabuf->resv);
84
85 WARN_ON(!list_empty(&dmabuf->attachments));
86 dma_buf_stats_teardown(dmabuf);
87 module_put(dmabuf->owner);
88 kfree(dmabuf->name);
89 kfree(dmabuf);
90 }
91
dma_buf_file_release(struct inode * inode,struct file * file)92 static int dma_buf_file_release(struct inode *inode, struct file *file)
93 {
94 struct dma_buf *dmabuf;
95
96 if (!is_dma_buf_file(file))
97 return -EINVAL;
98
99 dmabuf = file->private_data;
100
101 mutex_lock(&db_list.lock);
102 list_del(&dmabuf->list_node);
103 mutex_unlock(&db_list.lock);
104
105 return 0;
106 }
107
108 static const struct dentry_operations dma_buf_dentry_ops = {
109 .d_dname = dmabuffs_dname,
110 .d_release = dma_buf_release,
111 };
112
113 static struct vfsmount *dma_buf_mnt;
114
dma_buf_fs_init_context(struct fs_context * fc)115 static int dma_buf_fs_init_context(struct fs_context *fc)
116 {
117 struct pseudo_fs_context *ctx;
118
119 ctx = init_pseudo(fc, DMA_BUF_MAGIC);
120 if (!ctx)
121 return -ENOMEM;
122 ctx->dops = &dma_buf_dentry_ops;
123 return 0;
124 }
125
126 static struct file_system_type dma_buf_fs_type = {
127 .name = "dmabuf",
128 .init_fs_context = dma_buf_fs_init_context,
129 .kill_sb = kill_anon_super,
130 };
131
dma_buf_mmap_internal(struct file * file,struct vm_area_struct * vma)132 static int dma_buf_mmap_internal(struct file *file, struct vm_area_struct *vma)
133 {
134 struct dma_buf *dmabuf;
135
136 if (!is_dma_buf_file(file))
137 return -EINVAL;
138
139 dmabuf = file->private_data;
140
141 /* check if buffer supports mmap */
142 if (!dmabuf->ops->mmap)
143 return -EINVAL;
144
145 /* check for overflowing the buffer's size */
146 if (vma->vm_pgoff + vma_pages(vma) >
147 dmabuf->size >> PAGE_SHIFT)
148 return -EINVAL;
149
150 return dmabuf->ops->mmap(dmabuf, vma);
151 }
152
dma_buf_llseek(struct file * file,loff_t offset,int whence)153 static loff_t dma_buf_llseek(struct file *file, loff_t offset, int whence)
154 {
155 struct dma_buf *dmabuf;
156 loff_t base;
157
158 if (!is_dma_buf_file(file))
159 return -EBADF;
160
161 dmabuf = file->private_data;
162
163 /* only support discovering the end of the buffer,
164 but also allow SEEK_SET to maintain the idiomatic
165 SEEK_END(0), SEEK_CUR(0) pattern */
166 if (whence == SEEK_END)
167 base = dmabuf->size;
168 else if (whence == SEEK_SET)
169 base = 0;
170 else
171 return -EINVAL;
172
173 if (offset != 0)
174 return -EINVAL;
175
176 return base + offset;
177 }
178
179 /**
180 * DOC: implicit fence polling
181 *
182 * To support cross-device and cross-driver synchronization of buffer access
183 * implicit fences (represented internally in the kernel with &struct dma_fence)
184 * can be attached to a &dma_buf. The glue for that and a few related things are
185 * provided in the &dma_resv structure.
186 *
187 * Userspace can query the state of these implicitly tracked fences using poll()
188 * and related system calls:
189 *
190 * - Checking for EPOLLIN, i.e. read access, can be use to query the state of the
191 * most recent write or exclusive fence.
192 *
193 * - Checking for EPOLLOUT, i.e. write access, can be used to query the state of
194 * all attached fences, shared and exclusive ones.
195 *
196 * Note that this only signals the completion of the respective fences, i.e. the
197 * DMA transfers are complete. Cache flushing and any other necessary
198 * preparations before CPU access can begin still need to happen.
199 */
200
dma_buf_poll_cb(struct dma_fence * fence,struct dma_fence_cb * cb)201 static void dma_buf_poll_cb(struct dma_fence *fence, struct dma_fence_cb *cb)
202 {
203 struct dma_buf_poll_cb_t *dcb = (struct dma_buf_poll_cb_t *)cb;
204 unsigned long flags;
205
206 spin_lock_irqsave(&dcb->poll->lock, flags);
207 wake_up_locked_poll(dcb->poll, dcb->active);
208 dcb->active = 0;
209 spin_unlock_irqrestore(&dcb->poll->lock, flags);
210 }
211
dma_buf_poll(struct file * file,poll_table * poll)212 static __poll_t dma_buf_poll(struct file *file, poll_table *poll)
213 {
214 struct dma_buf *dmabuf;
215 struct dma_resv *resv;
216 struct dma_resv_list *fobj;
217 struct dma_fence *fence_excl;
218 __poll_t events;
219 unsigned shared_count, seq;
220
221 dmabuf = file->private_data;
222 if (!dmabuf || !dmabuf->resv)
223 return EPOLLERR;
224
225 resv = dmabuf->resv;
226
227 poll_wait(file, &dmabuf->poll, poll);
228
229 events = poll_requested_events(poll) & (EPOLLIN | EPOLLOUT);
230 if (!events)
231 return 0;
232
233 retry:
234 seq = read_seqcount_begin(&resv->seq);
235 rcu_read_lock();
236
237 fobj = rcu_dereference(resv->fence);
238 if (fobj)
239 shared_count = fobj->shared_count;
240 else
241 shared_count = 0;
242 fence_excl = rcu_dereference(resv->fence_excl);
243 if (read_seqcount_retry(&resv->seq, seq)) {
244 rcu_read_unlock();
245 goto retry;
246 }
247
248 if (fence_excl && (!(events & EPOLLOUT) || shared_count == 0)) {
249 struct dma_buf_poll_cb_t *dcb = &dmabuf->cb_excl;
250 __poll_t pevents = EPOLLIN;
251
252 if (shared_count == 0)
253 pevents |= EPOLLOUT;
254
255 spin_lock_irq(&dmabuf->poll.lock);
256 if (dcb->active) {
257 dcb->active |= pevents;
258 events &= ~pevents;
259 } else
260 dcb->active = pevents;
261 spin_unlock_irq(&dmabuf->poll.lock);
262
263 if (events & pevents) {
264 if (!dma_fence_get_rcu(fence_excl)) {
265 /* force a recheck */
266 events &= ~pevents;
267 dma_buf_poll_cb(NULL, &dcb->cb);
268 } else if (!dma_fence_add_callback(fence_excl, &dcb->cb,
269 dma_buf_poll_cb)) {
270 events &= ~pevents;
271 dma_fence_put(fence_excl);
272 } else {
273 /*
274 * No callback queued, wake up any additional
275 * waiters.
276 */
277 dma_fence_put(fence_excl);
278 dma_buf_poll_cb(NULL, &dcb->cb);
279 }
280 }
281 }
282
283 if ((events & EPOLLOUT) && shared_count > 0) {
284 struct dma_buf_poll_cb_t *dcb = &dmabuf->cb_shared;
285 int i;
286
287 /* Only queue a new callback if no event has fired yet */
288 spin_lock_irq(&dmabuf->poll.lock);
289 if (dcb->active)
290 events &= ~EPOLLOUT;
291 else
292 dcb->active = EPOLLOUT;
293 spin_unlock_irq(&dmabuf->poll.lock);
294
295 if (!(events & EPOLLOUT))
296 goto out;
297
298 for (i = 0; i < shared_count; ++i) {
299 struct dma_fence *fence = rcu_dereference(fobj->shared[i]);
300
301 if (!dma_fence_get_rcu(fence)) {
302 /*
303 * fence refcount dropped to zero, this means
304 * that fobj has been freed
305 *
306 * call dma_buf_poll_cb and force a recheck!
307 */
308 events &= ~EPOLLOUT;
309 dma_buf_poll_cb(NULL, &dcb->cb);
310 break;
311 }
312 if (!dma_fence_add_callback(fence, &dcb->cb,
313 dma_buf_poll_cb)) {
314 dma_fence_put(fence);
315 events &= ~EPOLLOUT;
316 break;
317 }
318 dma_fence_put(fence);
319 }
320
321 /* No callback queued, wake up any additional waiters. */
322 if (i == shared_count)
323 dma_buf_poll_cb(NULL, &dcb->cb);
324 }
325
326 out:
327 rcu_read_unlock();
328 return events;
329 }
330
331 /**
332 * dma_buf_set_name - Set a name to a specific dma_buf to track the usage.
333 * The name of the dma-buf buffer can only be set when the dma-buf is not
334 * attached to any devices. It could theoritically support changing the
335 * name of the dma-buf if the same piece of memory is used for multiple
336 * purpose between different devices.
337 *
338 * @dmabuf: [in] dmabuf buffer that will be renamed.
339 * @buf: [in] A piece of userspace memory that contains the name of
340 * the dma-buf.
341 *
342 * Returns 0 on success. If the dma-buf buffer is already attached to
343 * devices, return -EBUSY.
344 *
345 */
dma_buf_set_name(struct dma_buf * dmabuf,const char __user * buf)346 static long dma_buf_set_name(struct dma_buf *dmabuf, const char __user *buf)
347 {
348 char *name = strndup_user(buf, DMA_BUF_NAME_LEN);
349 long ret = 0;
350
351 if (IS_ERR(name))
352 return PTR_ERR(name);
353
354 dma_resv_lock(dmabuf->resv, NULL);
355 if (!list_empty(&dmabuf->attachments)) {
356 ret = -EBUSY;
357 kfree(name);
358 goto out_unlock;
359 }
360 spin_lock(&dmabuf->name_lock);
361 kfree(dmabuf->name);
362 dmabuf->name = name;
363 spin_unlock(&dmabuf->name_lock);
364
365 out_unlock:
366 dma_resv_unlock(dmabuf->resv);
367 return ret;
368 }
369
dma_buf_ioctl(struct file * file,unsigned int cmd,unsigned long arg)370 static long dma_buf_ioctl(struct file *file,
371 unsigned int cmd, unsigned long arg)
372 {
373 struct dma_buf *dmabuf;
374 struct dma_buf_sync sync;
375 enum dma_data_direction direction;
376 int ret;
377
378 dmabuf = file->private_data;
379
380 switch (cmd) {
381 case DMA_BUF_IOCTL_SYNC:
382 if (copy_from_user(&sync, (void __user *) arg, sizeof(sync)))
383 return -EFAULT;
384
385 if (sync.flags & ~DMA_BUF_SYNC_VALID_FLAGS_MASK)
386 return -EINVAL;
387
388 switch (sync.flags & DMA_BUF_SYNC_RW) {
389 case DMA_BUF_SYNC_READ:
390 direction = DMA_FROM_DEVICE;
391 break;
392 case DMA_BUF_SYNC_WRITE:
393 direction = DMA_TO_DEVICE;
394 break;
395 case DMA_BUF_SYNC_RW:
396 direction = DMA_BIDIRECTIONAL;
397 break;
398 default:
399 return -EINVAL;
400 }
401
402 if (sync.flags & DMA_BUF_SYNC_END)
403 ret = dma_buf_end_cpu_access(dmabuf, direction);
404 else
405 ret = dma_buf_begin_cpu_access(dmabuf, direction);
406
407 return ret;
408
409 case DMA_BUF_SET_NAME_A:
410 case DMA_BUF_SET_NAME_B:
411 return dma_buf_set_name(dmabuf, (const char __user *)arg);
412
413 default:
414 return -ENOTTY;
415 }
416 }
417
dma_buf_show_fdinfo(struct seq_file * m,struct file * file)418 static void dma_buf_show_fdinfo(struct seq_file *m, struct file *file)
419 {
420 struct dma_buf *dmabuf = file->private_data;
421
422 seq_printf(m, "size:\t%zu\n", dmabuf->size);
423 /* Don't count the temporary reference taken inside procfs seq_show */
424 seq_printf(m, "count:\t%ld\n", file_count(dmabuf->file) - 1);
425 seq_printf(m, "exp_name:\t%s\n", dmabuf->exp_name);
426 spin_lock(&dmabuf->name_lock);
427 if (dmabuf->name)
428 seq_printf(m, "name:\t%s\n", dmabuf->name);
429 spin_unlock(&dmabuf->name_lock);
430 }
431
432 static const struct file_operations dma_buf_fops = {
433 .release = dma_buf_file_release,
434 .mmap = dma_buf_mmap_internal,
435 .llseek = dma_buf_llseek,
436 .poll = dma_buf_poll,
437 .unlocked_ioctl = dma_buf_ioctl,
438 .compat_ioctl = compat_ptr_ioctl,
439 .show_fdinfo = dma_buf_show_fdinfo,
440 };
441
442 /*
443 * is_dma_buf_file - Check if struct file* is associated with dma_buf
444 */
is_dma_buf_file(struct file * file)445 static inline int is_dma_buf_file(struct file *file)
446 {
447 return file->f_op == &dma_buf_fops;
448 }
449
dma_buf_getfile(struct dma_buf * dmabuf,int flags)450 static struct file *dma_buf_getfile(struct dma_buf *dmabuf, int flags)
451 {
452 struct file *file;
453 struct inode *inode = alloc_anon_inode(dma_buf_mnt->mnt_sb);
454
455 if (IS_ERR(inode))
456 return ERR_CAST(inode);
457
458 inode->i_size = dmabuf->size;
459 inode_set_bytes(inode, dmabuf->size);
460
461 file = alloc_file_pseudo(inode, dma_buf_mnt, "dmabuf",
462 flags, &dma_buf_fops);
463 if (IS_ERR(file))
464 goto err_alloc_file;
465 file->f_flags = flags & (O_ACCMODE | O_NONBLOCK);
466 file->private_data = dmabuf;
467 file->f_path.dentry->d_fsdata = dmabuf;
468
469 return file;
470
471 err_alloc_file:
472 iput(inode);
473 return file;
474 }
475
476 /**
477 * DOC: dma buf device access
478 *
479 * For device DMA access to a shared DMA buffer the usual sequence of operations
480 * is fairly simple:
481 *
482 * 1. The exporter defines his exporter instance using
483 * DEFINE_DMA_BUF_EXPORT_INFO() and calls dma_buf_export() to wrap a private
484 * buffer object into a &dma_buf. It then exports that &dma_buf to userspace
485 * as a file descriptor by calling dma_buf_fd().
486 *
487 * 2. Userspace passes this file-descriptors to all drivers it wants this buffer
488 * to share with: First the filedescriptor is converted to a &dma_buf using
489 * dma_buf_get(). Then the buffer is attached to the device using
490 * dma_buf_attach().
491 *
492 * Up to this stage the exporter is still free to migrate or reallocate the
493 * backing storage.
494 *
495 * 3. Once the buffer is attached to all devices userspace can initiate DMA
496 * access to the shared buffer. In the kernel this is done by calling
497 * dma_buf_map_attachment() and dma_buf_unmap_attachment().
498 *
499 * 4. Once a driver is done with a shared buffer it needs to call
500 * dma_buf_detach() (after cleaning up any mappings) and then release the
501 * reference acquired with dma_buf_get by calling dma_buf_put().
502 *
503 * For the detailed semantics exporters are expected to implement see
504 * &dma_buf_ops.
505 */
506
507 /**
508 * dma_buf_export - Creates a new dma_buf, and associates an anon file
509 * with this buffer, so it can be exported.
510 * Also connect the allocator specific data and ops to the buffer.
511 * Additionally, provide a name string for exporter; useful in debugging.
512 *
513 * @exp_info: [in] holds all the export related information provided
514 * by the exporter. see &struct dma_buf_export_info
515 * for further details.
516 *
517 * Returns, on success, a newly created dma_buf object, which wraps the
518 * supplied private data and operations for dma_buf_ops. On either missing
519 * ops, or error in allocating struct dma_buf, will return negative error.
520 *
521 * For most cases the easiest way to create @exp_info is through the
522 * %DEFINE_DMA_BUF_EXPORT_INFO macro.
523 */
dma_buf_export(const struct dma_buf_export_info * exp_info)524 struct dma_buf *dma_buf_export(const struct dma_buf_export_info *exp_info)
525 {
526 struct dma_buf *dmabuf;
527 struct dma_resv *resv = exp_info->resv;
528 struct file *file;
529 size_t alloc_size = sizeof(struct dma_buf);
530 int ret;
531
532 if (!exp_info->resv)
533 alloc_size += sizeof(struct dma_resv);
534 else
535 /* prevent &dma_buf[1] == dma_buf->resv */
536 alloc_size += 1;
537
538 if (WARN_ON(!exp_info->priv
539 || !exp_info->ops
540 || !exp_info->ops->map_dma_buf
541 || !exp_info->ops->unmap_dma_buf
542 || !exp_info->ops->release)) {
543 return ERR_PTR(-EINVAL);
544 }
545
546 if (WARN_ON(exp_info->ops->cache_sgt_mapping &&
547 (exp_info->ops->pin || exp_info->ops->unpin)))
548 return ERR_PTR(-EINVAL);
549
550 if (WARN_ON(!exp_info->ops->pin != !exp_info->ops->unpin))
551 return ERR_PTR(-EINVAL);
552
553 if (!try_module_get(exp_info->owner))
554 return ERR_PTR(-ENOENT);
555
556 dmabuf = kzalloc(alloc_size, GFP_KERNEL);
557 if (!dmabuf) {
558 ret = -ENOMEM;
559 goto err_module;
560 }
561
562 dmabuf->priv = exp_info->priv;
563 dmabuf->ops = exp_info->ops;
564 dmabuf->size = exp_info->size;
565 dmabuf->exp_name = exp_info->exp_name;
566 dmabuf->owner = exp_info->owner;
567 spin_lock_init(&dmabuf->name_lock);
568 init_waitqueue_head(&dmabuf->poll);
569 dmabuf->cb_excl.poll = dmabuf->cb_shared.poll = &dmabuf->poll;
570 dmabuf->cb_excl.active = dmabuf->cb_shared.active = 0;
571
572 if (!resv) {
573 resv = (struct dma_resv *)&dmabuf[1];
574 dma_resv_init(resv);
575 }
576 dmabuf->resv = resv;
577
578 file = dma_buf_getfile(dmabuf, exp_info->flags);
579 if (IS_ERR(file)) {
580 ret = PTR_ERR(file);
581 goto err_dmabuf;
582 }
583
584 file->f_mode |= FMODE_LSEEK;
585 dmabuf->file = file;
586
587 ret = dma_buf_stats_setup(dmabuf);
588 if (ret)
589 goto err_sysfs;
590
591 mutex_init(&dmabuf->lock);
592 INIT_LIST_HEAD(&dmabuf->attachments);
593
594 mutex_lock(&db_list.lock);
595 list_add(&dmabuf->list_node, &db_list.head);
596 mutex_unlock(&db_list.lock);
597
598 init_dma_buf_task_info(dmabuf);
599 return dmabuf;
600
601 err_sysfs:
602 /*
603 * Set file->f_path.dentry->d_fsdata to NULL so that when
604 * dma_buf_release() gets invoked by dentry_ops, it exits
605 * early before calling the release() dma_buf op.
606 */
607 file->f_path.dentry->d_fsdata = NULL;
608 fput(file);
609 err_dmabuf:
610 kfree(dmabuf);
611 err_module:
612 module_put(exp_info->owner);
613 return ERR_PTR(ret);
614 }
615 EXPORT_SYMBOL_GPL(dma_buf_export);
616
617 /**
618 * dma_buf_fd - returns a file descriptor for the given dma_buf
619 * @dmabuf: [in] pointer to dma_buf for which fd is required.
620 * @flags: [in] flags to give to fd
621 *
622 * On success, returns an associated 'fd'. Else, returns error.
623 */
dma_buf_fd(struct dma_buf * dmabuf,int flags)624 int dma_buf_fd(struct dma_buf *dmabuf, int flags)
625 {
626 int fd;
627
628 if (!dmabuf || !dmabuf->file)
629 return -EINVAL;
630
631 fd = get_unused_fd_flags(flags);
632 if (fd < 0)
633 return fd;
634
635 fd_install(fd, dmabuf->file);
636
637 return fd;
638 }
639 EXPORT_SYMBOL_GPL(dma_buf_fd);
640
641 /**
642 * dma_buf_get - returns the dma_buf structure related to an fd
643 * @fd: [in] fd associated with the dma_buf to be returned
644 *
645 * On success, returns the dma_buf structure associated with an fd; uses
646 * file's refcounting done by fget to increase refcount. returns ERR_PTR
647 * otherwise.
648 */
dma_buf_get(int fd)649 struct dma_buf *dma_buf_get(int fd)
650 {
651 struct file *file;
652
653 file = fget(fd);
654
655 if (!file)
656 return ERR_PTR(-EBADF);
657
658 if (!is_dma_buf_file(file)) {
659 fput(file);
660 return ERR_PTR(-EINVAL);
661 }
662
663 return file->private_data;
664 }
665 EXPORT_SYMBOL_GPL(dma_buf_get);
666
667 /**
668 * dma_buf_put - decreases refcount of the buffer
669 * @dmabuf: [in] buffer to reduce refcount of
670 *
671 * Uses file's refcounting done implicitly by fput().
672 *
673 * If, as a result of this call, the refcount becomes 0, the 'release' file
674 * operation related to this fd is called. It calls &dma_buf_ops.release vfunc
675 * in turn, and frees the memory allocated for dmabuf when exported.
676 */
dma_buf_put(struct dma_buf * dmabuf)677 void dma_buf_put(struct dma_buf *dmabuf)
678 {
679 if (WARN_ON(!dmabuf || !dmabuf->file))
680 return;
681
682 fput(dmabuf->file);
683 }
684 EXPORT_SYMBOL_GPL(dma_buf_put);
685
686 /**
687 * dma_buf_dynamic_attach - Add the device to dma_buf's attachments list; optionally,
688 * calls attach() of dma_buf_ops to allow device-specific attach functionality
689 * @dmabuf: [in] buffer to attach device to.
690 * @dev: [in] device to be attached.
691 * @importer_ops: [in] importer operations for the attachment
692 * @importer_priv: [in] importer private pointer for the attachment
693 *
694 * Returns struct dma_buf_attachment pointer for this attachment. Attachments
695 * must be cleaned up by calling dma_buf_detach().
696 *
697 * Returns:
698 *
699 * A pointer to newly created &dma_buf_attachment on success, or a negative
700 * error code wrapped into a pointer on failure.
701 *
702 * Note that this can fail if the backing storage of @dmabuf is in a place not
703 * accessible to @dev, and cannot be moved to a more suitable place. This is
704 * indicated with the error code -EBUSY.
705 */
706 struct dma_buf_attachment *
dma_buf_dynamic_attach(struct dma_buf * dmabuf,struct device * dev,const struct dma_buf_attach_ops * importer_ops,void * importer_priv)707 dma_buf_dynamic_attach(struct dma_buf *dmabuf, struct device *dev,
708 const struct dma_buf_attach_ops *importer_ops,
709 void *importer_priv)
710 {
711 struct dma_buf_attachment *attach;
712 int ret;
713
714 if (WARN_ON(!dmabuf || !dev))
715 return ERR_PTR(-EINVAL);
716
717 if (WARN_ON(importer_ops && !importer_ops->move_notify))
718 return ERR_PTR(-EINVAL);
719
720 attach = kzalloc(sizeof(*attach), GFP_KERNEL);
721 if (!attach)
722 return ERR_PTR(-ENOMEM);
723
724 attach->dev = dev;
725 attach->dmabuf = dmabuf;
726 if (importer_ops)
727 attach->peer2peer = importer_ops->allow_peer2peer;
728 attach->importer_ops = importer_ops;
729 attach->importer_priv = importer_priv;
730
731 if (dmabuf->ops->attach) {
732 ret = dmabuf->ops->attach(dmabuf, attach);
733 if (ret)
734 goto err_attach;
735 }
736 dma_resv_lock(dmabuf->resv, NULL);
737 list_add(&attach->node, &dmabuf->attachments);
738 dma_resv_unlock(dmabuf->resv);
739
740 /* When either the importer or the exporter can't handle dynamic
741 * mappings we cache the mapping here to avoid issues with the
742 * reservation object lock.
743 */
744 if (dma_buf_attachment_is_dynamic(attach) !=
745 dma_buf_is_dynamic(dmabuf)) {
746 struct sg_table *sgt;
747
748 if (dma_buf_is_dynamic(attach->dmabuf)) {
749 dma_resv_lock(attach->dmabuf->resv, NULL);
750 ret = dma_buf_pin(attach);
751 if (ret)
752 goto err_unlock;
753 }
754
755 sgt = dmabuf->ops->map_dma_buf(attach, DMA_BIDIRECTIONAL);
756 if (!sgt)
757 sgt = ERR_PTR(-ENOMEM);
758 if (IS_ERR(sgt)) {
759 ret = PTR_ERR(sgt);
760 goto err_unpin;
761 }
762 if (dma_buf_is_dynamic(attach->dmabuf))
763 dma_resv_unlock(attach->dmabuf->resv);
764 attach->sgt = sgt;
765 attach->dir = DMA_BIDIRECTIONAL;
766 }
767
768 return attach;
769
770 err_attach:
771 kfree(attach);
772 return ERR_PTR(ret);
773
774 err_unpin:
775 if (dma_buf_is_dynamic(attach->dmabuf))
776 dma_buf_unpin(attach);
777
778 err_unlock:
779 if (dma_buf_is_dynamic(attach->dmabuf))
780 dma_resv_unlock(attach->dmabuf->resv);
781
782 dma_buf_detach(dmabuf, attach);
783 return ERR_PTR(ret);
784 }
785 EXPORT_SYMBOL_GPL(dma_buf_dynamic_attach);
786
787 /**
788 * dma_buf_attach - Wrapper for dma_buf_dynamic_attach
789 * @dmabuf: [in] buffer to attach device to.
790 * @dev: [in] device to be attached.
791 *
792 * Wrapper to call dma_buf_dynamic_attach() for drivers which still use a static
793 * mapping.
794 */
dma_buf_attach(struct dma_buf * dmabuf,struct device * dev)795 struct dma_buf_attachment *dma_buf_attach(struct dma_buf *dmabuf,
796 struct device *dev)
797 {
798 return dma_buf_dynamic_attach(dmabuf, dev, NULL, NULL);
799 }
800 EXPORT_SYMBOL_GPL(dma_buf_attach);
801
802 /**
803 * dma_buf_detach - Remove the given attachment from dmabuf's attachments list;
804 * optionally calls detach() of dma_buf_ops for device-specific detach
805 * @dmabuf: [in] buffer to detach from.
806 * @attach: [in] attachment to be detached; is free'd after this call.
807 *
808 * Clean up a device attachment obtained by calling dma_buf_attach().
809 */
dma_buf_detach(struct dma_buf * dmabuf,struct dma_buf_attachment * attach)810 void dma_buf_detach(struct dma_buf *dmabuf, struct dma_buf_attachment *attach)
811 {
812 if (WARN_ON(!dmabuf || !attach))
813 return;
814
815 if (attach->sgt) {
816 if (dma_buf_is_dynamic(attach->dmabuf))
817 dma_resv_lock(attach->dmabuf->resv, NULL);
818
819 dmabuf->ops->unmap_dma_buf(attach, attach->sgt, attach->dir);
820
821 if (dma_buf_is_dynamic(attach->dmabuf)) {
822 dma_buf_unpin(attach);
823 dma_resv_unlock(attach->dmabuf->resv);
824 }
825 }
826
827 dma_resv_lock(dmabuf->resv, NULL);
828 list_del(&attach->node);
829 dma_resv_unlock(dmabuf->resv);
830 if (dmabuf->ops->detach)
831 dmabuf->ops->detach(dmabuf, attach);
832
833 kfree(attach);
834 }
835 EXPORT_SYMBOL_GPL(dma_buf_detach);
836
837 /**
838 * dma_buf_pin - Lock down the DMA-buf
839 *
840 * @attach: [in] attachment which should be pinned
841 *
842 * Returns:
843 * 0 on success, negative error code on failure.
844 */
dma_buf_pin(struct dma_buf_attachment * attach)845 int dma_buf_pin(struct dma_buf_attachment *attach)
846 {
847 struct dma_buf *dmabuf = attach->dmabuf;
848 int ret = 0;
849
850 dma_resv_assert_held(dmabuf->resv);
851
852 if (dmabuf->ops->pin)
853 ret = dmabuf->ops->pin(attach);
854
855 return ret;
856 }
857 EXPORT_SYMBOL_GPL(dma_buf_pin);
858
859 /**
860 * dma_buf_unpin - Remove lock from DMA-buf
861 *
862 * @attach: [in] attachment which should be unpinned
863 */
dma_buf_unpin(struct dma_buf_attachment * attach)864 void dma_buf_unpin(struct dma_buf_attachment *attach)
865 {
866 struct dma_buf *dmabuf = attach->dmabuf;
867
868 dma_resv_assert_held(dmabuf->resv);
869
870 if (dmabuf->ops->unpin)
871 dmabuf->ops->unpin(attach);
872 }
873 EXPORT_SYMBOL_GPL(dma_buf_unpin);
874
875 /**
876 * dma_buf_map_attachment - Returns the scatterlist table of the attachment;
877 * mapped into _device_ address space. Is a wrapper for map_dma_buf() of the
878 * dma_buf_ops.
879 * @attach: [in] attachment whose scatterlist is to be returned
880 * @direction: [in] direction of DMA transfer
881 *
882 * Returns sg_table containing the scatterlist to be returned; returns ERR_PTR
883 * on error. May return -EINTR if it is interrupted by a signal.
884 *
885 * A mapping must be unmapped by using dma_buf_unmap_attachment(). Note that
886 * the underlying backing storage is pinned for as long as a mapping exists,
887 * therefore users/importers should not hold onto a mapping for undue amounts of
888 * time.
889 */
dma_buf_map_attachment(struct dma_buf_attachment * attach,enum dma_data_direction direction)890 struct sg_table *dma_buf_map_attachment(struct dma_buf_attachment *attach,
891 enum dma_data_direction direction)
892 {
893 struct sg_table *sg_table;
894 int r;
895
896 might_sleep();
897
898 if (WARN_ON(!attach || !attach->dmabuf))
899 return ERR_PTR(-EINVAL);
900
901 if (dma_buf_attachment_is_dynamic(attach))
902 dma_resv_assert_held(attach->dmabuf->resv);
903
904 if (attach->sgt) {
905 /*
906 * Two mappings with different directions for the same
907 * attachment are not allowed.
908 */
909 if (attach->dir != direction &&
910 attach->dir != DMA_BIDIRECTIONAL)
911 return ERR_PTR(-EBUSY);
912
913 return attach->sgt;
914 }
915
916 if (dma_buf_is_dynamic(attach->dmabuf)) {
917 dma_resv_assert_held(attach->dmabuf->resv);
918 if (!IS_ENABLED(CONFIG_DMABUF_MOVE_NOTIFY)) {
919 r = dma_buf_pin(attach);
920 if (r)
921 return ERR_PTR(r);
922 }
923 }
924
925 sg_table = attach->dmabuf->ops->map_dma_buf(attach, direction);
926 if (!sg_table)
927 sg_table = ERR_PTR(-ENOMEM);
928
929 if (IS_ERR(sg_table) && dma_buf_is_dynamic(attach->dmabuf) &&
930 !IS_ENABLED(CONFIG_DMABUF_MOVE_NOTIFY))
931 dma_buf_unpin(attach);
932
933 if (!IS_ERR(sg_table) && attach->dmabuf->ops->cache_sgt_mapping) {
934 attach->sgt = sg_table;
935 attach->dir = direction;
936 }
937
938 return sg_table;
939 }
940 EXPORT_SYMBOL_GPL(dma_buf_map_attachment);
941
942 /**
943 * dma_buf_unmap_attachment - unmaps and decreases usecount of the buffer;might
944 * deallocate the scatterlist associated. Is a wrapper for unmap_dma_buf() of
945 * dma_buf_ops.
946 * @attach: [in] attachment to unmap buffer from
947 * @sg_table: [in] scatterlist info of the buffer to unmap
948 * @direction: [in] direction of DMA transfer
949 *
950 * This unmaps a DMA mapping for @attached obtained by dma_buf_map_attachment().
951 */
dma_buf_unmap_attachment(struct dma_buf_attachment * attach,struct sg_table * sg_table,enum dma_data_direction direction)952 void dma_buf_unmap_attachment(struct dma_buf_attachment *attach,
953 struct sg_table *sg_table,
954 enum dma_data_direction direction)
955 {
956 might_sleep();
957
958 if (WARN_ON(!attach || !attach->dmabuf || !sg_table))
959 return;
960
961 if (dma_buf_attachment_is_dynamic(attach))
962 dma_resv_assert_held(attach->dmabuf->resv);
963
964 if (attach->sgt == sg_table)
965 return;
966
967 if (dma_buf_is_dynamic(attach->dmabuf))
968 dma_resv_assert_held(attach->dmabuf->resv);
969
970 attach->dmabuf->ops->unmap_dma_buf(attach, sg_table, direction);
971
972 if (dma_buf_is_dynamic(attach->dmabuf) &&
973 !IS_ENABLED(CONFIG_DMABUF_MOVE_NOTIFY))
974 dma_buf_unpin(attach);
975 }
976 EXPORT_SYMBOL_GPL(dma_buf_unmap_attachment);
977
978 /**
979 * dma_buf_move_notify - notify attachments that DMA-buf is moving
980 *
981 * @dmabuf: [in] buffer which is moving
982 *
983 * Informs all attachmenst that they need to destroy and recreated all their
984 * mappings.
985 */
dma_buf_move_notify(struct dma_buf * dmabuf)986 void dma_buf_move_notify(struct dma_buf *dmabuf)
987 {
988 struct dma_buf_attachment *attach;
989
990 dma_resv_assert_held(dmabuf->resv);
991
992 list_for_each_entry(attach, &dmabuf->attachments, node)
993 if (attach->importer_ops)
994 attach->importer_ops->move_notify(attach);
995 }
996 EXPORT_SYMBOL_GPL(dma_buf_move_notify);
997
998 /**
999 * DOC: cpu access
1000 *
1001 * There are mutliple reasons for supporting CPU access to a dma buffer object:
1002 *
1003 * - Fallback operations in the kernel, for example when a device is connected
1004 * over USB and the kernel needs to shuffle the data around first before
1005 * sending it away. Cache coherency is handled by braketing any transactions
1006 * with calls to dma_buf_begin_cpu_access() and dma_buf_end_cpu_access()
1007 * access.
1008 *
1009 * Since for most kernel internal dma-buf accesses need the entire buffer, a
1010 * vmap interface is introduced. Note that on very old 32-bit architectures
1011 * vmalloc space might be limited and result in vmap calls failing.
1012 *
1013 * Interfaces::
1014 * void \*dma_buf_vmap(struct dma_buf \*dmabuf)
1015 * void dma_buf_vunmap(struct dma_buf \*dmabuf, void \*vaddr)
1016 *
1017 * The vmap call can fail if there is no vmap support in the exporter, or if
1018 * it runs out of vmalloc space. Fallback to kmap should be implemented. Note
1019 * that the dma-buf layer keeps a reference count for all vmap access and
1020 * calls down into the exporter's vmap function only when no vmapping exists,
1021 * and only unmaps it once. Protection against concurrent vmap/vunmap calls is
1022 * provided by taking the dma_buf->lock mutex.
1023 *
1024 * - For full compatibility on the importer side with existing userspace
1025 * interfaces, which might already support mmap'ing buffers. This is needed in
1026 * many processing pipelines (e.g. feeding a software rendered image into a
1027 * hardware pipeline, thumbnail creation, snapshots, ...). Also, Android's ION
1028 * framework already supported this and for DMA buffer file descriptors to
1029 * replace ION buffers mmap support was needed.
1030 *
1031 * There is no special interfaces, userspace simply calls mmap on the dma-buf
1032 * fd. But like for CPU access there's a need to braket the actual access,
1033 * which is handled by the ioctl (DMA_BUF_IOCTL_SYNC). Note that
1034 * DMA_BUF_IOCTL_SYNC can fail with -EAGAIN or -EINTR, in which case it must
1035 * be restarted.
1036 *
1037 * Some systems might need some sort of cache coherency management e.g. when
1038 * CPU and GPU domains are being accessed through dma-buf at the same time.
1039 * To circumvent this problem there are begin/end coherency markers, that
1040 * forward directly to existing dma-buf device drivers vfunc hooks. Userspace
1041 * can make use of those markers through the DMA_BUF_IOCTL_SYNC ioctl. The
1042 * sequence would be used like following:
1043 *
1044 * - mmap dma-buf fd
1045 * - for each drawing/upload cycle in CPU 1. SYNC_START ioctl, 2. read/write
1046 * to mmap area 3. SYNC_END ioctl. This can be repeated as often as you
1047 * want (with the new data being consumed by say the GPU or the scanout
1048 * device)
1049 * - munmap once you don't need the buffer any more
1050 *
1051 * For correctness and optimal performance, it is always required to use
1052 * SYNC_START and SYNC_END before and after, respectively, when accessing the
1053 * mapped address. Userspace cannot rely on coherent access, even when there
1054 * are systems where it just works without calling these ioctls.
1055 *
1056 * - And as a CPU fallback in userspace processing pipelines.
1057 *
1058 * Similar to the motivation for kernel cpu access it is again important that
1059 * the userspace code of a given importing subsystem can use the same
1060 * interfaces with a imported dma-buf buffer object as with a native buffer
1061 * object. This is especially important for drm where the userspace part of
1062 * contemporary OpenGL, X, and other drivers is huge, and reworking them to
1063 * use a different way to mmap a buffer rather invasive.
1064 *
1065 * The assumption in the current dma-buf interfaces is that redirecting the
1066 * initial mmap is all that's needed. A survey of some of the existing
1067 * subsystems shows that no driver seems to do any nefarious thing like
1068 * syncing up with outstanding asynchronous processing on the device or
1069 * allocating special resources at fault time. So hopefully this is good
1070 * enough, since adding interfaces to intercept pagefaults and allow pte
1071 * shootdowns would increase the complexity quite a bit.
1072 *
1073 * Interface::
1074 * int dma_buf_mmap(struct dma_buf \*, struct vm_area_struct \*,
1075 * unsigned long);
1076 *
1077 * If the importing subsystem simply provides a special-purpose mmap call to
1078 * set up a mapping in userspace, calling do_mmap with dma_buf->file will
1079 * equally achieve that for a dma-buf object.
1080 */
1081
__dma_buf_begin_cpu_access(struct dma_buf * dmabuf,enum dma_data_direction direction)1082 static int __dma_buf_begin_cpu_access(struct dma_buf *dmabuf,
1083 enum dma_data_direction direction)
1084 {
1085 bool write = (direction == DMA_BIDIRECTIONAL ||
1086 direction == DMA_TO_DEVICE);
1087 struct dma_resv *resv = dmabuf->resv;
1088 long ret;
1089
1090 /* Wait on any implicit rendering fences */
1091 ret = dma_resv_wait_timeout_rcu(resv, write, true,
1092 MAX_SCHEDULE_TIMEOUT);
1093 if (ret < 0)
1094 return ret;
1095
1096 return 0;
1097 }
1098
1099 /**
1100 * dma_buf_begin_cpu_access - Must be called before accessing a dma_buf from the
1101 * cpu in the kernel context. Calls begin_cpu_access to allow exporter-specific
1102 * preparations. Coherency is only guaranteed in the specified range for the
1103 * specified access direction.
1104 * @dmabuf: [in] buffer to prepare cpu access for.
1105 * @direction: [in] length of range for cpu access.
1106 *
1107 * After the cpu access is complete the caller should call
1108 * dma_buf_end_cpu_access(). Only when cpu access is braketed by both calls is
1109 * it guaranteed to be coherent with other DMA access.
1110 *
1111 * Can return negative error values, returns 0 on success.
1112 */
dma_buf_begin_cpu_access(struct dma_buf * dmabuf,enum dma_data_direction direction)1113 int dma_buf_begin_cpu_access(struct dma_buf *dmabuf,
1114 enum dma_data_direction direction)
1115 {
1116 int ret = 0;
1117
1118 if (WARN_ON(!dmabuf))
1119 return -EINVAL;
1120
1121 if (dmabuf->ops->begin_cpu_access)
1122 ret = dmabuf->ops->begin_cpu_access(dmabuf, direction);
1123
1124 /* Ensure that all fences are waited upon - but we first allow
1125 * the native handler the chance to do so more efficiently if it
1126 * chooses. A double invocation here will be reasonably cheap no-op.
1127 */
1128 if (ret == 0)
1129 ret = __dma_buf_begin_cpu_access(dmabuf, direction);
1130
1131 return ret;
1132 }
1133 EXPORT_SYMBOL_GPL(dma_buf_begin_cpu_access);
1134
1135 /**
1136 * dma_buf_end_cpu_access - Must be called after accessing a dma_buf from the
1137 * cpu in the kernel context. Calls end_cpu_access to allow exporter-specific
1138 * actions. Coherency is only guaranteed in the specified range for the
1139 * specified access direction.
1140 * @dmabuf: [in] buffer to complete cpu access for.
1141 * @direction: [in] length of range for cpu access.
1142 *
1143 * This terminates CPU access started with dma_buf_begin_cpu_access().
1144 *
1145 * Can return negative error values, returns 0 on success.
1146 */
dma_buf_end_cpu_access(struct dma_buf * dmabuf,enum dma_data_direction direction)1147 int dma_buf_end_cpu_access(struct dma_buf *dmabuf,
1148 enum dma_data_direction direction)
1149 {
1150 int ret = 0;
1151
1152 WARN_ON(!dmabuf);
1153
1154 if (dmabuf->ops->end_cpu_access)
1155 ret = dmabuf->ops->end_cpu_access(dmabuf, direction);
1156
1157 return ret;
1158 }
1159 EXPORT_SYMBOL_GPL(dma_buf_end_cpu_access);
1160
1161
1162 /**
1163 * dma_buf_mmap - Setup up a userspace mmap with the given vma
1164 * @dmabuf: [in] buffer that should back the vma
1165 * @vma: [in] vma for the mmap
1166 * @pgoff: [in] offset in pages where this mmap should start within the
1167 * dma-buf buffer.
1168 *
1169 * This function adjusts the passed in vma so that it points at the file of the
1170 * dma_buf operation. It also adjusts the starting pgoff and does bounds
1171 * checking on the size of the vma. Then it calls the exporters mmap function to
1172 * set up the mapping.
1173 *
1174 * Can return negative error values, returns 0 on success.
1175 */
dma_buf_mmap(struct dma_buf * dmabuf,struct vm_area_struct * vma,unsigned long pgoff)1176 int dma_buf_mmap(struct dma_buf *dmabuf, struct vm_area_struct *vma,
1177 unsigned long pgoff)
1178 {
1179 struct file *oldfile;
1180 int ret;
1181
1182 if (WARN_ON(!dmabuf || !vma))
1183 return -EINVAL;
1184
1185 /* check if buffer supports mmap */
1186 if (!dmabuf->ops->mmap)
1187 return -EINVAL;
1188
1189 /* check for offset overflow */
1190 if (pgoff + vma_pages(vma) < pgoff)
1191 return -EOVERFLOW;
1192
1193 /* check for overflowing the buffer's size */
1194 if (pgoff + vma_pages(vma) >
1195 dmabuf->size >> PAGE_SHIFT)
1196 return -EINVAL;
1197
1198 /* readjust the vma */
1199 get_file(dmabuf->file);
1200 oldfile = vma->vm_file;
1201 vma->vm_file = dmabuf->file;
1202 vma->vm_pgoff = pgoff;
1203
1204 ret = dmabuf->ops->mmap(dmabuf, vma);
1205 if (ret) {
1206 /* restore old parameters on failure */
1207 vma->vm_file = oldfile;
1208 fput(dmabuf->file);
1209 } else {
1210 if (oldfile)
1211 fput(oldfile);
1212 }
1213 return ret;
1214
1215 }
1216 EXPORT_SYMBOL_GPL(dma_buf_mmap);
1217
1218 /**
1219 * dma_buf_vmap - Create virtual mapping for the buffer object into kernel
1220 * address space. Same restrictions as for vmap and friends apply.
1221 * @dmabuf: [in] buffer to vmap
1222 *
1223 * This call may fail due to lack of virtual mapping address space.
1224 * These calls are optional in drivers. The intended use for them
1225 * is for mapping objects linear in kernel space for high use objects.
1226 * Please attempt to use kmap/kunmap before thinking about these interfaces.
1227 *
1228 * Returns NULL on error.
1229 */
dma_buf_vmap(struct dma_buf * dmabuf)1230 void *dma_buf_vmap(struct dma_buf *dmabuf)
1231 {
1232 void *ptr;
1233
1234 if (WARN_ON(!dmabuf))
1235 return NULL;
1236
1237 if (!dmabuf->ops->vmap)
1238 return NULL;
1239
1240 mutex_lock(&dmabuf->lock);
1241 if (dmabuf->vmapping_counter) {
1242 dmabuf->vmapping_counter++;
1243 BUG_ON(!dmabuf->vmap_ptr);
1244 ptr = dmabuf->vmap_ptr;
1245 goto out_unlock;
1246 }
1247
1248 BUG_ON(dmabuf->vmap_ptr);
1249
1250 ptr = dmabuf->ops->vmap(dmabuf);
1251 if (WARN_ON_ONCE(IS_ERR(ptr)))
1252 ptr = NULL;
1253 if (!ptr)
1254 goto out_unlock;
1255
1256 dmabuf->vmap_ptr = ptr;
1257 dmabuf->vmapping_counter = 1;
1258
1259 out_unlock:
1260 mutex_unlock(&dmabuf->lock);
1261 return ptr;
1262 }
1263 EXPORT_SYMBOL_GPL(dma_buf_vmap);
1264
1265 /**
1266 * dma_buf_vunmap - Unmap a vmap obtained by dma_buf_vmap.
1267 * @dmabuf: [in] buffer to vunmap
1268 * @vaddr: [in] vmap to vunmap
1269 */
dma_buf_vunmap(struct dma_buf * dmabuf,void * vaddr)1270 void dma_buf_vunmap(struct dma_buf *dmabuf, void *vaddr)
1271 {
1272 if (WARN_ON(!dmabuf))
1273 return;
1274
1275 BUG_ON(!dmabuf->vmap_ptr);
1276 BUG_ON(dmabuf->vmapping_counter == 0);
1277 BUG_ON(dmabuf->vmap_ptr != vaddr);
1278
1279 mutex_lock(&dmabuf->lock);
1280 if (--dmabuf->vmapping_counter == 0) {
1281 if (dmabuf->ops->vunmap)
1282 dmabuf->ops->vunmap(dmabuf, vaddr);
1283 dmabuf->vmap_ptr = NULL;
1284 }
1285 mutex_unlock(&dmabuf->lock);
1286 }
1287 EXPORT_SYMBOL_GPL(dma_buf_vunmap);
1288
1289 #ifdef CONFIG_DEBUG_FS
dma_buf_debug_show(struct seq_file * s,void * unused)1290 static int dma_buf_debug_show(struct seq_file *s, void *unused)
1291 {
1292 int ret;
1293 struct dma_buf *buf_obj;
1294 struct dma_buf_attachment *attach_obj;
1295 struct dma_resv *robj;
1296 struct dma_resv_list *fobj;
1297 struct dma_fence *fence;
1298 unsigned seq;
1299 int count = 0, attach_count, shared_count, i;
1300 size_t size = 0;
1301
1302 ret = mutex_lock_interruptible(&db_list.lock);
1303
1304 if (ret)
1305 return ret;
1306
1307 seq_puts(s, "\nDma-buf Objects:\n");
1308 seq_printf(s, "%-8s\t%-8s\t%-8s\t%-8s\texp_name\t%-8s\t"
1309 "%-16s\t%-16s\t%-16s\n",
1310 "size", "flags", "mode", "count", "ino",
1311 "buf_name", "exp_pid", "exp_task_comm");
1312
1313 list_for_each_entry(buf_obj, &db_list.head, list_node) {
1314
1315 ret = dma_resv_lock_interruptible(buf_obj->resv, NULL);
1316 if (ret)
1317 goto error_unlock;
1318
1319 seq_printf(s, "%08zu\t%08x\t%08x\t%08ld\t%s\t%08lu\t%s\t"
1320 "%-16d\t%-16s\n",
1321 buf_obj->size,
1322 buf_obj->file->f_flags, buf_obj->file->f_mode,
1323 file_count(buf_obj->file),
1324 buf_obj->exp_name,
1325 file_inode(buf_obj->file)->i_ino,
1326 buf_obj->name ?: "NULL",
1327 dma_buf_exp_pid(buf_obj),
1328 dma_buf_exp_task_comm(buf_obj) ?: "NULL");
1329
1330 robj = buf_obj->resv;
1331 while (true) {
1332 seq = read_seqcount_begin(&robj->seq);
1333 rcu_read_lock();
1334 fobj = rcu_dereference(robj->fence);
1335 shared_count = fobj ? fobj->shared_count : 0;
1336 fence = rcu_dereference(robj->fence_excl);
1337 if (!read_seqcount_retry(&robj->seq, seq))
1338 break;
1339 rcu_read_unlock();
1340 }
1341
1342 if (fence)
1343 seq_printf(s, "\tExclusive fence: %s %s %ssignalled\n",
1344 fence->ops->get_driver_name(fence),
1345 fence->ops->get_timeline_name(fence),
1346 dma_fence_is_signaled(fence) ? "" : "un");
1347 for (i = 0; i < shared_count; i++) {
1348 fence = rcu_dereference(fobj->shared[i]);
1349 if (!dma_fence_get_rcu(fence))
1350 continue;
1351 seq_printf(s, "\tShared fence: %s %s %ssignalled\n",
1352 fence->ops->get_driver_name(fence),
1353 fence->ops->get_timeline_name(fence),
1354 dma_fence_is_signaled(fence) ? "" : "un");
1355 dma_fence_put(fence);
1356 }
1357 rcu_read_unlock();
1358
1359 seq_puts(s, "\tAttached Devices:\n");
1360 attach_count = 0;
1361
1362 list_for_each_entry(attach_obj, &buf_obj->attachments, node) {
1363 seq_printf(s, "\t%s\n", dev_name(attach_obj->dev));
1364 attach_count++;
1365 }
1366 dma_resv_unlock(buf_obj->resv);
1367
1368 seq_printf(s, "Total %d devices attached\n\n",
1369 attach_count);
1370
1371 count++;
1372 size += buf_obj->size;
1373 }
1374
1375 seq_printf(s, "\nTotal %d objects, %zu bytes\n", count, size);
1376
1377 mutex_unlock(&db_list.lock);
1378 return 0;
1379
1380 error_unlock:
1381 mutex_unlock(&db_list.lock);
1382 return ret;
1383 }
1384
1385 DEFINE_SHOW_ATTRIBUTE(dma_buf_debug);
1386
1387 static struct dentry *dma_buf_debugfs_dir;
1388
dma_buf_init_debugfs(void)1389 static int dma_buf_init_debugfs(void)
1390 {
1391 struct dentry *d;
1392 int err = 0;
1393
1394 d = debugfs_create_dir("dma_buf", NULL);
1395 if (IS_ERR(d))
1396 return PTR_ERR(d);
1397
1398 dma_buf_debugfs_dir = d;
1399
1400 d = debugfs_create_file("bufinfo", S_IRUGO, dma_buf_debugfs_dir,
1401 NULL, &dma_buf_debug_fops);
1402 if (IS_ERR(d)) {
1403 pr_debug("dma_buf: debugfs: failed to create node bufinfo\n");
1404 debugfs_remove_recursive(dma_buf_debugfs_dir);
1405 dma_buf_debugfs_dir = NULL;
1406 err = PTR_ERR(d);
1407 }
1408
1409 dma_buf_process_info_init_debugfs(dma_buf_debugfs_dir);
1410 return err;
1411 }
1412
dma_buf_uninit_debugfs(void)1413 static void dma_buf_uninit_debugfs(void)
1414 {
1415 debugfs_remove_recursive(dma_buf_debugfs_dir);
1416 }
1417 #else
dma_buf_init_debugfs(void)1418 static inline int dma_buf_init_debugfs(void)
1419 {
1420 return 0;
1421 }
dma_buf_uninit_debugfs(void)1422 static inline void dma_buf_uninit_debugfs(void)
1423 {
1424 }
1425 #endif
1426
1427 #ifdef CONFIG_DMABUF_PROCESS_INFO
get_dma_buf_from_file(struct file * f)1428 struct dma_buf *get_dma_buf_from_file(struct file *f)
1429 {
1430 if (IS_ERR_OR_NULL(f))
1431 return NULL;
1432
1433 if (!is_dma_buf_file(f))
1434 return NULL;
1435
1436 return f->private_data;
1437 }
1438 #endif /* CONFIG_DMABUF_PROCESS_INFO */
1439
dma_buf_init(void)1440 static int __init dma_buf_init(void)
1441 {
1442 int ret;
1443
1444 ret = dma_buf_init_sysfs_statistics();
1445 if (ret)
1446 return ret;
1447
1448 dma_buf_mnt = kern_mount(&dma_buf_fs_type);
1449 if (IS_ERR(dma_buf_mnt))
1450 return PTR_ERR(dma_buf_mnt);
1451
1452 mutex_init(&db_list.lock);
1453 INIT_LIST_HEAD(&db_list.head);
1454 dma_buf_init_debugfs();
1455 dma_buf_process_info_init_procfs();
1456 return 0;
1457 }
1458 subsys_initcall(dma_buf_init);
1459
dma_buf_deinit(void)1460 static void __exit dma_buf_deinit(void)
1461 {
1462 dma_buf_uninit_debugfs();
1463 kern_unmount(dma_buf_mnt);
1464 dma_buf_uninit_sysfs_statistics();
1465 dma_buf_process_info_uninit_procfs();
1466 }
1467 __exitcall(dma_buf_deinit);
1468