• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
3 
4 #include <linux/errno.h>
5 #include <linux/kernel.h>
6 #include <linux/mm.h>
7 #include <linux/smp.h>
8 #include <linux/prctl.h>
9 #include <linux/slab.h>
10 #include <linux/sched.h>
11 #include <linux/sched/idle.h>
12 #include <linux/sched/debug.h>
13 #include <linux/sched/task.h>
14 #include <linux/sched/task_stack.h>
15 #include <linux/init.h>
16 #include <linux/export.h>
17 #include <linux/pm.h>
18 #include <linux/tick.h>
19 #include <linux/random.h>
20 #include <linux/user-return-notifier.h>
21 #include <linux/dmi.h>
22 #include <linux/utsname.h>
23 #include <linux/stackprotector.h>
24 #include <linux/cpuidle.h>
25 #include <linux/acpi.h>
26 #include <linux/elf-randomize.h>
27 #include <trace/events/power.h>
28 #include <linux/hw_breakpoint.h>
29 #include <asm/cpu.h>
30 #include <asm/apic.h>
31 #include <linux/uaccess.h>
32 #include <asm/mwait.h>
33 #include <asm/fpu/internal.h>
34 #include <asm/debugreg.h>
35 #include <asm/nmi.h>
36 #include <asm/tlbflush.h>
37 #include <asm/mce.h>
38 #include <asm/vm86.h>
39 #include <asm/switch_to.h>
40 #include <asm/desc.h>
41 #include <asm/prctl.h>
42 #include <asm/spec-ctrl.h>
43 #include <asm/io_bitmap.h>
44 #include <asm/proto.h>
45 #include <asm/frame.h>
46 
47 #include "process.h"
48 
49 /*
50  * per-CPU TSS segments. Threads are completely 'soft' on Linux,
51  * no more per-task TSS's. The TSS size is kept cacheline-aligned
52  * so they are allowed to end up in the .data..cacheline_aligned
53  * section. Since TSS's are completely CPU-local, we want them
54  * on exact cacheline boundaries, to eliminate cacheline ping-pong.
55  */
56 __visible DEFINE_PER_CPU_PAGE_ALIGNED(struct tss_struct, cpu_tss_rw) = {
57 	.x86_tss = {
58 		/*
59 		 * .sp0 is only used when entering ring 0 from a lower
60 		 * privilege level.  Since the init task never runs anything
61 		 * but ring 0 code, there is no need for a valid value here.
62 		 * Poison it.
63 		 */
64 		.sp0 = (1UL << (BITS_PER_LONG-1)) + 1,
65 
66 		/*
67 		 * .sp1 is cpu_current_top_of_stack.  The init task never
68 		 * runs user code, but cpu_current_top_of_stack should still
69 		 * be well defined before the first context switch.
70 		 */
71 		.sp1 = TOP_OF_INIT_STACK,
72 
73 #ifdef CONFIG_X86_32
74 		.ss0 = __KERNEL_DS,
75 		.ss1 = __KERNEL_CS,
76 #endif
77 		.io_bitmap_base	= IO_BITMAP_OFFSET_INVALID,
78 	 },
79 };
80 EXPORT_PER_CPU_SYMBOL(cpu_tss_rw);
81 
82 DEFINE_PER_CPU(bool, __tss_limit_invalid);
83 EXPORT_PER_CPU_SYMBOL_GPL(__tss_limit_invalid);
84 
85 /*
86  * this gets called so that we can store lazy state into memory and copy the
87  * current task into the new thread.
88  */
arch_dup_task_struct(struct task_struct * dst,struct task_struct * src)89 int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
90 {
91 	memcpy(dst, src, arch_task_struct_size);
92 #ifdef CONFIG_VM86
93 	dst->thread.vm86 = NULL;
94 #endif
95 
96 	return fpu__copy(dst, src);
97 }
98 
99 /*
100  * Free thread data structures etc..
101  */
exit_thread(struct task_struct * tsk)102 void exit_thread(struct task_struct *tsk)
103 {
104 	struct thread_struct *t = &tsk->thread;
105 	struct fpu *fpu = &t->fpu;
106 
107 	if (test_thread_flag(TIF_IO_BITMAP))
108 		io_bitmap_exit(tsk);
109 
110 	free_vm86(t);
111 
112 	fpu__drop(fpu);
113 }
114 
set_new_tls(struct task_struct * p,unsigned long tls)115 static int set_new_tls(struct task_struct *p, unsigned long tls)
116 {
117 	struct user_desc __user *utls = (struct user_desc __user *)tls;
118 
119 	if (in_ia32_syscall())
120 		return do_set_thread_area(p, -1, utls, 0);
121 	else
122 		return do_set_thread_area_64(p, ARCH_SET_FS, tls);
123 }
124 
copy_thread(unsigned long clone_flags,unsigned long sp,unsigned long arg,struct task_struct * p,unsigned long tls)125 int copy_thread(unsigned long clone_flags, unsigned long sp, unsigned long arg,
126 		struct task_struct *p, unsigned long tls)
127 {
128 	struct inactive_task_frame *frame;
129 	struct fork_frame *fork_frame;
130 	struct pt_regs *childregs;
131 	int ret = 0;
132 
133 	childregs = task_pt_regs(p);
134 	fork_frame = container_of(childregs, struct fork_frame, regs);
135 	frame = &fork_frame->frame;
136 
137 	frame->bp = encode_frame_pointer(childregs);
138 	frame->ret_addr = (unsigned long) ret_from_fork;
139 	p->thread.sp = (unsigned long) fork_frame;
140 	p->thread.io_bitmap = NULL;
141 	p->thread.iopl_warn = 0;
142 	memset(p->thread.ptrace_bps, 0, sizeof(p->thread.ptrace_bps));
143 
144 #ifdef CONFIG_X86_64
145 	current_save_fsgs();
146 	p->thread.fsindex = current->thread.fsindex;
147 	p->thread.fsbase = current->thread.fsbase;
148 	p->thread.gsindex = current->thread.gsindex;
149 	p->thread.gsbase = current->thread.gsbase;
150 
151 	savesegment(es, p->thread.es);
152 	savesegment(ds, p->thread.ds);
153 #else
154 	p->thread.sp0 = (unsigned long) (childregs + 1);
155 	/*
156 	 * Clear all status flags including IF and set fixed bit. 64bit
157 	 * does not have this initialization as the frame does not contain
158 	 * flags. The flags consistency (especially vs. AC) is there
159 	 * ensured via objtool, which lacks 32bit support.
160 	 */
161 	frame->flags = X86_EFLAGS_FIXED;
162 #endif
163 
164 	/* Kernel thread ? */
165 	if (unlikely(p->flags & PF_KTHREAD)) {
166 		memset(childregs, 0, sizeof(struct pt_regs));
167 		kthread_frame_init(frame, sp, arg);
168 		return 0;
169 	}
170 
171 	frame->bx = 0;
172 	*childregs = *current_pt_regs();
173 	childregs->ax = 0;
174 	if (sp)
175 		childregs->sp = sp;
176 
177 #ifdef CONFIG_X86_32
178 	task_user_gs(p) = get_user_gs(current_pt_regs());
179 #endif
180 
181 	if (unlikely(p->flags & PF_IO_WORKER)) {
182 		/*
183 		 * An IO thread is a user space thread, but it doesn't
184 		 * return to ret_after_fork().
185 		 *
186 		 * In order to indicate that to tools like gdb,
187 		 * we reset the stack and instruction pointers.
188 		 *
189 		 * It does the same kernel frame setup to return to a kernel
190 		 * function that a kernel thread does.
191 		 */
192 		childregs->sp = 0;
193 		childregs->ip = 0;
194 		kthread_frame_init(frame, sp, arg);
195 		return 0;
196 	}
197 
198 	/* Set a new TLS for the child thread? */
199 	if (clone_flags & CLONE_SETTLS)
200 		ret = set_new_tls(p, tls);
201 
202 	if (!ret && unlikely(test_tsk_thread_flag(current, TIF_IO_BITMAP)))
203 		io_bitmap_share(p);
204 
205 	return ret;
206 }
207 
flush_thread(void)208 void flush_thread(void)
209 {
210 	struct task_struct *tsk = current;
211 
212 	flush_ptrace_hw_breakpoint(tsk);
213 	memset(tsk->thread.tls_array, 0, sizeof(tsk->thread.tls_array));
214 
215 	fpu__clear_all(&tsk->thread.fpu);
216 }
217 
disable_TSC(void)218 void disable_TSC(void)
219 {
220 	preempt_disable();
221 	if (!test_and_set_thread_flag(TIF_NOTSC))
222 		/*
223 		 * Must flip the CPU state synchronously with
224 		 * TIF_NOTSC in the current running context.
225 		 */
226 		cr4_set_bits(X86_CR4_TSD);
227 	preempt_enable();
228 }
229 
enable_TSC(void)230 static void enable_TSC(void)
231 {
232 	preempt_disable();
233 	if (test_and_clear_thread_flag(TIF_NOTSC))
234 		/*
235 		 * Must flip the CPU state synchronously with
236 		 * TIF_NOTSC in the current running context.
237 		 */
238 		cr4_clear_bits(X86_CR4_TSD);
239 	preempt_enable();
240 }
241 
get_tsc_mode(unsigned long adr)242 int get_tsc_mode(unsigned long adr)
243 {
244 	unsigned int val;
245 
246 	if (test_thread_flag(TIF_NOTSC))
247 		val = PR_TSC_SIGSEGV;
248 	else
249 		val = PR_TSC_ENABLE;
250 
251 	return put_user(val, (unsigned int __user *)adr);
252 }
253 
set_tsc_mode(unsigned int val)254 int set_tsc_mode(unsigned int val)
255 {
256 	if (val == PR_TSC_SIGSEGV)
257 		disable_TSC();
258 	else if (val == PR_TSC_ENABLE)
259 		enable_TSC();
260 	else
261 		return -EINVAL;
262 
263 	return 0;
264 }
265 
266 DEFINE_PER_CPU(u64, msr_misc_features_shadow);
267 
set_cpuid_faulting(bool on)268 static void set_cpuid_faulting(bool on)
269 {
270 	u64 msrval;
271 
272 	msrval = this_cpu_read(msr_misc_features_shadow);
273 	msrval &= ~MSR_MISC_FEATURES_ENABLES_CPUID_FAULT;
274 	msrval |= (on << MSR_MISC_FEATURES_ENABLES_CPUID_FAULT_BIT);
275 	this_cpu_write(msr_misc_features_shadow, msrval);
276 	wrmsrl(MSR_MISC_FEATURES_ENABLES, msrval);
277 }
278 
disable_cpuid(void)279 static void disable_cpuid(void)
280 {
281 	preempt_disable();
282 	if (!test_and_set_thread_flag(TIF_NOCPUID)) {
283 		/*
284 		 * Must flip the CPU state synchronously with
285 		 * TIF_NOCPUID in the current running context.
286 		 */
287 		set_cpuid_faulting(true);
288 	}
289 	preempt_enable();
290 }
291 
enable_cpuid(void)292 static void enable_cpuid(void)
293 {
294 	preempt_disable();
295 	if (test_and_clear_thread_flag(TIF_NOCPUID)) {
296 		/*
297 		 * Must flip the CPU state synchronously with
298 		 * TIF_NOCPUID in the current running context.
299 		 */
300 		set_cpuid_faulting(false);
301 	}
302 	preempt_enable();
303 }
304 
get_cpuid_mode(void)305 static int get_cpuid_mode(void)
306 {
307 	return !test_thread_flag(TIF_NOCPUID);
308 }
309 
set_cpuid_mode(struct task_struct * task,unsigned long cpuid_enabled)310 static int set_cpuid_mode(struct task_struct *task, unsigned long cpuid_enabled)
311 {
312 	if (!boot_cpu_has(X86_FEATURE_CPUID_FAULT))
313 		return -ENODEV;
314 
315 	if (cpuid_enabled)
316 		enable_cpuid();
317 	else
318 		disable_cpuid();
319 
320 	return 0;
321 }
322 
323 /*
324  * Called immediately after a successful exec.
325  */
arch_setup_new_exec(void)326 void arch_setup_new_exec(void)
327 {
328 	/* If cpuid was previously disabled for this task, re-enable it. */
329 	if (test_thread_flag(TIF_NOCPUID))
330 		enable_cpuid();
331 
332 	/*
333 	 * Don't inherit TIF_SSBD across exec boundary when
334 	 * PR_SPEC_DISABLE_NOEXEC is used.
335 	 */
336 	if (test_thread_flag(TIF_SSBD) &&
337 	    task_spec_ssb_noexec(current)) {
338 		clear_thread_flag(TIF_SSBD);
339 		task_clear_spec_ssb_disable(current);
340 		task_clear_spec_ssb_noexec(current);
341 		speculation_ctrl_update(task_thread_info(current)->flags);
342 	}
343 }
344 
345 #ifdef CONFIG_X86_IOPL_IOPERM
switch_to_bitmap(unsigned long tifp)346 static inline void switch_to_bitmap(unsigned long tifp)
347 {
348 	/*
349 	 * Invalidate I/O bitmap if the previous task used it. This prevents
350 	 * any possible leakage of an active I/O bitmap.
351 	 *
352 	 * If the next task has an I/O bitmap it will handle it on exit to
353 	 * user mode.
354 	 */
355 	if (tifp & _TIF_IO_BITMAP)
356 		tss_invalidate_io_bitmap();
357 }
358 
tss_copy_io_bitmap(struct tss_struct * tss,struct io_bitmap * iobm)359 static void tss_copy_io_bitmap(struct tss_struct *tss, struct io_bitmap *iobm)
360 {
361 	/*
362 	 * Copy at least the byte range of the incoming tasks bitmap which
363 	 * covers the permitted I/O ports.
364 	 *
365 	 * If the previous task which used an I/O bitmap had more bits
366 	 * permitted, then the copy needs to cover those as well so they
367 	 * get turned off.
368 	 */
369 	memcpy(tss->io_bitmap.bitmap, iobm->bitmap,
370 	       max(tss->io_bitmap.prev_max, iobm->max));
371 
372 	/*
373 	 * Store the new max and the sequence number of this bitmap
374 	 * and a pointer to the bitmap itself.
375 	 */
376 	tss->io_bitmap.prev_max = iobm->max;
377 	tss->io_bitmap.prev_sequence = iobm->sequence;
378 }
379 
380 /**
381  * tss_update_io_bitmap - Update I/O bitmap before exiting to usermode
382  */
native_tss_update_io_bitmap(void)383 void native_tss_update_io_bitmap(void)
384 {
385 	struct tss_struct *tss = this_cpu_ptr(&cpu_tss_rw);
386 	struct thread_struct *t = &current->thread;
387 	u16 *base = &tss->x86_tss.io_bitmap_base;
388 
389 	if (!test_thread_flag(TIF_IO_BITMAP)) {
390 		native_tss_invalidate_io_bitmap();
391 		return;
392 	}
393 
394 	if (IS_ENABLED(CONFIG_X86_IOPL_IOPERM) && t->iopl_emul == 3) {
395 		*base = IO_BITMAP_OFFSET_VALID_ALL;
396 	} else {
397 		struct io_bitmap *iobm = t->io_bitmap;
398 
399 		/*
400 		 * Only copy bitmap data when the sequence number differs. The
401 		 * update time is accounted to the incoming task.
402 		 */
403 		if (tss->io_bitmap.prev_sequence != iobm->sequence)
404 			tss_copy_io_bitmap(tss, iobm);
405 
406 		/* Enable the bitmap */
407 		*base = IO_BITMAP_OFFSET_VALID_MAP;
408 	}
409 
410 	/*
411 	 * Make sure that the TSS limit is covering the IO bitmap. It might have
412 	 * been cut down by a VMEXIT to 0x67 which would cause a subsequent I/O
413 	 * access from user space to trigger a #GP because tbe bitmap is outside
414 	 * the TSS limit.
415 	 */
416 	refresh_tss_limit();
417 }
418 #else /* CONFIG_X86_IOPL_IOPERM */
switch_to_bitmap(unsigned long tifp)419 static inline void switch_to_bitmap(unsigned long tifp) { }
420 #endif
421 
422 #ifdef CONFIG_SMP
423 
424 struct ssb_state {
425 	struct ssb_state	*shared_state;
426 	raw_spinlock_t		lock;
427 	unsigned int		disable_state;
428 	unsigned long		local_state;
429 };
430 
431 #define LSTATE_SSB	0
432 
433 static DEFINE_PER_CPU(struct ssb_state, ssb_state);
434 
speculative_store_bypass_ht_init(void)435 void speculative_store_bypass_ht_init(void)
436 {
437 	struct ssb_state *st = this_cpu_ptr(&ssb_state);
438 	unsigned int this_cpu = smp_processor_id();
439 	unsigned int cpu;
440 
441 	st->local_state = 0;
442 
443 	/*
444 	 * Shared state setup happens once on the first bringup
445 	 * of the CPU. It's not destroyed on CPU hotunplug.
446 	 */
447 	if (st->shared_state)
448 		return;
449 
450 	raw_spin_lock_init(&st->lock);
451 
452 	/*
453 	 * Go over HT siblings and check whether one of them has set up the
454 	 * shared state pointer already.
455 	 */
456 	for_each_cpu(cpu, topology_sibling_cpumask(this_cpu)) {
457 		if (cpu == this_cpu)
458 			continue;
459 
460 		if (!per_cpu(ssb_state, cpu).shared_state)
461 			continue;
462 
463 		/* Link it to the state of the sibling: */
464 		st->shared_state = per_cpu(ssb_state, cpu).shared_state;
465 		return;
466 	}
467 
468 	/*
469 	 * First HT sibling to come up on the core.  Link shared state of
470 	 * the first HT sibling to itself. The siblings on the same core
471 	 * which come up later will see the shared state pointer and link
472 	 * themself to the state of this CPU.
473 	 */
474 	st->shared_state = st;
475 }
476 
477 /*
478  * Logic is: First HT sibling enables SSBD for both siblings in the core
479  * and last sibling to disable it, disables it for the whole core. This how
480  * MSR_SPEC_CTRL works in "hardware":
481  *
482  *  CORE_SPEC_CTRL = THREAD0_SPEC_CTRL | THREAD1_SPEC_CTRL
483  */
amd_set_core_ssb_state(unsigned long tifn)484 static __always_inline void amd_set_core_ssb_state(unsigned long tifn)
485 {
486 	struct ssb_state *st = this_cpu_ptr(&ssb_state);
487 	u64 msr = x86_amd_ls_cfg_base;
488 
489 	if (!static_cpu_has(X86_FEATURE_ZEN)) {
490 		msr |= ssbd_tif_to_amd_ls_cfg(tifn);
491 		wrmsrl(MSR_AMD64_LS_CFG, msr);
492 		return;
493 	}
494 
495 	if (tifn & _TIF_SSBD) {
496 		/*
497 		 * Since this can race with prctl(), block reentry on the
498 		 * same CPU.
499 		 */
500 		if (__test_and_set_bit(LSTATE_SSB, &st->local_state))
501 			return;
502 
503 		msr |= x86_amd_ls_cfg_ssbd_mask;
504 
505 		raw_spin_lock(&st->shared_state->lock);
506 		/* First sibling enables SSBD: */
507 		if (!st->shared_state->disable_state)
508 			wrmsrl(MSR_AMD64_LS_CFG, msr);
509 		st->shared_state->disable_state++;
510 		raw_spin_unlock(&st->shared_state->lock);
511 	} else {
512 		if (!__test_and_clear_bit(LSTATE_SSB, &st->local_state))
513 			return;
514 
515 		raw_spin_lock(&st->shared_state->lock);
516 		st->shared_state->disable_state--;
517 		if (!st->shared_state->disable_state)
518 			wrmsrl(MSR_AMD64_LS_CFG, msr);
519 		raw_spin_unlock(&st->shared_state->lock);
520 	}
521 }
522 #else
amd_set_core_ssb_state(unsigned long tifn)523 static __always_inline void amd_set_core_ssb_state(unsigned long tifn)
524 {
525 	u64 msr = x86_amd_ls_cfg_base | ssbd_tif_to_amd_ls_cfg(tifn);
526 
527 	wrmsrl(MSR_AMD64_LS_CFG, msr);
528 }
529 #endif
530 
amd_set_ssb_virt_state(unsigned long tifn)531 static __always_inline void amd_set_ssb_virt_state(unsigned long tifn)
532 {
533 	/*
534 	 * SSBD has the same definition in SPEC_CTRL and VIRT_SPEC_CTRL,
535 	 * so ssbd_tif_to_spec_ctrl() just works.
536 	 */
537 	wrmsrl(MSR_AMD64_VIRT_SPEC_CTRL, ssbd_tif_to_spec_ctrl(tifn));
538 }
539 
540 /*
541  * Update the MSRs managing speculation control, during context switch.
542  *
543  * tifp: Previous task's thread flags
544  * tifn: Next task's thread flags
545  */
__speculation_ctrl_update(unsigned long tifp,unsigned long tifn)546 static __always_inline void __speculation_ctrl_update(unsigned long tifp,
547 						      unsigned long tifn)
548 {
549 	unsigned long tif_diff = tifp ^ tifn;
550 	u64 msr = x86_spec_ctrl_base;
551 	bool updmsr = false;
552 
553 	lockdep_assert_irqs_disabled();
554 
555 	/* Handle change of TIF_SSBD depending on the mitigation method. */
556 	if (static_cpu_has(X86_FEATURE_VIRT_SSBD)) {
557 		if (tif_diff & _TIF_SSBD)
558 			amd_set_ssb_virt_state(tifn);
559 	} else if (static_cpu_has(X86_FEATURE_LS_CFG_SSBD)) {
560 		if (tif_diff & _TIF_SSBD)
561 			amd_set_core_ssb_state(tifn);
562 	} else if (static_cpu_has(X86_FEATURE_SPEC_CTRL_SSBD) ||
563 		   static_cpu_has(X86_FEATURE_AMD_SSBD)) {
564 		updmsr |= !!(tif_diff & _TIF_SSBD);
565 		msr |= ssbd_tif_to_spec_ctrl(tifn);
566 	}
567 
568 	/* Only evaluate TIF_SPEC_IB if conditional STIBP is enabled. */
569 	if (IS_ENABLED(CONFIG_SMP) &&
570 	    static_branch_unlikely(&switch_to_cond_stibp)) {
571 		updmsr |= !!(tif_diff & _TIF_SPEC_IB);
572 		msr |= stibp_tif_to_spec_ctrl(tifn);
573 	}
574 
575 	if (updmsr)
576 		update_spec_ctrl_cond(msr);
577 }
578 
speculation_ctrl_update_tif(struct task_struct * tsk)579 static unsigned long speculation_ctrl_update_tif(struct task_struct *tsk)
580 {
581 	if (test_and_clear_tsk_thread_flag(tsk, TIF_SPEC_FORCE_UPDATE)) {
582 		if (task_spec_ssb_disable(tsk))
583 			set_tsk_thread_flag(tsk, TIF_SSBD);
584 		else
585 			clear_tsk_thread_flag(tsk, TIF_SSBD);
586 
587 		if (task_spec_ib_disable(tsk))
588 			set_tsk_thread_flag(tsk, TIF_SPEC_IB);
589 		else
590 			clear_tsk_thread_flag(tsk, TIF_SPEC_IB);
591 	}
592 	/* Return the updated threadinfo flags*/
593 	return task_thread_info(tsk)->flags;
594 }
595 
speculation_ctrl_update(unsigned long tif)596 void speculation_ctrl_update(unsigned long tif)
597 {
598 	unsigned long flags;
599 
600 	/* Forced update. Make sure all relevant TIF flags are different */
601 	local_irq_save(flags);
602 	__speculation_ctrl_update(~tif, tif);
603 	local_irq_restore(flags);
604 }
605 
606 /* Called from seccomp/prctl update */
speculation_ctrl_update_current(void)607 void speculation_ctrl_update_current(void)
608 {
609 	preempt_disable();
610 	speculation_ctrl_update(speculation_ctrl_update_tif(current));
611 	preempt_enable();
612 }
613 
cr4_toggle_bits_irqsoff(unsigned long mask)614 static inline void cr4_toggle_bits_irqsoff(unsigned long mask)
615 {
616 	unsigned long newval, cr4 = this_cpu_read(cpu_tlbstate.cr4);
617 
618 	newval = cr4 ^ mask;
619 	if (newval != cr4) {
620 		this_cpu_write(cpu_tlbstate.cr4, newval);
621 		__write_cr4(newval);
622 	}
623 }
624 
__switch_to_xtra(struct task_struct * prev_p,struct task_struct * next_p)625 void __switch_to_xtra(struct task_struct *prev_p, struct task_struct *next_p)
626 {
627 	unsigned long tifp, tifn;
628 
629 	tifn = READ_ONCE(task_thread_info(next_p)->flags);
630 	tifp = READ_ONCE(task_thread_info(prev_p)->flags);
631 
632 	switch_to_bitmap(tifp);
633 
634 	propagate_user_return_notify(prev_p, next_p);
635 
636 	if ((tifp & _TIF_BLOCKSTEP || tifn & _TIF_BLOCKSTEP) &&
637 	    arch_has_block_step()) {
638 		unsigned long debugctl, msk;
639 
640 		rdmsrl(MSR_IA32_DEBUGCTLMSR, debugctl);
641 		debugctl &= ~DEBUGCTLMSR_BTF;
642 		msk = tifn & _TIF_BLOCKSTEP;
643 		debugctl |= (msk >> TIF_BLOCKSTEP) << DEBUGCTLMSR_BTF_SHIFT;
644 		wrmsrl(MSR_IA32_DEBUGCTLMSR, debugctl);
645 	}
646 
647 	if ((tifp ^ tifn) & _TIF_NOTSC)
648 		cr4_toggle_bits_irqsoff(X86_CR4_TSD);
649 
650 	if ((tifp ^ tifn) & _TIF_NOCPUID)
651 		set_cpuid_faulting(!!(tifn & _TIF_NOCPUID));
652 
653 	if (likely(!((tifp | tifn) & _TIF_SPEC_FORCE_UPDATE))) {
654 		__speculation_ctrl_update(tifp, tifn);
655 	} else {
656 		speculation_ctrl_update_tif(prev_p);
657 		tifn = speculation_ctrl_update_tif(next_p);
658 
659 		/* Enforce MSR update to ensure consistent state */
660 		__speculation_ctrl_update(~tifn, tifn);
661 	}
662 
663 	if ((tifp ^ tifn) & _TIF_SLD)
664 		switch_to_sld(tifn);
665 }
666 
667 /*
668  * Idle related variables and functions
669  */
670 unsigned long boot_option_idle_override = IDLE_NO_OVERRIDE;
671 EXPORT_SYMBOL(boot_option_idle_override);
672 
673 static void (*x86_idle)(void);
674 
675 #ifndef CONFIG_SMP
play_dead(void)676 static inline void play_dead(void)
677 {
678 	BUG();
679 }
680 #endif
681 
arch_cpu_idle_enter(void)682 void arch_cpu_idle_enter(void)
683 {
684 	tsc_verify_tsc_adjust(false);
685 	local_touch_nmi();
686 }
687 
arch_cpu_idle_dead(void)688 void arch_cpu_idle_dead(void)
689 {
690 	play_dead();
691 }
692 
693 /*
694  * Called from the generic idle code.
695  */
arch_cpu_idle(void)696 void arch_cpu_idle(void)
697 {
698 	x86_idle();
699 }
700 
701 /*
702  * We use this if we don't have any better idle routine..
703  */
default_idle(void)704 void __cpuidle default_idle(void)
705 {
706 	raw_safe_halt();
707 }
708 #if defined(CONFIG_APM_MODULE) || defined(CONFIG_HALTPOLL_CPUIDLE_MODULE)
709 EXPORT_SYMBOL(default_idle);
710 #endif
711 
712 #ifdef CONFIG_XEN
xen_set_default_idle(void)713 bool xen_set_default_idle(void)
714 {
715 	bool ret = !!x86_idle;
716 
717 	x86_idle = default_idle;
718 
719 	return ret;
720 }
721 #endif
722 
stop_this_cpu(void * dummy)723 void stop_this_cpu(void *dummy)
724 {
725 	local_irq_disable();
726 	/*
727 	 * Remove this CPU:
728 	 */
729 	set_cpu_online(smp_processor_id(), false);
730 	disable_local_APIC();
731 	mcheck_cpu_clear(this_cpu_ptr(&cpu_info));
732 
733 	/*
734 	 * Use wbinvd on processors that support SME. This provides support
735 	 * for performing a successful kexec when going from SME inactive
736 	 * to SME active (or vice-versa). The cache must be cleared so that
737 	 * if there are entries with the same physical address, both with and
738 	 * without the encryption bit, they don't race each other when flushed
739 	 * and potentially end up with the wrong entry being committed to
740 	 * memory.
741 	 */
742 	if (boot_cpu_has(X86_FEATURE_SME))
743 		native_wbinvd();
744 	for (;;) {
745 		/*
746 		 * Use native_halt() so that memory contents don't change
747 		 * (stack usage and variables) after possibly issuing the
748 		 * native_wbinvd() above.
749 		 */
750 		native_halt();
751 	}
752 }
753 
754 /*
755  * AMD Erratum 400 aware idle routine. We handle it the same way as C3 power
756  * states (local apic timer and TSC stop).
757  *
758  * XXX this function is completely buggered vs RCU and tracing.
759  */
amd_e400_idle(void)760 static void amd_e400_idle(void)
761 {
762 	/*
763 	 * We cannot use static_cpu_has_bug() here because X86_BUG_AMD_APIC_C1E
764 	 * gets set after static_cpu_has() places have been converted via
765 	 * alternatives.
766 	 */
767 	if (!boot_cpu_has_bug(X86_BUG_AMD_APIC_C1E)) {
768 		default_idle();
769 		return;
770 	}
771 
772 	tick_broadcast_enter();
773 
774 	default_idle();
775 
776 	/*
777 	 * The switch back from broadcast mode needs to be called with
778 	 * interrupts disabled.
779 	 */
780 	raw_local_irq_disable();
781 	tick_broadcast_exit();
782 	raw_local_irq_enable();
783 }
784 
785 /*
786  * Intel Core2 and older machines prefer MWAIT over HALT for C1.
787  * We can't rely on cpuidle installing MWAIT, because it will not load
788  * on systems that support only C1 -- so the boot default must be MWAIT.
789  *
790  * Some AMD machines are the opposite, they depend on using HALT.
791  *
792  * So for default C1, which is used during boot until cpuidle loads,
793  * use MWAIT-C1 on Intel HW that has it, else use HALT.
794  */
prefer_mwait_c1_over_halt(const struct cpuinfo_x86 * c)795 static int prefer_mwait_c1_over_halt(const struct cpuinfo_x86 *c)
796 {
797 	/* User has disallowed the use of MWAIT. Fallback to HALT */
798 	if (boot_option_idle_override == IDLE_NOMWAIT)
799 		return 0;
800 
801 	if (c->x86_vendor != X86_VENDOR_INTEL)
802 		return 0;
803 
804 	if (!cpu_has(c, X86_FEATURE_MWAIT) || boot_cpu_has_bug(X86_BUG_MONITOR))
805 		return 0;
806 
807 	return 1;
808 }
809 
810 /*
811  * MONITOR/MWAIT with no hints, used for default C1 state. This invokes MWAIT
812  * with interrupts enabled and no flags, which is backwards compatible with the
813  * original MWAIT implementation.
814  */
mwait_idle(void)815 static __cpuidle void mwait_idle(void)
816 {
817 	if (!current_set_polling_and_test()) {
818 		if (this_cpu_has(X86_BUG_CLFLUSH_MONITOR)) {
819 			mb(); /* quirk */
820 			clflush((void *)&current_thread_info()->flags);
821 			mb(); /* quirk */
822 		}
823 
824 		__monitor((void *)&current_thread_info()->flags, 0, 0);
825 		if (!need_resched())
826 			__sti_mwait(0, 0);
827 		else
828 			raw_local_irq_enable();
829 	} else {
830 		raw_local_irq_enable();
831 	}
832 	__current_clr_polling();
833 }
834 
select_idle_routine(const struct cpuinfo_x86 * c)835 void select_idle_routine(const struct cpuinfo_x86 *c)
836 {
837 #ifdef CONFIG_SMP
838 	if (boot_option_idle_override == IDLE_POLL && smp_num_siblings > 1)
839 		pr_warn_once("WARNING: polling idle and HT enabled, performance may degrade\n");
840 #endif
841 	if (x86_idle || boot_option_idle_override == IDLE_POLL)
842 		return;
843 
844 	if (boot_cpu_has_bug(X86_BUG_AMD_E400)) {
845 		pr_info("using AMD E400 aware idle routine\n");
846 		x86_idle = amd_e400_idle;
847 	} else if (prefer_mwait_c1_over_halt(c)) {
848 		pr_info("using mwait in idle threads\n");
849 		x86_idle = mwait_idle;
850 	} else
851 		x86_idle = default_idle;
852 }
853 
amd_e400_c1e_apic_setup(void)854 void amd_e400_c1e_apic_setup(void)
855 {
856 	if (boot_cpu_has_bug(X86_BUG_AMD_APIC_C1E)) {
857 		pr_info("Switch to broadcast mode on CPU%d\n", smp_processor_id());
858 		local_irq_disable();
859 		tick_broadcast_force();
860 		local_irq_enable();
861 	}
862 }
863 
arch_post_acpi_subsys_init(void)864 void __init arch_post_acpi_subsys_init(void)
865 {
866 	u32 lo, hi;
867 
868 	if (!boot_cpu_has_bug(X86_BUG_AMD_E400))
869 		return;
870 
871 	/*
872 	 * AMD E400 detection needs to happen after ACPI has been enabled. If
873 	 * the machine is affected K8_INTP_C1E_ACTIVE_MASK bits are set in
874 	 * MSR_K8_INT_PENDING_MSG.
875 	 */
876 	rdmsr(MSR_K8_INT_PENDING_MSG, lo, hi);
877 	if (!(lo & K8_INTP_C1E_ACTIVE_MASK))
878 		return;
879 
880 	boot_cpu_set_bug(X86_BUG_AMD_APIC_C1E);
881 
882 	if (!boot_cpu_has(X86_FEATURE_NONSTOP_TSC))
883 		mark_tsc_unstable("TSC halt in AMD C1E");
884 	pr_info("System has AMD C1E enabled\n");
885 }
886 
idle_setup(char * str)887 static int __init idle_setup(char *str)
888 {
889 	if (!str)
890 		return -EINVAL;
891 
892 	if (!strcmp(str, "poll")) {
893 		pr_info("using polling idle threads\n");
894 		boot_option_idle_override = IDLE_POLL;
895 		cpu_idle_poll_ctrl(true);
896 	} else if (!strcmp(str, "halt")) {
897 		/*
898 		 * When the boot option of idle=halt is added, halt is
899 		 * forced to be used for CPU idle. In such case CPU C2/C3
900 		 * won't be used again.
901 		 * To continue to load the CPU idle driver, don't touch
902 		 * the boot_option_idle_override.
903 		 */
904 		x86_idle = default_idle;
905 		boot_option_idle_override = IDLE_HALT;
906 	} else if (!strcmp(str, "nomwait")) {
907 		/*
908 		 * If the boot option of "idle=nomwait" is added,
909 		 * it means that mwait will be disabled for CPU C1/C2/C3
910 		 * states.
911 		 */
912 		boot_option_idle_override = IDLE_NOMWAIT;
913 	} else
914 		return -1;
915 
916 	return 0;
917 }
918 early_param("idle", idle_setup);
919 
arch_align_stack(unsigned long sp)920 unsigned long arch_align_stack(unsigned long sp)
921 {
922 	if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
923 		sp -= get_random_int() % 8192;
924 	return sp & ~0xf;
925 }
926 
arch_randomize_brk(struct mm_struct * mm)927 unsigned long arch_randomize_brk(struct mm_struct *mm)
928 {
929 	return randomize_page(mm->brk, 0x02000000);
930 }
931 
932 /*
933  * Called from fs/proc with a reference on @p to find the function
934  * which called into schedule(). This needs to be done carefully
935  * because the task might wake up and we might look at a stack
936  * changing under us.
937  */
get_wchan(struct task_struct * p)938 unsigned long get_wchan(struct task_struct *p)
939 {
940 	unsigned long start, bottom, top, sp, fp, ip, ret = 0;
941 	int count = 0;
942 
943 	if (p == current || p->state == TASK_RUNNING)
944 		return 0;
945 
946 	if (!try_get_task_stack(p))
947 		return 0;
948 
949 	start = (unsigned long)task_stack_page(p);
950 	if (!start)
951 		goto out;
952 
953 	/*
954 	 * Layout of the stack page:
955 	 *
956 	 * ----------- topmax = start + THREAD_SIZE - sizeof(unsigned long)
957 	 * PADDING
958 	 * ----------- top = topmax - TOP_OF_KERNEL_STACK_PADDING
959 	 * stack
960 	 * ----------- bottom = start
961 	 *
962 	 * The tasks stack pointer points at the location where the
963 	 * framepointer is stored. The data on the stack is:
964 	 * ... IP FP ... IP FP
965 	 *
966 	 * We need to read FP and IP, so we need to adjust the upper
967 	 * bound by another unsigned long.
968 	 */
969 	top = start + THREAD_SIZE - TOP_OF_KERNEL_STACK_PADDING;
970 	top -= 2 * sizeof(unsigned long);
971 	bottom = start;
972 
973 	sp = READ_ONCE(p->thread.sp);
974 	if (sp < bottom || sp > top)
975 		goto out;
976 
977 	fp = READ_ONCE_NOCHECK(((struct inactive_task_frame *)sp)->bp);
978 	do {
979 		if (fp < bottom || fp > top)
980 			goto out;
981 		ip = READ_ONCE_NOCHECK(*(unsigned long *)(fp + sizeof(unsigned long)));
982 		if (!in_sched_functions(ip)) {
983 			ret = ip;
984 			goto out;
985 		}
986 		fp = READ_ONCE_NOCHECK(*(unsigned long *)fp);
987 	} while (count++ < 16 && p->state != TASK_RUNNING);
988 
989 out:
990 	put_task_stack(p);
991 	return ret;
992 }
993 
do_arch_prctl_common(struct task_struct * task,int option,unsigned long cpuid_enabled)994 long do_arch_prctl_common(struct task_struct *task, int option,
995 			  unsigned long cpuid_enabled)
996 {
997 	switch (option) {
998 	case ARCH_GET_CPUID:
999 		return get_cpuid_mode();
1000 	case ARCH_SET_CPUID:
1001 		return set_cpuid_mode(task, cpuid_enabled);
1002 	}
1003 
1004 	return -EINVAL;
1005 }
1006