1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright (C) 2002 ARM Limited, All Rights Reserved.
4 *
5 * Interrupt architecture for the GIC:
6 *
7 * o There is one Interrupt Distributor, which receives interrupts
8 * from system devices and sends them to the Interrupt Controllers.
9 *
10 * o There is one CPU Interface per CPU, which sends interrupts sent
11 * by the Distributor, and interrupts generated locally, to the
12 * associated CPU. The base address of the CPU interface is usually
13 * aliased so that the same address points to different chips depending
14 * on the CPU it is accessed from.
15 *
16 * Note that IRQs 0-31 are special - they are local to each CPU.
17 * As such, the enable set/clear, pending set/clear and active bit
18 * registers are banked per-cpu for these sources.
19 */
20 #include <linux/init.h>
21 #include <linux/kernel.h>
22 #include <linux/err.h>
23 #include <linux/module.h>
24 #include <linux/list.h>
25 #include <linux/smp.h>
26 #include <linux/cpu.h>
27 #include <linux/cpu_pm.h>
28 #include <linux/cpumask.h>
29 #include <linux/io.h>
30 #include <linux/of.h>
31 #include <linux/of_address.h>
32 #include <linux/of_irq.h>
33 #include <linux/acpi.h>
34 #include <linux/irqdomain.h>
35 #include <linux/interrupt.h>
36 #include <linux/percpu.h>
37 #include <linux/slab.h>
38 #include <linux/irqchip.h>
39 #include <linux/irqchip/chained_irq.h>
40 #include <linux/irqchip/arm-gic.h>
41
42 #include <asm/cputype.h>
43 #include <asm/irq.h>
44 #include <asm/exception.h>
45 #include <asm/smp_plat.h>
46 #include <asm/virt.h>
47
48 #include "irq-gic-common.h"
49
50 #ifdef CONFIG_ARM64
51 #include <asm/cpufeature.h>
52
gic_check_cpu_features(void)53 static void gic_check_cpu_features(void)
54 {
55 WARN_TAINT_ONCE(this_cpu_has_cap(ARM64_HAS_SYSREG_GIC_CPUIF),
56 TAINT_CPU_OUT_OF_SPEC,
57 "GICv3 system registers enabled, broken firmware!\n");
58 }
59 #else
60 #define gic_check_cpu_features() do { } while(0)
61 #endif
62
63 union gic_base {
64 void __iomem *common_base;
65 void __percpu * __iomem *percpu_base;
66 };
67
68 struct gic_chip_data {
69 struct irq_chip chip;
70 union gic_base dist_base;
71 union gic_base cpu_base;
72 void __iomem *raw_dist_base;
73 void __iomem *raw_cpu_base;
74 u32 percpu_offset;
75 #if defined(CONFIG_CPU_PM) || defined(CONFIG_ARM_GIC_PM)
76 u32 saved_spi_enable[DIV_ROUND_UP(1020, 32)];
77 u32 saved_spi_active[DIV_ROUND_UP(1020, 32)];
78 u32 saved_spi_conf[DIV_ROUND_UP(1020, 16)];
79 u32 saved_spi_target[DIV_ROUND_UP(1020, 4)];
80 u32 __percpu *saved_ppi_enable;
81 u32 __percpu *saved_ppi_active;
82 u32 __percpu *saved_ppi_conf;
83 #endif
84 struct irq_domain *domain;
85 unsigned int gic_irqs;
86 };
87
88 #ifdef CONFIG_BL_SWITCHER
89
90 static DEFINE_RAW_SPINLOCK(cpu_map_lock);
91
92 #define gic_lock_irqsave(f) \
93 raw_spin_lock_irqsave(&cpu_map_lock, (f))
94 #define gic_unlock_irqrestore(f) \
95 raw_spin_unlock_irqrestore(&cpu_map_lock, (f))
96
97 #define gic_lock() raw_spin_lock(&cpu_map_lock)
98 #define gic_unlock() raw_spin_unlock(&cpu_map_lock)
99
100 #else
101
102 #define gic_lock_irqsave(f) do { (void)(f); } while(0)
103 #define gic_unlock_irqrestore(f) do { (void)(f); } while(0)
104
105 #define gic_lock() do { } while(0)
106 #define gic_unlock() do { } while(0)
107
108 #endif
109
110 static DEFINE_STATIC_KEY_FALSE(needs_rmw_access);
111
112 /*
113 * The GIC mapping of CPU interfaces does not necessarily match
114 * the logical CPU numbering. Let's use a mapping as returned
115 * by the GIC itself.
116 */
117 #define NR_GIC_CPU_IF 8
118 static u8 gic_cpu_map[NR_GIC_CPU_IF] __read_mostly;
119
120 static DEFINE_STATIC_KEY_TRUE(supports_deactivate_key);
121
122 static struct gic_chip_data gic_data[CONFIG_ARM_GIC_MAX_NR] __read_mostly;
123
124 static struct gic_kvm_info gic_v2_kvm_info;
125
126 static DEFINE_PER_CPU(u32, sgi_intid);
127
128 #ifdef CONFIG_GIC_NON_BANKED
129 static DEFINE_STATIC_KEY_FALSE(frankengic_key);
130
enable_frankengic(void)131 static void enable_frankengic(void)
132 {
133 static_branch_enable(&frankengic_key);
134 }
135
__get_base(union gic_base * base)136 static inline void __iomem *__get_base(union gic_base *base)
137 {
138 if (static_branch_unlikely(&frankengic_key))
139 return raw_cpu_read(*base->percpu_base);
140
141 return base->common_base;
142 }
143
144 #define gic_data_dist_base(d) __get_base(&(d)->dist_base)
145 #define gic_data_cpu_base(d) __get_base(&(d)->cpu_base)
146 #else
147 #define gic_data_dist_base(d) ((d)->dist_base.common_base)
148 #define gic_data_cpu_base(d) ((d)->cpu_base.common_base)
149 #define enable_frankengic() do { } while(0)
150 #endif
151
gic_dist_base(struct irq_data * d)152 static inline void __iomem *gic_dist_base(struct irq_data *d)
153 {
154 struct gic_chip_data *gic_data = irq_data_get_irq_chip_data(d);
155 return gic_data_dist_base(gic_data);
156 }
157
gic_cpu_base(struct irq_data * d)158 static inline void __iomem *gic_cpu_base(struct irq_data *d)
159 {
160 struct gic_chip_data *gic_data = irq_data_get_irq_chip_data(d);
161 return gic_data_cpu_base(gic_data);
162 }
163
gic_irq(struct irq_data * d)164 static inline unsigned int gic_irq(struct irq_data *d)
165 {
166 return d->hwirq;
167 }
168
cascading_gic_irq(struct irq_data * d)169 static inline bool cascading_gic_irq(struct irq_data *d)
170 {
171 void *data = irq_data_get_irq_handler_data(d);
172
173 /*
174 * If handler_data is set, this is a cascading interrupt, and
175 * it cannot possibly be forwarded.
176 */
177 return data != NULL;
178 }
179
180 /*
181 * Routines to acknowledge, disable and enable interrupts
182 */
gic_poke_irq(struct irq_data * d,u32 offset)183 static void gic_poke_irq(struct irq_data *d, u32 offset)
184 {
185 u32 mask = 1 << (gic_irq(d) % 32);
186 writel_relaxed(mask, gic_dist_base(d) + offset + (gic_irq(d) / 32) * 4);
187 }
188
gic_peek_irq(struct irq_data * d,u32 offset)189 static int gic_peek_irq(struct irq_data *d, u32 offset)
190 {
191 u32 mask = 1 << (gic_irq(d) % 32);
192 return !!(readl_relaxed(gic_dist_base(d) + offset + (gic_irq(d) / 32) * 4) & mask);
193 }
194
gic_mask_irq(struct irq_data * d)195 static void gic_mask_irq(struct irq_data *d)
196 {
197 gic_poke_irq(d, GIC_DIST_ENABLE_CLEAR);
198 }
199
gic_eoimode1_mask_irq(struct irq_data * d)200 static void gic_eoimode1_mask_irq(struct irq_data *d)
201 {
202 gic_mask_irq(d);
203 /*
204 * When masking a forwarded interrupt, make sure it is
205 * deactivated as well.
206 *
207 * This ensures that an interrupt that is getting
208 * disabled/masked will not get "stuck", because there is
209 * noone to deactivate it (guest is being terminated).
210 */
211 if (irqd_is_forwarded_to_vcpu(d))
212 gic_poke_irq(d, GIC_DIST_ACTIVE_CLEAR);
213 }
214
gic_unmask_irq(struct irq_data * d)215 static void gic_unmask_irq(struct irq_data *d)
216 {
217 gic_poke_irq(d, GIC_DIST_ENABLE_SET);
218 }
219
gic_eoi_irq(struct irq_data * d)220 static void gic_eoi_irq(struct irq_data *d)
221 {
222 u32 hwirq = gic_irq(d);
223
224 if (hwirq < 16)
225 hwirq = this_cpu_read(sgi_intid);
226
227 writel_relaxed(hwirq, gic_cpu_base(d) + GIC_CPU_EOI);
228 }
229
gic_eoimode1_eoi_irq(struct irq_data * d)230 static void gic_eoimode1_eoi_irq(struct irq_data *d)
231 {
232 u32 hwirq = gic_irq(d);
233
234 /* Do not deactivate an IRQ forwarded to a vcpu. */
235 if (irqd_is_forwarded_to_vcpu(d))
236 return;
237
238 if (hwirq < 16)
239 hwirq = this_cpu_read(sgi_intid);
240
241 writel_relaxed(hwirq, gic_cpu_base(d) + GIC_CPU_DEACTIVATE);
242 }
243
gic_irq_set_irqchip_state(struct irq_data * d,enum irqchip_irq_state which,bool val)244 static int gic_irq_set_irqchip_state(struct irq_data *d,
245 enum irqchip_irq_state which, bool val)
246 {
247 u32 reg;
248
249 switch (which) {
250 case IRQCHIP_STATE_PENDING:
251 reg = val ? GIC_DIST_PENDING_SET : GIC_DIST_PENDING_CLEAR;
252 break;
253
254 case IRQCHIP_STATE_ACTIVE:
255 reg = val ? GIC_DIST_ACTIVE_SET : GIC_DIST_ACTIVE_CLEAR;
256 break;
257
258 case IRQCHIP_STATE_MASKED:
259 reg = val ? GIC_DIST_ENABLE_CLEAR : GIC_DIST_ENABLE_SET;
260 break;
261
262 default:
263 return -EINVAL;
264 }
265
266 gic_poke_irq(d, reg);
267 return 0;
268 }
269
gic_irq_get_irqchip_state(struct irq_data * d,enum irqchip_irq_state which,bool * val)270 static int gic_irq_get_irqchip_state(struct irq_data *d,
271 enum irqchip_irq_state which, bool *val)
272 {
273 switch (which) {
274 case IRQCHIP_STATE_PENDING:
275 *val = gic_peek_irq(d, GIC_DIST_PENDING_SET);
276 break;
277
278 case IRQCHIP_STATE_ACTIVE:
279 *val = gic_peek_irq(d, GIC_DIST_ACTIVE_SET);
280 break;
281
282 case IRQCHIP_STATE_MASKED:
283 *val = !gic_peek_irq(d, GIC_DIST_ENABLE_SET);
284 break;
285
286 default:
287 return -EINVAL;
288 }
289
290 return 0;
291 }
292
gic_set_type(struct irq_data * d,unsigned int type)293 static int gic_set_type(struct irq_data *d, unsigned int type)
294 {
295 void __iomem *base = gic_dist_base(d);
296 unsigned int gicirq = gic_irq(d);
297 int ret;
298
299 /* Interrupt configuration for SGIs can't be changed */
300 if (gicirq < 16)
301 return type != IRQ_TYPE_EDGE_RISING ? -EINVAL : 0;
302
303 /* SPIs have restrictions on the supported types */
304 if (gicirq >= 32 && type != IRQ_TYPE_LEVEL_HIGH &&
305 type != IRQ_TYPE_EDGE_RISING)
306 return -EINVAL;
307
308 ret = gic_configure_irq(gicirq, type, base + GIC_DIST_CONFIG, NULL);
309 if (ret && gicirq < 32) {
310 /* Misconfigured PPIs are usually not fatal */
311 pr_warn("GIC: PPI%d is secure or misconfigured\n", gicirq - 16);
312 ret = 0;
313 }
314
315 return ret;
316 }
317
gic_irq_set_vcpu_affinity(struct irq_data * d,void * vcpu)318 static int gic_irq_set_vcpu_affinity(struct irq_data *d, void *vcpu)
319 {
320 /* Only interrupts on the primary GIC can be forwarded to a vcpu. */
321 if (cascading_gic_irq(d) || gic_irq(d) < 16)
322 return -EINVAL;
323
324 if (vcpu)
325 irqd_set_forwarded_to_vcpu(d);
326 else
327 irqd_clr_forwarded_to_vcpu(d);
328 return 0;
329 }
330
gic_retrigger(struct irq_data * data)331 static int gic_retrigger(struct irq_data *data)
332 {
333 return !gic_irq_set_irqchip_state(data, IRQCHIP_STATE_PENDING, true);
334 }
335
gic_handle_irq(struct pt_regs * regs)336 static void __exception_irq_entry gic_handle_irq(struct pt_regs *regs)
337 {
338 u32 irqstat, irqnr;
339 struct gic_chip_data *gic = &gic_data[0];
340 void __iomem *cpu_base = gic_data_cpu_base(gic);
341
342 do {
343 irqstat = readl_relaxed(cpu_base + GIC_CPU_INTACK);
344 irqnr = irqstat & GICC_IAR_INT_ID_MASK;
345
346 if (unlikely(irqnr >= 1020))
347 break;
348
349 if (static_branch_likely(&supports_deactivate_key))
350 writel_relaxed(irqstat, cpu_base + GIC_CPU_EOI);
351 isb();
352
353 /*
354 * Ensure any shared data written by the CPU sending the IPI
355 * is read after we've read the ACK register on the GIC.
356 *
357 * Pairs with the write barrier in gic_ipi_send_mask
358 */
359 if (irqnr <= 15) {
360 smp_rmb();
361
362 /*
363 * The GIC encodes the source CPU in GICC_IAR,
364 * leading to the deactivation to fail if not
365 * written back as is to GICC_EOI. Stash the INTID
366 * away for gic_eoi_irq() to write back. This only
367 * works because we don't nest SGIs...
368 */
369 this_cpu_write(sgi_intid, irqstat);
370 }
371
372 handle_domain_irq(gic->domain, irqnr, regs);
373 } while (1);
374 }
375
gic_handle_cascade_irq(struct irq_desc * desc)376 static void gic_handle_cascade_irq(struct irq_desc *desc)
377 {
378 struct gic_chip_data *chip_data = irq_desc_get_handler_data(desc);
379 struct irq_chip *chip = irq_desc_get_chip(desc);
380 unsigned int cascade_irq, gic_irq;
381 unsigned long status;
382
383 chained_irq_enter(chip, desc);
384
385 status = readl_relaxed(gic_data_cpu_base(chip_data) + GIC_CPU_INTACK);
386
387 gic_irq = (status & GICC_IAR_INT_ID_MASK);
388 if (gic_irq == GICC_INT_SPURIOUS)
389 goto out;
390
391 cascade_irq = irq_find_mapping(chip_data->domain, gic_irq);
392 if (unlikely(gic_irq < 32 || gic_irq > 1020)) {
393 handle_bad_irq(desc);
394 } else {
395 isb();
396 generic_handle_irq(cascade_irq);
397 }
398
399 out:
400 chained_irq_exit(chip, desc);
401 }
402
403 static const struct irq_chip gic_chip = {
404 .irq_mask = gic_mask_irq,
405 .irq_unmask = gic_unmask_irq,
406 .irq_eoi = gic_eoi_irq,
407 .irq_set_type = gic_set_type,
408 .irq_retrigger = gic_retrigger,
409 .irq_get_irqchip_state = gic_irq_get_irqchip_state,
410 .irq_set_irqchip_state = gic_irq_set_irqchip_state,
411 .flags = IRQCHIP_SET_TYPE_MASKED |
412 IRQCHIP_SKIP_SET_WAKE |
413 IRQCHIP_MASK_ON_SUSPEND,
414 };
415
gic_cascade_irq(unsigned int gic_nr,unsigned int irq)416 void __init gic_cascade_irq(unsigned int gic_nr, unsigned int irq)
417 {
418 BUG_ON(gic_nr >= CONFIG_ARM_GIC_MAX_NR);
419 irq_set_chained_handler_and_data(irq, gic_handle_cascade_irq,
420 &gic_data[gic_nr]);
421 }
422
gic_get_cpumask(struct gic_chip_data * gic)423 static u8 gic_get_cpumask(struct gic_chip_data *gic)
424 {
425 void __iomem *base = gic_data_dist_base(gic);
426 u32 mask, i;
427
428 for (i = mask = 0; i < 32; i += 4) {
429 mask = readl_relaxed(base + GIC_DIST_TARGET + i);
430 mask |= mask >> 16;
431 mask |= mask >> 8;
432 if (mask)
433 break;
434 }
435
436 if (!mask && num_possible_cpus() > 1)
437 pr_crit("GIC CPU mask not found - kernel will fail to boot.\n");
438
439 return mask;
440 }
441
gic_check_gicv2(void __iomem * base)442 static bool gic_check_gicv2(void __iomem *base)
443 {
444 u32 val = readl_relaxed(base + GIC_CPU_IDENT);
445 return (val & 0xff0fff) == 0x02043B;
446 }
447
gic_cpu_if_up(struct gic_chip_data * gic)448 static void gic_cpu_if_up(struct gic_chip_data *gic)
449 {
450 void __iomem *cpu_base = gic_data_cpu_base(gic);
451 u32 bypass = 0;
452 u32 mode = 0;
453 int i;
454
455 if (gic == &gic_data[0] && static_branch_likely(&supports_deactivate_key))
456 mode = GIC_CPU_CTRL_EOImodeNS;
457
458 if (gic_check_gicv2(cpu_base))
459 for (i = 0; i < 4; i++)
460 writel_relaxed(0, cpu_base + GIC_CPU_ACTIVEPRIO + i * 4);
461
462 /*
463 * Preserve bypass disable bits to be written back later
464 */
465 bypass = readl(cpu_base + GIC_CPU_CTRL);
466 bypass &= GICC_DIS_BYPASS_MASK;
467
468 writel_relaxed(bypass | mode | GICC_ENABLE, cpu_base + GIC_CPU_CTRL);
469 }
470
471
gic_dist_init(struct gic_chip_data * gic)472 static void gic_dist_init(struct gic_chip_data *gic)
473 {
474 unsigned int i;
475 u32 cpumask;
476 unsigned int gic_irqs = gic->gic_irqs;
477 void __iomem *base = gic_data_dist_base(gic);
478
479 writel_relaxed(GICD_DISABLE, base + GIC_DIST_CTRL);
480
481 /*
482 * Set all global interrupts to this CPU only.
483 */
484 cpumask = gic_get_cpumask(gic);
485 cpumask |= cpumask << 8;
486 cpumask |= cpumask << 16;
487 for (i = 32; i < gic_irqs; i += 4)
488 writel_relaxed(cpumask, base + GIC_DIST_TARGET + i * 4 / 4);
489
490 gic_dist_config(base, gic_irqs, NULL);
491
492 writel_relaxed(GICD_ENABLE, base + GIC_DIST_CTRL);
493 }
494
gic_cpu_init(struct gic_chip_data * gic)495 static int gic_cpu_init(struct gic_chip_data *gic)
496 {
497 void __iomem *dist_base = gic_data_dist_base(gic);
498 void __iomem *base = gic_data_cpu_base(gic);
499 unsigned int cpu_mask, cpu = smp_processor_id();
500 int i;
501
502 /*
503 * Setting up the CPU map is only relevant for the primary GIC
504 * because any nested/secondary GICs do not directly interface
505 * with the CPU(s).
506 */
507 if (gic == &gic_data[0]) {
508 /*
509 * Get what the GIC says our CPU mask is.
510 */
511 if (WARN_ON(cpu >= NR_GIC_CPU_IF))
512 return -EINVAL;
513
514 gic_check_cpu_features();
515 cpu_mask = gic_get_cpumask(gic);
516 gic_cpu_map[cpu] = cpu_mask;
517
518 /*
519 * Clear our mask from the other map entries in case they're
520 * still undefined.
521 */
522 for (i = 0; i < NR_GIC_CPU_IF; i++)
523 if (i != cpu)
524 gic_cpu_map[i] &= ~cpu_mask;
525 }
526
527 gic_cpu_config(dist_base, 32, NULL);
528
529 writel_relaxed(GICC_INT_PRI_THRESHOLD, base + GIC_CPU_PRIMASK);
530 gic_cpu_if_up(gic);
531
532 return 0;
533 }
534
gic_cpu_if_down(unsigned int gic_nr)535 int gic_cpu_if_down(unsigned int gic_nr)
536 {
537 void __iomem *cpu_base;
538 u32 val = 0;
539
540 if (gic_nr >= CONFIG_ARM_GIC_MAX_NR)
541 return -EINVAL;
542
543 cpu_base = gic_data_cpu_base(&gic_data[gic_nr]);
544 val = readl(cpu_base + GIC_CPU_CTRL);
545 val &= ~GICC_ENABLE;
546 writel_relaxed(val, cpu_base + GIC_CPU_CTRL);
547
548 return 0;
549 }
550
551 #if defined(CONFIG_CPU_PM) || defined(CONFIG_ARM_GIC_PM)
552 /*
553 * Saves the GIC distributor registers during suspend or idle. Must be called
554 * with interrupts disabled but before powering down the GIC. After calling
555 * this function, no interrupts will be delivered by the GIC, and another
556 * platform-specific wakeup source must be enabled.
557 */
gic_dist_save(struct gic_chip_data * gic)558 void gic_dist_save(struct gic_chip_data *gic)
559 {
560 unsigned int gic_irqs;
561 void __iomem *dist_base;
562 int i;
563
564 if (WARN_ON(!gic))
565 return;
566
567 gic_irqs = gic->gic_irqs;
568 dist_base = gic_data_dist_base(gic);
569
570 if (!dist_base)
571 return;
572
573 for (i = 0; i < DIV_ROUND_UP(gic_irqs, 16); i++)
574 gic->saved_spi_conf[i] =
575 readl_relaxed(dist_base + GIC_DIST_CONFIG + i * 4);
576
577 for (i = 0; i < DIV_ROUND_UP(gic_irqs, 4); i++)
578 gic->saved_spi_target[i] =
579 readl_relaxed(dist_base + GIC_DIST_TARGET + i * 4);
580
581 for (i = 0; i < DIV_ROUND_UP(gic_irqs, 32); i++)
582 gic->saved_spi_enable[i] =
583 readl_relaxed(dist_base + GIC_DIST_ENABLE_SET + i * 4);
584
585 for (i = 0; i < DIV_ROUND_UP(gic_irqs, 32); i++)
586 gic->saved_spi_active[i] =
587 readl_relaxed(dist_base + GIC_DIST_ACTIVE_SET + i * 4);
588 }
589
590 /*
591 * Restores the GIC distributor registers during resume or when coming out of
592 * idle. Must be called before enabling interrupts. If a level interrupt
593 * that occurred while the GIC was suspended is still present, it will be
594 * handled normally, but any edge interrupts that occurred will not be seen by
595 * the GIC and need to be handled by the platform-specific wakeup source.
596 */
gic_dist_restore(struct gic_chip_data * gic)597 void gic_dist_restore(struct gic_chip_data *gic)
598 {
599 unsigned int gic_irqs;
600 unsigned int i;
601 void __iomem *dist_base;
602
603 if (WARN_ON(!gic))
604 return;
605
606 gic_irqs = gic->gic_irqs;
607 dist_base = gic_data_dist_base(gic);
608
609 if (!dist_base)
610 return;
611
612 writel_relaxed(GICD_DISABLE, dist_base + GIC_DIST_CTRL);
613
614 for (i = 0; i < DIV_ROUND_UP(gic_irqs, 16); i++)
615 writel_relaxed(gic->saved_spi_conf[i],
616 dist_base + GIC_DIST_CONFIG + i * 4);
617
618 for (i = 0; i < DIV_ROUND_UP(gic_irqs, 4); i++)
619 writel_relaxed(GICD_INT_DEF_PRI_X4,
620 dist_base + GIC_DIST_PRI + i * 4);
621
622 for (i = 0; i < DIV_ROUND_UP(gic_irqs, 4); i++)
623 writel_relaxed(gic->saved_spi_target[i],
624 dist_base + GIC_DIST_TARGET + i * 4);
625
626 for (i = 0; i < DIV_ROUND_UP(gic_irqs, 32); i++) {
627 writel_relaxed(GICD_INT_EN_CLR_X32,
628 dist_base + GIC_DIST_ENABLE_CLEAR + i * 4);
629 writel_relaxed(gic->saved_spi_enable[i],
630 dist_base + GIC_DIST_ENABLE_SET + i * 4);
631 }
632
633 for (i = 0; i < DIV_ROUND_UP(gic_irqs, 32); i++) {
634 writel_relaxed(GICD_INT_EN_CLR_X32,
635 dist_base + GIC_DIST_ACTIVE_CLEAR + i * 4);
636 writel_relaxed(gic->saved_spi_active[i],
637 dist_base + GIC_DIST_ACTIVE_SET + i * 4);
638 }
639
640 writel_relaxed(GICD_ENABLE, dist_base + GIC_DIST_CTRL);
641 }
642
gic_cpu_save(struct gic_chip_data * gic)643 void gic_cpu_save(struct gic_chip_data *gic)
644 {
645 int i;
646 u32 *ptr;
647 void __iomem *dist_base;
648 void __iomem *cpu_base;
649
650 if (WARN_ON(!gic))
651 return;
652
653 dist_base = gic_data_dist_base(gic);
654 cpu_base = gic_data_cpu_base(gic);
655
656 if (!dist_base || !cpu_base)
657 return;
658
659 ptr = raw_cpu_ptr(gic->saved_ppi_enable);
660 for (i = 0; i < DIV_ROUND_UP(32, 32); i++)
661 ptr[i] = readl_relaxed(dist_base + GIC_DIST_ENABLE_SET + i * 4);
662
663 ptr = raw_cpu_ptr(gic->saved_ppi_active);
664 for (i = 0; i < DIV_ROUND_UP(32, 32); i++)
665 ptr[i] = readl_relaxed(dist_base + GIC_DIST_ACTIVE_SET + i * 4);
666
667 ptr = raw_cpu_ptr(gic->saved_ppi_conf);
668 for (i = 0; i < DIV_ROUND_UP(32, 16); i++)
669 ptr[i] = readl_relaxed(dist_base + GIC_DIST_CONFIG + i * 4);
670
671 }
672
gic_cpu_restore(struct gic_chip_data * gic)673 void gic_cpu_restore(struct gic_chip_data *gic)
674 {
675 int i;
676 u32 *ptr;
677 void __iomem *dist_base;
678 void __iomem *cpu_base;
679
680 if (WARN_ON(!gic))
681 return;
682
683 dist_base = gic_data_dist_base(gic);
684 cpu_base = gic_data_cpu_base(gic);
685
686 if (!dist_base || !cpu_base)
687 return;
688
689 ptr = raw_cpu_ptr(gic->saved_ppi_enable);
690 for (i = 0; i < DIV_ROUND_UP(32, 32); i++) {
691 writel_relaxed(GICD_INT_EN_CLR_X32,
692 dist_base + GIC_DIST_ENABLE_CLEAR + i * 4);
693 writel_relaxed(ptr[i], dist_base + GIC_DIST_ENABLE_SET + i * 4);
694 }
695
696 ptr = raw_cpu_ptr(gic->saved_ppi_active);
697 for (i = 0; i < DIV_ROUND_UP(32, 32); i++) {
698 writel_relaxed(GICD_INT_EN_CLR_X32,
699 dist_base + GIC_DIST_ACTIVE_CLEAR + i * 4);
700 writel_relaxed(ptr[i], dist_base + GIC_DIST_ACTIVE_SET + i * 4);
701 }
702
703 ptr = raw_cpu_ptr(gic->saved_ppi_conf);
704 for (i = 0; i < DIV_ROUND_UP(32, 16); i++)
705 writel_relaxed(ptr[i], dist_base + GIC_DIST_CONFIG + i * 4);
706
707 for (i = 0; i < DIV_ROUND_UP(32, 4); i++)
708 writel_relaxed(GICD_INT_DEF_PRI_X4,
709 dist_base + GIC_DIST_PRI + i * 4);
710
711 writel_relaxed(GICC_INT_PRI_THRESHOLD, cpu_base + GIC_CPU_PRIMASK);
712 gic_cpu_if_up(gic);
713 }
714
gic_notifier(struct notifier_block * self,unsigned long cmd,void * v)715 static int gic_notifier(struct notifier_block *self, unsigned long cmd, void *v)
716 {
717 int i;
718
719 for (i = 0; i < CONFIG_ARM_GIC_MAX_NR; i++) {
720 switch (cmd) {
721 case CPU_PM_ENTER:
722 gic_cpu_save(&gic_data[i]);
723 break;
724 case CPU_PM_ENTER_FAILED:
725 case CPU_PM_EXIT:
726 gic_cpu_restore(&gic_data[i]);
727 break;
728 case CPU_CLUSTER_PM_ENTER:
729 gic_dist_save(&gic_data[i]);
730 break;
731 case CPU_CLUSTER_PM_ENTER_FAILED:
732 case CPU_CLUSTER_PM_EXIT:
733 gic_dist_restore(&gic_data[i]);
734 break;
735 }
736 }
737
738 return NOTIFY_OK;
739 }
740
741 static struct notifier_block gic_notifier_block = {
742 .notifier_call = gic_notifier,
743 };
744
gic_pm_init(struct gic_chip_data * gic)745 static int gic_pm_init(struct gic_chip_data *gic)
746 {
747 gic->saved_ppi_enable = __alloc_percpu(DIV_ROUND_UP(32, 32) * 4,
748 sizeof(u32));
749 if (WARN_ON(!gic->saved_ppi_enable))
750 return -ENOMEM;
751
752 gic->saved_ppi_active = __alloc_percpu(DIV_ROUND_UP(32, 32) * 4,
753 sizeof(u32));
754 if (WARN_ON(!gic->saved_ppi_active))
755 goto free_ppi_enable;
756
757 gic->saved_ppi_conf = __alloc_percpu(DIV_ROUND_UP(32, 16) * 4,
758 sizeof(u32));
759 if (WARN_ON(!gic->saved_ppi_conf))
760 goto free_ppi_active;
761
762 if (gic == &gic_data[0])
763 cpu_pm_register_notifier(&gic_notifier_block);
764
765 return 0;
766
767 free_ppi_active:
768 free_percpu(gic->saved_ppi_active);
769 free_ppi_enable:
770 free_percpu(gic->saved_ppi_enable);
771
772 return -ENOMEM;
773 }
774 #else
gic_pm_init(struct gic_chip_data * gic)775 static int gic_pm_init(struct gic_chip_data *gic)
776 {
777 return 0;
778 }
779 #endif
780
781 #ifdef CONFIG_SMP
rmw_writeb(u8 bval,void __iomem * addr)782 static void rmw_writeb(u8 bval, void __iomem *addr)
783 {
784 static DEFINE_RAW_SPINLOCK(rmw_lock);
785 unsigned long offset = (unsigned long)addr & 3UL;
786 unsigned long shift = offset * 8;
787 unsigned long flags;
788 u32 val;
789
790 raw_spin_lock_irqsave(&rmw_lock, flags);
791
792 addr -= offset;
793 val = readl_relaxed(addr);
794 val &= ~GENMASK(shift + 7, shift);
795 val |= bval << shift;
796 writel_relaxed(val, addr);
797
798 raw_spin_unlock_irqrestore(&rmw_lock, flags);
799 }
800
gic_set_affinity(struct irq_data * d,const struct cpumask * mask_val,bool force)801 static int gic_set_affinity(struct irq_data *d, const struct cpumask *mask_val,
802 bool force)
803 {
804 void __iomem *reg = gic_dist_base(d) + GIC_DIST_TARGET + gic_irq(d);
805 unsigned int cpu;
806
807 if (!force)
808 cpu = cpumask_any_and(mask_val, cpu_online_mask);
809 else
810 cpu = cpumask_first(mask_val);
811
812 if (cpu >= NR_GIC_CPU_IF || cpu >= nr_cpu_ids)
813 return -EINVAL;
814
815 if (static_branch_unlikely(&needs_rmw_access))
816 rmw_writeb(gic_cpu_map[cpu], reg);
817 else
818 writeb_relaxed(gic_cpu_map[cpu], reg);
819 irq_data_update_effective_affinity(d, cpumask_of(cpu));
820
821 return IRQ_SET_MASK_OK_DONE;
822 }
823
gic_ipi_send_mask(struct irq_data * d,const struct cpumask * mask)824 static void gic_ipi_send_mask(struct irq_data *d, const struct cpumask *mask)
825 {
826 int cpu;
827 unsigned long flags, map = 0;
828
829 if (unlikely(nr_cpu_ids == 1)) {
830 /* Only one CPU? let's do a self-IPI... */
831 writel_relaxed(2 << 24 | d->hwirq,
832 gic_data_dist_base(&gic_data[0]) + GIC_DIST_SOFTINT);
833 return;
834 }
835
836 gic_lock_irqsave(flags);
837
838 /* Convert our logical CPU mask into a physical one. */
839 for_each_cpu(cpu, mask)
840 map |= gic_cpu_map[cpu];
841
842 /*
843 * Ensure that stores to Normal memory are visible to the
844 * other CPUs before they observe us issuing the IPI.
845 */
846 dmb(ishst);
847
848 /* this always happens on GIC0 */
849 writel_relaxed(map << 16 | d->hwirq, gic_data_dist_base(&gic_data[0]) + GIC_DIST_SOFTINT);
850
851 gic_unlock_irqrestore(flags);
852 }
853
gic_starting_cpu(unsigned int cpu)854 static int gic_starting_cpu(unsigned int cpu)
855 {
856 gic_cpu_init(&gic_data[0]);
857 return 0;
858 }
859
gic_smp_init(void)860 static __init void gic_smp_init(void)
861 {
862 struct irq_fwspec sgi_fwspec = {
863 .fwnode = gic_data[0].domain->fwnode,
864 .param_count = 1,
865 };
866 int base_sgi;
867
868 cpuhp_setup_state_nocalls(CPUHP_AP_IRQ_GIC_STARTING,
869 "irqchip/arm/gic:starting",
870 gic_starting_cpu, NULL);
871
872 base_sgi = __irq_domain_alloc_irqs(gic_data[0].domain, -1, 8,
873 NUMA_NO_NODE, &sgi_fwspec,
874 false, NULL);
875 if (WARN_ON(base_sgi <= 0))
876 return;
877
878 set_smp_ipi_range(base_sgi, 8);
879 }
880 #else
881 #define gic_smp_init() do { } while(0)
882 #define gic_set_affinity NULL
883 #define gic_ipi_send_mask NULL
884 #endif
885
886 #ifdef CONFIG_BL_SWITCHER
887 /*
888 * gic_send_sgi - send a SGI directly to given CPU interface number
889 *
890 * cpu_id: the ID for the destination CPU interface
891 * irq: the IPI number to send a SGI for
892 */
gic_send_sgi(unsigned int cpu_id,unsigned int irq)893 void gic_send_sgi(unsigned int cpu_id, unsigned int irq)
894 {
895 BUG_ON(cpu_id >= NR_GIC_CPU_IF);
896 cpu_id = 1 << cpu_id;
897 /* this always happens on GIC0 */
898 writel_relaxed((cpu_id << 16) | irq, gic_data_dist_base(&gic_data[0]) + GIC_DIST_SOFTINT);
899 }
900
901 /*
902 * gic_get_cpu_id - get the CPU interface ID for the specified CPU
903 *
904 * @cpu: the logical CPU number to get the GIC ID for.
905 *
906 * Return the CPU interface ID for the given logical CPU number,
907 * or -1 if the CPU number is too large or the interface ID is
908 * unknown (more than one bit set).
909 */
gic_get_cpu_id(unsigned int cpu)910 int gic_get_cpu_id(unsigned int cpu)
911 {
912 unsigned int cpu_bit;
913
914 if (cpu >= NR_GIC_CPU_IF)
915 return -1;
916 cpu_bit = gic_cpu_map[cpu];
917 if (cpu_bit & (cpu_bit - 1))
918 return -1;
919 return __ffs(cpu_bit);
920 }
921
922 /*
923 * gic_migrate_target - migrate IRQs to another CPU interface
924 *
925 * @new_cpu_id: the CPU target ID to migrate IRQs to
926 *
927 * Migrate all peripheral interrupts with a target matching the current CPU
928 * to the interface corresponding to @new_cpu_id. The CPU interface mapping
929 * is also updated. Targets to other CPU interfaces are unchanged.
930 * This must be called with IRQs locally disabled.
931 */
gic_migrate_target(unsigned int new_cpu_id)932 void gic_migrate_target(unsigned int new_cpu_id)
933 {
934 unsigned int cur_cpu_id, gic_irqs, gic_nr = 0;
935 void __iomem *dist_base;
936 int i, ror_val, cpu = smp_processor_id();
937 u32 val, cur_target_mask, active_mask;
938
939 BUG_ON(gic_nr >= CONFIG_ARM_GIC_MAX_NR);
940
941 dist_base = gic_data_dist_base(&gic_data[gic_nr]);
942 if (!dist_base)
943 return;
944 gic_irqs = gic_data[gic_nr].gic_irqs;
945
946 cur_cpu_id = __ffs(gic_cpu_map[cpu]);
947 cur_target_mask = 0x01010101 << cur_cpu_id;
948 ror_val = (cur_cpu_id - new_cpu_id) & 31;
949
950 gic_lock();
951
952 /* Update the target interface for this logical CPU */
953 gic_cpu_map[cpu] = 1 << new_cpu_id;
954
955 /*
956 * Find all the peripheral interrupts targeting the current
957 * CPU interface and migrate them to the new CPU interface.
958 * We skip DIST_TARGET 0 to 7 as they are read-only.
959 */
960 for (i = 8; i < DIV_ROUND_UP(gic_irqs, 4); i++) {
961 val = readl_relaxed(dist_base + GIC_DIST_TARGET + i * 4);
962 active_mask = val & cur_target_mask;
963 if (active_mask) {
964 val &= ~active_mask;
965 val |= ror32(active_mask, ror_val);
966 writel_relaxed(val, dist_base + GIC_DIST_TARGET + i*4);
967 }
968 }
969
970 gic_unlock();
971
972 /*
973 * Now let's migrate and clear any potential SGIs that might be
974 * pending for us (cur_cpu_id). Since GIC_DIST_SGI_PENDING_SET
975 * is a banked register, we can only forward the SGI using
976 * GIC_DIST_SOFTINT. The original SGI source is lost but Linux
977 * doesn't use that information anyway.
978 *
979 * For the same reason we do not adjust SGI source information
980 * for previously sent SGIs by us to other CPUs either.
981 */
982 for (i = 0; i < 16; i += 4) {
983 int j;
984 val = readl_relaxed(dist_base + GIC_DIST_SGI_PENDING_SET + i);
985 if (!val)
986 continue;
987 writel_relaxed(val, dist_base + GIC_DIST_SGI_PENDING_CLEAR + i);
988 for (j = i; j < i + 4; j++) {
989 if (val & 0xff)
990 writel_relaxed((1 << (new_cpu_id + 16)) | j,
991 dist_base + GIC_DIST_SOFTINT);
992 val >>= 8;
993 }
994 }
995 }
996
997 /*
998 * gic_get_sgir_physaddr - get the physical address for the SGI register
999 *
1000 * REturn the physical address of the SGI register to be used
1001 * by some early assembly code when the kernel is not yet available.
1002 */
1003 static unsigned long gic_dist_physaddr;
1004
gic_get_sgir_physaddr(void)1005 unsigned long gic_get_sgir_physaddr(void)
1006 {
1007 if (!gic_dist_physaddr)
1008 return 0;
1009 return gic_dist_physaddr + GIC_DIST_SOFTINT;
1010 }
1011
gic_init_physaddr(struct device_node * node)1012 static void __init gic_init_physaddr(struct device_node *node)
1013 {
1014 struct resource res;
1015 if (of_address_to_resource(node, 0, &res) == 0) {
1016 gic_dist_physaddr = res.start;
1017 pr_info("GIC physical location is %#lx\n", gic_dist_physaddr);
1018 }
1019 }
1020
1021 #else
1022 #define gic_init_physaddr(node) do { } while (0)
1023 #endif
1024
gic_irq_domain_map(struct irq_domain * d,unsigned int irq,irq_hw_number_t hw)1025 static int gic_irq_domain_map(struct irq_domain *d, unsigned int irq,
1026 irq_hw_number_t hw)
1027 {
1028 struct gic_chip_data *gic = d->host_data;
1029 struct irq_data *irqd = irq_desc_get_irq_data(irq_to_desc(irq));
1030
1031 switch (hw) {
1032 case 0 ... 15:
1033 irq_set_percpu_devid(irq);
1034 irq_domain_set_info(d, irq, hw, &gic->chip, d->host_data,
1035 handle_percpu_devid_fasteoi_ipi,
1036 NULL, NULL);
1037 break;
1038 case 16 ... 31:
1039 irq_set_percpu_devid(irq);
1040 irq_domain_set_info(d, irq, hw, &gic->chip, d->host_data,
1041 handle_percpu_devid_irq, NULL, NULL);
1042 break;
1043 default:
1044 irq_domain_set_info(d, irq, hw, &gic->chip, d->host_data,
1045 handle_fasteoi_irq, NULL, NULL);
1046 irq_set_probe(irq);
1047 irqd_set_single_target(irqd);
1048 break;
1049 }
1050
1051 /* Prevents SW retriggers which mess up the ACK/EOI ordering */
1052 irqd_set_handle_enforce_irqctx(irqd);
1053 return 0;
1054 }
1055
gic_irq_domain_unmap(struct irq_domain * d,unsigned int irq)1056 static void gic_irq_domain_unmap(struct irq_domain *d, unsigned int irq)
1057 {
1058 }
1059
gic_irq_domain_translate(struct irq_domain * d,struct irq_fwspec * fwspec,unsigned long * hwirq,unsigned int * type)1060 static int gic_irq_domain_translate(struct irq_domain *d,
1061 struct irq_fwspec *fwspec,
1062 unsigned long *hwirq,
1063 unsigned int *type)
1064 {
1065 if (fwspec->param_count == 1 && fwspec->param[0] < 16) {
1066 *hwirq = fwspec->param[0];
1067 *type = IRQ_TYPE_EDGE_RISING;
1068 return 0;
1069 }
1070
1071 if (is_of_node(fwspec->fwnode)) {
1072 if (fwspec->param_count < 3)
1073 return -EINVAL;
1074
1075 switch (fwspec->param[0]) {
1076 case 0: /* SPI */
1077 *hwirq = fwspec->param[1] + 32;
1078 break;
1079 case 1: /* PPI */
1080 *hwirq = fwspec->param[1] + 16;
1081 break;
1082 default:
1083 return -EINVAL;
1084 }
1085
1086 *type = fwspec->param[2] & IRQ_TYPE_SENSE_MASK;
1087
1088 /* Make it clear that broken DTs are... broken */
1089 WARN_ON(*type == IRQ_TYPE_NONE);
1090 return 0;
1091 }
1092
1093 if (is_fwnode_irqchip(fwspec->fwnode)) {
1094 if(fwspec->param_count != 2)
1095 return -EINVAL;
1096
1097 if (fwspec->param[0] < 16) {
1098 pr_err(FW_BUG "Illegal GSI%d translation request\n",
1099 fwspec->param[0]);
1100 return -EINVAL;
1101 }
1102
1103 *hwirq = fwspec->param[0];
1104 *type = fwspec->param[1];
1105
1106 WARN_ON(*type == IRQ_TYPE_NONE);
1107 return 0;
1108 }
1109
1110 return -EINVAL;
1111 }
1112
gic_irq_domain_alloc(struct irq_domain * domain,unsigned int virq,unsigned int nr_irqs,void * arg)1113 static int gic_irq_domain_alloc(struct irq_domain *domain, unsigned int virq,
1114 unsigned int nr_irqs, void *arg)
1115 {
1116 int i, ret;
1117 irq_hw_number_t hwirq;
1118 unsigned int type = IRQ_TYPE_NONE;
1119 struct irq_fwspec *fwspec = arg;
1120
1121 ret = gic_irq_domain_translate(domain, fwspec, &hwirq, &type);
1122 if (ret)
1123 return ret;
1124
1125 for (i = 0; i < nr_irqs; i++) {
1126 ret = gic_irq_domain_map(domain, virq + i, hwirq + i);
1127 if (ret)
1128 return ret;
1129 }
1130
1131 return 0;
1132 }
1133
1134 static const struct irq_domain_ops gic_irq_domain_hierarchy_ops = {
1135 .translate = gic_irq_domain_translate,
1136 .alloc = gic_irq_domain_alloc,
1137 .free = irq_domain_free_irqs_top,
1138 };
1139
1140 static const struct irq_domain_ops gic_irq_domain_ops = {
1141 .map = gic_irq_domain_map,
1142 .unmap = gic_irq_domain_unmap,
1143 };
1144
gic_init_chip(struct gic_chip_data * gic,struct device * dev,const char * name,bool use_eoimode1)1145 static void gic_init_chip(struct gic_chip_data *gic, struct device *dev,
1146 const char *name, bool use_eoimode1)
1147 {
1148 /* Initialize irq_chip */
1149 gic->chip = gic_chip;
1150 gic->chip.name = name;
1151 gic->chip.parent_device = dev;
1152
1153 if (use_eoimode1) {
1154 gic->chip.irq_mask = gic_eoimode1_mask_irq;
1155 gic->chip.irq_eoi = gic_eoimode1_eoi_irq;
1156 gic->chip.irq_set_vcpu_affinity = gic_irq_set_vcpu_affinity;
1157 }
1158
1159 if (gic == &gic_data[0]) {
1160 gic->chip.irq_set_affinity = gic_set_affinity;
1161 gic->chip.ipi_send_mask = gic_ipi_send_mask;
1162 }
1163 }
1164
gic_init_bases(struct gic_chip_data * gic,struct fwnode_handle * handle)1165 static int gic_init_bases(struct gic_chip_data *gic,
1166 struct fwnode_handle *handle)
1167 {
1168 int gic_irqs, ret;
1169
1170 if (IS_ENABLED(CONFIG_GIC_NON_BANKED) && gic->percpu_offset) {
1171 /* Frankein-GIC without banked registers... */
1172 unsigned int cpu;
1173
1174 gic->dist_base.percpu_base = alloc_percpu(void __iomem *);
1175 gic->cpu_base.percpu_base = alloc_percpu(void __iomem *);
1176 if (WARN_ON(!gic->dist_base.percpu_base ||
1177 !gic->cpu_base.percpu_base)) {
1178 ret = -ENOMEM;
1179 goto error;
1180 }
1181
1182 for_each_possible_cpu(cpu) {
1183 u32 mpidr = cpu_logical_map(cpu);
1184 u32 core_id = MPIDR_AFFINITY_LEVEL(mpidr, 0);
1185 unsigned long offset = gic->percpu_offset * core_id;
1186 *per_cpu_ptr(gic->dist_base.percpu_base, cpu) =
1187 gic->raw_dist_base + offset;
1188 *per_cpu_ptr(gic->cpu_base.percpu_base, cpu) =
1189 gic->raw_cpu_base + offset;
1190 }
1191
1192 enable_frankengic();
1193 } else {
1194 /* Normal, sane GIC... */
1195 WARN(gic->percpu_offset,
1196 "GIC_NON_BANKED not enabled, ignoring %08x offset!",
1197 gic->percpu_offset);
1198 gic->dist_base.common_base = gic->raw_dist_base;
1199 gic->cpu_base.common_base = gic->raw_cpu_base;
1200 }
1201
1202 /*
1203 * Find out how many interrupts are supported.
1204 * The GIC only supports up to 1020 interrupt sources.
1205 */
1206 gic_irqs = readl_relaxed(gic_data_dist_base(gic) + GIC_DIST_CTR) & 0x1f;
1207 gic_irqs = (gic_irqs + 1) * 32;
1208 if (gic_irqs > 1020)
1209 gic_irqs = 1020;
1210 gic->gic_irqs = gic_irqs;
1211
1212 if (handle) { /* DT/ACPI */
1213 gic->domain = irq_domain_create_linear(handle, gic_irqs,
1214 &gic_irq_domain_hierarchy_ops,
1215 gic);
1216 } else { /* Legacy support */
1217 /*
1218 * For primary GICs, skip over SGIs.
1219 * No secondary GIC support whatsoever.
1220 */
1221 int irq_base;
1222
1223 gic_irqs -= 16; /* calculate # of irqs to allocate */
1224
1225 irq_base = irq_alloc_descs(16, 16, gic_irqs,
1226 numa_node_id());
1227 if (irq_base < 0) {
1228 WARN(1, "Cannot allocate irq_descs @ IRQ16, assuming pre-allocated\n");
1229 irq_base = 16;
1230 }
1231
1232 gic->domain = irq_domain_add_legacy(NULL, gic_irqs, irq_base,
1233 16, &gic_irq_domain_ops, gic);
1234 }
1235
1236 if (WARN_ON(!gic->domain)) {
1237 ret = -ENODEV;
1238 goto error;
1239 }
1240
1241 gic_dist_init(gic);
1242 ret = gic_cpu_init(gic);
1243 if (ret)
1244 goto error;
1245
1246 ret = gic_pm_init(gic);
1247 if (ret)
1248 goto error;
1249
1250 return 0;
1251
1252 error:
1253 if (IS_ENABLED(CONFIG_GIC_NON_BANKED) && gic->percpu_offset) {
1254 free_percpu(gic->dist_base.percpu_base);
1255 free_percpu(gic->cpu_base.percpu_base);
1256 }
1257
1258 return ret;
1259 }
1260
__gic_init_bases(struct gic_chip_data * gic,struct fwnode_handle * handle)1261 static int __init __gic_init_bases(struct gic_chip_data *gic,
1262 struct fwnode_handle *handle)
1263 {
1264 char *name;
1265 int i, ret;
1266
1267 if (WARN_ON(!gic || gic->domain))
1268 return -EINVAL;
1269
1270 if (gic == &gic_data[0]) {
1271 /*
1272 * Initialize the CPU interface map to all CPUs.
1273 * It will be refined as each CPU probes its ID.
1274 * This is only necessary for the primary GIC.
1275 */
1276 for (i = 0; i < NR_GIC_CPU_IF; i++)
1277 gic_cpu_map[i] = 0xff;
1278
1279 set_handle_irq(gic_handle_irq);
1280 if (static_branch_likely(&supports_deactivate_key))
1281 pr_info("GIC: Using split EOI/Deactivate mode\n");
1282 }
1283
1284 if (static_branch_likely(&supports_deactivate_key) && gic == &gic_data[0]) {
1285 name = kasprintf(GFP_KERNEL, "GICv2");
1286 gic_init_chip(gic, NULL, name, true);
1287 } else {
1288 name = kasprintf(GFP_KERNEL, "GIC-%d", (int)(gic-&gic_data[0]));
1289 gic_init_chip(gic, NULL, name, false);
1290 }
1291
1292 ret = gic_init_bases(gic, handle);
1293 if (ret)
1294 kfree(name);
1295 else if (gic == &gic_data[0])
1296 gic_smp_init();
1297
1298 return ret;
1299 }
1300
gic_init(void __iomem * dist_base,void __iomem * cpu_base)1301 void __init gic_init(void __iomem *dist_base, void __iomem *cpu_base)
1302 {
1303 struct gic_chip_data *gic;
1304
1305 /*
1306 * Non-DT/ACPI systems won't run a hypervisor, so let's not
1307 * bother with these...
1308 */
1309 static_branch_disable(&supports_deactivate_key);
1310
1311 gic = &gic_data[0];
1312 gic->raw_dist_base = dist_base;
1313 gic->raw_cpu_base = cpu_base;
1314
1315 __gic_init_bases(gic, NULL);
1316 }
1317
gic_teardown(struct gic_chip_data * gic)1318 static void gic_teardown(struct gic_chip_data *gic)
1319 {
1320 if (WARN_ON(!gic))
1321 return;
1322
1323 if (gic->raw_dist_base)
1324 iounmap(gic->raw_dist_base);
1325 if (gic->raw_cpu_base)
1326 iounmap(gic->raw_cpu_base);
1327 }
1328
1329 #ifdef CONFIG_OF
1330 static int gic_cnt __initdata;
1331 static bool gicv2_force_probe;
1332
gicv2_force_probe_cfg(char * buf)1333 static int __init gicv2_force_probe_cfg(char *buf)
1334 {
1335 return strtobool(buf, &gicv2_force_probe);
1336 }
1337 early_param("irqchip.gicv2_force_probe", gicv2_force_probe_cfg);
1338
gic_check_eoimode(struct device_node * node,void __iomem ** base)1339 static bool gic_check_eoimode(struct device_node *node, void __iomem **base)
1340 {
1341 struct resource cpuif_res;
1342
1343 of_address_to_resource(node, 1, &cpuif_res);
1344
1345 if (!is_hyp_mode_available())
1346 return false;
1347 if (resource_size(&cpuif_res) < SZ_8K) {
1348 void __iomem *alt;
1349 /*
1350 * Check for a stupid firmware that only exposes the
1351 * first page of a GICv2.
1352 */
1353 if (!gic_check_gicv2(*base))
1354 return false;
1355
1356 if (!gicv2_force_probe) {
1357 pr_warn("GIC: GICv2 detected, but range too small and irqchip.gicv2_force_probe not set\n");
1358 return false;
1359 }
1360
1361 alt = ioremap(cpuif_res.start, SZ_8K);
1362 if (!alt)
1363 return false;
1364 if (!gic_check_gicv2(alt + SZ_4K)) {
1365 /*
1366 * The first page was that of a GICv2, and
1367 * the second was *something*. Let's trust it
1368 * to be a GICv2, and update the mapping.
1369 */
1370 pr_warn("GIC: GICv2 at %pa, but range is too small (broken DT?), assuming 8kB\n",
1371 &cpuif_res.start);
1372 iounmap(*base);
1373 *base = alt;
1374 return true;
1375 }
1376
1377 /*
1378 * We detected *two* initial GICv2 pages in a
1379 * row. Could be a GICv2 aliased over two 64kB
1380 * pages. Update the resource, map the iospace, and
1381 * pray.
1382 */
1383 iounmap(alt);
1384 alt = ioremap(cpuif_res.start, SZ_128K);
1385 if (!alt)
1386 return false;
1387 pr_warn("GIC: Aliased GICv2 at %pa, trying to find the canonical range over 128kB\n",
1388 &cpuif_res.start);
1389 cpuif_res.end = cpuif_res.start + SZ_128K -1;
1390 iounmap(*base);
1391 *base = alt;
1392 }
1393 if (resource_size(&cpuif_res) == SZ_128K) {
1394 /*
1395 * Verify that we have the first 4kB of a GICv2
1396 * aliased over the first 64kB by checking the
1397 * GICC_IIDR register on both ends.
1398 */
1399 if (!gic_check_gicv2(*base) ||
1400 !gic_check_gicv2(*base + 0xf000))
1401 return false;
1402
1403 /*
1404 * Move the base up by 60kB, so that we have a 8kB
1405 * contiguous region, which allows us to use GICC_DIR
1406 * at its normal offset. Please pass me that bucket.
1407 */
1408 *base += 0xf000;
1409 cpuif_res.start += 0xf000;
1410 pr_warn("GIC: Adjusting CPU interface base to %pa\n",
1411 &cpuif_res.start);
1412 }
1413
1414 return true;
1415 }
1416
gic_enable_rmw_access(void * data)1417 static bool gic_enable_rmw_access(void *data)
1418 {
1419 /*
1420 * The EMEV2 class of machines has a broken interconnect, and
1421 * locks up on accesses that are less than 32bit. So far, only
1422 * the affinity setting requires it.
1423 */
1424 if (of_machine_is_compatible("renesas,emev2")) {
1425 static_branch_enable(&needs_rmw_access);
1426 return true;
1427 }
1428
1429 return false;
1430 }
1431
1432 static const struct gic_quirk gic_quirks[] = {
1433 {
1434 .desc = "broken byte access",
1435 .compatible = "arm,pl390",
1436 .init = gic_enable_rmw_access,
1437 },
1438 { },
1439 };
1440
gic_of_setup(struct gic_chip_data * gic,struct device_node * node)1441 static int gic_of_setup(struct gic_chip_data *gic, struct device_node *node)
1442 {
1443 if (!gic || !node)
1444 return -EINVAL;
1445
1446 gic->raw_dist_base = of_iomap(node, 0);
1447 if (WARN(!gic->raw_dist_base, "unable to map gic dist registers\n"))
1448 goto error;
1449
1450 gic->raw_cpu_base = of_iomap(node, 1);
1451 if (WARN(!gic->raw_cpu_base, "unable to map gic cpu registers\n"))
1452 goto error;
1453
1454 if (of_property_read_u32(node, "cpu-offset", &gic->percpu_offset))
1455 gic->percpu_offset = 0;
1456
1457 gic_enable_of_quirks(node, gic_quirks, gic);
1458
1459 return 0;
1460
1461 error:
1462 gic_teardown(gic);
1463
1464 return -ENOMEM;
1465 }
1466
gic_of_init_child(struct device * dev,struct gic_chip_data ** gic,int irq)1467 int gic_of_init_child(struct device *dev, struct gic_chip_data **gic, int irq)
1468 {
1469 int ret;
1470
1471 if (!dev || !dev->of_node || !gic || !irq)
1472 return -EINVAL;
1473
1474 *gic = devm_kzalloc(dev, sizeof(**gic), GFP_KERNEL);
1475 if (!*gic)
1476 return -ENOMEM;
1477
1478 gic_init_chip(*gic, dev, dev->of_node->name, false);
1479
1480 ret = gic_of_setup(*gic, dev->of_node);
1481 if (ret)
1482 return ret;
1483
1484 ret = gic_init_bases(*gic, &dev->of_node->fwnode);
1485 if (ret) {
1486 gic_teardown(*gic);
1487 return ret;
1488 }
1489
1490 irq_set_chained_handler_and_data(irq, gic_handle_cascade_irq, *gic);
1491
1492 return 0;
1493 }
1494
gic_of_setup_kvm_info(struct device_node * node)1495 static void __init gic_of_setup_kvm_info(struct device_node *node)
1496 {
1497 int ret;
1498 struct resource *vctrl_res = &gic_v2_kvm_info.vctrl;
1499 struct resource *vcpu_res = &gic_v2_kvm_info.vcpu;
1500
1501 gic_v2_kvm_info.type = GIC_V2;
1502
1503 gic_v2_kvm_info.maint_irq = irq_of_parse_and_map(node, 0);
1504 if (!gic_v2_kvm_info.maint_irq)
1505 return;
1506
1507 ret = of_address_to_resource(node, 2, vctrl_res);
1508 if (ret)
1509 return;
1510
1511 ret = of_address_to_resource(node, 3, vcpu_res);
1512 if (ret)
1513 return;
1514
1515 if (static_branch_likely(&supports_deactivate_key))
1516 gic_set_kvm_info(&gic_v2_kvm_info);
1517 }
1518
1519 int __init
gic_of_init(struct device_node * node,struct device_node * parent)1520 gic_of_init(struct device_node *node, struct device_node *parent)
1521 {
1522 struct gic_chip_data *gic;
1523 int irq, ret;
1524
1525 if (WARN_ON(!node))
1526 return -ENODEV;
1527
1528 if (WARN_ON(gic_cnt >= CONFIG_ARM_GIC_MAX_NR))
1529 return -EINVAL;
1530
1531 gic = &gic_data[gic_cnt];
1532
1533 ret = gic_of_setup(gic, node);
1534 if (ret)
1535 return ret;
1536
1537 /*
1538 * Disable split EOI/Deactivate if either HYP is not available
1539 * or the CPU interface is too small.
1540 */
1541 if (gic_cnt == 0 && !gic_check_eoimode(node, &gic->raw_cpu_base))
1542 static_branch_disable(&supports_deactivate_key);
1543
1544 ret = __gic_init_bases(gic, &node->fwnode);
1545 if (ret) {
1546 gic_teardown(gic);
1547 return ret;
1548 }
1549
1550 if (!gic_cnt) {
1551 gic_init_physaddr(node);
1552 gic_of_setup_kvm_info(node);
1553 }
1554
1555 if (parent) {
1556 irq = irq_of_parse_and_map(node, 0);
1557 gic_cascade_irq(gic_cnt, irq);
1558 }
1559
1560 if (IS_ENABLED(CONFIG_ARM_GIC_V2M))
1561 gicv2m_init(&node->fwnode, gic_data[gic_cnt].domain);
1562
1563 gic_cnt++;
1564 return 0;
1565 }
1566 IRQCHIP_DECLARE(gic_400, "arm,gic-400", gic_of_init);
1567 IRQCHIP_DECLARE(arm11mp_gic, "arm,arm11mp-gic", gic_of_init);
1568 IRQCHIP_DECLARE(arm1176jzf_dc_gic, "arm,arm1176jzf-devchip-gic", gic_of_init);
1569 IRQCHIP_DECLARE(cortex_a15_gic, "arm,cortex-a15-gic", gic_of_init);
1570 IRQCHIP_DECLARE(cortex_a9_gic, "arm,cortex-a9-gic", gic_of_init);
1571 IRQCHIP_DECLARE(cortex_a7_gic, "arm,cortex-a7-gic", gic_of_init);
1572 IRQCHIP_DECLARE(msm_8660_qgic, "qcom,msm-8660-qgic", gic_of_init);
1573 IRQCHIP_DECLARE(msm_qgic2, "qcom,msm-qgic2", gic_of_init);
1574 IRQCHIP_DECLARE(pl390, "arm,pl390", gic_of_init);
1575 #else
gic_of_init_child(struct device * dev,struct gic_chip_data ** gic,int irq)1576 int gic_of_init_child(struct device *dev, struct gic_chip_data **gic, int irq)
1577 {
1578 return -ENOTSUPP;
1579 }
1580 #endif
1581
1582 #ifdef CONFIG_ACPI
1583 static struct
1584 {
1585 phys_addr_t cpu_phys_base;
1586 u32 maint_irq;
1587 int maint_irq_mode;
1588 phys_addr_t vctrl_base;
1589 phys_addr_t vcpu_base;
1590 } acpi_data __initdata;
1591
1592 static int __init
gic_acpi_parse_madt_cpu(union acpi_subtable_headers * header,const unsigned long end)1593 gic_acpi_parse_madt_cpu(union acpi_subtable_headers *header,
1594 const unsigned long end)
1595 {
1596 struct acpi_madt_generic_interrupt *processor;
1597 phys_addr_t gic_cpu_base;
1598 static int cpu_base_assigned;
1599
1600 processor = (struct acpi_madt_generic_interrupt *)header;
1601
1602 if (BAD_MADT_GICC_ENTRY(processor, end))
1603 return -EINVAL;
1604
1605 /*
1606 * There is no support for non-banked GICv1/2 register in ACPI spec.
1607 * All CPU interface addresses have to be the same.
1608 */
1609 gic_cpu_base = processor->base_address;
1610 if (cpu_base_assigned && gic_cpu_base != acpi_data.cpu_phys_base)
1611 return -EINVAL;
1612
1613 acpi_data.cpu_phys_base = gic_cpu_base;
1614 acpi_data.maint_irq = processor->vgic_interrupt;
1615 acpi_data.maint_irq_mode = (processor->flags & ACPI_MADT_VGIC_IRQ_MODE) ?
1616 ACPI_EDGE_SENSITIVE : ACPI_LEVEL_SENSITIVE;
1617 acpi_data.vctrl_base = processor->gich_base_address;
1618 acpi_data.vcpu_base = processor->gicv_base_address;
1619
1620 cpu_base_assigned = 1;
1621 return 0;
1622 }
1623
1624 /* The things you have to do to just *count* something... */
acpi_dummy_func(union acpi_subtable_headers * header,const unsigned long end)1625 static int __init acpi_dummy_func(union acpi_subtable_headers *header,
1626 const unsigned long end)
1627 {
1628 return 0;
1629 }
1630
acpi_gic_redist_is_present(void)1631 static bool __init acpi_gic_redist_is_present(void)
1632 {
1633 return acpi_table_parse_madt(ACPI_MADT_TYPE_GENERIC_REDISTRIBUTOR,
1634 acpi_dummy_func, 0) > 0;
1635 }
1636
gic_validate_dist(struct acpi_subtable_header * header,struct acpi_probe_entry * ape)1637 static bool __init gic_validate_dist(struct acpi_subtable_header *header,
1638 struct acpi_probe_entry *ape)
1639 {
1640 struct acpi_madt_generic_distributor *dist;
1641 dist = (struct acpi_madt_generic_distributor *)header;
1642
1643 return (dist->version == ape->driver_data &&
1644 (dist->version != ACPI_MADT_GIC_VERSION_NONE ||
1645 !acpi_gic_redist_is_present()));
1646 }
1647
1648 #define ACPI_GICV2_DIST_MEM_SIZE (SZ_4K)
1649 #define ACPI_GIC_CPU_IF_MEM_SIZE (SZ_8K)
1650 #define ACPI_GICV2_VCTRL_MEM_SIZE (SZ_4K)
1651 #define ACPI_GICV2_VCPU_MEM_SIZE (SZ_8K)
1652
gic_acpi_setup_kvm_info(void)1653 static void __init gic_acpi_setup_kvm_info(void)
1654 {
1655 int irq;
1656 struct resource *vctrl_res = &gic_v2_kvm_info.vctrl;
1657 struct resource *vcpu_res = &gic_v2_kvm_info.vcpu;
1658
1659 gic_v2_kvm_info.type = GIC_V2;
1660
1661 if (!acpi_data.vctrl_base)
1662 return;
1663
1664 vctrl_res->flags = IORESOURCE_MEM;
1665 vctrl_res->start = acpi_data.vctrl_base;
1666 vctrl_res->end = vctrl_res->start + ACPI_GICV2_VCTRL_MEM_SIZE - 1;
1667
1668 if (!acpi_data.vcpu_base)
1669 return;
1670
1671 vcpu_res->flags = IORESOURCE_MEM;
1672 vcpu_res->start = acpi_data.vcpu_base;
1673 vcpu_res->end = vcpu_res->start + ACPI_GICV2_VCPU_MEM_SIZE - 1;
1674
1675 irq = acpi_register_gsi(NULL, acpi_data.maint_irq,
1676 acpi_data.maint_irq_mode,
1677 ACPI_ACTIVE_HIGH);
1678 if (irq <= 0)
1679 return;
1680
1681 gic_v2_kvm_info.maint_irq = irq;
1682
1683 gic_set_kvm_info(&gic_v2_kvm_info);
1684 }
1685
gic_v2_acpi_init(union acpi_subtable_headers * header,const unsigned long end)1686 static int __init gic_v2_acpi_init(union acpi_subtable_headers *header,
1687 const unsigned long end)
1688 {
1689 struct acpi_madt_generic_distributor *dist;
1690 struct fwnode_handle *domain_handle;
1691 struct gic_chip_data *gic = &gic_data[0];
1692 int count, ret;
1693
1694 /* Collect CPU base addresses */
1695 count = acpi_table_parse_madt(ACPI_MADT_TYPE_GENERIC_INTERRUPT,
1696 gic_acpi_parse_madt_cpu, 0);
1697 if (count <= 0) {
1698 pr_err("No valid GICC entries exist\n");
1699 return -EINVAL;
1700 }
1701
1702 gic->raw_cpu_base = ioremap(acpi_data.cpu_phys_base, ACPI_GIC_CPU_IF_MEM_SIZE);
1703 if (!gic->raw_cpu_base) {
1704 pr_err("Unable to map GICC registers\n");
1705 return -ENOMEM;
1706 }
1707
1708 dist = (struct acpi_madt_generic_distributor *)header;
1709 gic->raw_dist_base = ioremap(dist->base_address,
1710 ACPI_GICV2_DIST_MEM_SIZE);
1711 if (!gic->raw_dist_base) {
1712 pr_err("Unable to map GICD registers\n");
1713 gic_teardown(gic);
1714 return -ENOMEM;
1715 }
1716
1717 /*
1718 * Disable split EOI/Deactivate if HYP is not available. ACPI
1719 * guarantees that we'll always have a GICv2, so the CPU
1720 * interface will always be the right size.
1721 */
1722 if (!is_hyp_mode_available())
1723 static_branch_disable(&supports_deactivate_key);
1724
1725 /*
1726 * Initialize GIC instance zero (no multi-GIC support).
1727 */
1728 domain_handle = irq_domain_alloc_fwnode(&dist->base_address);
1729 if (!domain_handle) {
1730 pr_err("Unable to allocate domain handle\n");
1731 gic_teardown(gic);
1732 return -ENOMEM;
1733 }
1734
1735 ret = __gic_init_bases(gic, domain_handle);
1736 if (ret) {
1737 pr_err("Failed to initialise GIC\n");
1738 irq_domain_free_fwnode(domain_handle);
1739 gic_teardown(gic);
1740 return ret;
1741 }
1742
1743 acpi_set_irq_model(ACPI_IRQ_MODEL_GIC, domain_handle);
1744
1745 if (IS_ENABLED(CONFIG_ARM_GIC_V2M))
1746 gicv2m_init(NULL, gic_data[0].domain);
1747
1748 if (static_branch_likely(&supports_deactivate_key))
1749 gic_acpi_setup_kvm_info();
1750
1751 return 0;
1752 }
1753 IRQCHIP_ACPI_DECLARE(gic_v2, ACPI_MADT_TYPE_GENERIC_DISTRIBUTOR,
1754 gic_validate_dist, ACPI_MADT_GIC_VERSION_V2,
1755 gic_v2_acpi_init);
1756 IRQCHIP_ACPI_DECLARE(gic_v2_maybe, ACPI_MADT_TYPE_GENERIC_DISTRIBUTOR,
1757 gic_validate_dist, ACPI_MADT_GIC_VERSION_NONE,
1758 gic_v2_acpi_init);
1759 #endif
1760