1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3 * Read-Copy Update mechanism for mutual exclusion (tree-based version)
4 *
5 * Copyright IBM Corporation, 2008
6 *
7 * Authors: Dipankar Sarma <dipankar@in.ibm.com>
8 * Manfred Spraul <manfred@colorfullife.com>
9 * Paul E. McKenney <paulmck@linux.ibm.com>
10 *
11 * Based on the original work by Paul McKenney <paulmck@linux.ibm.com>
12 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
13 *
14 * For detailed explanation of Read-Copy Update mechanism see -
15 * Documentation/RCU
16 */
17
18 #define pr_fmt(fmt) "rcu: " fmt
19
20 #include <linux/types.h>
21 #include <linux/kernel.h>
22 #include <linux/init.h>
23 #include <linux/spinlock.h>
24 #include <linux/smp.h>
25 #include <linux/rcupdate_wait.h>
26 #include <linux/interrupt.h>
27 #include <linux/sched.h>
28 #include <linux/sched/debug.h>
29 #include <linux/nmi.h>
30 #include <linux/atomic.h>
31 #include <linux/bitops.h>
32 #include <linux/export.h>
33 #include <linux/completion.h>
34 #include <linux/moduleparam.h>
35 #include <linux/percpu.h>
36 #include <linux/notifier.h>
37 #include <linux/cpu.h>
38 #include <linux/mutex.h>
39 #include <linux/time.h>
40 #include <linux/kernel_stat.h>
41 #include <linux/wait.h>
42 #include <linux/kthread.h>
43 #include <uapi/linux/sched/types.h>
44 #include <linux/prefetch.h>
45 #include <linux/delay.h>
46 #include <linux/random.h>
47 #include <linux/trace_events.h>
48 #include <linux/suspend.h>
49 #include <linux/ftrace.h>
50 #include <linux/tick.h>
51 #include <linux/sysrq.h>
52 #include <linux/kprobes.h>
53 #include <linux/gfp.h>
54 #include <linux/oom.h>
55 #include <linux/smpboot.h>
56 #include <linux/jiffies.h>
57 #include <linux/slab.h>
58 #include <linux/sched/isolation.h>
59 #include <linux/sched/clock.h>
60 #include <linux/vmalloc.h>
61 #include <linux/mm.h>
62 #include <linux/kasan.h>
63 #include "../time/tick-internal.h"
64
65 #include "tree.h"
66 #include "rcu.h"
67
68 #ifdef MODULE_PARAM_PREFIX
69 #undef MODULE_PARAM_PREFIX
70 #endif
71 #define MODULE_PARAM_PREFIX "rcutree."
72
73 /* Data structures. */
74
75 /*
76 * Steal a bit from the bottom of ->dynticks for idle entry/exit
77 * control. Initially this is for TLB flushing.
78 */
79 #define RCU_DYNTICK_CTRL_MASK 0x1
80 #define RCU_DYNTICK_CTRL_CTR (RCU_DYNTICK_CTRL_MASK + 1)
81
82 static DEFINE_PER_CPU_SHARED_ALIGNED(struct rcu_data, rcu_data) = {
83 .dynticks_nesting = 1,
84 .dynticks_nmi_nesting = DYNTICK_IRQ_NONIDLE,
85 .dynticks = ATOMIC_INIT(RCU_DYNTICK_CTRL_CTR),
86 };
87 static struct rcu_state rcu_state = {
88 .level = { &rcu_state.node[0] },
89 .gp_state = RCU_GP_IDLE,
90 .gp_seq = (0UL - 300UL) << RCU_SEQ_CTR_SHIFT,
91 .barrier_mutex = __MUTEX_INITIALIZER(rcu_state.barrier_mutex),
92 .name = RCU_NAME,
93 .abbr = RCU_ABBR,
94 .exp_mutex = __MUTEX_INITIALIZER(rcu_state.exp_mutex),
95 .exp_wake_mutex = __MUTEX_INITIALIZER(rcu_state.exp_wake_mutex),
96 .ofl_lock = __RAW_SPIN_LOCK_UNLOCKED(rcu_state.ofl_lock),
97 };
98
99 /* Dump rcu_node combining tree at boot to verify correct setup. */
100 static bool dump_tree;
101 module_param(dump_tree, bool, 0444);
102 /* By default, use RCU_SOFTIRQ instead of rcuc kthreads. */
103 static bool use_softirq = true;
104 module_param(use_softirq, bool, 0444);
105 /* Control rcu_node-tree auto-balancing at boot time. */
106 static bool rcu_fanout_exact;
107 module_param(rcu_fanout_exact, bool, 0444);
108 /* Increase (but not decrease) the RCU_FANOUT_LEAF at boot time. */
109 static int rcu_fanout_leaf = RCU_FANOUT_LEAF;
110 module_param(rcu_fanout_leaf, int, 0444);
111 int rcu_num_lvls __read_mostly = RCU_NUM_LVLS;
112 /* Number of rcu_nodes at specified level. */
113 int num_rcu_lvl[] = NUM_RCU_LVL_INIT;
114 int rcu_num_nodes __read_mostly = NUM_RCU_NODES; /* Total # rcu_nodes in use. */
115
116 /*
117 * The rcu_scheduler_active variable is initialized to the value
118 * RCU_SCHEDULER_INACTIVE and transitions RCU_SCHEDULER_INIT just before the
119 * first task is spawned. So when this variable is RCU_SCHEDULER_INACTIVE,
120 * RCU can assume that there is but one task, allowing RCU to (for example)
121 * optimize synchronize_rcu() to a simple barrier(). When this variable
122 * is RCU_SCHEDULER_INIT, RCU must actually do all the hard work required
123 * to detect real grace periods. This variable is also used to suppress
124 * boot-time false positives from lockdep-RCU error checking. Finally, it
125 * transitions from RCU_SCHEDULER_INIT to RCU_SCHEDULER_RUNNING after RCU
126 * is fully initialized, including all of its kthreads having been spawned.
127 */
128 int rcu_scheduler_active __read_mostly;
129 EXPORT_SYMBOL_GPL(rcu_scheduler_active);
130
131 /*
132 * The rcu_scheduler_fully_active variable transitions from zero to one
133 * during the early_initcall() processing, which is after the scheduler
134 * is capable of creating new tasks. So RCU processing (for example,
135 * creating tasks for RCU priority boosting) must be delayed until after
136 * rcu_scheduler_fully_active transitions from zero to one. We also
137 * currently delay invocation of any RCU callbacks until after this point.
138 *
139 * It might later prove better for people registering RCU callbacks during
140 * early boot to take responsibility for these callbacks, but one step at
141 * a time.
142 */
143 static int rcu_scheduler_fully_active __read_mostly;
144
145 static void rcu_report_qs_rnp(unsigned long mask, struct rcu_node *rnp,
146 unsigned long gps, unsigned long flags);
147 static void rcu_init_new_rnp(struct rcu_node *rnp_leaf);
148 static void rcu_cleanup_dead_rnp(struct rcu_node *rnp_leaf);
149 static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu);
150 static void invoke_rcu_core(void);
151 static void rcu_report_exp_rdp(struct rcu_data *rdp);
152 static void sync_sched_exp_online_cleanup(int cpu);
153 static void check_cb_ovld_locked(struct rcu_data *rdp, struct rcu_node *rnp);
154
155 /* rcuc/rcub kthread realtime priority */
156 static int kthread_prio = IS_ENABLED(CONFIG_RCU_BOOST) ? 1 : 0;
157 module_param(kthread_prio, int, 0444);
158
159 /* Delay in jiffies for grace-period initialization delays, debug only. */
160
161 static int gp_preinit_delay;
162 module_param(gp_preinit_delay, int, 0444);
163 static int gp_init_delay;
164 module_param(gp_init_delay, int, 0444);
165 static int gp_cleanup_delay;
166 module_param(gp_cleanup_delay, int, 0444);
167
168 // Add delay to rcu_read_unlock() for strict grace periods.
169 static int rcu_unlock_delay;
170 #ifdef CONFIG_RCU_STRICT_GRACE_PERIOD
171 module_param(rcu_unlock_delay, int, 0444);
172 #endif
173
174 /*
175 * This rcu parameter is runtime-read-only. It reflects
176 * a minimum allowed number of objects which can be cached
177 * per-CPU. Object size is equal to one page. This value
178 * can be changed at boot time.
179 */
180 static int rcu_min_cached_objs = 5;
181 module_param(rcu_min_cached_objs, int, 0444);
182
183 /* Retrieve RCU kthreads priority for rcutorture */
rcu_get_gp_kthreads_prio(void)184 int rcu_get_gp_kthreads_prio(void)
185 {
186 return kthread_prio;
187 }
188 EXPORT_SYMBOL_GPL(rcu_get_gp_kthreads_prio);
189
190 /*
191 * Number of grace periods between delays, normalized by the duration of
192 * the delay. The longer the delay, the more the grace periods between
193 * each delay. The reason for this normalization is that it means that,
194 * for non-zero delays, the overall slowdown of grace periods is constant
195 * regardless of the duration of the delay. This arrangement balances
196 * the need for long delays to increase some race probabilities with the
197 * need for fast grace periods to increase other race probabilities.
198 */
199 #define PER_RCU_NODE_PERIOD 3 /* Number of grace periods between delays. */
200
201 /*
202 * Compute the mask of online CPUs for the specified rcu_node structure.
203 * This will not be stable unless the rcu_node structure's ->lock is
204 * held, but the bit corresponding to the current CPU will be stable
205 * in most contexts.
206 */
rcu_rnp_online_cpus(struct rcu_node * rnp)207 static unsigned long rcu_rnp_online_cpus(struct rcu_node *rnp)
208 {
209 return READ_ONCE(rnp->qsmaskinitnext);
210 }
211
212 /*
213 * Return true if an RCU grace period is in progress. The READ_ONCE()s
214 * permit this function to be invoked without holding the root rcu_node
215 * structure's ->lock, but of course results can be subject to change.
216 */
rcu_gp_in_progress(void)217 static int rcu_gp_in_progress(void)
218 {
219 return rcu_seq_state(rcu_seq_current(&rcu_state.gp_seq));
220 }
221
222 /*
223 * Return the number of callbacks queued on the specified CPU.
224 * Handles both the nocbs and normal cases.
225 */
rcu_get_n_cbs_cpu(int cpu)226 static long rcu_get_n_cbs_cpu(int cpu)
227 {
228 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
229
230 if (rcu_segcblist_is_enabled(&rdp->cblist))
231 return rcu_segcblist_n_cbs(&rdp->cblist);
232 return 0;
233 }
234
rcu_softirq_qs(void)235 void rcu_softirq_qs(void)
236 {
237 rcu_qs();
238 rcu_preempt_deferred_qs(current);
239 }
240
241 /*
242 * Record entry into an extended quiescent state. This is only to be
243 * called when not already in an extended quiescent state, that is,
244 * RCU is watching prior to the call to this function and is no longer
245 * watching upon return.
246 */
rcu_dynticks_eqs_enter(void)247 static noinstr void rcu_dynticks_eqs_enter(void)
248 {
249 struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
250 int seq;
251
252 /*
253 * CPUs seeing atomic_add_return() must see prior RCU read-side
254 * critical sections, and we also must force ordering with the
255 * next idle sojourn.
256 */
257 rcu_dynticks_task_trace_enter(); // Before ->dynticks update!
258 seq = arch_atomic_add_return(RCU_DYNTICK_CTRL_CTR, &rdp->dynticks);
259 // RCU is no longer watching. Better be in extended quiescent state!
260 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
261 (seq & RCU_DYNTICK_CTRL_CTR));
262 /* Better not have special action (TLB flush) pending! */
263 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
264 (seq & RCU_DYNTICK_CTRL_MASK));
265 }
266
267 /*
268 * Record exit from an extended quiescent state. This is only to be
269 * called from an extended quiescent state, that is, RCU is not watching
270 * prior to the call to this function and is watching upon return.
271 */
rcu_dynticks_eqs_exit(void)272 static noinstr void rcu_dynticks_eqs_exit(void)
273 {
274 struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
275 int seq;
276
277 /*
278 * CPUs seeing atomic_add_return() must see prior idle sojourns,
279 * and we also must force ordering with the next RCU read-side
280 * critical section.
281 */
282 seq = arch_atomic_add_return(RCU_DYNTICK_CTRL_CTR, &rdp->dynticks);
283 // RCU is now watching. Better not be in an extended quiescent state!
284 rcu_dynticks_task_trace_exit(); // After ->dynticks update!
285 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
286 !(seq & RCU_DYNTICK_CTRL_CTR));
287 if (seq & RCU_DYNTICK_CTRL_MASK) {
288 arch_atomic_andnot(RCU_DYNTICK_CTRL_MASK, &rdp->dynticks);
289 smp_mb__after_atomic(); /* _exit after clearing mask. */
290 }
291 }
292
293 /*
294 * Reset the current CPU's ->dynticks counter to indicate that the
295 * newly onlined CPU is no longer in an extended quiescent state.
296 * This will either leave the counter unchanged, or increment it
297 * to the next non-quiescent value.
298 *
299 * The non-atomic test/increment sequence works because the upper bits
300 * of the ->dynticks counter are manipulated only by the corresponding CPU,
301 * or when the corresponding CPU is offline.
302 */
rcu_dynticks_eqs_online(void)303 static void rcu_dynticks_eqs_online(void)
304 {
305 struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
306
307 if (atomic_read(&rdp->dynticks) & RCU_DYNTICK_CTRL_CTR)
308 return;
309 atomic_add(RCU_DYNTICK_CTRL_CTR, &rdp->dynticks);
310 }
311
312 /*
313 * Is the current CPU in an extended quiescent state?
314 *
315 * No ordering, as we are sampling CPU-local information.
316 */
rcu_dynticks_curr_cpu_in_eqs(void)317 static __always_inline bool rcu_dynticks_curr_cpu_in_eqs(void)
318 {
319 struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
320
321 return !(arch_atomic_read(&rdp->dynticks) & RCU_DYNTICK_CTRL_CTR);
322 }
323
324 /*
325 * Snapshot the ->dynticks counter with full ordering so as to allow
326 * stable comparison of this counter with past and future snapshots.
327 */
rcu_dynticks_snap(struct rcu_data * rdp)328 static int rcu_dynticks_snap(struct rcu_data *rdp)
329 {
330 int snap = atomic_add_return(0, &rdp->dynticks);
331
332 return snap & ~RCU_DYNTICK_CTRL_MASK;
333 }
334
335 /*
336 * Return true if the snapshot returned from rcu_dynticks_snap()
337 * indicates that RCU is in an extended quiescent state.
338 */
rcu_dynticks_in_eqs(int snap)339 static bool rcu_dynticks_in_eqs(int snap)
340 {
341 return !(snap & RCU_DYNTICK_CTRL_CTR);
342 }
343
344 /*
345 * Return true if the CPU corresponding to the specified rcu_data
346 * structure has spent some time in an extended quiescent state since
347 * rcu_dynticks_snap() returned the specified snapshot.
348 */
rcu_dynticks_in_eqs_since(struct rcu_data * rdp,int snap)349 static bool rcu_dynticks_in_eqs_since(struct rcu_data *rdp, int snap)
350 {
351 return snap != rcu_dynticks_snap(rdp);
352 }
353
354 /*
355 * Return true if the referenced integer is zero while the specified
356 * CPU remains within a single extended quiescent state.
357 */
rcu_dynticks_zero_in_eqs(int cpu,int * vp)358 bool rcu_dynticks_zero_in_eqs(int cpu, int *vp)
359 {
360 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
361 int snap;
362
363 // If not quiescent, force back to earlier extended quiescent state.
364 snap = atomic_read(&rdp->dynticks) & ~(RCU_DYNTICK_CTRL_MASK |
365 RCU_DYNTICK_CTRL_CTR);
366
367 smp_rmb(); // Order ->dynticks and *vp reads.
368 if (READ_ONCE(*vp))
369 return false; // Non-zero, so report failure;
370 smp_rmb(); // Order *vp read and ->dynticks re-read.
371
372 // If still in the same extended quiescent state, we are good!
373 return snap == (atomic_read(&rdp->dynticks) & ~RCU_DYNTICK_CTRL_MASK);
374 }
375
376 /*
377 * Set the special (bottom) bit of the specified CPU so that it
378 * will take special action (such as flushing its TLB) on the
379 * next exit from an extended quiescent state. Returns true if
380 * the bit was successfully set, or false if the CPU was not in
381 * an extended quiescent state.
382 */
rcu_eqs_special_set(int cpu)383 bool rcu_eqs_special_set(int cpu)
384 {
385 int old;
386 int new;
387 int new_old;
388 struct rcu_data *rdp = &per_cpu(rcu_data, cpu);
389
390 new_old = atomic_read(&rdp->dynticks);
391 do {
392 old = new_old;
393 if (old & RCU_DYNTICK_CTRL_CTR)
394 return false;
395 new = old | RCU_DYNTICK_CTRL_MASK;
396 new_old = atomic_cmpxchg(&rdp->dynticks, old, new);
397 } while (new_old != old);
398 return true;
399 }
400
401 /*
402 * Let the RCU core know that this CPU has gone through the scheduler,
403 * which is a quiescent state. This is called when the need for a
404 * quiescent state is urgent, so we burn an atomic operation and full
405 * memory barriers to let the RCU core know about it, regardless of what
406 * this CPU might (or might not) do in the near future.
407 *
408 * We inform the RCU core by emulating a zero-duration dyntick-idle period.
409 *
410 * The caller must have disabled interrupts and must not be idle.
411 */
rcu_momentary_dyntick_idle(void)412 notrace void rcu_momentary_dyntick_idle(void)
413 {
414 int special;
415
416 raw_cpu_write(rcu_data.rcu_need_heavy_qs, false);
417 special = atomic_add_return(2 * RCU_DYNTICK_CTRL_CTR,
418 &this_cpu_ptr(&rcu_data)->dynticks);
419 /* It is illegal to call this from idle state. */
420 WARN_ON_ONCE(!(special & RCU_DYNTICK_CTRL_CTR));
421 rcu_preempt_deferred_qs(current);
422 }
423 EXPORT_SYMBOL_GPL(rcu_momentary_dyntick_idle);
424
425 /**
426 * rcu_is_cpu_rrupt_from_idle - see if 'interrupted' from idle
427 *
428 * If the current CPU is idle and running at a first-level (not nested)
429 * interrupt, or directly, from idle, return true.
430 *
431 * The caller must have at least disabled IRQs.
432 */
rcu_is_cpu_rrupt_from_idle(void)433 static int rcu_is_cpu_rrupt_from_idle(void)
434 {
435 long nesting;
436
437 /*
438 * Usually called from the tick; but also used from smp_function_call()
439 * for expedited grace periods. This latter can result in running from
440 * the idle task, instead of an actual IPI.
441 */
442 lockdep_assert_irqs_disabled();
443
444 /* Check for counter underflows */
445 RCU_LOCKDEP_WARN(__this_cpu_read(rcu_data.dynticks_nesting) < 0,
446 "RCU dynticks_nesting counter underflow!");
447 RCU_LOCKDEP_WARN(__this_cpu_read(rcu_data.dynticks_nmi_nesting) <= 0,
448 "RCU dynticks_nmi_nesting counter underflow/zero!");
449
450 /* Are we at first interrupt nesting level? */
451 nesting = __this_cpu_read(rcu_data.dynticks_nmi_nesting);
452 if (nesting > 1)
453 return false;
454
455 /*
456 * If we're not in an interrupt, we must be in the idle task!
457 */
458 WARN_ON_ONCE(!nesting && !is_idle_task(current));
459
460 /* Does CPU appear to be idle from an RCU standpoint? */
461 return __this_cpu_read(rcu_data.dynticks_nesting) == 0;
462 }
463
464 #define DEFAULT_RCU_BLIMIT (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD) ? 1000 : 10)
465 // Maximum callbacks per rcu_do_batch ...
466 #define DEFAULT_MAX_RCU_BLIMIT 10000 // ... even during callback flood.
467 static long blimit = DEFAULT_RCU_BLIMIT;
468 #define DEFAULT_RCU_QHIMARK 10000 // If this many pending, ignore blimit.
469 static long qhimark = DEFAULT_RCU_QHIMARK;
470 #define DEFAULT_RCU_QLOMARK 100 // Once only this many pending, use blimit.
471 static long qlowmark = DEFAULT_RCU_QLOMARK;
472 #define DEFAULT_RCU_QOVLD_MULT 2
473 #define DEFAULT_RCU_QOVLD (DEFAULT_RCU_QOVLD_MULT * DEFAULT_RCU_QHIMARK)
474 static long qovld = DEFAULT_RCU_QOVLD; // If this many pending, hammer QS.
475 static long qovld_calc = -1; // No pre-initialization lock acquisitions!
476
477 module_param(blimit, long, 0444);
478 module_param(qhimark, long, 0444);
479 module_param(qlowmark, long, 0444);
480 module_param(qovld, long, 0444);
481
482 static ulong jiffies_till_first_fqs = IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD) ? 0 : ULONG_MAX;
483 static ulong jiffies_till_next_fqs = ULONG_MAX;
484 static bool rcu_kick_kthreads;
485 static int rcu_divisor = 7;
486 module_param(rcu_divisor, int, 0644);
487
488 /* Force an exit from rcu_do_batch() after 3 milliseconds. */
489 static long rcu_resched_ns = 3 * NSEC_PER_MSEC;
490 module_param(rcu_resched_ns, long, 0644);
491
492 /*
493 * How long the grace period must be before we start recruiting
494 * quiescent-state help from rcu_note_context_switch().
495 */
496 static ulong jiffies_till_sched_qs = ULONG_MAX;
497 module_param(jiffies_till_sched_qs, ulong, 0444);
498 static ulong jiffies_to_sched_qs; /* See adjust_jiffies_till_sched_qs(). */
499 module_param(jiffies_to_sched_qs, ulong, 0444); /* Display only! */
500
501 /*
502 * Make sure that we give the grace-period kthread time to detect any
503 * idle CPUs before taking active measures to force quiescent states.
504 * However, don't go below 100 milliseconds, adjusted upwards for really
505 * large systems.
506 */
adjust_jiffies_till_sched_qs(void)507 static void adjust_jiffies_till_sched_qs(void)
508 {
509 unsigned long j;
510
511 /* If jiffies_till_sched_qs was specified, respect the request. */
512 if (jiffies_till_sched_qs != ULONG_MAX) {
513 WRITE_ONCE(jiffies_to_sched_qs, jiffies_till_sched_qs);
514 return;
515 }
516 /* Otherwise, set to third fqs scan, but bound below on large system. */
517 j = READ_ONCE(jiffies_till_first_fqs) +
518 2 * READ_ONCE(jiffies_till_next_fqs);
519 if (j < HZ / 10 + nr_cpu_ids / RCU_JIFFIES_FQS_DIV)
520 j = HZ / 10 + nr_cpu_ids / RCU_JIFFIES_FQS_DIV;
521 pr_info("RCU calculated value of scheduler-enlistment delay is %ld jiffies.\n", j);
522 WRITE_ONCE(jiffies_to_sched_qs, j);
523 }
524
param_set_first_fqs_jiffies(const char * val,const struct kernel_param * kp)525 static int param_set_first_fqs_jiffies(const char *val, const struct kernel_param *kp)
526 {
527 ulong j;
528 int ret = kstrtoul(val, 0, &j);
529
530 if (!ret) {
531 WRITE_ONCE(*(ulong *)kp->arg, (j > HZ) ? HZ : j);
532 adjust_jiffies_till_sched_qs();
533 }
534 return ret;
535 }
536
param_set_next_fqs_jiffies(const char * val,const struct kernel_param * kp)537 static int param_set_next_fqs_jiffies(const char *val, const struct kernel_param *kp)
538 {
539 ulong j;
540 int ret = kstrtoul(val, 0, &j);
541
542 if (!ret) {
543 WRITE_ONCE(*(ulong *)kp->arg, (j > HZ) ? HZ : (j ?: 1));
544 adjust_jiffies_till_sched_qs();
545 }
546 return ret;
547 }
548
549 static struct kernel_param_ops first_fqs_jiffies_ops = {
550 .set = param_set_first_fqs_jiffies,
551 .get = param_get_ulong,
552 };
553
554 static struct kernel_param_ops next_fqs_jiffies_ops = {
555 .set = param_set_next_fqs_jiffies,
556 .get = param_get_ulong,
557 };
558
559 module_param_cb(jiffies_till_first_fqs, &first_fqs_jiffies_ops, &jiffies_till_first_fqs, 0644);
560 module_param_cb(jiffies_till_next_fqs, &next_fqs_jiffies_ops, &jiffies_till_next_fqs, 0644);
561 module_param(rcu_kick_kthreads, bool, 0644);
562
563 static void force_qs_rnp(int (*f)(struct rcu_data *rdp));
564 static int rcu_pending(int user);
565
566 /*
567 * Return the number of RCU GPs completed thus far for debug & stats.
568 */
rcu_get_gp_seq(void)569 unsigned long rcu_get_gp_seq(void)
570 {
571 return READ_ONCE(rcu_state.gp_seq);
572 }
573 EXPORT_SYMBOL_GPL(rcu_get_gp_seq);
574
575 /*
576 * Return the number of RCU expedited batches completed thus far for
577 * debug & stats. Odd numbers mean that a batch is in progress, even
578 * numbers mean idle. The value returned will thus be roughly double
579 * the cumulative batches since boot.
580 */
rcu_exp_batches_completed(void)581 unsigned long rcu_exp_batches_completed(void)
582 {
583 return rcu_state.expedited_sequence;
584 }
585 EXPORT_SYMBOL_GPL(rcu_exp_batches_completed);
586
587 /*
588 * Return the root node of the rcu_state structure.
589 */
rcu_get_root(void)590 static struct rcu_node *rcu_get_root(void)
591 {
592 return &rcu_state.node[0];
593 }
594
595 /*
596 * Send along grace-period-related data for rcutorture diagnostics.
597 */
rcutorture_get_gp_data(enum rcutorture_type test_type,int * flags,unsigned long * gp_seq)598 void rcutorture_get_gp_data(enum rcutorture_type test_type, int *flags,
599 unsigned long *gp_seq)
600 {
601 switch (test_type) {
602 case RCU_FLAVOR:
603 *flags = READ_ONCE(rcu_state.gp_flags);
604 *gp_seq = rcu_seq_current(&rcu_state.gp_seq);
605 break;
606 default:
607 break;
608 }
609 }
610 EXPORT_SYMBOL_GPL(rcutorture_get_gp_data);
611
612 /*
613 * Enter an RCU extended quiescent state, which can be either the
614 * idle loop or adaptive-tickless usermode execution.
615 *
616 * We crowbar the ->dynticks_nmi_nesting field to zero to allow for
617 * the possibility of usermode upcalls having messed up our count
618 * of interrupt nesting level during the prior busy period.
619 */
rcu_eqs_enter(bool user)620 static noinstr void rcu_eqs_enter(bool user)
621 {
622 struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
623
624 WARN_ON_ONCE(rdp->dynticks_nmi_nesting != DYNTICK_IRQ_NONIDLE);
625 WRITE_ONCE(rdp->dynticks_nmi_nesting, 0);
626 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
627 rdp->dynticks_nesting == 0);
628 if (rdp->dynticks_nesting != 1) {
629 // RCU will still be watching, so just do accounting and leave.
630 rdp->dynticks_nesting--;
631 return;
632 }
633
634 lockdep_assert_irqs_disabled();
635 instrumentation_begin();
636 trace_rcu_dyntick(TPS("Start"), rdp->dynticks_nesting, 0, atomic_read(&rdp->dynticks));
637 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && !user && !is_idle_task(current));
638 rdp = this_cpu_ptr(&rcu_data);
639 rcu_prepare_for_idle();
640 rcu_preempt_deferred_qs(current);
641
642 // instrumentation for the noinstr rcu_dynticks_eqs_enter()
643 instrument_atomic_write(&rdp->dynticks, sizeof(rdp->dynticks));
644
645 instrumentation_end();
646 WRITE_ONCE(rdp->dynticks_nesting, 0); /* Avoid irq-access tearing. */
647 // RCU is watching here ...
648 rcu_dynticks_eqs_enter();
649 // ... but is no longer watching here.
650 rcu_dynticks_task_enter();
651 }
652
653 /**
654 * rcu_idle_enter - inform RCU that current CPU is entering idle
655 *
656 * Enter idle mode, in other words, -leave- the mode in which RCU
657 * read-side critical sections can occur. (Though RCU read-side
658 * critical sections can occur in irq handlers in idle, a possibility
659 * handled by irq_enter() and irq_exit().)
660 *
661 * If you add or remove a call to rcu_idle_enter(), be sure to test with
662 * CONFIG_RCU_EQS_DEBUG=y.
663 */
rcu_idle_enter(void)664 void rcu_idle_enter(void)
665 {
666 lockdep_assert_irqs_disabled();
667 rcu_eqs_enter(false);
668 }
669 EXPORT_SYMBOL_GPL(rcu_idle_enter);
670
671 #ifdef CONFIG_NO_HZ_FULL
672 /**
673 * rcu_user_enter - inform RCU that we are resuming userspace.
674 *
675 * Enter RCU idle mode right before resuming userspace. No use of RCU
676 * is permitted between this call and rcu_user_exit(). This way the
677 * CPU doesn't need to maintain the tick for RCU maintenance purposes
678 * when the CPU runs in userspace.
679 *
680 * If you add or remove a call to rcu_user_enter(), be sure to test with
681 * CONFIG_RCU_EQS_DEBUG=y.
682 */
rcu_user_enter(void)683 noinstr void rcu_user_enter(void)
684 {
685 struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
686
687 lockdep_assert_irqs_disabled();
688
689 instrumentation_begin();
690 do_nocb_deferred_wakeup(rdp);
691 instrumentation_end();
692
693 rcu_eqs_enter(true);
694 }
695 #endif /* CONFIG_NO_HZ_FULL */
696
697 /**
698 * rcu_nmi_exit - inform RCU of exit from NMI context
699 *
700 * If we are returning from the outermost NMI handler that interrupted an
701 * RCU-idle period, update rdp->dynticks and rdp->dynticks_nmi_nesting
702 * to let the RCU grace-period handling know that the CPU is back to
703 * being RCU-idle.
704 *
705 * If you add or remove a call to rcu_nmi_exit(), be sure to test
706 * with CONFIG_RCU_EQS_DEBUG=y.
707 */
rcu_nmi_exit(void)708 noinstr void rcu_nmi_exit(void)
709 {
710 struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
711
712 instrumentation_begin();
713 /*
714 * Check for ->dynticks_nmi_nesting underflow and bad ->dynticks.
715 * (We are exiting an NMI handler, so RCU better be paying attention
716 * to us!)
717 */
718 WARN_ON_ONCE(rdp->dynticks_nmi_nesting <= 0);
719 WARN_ON_ONCE(rcu_dynticks_curr_cpu_in_eqs());
720
721 /*
722 * If the nesting level is not 1, the CPU wasn't RCU-idle, so
723 * leave it in non-RCU-idle state.
724 */
725 if (rdp->dynticks_nmi_nesting != 1) {
726 trace_rcu_dyntick(TPS("--="), rdp->dynticks_nmi_nesting, rdp->dynticks_nmi_nesting - 2,
727 atomic_read(&rdp->dynticks));
728 WRITE_ONCE(rdp->dynticks_nmi_nesting, /* No store tearing. */
729 rdp->dynticks_nmi_nesting - 2);
730 instrumentation_end();
731 return;
732 }
733
734 /* This NMI interrupted an RCU-idle CPU, restore RCU-idleness. */
735 trace_rcu_dyntick(TPS("Startirq"), rdp->dynticks_nmi_nesting, 0, atomic_read(&rdp->dynticks));
736 WRITE_ONCE(rdp->dynticks_nmi_nesting, 0); /* Avoid store tearing. */
737
738 if (!in_nmi())
739 rcu_prepare_for_idle();
740
741 // instrumentation for the noinstr rcu_dynticks_eqs_enter()
742 instrument_atomic_write(&rdp->dynticks, sizeof(rdp->dynticks));
743 instrumentation_end();
744
745 // RCU is watching here ...
746 rcu_dynticks_eqs_enter();
747 // ... but is no longer watching here.
748
749 if (!in_nmi())
750 rcu_dynticks_task_enter();
751 }
752
753 /**
754 * rcu_irq_exit - inform RCU that current CPU is exiting irq towards idle
755 *
756 * Exit from an interrupt handler, which might possibly result in entering
757 * idle mode, in other words, leaving the mode in which read-side critical
758 * sections can occur. The caller must have disabled interrupts.
759 *
760 * This code assumes that the idle loop never does anything that might
761 * result in unbalanced calls to irq_enter() and irq_exit(). If your
762 * architecture's idle loop violates this assumption, RCU will give you what
763 * you deserve, good and hard. But very infrequently and irreproducibly.
764 *
765 * Use things like work queues to work around this limitation.
766 *
767 * You have been warned.
768 *
769 * If you add or remove a call to rcu_irq_exit(), be sure to test with
770 * CONFIG_RCU_EQS_DEBUG=y.
771 */
rcu_irq_exit(void)772 void noinstr rcu_irq_exit(void)
773 {
774 lockdep_assert_irqs_disabled();
775 rcu_nmi_exit();
776 }
777
778 /**
779 * rcu_irq_exit_preempt - Inform RCU that current CPU is exiting irq
780 * towards in kernel preemption
781 *
782 * Same as rcu_irq_exit() but has a sanity check that scheduling is safe
783 * from RCU point of view. Invoked from return from interrupt before kernel
784 * preemption.
785 */
rcu_irq_exit_preempt(void)786 void rcu_irq_exit_preempt(void)
787 {
788 lockdep_assert_irqs_disabled();
789 rcu_nmi_exit();
790
791 RCU_LOCKDEP_WARN(__this_cpu_read(rcu_data.dynticks_nesting) <= 0,
792 "RCU dynticks_nesting counter underflow/zero!");
793 RCU_LOCKDEP_WARN(__this_cpu_read(rcu_data.dynticks_nmi_nesting) !=
794 DYNTICK_IRQ_NONIDLE,
795 "Bad RCU dynticks_nmi_nesting counter\n");
796 RCU_LOCKDEP_WARN(rcu_dynticks_curr_cpu_in_eqs(),
797 "RCU in extended quiescent state!");
798 }
799
800 #ifdef CONFIG_PROVE_RCU
801 /**
802 * rcu_irq_exit_check_preempt - Validate that scheduling is possible
803 */
rcu_irq_exit_check_preempt(void)804 void rcu_irq_exit_check_preempt(void)
805 {
806 lockdep_assert_irqs_disabled();
807
808 RCU_LOCKDEP_WARN(__this_cpu_read(rcu_data.dynticks_nesting) <= 0,
809 "RCU dynticks_nesting counter underflow/zero!");
810 RCU_LOCKDEP_WARN(__this_cpu_read(rcu_data.dynticks_nmi_nesting) !=
811 DYNTICK_IRQ_NONIDLE,
812 "Bad RCU dynticks_nmi_nesting counter\n");
813 RCU_LOCKDEP_WARN(rcu_dynticks_curr_cpu_in_eqs(),
814 "RCU in extended quiescent state!");
815 }
816 #endif /* #ifdef CONFIG_PROVE_RCU */
817
818 /*
819 * Wrapper for rcu_irq_exit() where interrupts are enabled.
820 *
821 * If you add or remove a call to rcu_irq_exit_irqson(), be sure to test
822 * with CONFIG_RCU_EQS_DEBUG=y.
823 */
rcu_irq_exit_irqson(void)824 void rcu_irq_exit_irqson(void)
825 {
826 unsigned long flags;
827
828 local_irq_save(flags);
829 rcu_irq_exit();
830 local_irq_restore(flags);
831 }
832
833 /*
834 * Exit an RCU extended quiescent state, which can be either the
835 * idle loop or adaptive-tickless usermode execution.
836 *
837 * We crowbar the ->dynticks_nmi_nesting field to DYNTICK_IRQ_NONIDLE to
838 * allow for the possibility of usermode upcalls messing up our count of
839 * interrupt nesting level during the busy period that is just now starting.
840 */
rcu_eqs_exit(bool user)841 static void noinstr rcu_eqs_exit(bool user)
842 {
843 struct rcu_data *rdp;
844 long oldval;
845
846 lockdep_assert_irqs_disabled();
847 rdp = this_cpu_ptr(&rcu_data);
848 oldval = rdp->dynticks_nesting;
849 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && oldval < 0);
850 if (oldval) {
851 // RCU was already watching, so just do accounting and leave.
852 rdp->dynticks_nesting++;
853 return;
854 }
855 rcu_dynticks_task_exit();
856 // RCU is not watching here ...
857 rcu_dynticks_eqs_exit();
858 // ... but is watching here.
859 instrumentation_begin();
860
861 // instrumentation for the noinstr rcu_dynticks_eqs_exit()
862 instrument_atomic_write(&rdp->dynticks, sizeof(rdp->dynticks));
863
864 rcu_cleanup_after_idle();
865 trace_rcu_dyntick(TPS("End"), rdp->dynticks_nesting, 1, atomic_read(&rdp->dynticks));
866 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && !user && !is_idle_task(current));
867 WRITE_ONCE(rdp->dynticks_nesting, 1);
868 WARN_ON_ONCE(rdp->dynticks_nmi_nesting);
869 WRITE_ONCE(rdp->dynticks_nmi_nesting, DYNTICK_IRQ_NONIDLE);
870 instrumentation_end();
871 }
872
873 /**
874 * rcu_idle_exit - inform RCU that current CPU is leaving idle
875 *
876 * Exit idle mode, in other words, -enter- the mode in which RCU
877 * read-side critical sections can occur.
878 *
879 * If you add or remove a call to rcu_idle_exit(), be sure to test with
880 * CONFIG_RCU_EQS_DEBUG=y.
881 */
rcu_idle_exit(void)882 void rcu_idle_exit(void)
883 {
884 unsigned long flags;
885
886 local_irq_save(flags);
887 rcu_eqs_exit(false);
888 local_irq_restore(flags);
889 }
890 EXPORT_SYMBOL_GPL(rcu_idle_exit);
891
892 #ifdef CONFIG_NO_HZ_FULL
893 /**
894 * rcu_user_exit - inform RCU that we are exiting userspace.
895 *
896 * Exit RCU idle mode while entering the kernel because it can
897 * run a RCU read side critical section anytime.
898 *
899 * If you add or remove a call to rcu_user_exit(), be sure to test with
900 * CONFIG_RCU_EQS_DEBUG=y.
901 */
rcu_user_exit(void)902 void noinstr rcu_user_exit(void)
903 {
904 rcu_eqs_exit(1);
905 }
906
907 /**
908 * __rcu_irq_enter_check_tick - Enable scheduler tick on CPU if RCU needs it.
909 *
910 * The scheduler tick is not normally enabled when CPUs enter the kernel
911 * from nohz_full userspace execution. After all, nohz_full userspace
912 * execution is an RCU quiescent state and the time executing in the kernel
913 * is quite short. Except of course when it isn't. And it is not hard to
914 * cause a large system to spend tens of seconds or even minutes looping
915 * in the kernel, which can cause a number of problems, include RCU CPU
916 * stall warnings.
917 *
918 * Therefore, if a nohz_full CPU fails to report a quiescent state
919 * in a timely manner, the RCU grace-period kthread sets that CPU's
920 * ->rcu_urgent_qs flag with the expectation that the next interrupt or
921 * exception will invoke this function, which will turn on the scheduler
922 * tick, which will enable RCU to detect that CPU's quiescent states,
923 * for example, due to cond_resched() calls in CONFIG_PREEMPT=n kernels.
924 * The tick will be disabled once a quiescent state is reported for
925 * this CPU.
926 *
927 * Of course, in carefully tuned systems, there might never be an
928 * interrupt or exception. In that case, the RCU grace-period kthread
929 * will eventually cause one to happen. However, in less carefully
930 * controlled environments, this function allows RCU to get what it
931 * needs without creating otherwise useless interruptions.
932 */
__rcu_irq_enter_check_tick(void)933 void __rcu_irq_enter_check_tick(void)
934 {
935 struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
936
937 // If we're here from NMI there's nothing to do.
938 if (in_nmi())
939 return;
940
941 RCU_LOCKDEP_WARN(rcu_dynticks_curr_cpu_in_eqs(),
942 "Illegal rcu_irq_enter_check_tick() from extended quiescent state");
943
944 if (!tick_nohz_full_cpu(rdp->cpu) ||
945 !READ_ONCE(rdp->rcu_urgent_qs) ||
946 READ_ONCE(rdp->rcu_forced_tick)) {
947 // RCU doesn't need nohz_full help from this CPU, or it is
948 // already getting that help.
949 return;
950 }
951
952 // We get here only when not in an extended quiescent state and
953 // from interrupts (as opposed to NMIs). Therefore, (1) RCU is
954 // already watching and (2) The fact that we are in an interrupt
955 // handler and that the rcu_node lock is an irq-disabled lock
956 // prevents self-deadlock. So we can safely recheck under the lock.
957 // Note that the nohz_full state currently cannot change.
958 raw_spin_lock_rcu_node(rdp->mynode);
959 if (rdp->rcu_urgent_qs && !rdp->rcu_forced_tick) {
960 // A nohz_full CPU is in the kernel and RCU needs a
961 // quiescent state. Turn on the tick!
962 WRITE_ONCE(rdp->rcu_forced_tick, true);
963 tick_dep_set_cpu(rdp->cpu, TICK_DEP_BIT_RCU);
964 }
965 raw_spin_unlock_rcu_node(rdp->mynode);
966 }
967 #endif /* CONFIG_NO_HZ_FULL */
968
969 /**
970 * rcu_nmi_enter - inform RCU of entry to NMI context
971 *
972 * If the CPU was idle from RCU's viewpoint, update rdp->dynticks and
973 * rdp->dynticks_nmi_nesting to let the RCU grace-period handling know
974 * that the CPU is active. This implementation permits nested NMIs, as
975 * long as the nesting level does not overflow an int. (You will probably
976 * run out of stack space first.)
977 *
978 * If you add or remove a call to rcu_nmi_enter(), be sure to test
979 * with CONFIG_RCU_EQS_DEBUG=y.
980 */
rcu_nmi_enter(void)981 noinstr void rcu_nmi_enter(void)
982 {
983 long incby = 2;
984 struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
985
986 /* Complain about underflow. */
987 WARN_ON_ONCE(rdp->dynticks_nmi_nesting < 0);
988
989 /*
990 * If idle from RCU viewpoint, atomically increment ->dynticks
991 * to mark non-idle and increment ->dynticks_nmi_nesting by one.
992 * Otherwise, increment ->dynticks_nmi_nesting by two. This means
993 * if ->dynticks_nmi_nesting is equal to one, we are guaranteed
994 * to be in the outermost NMI handler that interrupted an RCU-idle
995 * period (observation due to Andy Lutomirski).
996 */
997 if (rcu_dynticks_curr_cpu_in_eqs()) {
998
999 if (!in_nmi())
1000 rcu_dynticks_task_exit();
1001
1002 // RCU is not watching here ...
1003 rcu_dynticks_eqs_exit();
1004 // ... but is watching here.
1005
1006 if (!in_nmi()) {
1007 instrumentation_begin();
1008 rcu_cleanup_after_idle();
1009 instrumentation_end();
1010 }
1011
1012 instrumentation_begin();
1013 // instrumentation for the noinstr rcu_dynticks_curr_cpu_in_eqs()
1014 instrument_atomic_read(&rdp->dynticks, sizeof(rdp->dynticks));
1015 // instrumentation for the noinstr rcu_dynticks_eqs_exit()
1016 instrument_atomic_write(&rdp->dynticks, sizeof(rdp->dynticks));
1017
1018 incby = 1;
1019 } else if (!in_nmi()) {
1020 instrumentation_begin();
1021 rcu_irq_enter_check_tick();
1022 } else {
1023 instrumentation_begin();
1024 }
1025
1026 trace_rcu_dyntick(incby == 1 ? TPS("Endirq") : TPS("++="),
1027 rdp->dynticks_nmi_nesting,
1028 rdp->dynticks_nmi_nesting + incby, atomic_read(&rdp->dynticks));
1029 instrumentation_end();
1030 WRITE_ONCE(rdp->dynticks_nmi_nesting, /* Prevent store tearing. */
1031 rdp->dynticks_nmi_nesting + incby);
1032 barrier();
1033 }
1034
1035 /**
1036 * rcu_irq_enter - inform RCU that current CPU is entering irq away from idle
1037 *
1038 * Enter an interrupt handler, which might possibly result in exiting
1039 * idle mode, in other words, entering the mode in which read-side critical
1040 * sections can occur. The caller must have disabled interrupts.
1041 *
1042 * Note that the Linux kernel is fully capable of entering an interrupt
1043 * handler that it never exits, for example when doing upcalls to user mode!
1044 * This code assumes that the idle loop never does upcalls to user mode.
1045 * If your architecture's idle loop does do upcalls to user mode (or does
1046 * anything else that results in unbalanced calls to the irq_enter() and
1047 * irq_exit() functions), RCU will give you what you deserve, good and hard.
1048 * But very infrequently and irreproducibly.
1049 *
1050 * Use things like work queues to work around this limitation.
1051 *
1052 * You have been warned.
1053 *
1054 * If you add or remove a call to rcu_irq_enter(), be sure to test with
1055 * CONFIG_RCU_EQS_DEBUG=y.
1056 */
rcu_irq_enter(void)1057 noinstr void rcu_irq_enter(void)
1058 {
1059 lockdep_assert_irqs_disabled();
1060 rcu_nmi_enter();
1061 }
1062
1063 /*
1064 * Wrapper for rcu_irq_enter() where interrupts are enabled.
1065 *
1066 * If you add or remove a call to rcu_irq_enter_irqson(), be sure to test
1067 * with CONFIG_RCU_EQS_DEBUG=y.
1068 */
rcu_irq_enter_irqson(void)1069 void rcu_irq_enter_irqson(void)
1070 {
1071 unsigned long flags;
1072
1073 local_irq_save(flags);
1074 rcu_irq_enter();
1075 local_irq_restore(flags);
1076 }
1077
1078 /*
1079 * If any sort of urgency was applied to the current CPU (for example,
1080 * the scheduler-clock interrupt was enabled on a nohz_full CPU) in order
1081 * to get to a quiescent state, disable it.
1082 */
rcu_disable_urgency_upon_qs(struct rcu_data * rdp)1083 static void rcu_disable_urgency_upon_qs(struct rcu_data *rdp)
1084 {
1085 raw_lockdep_assert_held_rcu_node(rdp->mynode);
1086 WRITE_ONCE(rdp->rcu_urgent_qs, false);
1087 WRITE_ONCE(rdp->rcu_need_heavy_qs, false);
1088 if (tick_nohz_full_cpu(rdp->cpu) && rdp->rcu_forced_tick) {
1089 tick_dep_clear_cpu(rdp->cpu, TICK_DEP_BIT_RCU);
1090 WRITE_ONCE(rdp->rcu_forced_tick, false);
1091 }
1092 }
1093
1094 /**
1095 * rcu_is_watching - see if RCU thinks that the current CPU is not idle
1096 *
1097 * Return true if RCU is watching the running CPU, which means that this
1098 * CPU can safely enter RCU read-side critical sections. In other words,
1099 * if the current CPU is not in its idle loop or is in an interrupt or
1100 * NMI handler, return true.
1101 *
1102 * Make notrace because it can be called by the internal functions of
1103 * ftrace, and making this notrace removes unnecessary recursion calls.
1104 */
rcu_is_watching(void)1105 notrace bool rcu_is_watching(void)
1106 {
1107 bool ret;
1108
1109 preempt_disable_notrace();
1110 ret = !rcu_dynticks_curr_cpu_in_eqs();
1111 preempt_enable_notrace();
1112 return ret;
1113 }
1114 EXPORT_SYMBOL_GPL(rcu_is_watching);
1115
1116 /*
1117 * If a holdout task is actually running, request an urgent quiescent
1118 * state from its CPU. This is unsynchronized, so migrations can cause
1119 * the request to go to the wrong CPU. Which is OK, all that will happen
1120 * is that the CPU's next context switch will be a bit slower and next
1121 * time around this task will generate another request.
1122 */
rcu_request_urgent_qs_task(struct task_struct * t)1123 void rcu_request_urgent_qs_task(struct task_struct *t)
1124 {
1125 int cpu;
1126
1127 barrier();
1128 cpu = task_cpu(t);
1129 if (!task_curr(t))
1130 return; /* This task is not running on that CPU. */
1131 smp_store_release(per_cpu_ptr(&rcu_data.rcu_urgent_qs, cpu), true);
1132 }
1133
1134 #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU)
1135
1136 /*
1137 * Is the current CPU online as far as RCU is concerned?
1138 *
1139 * Disable preemption to avoid false positives that could otherwise
1140 * happen due to the current CPU number being sampled, this task being
1141 * preempted, its old CPU being taken offline, resuming on some other CPU,
1142 * then determining that its old CPU is now offline.
1143 *
1144 * Disable checking if in an NMI handler because we cannot safely
1145 * report errors from NMI handlers anyway. In addition, it is OK to use
1146 * RCU on an offline processor during initial boot, hence the check for
1147 * rcu_scheduler_fully_active.
1148 */
rcu_lockdep_current_cpu_online(void)1149 bool rcu_lockdep_current_cpu_online(void)
1150 {
1151 struct rcu_data *rdp;
1152 struct rcu_node *rnp;
1153 bool ret = false;
1154
1155 if (in_nmi() || !rcu_scheduler_fully_active)
1156 return true;
1157 preempt_disable_notrace();
1158 rdp = this_cpu_ptr(&rcu_data);
1159 rnp = rdp->mynode;
1160 if (rdp->grpmask & rcu_rnp_online_cpus(rnp) || READ_ONCE(rnp->ofl_seq) & 0x1)
1161 ret = true;
1162 preempt_enable_notrace();
1163 return ret;
1164 }
1165 EXPORT_SYMBOL_GPL(rcu_lockdep_current_cpu_online);
1166
1167 #endif /* #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU) */
1168
1169 /*
1170 * We are reporting a quiescent state on behalf of some other CPU, so
1171 * it is our responsibility to check for and handle potential overflow
1172 * of the rcu_node ->gp_seq counter with respect to the rcu_data counters.
1173 * After all, the CPU might be in deep idle state, and thus executing no
1174 * code whatsoever.
1175 */
rcu_gpnum_ovf(struct rcu_node * rnp,struct rcu_data * rdp)1176 static void rcu_gpnum_ovf(struct rcu_node *rnp, struct rcu_data *rdp)
1177 {
1178 raw_lockdep_assert_held_rcu_node(rnp);
1179 if (ULONG_CMP_LT(rcu_seq_current(&rdp->gp_seq) + ULONG_MAX / 4,
1180 rnp->gp_seq))
1181 WRITE_ONCE(rdp->gpwrap, true);
1182 if (ULONG_CMP_LT(rdp->rcu_iw_gp_seq + ULONG_MAX / 4, rnp->gp_seq))
1183 rdp->rcu_iw_gp_seq = rnp->gp_seq + ULONG_MAX / 4;
1184 }
1185
1186 /*
1187 * Snapshot the specified CPU's dynticks counter so that we can later
1188 * credit them with an implicit quiescent state. Return 1 if this CPU
1189 * is in dynticks idle mode, which is an extended quiescent state.
1190 */
dyntick_save_progress_counter(struct rcu_data * rdp)1191 static int dyntick_save_progress_counter(struct rcu_data *rdp)
1192 {
1193 rdp->dynticks_snap = rcu_dynticks_snap(rdp);
1194 if (rcu_dynticks_in_eqs(rdp->dynticks_snap)) {
1195 trace_rcu_fqs(rcu_state.name, rdp->gp_seq, rdp->cpu, TPS("dti"));
1196 rcu_gpnum_ovf(rdp->mynode, rdp);
1197 return 1;
1198 }
1199 return 0;
1200 }
1201
1202 /*
1203 * Return true if the specified CPU has passed through a quiescent
1204 * state by virtue of being in or having passed through an dynticks
1205 * idle state since the last call to dyntick_save_progress_counter()
1206 * for this same CPU, or by virtue of having been offline.
1207 */
rcu_implicit_dynticks_qs(struct rcu_data * rdp)1208 static int rcu_implicit_dynticks_qs(struct rcu_data *rdp)
1209 {
1210 unsigned long jtsq;
1211 bool *rnhqp;
1212 bool *ruqp;
1213 struct rcu_node *rnp = rdp->mynode;
1214
1215 /*
1216 * If the CPU passed through or entered a dynticks idle phase with
1217 * no active irq/NMI handlers, then we can safely pretend that the CPU
1218 * already acknowledged the request to pass through a quiescent
1219 * state. Either way, that CPU cannot possibly be in an RCU
1220 * read-side critical section that started before the beginning
1221 * of the current RCU grace period.
1222 */
1223 if (rcu_dynticks_in_eqs_since(rdp, rdp->dynticks_snap)) {
1224 trace_rcu_fqs(rcu_state.name, rdp->gp_seq, rdp->cpu, TPS("dti"));
1225 rcu_gpnum_ovf(rnp, rdp);
1226 return 1;
1227 }
1228
1229 /*
1230 * Complain if a CPU that is considered to be offline from RCU's
1231 * perspective has not yet reported a quiescent state. After all,
1232 * the offline CPU should have reported a quiescent state during
1233 * the CPU-offline process, or, failing that, by rcu_gp_init()
1234 * if it ran concurrently with either the CPU going offline or the
1235 * last task on a leaf rcu_node structure exiting its RCU read-side
1236 * critical section while all CPUs corresponding to that structure
1237 * are offline. This added warning detects bugs in any of these
1238 * code paths.
1239 *
1240 * The rcu_node structure's ->lock is held here, which excludes
1241 * the relevant portions the CPU-hotplug code, the grace-period
1242 * initialization code, and the rcu_read_unlock() code paths.
1243 *
1244 * For more detail, please refer to the "Hotplug CPU" section
1245 * of RCU's Requirements documentation.
1246 */
1247 if (WARN_ON_ONCE(!(rdp->grpmask & rcu_rnp_online_cpus(rnp)))) {
1248 bool onl;
1249 struct rcu_node *rnp1;
1250
1251 pr_info("%s: grp: %d-%d level: %d ->gp_seq %ld ->completedqs %ld\n",
1252 __func__, rnp->grplo, rnp->grphi, rnp->level,
1253 (long)rnp->gp_seq, (long)rnp->completedqs);
1254 for (rnp1 = rnp; rnp1; rnp1 = rnp1->parent)
1255 pr_info("%s: %d:%d ->qsmask %#lx ->qsmaskinit %#lx ->qsmaskinitnext %#lx ->rcu_gp_init_mask %#lx\n",
1256 __func__, rnp1->grplo, rnp1->grphi, rnp1->qsmask, rnp1->qsmaskinit, rnp1->qsmaskinitnext, rnp1->rcu_gp_init_mask);
1257 onl = !!(rdp->grpmask & rcu_rnp_online_cpus(rnp));
1258 pr_info("%s %d: %c online: %ld(%d) offline: %ld(%d)\n",
1259 __func__, rdp->cpu, ".o"[onl],
1260 (long)rdp->rcu_onl_gp_seq, rdp->rcu_onl_gp_flags,
1261 (long)rdp->rcu_ofl_gp_seq, rdp->rcu_ofl_gp_flags);
1262 return 1; /* Break things loose after complaining. */
1263 }
1264
1265 /*
1266 * A CPU running for an extended time within the kernel can
1267 * delay RCU grace periods: (1) At age jiffies_to_sched_qs,
1268 * set .rcu_urgent_qs, (2) At age 2*jiffies_to_sched_qs, set
1269 * both .rcu_need_heavy_qs and .rcu_urgent_qs. Note that the
1270 * unsynchronized assignments to the per-CPU rcu_need_heavy_qs
1271 * variable are safe because the assignments are repeated if this
1272 * CPU failed to pass through a quiescent state. This code
1273 * also checks .jiffies_resched in case jiffies_to_sched_qs
1274 * is set way high.
1275 */
1276 jtsq = READ_ONCE(jiffies_to_sched_qs);
1277 ruqp = per_cpu_ptr(&rcu_data.rcu_urgent_qs, rdp->cpu);
1278 rnhqp = &per_cpu(rcu_data.rcu_need_heavy_qs, rdp->cpu);
1279 if (!READ_ONCE(*rnhqp) &&
1280 (time_after(jiffies, rcu_state.gp_start + jtsq * 2) ||
1281 time_after(jiffies, rcu_state.jiffies_resched) ||
1282 rcu_state.cbovld)) {
1283 WRITE_ONCE(*rnhqp, true);
1284 /* Store rcu_need_heavy_qs before rcu_urgent_qs. */
1285 smp_store_release(ruqp, true);
1286 } else if (time_after(jiffies, rcu_state.gp_start + jtsq)) {
1287 WRITE_ONCE(*ruqp, true);
1288 }
1289
1290 /*
1291 * NO_HZ_FULL CPUs can run in-kernel without rcu_sched_clock_irq!
1292 * The above code handles this, but only for straight cond_resched().
1293 * And some in-kernel loops check need_resched() before calling
1294 * cond_resched(), which defeats the above code for CPUs that are
1295 * running in-kernel with scheduling-clock interrupts disabled.
1296 * So hit them over the head with the resched_cpu() hammer!
1297 */
1298 if (tick_nohz_full_cpu(rdp->cpu) &&
1299 (time_after(jiffies, READ_ONCE(rdp->last_fqs_resched) + jtsq * 3) ||
1300 rcu_state.cbovld)) {
1301 WRITE_ONCE(*ruqp, true);
1302 resched_cpu(rdp->cpu);
1303 WRITE_ONCE(rdp->last_fqs_resched, jiffies);
1304 }
1305
1306 /*
1307 * If more than halfway to RCU CPU stall-warning time, invoke
1308 * resched_cpu() more frequently to try to loosen things up a bit.
1309 * Also check to see if the CPU is getting hammered with interrupts,
1310 * but only once per grace period, just to keep the IPIs down to
1311 * a dull roar.
1312 */
1313 if (time_after(jiffies, rcu_state.jiffies_resched)) {
1314 if (time_after(jiffies,
1315 READ_ONCE(rdp->last_fqs_resched) + jtsq)) {
1316 resched_cpu(rdp->cpu);
1317 WRITE_ONCE(rdp->last_fqs_resched, jiffies);
1318 }
1319 if (IS_ENABLED(CONFIG_IRQ_WORK) &&
1320 !rdp->rcu_iw_pending && rdp->rcu_iw_gp_seq != rnp->gp_seq &&
1321 (rnp->ffmask & rdp->grpmask)) {
1322 init_irq_work(&rdp->rcu_iw, rcu_iw_handler);
1323 atomic_set(&rdp->rcu_iw.flags, IRQ_WORK_HARD_IRQ);
1324 rdp->rcu_iw_pending = true;
1325 rdp->rcu_iw_gp_seq = rnp->gp_seq;
1326 irq_work_queue_on(&rdp->rcu_iw, rdp->cpu);
1327 }
1328 }
1329
1330 return 0;
1331 }
1332
1333 /* Trace-event wrapper function for trace_rcu_future_grace_period. */
trace_rcu_this_gp(struct rcu_node * rnp,struct rcu_data * rdp,unsigned long gp_seq_req,const char * s)1334 static void trace_rcu_this_gp(struct rcu_node *rnp, struct rcu_data *rdp,
1335 unsigned long gp_seq_req, const char *s)
1336 {
1337 trace_rcu_future_grace_period(rcu_state.name, READ_ONCE(rnp->gp_seq),
1338 gp_seq_req, rnp->level,
1339 rnp->grplo, rnp->grphi, s);
1340 }
1341
1342 /*
1343 * rcu_start_this_gp - Request the start of a particular grace period
1344 * @rnp_start: The leaf node of the CPU from which to start.
1345 * @rdp: The rcu_data corresponding to the CPU from which to start.
1346 * @gp_seq_req: The gp_seq of the grace period to start.
1347 *
1348 * Start the specified grace period, as needed to handle newly arrived
1349 * callbacks. The required future grace periods are recorded in each
1350 * rcu_node structure's ->gp_seq_needed field. Returns true if there
1351 * is reason to awaken the grace-period kthread.
1352 *
1353 * The caller must hold the specified rcu_node structure's ->lock, which
1354 * is why the caller is responsible for waking the grace-period kthread.
1355 *
1356 * Returns true if the GP thread needs to be awakened else false.
1357 */
rcu_start_this_gp(struct rcu_node * rnp_start,struct rcu_data * rdp,unsigned long gp_seq_req)1358 static bool rcu_start_this_gp(struct rcu_node *rnp_start, struct rcu_data *rdp,
1359 unsigned long gp_seq_req)
1360 {
1361 bool ret = false;
1362 struct rcu_node *rnp;
1363
1364 /*
1365 * Use funnel locking to either acquire the root rcu_node
1366 * structure's lock or bail out if the need for this grace period
1367 * has already been recorded -- or if that grace period has in
1368 * fact already started. If there is already a grace period in
1369 * progress in a non-leaf node, no recording is needed because the
1370 * end of the grace period will scan the leaf rcu_node structures.
1371 * Note that rnp_start->lock must not be released.
1372 */
1373 raw_lockdep_assert_held_rcu_node(rnp_start);
1374 trace_rcu_this_gp(rnp_start, rdp, gp_seq_req, TPS("Startleaf"));
1375 for (rnp = rnp_start; 1; rnp = rnp->parent) {
1376 if (rnp != rnp_start)
1377 raw_spin_lock_rcu_node(rnp);
1378 if (ULONG_CMP_GE(rnp->gp_seq_needed, gp_seq_req) ||
1379 rcu_seq_started(&rnp->gp_seq, gp_seq_req) ||
1380 (rnp != rnp_start &&
1381 rcu_seq_state(rcu_seq_current(&rnp->gp_seq)))) {
1382 trace_rcu_this_gp(rnp, rdp, gp_seq_req,
1383 TPS("Prestarted"));
1384 goto unlock_out;
1385 }
1386 WRITE_ONCE(rnp->gp_seq_needed, gp_seq_req);
1387 if (rcu_seq_state(rcu_seq_current(&rnp->gp_seq))) {
1388 /*
1389 * We just marked the leaf or internal node, and a
1390 * grace period is in progress, which means that
1391 * rcu_gp_cleanup() will see the marking. Bail to
1392 * reduce contention.
1393 */
1394 trace_rcu_this_gp(rnp_start, rdp, gp_seq_req,
1395 TPS("Startedleaf"));
1396 goto unlock_out;
1397 }
1398 if (rnp != rnp_start && rnp->parent != NULL)
1399 raw_spin_unlock_rcu_node(rnp);
1400 if (!rnp->parent)
1401 break; /* At root, and perhaps also leaf. */
1402 }
1403
1404 /* If GP already in progress, just leave, otherwise start one. */
1405 if (rcu_gp_in_progress()) {
1406 trace_rcu_this_gp(rnp, rdp, gp_seq_req, TPS("Startedleafroot"));
1407 goto unlock_out;
1408 }
1409 trace_rcu_this_gp(rnp, rdp, gp_seq_req, TPS("Startedroot"));
1410 WRITE_ONCE(rcu_state.gp_flags, rcu_state.gp_flags | RCU_GP_FLAG_INIT);
1411 WRITE_ONCE(rcu_state.gp_req_activity, jiffies);
1412 if (!READ_ONCE(rcu_state.gp_kthread)) {
1413 trace_rcu_this_gp(rnp, rdp, gp_seq_req, TPS("NoGPkthread"));
1414 goto unlock_out;
1415 }
1416 trace_rcu_grace_period(rcu_state.name, data_race(rcu_state.gp_seq), TPS("newreq"));
1417 ret = true; /* Caller must wake GP kthread. */
1418 unlock_out:
1419 /* Push furthest requested GP to leaf node and rcu_data structure. */
1420 if (ULONG_CMP_LT(gp_seq_req, rnp->gp_seq_needed)) {
1421 WRITE_ONCE(rnp_start->gp_seq_needed, rnp->gp_seq_needed);
1422 WRITE_ONCE(rdp->gp_seq_needed, rnp->gp_seq_needed);
1423 }
1424 if (rnp != rnp_start)
1425 raw_spin_unlock_rcu_node(rnp);
1426 return ret;
1427 }
1428
1429 /*
1430 * Clean up any old requests for the just-ended grace period. Also return
1431 * whether any additional grace periods have been requested.
1432 */
rcu_future_gp_cleanup(struct rcu_node * rnp)1433 static bool rcu_future_gp_cleanup(struct rcu_node *rnp)
1434 {
1435 bool needmore;
1436 struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
1437
1438 needmore = ULONG_CMP_LT(rnp->gp_seq, rnp->gp_seq_needed);
1439 if (!needmore)
1440 rnp->gp_seq_needed = rnp->gp_seq; /* Avoid counter wrap. */
1441 trace_rcu_this_gp(rnp, rdp, rnp->gp_seq,
1442 needmore ? TPS("CleanupMore") : TPS("Cleanup"));
1443 return needmore;
1444 }
1445
1446 /*
1447 * Awaken the grace-period kthread. Don't do a self-awaken (unless in an
1448 * interrupt or softirq handler, in which case we just might immediately
1449 * sleep upon return, resulting in a grace-period hang), and don't bother
1450 * awakening when there is nothing for the grace-period kthread to do
1451 * (as in several CPUs raced to awaken, we lost), and finally don't try
1452 * to awaken a kthread that has not yet been created. If all those checks
1453 * are passed, track some debug information and awaken.
1454 *
1455 * So why do the self-wakeup when in an interrupt or softirq handler
1456 * in the grace-period kthread's context? Because the kthread might have
1457 * been interrupted just as it was going to sleep, and just after the final
1458 * pre-sleep check of the awaken condition. In this case, a wakeup really
1459 * is required, and is therefore supplied.
1460 */
rcu_gp_kthread_wake(void)1461 static void rcu_gp_kthread_wake(void)
1462 {
1463 struct task_struct *t = READ_ONCE(rcu_state.gp_kthread);
1464
1465 if ((current == t && !in_irq() && !in_serving_softirq()) ||
1466 !READ_ONCE(rcu_state.gp_flags) || !t)
1467 return;
1468 WRITE_ONCE(rcu_state.gp_wake_time, jiffies);
1469 WRITE_ONCE(rcu_state.gp_wake_seq, READ_ONCE(rcu_state.gp_seq));
1470 swake_up_one(&rcu_state.gp_wq);
1471 }
1472
1473 /*
1474 * If there is room, assign a ->gp_seq number to any callbacks on this
1475 * CPU that have not already been assigned. Also accelerate any callbacks
1476 * that were previously assigned a ->gp_seq number that has since proven
1477 * to be too conservative, which can happen if callbacks get assigned a
1478 * ->gp_seq number while RCU is idle, but with reference to a non-root
1479 * rcu_node structure. This function is idempotent, so it does not hurt
1480 * to call it repeatedly. Returns an flag saying that we should awaken
1481 * the RCU grace-period kthread.
1482 *
1483 * The caller must hold rnp->lock with interrupts disabled.
1484 */
rcu_accelerate_cbs(struct rcu_node * rnp,struct rcu_data * rdp)1485 static bool rcu_accelerate_cbs(struct rcu_node *rnp, struct rcu_data *rdp)
1486 {
1487 unsigned long gp_seq_req;
1488 bool ret = false;
1489
1490 rcu_lockdep_assert_cblist_protected(rdp);
1491 raw_lockdep_assert_held_rcu_node(rnp);
1492
1493 /* If no pending (not yet ready to invoke) callbacks, nothing to do. */
1494 if (!rcu_segcblist_pend_cbs(&rdp->cblist))
1495 return false;
1496
1497 /*
1498 * Callbacks are often registered with incomplete grace-period
1499 * information. Something about the fact that getting exact
1500 * information requires acquiring a global lock... RCU therefore
1501 * makes a conservative estimate of the grace period number at which
1502 * a given callback will become ready to invoke. The following
1503 * code checks this estimate and improves it when possible, thus
1504 * accelerating callback invocation to an earlier grace-period
1505 * number.
1506 */
1507 gp_seq_req = rcu_seq_snap(&rcu_state.gp_seq);
1508 if (rcu_segcblist_accelerate(&rdp->cblist, gp_seq_req))
1509 ret = rcu_start_this_gp(rnp, rdp, gp_seq_req);
1510
1511 /* Trace depending on how much we were able to accelerate. */
1512 if (rcu_segcblist_restempty(&rdp->cblist, RCU_WAIT_TAIL))
1513 trace_rcu_grace_period(rcu_state.name, gp_seq_req, TPS("AccWaitCB"));
1514 else
1515 trace_rcu_grace_period(rcu_state.name, gp_seq_req, TPS("AccReadyCB"));
1516
1517 return ret;
1518 }
1519
1520 /*
1521 * Similar to rcu_accelerate_cbs(), but does not require that the leaf
1522 * rcu_node structure's ->lock be held. It consults the cached value
1523 * of ->gp_seq_needed in the rcu_data structure, and if that indicates
1524 * that a new grace-period request be made, invokes rcu_accelerate_cbs()
1525 * while holding the leaf rcu_node structure's ->lock.
1526 */
rcu_accelerate_cbs_unlocked(struct rcu_node * rnp,struct rcu_data * rdp)1527 static void rcu_accelerate_cbs_unlocked(struct rcu_node *rnp,
1528 struct rcu_data *rdp)
1529 {
1530 unsigned long c;
1531 bool needwake;
1532
1533 rcu_lockdep_assert_cblist_protected(rdp);
1534 c = rcu_seq_snap(&rcu_state.gp_seq);
1535 if (!READ_ONCE(rdp->gpwrap) && ULONG_CMP_GE(rdp->gp_seq_needed, c)) {
1536 /* Old request still live, so mark recent callbacks. */
1537 (void)rcu_segcblist_accelerate(&rdp->cblist, c);
1538 return;
1539 }
1540 raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */
1541 needwake = rcu_accelerate_cbs(rnp, rdp);
1542 raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
1543 if (needwake)
1544 rcu_gp_kthread_wake();
1545 }
1546
1547 /*
1548 * Move any callbacks whose grace period has completed to the
1549 * RCU_DONE_TAIL sublist, then compact the remaining sublists and
1550 * assign ->gp_seq numbers to any callbacks in the RCU_NEXT_TAIL
1551 * sublist. This function is idempotent, so it does not hurt to
1552 * invoke it repeatedly. As long as it is not invoked -too- often...
1553 * Returns true if the RCU grace-period kthread needs to be awakened.
1554 *
1555 * The caller must hold rnp->lock with interrupts disabled.
1556 */
rcu_advance_cbs(struct rcu_node * rnp,struct rcu_data * rdp)1557 static bool rcu_advance_cbs(struct rcu_node *rnp, struct rcu_data *rdp)
1558 {
1559 rcu_lockdep_assert_cblist_protected(rdp);
1560 raw_lockdep_assert_held_rcu_node(rnp);
1561
1562 /* If no pending (not yet ready to invoke) callbacks, nothing to do. */
1563 if (!rcu_segcblist_pend_cbs(&rdp->cblist))
1564 return false;
1565
1566 /*
1567 * Find all callbacks whose ->gp_seq numbers indicate that they
1568 * are ready to invoke, and put them into the RCU_DONE_TAIL sublist.
1569 */
1570 rcu_segcblist_advance(&rdp->cblist, rnp->gp_seq);
1571
1572 /* Classify any remaining callbacks. */
1573 return rcu_accelerate_cbs(rnp, rdp);
1574 }
1575
1576 /*
1577 * Move and classify callbacks, but only if doing so won't require
1578 * that the RCU grace-period kthread be awakened.
1579 */
rcu_advance_cbs_nowake(struct rcu_node * rnp,struct rcu_data * rdp)1580 static void __maybe_unused rcu_advance_cbs_nowake(struct rcu_node *rnp,
1581 struct rcu_data *rdp)
1582 {
1583 rcu_lockdep_assert_cblist_protected(rdp);
1584 if (!rcu_seq_state(rcu_seq_current(&rnp->gp_seq)) || !raw_spin_trylock_rcu_node(rnp))
1585 return;
1586 // The grace period cannot end while we hold the rcu_node lock.
1587 if (rcu_seq_state(rcu_seq_current(&rnp->gp_seq)))
1588 WARN_ON_ONCE(rcu_advance_cbs(rnp, rdp));
1589 raw_spin_unlock_rcu_node(rnp);
1590 }
1591
1592 /*
1593 * In CONFIG_RCU_STRICT_GRACE_PERIOD=y kernels, attempt to generate a
1594 * quiescent state. This is intended to be invoked when the CPU notices
1595 * a new grace period.
1596 */
rcu_strict_gp_check_qs(void)1597 static void rcu_strict_gp_check_qs(void)
1598 {
1599 if (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD)) {
1600 rcu_read_lock();
1601 rcu_read_unlock();
1602 }
1603 }
1604
1605 /*
1606 * Update CPU-local rcu_data state to record the beginnings and ends of
1607 * grace periods. The caller must hold the ->lock of the leaf rcu_node
1608 * structure corresponding to the current CPU, and must have irqs disabled.
1609 * Returns true if the grace-period kthread needs to be awakened.
1610 */
__note_gp_changes(struct rcu_node * rnp,struct rcu_data * rdp)1611 static bool __note_gp_changes(struct rcu_node *rnp, struct rcu_data *rdp)
1612 {
1613 bool ret = false;
1614 bool need_qs;
1615 const bool offloaded = IS_ENABLED(CONFIG_RCU_NOCB_CPU) &&
1616 rcu_segcblist_is_offloaded(&rdp->cblist);
1617
1618 raw_lockdep_assert_held_rcu_node(rnp);
1619
1620 if (rdp->gp_seq == rnp->gp_seq)
1621 return false; /* Nothing to do. */
1622
1623 /* Handle the ends of any preceding grace periods first. */
1624 if (rcu_seq_completed_gp(rdp->gp_seq, rnp->gp_seq) ||
1625 unlikely(READ_ONCE(rdp->gpwrap))) {
1626 if (!offloaded)
1627 ret = rcu_advance_cbs(rnp, rdp); /* Advance CBs. */
1628 rdp->core_needs_qs = false;
1629 trace_rcu_grace_period(rcu_state.name, rdp->gp_seq, TPS("cpuend"));
1630 } else {
1631 if (!offloaded)
1632 ret = rcu_accelerate_cbs(rnp, rdp); /* Recent CBs. */
1633 if (rdp->core_needs_qs)
1634 rdp->core_needs_qs = !!(rnp->qsmask & rdp->grpmask);
1635 }
1636
1637 /* Now handle the beginnings of any new-to-this-CPU grace periods. */
1638 if (rcu_seq_new_gp(rdp->gp_seq, rnp->gp_seq) ||
1639 unlikely(READ_ONCE(rdp->gpwrap))) {
1640 /*
1641 * If the current grace period is waiting for this CPU,
1642 * set up to detect a quiescent state, otherwise don't
1643 * go looking for one.
1644 */
1645 trace_rcu_grace_period(rcu_state.name, rnp->gp_seq, TPS("cpustart"));
1646 need_qs = !!(rnp->qsmask & rdp->grpmask);
1647 rdp->cpu_no_qs.b.norm = need_qs;
1648 rdp->core_needs_qs = need_qs;
1649 zero_cpu_stall_ticks(rdp);
1650 }
1651 rdp->gp_seq = rnp->gp_seq; /* Remember new grace-period state. */
1652 if (ULONG_CMP_LT(rdp->gp_seq_needed, rnp->gp_seq_needed) || rdp->gpwrap)
1653 WRITE_ONCE(rdp->gp_seq_needed, rnp->gp_seq_needed);
1654 WRITE_ONCE(rdp->gpwrap, false);
1655 rcu_gpnum_ovf(rnp, rdp);
1656 return ret;
1657 }
1658
note_gp_changes(struct rcu_data * rdp)1659 static void note_gp_changes(struct rcu_data *rdp)
1660 {
1661 unsigned long flags;
1662 bool needwake;
1663 struct rcu_node *rnp;
1664
1665 local_irq_save(flags);
1666 rnp = rdp->mynode;
1667 if ((rdp->gp_seq == rcu_seq_current(&rnp->gp_seq) &&
1668 !unlikely(READ_ONCE(rdp->gpwrap))) || /* w/out lock. */
1669 !raw_spin_trylock_rcu_node(rnp)) { /* irqs already off, so later. */
1670 local_irq_restore(flags);
1671 return;
1672 }
1673 needwake = __note_gp_changes(rnp, rdp);
1674 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1675 rcu_strict_gp_check_qs();
1676 if (needwake)
1677 rcu_gp_kthread_wake();
1678 }
1679
rcu_gp_slow(int delay)1680 static void rcu_gp_slow(int delay)
1681 {
1682 if (delay > 0 &&
1683 !(rcu_seq_ctr(rcu_state.gp_seq) %
1684 (rcu_num_nodes * PER_RCU_NODE_PERIOD * delay)))
1685 schedule_timeout_idle(delay);
1686 }
1687
1688 static unsigned long sleep_duration;
1689
1690 /* Allow rcutorture to stall the grace-period kthread. */
rcu_gp_set_torture_wait(int duration)1691 void rcu_gp_set_torture_wait(int duration)
1692 {
1693 if (IS_ENABLED(CONFIG_RCU_TORTURE_TEST) && duration > 0)
1694 WRITE_ONCE(sleep_duration, duration);
1695 }
1696 EXPORT_SYMBOL_GPL(rcu_gp_set_torture_wait);
1697
1698 /* Actually implement the aforementioned wait. */
rcu_gp_torture_wait(void)1699 static void rcu_gp_torture_wait(void)
1700 {
1701 unsigned long duration;
1702
1703 if (!IS_ENABLED(CONFIG_RCU_TORTURE_TEST))
1704 return;
1705 duration = xchg(&sleep_duration, 0UL);
1706 if (duration > 0) {
1707 pr_alert("%s: Waiting %lu jiffies\n", __func__, duration);
1708 schedule_timeout_idle(duration);
1709 pr_alert("%s: Wait complete\n", __func__);
1710 }
1711 }
1712
1713 /*
1714 * Handler for on_each_cpu() to invoke the target CPU's RCU core
1715 * processing.
1716 */
rcu_strict_gp_boundary(void * unused)1717 static void rcu_strict_gp_boundary(void *unused)
1718 {
1719 invoke_rcu_core();
1720 }
1721
1722 /*
1723 * Initialize a new grace period. Return false if no grace period required.
1724 */
rcu_gp_init(void)1725 static bool rcu_gp_init(void)
1726 {
1727 unsigned long firstseq;
1728 unsigned long flags;
1729 unsigned long oldmask;
1730 unsigned long mask;
1731 struct rcu_data *rdp;
1732 struct rcu_node *rnp = rcu_get_root();
1733
1734 WRITE_ONCE(rcu_state.gp_activity, jiffies);
1735 raw_spin_lock_irq_rcu_node(rnp);
1736 if (!READ_ONCE(rcu_state.gp_flags)) {
1737 /* Spurious wakeup, tell caller to go back to sleep. */
1738 raw_spin_unlock_irq_rcu_node(rnp);
1739 return false;
1740 }
1741 WRITE_ONCE(rcu_state.gp_flags, 0); /* Clear all flags: New GP. */
1742
1743 if (WARN_ON_ONCE(rcu_gp_in_progress())) {
1744 /*
1745 * Grace period already in progress, don't start another.
1746 * Not supposed to be able to happen.
1747 */
1748 raw_spin_unlock_irq_rcu_node(rnp);
1749 return false;
1750 }
1751
1752 /* Advance to a new grace period and initialize state. */
1753 record_gp_stall_check_time();
1754 /* Record GP times before starting GP, hence rcu_seq_start(). */
1755 rcu_seq_start(&rcu_state.gp_seq);
1756 ASSERT_EXCLUSIVE_WRITER(rcu_state.gp_seq);
1757 trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq, TPS("start"));
1758 raw_spin_unlock_irq_rcu_node(rnp);
1759
1760 /*
1761 * Apply per-leaf buffered online and offline operations to
1762 * the rcu_node tree. Note that this new grace period need not
1763 * wait for subsequent online CPUs, and that RCU hooks in the CPU
1764 * offlining path, when combined with checks in this function,
1765 * will handle CPUs that are currently going offline or that will
1766 * go offline later. Please also refer to "Hotplug CPU" section
1767 * of RCU's Requirements documentation.
1768 */
1769 rcu_state.gp_state = RCU_GP_ONOFF;
1770 rcu_for_each_leaf_node(rnp) {
1771 smp_mb(); // Pair with barriers used when updating ->ofl_seq to odd values.
1772 firstseq = READ_ONCE(rnp->ofl_seq);
1773 if (firstseq & 0x1)
1774 while (firstseq == READ_ONCE(rnp->ofl_seq))
1775 schedule_timeout_idle(1); // Can't wake unless RCU is watching.
1776 smp_mb(); // Pair with barriers used when updating ->ofl_seq to even values.
1777 raw_spin_lock(&rcu_state.ofl_lock);
1778 raw_spin_lock_irq_rcu_node(rnp);
1779 if (rnp->qsmaskinit == rnp->qsmaskinitnext &&
1780 !rnp->wait_blkd_tasks) {
1781 /* Nothing to do on this leaf rcu_node structure. */
1782 raw_spin_unlock_irq_rcu_node(rnp);
1783 raw_spin_unlock(&rcu_state.ofl_lock);
1784 continue;
1785 }
1786
1787 /* Record old state, apply changes to ->qsmaskinit field. */
1788 oldmask = rnp->qsmaskinit;
1789 rnp->qsmaskinit = rnp->qsmaskinitnext;
1790
1791 /* If zero-ness of ->qsmaskinit changed, propagate up tree. */
1792 if (!oldmask != !rnp->qsmaskinit) {
1793 if (!oldmask) { /* First online CPU for rcu_node. */
1794 if (!rnp->wait_blkd_tasks) /* Ever offline? */
1795 rcu_init_new_rnp(rnp);
1796 } else if (rcu_preempt_has_tasks(rnp)) {
1797 rnp->wait_blkd_tasks = true; /* blocked tasks */
1798 } else { /* Last offline CPU and can propagate. */
1799 rcu_cleanup_dead_rnp(rnp);
1800 }
1801 }
1802
1803 /*
1804 * If all waited-on tasks from prior grace period are
1805 * done, and if all this rcu_node structure's CPUs are
1806 * still offline, propagate up the rcu_node tree and
1807 * clear ->wait_blkd_tasks. Otherwise, if one of this
1808 * rcu_node structure's CPUs has since come back online,
1809 * simply clear ->wait_blkd_tasks.
1810 */
1811 if (rnp->wait_blkd_tasks &&
1812 (!rcu_preempt_has_tasks(rnp) || rnp->qsmaskinit)) {
1813 rnp->wait_blkd_tasks = false;
1814 if (!rnp->qsmaskinit)
1815 rcu_cleanup_dead_rnp(rnp);
1816 }
1817
1818 raw_spin_unlock_irq_rcu_node(rnp);
1819 raw_spin_unlock(&rcu_state.ofl_lock);
1820 }
1821 rcu_gp_slow(gp_preinit_delay); /* Races with CPU hotplug. */
1822
1823 /*
1824 * Set the quiescent-state-needed bits in all the rcu_node
1825 * structures for all currently online CPUs in breadth-first
1826 * order, starting from the root rcu_node structure, relying on the
1827 * layout of the tree within the rcu_state.node[] array. Note that
1828 * other CPUs will access only the leaves of the hierarchy, thus
1829 * seeing that no grace period is in progress, at least until the
1830 * corresponding leaf node has been initialized.
1831 *
1832 * The grace period cannot complete until the initialization
1833 * process finishes, because this kthread handles both.
1834 */
1835 rcu_state.gp_state = RCU_GP_INIT;
1836 rcu_for_each_node_breadth_first(rnp) {
1837 rcu_gp_slow(gp_init_delay);
1838 raw_spin_lock_irqsave_rcu_node(rnp, flags);
1839 rdp = this_cpu_ptr(&rcu_data);
1840 rcu_preempt_check_blocked_tasks(rnp);
1841 rnp->qsmask = rnp->qsmaskinit;
1842 WRITE_ONCE(rnp->gp_seq, rcu_state.gp_seq);
1843 if (rnp == rdp->mynode)
1844 (void)__note_gp_changes(rnp, rdp);
1845 rcu_preempt_boost_start_gp(rnp);
1846 trace_rcu_grace_period_init(rcu_state.name, rnp->gp_seq,
1847 rnp->level, rnp->grplo,
1848 rnp->grphi, rnp->qsmask);
1849 /* Quiescent states for tasks on any now-offline CPUs. */
1850 mask = rnp->qsmask & ~rnp->qsmaskinitnext;
1851 rnp->rcu_gp_init_mask = mask;
1852 if ((mask || rnp->wait_blkd_tasks) && rcu_is_leaf_node(rnp))
1853 rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags);
1854 else
1855 raw_spin_unlock_irq_rcu_node(rnp);
1856 cond_resched_tasks_rcu_qs();
1857 WRITE_ONCE(rcu_state.gp_activity, jiffies);
1858 }
1859
1860 // If strict, make all CPUs aware of new grace period.
1861 if (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD))
1862 on_each_cpu(rcu_strict_gp_boundary, NULL, 0);
1863
1864 return true;
1865 }
1866
1867 /*
1868 * Helper function for swait_event_idle_exclusive() wakeup at force-quiescent-state
1869 * time.
1870 */
rcu_gp_fqs_check_wake(int * gfp)1871 static bool rcu_gp_fqs_check_wake(int *gfp)
1872 {
1873 struct rcu_node *rnp = rcu_get_root();
1874
1875 // If under overload conditions, force an immediate FQS scan.
1876 if (*gfp & RCU_GP_FLAG_OVLD)
1877 return true;
1878
1879 // Someone like call_rcu() requested a force-quiescent-state scan.
1880 *gfp = READ_ONCE(rcu_state.gp_flags);
1881 if (*gfp & RCU_GP_FLAG_FQS)
1882 return true;
1883
1884 // The current grace period has completed.
1885 if (!READ_ONCE(rnp->qsmask) && !rcu_preempt_blocked_readers_cgp(rnp))
1886 return true;
1887
1888 return false;
1889 }
1890
1891 /*
1892 * Do one round of quiescent-state forcing.
1893 */
rcu_gp_fqs(bool first_time)1894 static void rcu_gp_fqs(bool first_time)
1895 {
1896 struct rcu_node *rnp = rcu_get_root();
1897
1898 WRITE_ONCE(rcu_state.gp_activity, jiffies);
1899 WRITE_ONCE(rcu_state.n_force_qs, rcu_state.n_force_qs + 1);
1900 if (first_time) {
1901 /* Collect dyntick-idle snapshots. */
1902 force_qs_rnp(dyntick_save_progress_counter);
1903 } else {
1904 /* Handle dyntick-idle and offline CPUs. */
1905 force_qs_rnp(rcu_implicit_dynticks_qs);
1906 }
1907 /* Clear flag to prevent immediate re-entry. */
1908 if (READ_ONCE(rcu_state.gp_flags) & RCU_GP_FLAG_FQS) {
1909 raw_spin_lock_irq_rcu_node(rnp);
1910 WRITE_ONCE(rcu_state.gp_flags,
1911 READ_ONCE(rcu_state.gp_flags) & ~RCU_GP_FLAG_FQS);
1912 raw_spin_unlock_irq_rcu_node(rnp);
1913 }
1914 }
1915
1916 /*
1917 * Loop doing repeated quiescent-state forcing until the grace period ends.
1918 */
rcu_gp_fqs_loop(void)1919 static void rcu_gp_fqs_loop(void)
1920 {
1921 bool first_gp_fqs;
1922 int gf = 0;
1923 unsigned long j;
1924 int ret;
1925 struct rcu_node *rnp = rcu_get_root();
1926
1927 first_gp_fqs = true;
1928 j = READ_ONCE(jiffies_till_first_fqs);
1929 if (rcu_state.cbovld)
1930 gf = RCU_GP_FLAG_OVLD;
1931 ret = 0;
1932 for (;;) {
1933 if (!ret) {
1934 rcu_state.jiffies_force_qs = jiffies + j;
1935 WRITE_ONCE(rcu_state.jiffies_kick_kthreads,
1936 jiffies + (j ? 3 * j : 2));
1937 }
1938 trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq,
1939 TPS("fqswait"));
1940 rcu_state.gp_state = RCU_GP_WAIT_FQS;
1941 ret = swait_event_idle_timeout_exclusive(
1942 rcu_state.gp_wq, rcu_gp_fqs_check_wake(&gf), j);
1943 rcu_gp_torture_wait();
1944 rcu_state.gp_state = RCU_GP_DOING_FQS;
1945 /* Locking provides needed memory barriers. */
1946 /* If grace period done, leave loop. */
1947 if (!READ_ONCE(rnp->qsmask) &&
1948 !rcu_preempt_blocked_readers_cgp(rnp))
1949 break;
1950 /* If time for quiescent-state forcing, do it. */
1951 if (!time_after(rcu_state.jiffies_force_qs, jiffies) ||
1952 (gf & (RCU_GP_FLAG_FQS | RCU_GP_FLAG_OVLD))) {
1953 trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq,
1954 TPS("fqsstart"));
1955 rcu_gp_fqs(first_gp_fqs);
1956 gf = 0;
1957 if (first_gp_fqs) {
1958 first_gp_fqs = false;
1959 gf = rcu_state.cbovld ? RCU_GP_FLAG_OVLD : 0;
1960 }
1961 trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq,
1962 TPS("fqsend"));
1963 cond_resched_tasks_rcu_qs();
1964 WRITE_ONCE(rcu_state.gp_activity, jiffies);
1965 ret = 0; /* Force full wait till next FQS. */
1966 j = READ_ONCE(jiffies_till_next_fqs);
1967 } else {
1968 /* Deal with stray signal. */
1969 cond_resched_tasks_rcu_qs();
1970 WRITE_ONCE(rcu_state.gp_activity, jiffies);
1971 WARN_ON(signal_pending(current));
1972 trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq,
1973 TPS("fqswaitsig"));
1974 ret = 1; /* Keep old FQS timing. */
1975 j = jiffies;
1976 if (time_after(jiffies, rcu_state.jiffies_force_qs))
1977 j = 1;
1978 else
1979 j = rcu_state.jiffies_force_qs - j;
1980 gf = 0;
1981 }
1982 }
1983 }
1984
1985 /*
1986 * Clean up after the old grace period.
1987 */
rcu_gp_cleanup(void)1988 static void rcu_gp_cleanup(void)
1989 {
1990 int cpu;
1991 bool needgp = false;
1992 unsigned long gp_duration;
1993 unsigned long new_gp_seq;
1994 bool offloaded;
1995 struct rcu_data *rdp;
1996 struct rcu_node *rnp = rcu_get_root();
1997 struct swait_queue_head *sq;
1998
1999 WRITE_ONCE(rcu_state.gp_activity, jiffies);
2000 raw_spin_lock_irq_rcu_node(rnp);
2001 rcu_state.gp_end = jiffies;
2002 gp_duration = rcu_state.gp_end - rcu_state.gp_start;
2003 if (gp_duration > rcu_state.gp_max)
2004 rcu_state.gp_max = gp_duration;
2005
2006 /*
2007 * We know the grace period is complete, but to everyone else
2008 * it appears to still be ongoing. But it is also the case
2009 * that to everyone else it looks like there is nothing that
2010 * they can do to advance the grace period. It is therefore
2011 * safe for us to drop the lock in order to mark the grace
2012 * period as completed in all of the rcu_node structures.
2013 */
2014 raw_spin_unlock_irq_rcu_node(rnp);
2015
2016 /*
2017 * Propagate new ->gp_seq value to rcu_node structures so that
2018 * other CPUs don't have to wait until the start of the next grace
2019 * period to process their callbacks. This also avoids some nasty
2020 * RCU grace-period initialization races by forcing the end of
2021 * the current grace period to be completely recorded in all of
2022 * the rcu_node structures before the beginning of the next grace
2023 * period is recorded in any of the rcu_node structures.
2024 */
2025 new_gp_seq = rcu_state.gp_seq;
2026 rcu_seq_end(&new_gp_seq);
2027 rcu_for_each_node_breadth_first(rnp) {
2028 raw_spin_lock_irq_rcu_node(rnp);
2029 if (WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp)))
2030 dump_blkd_tasks(rnp, 10);
2031 WARN_ON_ONCE(rnp->qsmask);
2032 WRITE_ONCE(rnp->gp_seq, new_gp_seq);
2033 rdp = this_cpu_ptr(&rcu_data);
2034 if (rnp == rdp->mynode)
2035 needgp = __note_gp_changes(rnp, rdp) || needgp;
2036 /* smp_mb() provided by prior unlock-lock pair. */
2037 needgp = rcu_future_gp_cleanup(rnp) || needgp;
2038 // Reset overload indication for CPUs no longer overloaded
2039 if (rcu_is_leaf_node(rnp))
2040 for_each_leaf_node_cpu_mask(rnp, cpu, rnp->cbovldmask) {
2041 rdp = per_cpu_ptr(&rcu_data, cpu);
2042 check_cb_ovld_locked(rdp, rnp);
2043 }
2044 sq = rcu_nocb_gp_get(rnp);
2045 raw_spin_unlock_irq_rcu_node(rnp);
2046 rcu_nocb_gp_cleanup(sq);
2047 cond_resched_tasks_rcu_qs();
2048 WRITE_ONCE(rcu_state.gp_activity, jiffies);
2049 rcu_gp_slow(gp_cleanup_delay);
2050 }
2051 rnp = rcu_get_root();
2052 raw_spin_lock_irq_rcu_node(rnp); /* GP before ->gp_seq update. */
2053
2054 /* Declare grace period done, trace first to use old GP number. */
2055 trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq, TPS("end"));
2056 rcu_seq_end(&rcu_state.gp_seq);
2057 ASSERT_EXCLUSIVE_WRITER(rcu_state.gp_seq);
2058 rcu_state.gp_state = RCU_GP_IDLE;
2059 /* Check for GP requests since above loop. */
2060 rdp = this_cpu_ptr(&rcu_data);
2061 if (!needgp && ULONG_CMP_LT(rnp->gp_seq, rnp->gp_seq_needed)) {
2062 trace_rcu_this_gp(rnp, rdp, rnp->gp_seq_needed,
2063 TPS("CleanupMore"));
2064 needgp = true;
2065 }
2066 /* Advance CBs to reduce false positives below. */
2067 offloaded = IS_ENABLED(CONFIG_RCU_NOCB_CPU) &&
2068 rcu_segcblist_is_offloaded(&rdp->cblist);
2069 if ((offloaded || !rcu_accelerate_cbs(rnp, rdp)) && needgp) {
2070 WRITE_ONCE(rcu_state.gp_flags, RCU_GP_FLAG_INIT);
2071 WRITE_ONCE(rcu_state.gp_req_activity, jiffies);
2072 trace_rcu_grace_period(rcu_state.name,
2073 rcu_state.gp_seq,
2074 TPS("newreq"));
2075 } else {
2076 WRITE_ONCE(rcu_state.gp_flags,
2077 rcu_state.gp_flags & RCU_GP_FLAG_INIT);
2078 }
2079 raw_spin_unlock_irq_rcu_node(rnp);
2080
2081 // If strict, make all CPUs aware of the end of the old grace period.
2082 if (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD))
2083 on_each_cpu(rcu_strict_gp_boundary, NULL, 0);
2084 }
2085
2086 /*
2087 * Body of kthread that handles grace periods.
2088 */
rcu_gp_kthread(void * unused)2089 static int __noreturn rcu_gp_kthread(void *unused)
2090 {
2091 rcu_bind_gp_kthread();
2092 for (;;) {
2093
2094 /* Handle grace-period start. */
2095 for (;;) {
2096 trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq,
2097 TPS("reqwait"));
2098 rcu_state.gp_state = RCU_GP_WAIT_GPS;
2099 swait_event_idle_exclusive(rcu_state.gp_wq,
2100 READ_ONCE(rcu_state.gp_flags) &
2101 RCU_GP_FLAG_INIT);
2102 rcu_gp_torture_wait();
2103 rcu_state.gp_state = RCU_GP_DONE_GPS;
2104 /* Locking provides needed memory barrier. */
2105 if (rcu_gp_init())
2106 break;
2107 cond_resched_tasks_rcu_qs();
2108 WRITE_ONCE(rcu_state.gp_activity, jiffies);
2109 WARN_ON(signal_pending(current));
2110 trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq,
2111 TPS("reqwaitsig"));
2112 }
2113
2114 /* Handle quiescent-state forcing. */
2115 rcu_gp_fqs_loop();
2116
2117 /* Handle grace-period end. */
2118 rcu_state.gp_state = RCU_GP_CLEANUP;
2119 rcu_gp_cleanup();
2120 rcu_state.gp_state = RCU_GP_CLEANED;
2121 }
2122 }
2123
2124 /*
2125 * Report a full set of quiescent states to the rcu_state data structure.
2126 * Invoke rcu_gp_kthread_wake() to awaken the grace-period kthread if
2127 * another grace period is required. Whether we wake the grace-period
2128 * kthread or it awakens itself for the next round of quiescent-state
2129 * forcing, that kthread will clean up after the just-completed grace
2130 * period. Note that the caller must hold rnp->lock, which is released
2131 * before return.
2132 */
rcu_report_qs_rsp(unsigned long flags)2133 static void rcu_report_qs_rsp(unsigned long flags)
2134 __releases(rcu_get_root()->lock)
2135 {
2136 raw_lockdep_assert_held_rcu_node(rcu_get_root());
2137 WARN_ON_ONCE(!rcu_gp_in_progress());
2138 WRITE_ONCE(rcu_state.gp_flags,
2139 READ_ONCE(rcu_state.gp_flags) | RCU_GP_FLAG_FQS);
2140 raw_spin_unlock_irqrestore_rcu_node(rcu_get_root(), flags);
2141 rcu_gp_kthread_wake();
2142 }
2143
2144 /*
2145 * Similar to rcu_report_qs_rdp(), for which it is a helper function.
2146 * Allows quiescent states for a group of CPUs to be reported at one go
2147 * to the specified rcu_node structure, though all the CPUs in the group
2148 * must be represented by the same rcu_node structure (which need not be a
2149 * leaf rcu_node structure, though it often will be). The gps parameter
2150 * is the grace-period snapshot, which means that the quiescent states
2151 * are valid only if rnp->gp_seq is equal to gps. That structure's lock
2152 * must be held upon entry, and it is released before return.
2153 *
2154 * As a special case, if mask is zero, the bit-already-cleared check is
2155 * disabled. This allows propagating quiescent state due to resumed tasks
2156 * during grace-period initialization.
2157 */
rcu_report_qs_rnp(unsigned long mask,struct rcu_node * rnp,unsigned long gps,unsigned long flags)2158 static void rcu_report_qs_rnp(unsigned long mask, struct rcu_node *rnp,
2159 unsigned long gps, unsigned long flags)
2160 __releases(rnp->lock)
2161 {
2162 unsigned long oldmask = 0;
2163 struct rcu_node *rnp_c;
2164
2165 raw_lockdep_assert_held_rcu_node(rnp);
2166
2167 /* Walk up the rcu_node hierarchy. */
2168 for (;;) {
2169 if ((!(rnp->qsmask & mask) && mask) || rnp->gp_seq != gps) {
2170
2171 /*
2172 * Our bit has already been cleared, or the
2173 * relevant grace period is already over, so done.
2174 */
2175 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2176 return;
2177 }
2178 WARN_ON_ONCE(oldmask); /* Any child must be all zeroed! */
2179 WARN_ON_ONCE(!rcu_is_leaf_node(rnp) &&
2180 rcu_preempt_blocked_readers_cgp(rnp));
2181 WRITE_ONCE(rnp->qsmask, rnp->qsmask & ~mask);
2182 trace_rcu_quiescent_state_report(rcu_state.name, rnp->gp_seq,
2183 mask, rnp->qsmask, rnp->level,
2184 rnp->grplo, rnp->grphi,
2185 !!rnp->gp_tasks);
2186 if (rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) {
2187
2188 /* Other bits still set at this level, so done. */
2189 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2190 return;
2191 }
2192 rnp->completedqs = rnp->gp_seq;
2193 mask = rnp->grpmask;
2194 if (rnp->parent == NULL) {
2195
2196 /* No more levels. Exit loop holding root lock. */
2197
2198 break;
2199 }
2200 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2201 rnp_c = rnp;
2202 rnp = rnp->parent;
2203 raw_spin_lock_irqsave_rcu_node(rnp, flags);
2204 oldmask = READ_ONCE(rnp_c->qsmask);
2205 }
2206
2207 /*
2208 * Get here if we are the last CPU to pass through a quiescent
2209 * state for this grace period. Invoke rcu_report_qs_rsp()
2210 * to clean up and start the next grace period if one is needed.
2211 */
2212 rcu_report_qs_rsp(flags); /* releases rnp->lock. */
2213 }
2214
2215 /*
2216 * Record a quiescent state for all tasks that were previously queued
2217 * on the specified rcu_node structure and that were blocking the current
2218 * RCU grace period. The caller must hold the corresponding rnp->lock with
2219 * irqs disabled, and this lock is released upon return, but irqs remain
2220 * disabled.
2221 */
2222 static void __maybe_unused
rcu_report_unblock_qs_rnp(struct rcu_node * rnp,unsigned long flags)2223 rcu_report_unblock_qs_rnp(struct rcu_node *rnp, unsigned long flags)
2224 __releases(rnp->lock)
2225 {
2226 unsigned long gps;
2227 unsigned long mask;
2228 struct rcu_node *rnp_p;
2229
2230 raw_lockdep_assert_held_rcu_node(rnp);
2231 if (WARN_ON_ONCE(!IS_ENABLED(CONFIG_PREEMPT_RCU)) ||
2232 WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp)) ||
2233 rnp->qsmask != 0) {
2234 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2235 return; /* Still need more quiescent states! */
2236 }
2237
2238 rnp->completedqs = rnp->gp_seq;
2239 rnp_p = rnp->parent;
2240 if (rnp_p == NULL) {
2241 /*
2242 * Only one rcu_node structure in the tree, so don't
2243 * try to report up to its nonexistent parent!
2244 */
2245 rcu_report_qs_rsp(flags);
2246 return;
2247 }
2248
2249 /* Report up the rest of the hierarchy, tracking current ->gp_seq. */
2250 gps = rnp->gp_seq;
2251 mask = rnp->grpmask;
2252 raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
2253 raw_spin_lock_rcu_node(rnp_p); /* irqs already disabled. */
2254 rcu_report_qs_rnp(mask, rnp_p, gps, flags);
2255 }
2256
2257 /*
2258 * Record a quiescent state for the specified CPU to that CPU's rcu_data
2259 * structure. This must be called from the specified CPU.
2260 */
2261 static void
rcu_report_qs_rdp(struct rcu_data * rdp)2262 rcu_report_qs_rdp(struct rcu_data *rdp)
2263 {
2264 unsigned long flags;
2265 unsigned long mask;
2266 bool needwake = false;
2267 const bool offloaded = IS_ENABLED(CONFIG_RCU_NOCB_CPU) &&
2268 rcu_segcblist_is_offloaded(&rdp->cblist);
2269 struct rcu_node *rnp;
2270
2271 WARN_ON_ONCE(rdp->cpu != smp_processor_id());
2272 rnp = rdp->mynode;
2273 raw_spin_lock_irqsave_rcu_node(rnp, flags);
2274 if (rdp->cpu_no_qs.b.norm || rdp->gp_seq != rnp->gp_seq ||
2275 rdp->gpwrap) {
2276
2277 /*
2278 * The grace period in which this quiescent state was
2279 * recorded has ended, so don't report it upwards.
2280 * We will instead need a new quiescent state that lies
2281 * within the current grace period.
2282 */
2283 rdp->cpu_no_qs.b.norm = true; /* need qs for new gp. */
2284 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2285 return;
2286 }
2287 mask = rdp->grpmask;
2288 rdp->core_needs_qs = false;
2289 if ((rnp->qsmask & mask) == 0) {
2290 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2291 } else {
2292 /*
2293 * This GP can't end until cpu checks in, so all of our
2294 * callbacks can be processed during the next GP.
2295 */
2296 if (!offloaded)
2297 needwake = rcu_accelerate_cbs(rnp, rdp);
2298
2299 rcu_disable_urgency_upon_qs(rdp);
2300 rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags);
2301 /* ^^^ Released rnp->lock */
2302 if (needwake)
2303 rcu_gp_kthread_wake();
2304 }
2305 }
2306
2307 /*
2308 * Check to see if there is a new grace period of which this CPU
2309 * is not yet aware, and if so, set up local rcu_data state for it.
2310 * Otherwise, see if this CPU has just passed through its first
2311 * quiescent state for this grace period, and record that fact if so.
2312 */
2313 static void
rcu_check_quiescent_state(struct rcu_data * rdp)2314 rcu_check_quiescent_state(struct rcu_data *rdp)
2315 {
2316 /* Check for grace-period ends and beginnings. */
2317 note_gp_changes(rdp);
2318
2319 /*
2320 * Does this CPU still need to do its part for current grace period?
2321 * If no, return and let the other CPUs do their part as well.
2322 */
2323 if (!rdp->core_needs_qs)
2324 return;
2325
2326 /*
2327 * Was there a quiescent state since the beginning of the grace
2328 * period? If no, then exit and wait for the next call.
2329 */
2330 if (rdp->cpu_no_qs.b.norm)
2331 return;
2332
2333 /*
2334 * Tell RCU we are done (but rcu_report_qs_rdp() will be the
2335 * judge of that).
2336 */
2337 rcu_report_qs_rdp(rdp);
2338 }
2339
2340 /*
2341 * Near the end of the offline process. Trace the fact that this CPU
2342 * is going offline.
2343 */
rcutree_dying_cpu(unsigned int cpu)2344 int rcutree_dying_cpu(unsigned int cpu)
2345 {
2346 bool blkd;
2347 struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
2348 struct rcu_node *rnp = rdp->mynode;
2349
2350 if (!IS_ENABLED(CONFIG_HOTPLUG_CPU))
2351 return 0;
2352
2353 blkd = !!(rnp->qsmask & rdp->grpmask);
2354 trace_rcu_grace_period(rcu_state.name, READ_ONCE(rnp->gp_seq),
2355 blkd ? TPS("cpuofl") : TPS("cpuofl-bgp"));
2356 return 0;
2357 }
2358
2359 /*
2360 * All CPUs for the specified rcu_node structure have gone offline,
2361 * and all tasks that were preempted within an RCU read-side critical
2362 * section while running on one of those CPUs have since exited their RCU
2363 * read-side critical section. Some other CPU is reporting this fact with
2364 * the specified rcu_node structure's ->lock held and interrupts disabled.
2365 * This function therefore goes up the tree of rcu_node structures,
2366 * clearing the corresponding bits in the ->qsmaskinit fields. Note that
2367 * the leaf rcu_node structure's ->qsmaskinit field has already been
2368 * updated.
2369 *
2370 * This function does check that the specified rcu_node structure has
2371 * all CPUs offline and no blocked tasks, so it is OK to invoke it
2372 * prematurely. That said, invoking it after the fact will cost you
2373 * a needless lock acquisition. So once it has done its work, don't
2374 * invoke it again.
2375 */
rcu_cleanup_dead_rnp(struct rcu_node * rnp_leaf)2376 static void rcu_cleanup_dead_rnp(struct rcu_node *rnp_leaf)
2377 {
2378 long mask;
2379 struct rcu_node *rnp = rnp_leaf;
2380
2381 raw_lockdep_assert_held_rcu_node(rnp_leaf);
2382 if (!IS_ENABLED(CONFIG_HOTPLUG_CPU) ||
2383 WARN_ON_ONCE(rnp_leaf->qsmaskinit) ||
2384 WARN_ON_ONCE(rcu_preempt_has_tasks(rnp_leaf)))
2385 return;
2386 for (;;) {
2387 mask = rnp->grpmask;
2388 rnp = rnp->parent;
2389 if (!rnp)
2390 break;
2391 raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */
2392 rnp->qsmaskinit &= ~mask;
2393 /* Between grace periods, so better already be zero! */
2394 WARN_ON_ONCE(rnp->qsmask);
2395 if (rnp->qsmaskinit) {
2396 raw_spin_unlock_rcu_node(rnp);
2397 /* irqs remain disabled. */
2398 return;
2399 }
2400 raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
2401 }
2402 }
2403
2404 /*
2405 * The CPU has been completely removed, and some other CPU is reporting
2406 * this fact from process context. Do the remainder of the cleanup.
2407 * There can only be one CPU hotplug operation at a time, so no need for
2408 * explicit locking.
2409 */
rcutree_dead_cpu(unsigned int cpu)2410 int rcutree_dead_cpu(unsigned int cpu)
2411 {
2412 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
2413 struct rcu_node *rnp = rdp->mynode; /* Outgoing CPU's rdp & rnp. */
2414
2415 if (!IS_ENABLED(CONFIG_HOTPLUG_CPU))
2416 return 0;
2417
2418 /* Adjust any no-longer-needed kthreads. */
2419 rcu_boost_kthread_setaffinity(rnp, -1);
2420 /* Do any needed no-CB deferred wakeups from this CPU. */
2421 do_nocb_deferred_wakeup(per_cpu_ptr(&rcu_data, cpu));
2422
2423 // Stop-machine done, so allow nohz_full to disable tick.
2424 tick_dep_clear(TICK_DEP_BIT_RCU);
2425 return 0;
2426 }
2427
2428 /*
2429 * Invoke any RCU callbacks that have made it to the end of their grace
2430 * period. Thottle as specified by rdp->blimit.
2431 */
rcu_do_batch(struct rcu_data * rdp)2432 static void rcu_do_batch(struct rcu_data *rdp)
2433 {
2434 int div;
2435 unsigned long flags;
2436 const bool offloaded = IS_ENABLED(CONFIG_RCU_NOCB_CPU) &&
2437 rcu_segcblist_is_offloaded(&rdp->cblist);
2438 struct rcu_head *rhp;
2439 struct rcu_cblist rcl = RCU_CBLIST_INITIALIZER(rcl);
2440 long bl, count;
2441 long pending, tlimit = 0;
2442
2443 /* If no callbacks are ready, just return. */
2444 if (!rcu_segcblist_ready_cbs(&rdp->cblist)) {
2445 trace_rcu_batch_start(rcu_state.name,
2446 rcu_segcblist_n_cbs(&rdp->cblist), 0);
2447 trace_rcu_batch_end(rcu_state.name, 0,
2448 !rcu_segcblist_empty(&rdp->cblist),
2449 need_resched(), is_idle_task(current),
2450 rcu_is_callbacks_kthread());
2451 return;
2452 }
2453
2454 /*
2455 * Extract the list of ready callbacks, disabling to prevent
2456 * races with call_rcu() from interrupt handlers. Leave the
2457 * callback counts, as rcu_barrier() needs to be conservative.
2458 */
2459 local_irq_save(flags);
2460 rcu_nocb_lock(rdp);
2461 WARN_ON_ONCE(cpu_is_offline(smp_processor_id()));
2462 pending = rcu_segcblist_n_cbs(&rdp->cblist);
2463 div = READ_ONCE(rcu_divisor);
2464 div = div < 0 ? 7 : div > sizeof(long) * 8 - 2 ? sizeof(long) * 8 - 2 : div;
2465 bl = max(rdp->blimit, pending >> div);
2466 if (in_serving_softirq() && unlikely(bl > 100)) {
2467 long rrn = READ_ONCE(rcu_resched_ns);
2468
2469 rrn = rrn < NSEC_PER_MSEC ? NSEC_PER_MSEC : rrn > NSEC_PER_SEC ? NSEC_PER_SEC : rrn;
2470 tlimit = local_clock() + rrn;
2471 }
2472 trace_rcu_batch_start(rcu_state.name,
2473 rcu_segcblist_n_cbs(&rdp->cblist), bl);
2474 rcu_segcblist_extract_done_cbs(&rdp->cblist, &rcl);
2475 if (offloaded)
2476 rdp->qlen_last_fqs_check = rcu_segcblist_n_cbs(&rdp->cblist);
2477 rcu_nocb_unlock_irqrestore(rdp, flags);
2478
2479 /* Invoke callbacks. */
2480 tick_dep_set_task(current, TICK_DEP_BIT_RCU);
2481 rhp = rcu_cblist_dequeue(&rcl);
2482 for (; rhp; rhp = rcu_cblist_dequeue(&rcl)) {
2483 rcu_callback_t f;
2484
2485 debug_rcu_head_unqueue(rhp);
2486
2487 rcu_lock_acquire(&rcu_callback_map);
2488 trace_rcu_invoke_callback(rcu_state.name, rhp);
2489
2490 f = rhp->func;
2491 WRITE_ONCE(rhp->func, (rcu_callback_t)0L);
2492 f(rhp);
2493
2494 rcu_lock_release(&rcu_callback_map);
2495
2496 /*
2497 * Stop only if limit reached and CPU has something to do.
2498 * Note: The rcl structure counts down from zero.
2499 */
2500 if (in_serving_softirq()) {
2501 if (-rcl.len >= bl && (need_resched() ||
2502 (!is_idle_task(current) && !rcu_is_callbacks_kthread())))
2503 break;
2504
2505 /*
2506 * Make sure we don't spend too much time here and deprive other
2507 * softirq vectors of CPU cycles.
2508 */
2509 if (unlikely(tlimit)) {
2510 /* only call local_clock() every 32 callbacks */
2511 if (likely((-rcl.len & 31) || local_clock() < tlimit))
2512 continue;
2513 /* Exceeded the time limit, so leave. */
2514 break;
2515 }
2516 } else {
2517 local_bh_enable();
2518 lockdep_assert_irqs_enabled();
2519 cond_resched_tasks_rcu_qs();
2520 lockdep_assert_irqs_enabled();
2521 local_bh_disable();
2522 }
2523 }
2524
2525 local_irq_save(flags);
2526 rcu_nocb_lock(rdp);
2527 count = -rcl.len;
2528 rdp->n_cbs_invoked += count;
2529 trace_rcu_batch_end(rcu_state.name, count, !!rcl.head, need_resched(),
2530 is_idle_task(current), rcu_is_callbacks_kthread());
2531
2532 /* Update counts and requeue any remaining callbacks. */
2533 rcu_segcblist_insert_done_cbs(&rdp->cblist, &rcl);
2534 smp_mb(); /* List handling before counting for rcu_barrier(). */
2535 rcu_segcblist_insert_count(&rdp->cblist, &rcl);
2536
2537 /* Reinstate batch limit if we have worked down the excess. */
2538 count = rcu_segcblist_n_cbs(&rdp->cblist);
2539 if (rdp->blimit >= DEFAULT_MAX_RCU_BLIMIT && count <= qlowmark)
2540 rdp->blimit = blimit;
2541
2542 /* Reset ->qlen_last_fqs_check trigger if enough CBs have drained. */
2543 if (count == 0 && rdp->qlen_last_fqs_check != 0) {
2544 rdp->qlen_last_fqs_check = 0;
2545 rdp->n_force_qs_snap = READ_ONCE(rcu_state.n_force_qs);
2546 } else if (count < rdp->qlen_last_fqs_check - qhimark)
2547 rdp->qlen_last_fqs_check = count;
2548
2549 /*
2550 * The following usually indicates a double call_rcu(). To track
2551 * this down, try building with CONFIG_DEBUG_OBJECTS_RCU_HEAD=y.
2552 */
2553 WARN_ON_ONCE(count == 0 && !rcu_segcblist_empty(&rdp->cblist));
2554 WARN_ON_ONCE(!IS_ENABLED(CONFIG_RCU_NOCB_CPU) &&
2555 count != 0 && rcu_segcblist_empty(&rdp->cblist));
2556
2557 rcu_nocb_unlock_irqrestore(rdp, flags);
2558
2559 /* Re-invoke RCU core processing if there are callbacks remaining. */
2560 if (!offloaded && rcu_segcblist_ready_cbs(&rdp->cblist))
2561 invoke_rcu_core();
2562 tick_dep_clear_task(current, TICK_DEP_BIT_RCU);
2563 }
2564
2565 /*
2566 * This function is invoked from each scheduling-clock interrupt,
2567 * and checks to see if this CPU is in a non-context-switch quiescent
2568 * state, for example, user mode or idle loop. It also schedules RCU
2569 * core processing. If the current grace period has gone on too long,
2570 * it will ask the scheduler to manufacture a context switch for the sole
2571 * purpose of providing a providing the needed quiescent state.
2572 */
rcu_sched_clock_irq(int user)2573 void rcu_sched_clock_irq(int user)
2574 {
2575 trace_rcu_utilization(TPS("Start scheduler-tick"));
2576 lockdep_assert_irqs_disabled();
2577 raw_cpu_inc(rcu_data.ticks_this_gp);
2578 /* The load-acquire pairs with the store-release setting to true. */
2579 if (smp_load_acquire(this_cpu_ptr(&rcu_data.rcu_urgent_qs))) {
2580 /* Idle and userspace execution already are quiescent states. */
2581 if (!rcu_is_cpu_rrupt_from_idle() && !user) {
2582 set_tsk_need_resched(current);
2583 set_preempt_need_resched();
2584 }
2585 __this_cpu_write(rcu_data.rcu_urgent_qs, false);
2586 }
2587 rcu_flavor_sched_clock_irq(user);
2588 if (rcu_pending(user))
2589 invoke_rcu_core();
2590 lockdep_assert_irqs_disabled();
2591
2592 trace_rcu_utilization(TPS("End scheduler-tick"));
2593 }
2594
2595 /*
2596 * Scan the leaf rcu_node structures. For each structure on which all
2597 * CPUs have reported a quiescent state and on which there are tasks
2598 * blocking the current grace period, initiate RCU priority boosting.
2599 * Otherwise, invoke the specified function to check dyntick state for
2600 * each CPU that has not yet reported a quiescent state.
2601 */
force_qs_rnp(int (* f)(struct rcu_data * rdp))2602 static void force_qs_rnp(int (*f)(struct rcu_data *rdp))
2603 {
2604 int cpu;
2605 unsigned long flags;
2606 unsigned long mask;
2607 struct rcu_data *rdp;
2608 struct rcu_node *rnp;
2609
2610 rcu_state.cbovld = rcu_state.cbovldnext;
2611 rcu_state.cbovldnext = false;
2612 rcu_for_each_leaf_node(rnp) {
2613 cond_resched_tasks_rcu_qs();
2614 mask = 0;
2615 raw_spin_lock_irqsave_rcu_node(rnp, flags);
2616 rcu_state.cbovldnext |= !!rnp->cbovldmask;
2617 if (rnp->qsmask == 0) {
2618 if (rcu_preempt_blocked_readers_cgp(rnp)) {
2619 /*
2620 * No point in scanning bits because they
2621 * are all zero. But we might need to
2622 * priority-boost blocked readers.
2623 */
2624 rcu_initiate_boost(rnp, flags);
2625 /* rcu_initiate_boost() releases rnp->lock */
2626 continue;
2627 }
2628 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2629 continue;
2630 }
2631 for_each_leaf_node_cpu_mask(rnp, cpu, rnp->qsmask) {
2632 rdp = per_cpu_ptr(&rcu_data, cpu);
2633 if (f(rdp)) {
2634 mask |= rdp->grpmask;
2635 rcu_disable_urgency_upon_qs(rdp);
2636 }
2637 }
2638 if (mask != 0) {
2639 /* Idle/offline CPUs, report (releases rnp->lock). */
2640 rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags);
2641 } else {
2642 /* Nothing to do here, so just drop the lock. */
2643 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2644 }
2645 }
2646 }
2647
2648 /*
2649 * Force quiescent states on reluctant CPUs, and also detect which
2650 * CPUs are in dyntick-idle mode.
2651 */
rcu_force_quiescent_state(void)2652 void rcu_force_quiescent_state(void)
2653 {
2654 unsigned long flags;
2655 bool ret;
2656 struct rcu_node *rnp;
2657 struct rcu_node *rnp_old = NULL;
2658
2659 /* Funnel through hierarchy to reduce memory contention. */
2660 rnp = raw_cpu_read(rcu_data.mynode);
2661 for (; rnp != NULL; rnp = rnp->parent) {
2662 ret = (READ_ONCE(rcu_state.gp_flags) & RCU_GP_FLAG_FQS) ||
2663 !raw_spin_trylock(&rnp->fqslock);
2664 if (rnp_old != NULL)
2665 raw_spin_unlock(&rnp_old->fqslock);
2666 if (ret)
2667 return;
2668 rnp_old = rnp;
2669 }
2670 /* rnp_old == rcu_get_root(), rnp == NULL. */
2671
2672 /* Reached the root of the rcu_node tree, acquire lock. */
2673 raw_spin_lock_irqsave_rcu_node(rnp_old, flags);
2674 raw_spin_unlock(&rnp_old->fqslock);
2675 if (READ_ONCE(rcu_state.gp_flags) & RCU_GP_FLAG_FQS) {
2676 raw_spin_unlock_irqrestore_rcu_node(rnp_old, flags);
2677 return; /* Someone beat us to it. */
2678 }
2679 WRITE_ONCE(rcu_state.gp_flags,
2680 READ_ONCE(rcu_state.gp_flags) | RCU_GP_FLAG_FQS);
2681 raw_spin_unlock_irqrestore_rcu_node(rnp_old, flags);
2682 rcu_gp_kthread_wake();
2683 }
2684 EXPORT_SYMBOL_GPL(rcu_force_quiescent_state);
2685
2686 // Workqueue handler for an RCU reader for kernels enforcing struct RCU
2687 // grace periods.
strict_work_handler(struct work_struct * work)2688 static void strict_work_handler(struct work_struct *work)
2689 {
2690 rcu_read_lock();
2691 rcu_read_unlock();
2692 }
2693
2694 /* Perform RCU core processing work for the current CPU. */
rcu_core(void)2695 static __latent_entropy void rcu_core(void)
2696 {
2697 unsigned long flags;
2698 struct rcu_data *rdp = raw_cpu_ptr(&rcu_data);
2699 struct rcu_node *rnp = rdp->mynode;
2700 const bool offloaded = IS_ENABLED(CONFIG_RCU_NOCB_CPU) &&
2701 rcu_segcblist_is_offloaded(&rdp->cblist);
2702
2703 if (cpu_is_offline(smp_processor_id()))
2704 return;
2705 trace_rcu_utilization(TPS("Start RCU core"));
2706 WARN_ON_ONCE(!rdp->beenonline);
2707
2708 /* Report any deferred quiescent states if preemption enabled. */
2709 if (!(preempt_count() & PREEMPT_MASK)) {
2710 rcu_preempt_deferred_qs(current);
2711 } else if (rcu_preempt_need_deferred_qs(current)) {
2712 set_tsk_need_resched(current);
2713 set_preempt_need_resched();
2714 }
2715
2716 /* Update RCU state based on any recent quiescent states. */
2717 rcu_check_quiescent_state(rdp);
2718
2719 /* No grace period and unregistered callbacks? */
2720 if (!rcu_gp_in_progress() &&
2721 rcu_segcblist_is_enabled(&rdp->cblist) && !offloaded) {
2722 local_irq_save(flags);
2723 if (!rcu_segcblist_restempty(&rdp->cblist, RCU_NEXT_READY_TAIL))
2724 rcu_accelerate_cbs_unlocked(rnp, rdp);
2725 local_irq_restore(flags);
2726 }
2727
2728 rcu_check_gp_start_stall(rnp, rdp, rcu_jiffies_till_stall_check());
2729
2730 /* If there are callbacks ready, invoke them. */
2731 if (!offloaded && rcu_segcblist_ready_cbs(&rdp->cblist) &&
2732 likely(READ_ONCE(rcu_scheduler_fully_active)))
2733 rcu_do_batch(rdp);
2734
2735 /* Do any needed deferred wakeups of rcuo kthreads. */
2736 do_nocb_deferred_wakeup(rdp);
2737 trace_rcu_utilization(TPS("End RCU core"));
2738
2739 // If strict GPs, schedule an RCU reader in a clean environment.
2740 if (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD))
2741 queue_work_on(rdp->cpu, rcu_gp_wq, &rdp->strict_work);
2742 }
2743
rcu_core_si(struct softirq_action * h)2744 static void rcu_core_si(struct softirq_action *h)
2745 {
2746 rcu_core();
2747 }
2748
rcu_wake_cond(struct task_struct * t,int status)2749 static void rcu_wake_cond(struct task_struct *t, int status)
2750 {
2751 /*
2752 * If the thread is yielding, only wake it when this
2753 * is invoked from idle
2754 */
2755 if (t && (status != RCU_KTHREAD_YIELDING || is_idle_task(current)))
2756 wake_up_process(t);
2757 }
2758
invoke_rcu_core_kthread(void)2759 static void invoke_rcu_core_kthread(void)
2760 {
2761 struct task_struct *t;
2762 unsigned long flags;
2763
2764 local_irq_save(flags);
2765 __this_cpu_write(rcu_data.rcu_cpu_has_work, 1);
2766 t = __this_cpu_read(rcu_data.rcu_cpu_kthread_task);
2767 if (t != NULL && t != current)
2768 rcu_wake_cond(t, __this_cpu_read(rcu_data.rcu_cpu_kthread_status));
2769 local_irq_restore(flags);
2770 }
2771
2772 /*
2773 * Wake up this CPU's rcuc kthread to do RCU core processing.
2774 */
invoke_rcu_core(void)2775 static void invoke_rcu_core(void)
2776 {
2777 if (!cpu_online(smp_processor_id()))
2778 return;
2779 if (use_softirq)
2780 raise_softirq(RCU_SOFTIRQ);
2781 else
2782 invoke_rcu_core_kthread();
2783 }
2784
rcu_cpu_kthread_park(unsigned int cpu)2785 static void rcu_cpu_kthread_park(unsigned int cpu)
2786 {
2787 per_cpu(rcu_data.rcu_cpu_kthread_status, cpu) = RCU_KTHREAD_OFFCPU;
2788 }
2789
rcu_cpu_kthread_should_run(unsigned int cpu)2790 static int rcu_cpu_kthread_should_run(unsigned int cpu)
2791 {
2792 return __this_cpu_read(rcu_data.rcu_cpu_has_work);
2793 }
2794
2795 /*
2796 * Per-CPU kernel thread that invokes RCU callbacks. This replaces
2797 * the RCU softirq used in configurations of RCU that do not support RCU
2798 * priority boosting.
2799 */
rcu_cpu_kthread(unsigned int cpu)2800 static void rcu_cpu_kthread(unsigned int cpu)
2801 {
2802 unsigned int *statusp = this_cpu_ptr(&rcu_data.rcu_cpu_kthread_status);
2803 char work, *workp = this_cpu_ptr(&rcu_data.rcu_cpu_has_work);
2804 int spincnt;
2805
2806 trace_rcu_utilization(TPS("Start CPU kthread@rcu_run"));
2807 for (spincnt = 0; spincnt < 10; spincnt++) {
2808 local_bh_disable();
2809 *statusp = RCU_KTHREAD_RUNNING;
2810 local_irq_disable();
2811 work = *workp;
2812 *workp = 0;
2813 local_irq_enable();
2814 if (work)
2815 rcu_core();
2816 local_bh_enable();
2817 if (*workp == 0) {
2818 trace_rcu_utilization(TPS("End CPU kthread@rcu_wait"));
2819 *statusp = RCU_KTHREAD_WAITING;
2820 return;
2821 }
2822 }
2823 *statusp = RCU_KTHREAD_YIELDING;
2824 trace_rcu_utilization(TPS("Start CPU kthread@rcu_yield"));
2825 schedule_timeout_idle(2);
2826 trace_rcu_utilization(TPS("End CPU kthread@rcu_yield"));
2827 *statusp = RCU_KTHREAD_WAITING;
2828 }
2829
2830 static struct smp_hotplug_thread rcu_cpu_thread_spec = {
2831 .store = &rcu_data.rcu_cpu_kthread_task,
2832 .thread_should_run = rcu_cpu_kthread_should_run,
2833 .thread_fn = rcu_cpu_kthread,
2834 .thread_comm = "rcuc/%u",
2835 .setup = rcu_cpu_kthread_setup,
2836 .park = rcu_cpu_kthread_park,
2837 };
2838
2839 /*
2840 * Spawn per-CPU RCU core processing kthreads.
2841 */
rcu_spawn_core_kthreads(void)2842 static int __init rcu_spawn_core_kthreads(void)
2843 {
2844 int cpu;
2845
2846 for_each_possible_cpu(cpu)
2847 per_cpu(rcu_data.rcu_cpu_has_work, cpu) = 0;
2848 if (!IS_ENABLED(CONFIG_RCU_BOOST) && use_softirq)
2849 return 0;
2850 WARN_ONCE(smpboot_register_percpu_thread(&rcu_cpu_thread_spec),
2851 "%s: Could not start rcuc kthread, OOM is now expected behavior\n", __func__);
2852 return 0;
2853 }
2854
2855 /*
2856 * Handle any core-RCU processing required by a call_rcu() invocation.
2857 */
__call_rcu_core(struct rcu_data * rdp,struct rcu_head * head,unsigned long flags)2858 static void __call_rcu_core(struct rcu_data *rdp, struct rcu_head *head,
2859 unsigned long flags)
2860 {
2861 /*
2862 * If called from an extended quiescent state, invoke the RCU
2863 * core in order to force a re-evaluation of RCU's idleness.
2864 */
2865 if (!rcu_is_watching())
2866 invoke_rcu_core();
2867
2868 /* If interrupts were disabled or CPU offline, don't invoke RCU core. */
2869 if (irqs_disabled_flags(flags) || cpu_is_offline(smp_processor_id()))
2870 return;
2871
2872 /*
2873 * Force the grace period if too many callbacks or too long waiting.
2874 * Enforce hysteresis, and don't invoke rcu_force_quiescent_state()
2875 * if some other CPU has recently done so. Also, don't bother
2876 * invoking rcu_force_quiescent_state() if the newly enqueued callback
2877 * is the only one waiting for a grace period to complete.
2878 */
2879 if (unlikely(rcu_segcblist_n_cbs(&rdp->cblist) >
2880 rdp->qlen_last_fqs_check + qhimark)) {
2881
2882 /* Are we ignoring a completed grace period? */
2883 note_gp_changes(rdp);
2884
2885 /* Start a new grace period if one not already started. */
2886 if (!rcu_gp_in_progress()) {
2887 rcu_accelerate_cbs_unlocked(rdp->mynode, rdp);
2888 } else {
2889 /* Give the grace period a kick. */
2890 rdp->blimit = DEFAULT_MAX_RCU_BLIMIT;
2891 if (READ_ONCE(rcu_state.n_force_qs) == rdp->n_force_qs_snap &&
2892 rcu_segcblist_first_pend_cb(&rdp->cblist) != head)
2893 rcu_force_quiescent_state();
2894 rdp->n_force_qs_snap = READ_ONCE(rcu_state.n_force_qs);
2895 rdp->qlen_last_fqs_check = rcu_segcblist_n_cbs(&rdp->cblist);
2896 }
2897 }
2898 }
2899
2900 /*
2901 * RCU callback function to leak a callback.
2902 */
rcu_leak_callback(struct rcu_head * rhp)2903 static void rcu_leak_callback(struct rcu_head *rhp)
2904 {
2905 }
2906
2907 /*
2908 * Check and if necessary update the leaf rcu_node structure's
2909 * ->cbovldmask bit corresponding to the current CPU based on that CPU's
2910 * number of queued RCU callbacks. The caller must hold the leaf rcu_node
2911 * structure's ->lock.
2912 */
check_cb_ovld_locked(struct rcu_data * rdp,struct rcu_node * rnp)2913 static void check_cb_ovld_locked(struct rcu_data *rdp, struct rcu_node *rnp)
2914 {
2915 raw_lockdep_assert_held_rcu_node(rnp);
2916 if (qovld_calc <= 0)
2917 return; // Early boot and wildcard value set.
2918 if (rcu_segcblist_n_cbs(&rdp->cblist) >= qovld_calc)
2919 WRITE_ONCE(rnp->cbovldmask, rnp->cbovldmask | rdp->grpmask);
2920 else
2921 WRITE_ONCE(rnp->cbovldmask, rnp->cbovldmask & ~rdp->grpmask);
2922 }
2923
2924 /*
2925 * Check and if necessary update the leaf rcu_node structure's
2926 * ->cbovldmask bit corresponding to the current CPU based on that CPU's
2927 * number of queued RCU callbacks. No locks need be held, but the
2928 * caller must have disabled interrupts.
2929 *
2930 * Note that this function ignores the possibility that there are a lot
2931 * of callbacks all of which have already seen the end of their respective
2932 * grace periods. This omission is due to the need for no-CBs CPUs to
2933 * be holding ->nocb_lock to do this check, which is too heavy for a
2934 * common-case operation.
2935 */
check_cb_ovld(struct rcu_data * rdp)2936 static void check_cb_ovld(struct rcu_data *rdp)
2937 {
2938 struct rcu_node *const rnp = rdp->mynode;
2939
2940 if (qovld_calc <= 0 ||
2941 ((rcu_segcblist_n_cbs(&rdp->cblist) >= qovld_calc) ==
2942 !!(READ_ONCE(rnp->cbovldmask) & rdp->grpmask)))
2943 return; // Early boot wildcard value or already set correctly.
2944 raw_spin_lock_rcu_node(rnp);
2945 check_cb_ovld_locked(rdp, rnp);
2946 raw_spin_unlock_rcu_node(rnp);
2947 }
2948
2949 /* Helper function for call_rcu() and friends. */
2950 static void
__call_rcu(struct rcu_head * head,rcu_callback_t func)2951 __call_rcu(struct rcu_head *head, rcu_callback_t func)
2952 {
2953 unsigned long flags;
2954 struct rcu_data *rdp;
2955 bool was_alldone;
2956
2957 /* Misaligned rcu_head! */
2958 WARN_ON_ONCE((unsigned long)head & (sizeof(void *) - 1));
2959
2960 if (debug_rcu_head_queue(head)) {
2961 /*
2962 * Probable double call_rcu(), so leak the callback.
2963 * Use rcu:rcu_callback trace event to find the previous
2964 * time callback was passed to __call_rcu().
2965 */
2966 WARN_ONCE(1, "__call_rcu(): Double-freed CB %p->%pS()!!!\n",
2967 head, head->func);
2968 WRITE_ONCE(head->func, rcu_leak_callback);
2969 return;
2970 }
2971 head->func = func;
2972 head->next = NULL;
2973 local_irq_save(flags);
2974 kasan_record_aux_stack(head);
2975 rdp = this_cpu_ptr(&rcu_data);
2976
2977 /* Add the callback to our list. */
2978 if (unlikely(!rcu_segcblist_is_enabled(&rdp->cblist))) {
2979 // This can trigger due to call_rcu() from offline CPU:
2980 WARN_ON_ONCE(rcu_scheduler_active != RCU_SCHEDULER_INACTIVE);
2981 WARN_ON_ONCE(!rcu_is_watching());
2982 // Very early boot, before rcu_init(). Initialize if needed
2983 // and then drop through to queue the callback.
2984 if (rcu_segcblist_empty(&rdp->cblist))
2985 rcu_segcblist_init(&rdp->cblist);
2986 }
2987
2988 check_cb_ovld(rdp);
2989 if (rcu_nocb_try_bypass(rdp, head, &was_alldone, flags))
2990 return; // Enqueued onto ->nocb_bypass, so just leave.
2991 // If no-CBs CPU gets here, rcu_nocb_try_bypass() acquired ->nocb_lock.
2992 rcu_segcblist_enqueue(&rdp->cblist, head);
2993 if (__is_kvfree_rcu_offset((unsigned long)func))
2994 trace_rcu_kvfree_callback(rcu_state.name, head,
2995 (unsigned long)func,
2996 rcu_segcblist_n_cbs(&rdp->cblist));
2997 else
2998 trace_rcu_callback(rcu_state.name, head,
2999 rcu_segcblist_n_cbs(&rdp->cblist));
3000
3001 /* Go handle any RCU core processing required. */
3002 if (IS_ENABLED(CONFIG_RCU_NOCB_CPU) &&
3003 unlikely(rcu_segcblist_is_offloaded(&rdp->cblist))) {
3004 __call_rcu_nocb_wake(rdp, was_alldone, flags); /* unlocks */
3005 } else {
3006 __call_rcu_core(rdp, head, flags);
3007 local_irq_restore(flags);
3008 }
3009 }
3010
3011 /**
3012 * call_rcu() - Queue an RCU callback for invocation after a grace period.
3013 * @head: structure to be used for queueing the RCU updates.
3014 * @func: actual callback function to be invoked after the grace period
3015 *
3016 * The callback function will be invoked some time after a full grace
3017 * period elapses, in other words after all pre-existing RCU read-side
3018 * critical sections have completed. However, the callback function
3019 * might well execute concurrently with RCU read-side critical sections
3020 * that started after call_rcu() was invoked. RCU read-side critical
3021 * sections are delimited by rcu_read_lock() and rcu_read_unlock(), and
3022 * may be nested. In addition, regions of code across which interrupts,
3023 * preemption, or softirqs have been disabled also serve as RCU read-side
3024 * critical sections. This includes hardware interrupt handlers, softirq
3025 * handlers, and NMI handlers.
3026 *
3027 * Note that all CPUs must agree that the grace period extended beyond
3028 * all pre-existing RCU read-side critical section. On systems with more
3029 * than one CPU, this means that when "func()" is invoked, each CPU is
3030 * guaranteed to have executed a full memory barrier since the end of its
3031 * last RCU read-side critical section whose beginning preceded the call
3032 * to call_rcu(). It also means that each CPU executing an RCU read-side
3033 * critical section that continues beyond the start of "func()" must have
3034 * executed a memory barrier after the call_rcu() but before the beginning
3035 * of that RCU read-side critical section. Note that these guarantees
3036 * include CPUs that are offline, idle, or executing in user mode, as
3037 * well as CPUs that are executing in the kernel.
3038 *
3039 * Furthermore, if CPU A invoked call_rcu() and CPU B invoked the
3040 * resulting RCU callback function "func()", then both CPU A and CPU B are
3041 * guaranteed to execute a full memory barrier during the time interval
3042 * between the call to call_rcu() and the invocation of "func()" -- even
3043 * if CPU A and CPU B are the same CPU (but again only if the system has
3044 * more than one CPU).
3045 */
call_rcu(struct rcu_head * head,rcu_callback_t func)3046 void call_rcu(struct rcu_head *head, rcu_callback_t func)
3047 {
3048 __call_rcu(head, func);
3049 }
3050 EXPORT_SYMBOL_GPL(call_rcu);
3051
3052
3053 /* Maximum number of jiffies to wait before draining a batch. */
3054 #define KFREE_DRAIN_JIFFIES (HZ / 50)
3055 #define KFREE_N_BATCHES 2
3056 #define FREE_N_CHANNELS 2
3057
3058 /**
3059 * struct kvfree_rcu_bulk_data - single block to store kvfree_rcu() pointers
3060 * @nr_records: Number of active pointers in the array
3061 * @next: Next bulk object in the block chain
3062 * @records: Array of the kvfree_rcu() pointers
3063 */
3064 struct kvfree_rcu_bulk_data {
3065 unsigned long nr_records;
3066 struct kvfree_rcu_bulk_data *next;
3067 void *records[];
3068 };
3069
3070 /*
3071 * This macro defines how many entries the "records" array
3072 * will contain. It is based on the fact that the size of
3073 * kvfree_rcu_bulk_data structure becomes exactly one page.
3074 */
3075 #define KVFREE_BULK_MAX_ENTR \
3076 ((PAGE_SIZE - sizeof(struct kvfree_rcu_bulk_data)) / sizeof(void *))
3077
3078 /**
3079 * struct kfree_rcu_cpu_work - single batch of kfree_rcu() requests
3080 * @rcu_work: Let queue_rcu_work() invoke workqueue handler after grace period
3081 * @head_free: List of kfree_rcu() objects waiting for a grace period
3082 * @bkvhead_free: Bulk-List of kvfree_rcu() objects waiting for a grace period
3083 * @krcp: Pointer to @kfree_rcu_cpu structure
3084 */
3085
3086 struct kfree_rcu_cpu_work {
3087 struct rcu_work rcu_work;
3088 struct rcu_head *head_free;
3089 struct kvfree_rcu_bulk_data *bkvhead_free[FREE_N_CHANNELS];
3090 struct kfree_rcu_cpu *krcp;
3091 };
3092
3093 /**
3094 * struct kfree_rcu_cpu - batch up kfree_rcu() requests for RCU grace period
3095 * @head: List of kfree_rcu() objects not yet waiting for a grace period
3096 * @bkvhead: Bulk-List of kvfree_rcu() objects not yet waiting for a grace period
3097 * @krw_arr: Array of batches of kfree_rcu() objects waiting for a grace period
3098 * @lock: Synchronize access to this structure
3099 * @monitor_work: Promote @head to @head_free after KFREE_DRAIN_JIFFIES
3100 * @monitor_todo: Tracks whether a @monitor_work delayed work is pending
3101 * @initialized: The @rcu_work fields have been initialized
3102 * @count: Number of objects for which GP not started
3103 * @bkvcache:
3104 * A simple cache list that contains objects for reuse purpose.
3105 * In order to save some per-cpu space the list is singular.
3106 * Even though it is lockless an access has to be protected by the
3107 * per-cpu lock.
3108 * @page_cache_work: A work to refill the cache when it is empty
3109 * @work_in_progress: Indicates that page_cache_work is running
3110 * @hrtimer: A hrtimer for scheduling a page_cache_work
3111 * @nr_bkv_objs: number of allocated objects at @bkvcache.
3112 *
3113 * This is a per-CPU structure. The reason that it is not included in
3114 * the rcu_data structure is to permit this code to be extracted from
3115 * the RCU files. Such extraction could allow further optimization of
3116 * the interactions with the slab allocators.
3117 */
3118 struct kfree_rcu_cpu {
3119 struct rcu_head *head;
3120 struct kvfree_rcu_bulk_data *bkvhead[FREE_N_CHANNELS];
3121 struct kfree_rcu_cpu_work krw_arr[KFREE_N_BATCHES];
3122 raw_spinlock_t lock;
3123 struct delayed_work monitor_work;
3124 bool monitor_todo;
3125 bool initialized;
3126 int count;
3127
3128 struct work_struct page_cache_work;
3129 atomic_t work_in_progress;
3130 struct hrtimer hrtimer;
3131
3132 struct llist_head bkvcache;
3133 int nr_bkv_objs;
3134 };
3135
3136 static DEFINE_PER_CPU(struct kfree_rcu_cpu, krc) = {
3137 .lock = __RAW_SPIN_LOCK_UNLOCKED(krc.lock),
3138 };
3139
3140 static __always_inline void
debug_rcu_bhead_unqueue(struct kvfree_rcu_bulk_data * bhead)3141 debug_rcu_bhead_unqueue(struct kvfree_rcu_bulk_data *bhead)
3142 {
3143 #ifdef CONFIG_DEBUG_OBJECTS_RCU_HEAD
3144 int i;
3145
3146 for (i = 0; i < bhead->nr_records; i++)
3147 debug_rcu_head_unqueue((struct rcu_head *)(bhead->records[i]));
3148 #endif
3149 }
3150
3151 static inline struct kfree_rcu_cpu *
krc_this_cpu_lock(unsigned long * flags)3152 krc_this_cpu_lock(unsigned long *flags)
3153 {
3154 struct kfree_rcu_cpu *krcp;
3155
3156 local_irq_save(*flags); // For safely calling this_cpu_ptr().
3157 krcp = this_cpu_ptr(&krc);
3158 raw_spin_lock(&krcp->lock);
3159
3160 return krcp;
3161 }
3162
3163 static inline void
krc_this_cpu_unlock(struct kfree_rcu_cpu * krcp,unsigned long flags)3164 krc_this_cpu_unlock(struct kfree_rcu_cpu *krcp, unsigned long flags)
3165 {
3166 raw_spin_unlock(&krcp->lock);
3167 local_irq_restore(flags);
3168 }
3169
3170 static inline struct kvfree_rcu_bulk_data *
get_cached_bnode(struct kfree_rcu_cpu * krcp)3171 get_cached_bnode(struct kfree_rcu_cpu *krcp)
3172 {
3173 if (!krcp->nr_bkv_objs)
3174 return NULL;
3175
3176 krcp->nr_bkv_objs--;
3177 return (struct kvfree_rcu_bulk_data *)
3178 llist_del_first(&krcp->bkvcache);
3179 }
3180
3181 static inline bool
put_cached_bnode(struct kfree_rcu_cpu * krcp,struct kvfree_rcu_bulk_data * bnode)3182 put_cached_bnode(struct kfree_rcu_cpu *krcp,
3183 struct kvfree_rcu_bulk_data *bnode)
3184 {
3185 // Check the limit.
3186 if (krcp->nr_bkv_objs >= rcu_min_cached_objs)
3187 return false;
3188
3189 llist_add((struct llist_node *) bnode, &krcp->bkvcache);
3190 krcp->nr_bkv_objs++;
3191 return true;
3192
3193 }
3194
3195 /*
3196 * This function is invoked in workqueue context after a grace period.
3197 * It frees all the objects queued on ->bhead_free or ->head_free.
3198 */
kfree_rcu_work(struct work_struct * work)3199 static void kfree_rcu_work(struct work_struct *work)
3200 {
3201 unsigned long flags;
3202 struct kvfree_rcu_bulk_data *bkvhead[FREE_N_CHANNELS], *bnext;
3203 struct rcu_head *head, *next;
3204 struct kfree_rcu_cpu *krcp;
3205 struct kfree_rcu_cpu_work *krwp;
3206 int i, j;
3207
3208 krwp = container_of(to_rcu_work(work),
3209 struct kfree_rcu_cpu_work, rcu_work);
3210 krcp = krwp->krcp;
3211
3212 raw_spin_lock_irqsave(&krcp->lock, flags);
3213 // Channels 1 and 2.
3214 for (i = 0; i < FREE_N_CHANNELS; i++) {
3215 bkvhead[i] = krwp->bkvhead_free[i];
3216 krwp->bkvhead_free[i] = NULL;
3217 }
3218
3219 // Channel 3.
3220 head = krwp->head_free;
3221 krwp->head_free = NULL;
3222 raw_spin_unlock_irqrestore(&krcp->lock, flags);
3223
3224 // Handle two first channels.
3225 for (i = 0; i < FREE_N_CHANNELS; i++) {
3226 for (; bkvhead[i]; bkvhead[i] = bnext) {
3227 bnext = bkvhead[i]->next;
3228 debug_rcu_bhead_unqueue(bkvhead[i]);
3229
3230 rcu_lock_acquire(&rcu_callback_map);
3231 if (i == 0) { // kmalloc() / kfree().
3232 trace_rcu_invoke_kfree_bulk_callback(
3233 rcu_state.name, bkvhead[i]->nr_records,
3234 bkvhead[i]->records);
3235
3236 kfree_bulk(bkvhead[i]->nr_records,
3237 bkvhead[i]->records);
3238 } else { // vmalloc() / vfree().
3239 for (j = 0; j < bkvhead[i]->nr_records; j++) {
3240 trace_rcu_invoke_kvfree_callback(
3241 rcu_state.name,
3242 bkvhead[i]->records[j], 0);
3243
3244 vfree(bkvhead[i]->records[j]);
3245 }
3246 }
3247 rcu_lock_release(&rcu_callback_map);
3248
3249 raw_spin_lock_irqsave(&krcp->lock, flags);
3250 if (put_cached_bnode(krcp, bkvhead[i]))
3251 bkvhead[i] = NULL;
3252 raw_spin_unlock_irqrestore(&krcp->lock, flags);
3253
3254 if (bkvhead[i])
3255 free_page((unsigned long) bkvhead[i]);
3256
3257 cond_resched_tasks_rcu_qs();
3258 }
3259 }
3260
3261 /*
3262 * Emergency case only. It can happen under low memory
3263 * condition when an allocation gets failed, so the "bulk"
3264 * path can not be temporary maintained.
3265 */
3266 for (; head; head = next) {
3267 unsigned long offset = (unsigned long)head->func;
3268 void *ptr = (void *)head - offset;
3269
3270 next = head->next;
3271 debug_rcu_head_unqueue((struct rcu_head *)ptr);
3272 rcu_lock_acquire(&rcu_callback_map);
3273 trace_rcu_invoke_kvfree_callback(rcu_state.name, head, offset);
3274
3275 if (!WARN_ON_ONCE(!__is_kvfree_rcu_offset(offset)))
3276 kvfree(ptr);
3277
3278 rcu_lock_release(&rcu_callback_map);
3279 cond_resched_tasks_rcu_qs();
3280 }
3281 }
3282
3283 /*
3284 * Schedule the kfree batch RCU work to run in workqueue context after a GP.
3285 *
3286 * This function is invoked by kfree_rcu_monitor() when the KFREE_DRAIN_JIFFIES
3287 * timeout has been reached.
3288 */
queue_kfree_rcu_work(struct kfree_rcu_cpu * krcp)3289 static inline bool queue_kfree_rcu_work(struct kfree_rcu_cpu *krcp)
3290 {
3291 struct kfree_rcu_cpu_work *krwp;
3292 bool repeat = false;
3293 int i, j;
3294
3295 lockdep_assert_held(&krcp->lock);
3296
3297 for (i = 0; i < KFREE_N_BATCHES; i++) {
3298 krwp = &(krcp->krw_arr[i]);
3299
3300 /*
3301 * Try to detach bkvhead or head and attach it over any
3302 * available corresponding free channel. It can be that
3303 * a previous RCU batch is in progress, it means that
3304 * immediately to queue another one is not possible so
3305 * return false to tell caller to retry.
3306 */
3307 if ((krcp->bkvhead[0] && !krwp->bkvhead_free[0]) ||
3308 (krcp->bkvhead[1] && !krwp->bkvhead_free[1]) ||
3309 (krcp->head && !krwp->head_free)) {
3310 // Channel 1 corresponds to SLAB ptrs.
3311 // Channel 2 corresponds to vmalloc ptrs.
3312 for (j = 0; j < FREE_N_CHANNELS; j++) {
3313 if (!krwp->bkvhead_free[j]) {
3314 krwp->bkvhead_free[j] = krcp->bkvhead[j];
3315 krcp->bkvhead[j] = NULL;
3316 }
3317 }
3318
3319 // Channel 3 corresponds to emergency path.
3320 if (!krwp->head_free) {
3321 krwp->head_free = krcp->head;
3322 krcp->head = NULL;
3323 }
3324
3325 WRITE_ONCE(krcp->count, 0);
3326
3327 /*
3328 * One work is per one batch, so there are three
3329 * "free channels", the batch can handle. It can
3330 * be that the work is in the pending state when
3331 * channels have been detached following by each
3332 * other.
3333 */
3334 queue_rcu_work(system_wq, &krwp->rcu_work);
3335 }
3336
3337 // Repeat if any "free" corresponding channel is still busy.
3338 if (krcp->bkvhead[0] || krcp->bkvhead[1] || krcp->head)
3339 repeat = true;
3340 }
3341
3342 return !repeat;
3343 }
3344
kfree_rcu_drain_unlock(struct kfree_rcu_cpu * krcp,unsigned long flags)3345 static inline void kfree_rcu_drain_unlock(struct kfree_rcu_cpu *krcp,
3346 unsigned long flags)
3347 {
3348 // Attempt to start a new batch.
3349 krcp->monitor_todo = false;
3350 if (queue_kfree_rcu_work(krcp)) {
3351 // Success! Our job is done here.
3352 raw_spin_unlock_irqrestore(&krcp->lock, flags);
3353 return;
3354 }
3355
3356 // Previous RCU batch still in progress, try again later.
3357 krcp->monitor_todo = true;
3358 schedule_delayed_work(&krcp->monitor_work, KFREE_DRAIN_JIFFIES);
3359 raw_spin_unlock_irqrestore(&krcp->lock, flags);
3360 }
3361
3362 /*
3363 * This function is invoked after the KFREE_DRAIN_JIFFIES timeout.
3364 * It invokes kfree_rcu_drain_unlock() to attempt to start another batch.
3365 */
kfree_rcu_monitor(struct work_struct * work)3366 static void kfree_rcu_monitor(struct work_struct *work)
3367 {
3368 unsigned long flags;
3369 struct kfree_rcu_cpu *krcp = container_of(work, struct kfree_rcu_cpu,
3370 monitor_work.work);
3371
3372 raw_spin_lock_irqsave(&krcp->lock, flags);
3373 if (krcp->monitor_todo)
3374 kfree_rcu_drain_unlock(krcp, flags);
3375 else
3376 raw_spin_unlock_irqrestore(&krcp->lock, flags);
3377 }
3378
3379 static enum hrtimer_restart
schedule_page_work_fn(struct hrtimer * t)3380 schedule_page_work_fn(struct hrtimer *t)
3381 {
3382 struct kfree_rcu_cpu *krcp =
3383 container_of(t, struct kfree_rcu_cpu, hrtimer);
3384
3385 queue_work(system_highpri_wq, &krcp->page_cache_work);
3386 return HRTIMER_NORESTART;
3387 }
3388
fill_page_cache_func(struct work_struct * work)3389 static void fill_page_cache_func(struct work_struct *work)
3390 {
3391 struct kvfree_rcu_bulk_data *bnode;
3392 struct kfree_rcu_cpu *krcp =
3393 container_of(work, struct kfree_rcu_cpu,
3394 page_cache_work);
3395 unsigned long flags;
3396 bool pushed;
3397 int i;
3398
3399 for (i = 0; i < rcu_min_cached_objs; i++) {
3400 bnode = (struct kvfree_rcu_bulk_data *)
3401 __get_free_page(GFP_KERNEL | __GFP_NORETRY | __GFP_NOMEMALLOC | __GFP_NOWARN);
3402
3403 if (!bnode)
3404 break;
3405
3406 raw_spin_lock_irqsave(&krcp->lock, flags);
3407 pushed = put_cached_bnode(krcp, bnode);
3408 raw_spin_unlock_irqrestore(&krcp->lock, flags);
3409
3410 if (!pushed) {
3411 free_page((unsigned long) bnode);
3412 break;
3413 }
3414 }
3415
3416 atomic_set(&krcp->work_in_progress, 0);
3417 }
3418
3419 static void
run_page_cache_worker(struct kfree_rcu_cpu * krcp)3420 run_page_cache_worker(struct kfree_rcu_cpu *krcp)
3421 {
3422 if (rcu_scheduler_active == RCU_SCHEDULER_RUNNING &&
3423 !atomic_xchg(&krcp->work_in_progress, 1)) {
3424 hrtimer_init(&krcp->hrtimer, CLOCK_MONOTONIC,
3425 HRTIMER_MODE_REL);
3426 krcp->hrtimer.function = schedule_page_work_fn;
3427 hrtimer_start(&krcp->hrtimer, 0, HRTIMER_MODE_REL);
3428 }
3429 }
3430
3431 static inline bool
kvfree_call_rcu_add_ptr_to_bulk(struct kfree_rcu_cpu * krcp,void * ptr)3432 kvfree_call_rcu_add_ptr_to_bulk(struct kfree_rcu_cpu *krcp, void *ptr)
3433 {
3434 struct kvfree_rcu_bulk_data *bnode;
3435 int idx;
3436
3437 if (unlikely(!krcp->initialized))
3438 return false;
3439
3440 lockdep_assert_held(&krcp->lock);
3441 idx = !!is_vmalloc_addr(ptr);
3442
3443 /* Check if a new block is required. */
3444 if (!krcp->bkvhead[idx] ||
3445 krcp->bkvhead[idx]->nr_records == KVFREE_BULK_MAX_ENTR) {
3446 bnode = get_cached_bnode(krcp);
3447 /* Switch to emergency path. */
3448 if (!bnode)
3449 return false;
3450
3451 /* Initialize the new block. */
3452 bnode->nr_records = 0;
3453 bnode->next = krcp->bkvhead[idx];
3454
3455 /* Attach it to the head. */
3456 krcp->bkvhead[idx] = bnode;
3457 }
3458
3459 /* Finally insert. */
3460 krcp->bkvhead[idx]->records
3461 [krcp->bkvhead[idx]->nr_records++] = ptr;
3462
3463 return true;
3464 }
3465
3466 /*
3467 * Queue a request for lazy invocation of appropriate free routine after a
3468 * grace period. Please note there are three paths are maintained, two are the
3469 * main ones that use array of pointers interface and third one is emergency
3470 * one, that is used only when the main path can not be maintained temporary,
3471 * due to memory pressure.
3472 *
3473 * Each kvfree_call_rcu() request is added to a batch. The batch will be drained
3474 * every KFREE_DRAIN_JIFFIES number of jiffies. All the objects in the batch will
3475 * be free'd in workqueue context. This allows us to: batch requests together to
3476 * reduce the number of grace periods during heavy kfree_rcu()/kvfree_rcu() load.
3477 */
kvfree_call_rcu(struct rcu_head * head,rcu_callback_t func)3478 void kvfree_call_rcu(struct rcu_head *head, rcu_callback_t func)
3479 {
3480 unsigned long flags;
3481 struct kfree_rcu_cpu *krcp;
3482 bool success;
3483 void *ptr;
3484
3485 if (head) {
3486 ptr = (void *) head - (unsigned long) func;
3487 } else {
3488 /*
3489 * Please note there is a limitation for the head-less
3490 * variant, that is why there is a clear rule for such
3491 * objects: it can be used from might_sleep() context
3492 * only. For other places please embed an rcu_head to
3493 * your data.
3494 */
3495 might_sleep();
3496 ptr = (unsigned long *) func;
3497 }
3498
3499 krcp = krc_this_cpu_lock(&flags);
3500
3501 // Queue the object but don't yet schedule the batch.
3502 if (debug_rcu_head_queue(ptr)) {
3503 // Probable double kfree_rcu(), just leak.
3504 WARN_ONCE(1, "%s(): Double-freed call. rcu_head %p\n",
3505 __func__, head);
3506
3507 // Mark as success and leave.
3508 success = true;
3509 goto unlock_return;
3510 }
3511
3512 success = kvfree_call_rcu_add_ptr_to_bulk(krcp, ptr);
3513 if (!success) {
3514 run_page_cache_worker(krcp);
3515
3516 if (head == NULL)
3517 // Inline if kvfree_rcu(one_arg) call.
3518 goto unlock_return;
3519
3520 head->func = func;
3521 head->next = krcp->head;
3522 krcp->head = head;
3523 success = true;
3524 }
3525
3526 WRITE_ONCE(krcp->count, krcp->count + 1);
3527
3528 // Set timer to drain after KFREE_DRAIN_JIFFIES.
3529 if (rcu_scheduler_active == RCU_SCHEDULER_RUNNING &&
3530 !krcp->monitor_todo) {
3531 krcp->monitor_todo = true;
3532 schedule_delayed_work(&krcp->monitor_work, KFREE_DRAIN_JIFFIES);
3533 }
3534
3535 unlock_return:
3536 krc_this_cpu_unlock(krcp, flags);
3537
3538 /*
3539 * Inline kvfree() after synchronize_rcu(). We can do
3540 * it from might_sleep() context only, so the current
3541 * CPU can pass the QS state.
3542 */
3543 if (!success) {
3544 debug_rcu_head_unqueue((struct rcu_head *) ptr);
3545 synchronize_rcu();
3546 kvfree(ptr);
3547 }
3548 }
3549 EXPORT_SYMBOL_GPL(kvfree_call_rcu);
3550
3551 static unsigned long
kfree_rcu_shrink_count(struct shrinker * shrink,struct shrink_control * sc)3552 kfree_rcu_shrink_count(struct shrinker *shrink, struct shrink_control *sc)
3553 {
3554 int cpu;
3555 unsigned long count = 0;
3556
3557 /* Snapshot count of all CPUs */
3558 for_each_possible_cpu(cpu) {
3559 struct kfree_rcu_cpu *krcp = per_cpu_ptr(&krc, cpu);
3560
3561 count += READ_ONCE(krcp->count);
3562 }
3563
3564 return count;
3565 }
3566
3567 static unsigned long
kfree_rcu_shrink_scan(struct shrinker * shrink,struct shrink_control * sc)3568 kfree_rcu_shrink_scan(struct shrinker *shrink, struct shrink_control *sc)
3569 {
3570 int cpu, freed = 0;
3571 unsigned long flags;
3572
3573 for_each_possible_cpu(cpu) {
3574 int count;
3575 struct kfree_rcu_cpu *krcp = per_cpu_ptr(&krc, cpu);
3576
3577 count = krcp->count;
3578 raw_spin_lock_irqsave(&krcp->lock, flags);
3579 if (krcp->monitor_todo)
3580 kfree_rcu_drain_unlock(krcp, flags);
3581 else
3582 raw_spin_unlock_irqrestore(&krcp->lock, flags);
3583
3584 sc->nr_to_scan -= count;
3585 freed += count;
3586
3587 if (sc->nr_to_scan <= 0)
3588 break;
3589 }
3590
3591 return freed == 0 ? SHRINK_STOP : freed;
3592 }
3593
3594 static struct shrinker kfree_rcu_shrinker = {
3595 .count_objects = kfree_rcu_shrink_count,
3596 .scan_objects = kfree_rcu_shrink_scan,
3597 .batch = 0,
3598 .seeks = DEFAULT_SEEKS,
3599 };
3600
kfree_rcu_scheduler_running(void)3601 void __init kfree_rcu_scheduler_running(void)
3602 {
3603 int cpu;
3604 unsigned long flags;
3605
3606 for_each_possible_cpu(cpu) {
3607 struct kfree_rcu_cpu *krcp = per_cpu_ptr(&krc, cpu);
3608
3609 raw_spin_lock_irqsave(&krcp->lock, flags);
3610 if (!krcp->head || krcp->monitor_todo) {
3611 raw_spin_unlock_irqrestore(&krcp->lock, flags);
3612 continue;
3613 }
3614 krcp->monitor_todo = true;
3615 schedule_delayed_work_on(cpu, &krcp->monitor_work,
3616 KFREE_DRAIN_JIFFIES);
3617 raw_spin_unlock_irqrestore(&krcp->lock, flags);
3618 }
3619 }
3620
3621 /*
3622 * During early boot, any blocking grace-period wait automatically
3623 * implies a grace period. Later on, this is never the case for PREEMPTION.
3624 *
3625 * Howevr, because a context switch is a grace period for !PREEMPTION, any
3626 * blocking grace-period wait automatically implies a grace period if
3627 * there is only one CPU online at any point time during execution of
3628 * either synchronize_rcu() or synchronize_rcu_expedited(). It is OK to
3629 * occasionally incorrectly indicate that there are multiple CPUs online
3630 * when there was in fact only one the whole time, as this just adds some
3631 * overhead: RCU still operates correctly.
3632 */
rcu_blocking_is_gp(void)3633 static int rcu_blocking_is_gp(void)
3634 {
3635 int ret;
3636
3637 if (IS_ENABLED(CONFIG_PREEMPTION))
3638 return rcu_scheduler_active == RCU_SCHEDULER_INACTIVE;
3639 might_sleep(); /* Check for RCU read-side critical section. */
3640 preempt_disable();
3641 ret = num_online_cpus() <= 1;
3642 preempt_enable();
3643 return ret;
3644 }
3645
3646 /**
3647 * synchronize_rcu - wait until a grace period has elapsed.
3648 *
3649 * Control will return to the caller some time after a full grace
3650 * period has elapsed, in other words after all currently executing RCU
3651 * read-side critical sections have completed. Note, however, that
3652 * upon return from synchronize_rcu(), the caller might well be executing
3653 * concurrently with new RCU read-side critical sections that began while
3654 * synchronize_rcu() was waiting. RCU read-side critical sections are
3655 * delimited by rcu_read_lock() and rcu_read_unlock(), and may be nested.
3656 * In addition, regions of code across which interrupts, preemption, or
3657 * softirqs have been disabled also serve as RCU read-side critical
3658 * sections. This includes hardware interrupt handlers, softirq handlers,
3659 * and NMI handlers.
3660 *
3661 * Note that this guarantee implies further memory-ordering guarantees.
3662 * On systems with more than one CPU, when synchronize_rcu() returns,
3663 * each CPU is guaranteed to have executed a full memory barrier since
3664 * the end of its last RCU read-side critical section whose beginning
3665 * preceded the call to synchronize_rcu(). In addition, each CPU having
3666 * an RCU read-side critical section that extends beyond the return from
3667 * synchronize_rcu() is guaranteed to have executed a full memory barrier
3668 * after the beginning of synchronize_rcu() and before the beginning of
3669 * that RCU read-side critical section. Note that these guarantees include
3670 * CPUs that are offline, idle, or executing in user mode, as well as CPUs
3671 * that are executing in the kernel.
3672 *
3673 * Furthermore, if CPU A invoked synchronize_rcu(), which returned
3674 * to its caller on CPU B, then both CPU A and CPU B are guaranteed
3675 * to have executed a full memory barrier during the execution of
3676 * synchronize_rcu() -- even if CPU A and CPU B are the same CPU (but
3677 * again only if the system has more than one CPU).
3678 */
synchronize_rcu(void)3679 void synchronize_rcu(void)
3680 {
3681 RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map) ||
3682 lock_is_held(&rcu_lock_map) ||
3683 lock_is_held(&rcu_sched_lock_map),
3684 "Illegal synchronize_rcu() in RCU read-side critical section");
3685 if (rcu_blocking_is_gp())
3686 return;
3687 if (rcu_gp_is_expedited())
3688 synchronize_rcu_expedited();
3689 else
3690 wait_rcu_gp(call_rcu);
3691 }
3692 EXPORT_SYMBOL_GPL(synchronize_rcu);
3693
3694 /**
3695 * get_state_synchronize_rcu - Snapshot current RCU state
3696 *
3697 * Returns a cookie that is used by a later call to cond_synchronize_rcu()
3698 * to determine whether or not a full grace period has elapsed in the
3699 * meantime.
3700 */
get_state_synchronize_rcu(void)3701 unsigned long get_state_synchronize_rcu(void)
3702 {
3703 /*
3704 * Any prior manipulation of RCU-protected data must happen
3705 * before the load from ->gp_seq.
3706 */
3707 smp_mb(); /* ^^^ */
3708 return rcu_seq_snap(&rcu_state.gp_seq);
3709 }
3710 EXPORT_SYMBOL_GPL(get_state_synchronize_rcu);
3711
3712 /**
3713 * cond_synchronize_rcu - Conditionally wait for an RCU grace period
3714 *
3715 * @oldstate: return value from earlier call to get_state_synchronize_rcu()
3716 *
3717 * If a full RCU grace period has elapsed since the earlier call to
3718 * get_state_synchronize_rcu(), just return. Otherwise, invoke
3719 * synchronize_rcu() to wait for a full grace period.
3720 *
3721 * Yes, this function does not take counter wrap into account. But
3722 * counter wrap is harmless. If the counter wraps, we have waited for
3723 * more than 2 billion grace periods (and way more on a 64-bit system!),
3724 * so waiting for one additional grace period should be just fine.
3725 */
cond_synchronize_rcu(unsigned long oldstate)3726 void cond_synchronize_rcu(unsigned long oldstate)
3727 {
3728 if (!rcu_seq_done(&rcu_state.gp_seq, oldstate))
3729 synchronize_rcu();
3730 else
3731 smp_mb(); /* Ensure GP ends before subsequent accesses. */
3732 }
3733 EXPORT_SYMBOL_GPL(cond_synchronize_rcu);
3734
3735 /*
3736 * Check to see if there is any immediate RCU-related work to be done by
3737 * the current CPU, returning 1 if so and zero otherwise. The checks are
3738 * in order of increasing expense: checks that can be carried out against
3739 * CPU-local state are performed first. However, we must check for CPU
3740 * stalls first, else we might not get a chance.
3741 */
rcu_pending(int user)3742 static int rcu_pending(int user)
3743 {
3744 bool gp_in_progress;
3745 struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
3746 struct rcu_node *rnp = rdp->mynode;
3747
3748 lockdep_assert_irqs_disabled();
3749
3750 /* Check for CPU stalls, if enabled. */
3751 check_cpu_stall(rdp);
3752
3753 /* Does this CPU need a deferred NOCB wakeup? */
3754 if (rcu_nocb_need_deferred_wakeup(rdp))
3755 return 1;
3756
3757 /* Is this a nohz_full CPU in userspace or idle? (Ignore RCU if so.) */
3758 if ((user || rcu_is_cpu_rrupt_from_idle()) && rcu_nohz_full_cpu())
3759 return 0;
3760
3761 /* Is the RCU core waiting for a quiescent state from this CPU? */
3762 gp_in_progress = rcu_gp_in_progress();
3763 if (rdp->core_needs_qs && !rdp->cpu_no_qs.b.norm && gp_in_progress)
3764 return 1;
3765
3766 /* Does this CPU have callbacks ready to invoke? */
3767 if (rcu_segcblist_ready_cbs(&rdp->cblist))
3768 return 1;
3769
3770 /* Has RCU gone idle with this CPU needing another grace period? */
3771 if (!gp_in_progress && rcu_segcblist_is_enabled(&rdp->cblist) &&
3772 (!IS_ENABLED(CONFIG_RCU_NOCB_CPU) ||
3773 !rcu_segcblist_is_offloaded(&rdp->cblist)) &&
3774 !rcu_segcblist_restempty(&rdp->cblist, RCU_NEXT_READY_TAIL))
3775 return 1;
3776
3777 /* Have RCU grace period completed or started? */
3778 if (rcu_seq_current(&rnp->gp_seq) != rdp->gp_seq ||
3779 unlikely(READ_ONCE(rdp->gpwrap))) /* outside lock */
3780 return 1;
3781
3782 /* nothing to do */
3783 return 0;
3784 }
3785
3786 /*
3787 * Helper function for rcu_barrier() tracing. If tracing is disabled,
3788 * the compiler is expected to optimize this away.
3789 */
rcu_barrier_trace(const char * s,int cpu,unsigned long done)3790 static void rcu_barrier_trace(const char *s, int cpu, unsigned long done)
3791 {
3792 trace_rcu_barrier(rcu_state.name, s, cpu,
3793 atomic_read(&rcu_state.barrier_cpu_count), done);
3794 }
3795
3796 /*
3797 * RCU callback function for rcu_barrier(). If we are last, wake
3798 * up the task executing rcu_barrier().
3799 *
3800 * Note that the value of rcu_state.barrier_sequence must be captured
3801 * before the atomic_dec_and_test(). Otherwise, if this CPU is not last,
3802 * other CPUs might count the value down to zero before this CPU gets
3803 * around to invoking rcu_barrier_trace(), which might result in bogus
3804 * data from the next instance of rcu_barrier().
3805 */
rcu_barrier_callback(struct rcu_head * rhp)3806 static void rcu_barrier_callback(struct rcu_head *rhp)
3807 {
3808 unsigned long __maybe_unused s = rcu_state.barrier_sequence;
3809
3810 if (atomic_dec_and_test(&rcu_state.barrier_cpu_count)) {
3811 rcu_barrier_trace(TPS("LastCB"), -1, s);
3812 complete(&rcu_state.barrier_completion);
3813 } else {
3814 rcu_barrier_trace(TPS("CB"), -1, s);
3815 }
3816 }
3817
3818 /*
3819 * Called with preemption disabled, and from cross-cpu IRQ context.
3820 */
rcu_barrier_func(void * cpu_in)3821 static void rcu_barrier_func(void *cpu_in)
3822 {
3823 uintptr_t cpu = (uintptr_t)cpu_in;
3824 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
3825
3826 rcu_barrier_trace(TPS("IRQ"), -1, rcu_state.barrier_sequence);
3827 rdp->barrier_head.func = rcu_barrier_callback;
3828 debug_rcu_head_queue(&rdp->barrier_head);
3829 rcu_nocb_lock(rdp);
3830 WARN_ON_ONCE(!rcu_nocb_flush_bypass(rdp, NULL, jiffies));
3831 if (rcu_segcblist_entrain(&rdp->cblist, &rdp->barrier_head)) {
3832 atomic_inc(&rcu_state.barrier_cpu_count);
3833 } else {
3834 debug_rcu_head_unqueue(&rdp->barrier_head);
3835 rcu_barrier_trace(TPS("IRQNQ"), -1,
3836 rcu_state.barrier_sequence);
3837 }
3838 rcu_nocb_unlock(rdp);
3839 }
3840
3841 /**
3842 * rcu_barrier - Wait until all in-flight call_rcu() callbacks complete.
3843 *
3844 * Note that this primitive does not necessarily wait for an RCU grace period
3845 * to complete. For example, if there are no RCU callbacks queued anywhere
3846 * in the system, then rcu_barrier() is within its rights to return
3847 * immediately, without waiting for anything, much less an RCU grace period.
3848 */
rcu_barrier(void)3849 void rcu_barrier(void)
3850 {
3851 uintptr_t cpu;
3852 struct rcu_data *rdp;
3853 unsigned long s = rcu_seq_snap(&rcu_state.barrier_sequence);
3854
3855 rcu_barrier_trace(TPS("Begin"), -1, s);
3856
3857 /* Take mutex to serialize concurrent rcu_barrier() requests. */
3858 mutex_lock(&rcu_state.barrier_mutex);
3859
3860 /* Did someone else do our work for us? */
3861 if (rcu_seq_done(&rcu_state.barrier_sequence, s)) {
3862 rcu_barrier_trace(TPS("EarlyExit"), -1,
3863 rcu_state.barrier_sequence);
3864 smp_mb(); /* caller's subsequent code after above check. */
3865 mutex_unlock(&rcu_state.barrier_mutex);
3866 return;
3867 }
3868
3869 /* Mark the start of the barrier operation. */
3870 rcu_seq_start(&rcu_state.barrier_sequence);
3871 rcu_barrier_trace(TPS("Inc1"), -1, rcu_state.barrier_sequence);
3872
3873 /*
3874 * Initialize the count to two rather than to zero in order
3875 * to avoid a too-soon return to zero in case of an immediate
3876 * invocation of the just-enqueued callback (or preemption of
3877 * this task). Exclude CPU-hotplug operations to ensure that no
3878 * offline non-offloaded CPU has callbacks queued.
3879 */
3880 init_completion(&rcu_state.barrier_completion);
3881 atomic_set(&rcu_state.barrier_cpu_count, 2);
3882 get_online_cpus();
3883
3884 /*
3885 * Force each CPU with callbacks to register a new callback.
3886 * When that callback is invoked, we will know that all of the
3887 * corresponding CPU's preceding callbacks have been invoked.
3888 */
3889 for_each_possible_cpu(cpu) {
3890 rdp = per_cpu_ptr(&rcu_data, cpu);
3891 if (cpu_is_offline(cpu) &&
3892 !rcu_segcblist_is_offloaded(&rdp->cblist))
3893 continue;
3894 if (rcu_segcblist_n_cbs(&rdp->cblist) && cpu_online(cpu)) {
3895 rcu_barrier_trace(TPS("OnlineQ"), cpu,
3896 rcu_state.barrier_sequence);
3897 smp_call_function_single(cpu, rcu_barrier_func, (void *)cpu, 1);
3898 } else if (rcu_segcblist_n_cbs(&rdp->cblist) &&
3899 cpu_is_offline(cpu)) {
3900 rcu_barrier_trace(TPS("OfflineNoCBQ"), cpu,
3901 rcu_state.barrier_sequence);
3902 local_irq_disable();
3903 rcu_barrier_func((void *)cpu);
3904 local_irq_enable();
3905 } else if (cpu_is_offline(cpu)) {
3906 rcu_barrier_trace(TPS("OfflineNoCBNoQ"), cpu,
3907 rcu_state.barrier_sequence);
3908 } else {
3909 rcu_barrier_trace(TPS("OnlineNQ"), cpu,
3910 rcu_state.barrier_sequence);
3911 }
3912 }
3913 put_online_cpus();
3914
3915 /*
3916 * Now that we have an rcu_barrier_callback() callback on each
3917 * CPU, and thus each counted, remove the initial count.
3918 */
3919 if (atomic_sub_and_test(2, &rcu_state.barrier_cpu_count))
3920 complete(&rcu_state.barrier_completion);
3921
3922 /* Wait for all rcu_barrier_callback() callbacks to be invoked. */
3923 wait_for_completion(&rcu_state.barrier_completion);
3924
3925 /* Mark the end of the barrier operation. */
3926 rcu_barrier_trace(TPS("Inc2"), -1, rcu_state.barrier_sequence);
3927 rcu_seq_end(&rcu_state.barrier_sequence);
3928
3929 /* Other rcu_barrier() invocations can now safely proceed. */
3930 mutex_unlock(&rcu_state.barrier_mutex);
3931 }
3932 EXPORT_SYMBOL_GPL(rcu_barrier);
3933
3934 /*
3935 * Propagate ->qsinitmask bits up the rcu_node tree to account for the
3936 * first CPU in a given leaf rcu_node structure coming online. The caller
3937 * must hold the corresponding leaf rcu_node ->lock with interrrupts
3938 * disabled.
3939 */
rcu_init_new_rnp(struct rcu_node * rnp_leaf)3940 static void rcu_init_new_rnp(struct rcu_node *rnp_leaf)
3941 {
3942 long mask;
3943 long oldmask;
3944 struct rcu_node *rnp = rnp_leaf;
3945
3946 raw_lockdep_assert_held_rcu_node(rnp_leaf);
3947 WARN_ON_ONCE(rnp->wait_blkd_tasks);
3948 for (;;) {
3949 mask = rnp->grpmask;
3950 rnp = rnp->parent;
3951 if (rnp == NULL)
3952 return;
3953 raw_spin_lock_rcu_node(rnp); /* Interrupts already disabled. */
3954 oldmask = rnp->qsmaskinit;
3955 rnp->qsmaskinit |= mask;
3956 raw_spin_unlock_rcu_node(rnp); /* Interrupts remain disabled. */
3957 if (oldmask)
3958 return;
3959 }
3960 }
3961
3962 /*
3963 * Do boot-time initialization of a CPU's per-CPU RCU data.
3964 */
3965 static void __init
rcu_boot_init_percpu_data(int cpu)3966 rcu_boot_init_percpu_data(int cpu)
3967 {
3968 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
3969
3970 /* Set up local state, ensuring consistent view of global state. */
3971 rdp->grpmask = leaf_node_cpu_bit(rdp->mynode, cpu);
3972 INIT_WORK(&rdp->strict_work, strict_work_handler);
3973 WARN_ON_ONCE(rdp->dynticks_nesting != 1);
3974 WARN_ON_ONCE(rcu_dynticks_in_eqs(rcu_dynticks_snap(rdp)));
3975 rdp->rcu_ofl_gp_seq = rcu_state.gp_seq;
3976 rdp->rcu_ofl_gp_flags = RCU_GP_CLEANED;
3977 rdp->rcu_onl_gp_seq = rcu_state.gp_seq;
3978 rdp->rcu_onl_gp_flags = RCU_GP_CLEANED;
3979 rdp->cpu = cpu;
3980 rcu_boot_init_nocb_percpu_data(rdp);
3981 }
3982
3983 /*
3984 * Invoked early in the CPU-online process, when pretty much all services
3985 * are available. The incoming CPU is not present.
3986 *
3987 * Initializes a CPU's per-CPU RCU data. Note that only one online or
3988 * offline event can be happening at a given time. Note also that we can
3989 * accept some slop in the rsp->gp_seq access due to the fact that this
3990 * CPU cannot possibly have any non-offloaded RCU callbacks in flight yet.
3991 * And any offloaded callbacks are being numbered elsewhere.
3992 */
rcutree_prepare_cpu(unsigned int cpu)3993 int rcutree_prepare_cpu(unsigned int cpu)
3994 {
3995 unsigned long flags;
3996 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
3997 struct rcu_node *rnp = rcu_get_root();
3998
3999 /* Set up local state, ensuring consistent view of global state. */
4000 raw_spin_lock_irqsave_rcu_node(rnp, flags);
4001 rdp->qlen_last_fqs_check = 0;
4002 rdp->n_force_qs_snap = READ_ONCE(rcu_state.n_force_qs);
4003 rdp->blimit = blimit;
4004 if (rcu_segcblist_empty(&rdp->cblist) && /* No early-boot CBs? */
4005 !rcu_segcblist_is_offloaded(&rdp->cblist))
4006 rcu_segcblist_init(&rdp->cblist); /* Re-enable callbacks. */
4007 rdp->dynticks_nesting = 1; /* CPU not up, no tearing. */
4008 rcu_dynticks_eqs_online();
4009 raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
4010
4011 /*
4012 * Add CPU to leaf rcu_node pending-online bitmask. Any needed
4013 * propagation up the rcu_node tree will happen at the beginning
4014 * of the next grace period.
4015 */
4016 rnp = rdp->mynode;
4017 raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */
4018 rdp->beenonline = true; /* We have now been online. */
4019 rdp->gp_seq = READ_ONCE(rnp->gp_seq);
4020 rdp->gp_seq_needed = rdp->gp_seq;
4021 rdp->cpu_no_qs.b.norm = true;
4022 rdp->core_needs_qs = false;
4023 rdp->rcu_iw_pending = false;
4024 rdp->rcu_iw_gp_seq = rdp->gp_seq - 1;
4025 trace_rcu_grace_period(rcu_state.name, rdp->gp_seq, TPS("cpuonl"));
4026 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
4027 rcu_prepare_kthreads(cpu);
4028 rcu_spawn_cpu_nocb_kthread(cpu);
4029
4030 return 0;
4031 }
4032
4033 /*
4034 * Update RCU priority boot kthread affinity for CPU-hotplug changes.
4035 */
rcutree_affinity_setting(unsigned int cpu,int outgoing)4036 static void rcutree_affinity_setting(unsigned int cpu, int outgoing)
4037 {
4038 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
4039
4040 rcu_boost_kthread_setaffinity(rdp->mynode, outgoing);
4041 }
4042
4043 /*
4044 * Near the end of the CPU-online process. Pretty much all services
4045 * enabled, and the CPU is now very much alive.
4046 */
rcutree_online_cpu(unsigned int cpu)4047 int rcutree_online_cpu(unsigned int cpu)
4048 {
4049 unsigned long flags;
4050 struct rcu_data *rdp;
4051 struct rcu_node *rnp;
4052
4053 rdp = per_cpu_ptr(&rcu_data, cpu);
4054 rnp = rdp->mynode;
4055 raw_spin_lock_irqsave_rcu_node(rnp, flags);
4056 rnp->ffmask |= rdp->grpmask;
4057 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
4058 if (rcu_scheduler_active == RCU_SCHEDULER_INACTIVE)
4059 return 0; /* Too early in boot for scheduler work. */
4060 sync_sched_exp_online_cleanup(cpu);
4061 rcutree_affinity_setting(cpu, -1);
4062
4063 // Stop-machine done, so allow nohz_full to disable tick.
4064 tick_dep_clear(TICK_DEP_BIT_RCU);
4065 return 0;
4066 }
4067
4068 /*
4069 * Near the beginning of the process. The CPU is still very much alive
4070 * with pretty much all services enabled.
4071 */
rcutree_offline_cpu(unsigned int cpu)4072 int rcutree_offline_cpu(unsigned int cpu)
4073 {
4074 unsigned long flags;
4075 struct rcu_data *rdp;
4076 struct rcu_node *rnp;
4077
4078 rdp = per_cpu_ptr(&rcu_data, cpu);
4079 rnp = rdp->mynode;
4080 raw_spin_lock_irqsave_rcu_node(rnp, flags);
4081 rnp->ffmask &= ~rdp->grpmask;
4082 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
4083
4084 rcutree_affinity_setting(cpu, cpu);
4085
4086 // nohz_full CPUs need the tick for stop-machine to work quickly
4087 tick_dep_set(TICK_DEP_BIT_RCU);
4088 return 0;
4089 }
4090
4091 /*
4092 * Mark the specified CPU as being online so that subsequent grace periods
4093 * (both expedited and normal) will wait on it. Note that this means that
4094 * incoming CPUs are not allowed to use RCU read-side critical sections
4095 * until this function is called. Failing to observe this restriction
4096 * will result in lockdep splats.
4097 *
4098 * Note that this function is special in that it is invoked directly
4099 * from the incoming CPU rather than from the cpuhp_step mechanism.
4100 * This is because this function must be invoked at a precise location.
4101 */
rcu_cpu_starting(unsigned int cpu)4102 void rcu_cpu_starting(unsigned int cpu)
4103 {
4104 unsigned long flags;
4105 unsigned long mask;
4106 struct rcu_data *rdp;
4107 struct rcu_node *rnp;
4108 bool newcpu;
4109
4110 rdp = per_cpu_ptr(&rcu_data, cpu);
4111 if (rdp->cpu_started)
4112 return;
4113 rdp->cpu_started = true;
4114
4115 rnp = rdp->mynode;
4116 mask = rdp->grpmask;
4117 WRITE_ONCE(rnp->ofl_seq, rnp->ofl_seq + 1);
4118 WARN_ON_ONCE(!(rnp->ofl_seq & 0x1));
4119 smp_mb(); // Pair with rcu_gp_cleanup()'s ->ofl_seq barrier().
4120 raw_spin_lock_irqsave_rcu_node(rnp, flags);
4121 WRITE_ONCE(rnp->qsmaskinitnext, rnp->qsmaskinitnext | mask);
4122 newcpu = !(rnp->expmaskinitnext & mask);
4123 rnp->expmaskinitnext |= mask;
4124 /* Allow lockless access for expedited grace periods. */
4125 smp_store_release(&rcu_state.ncpus, rcu_state.ncpus + newcpu); /* ^^^ */
4126 ASSERT_EXCLUSIVE_WRITER(rcu_state.ncpus);
4127 rcu_gpnum_ovf(rnp, rdp); /* Offline-induced counter wrap? */
4128 rdp->rcu_onl_gp_seq = READ_ONCE(rcu_state.gp_seq);
4129 rdp->rcu_onl_gp_flags = READ_ONCE(rcu_state.gp_flags);
4130 if (rnp->qsmask & mask) { /* RCU waiting on incoming CPU? */
4131 rcu_disable_urgency_upon_qs(rdp);
4132 /* Report QS -after- changing ->qsmaskinitnext! */
4133 rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags);
4134 } else {
4135 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
4136 }
4137 smp_mb(); // Pair with rcu_gp_cleanup()'s ->ofl_seq barrier().
4138 WRITE_ONCE(rnp->ofl_seq, rnp->ofl_seq + 1);
4139 WARN_ON_ONCE(rnp->ofl_seq & 0x1);
4140 smp_mb(); /* Ensure RCU read-side usage follows above initialization. */
4141 }
4142
4143 /*
4144 * The outgoing function has no further need of RCU, so remove it from
4145 * the rcu_node tree's ->qsmaskinitnext bit masks.
4146 *
4147 * Note that this function is special in that it is invoked directly
4148 * from the outgoing CPU rather than from the cpuhp_step mechanism.
4149 * This is because this function must be invoked at a precise location.
4150 */
rcu_report_dead(unsigned int cpu)4151 void rcu_report_dead(unsigned int cpu)
4152 {
4153 unsigned long flags;
4154 unsigned long mask;
4155 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
4156 struct rcu_node *rnp = rdp->mynode; /* Outgoing CPU's rdp & rnp. */
4157
4158 /* QS for any half-done expedited grace period. */
4159 preempt_disable();
4160 rcu_report_exp_rdp(this_cpu_ptr(&rcu_data));
4161 preempt_enable();
4162 rcu_preempt_deferred_qs(current);
4163
4164 /* Remove outgoing CPU from mask in the leaf rcu_node structure. */
4165 mask = rdp->grpmask;
4166 WRITE_ONCE(rnp->ofl_seq, rnp->ofl_seq + 1);
4167 WARN_ON_ONCE(!(rnp->ofl_seq & 0x1));
4168 smp_mb(); // Pair with rcu_gp_cleanup()'s ->ofl_seq barrier().
4169 raw_spin_lock(&rcu_state.ofl_lock);
4170 raw_spin_lock_irqsave_rcu_node(rnp, flags); /* Enforce GP memory-order guarantee. */
4171 rdp->rcu_ofl_gp_seq = READ_ONCE(rcu_state.gp_seq);
4172 rdp->rcu_ofl_gp_flags = READ_ONCE(rcu_state.gp_flags);
4173 if (rnp->qsmask & mask) { /* RCU waiting on outgoing CPU? */
4174 /* Report quiescent state -before- changing ->qsmaskinitnext! */
4175 rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags);
4176 raw_spin_lock_irqsave_rcu_node(rnp, flags);
4177 }
4178 WRITE_ONCE(rnp->qsmaskinitnext, rnp->qsmaskinitnext & ~mask);
4179 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
4180 raw_spin_unlock(&rcu_state.ofl_lock);
4181 smp_mb(); // Pair with rcu_gp_cleanup()'s ->ofl_seq barrier().
4182 WRITE_ONCE(rnp->ofl_seq, rnp->ofl_seq + 1);
4183 WARN_ON_ONCE(rnp->ofl_seq & 0x1);
4184
4185 rdp->cpu_started = false;
4186 }
4187
4188 #ifdef CONFIG_HOTPLUG_CPU
4189 /*
4190 * The outgoing CPU has just passed through the dying-idle state, and we
4191 * are being invoked from the CPU that was IPIed to continue the offline
4192 * operation. Migrate the outgoing CPU's callbacks to the current CPU.
4193 */
rcutree_migrate_callbacks(int cpu)4194 void rcutree_migrate_callbacks(int cpu)
4195 {
4196 unsigned long flags;
4197 struct rcu_data *my_rdp;
4198 struct rcu_node *my_rnp;
4199 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
4200 bool needwake;
4201
4202 if (rcu_segcblist_is_offloaded(&rdp->cblist) ||
4203 rcu_segcblist_empty(&rdp->cblist))
4204 return; /* No callbacks to migrate. */
4205
4206 local_irq_save(flags);
4207 my_rdp = this_cpu_ptr(&rcu_data);
4208 my_rnp = my_rdp->mynode;
4209 rcu_nocb_lock(my_rdp); /* irqs already disabled. */
4210 WARN_ON_ONCE(!rcu_nocb_flush_bypass(my_rdp, NULL, jiffies));
4211 raw_spin_lock_rcu_node(my_rnp); /* irqs already disabled. */
4212 /* Leverage recent GPs and set GP for new callbacks. */
4213 needwake = rcu_advance_cbs(my_rnp, rdp) ||
4214 rcu_advance_cbs(my_rnp, my_rdp);
4215 rcu_segcblist_merge(&my_rdp->cblist, &rdp->cblist);
4216 needwake = needwake || rcu_advance_cbs(my_rnp, my_rdp);
4217 rcu_segcblist_disable(&rdp->cblist);
4218 WARN_ON_ONCE(rcu_segcblist_empty(&my_rdp->cblist) !=
4219 !rcu_segcblist_n_cbs(&my_rdp->cblist));
4220 if (rcu_segcblist_is_offloaded(&my_rdp->cblist)) {
4221 raw_spin_unlock_rcu_node(my_rnp); /* irqs remain disabled. */
4222 __call_rcu_nocb_wake(my_rdp, true, flags);
4223 } else {
4224 rcu_nocb_unlock(my_rdp); /* irqs remain disabled. */
4225 raw_spin_unlock_irqrestore_rcu_node(my_rnp, flags);
4226 }
4227 if (needwake)
4228 rcu_gp_kthread_wake();
4229 lockdep_assert_irqs_enabled();
4230 WARN_ONCE(rcu_segcblist_n_cbs(&rdp->cblist) != 0 ||
4231 !rcu_segcblist_empty(&rdp->cblist),
4232 "rcu_cleanup_dead_cpu: Callbacks on offline CPU %d: qlen=%lu, 1stCB=%p\n",
4233 cpu, rcu_segcblist_n_cbs(&rdp->cblist),
4234 rcu_segcblist_first_cb(&rdp->cblist));
4235 }
4236 #endif
4237
4238 /*
4239 * On non-huge systems, use expedited RCU grace periods to make suspend
4240 * and hibernation run faster.
4241 */
rcu_pm_notify(struct notifier_block * self,unsigned long action,void * hcpu)4242 static int rcu_pm_notify(struct notifier_block *self,
4243 unsigned long action, void *hcpu)
4244 {
4245 switch (action) {
4246 case PM_HIBERNATION_PREPARE:
4247 case PM_SUSPEND_PREPARE:
4248 rcu_expedite_gp();
4249 break;
4250 case PM_POST_HIBERNATION:
4251 case PM_POST_SUSPEND:
4252 rcu_unexpedite_gp();
4253 break;
4254 default:
4255 break;
4256 }
4257 return NOTIFY_OK;
4258 }
4259
4260 /*
4261 * Spawn the kthreads that handle RCU's grace periods.
4262 */
rcu_spawn_gp_kthread(void)4263 static int __init rcu_spawn_gp_kthread(void)
4264 {
4265 unsigned long flags;
4266 int kthread_prio_in = kthread_prio;
4267 struct rcu_node *rnp;
4268 struct sched_param sp;
4269 struct task_struct *t;
4270
4271 /* Force priority into range. */
4272 if (IS_ENABLED(CONFIG_RCU_BOOST) && kthread_prio < 2
4273 && IS_BUILTIN(CONFIG_RCU_TORTURE_TEST))
4274 kthread_prio = 2;
4275 else if (IS_ENABLED(CONFIG_RCU_BOOST) && kthread_prio < 1)
4276 kthread_prio = 1;
4277 else if (kthread_prio < 0)
4278 kthread_prio = 0;
4279 else if (kthread_prio > 99)
4280 kthread_prio = 99;
4281
4282 if (kthread_prio != kthread_prio_in)
4283 pr_alert("rcu_spawn_gp_kthread(): Limited prio to %d from %d\n",
4284 kthread_prio, kthread_prio_in);
4285
4286 rcu_scheduler_fully_active = 1;
4287 t = kthread_create(rcu_gp_kthread, NULL, "%s", rcu_state.name);
4288 if (WARN_ONCE(IS_ERR(t), "%s: Could not start grace-period kthread, OOM is now expected behavior\n", __func__))
4289 return 0;
4290 if (kthread_prio) {
4291 sp.sched_priority = kthread_prio;
4292 sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
4293 }
4294 rnp = rcu_get_root();
4295 raw_spin_lock_irqsave_rcu_node(rnp, flags);
4296 WRITE_ONCE(rcu_state.gp_activity, jiffies);
4297 WRITE_ONCE(rcu_state.gp_req_activity, jiffies);
4298 // Reset .gp_activity and .gp_req_activity before setting .gp_kthread.
4299 smp_store_release(&rcu_state.gp_kthread, t); /* ^^^ */
4300 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
4301 wake_up_process(t);
4302 rcu_spawn_nocb_kthreads();
4303 rcu_spawn_boost_kthreads();
4304 rcu_spawn_core_kthreads();
4305 return 0;
4306 }
4307 early_initcall(rcu_spawn_gp_kthread);
4308
4309 /*
4310 * This function is invoked towards the end of the scheduler's
4311 * initialization process. Before this is called, the idle task might
4312 * contain synchronous grace-period primitives (during which time, this idle
4313 * task is booting the system, and such primitives are no-ops). After this
4314 * function is called, any synchronous grace-period primitives are run as
4315 * expedited, with the requesting task driving the grace period forward.
4316 * A later core_initcall() rcu_set_runtime_mode() will switch to full
4317 * runtime RCU functionality.
4318 */
rcu_scheduler_starting(void)4319 void rcu_scheduler_starting(void)
4320 {
4321 WARN_ON(num_online_cpus() != 1);
4322 WARN_ON(nr_context_switches() > 0);
4323 rcu_test_sync_prims();
4324 rcu_scheduler_active = RCU_SCHEDULER_INIT;
4325 rcu_test_sync_prims();
4326 }
4327
4328 /*
4329 * Helper function for rcu_init() that initializes the rcu_state structure.
4330 */
rcu_init_one(void)4331 static void __init rcu_init_one(void)
4332 {
4333 static const char * const buf[] = RCU_NODE_NAME_INIT;
4334 static const char * const fqs[] = RCU_FQS_NAME_INIT;
4335 static struct lock_class_key rcu_node_class[RCU_NUM_LVLS];
4336 static struct lock_class_key rcu_fqs_class[RCU_NUM_LVLS];
4337
4338 int levelspread[RCU_NUM_LVLS]; /* kids/node in each level. */
4339 int cpustride = 1;
4340 int i;
4341 int j;
4342 struct rcu_node *rnp;
4343
4344 BUILD_BUG_ON(RCU_NUM_LVLS > ARRAY_SIZE(buf)); /* Fix buf[] init! */
4345
4346 /* Silence gcc 4.8 false positive about array index out of range. */
4347 if (rcu_num_lvls <= 0 || rcu_num_lvls > RCU_NUM_LVLS)
4348 panic("rcu_init_one: rcu_num_lvls out of range");
4349
4350 /* Initialize the level-tracking arrays. */
4351
4352 for (i = 1; i < rcu_num_lvls; i++)
4353 rcu_state.level[i] =
4354 rcu_state.level[i - 1] + num_rcu_lvl[i - 1];
4355 rcu_init_levelspread(levelspread, num_rcu_lvl);
4356
4357 /* Initialize the elements themselves, starting from the leaves. */
4358
4359 for (i = rcu_num_lvls - 1; i >= 0; i--) {
4360 cpustride *= levelspread[i];
4361 rnp = rcu_state.level[i];
4362 for (j = 0; j < num_rcu_lvl[i]; j++, rnp++) {
4363 raw_spin_lock_init(&ACCESS_PRIVATE(rnp, lock));
4364 lockdep_set_class_and_name(&ACCESS_PRIVATE(rnp, lock),
4365 &rcu_node_class[i], buf[i]);
4366 raw_spin_lock_init(&rnp->fqslock);
4367 lockdep_set_class_and_name(&rnp->fqslock,
4368 &rcu_fqs_class[i], fqs[i]);
4369 rnp->gp_seq = rcu_state.gp_seq;
4370 rnp->gp_seq_needed = rcu_state.gp_seq;
4371 rnp->completedqs = rcu_state.gp_seq;
4372 rnp->qsmask = 0;
4373 rnp->qsmaskinit = 0;
4374 rnp->grplo = j * cpustride;
4375 rnp->grphi = (j + 1) * cpustride - 1;
4376 if (rnp->grphi >= nr_cpu_ids)
4377 rnp->grphi = nr_cpu_ids - 1;
4378 if (i == 0) {
4379 rnp->grpnum = 0;
4380 rnp->grpmask = 0;
4381 rnp->parent = NULL;
4382 } else {
4383 rnp->grpnum = j % levelspread[i - 1];
4384 rnp->grpmask = BIT(rnp->grpnum);
4385 rnp->parent = rcu_state.level[i - 1] +
4386 j / levelspread[i - 1];
4387 }
4388 rnp->level = i;
4389 INIT_LIST_HEAD(&rnp->blkd_tasks);
4390 rcu_init_one_nocb(rnp);
4391 init_waitqueue_head(&rnp->exp_wq[0]);
4392 init_waitqueue_head(&rnp->exp_wq[1]);
4393 init_waitqueue_head(&rnp->exp_wq[2]);
4394 init_waitqueue_head(&rnp->exp_wq[3]);
4395 spin_lock_init(&rnp->exp_lock);
4396 }
4397 }
4398
4399 init_swait_queue_head(&rcu_state.gp_wq);
4400 init_swait_queue_head(&rcu_state.expedited_wq);
4401 rnp = rcu_first_leaf_node();
4402 for_each_possible_cpu(i) {
4403 while (i > rnp->grphi)
4404 rnp++;
4405 per_cpu_ptr(&rcu_data, i)->mynode = rnp;
4406 rcu_boot_init_percpu_data(i);
4407 }
4408 }
4409
4410 /*
4411 * Compute the rcu_node tree geometry from kernel parameters. This cannot
4412 * replace the definitions in tree.h because those are needed to size
4413 * the ->node array in the rcu_state structure.
4414 */
rcu_init_geometry(void)4415 void rcu_init_geometry(void)
4416 {
4417 ulong d;
4418 int i;
4419 static unsigned long old_nr_cpu_ids;
4420 int rcu_capacity[RCU_NUM_LVLS];
4421 static bool initialized;
4422
4423 if (initialized) {
4424 /*
4425 * Warn if setup_nr_cpu_ids() had not yet been invoked,
4426 * unless nr_cpus_ids == NR_CPUS, in which case who cares?
4427 */
4428 WARN_ON_ONCE(old_nr_cpu_ids != nr_cpu_ids);
4429 return;
4430 }
4431
4432 old_nr_cpu_ids = nr_cpu_ids;
4433 initialized = true;
4434
4435 /*
4436 * Initialize any unspecified boot parameters.
4437 * The default values of jiffies_till_first_fqs and
4438 * jiffies_till_next_fqs are set to the RCU_JIFFIES_TILL_FORCE_QS
4439 * value, which is a function of HZ, then adding one for each
4440 * RCU_JIFFIES_FQS_DIV CPUs that might be on the system.
4441 */
4442 d = RCU_JIFFIES_TILL_FORCE_QS + nr_cpu_ids / RCU_JIFFIES_FQS_DIV;
4443 if (jiffies_till_first_fqs == ULONG_MAX)
4444 jiffies_till_first_fqs = d;
4445 if (jiffies_till_next_fqs == ULONG_MAX)
4446 jiffies_till_next_fqs = d;
4447 adjust_jiffies_till_sched_qs();
4448
4449 /* If the compile-time values are accurate, just leave. */
4450 if (rcu_fanout_leaf == RCU_FANOUT_LEAF &&
4451 nr_cpu_ids == NR_CPUS)
4452 return;
4453 pr_info("Adjusting geometry for rcu_fanout_leaf=%d, nr_cpu_ids=%u\n",
4454 rcu_fanout_leaf, nr_cpu_ids);
4455
4456 /*
4457 * The boot-time rcu_fanout_leaf parameter must be at least two
4458 * and cannot exceed the number of bits in the rcu_node masks.
4459 * Complain and fall back to the compile-time values if this
4460 * limit is exceeded.
4461 */
4462 if (rcu_fanout_leaf < 2 ||
4463 rcu_fanout_leaf > sizeof(unsigned long) * 8) {
4464 rcu_fanout_leaf = RCU_FANOUT_LEAF;
4465 WARN_ON(1);
4466 return;
4467 }
4468
4469 /*
4470 * Compute number of nodes that can be handled an rcu_node tree
4471 * with the given number of levels.
4472 */
4473 rcu_capacity[0] = rcu_fanout_leaf;
4474 for (i = 1; i < RCU_NUM_LVLS; i++)
4475 rcu_capacity[i] = rcu_capacity[i - 1] * RCU_FANOUT;
4476
4477 /*
4478 * The tree must be able to accommodate the configured number of CPUs.
4479 * If this limit is exceeded, fall back to the compile-time values.
4480 */
4481 if (nr_cpu_ids > rcu_capacity[RCU_NUM_LVLS - 1]) {
4482 rcu_fanout_leaf = RCU_FANOUT_LEAF;
4483 WARN_ON(1);
4484 return;
4485 }
4486
4487 /* Calculate the number of levels in the tree. */
4488 for (i = 0; nr_cpu_ids > rcu_capacity[i]; i++) {
4489 }
4490 rcu_num_lvls = i + 1;
4491
4492 /* Calculate the number of rcu_nodes at each level of the tree. */
4493 for (i = 0; i < rcu_num_lvls; i++) {
4494 int cap = rcu_capacity[(rcu_num_lvls - 1) - i];
4495 num_rcu_lvl[i] = DIV_ROUND_UP(nr_cpu_ids, cap);
4496 }
4497
4498 /* Calculate the total number of rcu_node structures. */
4499 rcu_num_nodes = 0;
4500 for (i = 0; i < rcu_num_lvls; i++)
4501 rcu_num_nodes += num_rcu_lvl[i];
4502 }
4503
4504 /*
4505 * Dump out the structure of the rcu_node combining tree associated
4506 * with the rcu_state structure.
4507 */
rcu_dump_rcu_node_tree(void)4508 static void __init rcu_dump_rcu_node_tree(void)
4509 {
4510 int level = 0;
4511 struct rcu_node *rnp;
4512
4513 pr_info("rcu_node tree layout dump\n");
4514 pr_info(" ");
4515 rcu_for_each_node_breadth_first(rnp) {
4516 if (rnp->level != level) {
4517 pr_cont("\n");
4518 pr_info(" ");
4519 level = rnp->level;
4520 }
4521 pr_cont("%d:%d ^%d ", rnp->grplo, rnp->grphi, rnp->grpnum);
4522 }
4523 pr_cont("\n");
4524 }
4525
4526 struct workqueue_struct *rcu_gp_wq;
4527 struct workqueue_struct *rcu_par_gp_wq;
4528
kfree_rcu_batch_init(void)4529 static void __init kfree_rcu_batch_init(void)
4530 {
4531 int cpu;
4532 int i;
4533
4534 for_each_possible_cpu(cpu) {
4535 struct kfree_rcu_cpu *krcp = per_cpu_ptr(&krc, cpu);
4536
4537 for (i = 0; i < KFREE_N_BATCHES; i++) {
4538 INIT_RCU_WORK(&krcp->krw_arr[i].rcu_work, kfree_rcu_work);
4539 krcp->krw_arr[i].krcp = krcp;
4540 }
4541
4542 INIT_DELAYED_WORK(&krcp->monitor_work, kfree_rcu_monitor);
4543 INIT_WORK(&krcp->page_cache_work, fill_page_cache_func);
4544 krcp->initialized = true;
4545 }
4546 if (register_shrinker(&kfree_rcu_shrinker))
4547 pr_err("Failed to register kfree_rcu() shrinker!\n");
4548 }
4549
rcu_init(void)4550 void __init rcu_init(void)
4551 {
4552 int cpu;
4553
4554 rcu_early_boot_tests();
4555
4556 kfree_rcu_batch_init();
4557 rcu_bootup_announce();
4558 rcu_init_geometry();
4559 rcu_init_one();
4560 if (dump_tree)
4561 rcu_dump_rcu_node_tree();
4562 if (use_softirq)
4563 open_softirq(RCU_SOFTIRQ, rcu_core_si);
4564
4565 /*
4566 * We don't need protection against CPU-hotplug here because
4567 * this is called early in boot, before either interrupts
4568 * or the scheduler are operational.
4569 */
4570 pm_notifier(rcu_pm_notify, 0);
4571 for_each_online_cpu(cpu) {
4572 rcutree_prepare_cpu(cpu);
4573 rcu_cpu_starting(cpu);
4574 rcutree_online_cpu(cpu);
4575 }
4576
4577 /* Create workqueue for expedited GPs and for Tree SRCU. */
4578 rcu_gp_wq = alloc_workqueue("rcu_gp", WQ_MEM_RECLAIM, 0);
4579 WARN_ON(!rcu_gp_wq);
4580 rcu_par_gp_wq = alloc_workqueue("rcu_par_gp", WQ_MEM_RECLAIM, 0);
4581 WARN_ON(!rcu_par_gp_wq);
4582 srcu_init();
4583
4584 /* Fill in default value for rcutree.qovld boot parameter. */
4585 /* -After- the rcu_node ->lock fields are initialized! */
4586 if (qovld < 0)
4587 qovld_calc = DEFAULT_RCU_QOVLD_MULT * qhimark;
4588 else
4589 qovld_calc = qovld;
4590 }
4591
4592 #include "tree_stall.h"
4593 #include "tree_exp.h"
4594 #include "tree_plugin.h"
4595