• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright 2016-2018 The OpenSSL Project Authors. All Rights Reserved.
3  *
4  * Licensed under the Apache License 2.0 (the "License").  You may not use
5  * this file except in compliance with the License.  You can obtain a copy
6  * in the file LICENSE in the source distribution or at
7  * https://www.openssl.org/source/license.html
8  */
9 
10 /*
11  * This module is meant to be used as template for non-x87 floating-
12  * point assembly modules. The template itself is x86_64-specific
13  * though, as it was debugged on x86_64. So that implementor would
14  * have to recognize platform-specific parts, UxTOy and inline asm,
15  * and act accordingly.
16  *
17  * Huh? x86_64-specific code as template for non-x87? Note seven, which
18  * is not a typo, but reference to 80-bit precision. This module on the
19  * other hand relies on 64-bit precision operations, which are default
20  * for x86_64 code. And since we are at it, just for sense of it,
21  * large-block performance in cycles per processed byte for *this* code
22  * is:
23  *                      gcc-4.8         icc-15.0        clang-3.4(*)
24  *
25  * Westmere             4.96            5.09            4.37
26  * Sandy Bridge         4.95            4.90            4.17
27  * Haswell              4.92            4.87            3.78
28  * Bulldozer            4.67            4.49            4.68
29  * VIA Nano             7.07            7.05            5.98
30  * Silvermont           10.6            9.61            12.6
31  *
32  * (*)  clang managed to discover parallelism and deployed SIMD;
33  *
34  * And for range of other platforms with unspecified gcc versions:
35  *
36  * Freescale e300       12.5
37  * PPC74x0              10.8
38  * POWER6               4.92
39  * POWER7               4.50
40  * POWER8               4.10
41  *
42  * z10                  11.2
43  * z196+                7.30
44  *
45  * UltraSPARC III       16.0
46  * SPARC T4             16.1
47  */
48 
49 #if !(defined(__GNUC__) && __GNUC__>=2)
50 # error "this is gcc-specific template"
51 #endif
52 
53 #include <stdlib.h>
54 
55 typedef unsigned char u8;
56 typedef unsigned int u32;
57 typedef unsigned long long u64;
58 typedef union { double d; u64 u; } elem64;
59 
60 #define TWO(p)          ((double)(1ULL<<(p)))
61 #define TWO0            TWO(0)
62 #define TWO32           TWO(32)
63 #define TWO64           (TWO32*TWO(32))
64 #define TWO96           (TWO64*TWO(32))
65 #define TWO130          (TWO96*TWO(34))
66 
67 #define EXP(p)          ((1023ULL+(p))<<52)
68 
69 #if defined(__x86_64__) || (defined(__PPC__) && defined(__LITTLE_ENDIAN__))
70 # define U8TOU32(p)     (*(const u32 *)(p))
71 # define U32TO8(p,v)    (*(u32 *)(p) = (v))
72 #elif defined(__PPC__)
73 # define U8TOU32(p)     ({u32 ret; asm ("lwbrx	%0,0,%1":"=r"(ret):"b"(p)); ret; })
74 # define U32TO8(p,v)    asm ("stwbrx %0,0,%1"::"r"(v),"b"(p):"memory")
75 #elif defined(__s390x__)
76 # define U8TOU32(p)     ({u32 ret; asm ("lrv	%0,%1":"=d"(ret):"m"(*(u32 *)(p))); ret; })
77 # define U32TO8(p,v)    asm ("strv	%1,%0":"=m"(*(u32 *)(p)):"d"(v))
78 #endif
79 
80 #ifndef U8TOU32
81 # define U8TOU32(p)     ((u32)(p)[0]     | (u32)(p)[1]<<8 |     \
82                          (u32)(p)[2]<<16 | (u32)(p)[3]<<24  )
83 #endif
84 #ifndef U32TO8
85 # define U32TO8(p,v)    ((p)[0] = (u8)(v),       (p)[1] = (u8)((v)>>8), \
86                          (p)[2] = (u8)((v)>>16), (p)[3] = (u8)((v)>>24) )
87 #endif
88 
89 typedef struct {
90     elem64 h[4];
91     double r[8];
92     double s[6];
93 } poly1305_internal;
94 
95 /* "round toward zero (truncate), mask all exceptions" */
96 #if defined(__x86_64__)
97 static const u32 mxcsr = 0x7f80;
98 #elif defined(__PPC__)
99 static const u64 one = 1;
100 #elif defined(__s390x__)
101 static const u32 fpc = 1;
102 #elif defined(__sparc__)
103 static const u64 fsr = 1ULL<<30;
104 #elif defined(__mips__)
105 static const u32 fcsr = 1;
106 #else
107 #error "unrecognized platform"
108 #endif
109 
poly1305_init(void * ctx,const unsigned char key[16])110 int poly1305_init(void *ctx, const unsigned char key[16])
111 {
112     poly1305_internal *st = (poly1305_internal *) ctx;
113     elem64 r0, r1, r2, r3;
114 
115     /* h = 0, biased */
116 #if 0
117     st->h[0].d = TWO(52)*TWO0;
118     st->h[1].d = TWO(52)*TWO32;
119     st->h[2].d = TWO(52)*TWO64;
120     st->h[3].d = TWO(52)*TWO96;
121 #else
122     st->h[0].u = EXP(52+0);
123     st->h[1].u = EXP(52+32);
124     st->h[2].u = EXP(52+64);
125     st->h[3].u = EXP(52+96);
126 #endif
127 
128     if (key) {
129         /*
130          * set "truncate" rounding mode
131          */
132 #if defined(__x86_64__)
133         u32 mxcsr_orig;
134 
135         asm volatile ("stmxcsr	%0":"=m"(mxcsr_orig));
136         asm volatile ("ldmxcsr	%0"::"m"(mxcsr));
137 #elif defined(__PPC__)
138         double fpscr_orig, fpscr = *(double *)&one;
139 
140         asm volatile ("mffs	%0":"=f"(fpscr_orig));
141         asm volatile ("mtfsf	255,%0"::"f"(fpscr));
142 #elif defined(__s390x__)
143         u32 fpc_orig;
144 
145         asm volatile ("stfpc	%0":"=m"(fpc_orig));
146         asm volatile ("lfpc	%0"::"m"(fpc));
147 #elif defined(__sparc__)
148         u64 fsr_orig;
149 
150         asm volatile ("stx	%%fsr,%0":"=m"(fsr_orig));
151         asm volatile ("ldx	%0,%%fsr"::"m"(fsr));
152 #elif defined(__mips__)
153         u32 fcsr_orig;
154 
155         asm volatile ("cfc1	%0,$31":"=r"(fcsr_orig));
156         asm volatile ("ctc1	%0,$31"::"r"(fcsr));
157 #endif
158 
159         /* r &= 0xffffffc0ffffffc0ffffffc0fffffff */
160         r0.u = EXP(52+0)  | (U8TOU32(&key[0])  & 0x0fffffff);
161         r1.u = EXP(52+32) | (U8TOU32(&key[4])  & 0x0ffffffc);
162         r2.u = EXP(52+64) | (U8TOU32(&key[8])  & 0x0ffffffc);
163         r3.u = EXP(52+96) | (U8TOU32(&key[12]) & 0x0ffffffc);
164 
165         st->r[0] = r0.d - TWO(52)*TWO0;
166         st->r[2] = r1.d - TWO(52)*TWO32;
167         st->r[4] = r2.d - TWO(52)*TWO64;
168         st->r[6] = r3.d - TWO(52)*TWO96;
169 
170         st->s[0] = st->r[2] * (5.0/TWO130);
171         st->s[2] = st->r[4] * (5.0/TWO130);
172         st->s[4] = st->r[6] * (5.0/TWO130);
173 
174         /*
175          * base 2^32 -> base 2^16
176          */
177         st->r[1] = (st->r[0] + TWO(52)*TWO(16)*TWO0) -
178                                TWO(52)*TWO(16)*TWO0;
179         st->r[0] -= st->r[1];
180 
181         st->r[3] = (st->r[2] + TWO(52)*TWO(16)*TWO32) -
182                                TWO(52)*TWO(16)*TWO32;
183         st->r[2] -= st->r[3];
184 
185         st->r[5] = (st->r[4] + TWO(52)*TWO(16)*TWO64) -
186                                TWO(52)*TWO(16)*TWO64;
187         st->r[4] -= st->r[5];
188 
189         st->r[7] = (st->r[6] + TWO(52)*TWO(16)*TWO96) -
190                                TWO(52)*TWO(16)*TWO96;
191         st->r[6] -= st->r[7];
192 
193         st->s[1] = (st->s[0] + TWO(52)*TWO(16)*TWO0/TWO96) -
194                                TWO(52)*TWO(16)*TWO0/TWO96;
195         st->s[0] -= st->s[1];
196 
197         st->s[3] = (st->s[2] + TWO(52)*TWO(16)*TWO32/TWO96) -
198                                TWO(52)*TWO(16)*TWO32/TWO96;
199         st->s[2] -= st->s[3];
200 
201         st->s[5] = (st->s[4] + TWO(52)*TWO(16)*TWO64/TWO96) -
202                                TWO(52)*TWO(16)*TWO64/TWO96;
203         st->s[4] -= st->s[5];
204 
205         /*
206          * restore original FPU control register
207          */
208 #if defined(__x86_64__)
209         asm volatile ("ldmxcsr	%0"::"m"(mxcsr_orig));
210 #elif defined(__PPC__)
211         asm volatile ("mtfsf	255,%0"::"f"(fpscr_orig));
212 #elif defined(__s390x__)
213         asm volatile ("lfpc	%0"::"m"(fpc_orig));
214 #elif defined(__sparc__)
215         asm volatile ("ldx	%0,%%fsr"::"m"(fsr_orig));
216 #elif defined(__mips__)
217         asm volatile ("ctc1	%0,$31"::"r"(fcsr_orig));
218 #endif
219     }
220 
221     return 0;
222 }
223 
poly1305_blocks(void * ctx,const unsigned char * inp,size_t len,int padbit)224 void poly1305_blocks(void *ctx, const unsigned char *inp, size_t len,
225                      int padbit)
226 {
227     poly1305_internal *st = (poly1305_internal *)ctx;
228     elem64 in0, in1, in2, in3;
229     u64 pad = (u64)padbit<<32;
230 
231     double x0, x1, x2, x3;
232     double h0lo, h0hi, h1lo, h1hi, h2lo, h2hi, h3lo, h3hi;
233     double c0lo, c0hi, c1lo, c1hi, c2lo, c2hi, c3lo, c3hi;
234 
235     const double r0lo = st->r[0];
236     const double r0hi = st->r[1];
237     const double r1lo = st->r[2];
238     const double r1hi = st->r[3];
239     const double r2lo = st->r[4];
240     const double r2hi = st->r[5];
241     const double r3lo = st->r[6];
242     const double r3hi = st->r[7];
243 
244     const double s1lo = st->s[0];
245     const double s1hi = st->s[1];
246     const double s2lo = st->s[2];
247     const double s2hi = st->s[3];
248     const double s3lo = st->s[4];
249     const double s3hi = st->s[5];
250 
251     /*
252      * set "truncate" rounding mode
253      */
254 #if defined(__x86_64__)
255     u32 mxcsr_orig;
256 
257     asm volatile ("stmxcsr	%0":"=m"(mxcsr_orig));
258     asm volatile ("ldmxcsr	%0"::"m"(mxcsr));
259 #elif defined(__PPC__)
260     double fpscr_orig, fpscr = *(double *)&one;
261 
262     asm volatile ("mffs		%0":"=f"(fpscr_orig));
263     asm volatile ("mtfsf	255,%0"::"f"(fpscr));
264 #elif defined(__s390x__)
265     u32 fpc_orig;
266 
267     asm volatile ("stfpc	%0":"=m"(fpc_orig));
268     asm volatile ("lfpc		%0"::"m"(fpc));
269 #elif defined(__sparc__)
270     u64 fsr_orig;
271 
272     asm volatile ("stx		%%fsr,%0":"=m"(fsr_orig));
273     asm volatile ("ldx		%0,%%fsr"::"m"(fsr));
274 #elif defined(__mips__)
275     u32 fcsr_orig;
276 
277     asm volatile ("cfc1		%0,$31":"=r"(fcsr_orig));
278     asm volatile ("ctc1		%0,$31"::"r"(fcsr));
279 #endif
280 
281     /*
282      * load base 2^32 and de-bias
283      */
284     h0lo = st->h[0].d - TWO(52)*TWO0;
285     h1lo = st->h[1].d - TWO(52)*TWO32;
286     h2lo = st->h[2].d - TWO(52)*TWO64;
287     h3lo = st->h[3].d - TWO(52)*TWO96;
288 
289 #ifdef __clang__
290     h0hi = 0;
291     h1hi = 0;
292     h2hi = 0;
293     h3hi = 0;
294 #else
295     in0.u = EXP(52+0)  | U8TOU32(&inp[0]);
296     in1.u = EXP(52+32) | U8TOU32(&inp[4]);
297     in2.u = EXP(52+64) | U8TOU32(&inp[8]);
298     in3.u = EXP(52+96) | U8TOU32(&inp[12]) | pad;
299 
300     x0 = in0.d - TWO(52)*TWO0;
301     x1 = in1.d - TWO(52)*TWO32;
302     x2 = in2.d - TWO(52)*TWO64;
303     x3 = in3.d - TWO(52)*TWO96;
304 
305     x0 += h0lo;
306     x1 += h1lo;
307     x2 += h2lo;
308     x3 += h3lo;
309 
310     goto fast_entry;
311 #endif
312 
313     do {
314         in0.u = EXP(52+0)  | U8TOU32(&inp[0]);
315         in1.u = EXP(52+32) | U8TOU32(&inp[4]);
316         in2.u = EXP(52+64) | U8TOU32(&inp[8]);
317         in3.u = EXP(52+96) | U8TOU32(&inp[12]) | pad;
318 
319         x0 = in0.d - TWO(52)*TWO0;
320         x1 = in1.d - TWO(52)*TWO32;
321         x2 = in2.d - TWO(52)*TWO64;
322         x3 = in3.d - TWO(52)*TWO96;
323 
324         /*
325          * note that there are multiple ways to accumulate input, e.g.
326          * one can as well accumulate to h0lo-h1lo-h1hi-h2hi...
327          */
328         h0lo += x0;
329         h0hi += x1;
330         h2lo += x2;
331         h2hi += x3;
332 
333         /*
334          * carries that cross 32n-bit (and 130-bit) boundaries
335          */
336         c0lo = (h0lo + TWO(52)*TWO32)  - TWO(52)*TWO32;
337         c1lo = (h1lo + TWO(52)*TWO64)  - TWO(52)*TWO64;
338         c2lo = (h2lo + TWO(52)*TWO96)  - TWO(52)*TWO96;
339         c3lo = (h3lo + TWO(52)*TWO130) - TWO(52)*TWO130;
340 
341         c0hi = (h0hi + TWO(52)*TWO32)  - TWO(52)*TWO32;
342         c1hi = (h1hi + TWO(52)*TWO64)  - TWO(52)*TWO64;
343         c2hi = (h2hi + TWO(52)*TWO96)  - TWO(52)*TWO96;
344         c3hi = (h3hi + TWO(52)*TWO130) - TWO(52)*TWO130;
345 
346         /*
347          * base 2^48 -> base 2^32 with last reduction step
348          */
349         x1 =  (h1lo - c1lo) + c0lo;
350         x2 =  (h2lo - c2lo) + c1lo;
351         x3 =  (h3lo - c3lo) + c2lo;
352         x0 =  (h0lo - c0lo) + c3lo * (5.0/TWO130);
353 
354         x1 += (h1hi - c1hi) + c0hi;
355         x2 += (h2hi - c2hi) + c1hi;
356         x3 += (h3hi - c3hi) + c2hi;
357         x0 += (h0hi - c0hi) + c3hi * (5.0/TWO130);
358 
359 #ifndef __clang__
360     fast_entry:
361 #endif
362         /*
363          * base 2^32 * base 2^16 = base 2^48
364          */
365         h0lo = s3lo * x1 + s2lo * x2 + s1lo * x3 + r0lo * x0;
366         h1lo = r0lo * x1 + s3lo * x2 + s2lo * x3 + r1lo * x0;
367         h2lo = r1lo * x1 + r0lo * x2 + s3lo * x3 + r2lo * x0;
368         h3lo = r2lo * x1 + r1lo * x2 + r0lo * x3 + r3lo * x0;
369 
370         h0hi = s3hi * x1 + s2hi * x2 + s1hi * x3 + r0hi * x0;
371         h1hi = r0hi * x1 + s3hi * x2 + s2hi * x3 + r1hi * x0;
372         h2hi = r1hi * x1 + r0hi * x2 + s3hi * x3 + r2hi * x0;
373         h3hi = r2hi * x1 + r1hi * x2 + r0hi * x3 + r3hi * x0;
374 
375         inp += 16;
376         len -= 16;
377 
378     } while (len >= 16);
379 
380     /*
381      * carries that cross 32n-bit (and 130-bit) boundaries
382      */
383     c0lo = (h0lo + TWO(52)*TWO32)  - TWO(52)*TWO32;
384     c1lo = (h1lo + TWO(52)*TWO64)  - TWO(52)*TWO64;
385     c2lo = (h2lo + TWO(52)*TWO96)  - TWO(52)*TWO96;
386     c3lo = (h3lo + TWO(52)*TWO130) - TWO(52)*TWO130;
387 
388     c0hi = (h0hi + TWO(52)*TWO32)  - TWO(52)*TWO32;
389     c1hi = (h1hi + TWO(52)*TWO64)  - TWO(52)*TWO64;
390     c2hi = (h2hi + TWO(52)*TWO96)  - TWO(52)*TWO96;
391     c3hi = (h3hi + TWO(52)*TWO130) - TWO(52)*TWO130;
392 
393     /*
394      * base 2^48 -> base 2^32 with last reduction step
395      */
396     x1 =  (h1lo - c1lo) + c0lo;
397     x2 =  (h2lo - c2lo) + c1lo;
398     x3 =  (h3lo - c3lo) + c2lo;
399     x0 =  (h0lo - c0lo) + c3lo * (5.0/TWO130);
400 
401     x1 += (h1hi - c1hi) + c0hi;
402     x2 += (h2hi - c2hi) + c1hi;
403     x3 += (h3hi - c3hi) + c2hi;
404     x0 += (h0hi - c0hi) + c3hi * (5.0/TWO130);
405 
406     /*
407      * store base 2^32, with bias
408      */
409     st->h[1].d = x1 + TWO(52)*TWO32;
410     st->h[2].d = x2 + TWO(52)*TWO64;
411     st->h[3].d = x3 + TWO(52)*TWO96;
412     st->h[0].d = x0 + TWO(52)*TWO0;
413 
414     /*
415      * restore original FPU control register
416      */
417 #if defined(__x86_64__)
418     asm volatile ("ldmxcsr	%0"::"m"(mxcsr_orig));
419 #elif defined(__PPC__)
420     asm volatile ("mtfsf	255,%0"::"f"(fpscr_orig));
421 #elif defined(__s390x__)
422     asm volatile ("lfpc		%0"::"m"(fpc_orig));
423 #elif defined(__sparc__)
424     asm volatile ("ldx		%0,%%fsr"::"m"(fsr_orig));
425 #elif defined(__mips__)
426     asm volatile ("ctc1		%0,$31"::"r"(fcsr_orig));
427 #endif
428 }
429 
poly1305_emit(void * ctx,unsigned char mac[16],const u32 nonce[4])430 void poly1305_emit(void *ctx, unsigned char mac[16], const u32 nonce[4])
431 {
432     poly1305_internal *st = (poly1305_internal *) ctx;
433     u64 h0, h1, h2, h3, h4;
434     u32 g0, g1, g2, g3, g4;
435     u64 t;
436     u32 mask;
437 
438     /*
439      * thanks to bias masking exponent gives integer result
440      */
441     h0 = st->h[0].u & 0x000fffffffffffffULL;
442     h1 = st->h[1].u & 0x000fffffffffffffULL;
443     h2 = st->h[2].u & 0x000fffffffffffffULL;
444     h3 = st->h[3].u & 0x000fffffffffffffULL;
445 
446     /*
447      * can be partially reduced, so reduce...
448      */
449     h4 = h3>>32; h3 &= 0xffffffffU;
450     g4 = h4&-4;
451     h4 &= 3;
452     g4 += g4>>2;
453 
454     h0 += g4;
455     h1 += h0>>32; h0 &= 0xffffffffU;
456     h2 += h1>>32; h1 &= 0xffffffffU;
457     h3 += h2>>32; h2 &= 0xffffffffU;
458 
459     /* compute h + -p */
460     g0 = (u32)(t = h0 + 5);
461     g1 = (u32)(t = h1 + (t >> 32));
462     g2 = (u32)(t = h2 + (t >> 32));
463     g3 = (u32)(t = h3 + (t >> 32));
464     g4 = h4 + (u32)(t >> 32);
465 
466     /* if there was carry, select g0-g3 */
467     mask = 0 - (g4 >> 2);
468     g0 &= mask;
469     g1 &= mask;
470     g2 &= mask;
471     g3 &= mask;
472     mask = ~mask;
473     g0 |= (h0 & mask);
474     g1 |= (h1 & mask);
475     g2 |= (h2 & mask);
476     g3 |= (h3 & mask);
477 
478     /* mac = (h + nonce) % (2^128) */
479     g0 = (u32)(t = (u64)g0 + nonce[0]);
480     g1 = (u32)(t = (u64)g1 + (t >> 32) + nonce[1]);
481     g2 = (u32)(t = (u64)g2 + (t >> 32) + nonce[2]);
482     g3 = (u32)(t = (u64)g3 + (t >> 32) + nonce[3]);
483 
484     U32TO8(mac + 0, g0);
485     U32TO8(mac + 4, g1);
486     U32TO8(mac + 8, g2);
487     U32TO8(mac + 12, g3);
488 }
489