• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _LINUX_RCULIST_H
3 #define _LINUX_RCULIST_H
4 
5 #ifdef __KERNEL__
6 
7 /*
8  * RCU-protected list version
9  */
10 #include <linux/list.h>
11 #include <linux/rcupdate.h>
12 
13 /*
14  * Why is there no list_empty_rcu()?  Because list_empty() serves this
15  * purpose.  The list_empty() function fetches the RCU-protected pointer
16  * and compares it to the address of the list head, but neither dereferences
17  * this pointer itself nor provides this pointer to the caller.  Therefore,
18  * it is not necessary to use rcu_dereference(), so that list_empty() can
19  * be used anywhere you would want to use a list_empty_rcu().
20  */
21 
22 /*
23  * INIT_LIST_HEAD_RCU - Initialize a list_head visible to RCU readers
24  * @list: list to be initialized
25  *
26  * You should instead use INIT_LIST_HEAD() for normal initialization and
27  * cleanup tasks, when readers have no access to the list being initialized.
28  * However, if the list being initialized is visible to readers, you
29  * need to keep the compiler from being too mischievous.
30  */
INIT_LIST_HEAD_RCU(struct list_head * list)31 static inline void INIT_LIST_HEAD_RCU(struct list_head *list)
32 {
33 	WRITE_ONCE(list->next, list);
34 	WRITE_ONCE(list->prev, list);
35 }
36 
37 /*
38  * return the ->next pointer of a list_head in an rcu safe
39  * way, we must not access it directly
40  */
41 #define list_next_rcu(list)	(*((struct list_head __rcu **)(&(list)->next)))
42 
43 /**
44  * list_tail_rcu - returns the prev pointer of the head of the list
45  * @head: the head of the list
46  *
47  * Note: This should only be used with the list header, and even then
48  * only if list_del() and similar primitives are not also used on the
49  * list header.
50  */
51 #define list_tail_rcu(head)	(*((struct list_head __rcu **)(&(head)->prev)))
52 
53 /*
54  * Check during list traversal that we are within an RCU reader
55  */
56 
57 #define check_arg_count_one(dummy)
58 
59 #ifdef CONFIG_PROVE_RCU_LIST
60 #define __list_check_rcu(dummy, cond, extra...)				\
61 	({								\
62 	check_arg_count_one(extra);					\
63 	RCU_LOCKDEP_WARN(!(cond) && !rcu_read_lock_any_held(),		\
64 			 "RCU-list traversed in non-reader section!");	\
65 	})
66 
67 #define __list_check_srcu(cond)					 \
68 	({								 \
69 	RCU_LOCKDEP_WARN(!(cond),					 \
70 		"RCU-list traversed without holding the required lock!");\
71 	})
72 #else
73 #define __list_check_rcu(dummy, cond, extra...)				\
74 	({ check_arg_count_one(extra); })
75 
76 #define __list_check_srcu(cond) ({ })
77 #endif
78 
79 /*
80  * Insert a new entry between two known consecutive entries.
81  *
82  * This is only for internal list manipulation where we know
83  * the prev/next entries already!
84  */
__list_add_rcu(struct list_head * new,struct list_head * prev,struct list_head * next)85 static inline void __list_add_rcu(struct list_head *new,
86 		struct list_head *prev, struct list_head *next)
87 {
88 	if (!__list_add_valid(new, prev, next))
89 		return;
90 
91 	new->next = next;
92 	new->prev = prev;
93 	rcu_assign_pointer(list_next_rcu(prev), new);
94 	next->prev = new;
95 }
96 
97 /**
98  * list_add_rcu - add a new entry to rcu-protected list
99  * @new: new entry to be added
100  * @head: list head to add it after
101  *
102  * Insert a new entry after the specified head.
103  * This is good for implementing stacks.
104  *
105  * The caller must take whatever precautions are necessary
106  * (such as holding appropriate locks) to avoid racing
107  * with another list-mutation primitive, such as list_add_rcu()
108  * or list_del_rcu(), running on this same list.
109  * However, it is perfectly legal to run concurrently with
110  * the _rcu list-traversal primitives, such as
111  * list_for_each_entry_rcu().
112  */
list_add_rcu(struct list_head * new,struct list_head * head)113 static inline void list_add_rcu(struct list_head *new, struct list_head *head)
114 {
115 	__list_add_rcu(new, head, head->next);
116 }
117 
118 /**
119  * list_add_tail_rcu - add a new entry to rcu-protected list
120  * @new: new entry to be added
121  * @head: list head to add it before
122  *
123  * Insert a new entry before the specified head.
124  * This is useful for implementing queues.
125  *
126  * The caller must take whatever precautions are necessary
127  * (such as holding appropriate locks) to avoid racing
128  * with another list-mutation primitive, such as list_add_tail_rcu()
129  * or list_del_rcu(), running on this same list.
130  * However, it is perfectly legal to run concurrently with
131  * the _rcu list-traversal primitives, such as
132  * list_for_each_entry_rcu().
133  */
list_add_tail_rcu(struct list_head * new,struct list_head * head)134 static inline void list_add_tail_rcu(struct list_head *new,
135 					struct list_head *head)
136 {
137 	__list_add_rcu(new, head->prev, head);
138 }
139 
140 /**
141  * list_del_rcu - deletes entry from list without re-initialization
142  * @entry: the element to delete from the list.
143  *
144  * Note: list_empty() on entry does not return true after this,
145  * the entry is in an undefined state. It is useful for RCU based
146  * lockfree traversal.
147  *
148  * In particular, it means that we can not poison the forward
149  * pointers that may still be used for walking the list.
150  *
151  * The caller must take whatever precautions are necessary
152  * (such as holding appropriate locks) to avoid racing
153  * with another list-mutation primitive, such as list_del_rcu()
154  * or list_add_rcu(), running on this same list.
155  * However, it is perfectly legal to run concurrently with
156  * the _rcu list-traversal primitives, such as
157  * list_for_each_entry_rcu().
158  *
159  * Note that the caller is not permitted to immediately free
160  * the newly deleted entry.  Instead, either synchronize_rcu()
161  * or call_rcu() must be used to defer freeing until an RCU
162  * grace period has elapsed.
163  */
list_del_rcu(struct list_head * entry)164 static inline void list_del_rcu(struct list_head *entry)
165 {
166 	__list_del_entry(entry);
167 	entry->prev = LIST_POISON2;
168 }
169 
170 /**
171  * hlist_del_init_rcu - deletes entry from hash list with re-initialization
172  * @n: the element to delete from the hash list.
173  *
174  * Note: list_unhashed() on the node return true after this. It is
175  * useful for RCU based read lockfree traversal if the writer side
176  * must know if the list entry is still hashed or already unhashed.
177  *
178  * In particular, it means that we can not poison the forward pointers
179  * that may still be used for walking the hash list and we can only
180  * zero the pprev pointer so list_unhashed() will return true after
181  * this.
182  *
183  * The caller must take whatever precautions are necessary (such as
184  * holding appropriate locks) to avoid racing with another
185  * list-mutation primitive, such as hlist_add_head_rcu() or
186  * hlist_del_rcu(), running on this same list.  However, it is
187  * perfectly legal to run concurrently with the _rcu list-traversal
188  * primitives, such as hlist_for_each_entry_rcu().
189  */
hlist_del_init_rcu(struct hlist_node * n)190 static inline void hlist_del_init_rcu(struct hlist_node *n)
191 {
192 	if (!hlist_unhashed(n)) {
193 		__hlist_del(n);
194 		WRITE_ONCE(n->pprev, NULL);
195 	}
196 }
197 
198 /**
199  * list_replace_rcu - replace old entry by new one
200  * @old : the element to be replaced
201  * @new : the new element to insert
202  *
203  * The @old entry will be replaced with the @new entry atomically.
204  * Note: @old should not be empty.
205  */
list_replace_rcu(struct list_head * old,struct list_head * new)206 static inline void list_replace_rcu(struct list_head *old,
207 				struct list_head *new)
208 {
209 	new->next = old->next;
210 	new->prev = old->prev;
211 	rcu_assign_pointer(list_next_rcu(new->prev), new);
212 	new->next->prev = new;
213 	old->prev = LIST_POISON2;
214 }
215 
216 /**
217  * __list_splice_init_rcu - join an RCU-protected list into an existing list.
218  * @list:	the RCU-protected list to splice
219  * @prev:	points to the last element of the existing list
220  * @next:	points to the first element of the existing list
221  * @sync:	synchronize_rcu, synchronize_rcu_expedited, ...
222  *
223  * The list pointed to by @prev and @next can be RCU-read traversed
224  * concurrently with this function.
225  *
226  * Note that this function blocks.
227  *
228  * Important note: the caller must take whatever action is necessary to prevent
229  * any other updates to the existing list.  In principle, it is possible to
230  * modify the list as soon as sync() begins execution. If this sort of thing
231  * becomes necessary, an alternative version based on call_rcu() could be
232  * created.  But only if -really- needed -- there is no shortage of RCU API
233  * members.
234  */
__list_splice_init_rcu(struct list_head * list,struct list_head * prev,struct list_head * next,void (* sync)(void))235 static inline void __list_splice_init_rcu(struct list_head *list,
236 					  struct list_head *prev,
237 					  struct list_head *next,
238 					  void (*sync)(void))
239 {
240 	struct list_head *first = list->next;
241 	struct list_head *last = list->prev;
242 
243 	/*
244 	 * "first" and "last" tracking list, so initialize it.  RCU readers
245 	 * have access to this list, so we must use INIT_LIST_HEAD_RCU()
246 	 * instead of INIT_LIST_HEAD().
247 	 */
248 
249 	INIT_LIST_HEAD_RCU(list);
250 
251 	/*
252 	 * At this point, the list body still points to the source list.
253 	 * Wait for any readers to finish using the list before splicing
254 	 * the list body into the new list.  Any new readers will see
255 	 * an empty list.
256 	 */
257 
258 	sync();
259 	ASSERT_EXCLUSIVE_ACCESS(*first);
260 	ASSERT_EXCLUSIVE_ACCESS(*last);
261 
262 	/*
263 	 * Readers are finished with the source list, so perform splice.
264 	 * The order is important if the new list is global and accessible
265 	 * to concurrent RCU readers.  Note that RCU readers are not
266 	 * permitted to traverse the prev pointers without excluding
267 	 * this function.
268 	 */
269 
270 	last->next = next;
271 	rcu_assign_pointer(list_next_rcu(prev), first);
272 	first->prev = prev;
273 	next->prev = last;
274 }
275 
276 /**
277  * list_splice_init_rcu - splice an RCU-protected list into an existing list,
278  *                        designed for stacks.
279  * @list:	the RCU-protected list to splice
280  * @head:	the place in the existing list to splice the first list into
281  * @sync:	synchronize_rcu, synchronize_rcu_expedited, ...
282  */
list_splice_init_rcu(struct list_head * list,struct list_head * head,void (* sync)(void))283 static inline void list_splice_init_rcu(struct list_head *list,
284 					struct list_head *head,
285 					void (*sync)(void))
286 {
287 	if (!list_empty(list))
288 		__list_splice_init_rcu(list, head, head->next, sync);
289 }
290 
291 /**
292  * list_splice_tail_init_rcu - splice an RCU-protected list into an existing
293  *                             list, designed for queues.
294  * @list:	the RCU-protected list to splice
295  * @head:	the place in the existing list to splice the first list into
296  * @sync:	synchronize_rcu, synchronize_rcu_expedited, ...
297  */
list_splice_tail_init_rcu(struct list_head * list,struct list_head * head,void (* sync)(void))298 static inline void list_splice_tail_init_rcu(struct list_head *list,
299 					     struct list_head *head,
300 					     void (*sync)(void))
301 {
302 	if (!list_empty(list))
303 		__list_splice_init_rcu(list, head->prev, head, sync);
304 }
305 
306 /**
307  * list_entry_rcu - get the struct for this entry
308  * @ptr:        the &struct list_head pointer.
309  * @type:       the type of the struct this is embedded in.
310  * @member:     the name of the list_head within the struct.
311  *
312  * This primitive may safely run concurrently with the _rcu list-mutation
313  * primitives such as list_add_rcu() as long as it's guarded by rcu_read_lock().
314  */
315 #define list_entry_rcu(ptr, type, member) \
316 	container_of(READ_ONCE(ptr), type, member)
317 
318 /*
319  * Where are list_empty_rcu() and list_first_entry_rcu()?
320  *
321  * Implementing those functions following their counterparts list_empty() and
322  * list_first_entry() is not advisable because they lead to subtle race
323  * conditions as the following snippet shows:
324  *
325  * if (!list_empty_rcu(mylist)) {
326  *	struct foo *bar = list_first_entry_rcu(mylist, struct foo, list_member);
327  *	do_something(bar);
328  * }
329  *
330  * The list may not be empty when list_empty_rcu checks it, but it may be when
331  * list_first_entry_rcu rereads the ->next pointer.
332  *
333  * Rereading the ->next pointer is not a problem for list_empty() and
334  * list_first_entry() because they would be protected by a lock that blocks
335  * writers.
336  *
337  * See list_first_or_null_rcu for an alternative.
338  */
339 
340 /**
341  * list_first_or_null_rcu - get the first element from a list
342  * @ptr:        the list head to take the element from.
343  * @type:       the type of the struct this is embedded in.
344  * @member:     the name of the list_head within the struct.
345  *
346  * Note that if the list is empty, it returns NULL.
347  *
348  * This primitive may safely run concurrently with the _rcu list-mutation
349  * primitives such as list_add_rcu() as long as it's guarded by rcu_read_lock().
350  */
351 #define list_first_or_null_rcu(ptr, type, member) \
352 ({ \
353 	struct list_head *__ptr = (ptr); \
354 	struct list_head *__next = READ_ONCE(__ptr->next); \
355 	likely(__ptr != __next) ? list_entry_rcu(__next, type, member) : NULL; \
356 })
357 
358 /**
359  * list_next_or_null_rcu - get the first element from a list
360  * @head:	the head for the list.
361  * @ptr:        the list head to take the next element from.
362  * @type:       the type of the struct this is embedded in.
363  * @member:     the name of the list_head within the struct.
364  *
365  * Note that if the ptr is at the end of the list, NULL is returned.
366  *
367  * This primitive may safely run concurrently with the _rcu list-mutation
368  * primitives such as list_add_rcu() as long as it's guarded by rcu_read_lock().
369  */
370 #define list_next_or_null_rcu(head, ptr, type, member) \
371 ({ \
372 	struct list_head *__head = (head); \
373 	struct list_head *__ptr = (ptr); \
374 	struct list_head *__next = READ_ONCE(__ptr->next); \
375 	likely(__next != __head) ? list_entry_rcu(__next, type, \
376 						  member) : NULL; \
377 })
378 
379 /**
380  * list_for_each_entry_rcu	-	iterate over rcu list of given type
381  * @pos:	the type * to use as a loop cursor.
382  * @head:	the head for your list.
383  * @member:	the name of the list_head within the struct.
384  * @cond:	optional lockdep expression if called from non-RCU protection.
385  *
386  * This list-traversal primitive may safely run concurrently with
387  * the _rcu list-mutation primitives such as list_add_rcu()
388  * as long as the traversal is guarded by rcu_read_lock().
389  */
390 #define list_for_each_entry_rcu(pos, head, member, cond...)		\
391 	for (__list_check_rcu(dummy, ## cond, 0),			\
392 	     pos = list_entry_rcu((head)->next, typeof(*pos), member);	\
393 		&pos->member != (head);					\
394 		pos = list_entry_rcu(pos->member.next, typeof(*pos), member))
395 
396 /**
397  * list_for_each_entry_srcu	-	iterate over rcu list of given type
398  * @pos:	the type * to use as a loop cursor.
399  * @head:	the head for your list.
400  * @member:	the name of the list_head within the struct.
401  * @cond:	lockdep expression for the lock required to traverse the list.
402  *
403  * This list-traversal primitive may safely run concurrently with
404  * the _rcu list-mutation primitives such as list_add_rcu()
405  * as long as the traversal is guarded by srcu_read_lock().
406  * The lockdep expression srcu_read_lock_held() can be passed as the
407  * cond argument from read side.
408  */
409 #define list_for_each_entry_srcu(pos, head, member, cond)		\
410 	for (__list_check_srcu(cond),					\
411 	     pos = list_entry_rcu((head)->next, typeof(*pos), member);	\
412 		&pos->member != (head);					\
413 		pos = list_entry_rcu(pos->member.next, typeof(*pos), member))
414 
415 /**
416  * list_entry_lockless - get the struct for this entry
417  * @ptr:        the &struct list_head pointer.
418  * @type:       the type of the struct this is embedded in.
419  * @member:     the name of the list_head within the struct.
420  *
421  * This primitive may safely run concurrently with the _rcu
422  * list-mutation primitives such as list_add_rcu(), but requires some
423  * implicit RCU read-side guarding.  One example is running within a special
424  * exception-time environment where preemption is disabled and where lockdep
425  * cannot be invoked.  Another example is when items are added to the list,
426  * but never deleted.
427  */
428 #define list_entry_lockless(ptr, type, member) \
429 	container_of((typeof(ptr))READ_ONCE(ptr), type, member)
430 
431 /**
432  * list_for_each_entry_lockless - iterate over rcu list of given type
433  * @pos:	the type * to use as a loop cursor.
434  * @head:	the head for your list.
435  * @member:	the name of the list_struct within the struct.
436  *
437  * This primitive may safely run concurrently with the _rcu
438  * list-mutation primitives such as list_add_rcu(), but requires some
439  * implicit RCU read-side guarding.  One example is running within a special
440  * exception-time environment where preemption is disabled and where lockdep
441  * cannot be invoked.  Another example is when items are added to the list,
442  * but never deleted.
443  */
444 #define list_for_each_entry_lockless(pos, head, member) \
445 	for (pos = list_entry_lockless((head)->next, typeof(*pos), member); \
446 	     &pos->member != (head); \
447 	     pos = list_entry_lockless(pos->member.next, typeof(*pos), member))
448 
449 /**
450  * list_for_each_entry_continue_rcu - continue iteration over list of given type
451  * @pos:	the type * to use as a loop cursor.
452  * @head:	the head for your list.
453  * @member:	the name of the list_head within the struct.
454  *
455  * Continue to iterate over list of given type, continuing after
456  * the current position which must have been in the list when the RCU read
457  * lock was taken.
458  * This would typically require either that you obtained the node from a
459  * previous walk of the list in the same RCU read-side critical section, or
460  * that you held some sort of non-RCU reference (such as a reference count)
461  * to keep the node alive *and* in the list.
462  *
463  * This iterator is similar to list_for_each_entry_from_rcu() except
464  * this starts after the given position and that one starts at the given
465  * position.
466  */
467 #define list_for_each_entry_continue_rcu(pos, head, member) 		\
468 	for (pos = list_entry_rcu(pos->member.next, typeof(*pos), member); \
469 	     &pos->member != (head);	\
470 	     pos = list_entry_rcu(pos->member.next, typeof(*pos), member))
471 
472 /**
473  * list_for_each_entry_from_rcu - iterate over a list from current point
474  * @pos:	the type * to use as a loop cursor.
475  * @head:	the head for your list.
476  * @member:	the name of the list_node within the struct.
477  *
478  * Iterate over the tail of a list starting from a given position,
479  * which must have been in the list when the RCU read lock was taken.
480  * This would typically require either that you obtained the node from a
481  * previous walk of the list in the same RCU read-side critical section, or
482  * that you held some sort of non-RCU reference (such as a reference count)
483  * to keep the node alive *and* in the list.
484  *
485  * This iterator is similar to list_for_each_entry_continue_rcu() except
486  * this starts from the given position and that one starts from the position
487  * after the given position.
488  */
489 #define list_for_each_entry_from_rcu(pos, head, member)			\
490 	for (; &(pos)->member != (head);					\
491 		pos = list_entry_rcu(pos->member.next, typeof(*(pos)), member))
492 
493 /**
494  * hlist_del_rcu - deletes entry from hash list without re-initialization
495  * @n: the element to delete from the hash list.
496  *
497  * Note: list_unhashed() on entry does not return true after this,
498  * the entry is in an undefined state. It is useful for RCU based
499  * lockfree traversal.
500  *
501  * In particular, it means that we can not poison the forward
502  * pointers that may still be used for walking the hash list.
503  *
504  * The caller must take whatever precautions are necessary
505  * (such as holding appropriate locks) to avoid racing
506  * with another list-mutation primitive, such as hlist_add_head_rcu()
507  * or hlist_del_rcu(), running on this same list.
508  * However, it is perfectly legal to run concurrently with
509  * the _rcu list-traversal primitives, such as
510  * hlist_for_each_entry().
511  */
hlist_del_rcu(struct hlist_node * n)512 static inline void hlist_del_rcu(struct hlist_node *n)
513 {
514 	__hlist_del(n);
515 	WRITE_ONCE(n->pprev, LIST_POISON2);
516 }
517 
518 /**
519  * hlist_replace_rcu - replace old entry by new one
520  * @old : the element to be replaced
521  * @new : the new element to insert
522  *
523  * The @old entry will be replaced with the @new entry atomically.
524  */
hlist_replace_rcu(struct hlist_node * old,struct hlist_node * new)525 static inline void hlist_replace_rcu(struct hlist_node *old,
526 					struct hlist_node *new)
527 {
528 	struct hlist_node *next = old->next;
529 
530 	new->next = next;
531 	WRITE_ONCE(new->pprev, old->pprev);
532 	rcu_assign_pointer(*(struct hlist_node __rcu **)new->pprev, new);
533 	if (next)
534 		WRITE_ONCE(new->next->pprev, &new->next);
535 	WRITE_ONCE(old->pprev, LIST_POISON2);
536 }
537 
538 /**
539  * hlists_swap_heads_rcu - swap the lists the hlist heads point to
540  * @left:  The hlist head on the left
541  * @right: The hlist head on the right
542  *
543  * The lists start out as [@left  ][node1 ... ] and
544  *                        [@right ][node2 ... ]
545  * The lists end up as    [@left  ][node2 ... ]
546  *                        [@right ][node1 ... ]
547  */
hlists_swap_heads_rcu(struct hlist_head * left,struct hlist_head * right)548 static inline void hlists_swap_heads_rcu(struct hlist_head *left, struct hlist_head *right)
549 {
550 	struct hlist_node *node1 = left->first;
551 	struct hlist_node *node2 = right->first;
552 
553 	rcu_assign_pointer(left->first, node2);
554 	rcu_assign_pointer(right->first, node1);
555 	WRITE_ONCE(node2->pprev, &left->first);
556 	WRITE_ONCE(node1->pprev, &right->first);
557 }
558 
559 /*
560  * return the first or the next element in an RCU protected hlist
561  */
562 #define hlist_first_rcu(head)	(*((struct hlist_node __rcu **)(&(head)->first)))
563 #define hlist_next_rcu(node)	(*((struct hlist_node __rcu **)(&(node)->next)))
564 #define hlist_pprev_rcu(node)	(*((struct hlist_node __rcu **)((node)->pprev)))
565 
566 /**
567  * hlist_add_head_rcu
568  * @n: the element to add to the hash list.
569  * @h: the list to add to.
570  *
571  * Description:
572  * Adds the specified element to the specified hlist,
573  * while permitting racing traversals.
574  *
575  * The caller must take whatever precautions are necessary
576  * (such as holding appropriate locks) to avoid racing
577  * with another list-mutation primitive, such as hlist_add_head_rcu()
578  * or hlist_del_rcu(), running on this same list.
579  * However, it is perfectly legal to run concurrently with
580  * the _rcu list-traversal primitives, such as
581  * hlist_for_each_entry_rcu(), used to prevent memory-consistency
582  * problems on Alpha CPUs.  Regardless of the type of CPU, the
583  * list-traversal primitive must be guarded by rcu_read_lock().
584  */
hlist_add_head_rcu(struct hlist_node * n,struct hlist_head * h)585 static inline void hlist_add_head_rcu(struct hlist_node *n,
586 					struct hlist_head *h)
587 {
588 	struct hlist_node *first = h->first;
589 
590 	n->next = first;
591 	WRITE_ONCE(n->pprev, &h->first);
592 	rcu_assign_pointer(hlist_first_rcu(h), n);
593 	if (first)
594 		WRITE_ONCE(first->pprev, &n->next);
595 }
596 
597 /**
598  * hlist_add_tail_rcu
599  * @n: the element to add to the hash list.
600  * @h: the list to add to.
601  *
602  * Description:
603  * Adds the specified element to the specified hlist,
604  * while permitting racing traversals.
605  *
606  * The caller must take whatever precautions are necessary
607  * (such as holding appropriate locks) to avoid racing
608  * with another list-mutation primitive, such as hlist_add_head_rcu()
609  * or hlist_del_rcu(), running on this same list.
610  * However, it is perfectly legal to run concurrently with
611  * the _rcu list-traversal primitives, such as
612  * hlist_for_each_entry_rcu(), used to prevent memory-consistency
613  * problems on Alpha CPUs.  Regardless of the type of CPU, the
614  * list-traversal primitive must be guarded by rcu_read_lock().
615  */
hlist_add_tail_rcu(struct hlist_node * n,struct hlist_head * h)616 static inline void hlist_add_tail_rcu(struct hlist_node *n,
617 				      struct hlist_head *h)
618 {
619 	struct hlist_node *i, *last = NULL;
620 
621 	/* Note: write side code, so rcu accessors are not needed. */
622 	for (i = h->first; i; i = i->next)
623 		last = i;
624 
625 	if (last) {
626 		n->next = last->next;
627 		WRITE_ONCE(n->pprev, &last->next);
628 		rcu_assign_pointer(hlist_next_rcu(last), n);
629 	} else {
630 		hlist_add_head_rcu(n, h);
631 	}
632 }
633 
634 /**
635  * hlist_add_before_rcu
636  * @n: the new element to add to the hash list.
637  * @next: the existing element to add the new element before.
638  *
639  * Description:
640  * Adds the specified element to the specified hlist
641  * before the specified node while permitting racing traversals.
642  *
643  * The caller must take whatever precautions are necessary
644  * (such as holding appropriate locks) to avoid racing
645  * with another list-mutation primitive, such as hlist_add_head_rcu()
646  * or hlist_del_rcu(), running on this same list.
647  * However, it is perfectly legal to run concurrently with
648  * the _rcu list-traversal primitives, such as
649  * hlist_for_each_entry_rcu(), used to prevent memory-consistency
650  * problems on Alpha CPUs.
651  */
hlist_add_before_rcu(struct hlist_node * n,struct hlist_node * next)652 static inline void hlist_add_before_rcu(struct hlist_node *n,
653 					struct hlist_node *next)
654 {
655 	WRITE_ONCE(n->pprev, next->pprev);
656 	n->next = next;
657 	rcu_assign_pointer(hlist_pprev_rcu(n), n);
658 	WRITE_ONCE(next->pprev, &n->next);
659 }
660 
661 /**
662  * hlist_add_behind_rcu
663  * @n: the new element to add to the hash list.
664  * @prev: the existing element to add the new element after.
665  *
666  * Description:
667  * Adds the specified element to the specified hlist
668  * after the specified node while permitting racing traversals.
669  *
670  * The caller must take whatever precautions are necessary
671  * (such as holding appropriate locks) to avoid racing
672  * with another list-mutation primitive, such as hlist_add_head_rcu()
673  * or hlist_del_rcu(), running on this same list.
674  * However, it is perfectly legal to run concurrently with
675  * the _rcu list-traversal primitives, such as
676  * hlist_for_each_entry_rcu(), used to prevent memory-consistency
677  * problems on Alpha CPUs.
678  */
hlist_add_behind_rcu(struct hlist_node * n,struct hlist_node * prev)679 static inline void hlist_add_behind_rcu(struct hlist_node *n,
680 					struct hlist_node *prev)
681 {
682 	n->next = prev->next;
683 	WRITE_ONCE(n->pprev, &prev->next);
684 	rcu_assign_pointer(hlist_next_rcu(prev), n);
685 	if (n->next)
686 		WRITE_ONCE(n->next->pprev, &n->next);
687 }
688 
689 #define __hlist_for_each_rcu(pos, head)				\
690 	for (pos = rcu_dereference(hlist_first_rcu(head));	\
691 	     pos;						\
692 	     pos = rcu_dereference(hlist_next_rcu(pos)))
693 
694 /**
695  * hlist_for_each_entry_rcu - iterate over rcu list of given type
696  * @pos:	the type * to use as a loop cursor.
697  * @head:	the head for your list.
698  * @member:	the name of the hlist_node within the struct.
699  * @cond:	optional lockdep expression if called from non-RCU protection.
700  *
701  * This list-traversal primitive may safely run concurrently with
702  * the _rcu list-mutation primitives such as hlist_add_head_rcu()
703  * as long as the traversal is guarded by rcu_read_lock().
704  */
705 #define hlist_for_each_entry_rcu(pos, head, member, cond...)		\
706 	for (__list_check_rcu(dummy, ## cond, 0),			\
707 	     pos = hlist_entry_safe(rcu_dereference_raw(hlist_first_rcu(head)),\
708 			typeof(*(pos)), member);			\
709 		pos;							\
710 		pos = hlist_entry_safe(rcu_dereference_raw(hlist_next_rcu(\
711 			&(pos)->member)), typeof(*(pos)), member))
712 
713 /**
714  * hlist_for_each_entry_srcu - iterate over rcu list of given type
715  * @pos:	the type * to use as a loop cursor.
716  * @head:	the head for your list.
717  * @member:	the name of the hlist_node within the struct.
718  * @cond:	lockdep expression for the lock required to traverse the list.
719  *
720  * This list-traversal primitive may safely run concurrently with
721  * the _rcu list-mutation primitives such as hlist_add_head_rcu()
722  * as long as the traversal is guarded by srcu_read_lock().
723  * The lockdep expression srcu_read_lock_held() can be passed as the
724  * cond argument from read side.
725  */
726 #define hlist_for_each_entry_srcu(pos, head, member, cond)		\
727 	for (__list_check_srcu(cond),					\
728 	     pos = hlist_entry_safe(rcu_dereference_raw(hlist_first_rcu(head)),\
729 			typeof(*(pos)), member);			\
730 		pos;							\
731 		pos = hlist_entry_safe(rcu_dereference_raw(hlist_next_rcu(\
732 			&(pos)->member)), typeof(*(pos)), member))
733 
734 /**
735  * hlist_for_each_entry_rcu_notrace - iterate over rcu list of given type (for tracing)
736  * @pos:	the type * to use as a loop cursor.
737  * @head:	the head for your list.
738  * @member:	the name of the hlist_node within the struct.
739  *
740  * This list-traversal primitive may safely run concurrently with
741  * the _rcu list-mutation primitives such as hlist_add_head_rcu()
742  * as long as the traversal is guarded by rcu_read_lock().
743  *
744  * This is the same as hlist_for_each_entry_rcu() except that it does
745  * not do any RCU debugging or tracing.
746  */
747 #define hlist_for_each_entry_rcu_notrace(pos, head, member)			\
748 	for (pos = hlist_entry_safe(rcu_dereference_raw_check(hlist_first_rcu(head)),\
749 			typeof(*(pos)), member);			\
750 		pos;							\
751 		pos = hlist_entry_safe(rcu_dereference_raw_check(hlist_next_rcu(\
752 			&(pos)->member)), typeof(*(pos)), member))
753 
754 /**
755  * hlist_for_each_entry_rcu_bh - iterate over rcu list of given type
756  * @pos:	the type * to use as a loop cursor.
757  * @head:	the head for your list.
758  * @member:	the name of the hlist_node within the struct.
759  *
760  * This list-traversal primitive may safely run concurrently with
761  * the _rcu list-mutation primitives such as hlist_add_head_rcu()
762  * as long as the traversal is guarded by rcu_read_lock().
763  */
764 #define hlist_for_each_entry_rcu_bh(pos, head, member)			\
765 	for (pos = hlist_entry_safe(rcu_dereference_bh(hlist_first_rcu(head)),\
766 			typeof(*(pos)), member);			\
767 		pos;							\
768 		pos = hlist_entry_safe(rcu_dereference_bh(hlist_next_rcu(\
769 			&(pos)->member)), typeof(*(pos)), member))
770 
771 /**
772  * hlist_for_each_entry_continue_rcu - iterate over a hlist continuing after current point
773  * @pos:	the type * to use as a loop cursor.
774  * @member:	the name of the hlist_node within the struct.
775  */
776 #define hlist_for_each_entry_continue_rcu(pos, member)			\
777 	for (pos = hlist_entry_safe(rcu_dereference_raw(hlist_next_rcu( \
778 			&(pos)->member)), typeof(*(pos)), member);	\
779 	     pos;							\
780 	     pos = hlist_entry_safe(rcu_dereference_raw(hlist_next_rcu(	\
781 			&(pos)->member)), typeof(*(pos)), member))
782 
783 /**
784  * hlist_for_each_entry_continue_rcu_bh - iterate over a hlist continuing after current point
785  * @pos:	the type * to use as a loop cursor.
786  * @member:	the name of the hlist_node within the struct.
787  */
788 #define hlist_for_each_entry_continue_rcu_bh(pos, member)		\
789 	for (pos = hlist_entry_safe(rcu_dereference_bh(hlist_next_rcu(  \
790 			&(pos)->member)), typeof(*(pos)), member);	\
791 	     pos;							\
792 	     pos = hlist_entry_safe(rcu_dereference_bh(hlist_next_rcu(	\
793 			&(pos)->member)), typeof(*(pos)), member))
794 
795 /**
796  * hlist_for_each_entry_from_rcu - iterate over a hlist continuing from current point
797  * @pos:	the type * to use as a loop cursor.
798  * @member:	the name of the hlist_node within the struct.
799  */
800 #define hlist_for_each_entry_from_rcu(pos, member)			\
801 	for (; pos;							\
802 	     pos = hlist_entry_safe(rcu_dereference_raw(hlist_next_rcu(	\
803 			&(pos)->member)), typeof(*(pos)), member))
804 
805 #endif	/* __KERNEL__ */
806 #endif
807