1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 *
4 * Copyright (c) 2009, Microsoft Corporation.
5 *
6 * Authors:
7 * Haiyang Zhang <haiyangz@microsoft.com>
8 * Hank Janssen <hjanssen@microsoft.com>
9 * K. Y. Srinivasan <kys@microsoft.com>
10 */
11 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
12
13 #include <linux/kernel.h>
14 #include <linux/mm.h>
15 #include <linux/hyperv.h>
16 #include <linux/uio.h>
17 #include <linux/vmalloc.h>
18 #include <linux/slab.h>
19 #include <linux/prefetch.h>
20
21 #include "hyperv_vmbus.h"
22
23 #define VMBUS_PKT_TRAILER 8
24
25 /*
26 * When we write to the ring buffer, check if the host needs to
27 * be signaled. Here is the details of this protocol:
28 *
29 * 1. The host guarantees that while it is draining the
30 * ring buffer, it will set the interrupt_mask to
31 * indicate it does not need to be interrupted when
32 * new data is placed.
33 *
34 * 2. The host guarantees that it will completely drain
35 * the ring buffer before exiting the read loop. Further,
36 * once the ring buffer is empty, it will clear the
37 * interrupt_mask and re-check to see if new data has
38 * arrived.
39 *
40 * KYS: Oct. 30, 2016:
41 * It looks like Windows hosts have logic to deal with DOS attacks that
42 * can be triggered if it receives interrupts when it is not expecting
43 * the interrupt. The host expects interrupts only when the ring
44 * transitions from empty to non-empty (or full to non full on the guest
45 * to host ring).
46 * So, base the signaling decision solely on the ring state until the
47 * host logic is fixed.
48 */
49
hv_signal_on_write(u32 old_write,struct vmbus_channel * channel)50 static void hv_signal_on_write(u32 old_write, struct vmbus_channel *channel)
51 {
52 struct hv_ring_buffer_info *rbi = &channel->outbound;
53
54 virt_mb();
55 if (READ_ONCE(rbi->ring_buffer->interrupt_mask))
56 return;
57
58 /* check interrupt_mask before read_index */
59 virt_rmb();
60 /*
61 * This is the only case we need to signal when the
62 * ring transitions from being empty to non-empty.
63 */
64 if (old_write == READ_ONCE(rbi->ring_buffer->read_index)) {
65 ++channel->intr_out_empty;
66 vmbus_setevent(channel);
67 }
68 }
69
70 /* Get the next write location for the specified ring buffer. */
71 static inline u32
hv_get_next_write_location(struct hv_ring_buffer_info * ring_info)72 hv_get_next_write_location(struct hv_ring_buffer_info *ring_info)
73 {
74 u32 next = ring_info->ring_buffer->write_index;
75
76 return next;
77 }
78
79 /* Set the next write location for the specified ring buffer. */
80 static inline void
hv_set_next_write_location(struct hv_ring_buffer_info * ring_info,u32 next_write_location)81 hv_set_next_write_location(struct hv_ring_buffer_info *ring_info,
82 u32 next_write_location)
83 {
84 ring_info->ring_buffer->write_index = next_write_location;
85 }
86
87 /* Set the next read location for the specified ring buffer. */
88 static inline void
hv_set_next_read_location(struct hv_ring_buffer_info * ring_info,u32 next_read_location)89 hv_set_next_read_location(struct hv_ring_buffer_info *ring_info,
90 u32 next_read_location)
91 {
92 ring_info->ring_buffer->read_index = next_read_location;
93 ring_info->priv_read_index = next_read_location;
94 }
95
96 /* Get the size of the ring buffer. */
97 static inline u32
hv_get_ring_buffersize(const struct hv_ring_buffer_info * ring_info)98 hv_get_ring_buffersize(const struct hv_ring_buffer_info *ring_info)
99 {
100 return ring_info->ring_datasize;
101 }
102
103 /* Get the read and write indices as u64 of the specified ring buffer. */
104 static inline u64
hv_get_ring_bufferindices(struct hv_ring_buffer_info * ring_info)105 hv_get_ring_bufferindices(struct hv_ring_buffer_info *ring_info)
106 {
107 return (u64)ring_info->ring_buffer->write_index << 32;
108 }
109
110 /*
111 * Helper routine to copy from source to ring buffer.
112 * Assume there is enough room. Handles wrap-around in dest case only!!
113 */
hv_copyto_ringbuffer(struct hv_ring_buffer_info * ring_info,u32 start_write_offset,const void * src,u32 srclen)114 static u32 hv_copyto_ringbuffer(
115 struct hv_ring_buffer_info *ring_info,
116 u32 start_write_offset,
117 const void *src,
118 u32 srclen)
119 {
120 void *ring_buffer = hv_get_ring_buffer(ring_info);
121 u32 ring_buffer_size = hv_get_ring_buffersize(ring_info);
122
123 memcpy(ring_buffer + start_write_offset, src, srclen);
124
125 start_write_offset += srclen;
126 if (start_write_offset >= ring_buffer_size)
127 start_write_offset -= ring_buffer_size;
128
129 return start_write_offset;
130 }
131
132 /*
133 *
134 * hv_get_ringbuffer_availbytes()
135 *
136 * Get number of bytes available to read and to write to
137 * for the specified ring buffer
138 */
139 static void
hv_get_ringbuffer_availbytes(const struct hv_ring_buffer_info * rbi,u32 * read,u32 * write)140 hv_get_ringbuffer_availbytes(const struct hv_ring_buffer_info *rbi,
141 u32 *read, u32 *write)
142 {
143 u32 read_loc, write_loc, dsize;
144
145 /* Capture the read/write indices before they changed */
146 read_loc = READ_ONCE(rbi->ring_buffer->read_index);
147 write_loc = READ_ONCE(rbi->ring_buffer->write_index);
148 dsize = rbi->ring_datasize;
149
150 *write = write_loc >= read_loc ? dsize - (write_loc - read_loc) :
151 read_loc - write_loc;
152 *read = dsize - *write;
153 }
154
155 /* Get various debug metrics for the specified ring buffer. */
hv_ringbuffer_get_debuginfo(struct hv_ring_buffer_info * ring_info,struct hv_ring_buffer_debug_info * debug_info)156 int hv_ringbuffer_get_debuginfo(struct hv_ring_buffer_info *ring_info,
157 struct hv_ring_buffer_debug_info *debug_info)
158 {
159 u32 bytes_avail_towrite;
160 u32 bytes_avail_toread;
161
162 mutex_lock(&ring_info->ring_buffer_mutex);
163
164 if (!ring_info->ring_buffer) {
165 mutex_unlock(&ring_info->ring_buffer_mutex);
166 return -EINVAL;
167 }
168
169 hv_get_ringbuffer_availbytes(ring_info,
170 &bytes_avail_toread,
171 &bytes_avail_towrite);
172 debug_info->bytes_avail_toread = bytes_avail_toread;
173 debug_info->bytes_avail_towrite = bytes_avail_towrite;
174 debug_info->current_read_index = ring_info->ring_buffer->read_index;
175 debug_info->current_write_index = ring_info->ring_buffer->write_index;
176 debug_info->current_interrupt_mask
177 = ring_info->ring_buffer->interrupt_mask;
178 mutex_unlock(&ring_info->ring_buffer_mutex);
179
180 return 0;
181 }
182 EXPORT_SYMBOL_GPL(hv_ringbuffer_get_debuginfo);
183
184 /* Initialize a channel's ring buffer info mutex locks */
hv_ringbuffer_pre_init(struct vmbus_channel * channel)185 void hv_ringbuffer_pre_init(struct vmbus_channel *channel)
186 {
187 mutex_init(&channel->inbound.ring_buffer_mutex);
188 mutex_init(&channel->outbound.ring_buffer_mutex);
189 }
190
191 /* Initialize the ring buffer. */
hv_ringbuffer_init(struct hv_ring_buffer_info * ring_info,struct page * pages,u32 page_cnt)192 int hv_ringbuffer_init(struct hv_ring_buffer_info *ring_info,
193 struct page *pages, u32 page_cnt)
194 {
195 int i;
196 struct page **pages_wraparound;
197
198 BUILD_BUG_ON((sizeof(struct hv_ring_buffer) != PAGE_SIZE));
199
200 /*
201 * First page holds struct hv_ring_buffer, do wraparound mapping for
202 * the rest.
203 */
204 pages_wraparound = kcalloc(page_cnt * 2 - 1, sizeof(struct page *),
205 GFP_KERNEL);
206 if (!pages_wraparound)
207 return -ENOMEM;
208
209 pages_wraparound[0] = pages;
210 for (i = 0; i < 2 * (page_cnt - 1); i++)
211 pages_wraparound[i + 1] = &pages[i % (page_cnt - 1) + 1];
212
213 ring_info->ring_buffer = (struct hv_ring_buffer *)
214 vmap(pages_wraparound, page_cnt * 2 - 1, VM_MAP, PAGE_KERNEL);
215
216 kfree(pages_wraparound);
217
218
219 if (!ring_info->ring_buffer)
220 return -ENOMEM;
221
222 ring_info->ring_buffer->read_index =
223 ring_info->ring_buffer->write_index = 0;
224
225 /* Set the feature bit for enabling flow control. */
226 ring_info->ring_buffer->feature_bits.value = 1;
227
228 ring_info->ring_size = page_cnt << PAGE_SHIFT;
229 ring_info->ring_size_div10_reciprocal =
230 reciprocal_value(ring_info->ring_size / 10);
231 ring_info->ring_datasize = ring_info->ring_size -
232 sizeof(struct hv_ring_buffer);
233 ring_info->priv_read_index = 0;
234
235 spin_lock_init(&ring_info->ring_lock);
236
237 return 0;
238 }
239
240 /* Cleanup the ring buffer. */
hv_ringbuffer_cleanup(struct hv_ring_buffer_info * ring_info)241 void hv_ringbuffer_cleanup(struct hv_ring_buffer_info *ring_info)
242 {
243 mutex_lock(&ring_info->ring_buffer_mutex);
244 vunmap(ring_info->ring_buffer);
245 ring_info->ring_buffer = NULL;
246 mutex_unlock(&ring_info->ring_buffer_mutex);
247 }
248
249 /*
250 * Check if the ring buffer spinlock is available to take or not; used on
251 * atomic contexts, like panic path (see the Hyper-V framebuffer driver).
252 */
253
hv_ringbuffer_spinlock_busy(struct vmbus_channel * channel)254 bool hv_ringbuffer_spinlock_busy(struct vmbus_channel *channel)
255 {
256 struct hv_ring_buffer_info *rinfo = &channel->outbound;
257
258 return spin_is_locked(&rinfo->ring_lock);
259 }
260 EXPORT_SYMBOL_GPL(hv_ringbuffer_spinlock_busy);
261
262 /* Write to the ring buffer. */
hv_ringbuffer_write(struct vmbus_channel * channel,const struct kvec * kv_list,u32 kv_count)263 int hv_ringbuffer_write(struct vmbus_channel *channel,
264 const struct kvec *kv_list, u32 kv_count)
265 {
266 int i;
267 u32 bytes_avail_towrite;
268 u32 totalbytes_towrite = sizeof(u64);
269 u32 next_write_location;
270 u32 old_write;
271 u64 prev_indices;
272 unsigned long flags;
273 struct hv_ring_buffer_info *outring_info = &channel->outbound;
274
275 if (channel->rescind)
276 return -ENODEV;
277
278 for (i = 0; i < kv_count; i++)
279 totalbytes_towrite += kv_list[i].iov_len;
280
281 spin_lock_irqsave(&outring_info->ring_lock, flags);
282
283 bytes_avail_towrite = hv_get_bytes_to_write(outring_info);
284
285 /*
286 * If there is only room for the packet, assume it is full.
287 * Otherwise, the next time around, we think the ring buffer
288 * is empty since the read index == write index.
289 */
290 if (bytes_avail_towrite <= totalbytes_towrite) {
291 ++channel->out_full_total;
292
293 if (!channel->out_full_flag) {
294 ++channel->out_full_first;
295 channel->out_full_flag = true;
296 }
297
298 spin_unlock_irqrestore(&outring_info->ring_lock, flags);
299 return -EAGAIN;
300 }
301
302 channel->out_full_flag = false;
303
304 /* Write to the ring buffer */
305 next_write_location = hv_get_next_write_location(outring_info);
306
307 old_write = next_write_location;
308
309 for (i = 0; i < kv_count; i++) {
310 next_write_location = hv_copyto_ringbuffer(outring_info,
311 next_write_location,
312 kv_list[i].iov_base,
313 kv_list[i].iov_len);
314 }
315
316 /* Set previous packet start */
317 prev_indices = hv_get_ring_bufferindices(outring_info);
318
319 next_write_location = hv_copyto_ringbuffer(outring_info,
320 next_write_location,
321 &prev_indices,
322 sizeof(u64));
323
324 /* Issue a full memory barrier before updating the write index */
325 virt_mb();
326
327 /* Now, update the write location */
328 hv_set_next_write_location(outring_info, next_write_location);
329
330
331 spin_unlock_irqrestore(&outring_info->ring_lock, flags);
332
333 hv_signal_on_write(old_write, channel);
334
335 if (channel->rescind)
336 return -ENODEV;
337
338 return 0;
339 }
340
hv_ringbuffer_read(struct vmbus_channel * channel,void * buffer,u32 buflen,u32 * buffer_actual_len,u64 * requestid,bool raw)341 int hv_ringbuffer_read(struct vmbus_channel *channel,
342 void *buffer, u32 buflen, u32 *buffer_actual_len,
343 u64 *requestid, bool raw)
344 {
345 struct vmpacket_descriptor *desc;
346 u32 packetlen, offset;
347
348 if (unlikely(buflen == 0))
349 return -EINVAL;
350
351 *buffer_actual_len = 0;
352 *requestid = 0;
353
354 /* Make sure there is something to read */
355 desc = hv_pkt_iter_first(channel);
356 if (desc == NULL) {
357 /*
358 * No error is set when there is even no header, drivers are
359 * supposed to analyze buffer_actual_len.
360 */
361 return 0;
362 }
363
364 offset = raw ? 0 : (desc->offset8 << 3);
365 packetlen = (desc->len8 << 3) - offset;
366 *buffer_actual_len = packetlen;
367 *requestid = desc->trans_id;
368
369 if (unlikely(packetlen > buflen))
370 return -ENOBUFS;
371
372 /* since ring is double mapped, only one copy is necessary */
373 memcpy(buffer, (const char *)desc + offset, packetlen);
374
375 /* Advance ring index to next packet descriptor */
376 __hv_pkt_iter_next(channel, desc);
377
378 /* Notify host of update */
379 hv_pkt_iter_close(channel);
380
381 return 0;
382 }
383
384 /*
385 * Determine number of bytes available in ring buffer after
386 * the current iterator (priv_read_index) location.
387 *
388 * This is similar to hv_get_bytes_to_read but with private
389 * read index instead.
390 */
hv_pkt_iter_avail(const struct hv_ring_buffer_info * rbi)391 static u32 hv_pkt_iter_avail(const struct hv_ring_buffer_info *rbi)
392 {
393 u32 priv_read_loc = rbi->priv_read_index;
394 u32 write_loc;
395
396 /*
397 * The Hyper-V host writes the packet data, then uses
398 * store_release() to update the write_index. Use load_acquire()
399 * here to prevent loads of the packet data from being re-ordered
400 * before the read of the write_index and potentially getting
401 * stale data.
402 */
403 write_loc = virt_load_acquire(&rbi->ring_buffer->write_index);
404
405 if (write_loc >= priv_read_loc)
406 return write_loc - priv_read_loc;
407 else
408 return (rbi->ring_datasize - priv_read_loc) + write_loc;
409 }
410
411 /*
412 * Get first vmbus packet from ring buffer after read_index
413 *
414 * If ring buffer is empty, returns NULL and no other action needed.
415 */
hv_pkt_iter_first(struct vmbus_channel * channel)416 struct vmpacket_descriptor *hv_pkt_iter_first(struct vmbus_channel *channel)
417 {
418 struct hv_ring_buffer_info *rbi = &channel->inbound;
419 struct vmpacket_descriptor *desc;
420
421 hv_debug_delay_test(channel, MESSAGE_DELAY);
422 if (hv_pkt_iter_avail(rbi) < sizeof(struct vmpacket_descriptor))
423 return NULL;
424
425 desc = hv_get_ring_buffer(rbi) + rbi->priv_read_index;
426 if (desc)
427 prefetch((char *)desc + (desc->len8 << 3));
428
429 return desc;
430 }
431 EXPORT_SYMBOL_GPL(hv_pkt_iter_first);
432
433 /*
434 * Get next vmbus packet from ring buffer.
435 *
436 * Advances the current location (priv_read_index) and checks for more
437 * data. If the end of the ring buffer is reached, then return NULL.
438 */
439 struct vmpacket_descriptor *
__hv_pkt_iter_next(struct vmbus_channel * channel,const struct vmpacket_descriptor * desc)440 __hv_pkt_iter_next(struct vmbus_channel *channel,
441 const struct vmpacket_descriptor *desc)
442 {
443 struct hv_ring_buffer_info *rbi = &channel->inbound;
444 u32 packetlen = desc->len8 << 3;
445 u32 dsize = rbi->ring_datasize;
446
447 hv_debug_delay_test(channel, MESSAGE_DELAY);
448 /* bump offset to next potential packet */
449 rbi->priv_read_index += packetlen + VMBUS_PKT_TRAILER;
450 if (rbi->priv_read_index >= dsize)
451 rbi->priv_read_index -= dsize;
452
453 /* more data? */
454 return hv_pkt_iter_first(channel);
455 }
456 EXPORT_SYMBOL_GPL(__hv_pkt_iter_next);
457
458 /* How many bytes were read in this iterator cycle */
hv_pkt_iter_bytes_read(const struct hv_ring_buffer_info * rbi,u32 start_read_index)459 static u32 hv_pkt_iter_bytes_read(const struct hv_ring_buffer_info *rbi,
460 u32 start_read_index)
461 {
462 if (rbi->priv_read_index >= start_read_index)
463 return rbi->priv_read_index - start_read_index;
464 else
465 return rbi->ring_datasize - start_read_index +
466 rbi->priv_read_index;
467 }
468
469 /*
470 * Update host ring buffer after iterating over packets. If the host has
471 * stopped queuing new entries because it found the ring buffer full, and
472 * sufficient space is being freed up, signal the host. But be careful to
473 * only signal the host when necessary, both for performance reasons and
474 * because Hyper-V protects itself by throttling guests that signal
475 * inappropriately.
476 *
477 * Determining when to signal is tricky. There are three key data inputs
478 * that must be handled in this order to avoid race conditions:
479 *
480 * 1. Update the read_index
481 * 2. Read the pending_send_sz
482 * 3. Read the current write_index
483 *
484 * The interrupt_mask is not used to determine when to signal. The
485 * interrupt_mask is used only on the guest->host ring buffer when
486 * sending requests to the host. The host does not use it on the host->
487 * guest ring buffer to indicate whether it should be signaled.
488 */
hv_pkt_iter_close(struct vmbus_channel * channel)489 void hv_pkt_iter_close(struct vmbus_channel *channel)
490 {
491 struct hv_ring_buffer_info *rbi = &channel->inbound;
492 u32 curr_write_sz, pending_sz, bytes_read, start_read_index;
493
494 /*
495 * Make sure all reads are done before we update the read index since
496 * the writer may start writing to the read area once the read index
497 * is updated.
498 */
499 virt_rmb();
500 start_read_index = rbi->ring_buffer->read_index;
501 rbi->ring_buffer->read_index = rbi->priv_read_index;
502
503 /*
504 * Older versions of Hyper-V (before WS2102 and Win8) do not
505 * implement pending_send_sz and simply poll if the host->guest
506 * ring buffer is full. No signaling is needed or expected.
507 */
508 if (!rbi->ring_buffer->feature_bits.feat_pending_send_sz)
509 return;
510
511 /*
512 * Issue a full memory barrier before making the signaling decision.
513 * If reading pending_send_sz were to be reordered and happen
514 * before we commit the new read_index, a race could occur. If the
515 * host were to set the pending_send_sz after we have sampled
516 * pending_send_sz, and the ring buffer blocks before we commit the
517 * read index, we could miss sending the interrupt. Issue a full
518 * memory barrier to address this.
519 */
520 virt_mb();
521
522 /*
523 * If the pending_send_sz is zero, then the ring buffer is not
524 * blocked and there is no need to signal. This is far by the
525 * most common case, so exit quickly for best performance.
526 */
527 pending_sz = READ_ONCE(rbi->ring_buffer->pending_send_sz);
528 if (!pending_sz)
529 return;
530
531 /*
532 * Ensure the read of write_index in hv_get_bytes_to_write()
533 * happens after the read of pending_send_sz.
534 */
535 virt_rmb();
536 curr_write_sz = hv_get_bytes_to_write(rbi);
537 bytes_read = hv_pkt_iter_bytes_read(rbi, start_read_index);
538
539 /*
540 * We want to signal the host only if we're transitioning
541 * from a "not enough free space" state to a "enough free
542 * space" state. For example, it's possible that this function
543 * could run and free up enough space to signal the host, and then
544 * run again and free up additional space before the host has a
545 * chance to clear the pending_send_sz. The 2nd invocation would
546 * be a null transition from "enough free space" to "enough free
547 * space", which doesn't warrant a signal.
548 *
549 * Exactly filling the ring buffer is treated as "not enough
550 * space". The ring buffer always must have at least one byte
551 * empty so the empty and full conditions are distinguishable.
552 * hv_get_bytes_to_write() doesn't fully tell the truth in
553 * this regard.
554 *
555 * So first check if we were in the "enough free space" state
556 * before we began the iteration. If so, the host was not
557 * blocked, and there's no need to signal.
558 */
559 if (curr_write_sz - bytes_read > pending_sz)
560 return;
561
562 /*
563 * Similarly, if the new state is "not enough space", then
564 * there's no need to signal.
565 */
566 if (curr_write_sz <= pending_sz)
567 return;
568
569 ++channel->intr_in_full;
570 vmbus_setevent(channel);
571 }
572 EXPORT_SYMBOL_GPL(hv_pkt_iter_close);
573