1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Intel Wireless WiMAX Connection 2400m
4 * Generic probe/disconnect, reset and message passing
5 *
6 * Copyright (C) 2007-2008 Intel Corporation <linux-wimax@intel.com>
7 * Inaky Perez-Gonzalez <inaky.perez-gonzalez@intel.com>
8 *
9 * See i2400m.h for driver documentation. This contains helpers for
10 * the driver model glue [_setup()/_release()], handling device resets
11 * [_dev_reset_handle()], and the backends for the WiMAX stack ops
12 * reset [_op_reset()] and message from user [_op_msg_from_user()].
13 *
14 * ROADMAP:
15 *
16 * i2400m_op_msg_from_user()
17 * i2400m_msg_to_dev()
18 * wimax_msg_to_user_send()
19 *
20 * i2400m_op_reset()
21 * i240m->bus_reset()
22 *
23 * i2400m_dev_reset_handle()
24 * __i2400m_dev_reset_handle()
25 * __i2400m_dev_stop()
26 * __i2400m_dev_start()
27 *
28 * i2400m_setup()
29 * i2400m->bus_setup()
30 * i2400m_bootrom_init()
31 * register_netdev()
32 * wimax_dev_add()
33 * i2400m_dev_start()
34 * __i2400m_dev_start()
35 * i2400m_dev_bootstrap()
36 * i2400m_tx_setup()
37 * i2400m->bus_dev_start()
38 * i2400m_firmware_check()
39 * i2400m_check_mac_addr()
40 *
41 * i2400m_release()
42 * i2400m_dev_stop()
43 * __i2400m_dev_stop()
44 * i2400m_dev_shutdown()
45 * i2400m->bus_dev_stop()
46 * i2400m_tx_release()
47 * i2400m->bus_release()
48 * wimax_dev_rm()
49 * unregister_netdev()
50 */
51 #include "i2400m.h"
52 #include <linux/etherdevice.h>
53 #include <linux/wimax/i2400m.h>
54 #include <linux/module.h>
55 #include <linux/moduleparam.h>
56 #include <linux/suspend.h>
57 #include <linux/slab.h>
58
59 #define D_SUBMODULE driver
60 #include "debug-levels.h"
61
62
63 static char i2400m_debug_params[128];
64 module_param_string(debug, i2400m_debug_params, sizeof(i2400m_debug_params),
65 0644);
66 MODULE_PARM_DESC(debug,
67 "String of space-separated NAME:VALUE pairs, where NAMEs "
68 "are the different debug submodules and VALUE are the "
69 "initial debug value to set.");
70
71 static char i2400m_barkers_params[128];
72 module_param_string(barkers, i2400m_barkers_params,
73 sizeof(i2400m_barkers_params), 0644);
74 MODULE_PARM_DESC(barkers,
75 "String of comma-separated 32-bit values; each is "
76 "recognized as the value the device sends as a reboot "
77 "signal; values are appended to a list--setting one value "
78 "as zero cleans the existing list and starts a new one.");
79
80 /*
81 * WiMAX stack operation: relay a message from user space
82 *
83 * @wimax_dev: device descriptor
84 * @pipe_name: named pipe the message is for
85 * @msg_buf: pointer to the message bytes
86 * @msg_len: length of the buffer
87 * @genl_info: passed by the generic netlink layer
88 *
89 * The WiMAX stack will call this function when a message was received
90 * from user space.
91 *
92 * For the i2400m, this is an L3L4 message, as specified in
93 * include/linux/wimax/i2400m.h, and thus prefixed with a 'struct
94 * i2400m_l3l4_hdr'. Driver (and device) expect the messages to be
95 * coded in Little Endian.
96 *
97 * This function just verifies that the header declaration and the
98 * payload are consistent and then deals with it, either forwarding it
99 * to the device or procesing it locally.
100 *
101 * In the i2400m, messages are basically commands that will carry an
102 * ack, so we use i2400m_msg_to_dev() and then deliver the ack back to
103 * user space. The rx.c code might intercept the response and use it
104 * to update the driver's state, but then it will pass it on so it can
105 * be relayed back to user space.
106 *
107 * Note that asynchronous events from the device are processed and
108 * sent to user space in rx.c.
109 */
110 static
i2400m_op_msg_from_user(struct wimax_dev * wimax_dev,const char * pipe_name,const void * msg_buf,size_t msg_len,const struct genl_info * genl_info)111 int i2400m_op_msg_from_user(struct wimax_dev *wimax_dev,
112 const char *pipe_name,
113 const void *msg_buf, size_t msg_len,
114 const struct genl_info *genl_info)
115 {
116 int result;
117 struct i2400m *i2400m = wimax_dev_to_i2400m(wimax_dev);
118 struct device *dev = i2400m_dev(i2400m);
119 struct sk_buff *ack_skb;
120
121 d_fnstart(4, dev, "(wimax_dev %p [i2400m %p] msg_buf %p "
122 "msg_len %zu genl_info %p)\n", wimax_dev, i2400m,
123 msg_buf, msg_len, genl_info);
124 ack_skb = i2400m_msg_to_dev(i2400m, msg_buf, msg_len);
125 result = PTR_ERR(ack_skb);
126 if (IS_ERR(ack_skb))
127 goto error_msg_to_dev;
128 result = wimax_msg_send(&i2400m->wimax_dev, ack_skb);
129 error_msg_to_dev:
130 d_fnend(4, dev, "(wimax_dev %p [i2400m %p] msg_buf %p msg_len %zu "
131 "genl_info %p) = %d\n", wimax_dev, i2400m, msg_buf, msg_len,
132 genl_info, result);
133 return result;
134 }
135
136
137 /*
138 * Context to wait for a reset to finalize
139 */
140 struct i2400m_reset_ctx {
141 struct completion completion;
142 int result;
143 };
144
145
146 /*
147 * WiMAX stack operation: reset a device
148 *
149 * @wimax_dev: device descriptor
150 *
151 * See the documentation for wimax_reset() and wimax_dev->op_reset for
152 * the requirements of this function. The WiMAX stack guarantees
153 * serialization on calls to this function.
154 *
155 * Do a warm reset on the device; if it fails, resort to a cold reset
156 * and return -ENODEV. On successful warm reset, we need to block
157 * until it is complete.
158 *
159 * The bus-driver implementation of reset takes care of falling back
160 * to cold reset if warm fails.
161 */
162 static
i2400m_op_reset(struct wimax_dev * wimax_dev)163 int i2400m_op_reset(struct wimax_dev *wimax_dev)
164 {
165 int result;
166 struct i2400m *i2400m = wimax_dev_to_i2400m(wimax_dev);
167 struct device *dev = i2400m_dev(i2400m);
168 struct i2400m_reset_ctx ctx = {
169 .completion = COMPLETION_INITIALIZER_ONSTACK(ctx.completion),
170 .result = 0,
171 };
172
173 d_fnstart(4, dev, "(wimax_dev %p)\n", wimax_dev);
174 mutex_lock(&i2400m->init_mutex);
175 i2400m->reset_ctx = &ctx;
176 mutex_unlock(&i2400m->init_mutex);
177 result = i2400m_reset(i2400m, I2400M_RT_WARM);
178 if (result < 0)
179 goto out;
180 result = wait_for_completion_timeout(&ctx.completion, 4*HZ);
181 if (result == 0)
182 result = -ETIMEDOUT;
183 else if (result > 0)
184 result = ctx.result;
185 /* if result < 0, pass it on */
186 mutex_lock(&i2400m->init_mutex);
187 i2400m->reset_ctx = NULL;
188 mutex_unlock(&i2400m->init_mutex);
189 out:
190 d_fnend(4, dev, "(wimax_dev %p) = %d\n", wimax_dev, result);
191 return result;
192 }
193
194
195 /*
196 * Check the MAC address we got from boot mode is ok
197 *
198 * @i2400m: device descriptor
199 *
200 * Returns: 0 if ok, < 0 errno code on error.
201 */
202 static
i2400m_check_mac_addr(struct i2400m * i2400m)203 int i2400m_check_mac_addr(struct i2400m *i2400m)
204 {
205 int result;
206 struct device *dev = i2400m_dev(i2400m);
207 struct sk_buff *skb;
208 const struct i2400m_tlv_detailed_device_info *ddi;
209 struct net_device *net_dev = i2400m->wimax_dev.net_dev;
210
211 d_fnstart(3, dev, "(i2400m %p)\n", i2400m);
212 skb = i2400m_get_device_info(i2400m);
213 if (IS_ERR(skb)) {
214 result = PTR_ERR(skb);
215 dev_err(dev, "Cannot verify MAC address, error reading: %d\n",
216 result);
217 goto error;
218 }
219 /* Extract MAC address */
220 ddi = (void *) skb->data;
221 BUILD_BUG_ON(ETH_ALEN != sizeof(ddi->mac_address));
222 d_printf(2, dev, "GET DEVICE INFO: mac addr %pM\n",
223 ddi->mac_address);
224 if (!memcmp(net_dev->perm_addr, ddi->mac_address,
225 sizeof(ddi->mac_address)))
226 goto ok;
227 dev_warn(dev, "warning: device reports a different MAC address "
228 "to that of boot mode's\n");
229 dev_warn(dev, "device reports %pM\n", ddi->mac_address);
230 dev_warn(dev, "boot mode reported %pM\n", net_dev->perm_addr);
231 if (is_zero_ether_addr(ddi->mac_address))
232 dev_err(dev, "device reports an invalid MAC address, "
233 "not updating\n");
234 else {
235 dev_warn(dev, "updating MAC address\n");
236 net_dev->addr_len = ETH_ALEN;
237 memcpy(net_dev->perm_addr, ddi->mac_address, ETH_ALEN);
238 memcpy(net_dev->dev_addr, ddi->mac_address, ETH_ALEN);
239 }
240 ok:
241 result = 0;
242 kfree_skb(skb);
243 error:
244 d_fnend(3, dev, "(i2400m %p) = %d\n", i2400m, result);
245 return result;
246 }
247
248
249 /**
250 * __i2400m_dev_start - Bring up driver communication with the device
251 *
252 * @i2400m: device descriptor
253 * @flags: boot mode flags
254 *
255 * Returns: 0 if ok, < 0 errno code on error.
256 *
257 * Uploads firmware and brings up all the resources needed to be able
258 * to communicate with the device.
259 *
260 * The workqueue has to be setup early, at least before RX handling
261 * (it's only real user for now) so it can process reports as they
262 * arrive. We also want to destroy it if we retry, to make sure it is
263 * flushed...easier like this.
264 *
265 * TX needs to be setup before the bus-specific code (otherwise on
266 * shutdown, the bus-tx code could try to access it).
267 */
268 static
__i2400m_dev_start(struct i2400m * i2400m,enum i2400m_bri flags)269 int __i2400m_dev_start(struct i2400m *i2400m, enum i2400m_bri flags)
270 {
271 int result;
272 struct wimax_dev *wimax_dev = &i2400m->wimax_dev;
273 struct net_device *net_dev = wimax_dev->net_dev;
274 struct device *dev = i2400m_dev(i2400m);
275 int times = i2400m->bus_bm_retries;
276
277 d_fnstart(3, dev, "(i2400m %p)\n", i2400m);
278 retry:
279 result = i2400m_dev_bootstrap(i2400m, flags);
280 if (result < 0) {
281 dev_err(dev, "cannot bootstrap device: %d\n", result);
282 goto error_bootstrap;
283 }
284 result = i2400m_tx_setup(i2400m);
285 if (result < 0)
286 goto error_tx_setup;
287 result = i2400m_rx_setup(i2400m);
288 if (result < 0)
289 goto error_rx_setup;
290 i2400m->work_queue = create_singlethread_workqueue(wimax_dev->name);
291 if (i2400m->work_queue == NULL) {
292 result = -ENOMEM;
293 dev_err(dev, "cannot create workqueue\n");
294 goto error_create_workqueue;
295 }
296 if (i2400m->bus_dev_start) {
297 result = i2400m->bus_dev_start(i2400m);
298 if (result < 0)
299 goto error_bus_dev_start;
300 }
301 i2400m->ready = 1;
302 wmb(); /* see i2400m->ready's documentation */
303 /* process pending reports from the device */
304 queue_work(i2400m->work_queue, &i2400m->rx_report_ws);
305 result = i2400m_firmware_check(i2400m); /* fw versions ok? */
306 if (result < 0)
307 goto error_fw_check;
308 /* At this point is ok to send commands to the device */
309 result = i2400m_check_mac_addr(i2400m);
310 if (result < 0)
311 goto error_check_mac_addr;
312 result = i2400m_dev_initialize(i2400m);
313 if (result < 0)
314 goto error_dev_initialize;
315
316 /* We don't want any additional unwanted error recovery triggered
317 * from any other context so if anything went wrong before we come
318 * here, let's keep i2400m->error_recovery untouched and leave it to
319 * dev_reset_handle(). See dev_reset_handle(). */
320
321 atomic_dec(&i2400m->error_recovery);
322 /* Every thing works so far, ok, now we are ready to
323 * take error recovery if it's required. */
324
325 /* At this point, reports will come for the device and set it
326 * to the right state if it is different than UNINITIALIZED */
327 d_fnend(3, dev, "(net_dev %p [i2400m %p]) = %d\n",
328 net_dev, i2400m, result);
329 return result;
330
331 error_dev_initialize:
332 error_check_mac_addr:
333 error_fw_check:
334 i2400m->ready = 0;
335 wmb(); /* see i2400m->ready's documentation */
336 flush_workqueue(i2400m->work_queue);
337 if (i2400m->bus_dev_stop)
338 i2400m->bus_dev_stop(i2400m);
339 error_bus_dev_start:
340 destroy_workqueue(i2400m->work_queue);
341 error_create_workqueue:
342 i2400m_rx_release(i2400m);
343 error_rx_setup:
344 i2400m_tx_release(i2400m);
345 error_tx_setup:
346 error_bootstrap:
347 if (result == -EL3RST && times-- > 0) {
348 flags = I2400M_BRI_SOFT|I2400M_BRI_MAC_REINIT;
349 goto retry;
350 }
351 d_fnend(3, dev, "(net_dev %p [i2400m %p]) = %d\n",
352 net_dev, i2400m, result);
353 return result;
354 }
355
356
357 static
i2400m_dev_start(struct i2400m * i2400m,enum i2400m_bri bm_flags)358 int i2400m_dev_start(struct i2400m *i2400m, enum i2400m_bri bm_flags)
359 {
360 int result = 0;
361 mutex_lock(&i2400m->init_mutex); /* Well, start the device */
362 if (i2400m->updown == 0) {
363 result = __i2400m_dev_start(i2400m, bm_flags);
364 if (result >= 0) {
365 i2400m->updown = 1;
366 i2400m->alive = 1;
367 wmb();/* see i2400m->updown and i2400m->alive's doc */
368 }
369 }
370 mutex_unlock(&i2400m->init_mutex);
371 return result;
372 }
373
374
375 /**
376 * i2400m_dev_stop - Tear down driver communication with the device
377 *
378 * @i2400m: device descriptor
379 *
380 * Returns: 0 if ok, < 0 errno code on error.
381 *
382 * Releases all the resources allocated to communicate with the
383 * device. Note we cannot destroy the workqueue earlier as until RX is
384 * fully destroyed, it could still try to schedule jobs.
385 */
386 static
__i2400m_dev_stop(struct i2400m * i2400m)387 void __i2400m_dev_stop(struct i2400m *i2400m)
388 {
389 struct wimax_dev *wimax_dev = &i2400m->wimax_dev;
390 struct device *dev = i2400m_dev(i2400m);
391
392 d_fnstart(3, dev, "(i2400m %p)\n", i2400m);
393 wimax_state_change(wimax_dev, __WIMAX_ST_QUIESCING);
394 i2400m_msg_to_dev_cancel_wait(i2400m, -EL3RST);
395 complete(&i2400m->msg_completion);
396 i2400m_net_wake_stop(i2400m);
397 i2400m_dev_shutdown(i2400m);
398 /*
399 * Make sure no report hooks are running *before* we stop the
400 * communication infrastructure with the device.
401 */
402 i2400m->ready = 0; /* nobody can queue work anymore */
403 wmb(); /* see i2400m->ready's documentation */
404 flush_workqueue(i2400m->work_queue);
405
406 if (i2400m->bus_dev_stop)
407 i2400m->bus_dev_stop(i2400m);
408 destroy_workqueue(i2400m->work_queue);
409 i2400m_rx_release(i2400m);
410 i2400m_tx_release(i2400m);
411 wimax_state_change(wimax_dev, WIMAX_ST_DOWN);
412 d_fnend(3, dev, "(i2400m %p) = 0\n", i2400m);
413 }
414
415
416 /*
417 * Watch out -- we only need to stop if there is a need for it. The
418 * device could have reset itself and failed to come up again (see
419 * _i2400m_dev_reset_handle()).
420 */
421 static
i2400m_dev_stop(struct i2400m * i2400m)422 void i2400m_dev_stop(struct i2400m *i2400m)
423 {
424 mutex_lock(&i2400m->init_mutex);
425 if (i2400m->updown) {
426 __i2400m_dev_stop(i2400m);
427 i2400m->updown = 0;
428 i2400m->alive = 0;
429 wmb(); /* see i2400m->updown and i2400m->alive's doc */
430 }
431 mutex_unlock(&i2400m->init_mutex);
432 }
433
434
435 /*
436 * Listen to PM events to cache the firmware before suspend/hibernation
437 *
438 * When the device comes out of suspend, it might go into reset and
439 * firmware has to be uploaded again. At resume, most of the times, we
440 * can't load firmware images from disk, so we need to cache it.
441 *
442 * i2400m_fw_cache() will allocate a kobject and attach the firmware
443 * to it; that way we don't have to worry too much about the fw loader
444 * hitting a race condition.
445 *
446 * Note: modus operandi stolen from the Orinoco driver; thx.
447 */
448 static
i2400m_pm_notifier(struct notifier_block * notifier,unsigned long pm_event,void * unused)449 int i2400m_pm_notifier(struct notifier_block *notifier,
450 unsigned long pm_event,
451 void *unused)
452 {
453 struct i2400m *i2400m =
454 container_of(notifier, struct i2400m, pm_notifier);
455 struct device *dev = i2400m_dev(i2400m);
456
457 d_fnstart(3, dev, "(i2400m %p pm_event %lx)\n", i2400m, pm_event);
458 switch (pm_event) {
459 case PM_HIBERNATION_PREPARE:
460 case PM_SUSPEND_PREPARE:
461 i2400m_fw_cache(i2400m);
462 break;
463 case PM_POST_RESTORE:
464 /* Restore from hibernation failed. We need to clean
465 * up in exactly the same way, so fall through. */
466 case PM_POST_HIBERNATION:
467 case PM_POST_SUSPEND:
468 i2400m_fw_uncache(i2400m);
469 break;
470
471 case PM_RESTORE_PREPARE:
472 default:
473 break;
474 }
475 d_fnend(3, dev, "(i2400m %p pm_event %lx) = void\n", i2400m, pm_event);
476 return NOTIFY_DONE;
477 }
478
479
480 /*
481 * pre-reset is called before a device is going on reset
482 *
483 * This has to be followed by a call to i2400m_post_reset(), otherwise
484 * bad things might happen.
485 */
i2400m_pre_reset(struct i2400m * i2400m)486 int i2400m_pre_reset(struct i2400m *i2400m)
487 {
488 struct device *dev = i2400m_dev(i2400m);
489
490 d_fnstart(3, dev, "(i2400m %p)\n", i2400m);
491 d_printf(1, dev, "pre-reset shut down\n");
492
493 mutex_lock(&i2400m->init_mutex);
494 if (i2400m->updown) {
495 netif_tx_disable(i2400m->wimax_dev.net_dev);
496 __i2400m_dev_stop(i2400m);
497 /* down't set updown to zero -- this way
498 * post_reset can restore properly */
499 }
500 mutex_unlock(&i2400m->init_mutex);
501 if (i2400m->bus_release)
502 i2400m->bus_release(i2400m);
503 d_fnend(3, dev, "(i2400m %p) = 0\n", i2400m);
504 return 0;
505 }
506 EXPORT_SYMBOL_GPL(i2400m_pre_reset);
507
508
509 /*
510 * Restore device state after a reset
511 *
512 * Do the work needed after a device reset to bring it up to the same
513 * state as it was before the reset.
514 *
515 * NOTE: this requires i2400m->init_mutex taken
516 */
i2400m_post_reset(struct i2400m * i2400m)517 int i2400m_post_reset(struct i2400m *i2400m)
518 {
519 int result = 0;
520 struct device *dev = i2400m_dev(i2400m);
521
522 d_fnstart(3, dev, "(i2400m %p)\n", i2400m);
523 d_printf(1, dev, "post-reset start\n");
524 if (i2400m->bus_setup) {
525 result = i2400m->bus_setup(i2400m);
526 if (result < 0) {
527 dev_err(dev, "bus-specific setup failed: %d\n",
528 result);
529 goto error_bus_setup;
530 }
531 }
532 mutex_lock(&i2400m->init_mutex);
533 if (i2400m->updown) {
534 result = __i2400m_dev_start(
535 i2400m, I2400M_BRI_SOFT | I2400M_BRI_MAC_REINIT);
536 if (result < 0)
537 goto error_dev_start;
538 }
539 mutex_unlock(&i2400m->init_mutex);
540 d_fnend(3, dev, "(i2400m %p) = %d\n", i2400m, result);
541 return result;
542
543 error_dev_start:
544 if (i2400m->bus_release)
545 i2400m->bus_release(i2400m);
546 /* even if the device was up, it could not be recovered, so we
547 * mark it as down. */
548 i2400m->updown = 0;
549 wmb(); /* see i2400m->updown's documentation */
550 mutex_unlock(&i2400m->init_mutex);
551 error_bus_setup:
552 d_fnend(3, dev, "(i2400m %p) = %d\n", i2400m, result);
553 return result;
554 }
555 EXPORT_SYMBOL_GPL(i2400m_post_reset);
556
557
558 /*
559 * The device has rebooted; fix up the device and the driver
560 *
561 * Tear down the driver communication with the device, reload the
562 * firmware and reinitialize the communication with the device.
563 *
564 * If someone calls a reset when the device's firmware is down, in
565 * theory we won't see it because we are not listening. However, just
566 * in case, leave the code to handle it.
567 *
568 * If there is a reset context, use it; this means someone is waiting
569 * for us to tell him when the reset operation is complete and the
570 * device is ready to rock again.
571 *
572 * NOTE: if we are in the process of bringing up or down the
573 * communication with the device [running i2400m_dev_start() or
574 * _stop()], don't do anything, let it fail and handle it.
575 *
576 * This function is ran always in a thread context
577 *
578 * This function gets passed, as payload to i2400m_work() a 'const
579 * char *' ptr with a "reason" why the reset happened (for messages).
580 */
581 static
__i2400m_dev_reset_handle(struct work_struct * ws)582 void __i2400m_dev_reset_handle(struct work_struct *ws)
583 {
584 struct i2400m *i2400m = container_of(ws, struct i2400m, reset_ws);
585 const char *reason = i2400m->reset_reason;
586 struct device *dev = i2400m_dev(i2400m);
587 struct i2400m_reset_ctx *ctx = i2400m->reset_ctx;
588 int result;
589
590 d_fnstart(3, dev, "(ws %p i2400m %p reason %s)\n", ws, i2400m, reason);
591
592 i2400m->boot_mode = 1;
593 wmb(); /* Make sure i2400m_msg_to_dev() sees boot_mode */
594
595 result = 0;
596 if (mutex_trylock(&i2400m->init_mutex) == 0) {
597 /* We are still in i2400m_dev_start() [let it fail] or
598 * i2400m_dev_stop() [we are shutting down anyway, so
599 * ignore it] or we are resetting somewhere else. */
600 dev_err(dev, "device rebooted somewhere else?\n");
601 i2400m_msg_to_dev_cancel_wait(i2400m, -EL3RST);
602 complete(&i2400m->msg_completion);
603 goto out;
604 }
605
606 dev_err(dev, "%s: reinitializing driver\n", reason);
607 rmb();
608 if (i2400m->updown) {
609 __i2400m_dev_stop(i2400m);
610 i2400m->updown = 0;
611 wmb(); /* see i2400m->updown's documentation */
612 }
613
614 if (i2400m->alive) {
615 result = __i2400m_dev_start(i2400m,
616 I2400M_BRI_SOFT | I2400M_BRI_MAC_REINIT);
617 if (result < 0) {
618 dev_err(dev, "%s: cannot start the device: %d\n",
619 reason, result);
620 result = -EUCLEAN;
621 if (atomic_read(&i2400m->bus_reset_retries)
622 >= I2400M_BUS_RESET_RETRIES) {
623 result = -ENODEV;
624 dev_err(dev, "tried too many times to "
625 "reset the device, giving up\n");
626 }
627 }
628 }
629
630 if (i2400m->reset_ctx) {
631 ctx->result = result;
632 complete(&ctx->completion);
633 }
634 mutex_unlock(&i2400m->init_mutex);
635 if (result == -EUCLEAN) {
636 /*
637 * We come here because the reset during operational mode
638 * wasn't successfully done and need to proceed to a bus
639 * reset. For the dev_reset_handle() to be able to handle
640 * the reset event later properly, we restore boot_mode back
641 * to the state before previous reset. ie: just like we are
642 * issuing the bus reset for the first time
643 */
644 i2400m->boot_mode = 0;
645 wmb();
646
647 atomic_inc(&i2400m->bus_reset_retries);
648 /* ops, need to clean up [w/ init_mutex not held] */
649 result = i2400m_reset(i2400m, I2400M_RT_BUS);
650 if (result >= 0)
651 result = -ENODEV;
652 } else {
653 rmb();
654 if (i2400m->alive) {
655 /* great, we expect the device state up and
656 * dev_start() actually brings the device state up */
657 i2400m->updown = 1;
658 wmb();
659 atomic_set(&i2400m->bus_reset_retries, 0);
660 }
661 }
662 out:
663 d_fnend(3, dev, "(ws %p i2400m %p reason %s) = void\n",
664 ws, i2400m, reason);
665 }
666
667
668 /**
669 * i2400m_dev_reset_handle - Handle a device's reset in a thread context
670 *
671 * Schedule a device reset handling out on a thread context, so it
672 * is safe to call from atomic context. We can't use the i2400m's
673 * queue as we are going to destroy it and reinitialize it as part of
674 * the driver bringup/bringup process.
675 *
676 * See __i2400m_dev_reset_handle() for details; that takes care of
677 * reinitializing the driver to handle the reset, calling into the
678 * bus-specific functions ops as needed.
679 */
i2400m_dev_reset_handle(struct i2400m * i2400m,const char * reason)680 int i2400m_dev_reset_handle(struct i2400m *i2400m, const char *reason)
681 {
682 i2400m->reset_reason = reason;
683 return schedule_work(&i2400m->reset_ws);
684 }
685 EXPORT_SYMBOL_GPL(i2400m_dev_reset_handle);
686
687
688 /*
689 * The actual work of error recovery.
690 *
691 * The current implementation of error recovery is to trigger a bus reset.
692 */
693 static
__i2400m_error_recovery(struct work_struct * ws)694 void __i2400m_error_recovery(struct work_struct *ws)
695 {
696 struct i2400m *i2400m = container_of(ws, struct i2400m, recovery_ws);
697
698 i2400m_reset(i2400m, I2400M_RT_BUS);
699 }
700
701 /*
702 * Schedule a work struct for error recovery.
703 *
704 * The intention of error recovery is to bring back the device to some
705 * known state whenever TX sees -110 (-ETIMEOUT) on copying the data to
706 * the device. The TX failure could mean a device bus stuck, so the current
707 * error recovery implementation is to trigger a bus reset to the device
708 * and hopefully it can bring back the device.
709 *
710 * The actual work of error recovery has to be in a thread context because
711 * it is kicked off in the TX thread (i2400ms->tx_workqueue) which is to be
712 * destroyed by the error recovery mechanism (currently a bus reset).
713 *
714 * Also, there may be already a queue of TX works that all hit
715 * the -ETIMEOUT error condition because the device is stuck already.
716 * Since bus reset is used as the error recovery mechanism and we don't
717 * want consecutive bus resets simply because the multiple TX works
718 * in the queue all hit the same device erratum, the flag "error_recovery"
719 * is introduced for preventing unwanted consecutive bus resets.
720 *
721 * Error recovery shall only be invoked again if previous one was completed.
722 * The flag error_recovery is set when error recovery mechanism is scheduled,
723 * and is checked when we need to schedule another error recovery. If it is
724 * in place already, then we shouldn't schedule another one.
725 */
i2400m_error_recovery(struct i2400m * i2400m)726 void i2400m_error_recovery(struct i2400m *i2400m)
727 {
728 if (atomic_add_return(1, &i2400m->error_recovery) == 1)
729 schedule_work(&i2400m->recovery_ws);
730 else
731 atomic_dec(&i2400m->error_recovery);
732 }
733 EXPORT_SYMBOL_GPL(i2400m_error_recovery);
734
735 /*
736 * Alloc the command and ack buffers for boot mode
737 *
738 * Get the buffers needed to deal with boot mode messages.
739 */
740 static
i2400m_bm_buf_alloc(struct i2400m * i2400m)741 int i2400m_bm_buf_alloc(struct i2400m *i2400m)
742 {
743 i2400m->bm_cmd_buf = kzalloc(I2400M_BM_CMD_BUF_SIZE, GFP_KERNEL);
744 if (i2400m->bm_cmd_buf == NULL)
745 goto error_bm_cmd_kzalloc;
746 i2400m->bm_ack_buf = kzalloc(I2400M_BM_ACK_BUF_SIZE, GFP_KERNEL);
747 if (i2400m->bm_ack_buf == NULL)
748 goto error_bm_ack_buf_kzalloc;
749 return 0;
750
751 error_bm_ack_buf_kzalloc:
752 kfree(i2400m->bm_cmd_buf);
753 error_bm_cmd_kzalloc:
754 return -ENOMEM;
755 }
756
757
758 /*
759 * Free boot mode command and ack buffers.
760 */
761 static
i2400m_bm_buf_free(struct i2400m * i2400m)762 void i2400m_bm_buf_free(struct i2400m *i2400m)
763 {
764 kfree(i2400m->bm_ack_buf);
765 kfree(i2400m->bm_cmd_buf);
766 }
767
768
769 /**
770 * i2400m_init - Initialize a 'struct i2400m' from all zeroes
771 *
772 * This is a bus-generic API call.
773 */
i2400m_init(struct i2400m * i2400m)774 void i2400m_init(struct i2400m *i2400m)
775 {
776 wimax_dev_init(&i2400m->wimax_dev);
777
778 i2400m->boot_mode = 1;
779 i2400m->rx_reorder = 1;
780 init_waitqueue_head(&i2400m->state_wq);
781
782 spin_lock_init(&i2400m->tx_lock);
783 i2400m->tx_pl_min = UINT_MAX;
784 i2400m->tx_size_min = UINT_MAX;
785
786 spin_lock_init(&i2400m->rx_lock);
787 i2400m->rx_pl_min = UINT_MAX;
788 i2400m->rx_size_min = UINT_MAX;
789 INIT_LIST_HEAD(&i2400m->rx_reports);
790 INIT_WORK(&i2400m->rx_report_ws, i2400m_report_hook_work);
791
792 mutex_init(&i2400m->msg_mutex);
793 init_completion(&i2400m->msg_completion);
794
795 mutex_init(&i2400m->init_mutex);
796 /* wake_tx_ws is initialized in i2400m_tx_setup() */
797
798 INIT_WORK(&i2400m->reset_ws, __i2400m_dev_reset_handle);
799 INIT_WORK(&i2400m->recovery_ws, __i2400m_error_recovery);
800
801 atomic_set(&i2400m->bus_reset_retries, 0);
802
803 i2400m->alive = 0;
804
805 /* initialize error_recovery to 1 for denoting we
806 * are not yet ready to take any error recovery */
807 atomic_set(&i2400m->error_recovery, 1);
808 }
809 EXPORT_SYMBOL_GPL(i2400m_init);
810
811
i2400m_reset(struct i2400m * i2400m,enum i2400m_reset_type rt)812 int i2400m_reset(struct i2400m *i2400m, enum i2400m_reset_type rt)
813 {
814 struct net_device *net_dev = i2400m->wimax_dev.net_dev;
815
816 /*
817 * Make sure we stop TXs and down the carrier before
818 * resetting; this is needed to avoid things like
819 * i2400m_wake_tx() scheduling stuff in parallel.
820 */
821 if (net_dev->reg_state == NETREG_REGISTERED) {
822 netif_tx_disable(net_dev);
823 netif_carrier_off(net_dev);
824 }
825 return i2400m->bus_reset(i2400m, rt);
826 }
827 EXPORT_SYMBOL_GPL(i2400m_reset);
828
829
830 /**
831 * i2400m_setup - bus-generic setup function for the i2400m device
832 *
833 * @i2400m: device descriptor (bus-specific parts have been initialized)
834 *
835 * Returns: 0 if ok, < 0 errno code on error.
836 *
837 * Sets up basic device comunication infrastructure, boots the ROM to
838 * read the MAC address, registers with the WiMAX and network stacks
839 * and then brings up the device.
840 */
i2400m_setup(struct i2400m * i2400m,enum i2400m_bri bm_flags)841 int i2400m_setup(struct i2400m *i2400m, enum i2400m_bri bm_flags)
842 {
843 int result;
844 struct device *dev = i2400m_dev(i2400m);
845 struct wimax_dev *wimax_dev = &i2400m->wimax_dev;
846 struct net_device *net_dev = i2400m->wimax_dev.net_dev;
847
848 d_fnstart(3, dev, "(i2400m %p)\n", i2400m);
849
850 snprintf(wimax_dev->name, sizeof(wimax_dev->name),
851 "i2400m-%s:%s", dev->bus->name, dev_name(dev));
852
853 result = i2400m_bm_buf_alloc(i2400m);
854 if (result < 0) {
855 dev_err(dev, "cannot allocate bootmode scratch buffers\n");
856 goto error_bm_buf_alloc;
857 }
858
859 if (i2400m->bus_setup) {
860 result = i2400m->bus_setup(i2400m);
861 if (result < 0) {
862 dev_err(dev, "bus-specific setup failed: %d\n",
863 result);
864 goto error_bus_setup;
865 }
866 }
867
868 result = i2400m_bootrom_init(i2400m, bm_flags);
869 if (result < 0) {
870 dev_err(dev, "read mac addr: bootrom init "
871 "failed: %d\n", result);
872 goto error_bootrom_init;
873 }
874 result = i2400m_read_mac_addr(i2400m);
875 if (result < 0)
876 goto error_read_mac_addr;
877 eth_random_addr(i2400m->src_mac_addr);
878
879 i2400m->pm_notifier.notifier_call = i2400m_pm_notifier;
880 register_pm_notifier(&i2400m->pm_notifier);
881
882 result = register_netdev(net_dev); /* Okey dokey, bring it up */
883 if (result < 0) {
884 dev_err(dev, "cannot register i2400m network device: %d\n",
885 result);
886 goto error_register_netdev;
887 }
888 netif_carrier_off(net_dev);
889
890 i2400m->wimax_dev.op_msg_from_user = i2400m_op_msg_from_user;
891 i2400m->wimax_dev.op_rfkill_sw_toggle = i2400m_op_rfkill_sw_toggle;
892 i2400m->wimax_dev.op_reset = i2400m_op_reset;
893
894 result = wimax_dev_add(&i2400m->wimax_dev, net_dev);
895 if (result < 0)
896 goto error_wimax_dev_add;
897
898 /* Now setup all that requires a registered net and wimax device. */
899 result = sysfs_create_group(&net_dev->dev.kobj, &i2400m_dev_attr_group);
900 if (result < 0) {
901 dev_err(dev, "cannot setup i2400m's sysfs: %d\n", result);
902 goto error_sysfs_setup;
903 }
904
905 i2400m_debugfs_add(i2400m);
906
907 result = i2400m_dev_start(i2400m, bm_flags);
908 if (result < 0)
909 goto error_dev_start;
910 d_fnend(3, dev, "(i2400m %p) = %d\n", i2400m, result);
911 return result;
912
913 error_dev_start:
914 i2400m_debugfs_rm(i2400m);
915 sysfs_remove_group(&i2400m->wimax_dev.net_dev->dev.kobj,
916 &i2400m_dev_attr_group);
917 error_sysfs_setup:
918 wimax_dev_rm(&i2400m->wimax_dev);
919 error_wimax_dev_add:
920 unregister_netdev(net_dev);
921 error_register_netdev:
922 unregister_pm_notifier(&i2400m->pm_notifier);
923 error_read_mac_addr:
924 error_bootrom_init:
925 if (i2400m->bus_release)
926 i2400m->bus_release(i2400m);
927 error_bus_setup:
928 i2400m_bm_buf_free(i2400m);
929 error_bm_buf_alloc:
930 d_fnend(3, dev, "(i2400m %p) = %d\n", i2400m, result);
931 return result;
932 }
933 EXPORT_SYMBOL_GPL(i2400m_setup);
934
935
936 /**
937 * i2400m_release - release the bus-generic driver resources
938 *
939 * Sends a disconnect message and undoes any setup done by i2400m_setup()
940 */
i2400m_release(struct i2400m * i2400m)941 void i2400m_release(struct i2400m *i2400m)
942 {
943 struct device *dev = i2400m_dev(i2400m);
944
945 d_fnstart(3, dev, "(i2400m %p)\n", i2400m);
946 netif_stop_queue(i2400m->wimax_dev.net_dev);
947
948 i2400m_dev_stop(i2400m);
949
950 cancel_work_sync(&i2400m->reset_ws);
951 cancel_work_sync(&i2400m->recovery_ws);
952
953 i2400m_debugfs_rm(i2400m);
954 sysfs_remove_group(&i2400m->wimax_dev.net_dev->dev.kobj,
955 &i2400m_dev_attr_group);
956 wimax_dev_rm(&i2400m->wimax_dev);
957 unregister_netdev(i2400m->wimax_dev.net_dev);
958 unregister_pm_notifier(&i2400m->pm_notifier);
959 if (i2400m->bus_release)
960 i2400m->bus_release(i2400m);
961 i2400m_bm_buf_free(i2400m);
962 d_fnend(3, dev, "(i2400m %p) = void\n", i2400m);
963 }
964 EXPORT_SYMBOL_GPL(i2400m_release);
965
966
967 /*
968 * Debug levels control; see debug.h
969 */
970 struct d_level D_LEVEL[] = {
971 D_SUBMODULE_DEFINE(control),
972 D_SUBMODULE_DEFINE(driver),
973 D_SUBMODULE_DEFINE(debugfs),
974 D_SUBMODULE_DEFINE(fw),
975 D_SUBMODULE_DEFINE(netdev),
976 D_SUBMODULE_DEFINE(rfkill),
977 D_SUBMODULE_DEFINE(rx),
978 D_SUBMODULE_DEFINE(sysfs),
979 D_SUBMODULE_DEFINE(tx),
980 };
981 size_t D_LEVEL_SIZE = ARRAY_SIZE(D_LEVEL);
982
983
984 static
i2400m_driver_init(void)985 int __init i2400m_driver_init(void)
986 {
987 d_parse_params(D_LEVEL, D_LEVEL_SIZE, i2400m_debug_params,
988 "i2400m.debug");
989 return i2400m_barker_db_init(i2400m_barkers_params);
990 }
991 module_init(i2400m_driver_init);
992
993 static
i2400m_driver_exit(void)994 void __exit i2400m_driver_exit(void)
995 {
996 i2400m_barker_db_exit();
997 }
998 module_exit(i2400m_driver_exit);
999
1000 MODULE_AUTHOR("Intel Corporation <linux-wimax@intel.com>");
1001 MODULE_DESCRIPTION("Intel 2400M WiMAX networking bus-generic driver");
1002 MODULE_LICENSE("GPL");
1003