1 /*
2 * Intel Wireless WiMAX Connection 2400m
3 * USB RX handling
4 *
5 *
6 * Copyright (C) 2007-2008 Intel Corporation. All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 *
12 * * Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 * * Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in
16 * the documentation and/or other materials provided with the
17 * distribution.
18 * * Neither the name of Intel Corporation nor the names of its
19 * contributors may be used to endorse or promote products derived
20 * from this software without specific prior written permission.
21 *
22 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
23 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
24 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
25 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
26 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
27 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
28 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
29 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
30 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
31 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
32 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
33 *
34 *
35 * Intel Corporation <linux-wimax@intel.com>
36 * Yanir Lubetkin <yanirx.lubetkin@intel.com>
37 * - Initial implementation
38 * Inaky Perez-Gonzalez <inaky.perez-gonzalez@intel.com>
39 * - Use skb_clone(), break up processing in chunks
40 * - Split transport/device specific
41 * - Make buffer size dynamic to exert less memory pressure
42 *
43 *
44 * This handles the RX path on USB.
45 *
46 * When a notification is received that says 'there is RX data ready',
47 * we call i2400mu_rx_kick(); that wakes up the RX kthread, which
48 * reads a buffer from USB and passes it to i2400m_rx() in the generic
49 * handling code. The RX buffer has an specific format that is
50 * described in rx.c.
51 *
52 * We use a kernel thread in a loop because:
53 *
54 * - we want to be able to call the USB power management get/put
55 * functions (blocking) before each transaction.
56 *
57 * - We might get a lot of notifications and we don't want to submit
58 * a zillion reads; by serializing, we are throttling.
59 *
60 * - RX data processing can get heavy enough so that it is not
61 * appropriate for doing it in the USB callback; thus we run it in a
62 * process context.
63 *
64 * We provide a read buffer of an arbitrary size (short of a page); if
65 * the callback reports -EOVERFLOW, it means it was too small, so we
66 * just double the size and retry (being careful to append, as
67 * sometimes the device provided some data). Every now and then we
68 * check if the average packet size is smaller than the current packet
69 * size and if so, we halve it. At the end, the size of the
70 * preallocated buffer should be following the average received
71 * transaction size, adapting dynamically to it.
72 *
73 * ROADMAP
74 *
75 * i2400mu_rx_kick() Called from notif.c when we get a
76 * 'data ready' notification
77 * i2400mu_rxd() Kernel RX daemon
78 * i2400mu_rx() Receive USB data
79 * i2400m_rx() Send data to generic i2400m RX handling
80 *
81 * i2400mu_rx_setup() called from i2400mu_bus_dev_start()
82 *
83 * i2400mu_rx_release() called from i2400mu_bus_dev_stop()
84 */
85 #include <linux/workqueue.h>
86 #include <linux/slab.h>
87 #include <linux/usb.h>
88 #include "i2400m-usb.h"
89
90
91 #define D_SUBMODULE rx
92 #include "usb-debug-levels.h"
93
94 /*
95 * Dynamic RX size
96 *
97 * We can't let the rx_size be a multiple of 512 bytes (the RX
98 * endpoint's max packet size). On some USB host controllers (we
99 * haven't been able to fully characterize which), if the device is
100 * about to send (for example) X bytes and we only post a buffer to
101 * receive n*512, it will fail to mark that as babble (so that
102 * i2400mu_rx() [case -EOVERFLOW] can resize the buffer and get the
103 * rest).
104 *
105 * So on growing or shrinking, if it is a multiple of the
106 * maxpacketsize, we remove some (instead of incresing some, so in a
107 * buddy allocator we try to waste less space).
108 *
109 * Note we also need a hook for this on i2400mu_rx() -- when we do the
110 * first read, we are sure we won't hit this spot because
111 * i240mm->rx_size has been set properly. However, if we have to
112 * double because of -EOVERFLOW, when we launch the read to get the
113 * rest of the data, we *have* to make sure that also is not a
114 * multiple of the max_pkt_size.
115 */
116
117 static
i2400mu_rx_size_grow(struct i2400mu * i2400mu)118 size_t i2400mu_rx_size_grow(struct i2400mu *i2400mu)
119 {
120 struct device *dev = &i2400mu->usb_iface->dev;
121 size_t rx_size;
122 const size_t max_pkt_size = 512;
123
124 rx_size = 2 * i2400mu->rx_size;
125 if (rx_size % max_pkt_size == 0) {
126 rx_size -= 8;
127 d_printf(1, dev,
128 "RX: expected size grew to %zu [adjusted -8] "
129 "from %zu\n",
130 rx_size, i2400mu->rx_size);
131 } else
132 d_printf(1, dev,
133 "RX: expected size grew to %zu from %zu\n",
134 rx_size, i2400mu->rx_size);
135 return rx_size;
136 }
137
138
139 static
i2400mu_rx_size_maybe_shrink(struct i2400mu * i2400mu)140 void i2400mu_rx_size_maybe_shrink(struct i2400mu *i2400mu)
141 {
142 const size_t max_pkt_size = 512;
143 struct device *dev = &i2400mu->usb_iface->dev;
144
145 if (unlikely(i2400mu->rx_size_cnt >= 100
146 && i2400mu->rx_size_auto_shrink)) {
147 size_t avg_rx_size =
148 i2400mu->rx_size_acc / i2400mu->rx_size_cnt;
149 size_t new_rx_size = i2400mu->rx_size / 2;
150 if (avg_rx_size < new_rx_size) {
151 if (new_rx_size % max_pkt_size == 0) {
152 new_rx_size -= 8;
153 d_printf(1, dev,
154 "RX: expected size shrank to %zu "
155 "[adjusted -8] from %zu\n",
156 new_rx_size, i2400mu->rx_size);
157 } else
158 d_printf(1, dev,
159 "RX: expected size shrank to %zu "
160 "from %zu\n",
161 new_rx_size, i2400mu->rx_size);
162 i2400mu->rx_size = new_rx_size;
163 i2400mu->rx_size_cnt = 0;
164 i2400mu->rx_size_acc = i2400mu->rx_size;
165 }
166 }
167 }
168
169 /*
170 * Receive a message with payloads from the USB bus into an skb
171 *
172 * @i2400mu: USB device descriptor
173 * @rx_skb: skb where to place the received message
174 *
175 * Deals with all the USB-specifics of receiving, dynamically
176 * increasing the buffer size if so needed. Returns the payload in the
177 * skb, ready to process. On a zero-length packet, we retry.
178 *
179 * On soft USB errors, we retry (until they become too frequent and
180 * then are promoted to hard); on hard USB errors, we reset the
181 * device. On other errors (skb realloacation, we just drop it and
182 * hope for the next invocation to solve it).
183 *
184 * Returns: pointer to the skb if ok, ERR_PTR on error.
185 * NOTE: this function might realloc the skb (if it is too small),
186 * so always update with the one returned.
187 * ERR_PTR() is < 0 on error.
188 * Will return NULL if it cannot reallocate -- this can be
189 * considered a transient retryable error.
190 */
191 static
i2400mu_rx(struct i2400mu * i2400mu,struct sk_buff * rx_skb)192 struct sk_buff *i2400mu_rx(struct i2400mu *i2400mu, struct sk_buff *rx_skb)
193 {
194 int result = 0;
195 struct device *dev = &i2400mu->usb_iface->dev;
196 int usb_pipe, read_size, rx_size, do_autopm;
197 struct usb_endpoint_descriptor *epd;
198 const size_t max_pkt_size = 512;
199
200 d_fnstart(4, dev, "(i2400mu %p)\n", i2400mu);
201 do_autopm = atomic_read(&i2400mu->do_autopm);
202 result = do_autopm ?
203 usb_autopm_get_interface(i2400mu->usb_iface) : 0;
204 if (result < 0) {
205 dev_err(dev, "RX: can't get autopm: %d\n", result);
206 do_autopm = 0;
207 }
208 epd = usb_get_epd(i2400mu->usb_iface, i2400mu->endpoint_cfg.bulk_in);
209 usb_pipe = usb_rcvbulkpipe(i2400mu->usb_dev, epd->bEndpointAddress);
210 retry:
211 rx_size = skb_end_pointer(rx_skb) - rx_skb->data - rx_skb->len;
212 if (unlikely(rx_size % max_pkt_size == 0)) {
213 rx_size -= 8;
214 d_printf(1, dev, "RX: rx_size adapted to %d [-8]\n", rx_size);
215 }
216 result = usb_bulk_msg(
217 i2400mu->usb_dev, usb_pipe, rx_skb->data + rx_skb->len,
218 rx_size, &read_size, 200);
219 usb_mark_last_busy(i2400mu->usb_dev);
220 switch (result) {
221 case 0:
222 if (read_size == 0)
223 goto retry; /* ZLP, just resubmit */
224 skb_put(rx_skb, read_size);
225 break;
226 case -EPIPE:
227 /*
228 * Stall -- maybe the device is choking with our
229 * requests. Clear it and give it some time. If they
230 * happen to often, it might be another symptom, so we
231 * reset.
232 *
233 * No error handling for usb_clear_halt(0; if it
234 * works, the retry works; if it fails, this switch
235 * does the error handling for us.
236 */
237 if (edc_inc(&i2400mu->urb_edc,
238 10 * EDC_MAX_ERRORS, EDC_ERROR_TIMEFRAME)) {
239 dev_err(dev, "BM-CMD: too many stalls in "
240 "URB; resetting device\n");
241 goto do_reset;
242 }
243 usb_clear_halt(i2400mu->usb_dev, usb_pipe);
244 msleep(10); /* give the device some time */
245 goto retry;
246 case -EINVAL: /* while removing driver */
247 case -ENODEV: /* dev disconnect ... */
248 case -ENOENT: /* just ignore it */
249 case -ESHUTDOWN:
250 case -ECONNRESET:
251 break;
252 case -EOVERFLOW: { /* too small, reallocate */
253 struct sk_buff *new_skb;
254 rx_size = i2400mu_rx_size_grow(i2400mu);
255 if (rx_size <= (1 << 16)) /* cap it */
256 i2400mu->rx_size = rx_size;
257 else if (printk_ratelimit()) {
258 dev_err(dev, "BUG? rx_size up to %d\n", rx_size);
259 result = -EINVAL;
260 goto out;
261 }
262 skb_put(rx_skb, read_size);
263 new_skb = skb_copy_expand(rx_skb, 0, rx_size - rx_skb->len,
264 GFP_KERNEL);
265 if (new_skb == NULL) {
266 kfree_skb(rx_skb);
267 rx_skb = NULL;
268 goto out; /* drop it...*/
269 }
270 kfree_skb(rx_skb);
271 rx_skb = new_skb;
272 i2400mu->rx_size_cnt = 0;
273 i2400mu->rx_size_acc = i2400mu->rx_size;
274 d_printf(1, dev, "RX: size changed to %d, received %d, "
275 "copied %d, capacity %ld\n",
276 rx_size, read_size, rx_skb->len,
277 (long) skb_end_offset(new_skb));
278 goto retry;
279 }
280 /* In most cases, it happens due to the hardware scheduling a
281 * read when there was no data - unfortunately, we have no way
282 * to tell this timeout from a USB timeout. So we just ignore
283 * it. */
284 case -ETIMEDOUT:
285 dev_err(dev, "RX: timeout: %d\n", result);
286 result = 0;
287 break;
288 default: /* Any error */
289 if (edc_inc(&i2400mu->urb_edc,
290 EDC_MAX_ERRORS, EDC_ERROR_TIMEFRAME))
291 goto error_reset;
292 dev_err(dev, "RX: error receiving URB: %d, retrying\n", result);
293 goto retry;
294 }
295 out:
296 if (do_autopm)
297 usb_autopm_put_interface(i2400mu->usb_iface);
298 d_fnend(4, dev, "(i2400mu %p) = %p\n", i2400mu, rx_skb);
299 return rx_skb;
300
301 error_reset:
302 dev_err(dev, "RX: maximum errors in URB exceeded; "
303 "resetting device\n");
304 do_reset:
305 usb_queue_reset_device(i2400mu->usb_iface);
306 rx_skb = ERR_PTR(result);
307 goto out;
308 }
309
310
311 /*
312 * Kernel thread for USB reception of data
313 *
314 * This thread waits for a kick; once kicked, it will allocate an skb
315 * and receive a single message to it from USB (using
316 * i2400mu_rx()). Once received, it is passed to the generic i2400m RX
317 * code for processing.
318 *
319 * When done processing, it runs some dirty statistics to verify if
320 * the last 100 messages received were smaller than half of the
321 * current RX buffer size. In that case, the RX buffer size is
322 * halved. This will helps lowering the pressure on the memory
323 * allocator.
324 *
325 * Hard errors force the thread to exit.
326 */
327 static
i2400mu_rxd(void * _i2400mu)328 int i2400mu_rxd(void *_i2400mu)
329 {
330 int result = 0;
331 struct i2400mu *i2400mu = _i2400mu;
332 struct i2400m *i2400m = &i2400mu->i2400m;
333 struct device *dev = &i2400mu->usb_iface->dev;
334 struct net_device *net_dev = i2400m->wimax_dev.net_dev;
335 size_t pending;
336 int rx_size;
337 struct sk_buff *rx_skb;
338 unsigned long flags;
339
340 d_fnstart(4, dev, "(i2400mu %p)\n", i2400mu);
341 spin_lock_irqsave(&i2400m->rx_lock, flags);
342 BUG_ON(i2400mu->rx_kthread != NULL);
343 i2400mu->rx_kthread = current;
344 spin_unlock_irqrestore(&i2400m->rx_lock, flags);
345 while (1) {
346 d_printf(2, dev, "RX: waiting for messages\n");
347 pending = 0;
348 wait_event_interruptible(
349 i2400mu->rx_wq,
350 (kthread_should_stop() /* check this first! */
351 || (pending = atomic_read(&i2400mu->rx_pending_count)))
352 );
353 if (kthread_should_stop())
354 break;
355 if (pending == 0)
356 continue;
357 rx_size = i2400mu->rx_size;
358 d_printf(2, dev, "RX: reading up to %d bytes\n", rx_size);
359 rx_skb = __netdev_alloc_skb(net_dev, rx_size, GFP_KERNEL);
360 if (rx_skb == NULL) {
361 dev_err(dev, "RX: can't allocate skb [%d bytes]\n",
362 rx_size);
363 msleep(50); /* give it some time? */
364 continue;
365 }
366
367 /* Receive the message with the payloads */
368 rx_skb = i2400mu_rx(i2400mu, rx_skb);
369 result = PTR_ERR(rx_skb);
370 if (IS_ERR(rx_skb))
371 goto out;
372 atomic_dec(&i2400mu->rx_pending_count);
373 if (rx_skb == NULL || rx_skb->len == 0) {
374 /* some "ignorable" condition */
375 kfree_skb(rx_skb);
376 continue;
377 }
378
379 /* Deliver the message to the generic i2400m code */
380 i2400mu->rx_size_cnt++;
381 i2400mu->rx_size_acc += rx_skb->len;
382 result = i2400m_rx(i2400m, rx_skb);
383 if (result == -EIO
384 && edc_inc(&i2400mu->urb_edc,
385 EDC_MAX_ERRORS, EDC_ERROR_TIMEFRAME)) {
386 goto error_reset;
387 }
388
389 /* Maybe adjust RX buffer size */
390 i2400mu_rx_size_maybe_shrink(i2400mu);
391 }
392 result = 0;
393 out:
394 spin_lock_irqsave(&i2400m->rx_lock, flags);
395 i2400mu->rx_kthread = NULL;
396 spin_unlock_irqrestore(&i2400m->rx_lock, flags);
397 d_fnend(4, dev, "(i2400mu %p) = %d\n", i2400mu, result);
398 return result;
399
400 error_reset:
401 dev_err(dev, "RX: maximum errors in received buffer exceeded; "
402 "resetting device\n");
403 usb_queue_reset_device(i2400mu->usb_iface);
404 goto out;
405 }
406
407
408 /*
409 * Start reading from the device
410 *
411 * @i2400m: device instance
412 *
413 * Notify the RX thread that there is data pending.
414 */
i2400mu_rx_kick(struct i2400mu * i2400mu)415 void i2400mu_rx_kick(struct i2400mu *i2400mu)
416 {
417 struct i2400m *i2400m = &i2400mu->i2400m;
418 struct device *dev = &i2400mu->usb_iface->dev;
419
420 d_fnstart(3, dev, "(i2400mu %p)\n", i2400m);
421 atomic_inc(&i2400mu->rx_pending_count);
422 wake_up_all(&i2400mu->rx_wq);
423 d_fnend(3, dev, "(i2400m %p) = void\n", i2400m);
424 }
425
426
i2400mu_rx_setup(struct i2400mu * i2400mu)427 int i2400mu_rx_setup(struct i2400mu *i2400mu)
428 {
429 int result = 0;
430 struct i2400m *i2400m = &i2400mu->i2400m;
431 struct device *dev = &i2400mu->usb_iface->dev;
432 struct wimax_dev *wimax_dev = &i2400m->wimax_dev;
433 struct task_struct *kthread;
434
435 kthread = kthread_run(i2400mu_rxd, i2400mu, "%s-rx",
436 wimax_dev->name);
437 /* the kthread function sets i2400mu->rx_thread */
438 if (IS_ERR(kthread)) {
439 result = PTR_ERR(kthread);
440 dev_err(dev, "RX: cannot start thread: %d\n", result);
441 }
442 return result;
443 }
444
445
i2400mu_rx_release(struct i2400mu * i2400mu)446 void i2400mu_rx_release(struct i2400mu *i2400mu)
447 {
448 unsigned long flags;
449 struct i2400m *i2400m = &i2400mu->i2400m;
450 struct device *dev = i2400m_dev(i2400m);
451 struct task_struct *kthread;
452
453 spin_lock_irqsave(&i2400m->rx_lock, flags);
454 kthread = i2400mu->rx_kthread;
455 i2400mu->rx_kthread = NULL;
456 spin_unlock_irqrestore(&i2400m->rx_lock, flags);
457 if (kthread)
458 kthread_stop(kthread);
459 else
460 d_printf(1, dev, "RX: kthread had already exited\n");
461 }
462
463