1 /*
2 * SPDX-License-Identifier: MIT
3 *
4 * Copyright © 2019 Intel Corporation
5 */
6
7 #include <linux/debugobjects.h>
8
9 #include "gt/intel_context.h"
10 #include "gt/intel_engine_heartbeat.h"
11 #include "gt/intel_engine_pm.h"
12 #include "gt/intel_ring.h"
13
14 #include "i915_drv.h"
15 #include "i915_active.h"
16 #include "i915_globals.h"
17
18 /*
19 * Active refs memory management
20 *
21 * To be more economical with memory, we reap all the i915_active trees as
22 * they idle (when we know the active requests are inactive) and allocate the
23 * nodes from a local slab cache to hopefully reduce the fragmentation.
24 */
25 static struct i915_global_active {
26 struct i915_global base;
27 struct kmem_cache *slab_cache;
28 } global;
29
30 struct active_node {
31 struct rb_node node;
32 struct i915_active_fence base;
33 struct i915_active *ref;
34 u64 timeline;
35 };
36
37 #define fetch_node(x) rb_entry(READ_ONCE(x), typeof(struct active_node), node)
38
39 static inline struct active_node *
node_from_active(struct i915_active_fence * active)40 node_from_active(struct i915_active_fence *active)
41 {
42 return container_of(active, struct active_node, base);
43 }
44
45 #define take_preallocated_barriers(x) llist_del_all(&(x)->preallocated_barriers)
46
is_barrier(const struct i915_active_fence * active)47 static inline bool is_barrier(const struct i915_active_fence *active)
48 {
49 return IS_ERR(rcu_access_pointer(active->fence));
50 }
51
barrier_to_ll(struct active_node * node)52 static inline struct llist_node *barrier_to_ll(struct active_node *node)
53 {
54 GEM_BUG_ON(!is_barrier(&node->base));
55 return (struct llist_node *)&node->base.cb.node;
56 }
57
58 static inline struct intel_engine_cs *
__barrier_to_engine(struct active_node * node)59 __barrier_to_engine(struct active_node *node)
60 {
61 return (struct intel_engine_cs *)READ_ONCE(node->base.cb.node.prev);
62 }
63
64 static inline struct intel_engine_cs *
barrier_to_engine(struct active_node * node)65 barrier_to_engine(struct active_node *node)
66 {
67 GEM_BUG_ON(!is_barrier(&node->base));
68 return __barrier_to_engine(node);
69 }
70
barrier_from_ll(struct llist_node * x)71 static inline struct active_node *barrier_from_ll(struct llist_node *x)
72 {
73 return container_of((struct list_head *)x,
74 struct active_node, base.cb.node);
75 }
76
77 #if IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM) && IS_ENABLED(CONFIG_DEBUG_OBJECTS)
78
active_debug_hint(void * addr)79 static void *active_debug_hint(void *addr)
80 {
81 struct i915_active *ref = addr;
82
83 return (void *)ref->active ?: (void *)ref->retire ?: (void *)ref;
84 }
85
86 static const struct debug_obj_descr active_debug_desc = {
87 .name = "i915_active",
88 .debug_hint = active_debug_hint,
89 };
90
debug_active_init(struct i915_active * ref)91 static void debug_active_init(struct i915_active *ref)
92 {
93 debug_object_init(ref, &active_debug_desc);
94 }
95
debug_active_activate(struct i915_active * ref)96 static void debug_active_activate(struct i915_active *ref)
97 {
98 lockdep_assert_held(&ref->tree_lock);
99 if (!atomic_read(&ref->count)) /* before the first inc */
100 debug_object_activate(ref, &active_debug_desc);
101 }
102
debug_active_deactivate(struct i915_active * ref)103 static void debug_active_deactivate(struct i915_active *ref)
104 {
105 lockdep_assert_held(&ref->tree_lock);
106 if (!atomic_read(&ref->count)) /* after the last dec */
107 debug_object_deactivate(ref, &active_debug_desc);
108 }
109
debug_active_fini(struct i915_active * ref)110 static void debug_active_fini(struct i915_active *ref)
111 {
112 debug_object_free(ref, &active_debug_desc);
113 }
114
debug_active_assert(struct i915_active * ref)115 static void debug_active_assert(struct i915_active *ref)
116 {
117 debug_object_assert_init(ref, &active_debug_desc);
118 }
119
120 #else
121
debug_active_init(struct i915_active * ref)122 static inline void debug_active_init(struct i915_active *ref) { }
debug_active_activate(struct i915_active * ref)123 static inline void debug_active_activate(struct i915_active *ref) { }
debug_active_deactivate(struct i915_active * ref)124 static inline void debug_active_deactivate(struct i915_active *ref) { }
debug_active_fini(struct i915_active * ref)125 static inline void debug_active_fini(struct i915_active *ref) { }
debug_active_assert(struct i915_active * ref)126 static inline void debug_active_assert(struct i915_active *ref) { }
127
128 #endif
129
130 static void
__active_retire(struct i915_active * ref)131 __active_retire(struct i915_active *ref)
132 {
133 struct rb_root root = RB_ROOT;
134 struct active_node *it, *n;
135 unsigned long flags;
136
137 GEM_BUG_ON(i915_active_is_idle(ref));
138
139 /* return the unused nodes to our slabcache -- flushing the allocator */
140 if (!atomic_dec_and_lock_irqsave(&ref->count, &ref->tree_lock, flags))
141 return;
142
143 GEM_BUG_ON(rcu_access_pointer(ref->excl.fence));
144 debug_active_deactivate(ref);
145
146 /* Even if we have not used the cache, we may still have a barrier */
147 if (!ref->cache)
148 ref->cache = fetch_node(ref->tree.rb_node);
149
150 /* Keep the MRU cached node for reuse */
151 if (ref->cache) {
152 /* Discard all other nodes in the tree */
153 rb_erase(&ref->cache->node, &ref->tree);
154 root = ref->tree;
155
156 /* Rebuild the tree with only the cached node */
157 rb_link_node(&ref->cache->node, NULL, &ref->tree.rb_node);
158 rb_insert_color(&ref->cache->node, &ref->tree);
159 GEM_BUG_ON(ref->tree.rb_node != &ref->cache->node);
160
161 /* Make the cached node available for reuse with any timeline */
162 if (IS_ENABLED(CONFIG_64BIT))
163 ref->cache->timeline = 0; /* needs cmpxchg(u64) */
164 }
165
166 spin_unlock_irqrestore(&ref->tree_lock, flags);
167
168 /* After the final retire, the entire struct may be freed */
169 if (ref->retire)
170 ref->retire(ref);
171
172 /* ... except if you wait on it, you must manage your own references! */
173 wake_up_var(ref);
174
175 /* Finally free the discarded timeline tree */
176 rbtree_postorder_for_each_entry_safe(it, n, &root, node) {
177 GEM_BUG_ON(i915_active_fence_isset(&it->base));
178 kmem_cache_free(global.slab_cache, it);
179 }
180 }
181
182 static void
active_work(struct work_struct * wrk)183 active_work(struct work_struct *wrk)
184 {
185 struct i915_active *ref = container_of(wrk, typeof(*ref), work);
186
187 GEM_BUG_ON(!atomic_read(&ref->count));
188 if (atomic_add_unless(&ref->count, -1, 1))
189 return;
190
191 __active_retire(ref);
192 }
193
194 static void
active_retire(struct i915_active * ref)195 active_retire(struct i915_active *ref)
196 {
197 GEM_BUG_ON(!atomic_read(&ref->count));
198 if (atomic_add_unless(&ref->count, -1, 1))
199 return;
200
201 if (ref->flags & I915_ACTIVE_RETIRE_SLEEPS) {
202 queue_work(system_unbound_wq, &ref->work);
203 return;
204 }
205
206 __active_retire(ref);
207 }
208
209 static inline struct dma_fence **
__active_fence_slot(struct i915_active_fence * active)210 __active_fence_slot(struct i915_active_fence *active)
211 {
212 return (struct dma_fence ** __force)&active->fence;
213 }
214
215 static inline bool
active_fence_cb(struct dma_fence * fence,struct dma_fence_cb * cb)216 active_fence_cb(struct dma_fence *fence, struct dma_fence_cb *cb)
217 {
218 struct i915_active_fence *active =
219 container_of(cb, typeof(*active), cb);
220
221 return cmpxchg(__active_fence_slot(active), fence, NULL) == fence;
222 }
223
224 static void
node_retire(struct dma_fence * fence,struct dma_fence_cb * cb)225 node_retire(struct dma_fence *fence, struct dma_fence_cb *cb)
226 {
227 if (active_fence_cb(fence, cb))
228 active_retire(container_of(cb, struct active_node, base.cb)->ref);
229 }
230
231 static void
excl_retire(struct dma_fence * fence,struct dma_fence_cb * cb)232 excl_retire(struct dma_fence *fence, struct dma_fence_cb *cb)
233 {
234 if (active_fence_cb(fence, cb))
235 active_retire(container_of(cb, struct i915_active, excl.cb));
236 }
237
__active_lookup(struct i915_active * ref,u64 idx)238 static struct active_node *__active_lookup(struct i915_active *ref, u64 idx)
239 {
240 struct active_node *it;
241
242 GEM_BUG_ON(idx == 0); /* 0 is the unordered timeline, rsvd for cache */
243
244 /*
245 * We track the most recently used timeline to skip a rbtree search
246 * for the common case, under typical loads we never need the rbtree
247 * at all. We can reuse the last slot if it is empty, that is
248 * after the previous activity has been retired, or if it matches the
249 * current timeline.
250 */
251 it = READ_ONCE(ref->cache);
252 if (it) {
253 u64 cached = READ_ONCE(it->timeline);
254
255 /* Once claimed, this slot will only belong to this idx */
256 if (cached == idx)
257 return it;
258
259 #ifdef CONFIG_64BIT /* for cmpxchg(u64) */
260 /*
261 * An unclaimed cache [.timeline=0] can only be claimed once.
262 *
263 * If the value is already non-zero, some other thread has
264 * claimed the cache and we know that is does not match our
265 * idx. If, and only if, the timeline is currently zero is it
266 * worth competing to claim it atomically for ourselves (for
267 * only the winner of that race will cmpxchg return the old
268 * value of 0).
269 */
270 if (!cached && !cmpxchg(&it->timeline, 0, idx))
271 return it;
272 #endif
273 }
274
275 BUILD_BUG_ON(offsetof(typeof(*it), node));
276
277 /* While active, the tree can only be built; not destroyed */
278 GEM_BUG_ON(i915_active_is_idle(ref));
279
280 it = fetch_node(ref->tree.rb_node);
281 while (it) {
282 if (it->timeline < idx) {
283 it = fetch_node(it->node.rb_right);
284 } else if (it->timeline > idx) {
285 it = fetch_node(it->node.rb_left);
286 } else {
287 WRITE_ONCE(ref->cache, it);
288 break;
289 }
290 }
291
292 /* NB: If the tree rotated beneath us, we may miss our target. */
293 return it;
294 }
295
296 static struct i915_active_fence *
active_instance(struct i915_active * ref,u64 idx)297 active_instance(struct i915_active *ref, u64 idx)
298 {
299 struct active_node *node, *prealloc;
300 struct rb_node **p, *parent;
301
302 node = __active_lookup(ref, idx);
303 if (likely(node))
304 return &node->base;
305
306 /* Preallocate a replacement, just in case */
307 prealloc = kmem_cache_alloc(global.slab_cache, GFP_KERNEL);
308 if (!prealloc)
309 return NULL;
310
311 spin_lock_irq(&ref->tree_lock);
312 GEM_BUG_ON(i915_active_is_idle(ref));
313
314 parent = NULL;
315 p = &ref->tree.rb_node;
316 while (*p) {
317 parent = *p;
318
319 node = rb_entry(parent, struct active_node, node);
320 if (node->timeline == idx) {
321 kmem_cache_free(global.slab_cache, prealloc);
322 goto out;
323 }
324
325 if (node->timeline < idx)
326 p = &parent->rb_right;
327 else
328 p = &parent->rb_left;
329 }
330
331 node = prealloc;
332 __i915_active_fence_init(&node->base, NULL, node_retire);
333 node->ref = ref;
334 node->timeline = idx;
335
336 rb_link_node(&node->node, parent, p);
337 rb_insert_color(&node->node, &ref->tree);
338
339 out:
340 WRITE_ONCE(ref->cache, node);
341 spin_unlock_irq(&ref->tree_lock);
342
343 return &node->base;
344 }
345
__i915_active_init(struct i915_active * ref,int (* active)(struct i915_active * ref),void (* retire)(struct i915_active * ref),struct lock_class_key * mkey,struct lock_class_key * wkey)346 void __i915_active_init(struct i915_active *ref,
347 int (*active)(struct i915_active *ref),
348 void (*retire)(struct i915_active *ref),
349 struct lock_class_key *mkey,
350 struct lock_class_key *wkey)
351 {
352 unsigned long bits;
353
354 debug_active_init(ref);
355
356 ref->flags = 0;
357 ref->active = active;
358 ref->retire = ptr_unpack_bits(retire, &bits, 2);
359 if (bits & I915_ACTIVE_MAY_SLEEP)
360 ref->flags |= I915_ACTIVE_RETIRE_SLEEPS;
361
362 spin_lock_init(&ref->tree_lock);
363 ref->tree = RB_ROOT;
364 ref->cache = NULL;
365
366 init_llist_head(&ref->preallocated_barriers);
367 atomic_set(&ref->count, 0);
368 __mutex_init(&ref->mutex, "i915_active", mkey);
369 __i915_active_fence_init(&ref->excl, NULL, excl_retire);
370 INIT_WORK(&ref->work, active_work);
371 #if IS_ENABLED(CONFIG_LOCKDEP)
372 lockdep_init_map(&ref->work.lockdep_map, "i915_active.work", wkey, 0);
373 #endif
374 }
375
____active_del_barrier(struct i915_active * ref,struct active_node * node,struct intel_engine_cs * engine)376 static bool ____active_del_barrier(struct i915_active *ref,
377 struct active_node *node,
378 struct intel_engine_cs *engine)
379
380 {
381 struct llist_node *head = NULL, *tail = NULL;
382 struct llist_node *pos, *next;
383
384 GEM_BUG_ON(node->timeline != engine->kernel_context->timeline->fence_context);
385
386 /*
387 * Rebuild the llist excluding our node. We may perform this
388 * outside of the kernel_context timeline mutex and so someone
389 * else may be manipulating the engine->barrier_tasks, in
390 * which case either we or they will be upset :)
391 *
392 * A second __active_del_barrier() will report failure to claim
393 * the active_node and the caller will just shrug and know not to
394 * claim ownership of its node.
395 *
396 * A concurrent i915_request_add_active_barriers() will miss adding
397 * any of the tasks, but we will try again on the next -- and since
398 * we are actively using the barrier, we know that there will be
399 * at least another opportunity when we idle.
400 */
401 llist_for_each_safe(pos, next, llist_del_all(&engine->barrier_tasks)) {
402 if (node == barrier_from_ll(pos)) {
403 node = NULL;
404 continue;
405 }
406
407 pos->next = head;
408 head = pos;
409 if (!tail)
410 tail = pos;
411 }
412 if (head)
413 llist_add_batch(head, tail, &engine->barrier_tasks);
414
415 return !node;
416 }
417
418 static bool
__active_del_barrier(struct i915_active * ref,struct active_node * node)419 __active_del_barrier(struct i915_active *ref, struct active_node *node)
420 {
421 return ____active_del_barrier(ref, node, barrier_to_engine(node));
422 }
423
424 static bool
replace_barrier(struct i915_active * ref,struct i915_active_fence * active)425 replace_barrier(struct i915_active *ref, struct i915_active_fence *active)
426 {
427 if (!is_barrier(active)) /* proto-node used by our idle barrier? */
428 return false;
429
430 /*
431 * This request is on the kernel_context timeline, and so
432 * we can use it to substitute for the pending idle-barrer
433 * request that we want to emit on the kernel_context.
434 */
435 __active_del_barrier(ref, node_from_active(active));
436 return true;
437 }
438
i915_active_ref(struct i915_active * ref,u64 idx,struct dma_fence * fence)439 int i915_active_ref(struct i915_active *ref, u64 idx, struct dma_fence *fence)
440 {
441 struct i915_active_fence *active;
442 int err;
443
444 /* Prevent reaping in case we malloc/wait while building the tree */
445 err = i915_active_acquire(ref);
446 if (err)
447 return err;
448
449 active = active_instance(ref, idx);
450 if (!active) {
451 err = -ENOMEM;
452 goto out;
453 }
454
455 if (replace_barrier(ref, active)) {
456 RCU_INIT_POINTER(active->fence, NULL);
457 atomic_dec(&ref->count);
458 }
459 if (!__i915_active_fence_set(active, fence))
460 __i915_active_acquire(ref);
461
462 out:
463 i915_active_release(ref);
464 return err;
465 }
466
467 static struct dma_fence *
__i915_active_set_fence(struct i915_active * ref,struct i915_active_fence * active,struct dma_fence * fence)468 __i915_active_set_fence(struct i915_active *ref,
469 struct i915_active_fence *active,
470 struct dma_fence *fence)
471 {
472 struct dma_fence *prev;
473
474 if (replace_barrier(ref, active)) {
475 RCU_INIT_POINTER(active->fence, fence);
476 return NULL;
477 }
478
479 rcu_read_lock();
480 prev = __i915_active_fence_set(active, fence);
481 if (prev)
482 prev = dma_fence_get_rcu(prev);
483 else
484 __i915_active_acquire(ref);
485 rcu_read_unlock();
486
487 return prev;
488 }
489
490 static struct i915_active_fence *
__active_fence(struct i915_active * ref,u64 idx)491 __active_fence(struct i915_active *ref, u64 idx)
492 {
493 struct active_node *it;
494
495 it = __active_lookup(ref, idx);
496 if (unlikely(!it)) { /* Contention with parallel tree builders! */
497 spin_lock_irq(&ref->tree_lock);
498 it = __active_lookup(ref, idx);
499 spin_unlock_irq(&ref->tree_lock);
500 }
501 GEM_BUG_ON(!it); /* slot must be preallocated */
502
503 return &it->base;
504 }
505
506 struct dma_fence *
__i915_active_ref(struct i915_active * ref,u64 idx,struct dma_fence * fence)507 __i915_active_ref(struct i915_active *ref, u64 idx, struct dma_fence *fence)
508 {
509 /* Only valid while active, see i915_active_acquire_for_context() */
510 return __i915_active_set_fence(ref, __active_fence(ref, idx), fence);
511 }
512
513 struct dma_fence *
i915_active_set_exclusive(struct i915_active * ref,struct dma_fence * f)514 i915_active_set_exclusive(struct i915_active *ref, struct dma_fence *f)
515 {
516 /* We expect the caller to manage the exclusive timeline ordering */
517 return __i915_active_set_fence(ref, &ref->excl, f);
518 }
519
i915_active_acquire_if_busy(struct i915_active * ref)520 bool i915_active_acquire_if_busy(struct i915_active *ref)
521 {
522 debug_active_assert(ref);
523 return atomic_add_unless(&ref->count, 1, 0);
524 }
525
__i915_active_activate(struct i915_active * ref)526 static void __i915_active_activate(struct i915_active *ref)
527 {
528 spin_lock_irq(&ref->tree_lock); /* __active_retire() */
529 if (!atomic_fetch_inc(&ref->count))
530 debug_active_activate(ref);
531 spin_unlock_irq(&ref->tree_lock);
532 }
533
i915_active_acquire(struct i915_active * ref)534 int i915_active_acquire(struct i915_active *ref)
535 {
536 int err;
537
538 if (i915_active_acquire_if_busy(ref))
539 return 0;
540
541 if (!ref->active) {
542 __i915_active_activate(ref);
543 return 0;
544 }
545
546 err = mutex_lock_interruptible(&ref->mutex);
547 if (err)
548 return err;
549
550 if (likely(!i915_active_acquire_if_busy(ref))) {
551 err = ref->active(ref);
552 if (!err)
553 __i915_active_activate(ref);
554 }
555
556 mutex_unlock(&ref->mutex);
557
558 return err;
559 }
560
i915_active_acquire_for_context(struct i915_active * ref,u64 idx)561 int i915_active_acquire_for_context(struct i915_active *ref, u64 idx)
562 {
563 struct i915_active_fence *active;
564 int err;
565
566 err = i915_active_acquire(ref);
567 if (err)
568 return err;
569
570 active = active_instance(ref, idx);
571 if (!active) {
572 i915_active_release(ref);
573 return -ENOMEM;
574 }
575
576 return 0; /* return with active ref */
577 }
578
i915_active_release(struct i915_active * ref)579 void i915_active_release(struct i915_active *ref)
580 {
581 debug_active_assert(ref);
582 active_retire(ref);
583 }
584
enable_signaling(struct i915_active_fence * active)585 static void enable_signaling(struct i915_active_fence *active)
586 {
587 struct dma_fence *fence;
588
589 if (unlikely(is_barrier(active)))
590 return;
591
592 fence = i915_active_fence_get(active);
593 if (!fence)
594 return;
595
596 dma_fence_enable_sw_signaling(fence);
597 dma_fence_put(fence);
598 }
599
flush_barrier(struct active_node * it)600 static int flush_barrier(struct active_node *it)
601 {
602 struct intel_engine_cs *engine;
603
604 if (likely(!is_barrier(&it->base)))
605 return 0;
606
607 engine = __barrier_to_engine(it);
608 smp_rmb(); /* serialise with add_active_barriers */
609 if (!is_barrier(&it->base))
610 return 0;
611
612 return intel_engine_flush_barriers(engine);
613 }
614
flush_lazy_signals(struct i915_active * ref)615 static int flush_lazy_signals(struct i915_active *ref)
616 {
617 struct active_node *it, *n;
618 int err = 0;
619
620 enable_signaling(&ref->excl);
621 rbtree_postorder_for_each_entry_safe(it, n, &ref->tree, node) {
622 err = flush_barrier(it); /* unconnected idle barrier? */
623 if (err)
624 break;
625
626 enable_signaling(&it->base);
627 }
628
629 return err;
630 }
631
__i915_active_wait(struct i915_active * ref,int state)632 int __i915_active_wait(struct i915_active *ref, int state)
633 {
634 might_sleep();
635
636 /* Any fence added after the wait begins will not be auto-signaled */
637 if (i915_active_acquire_if_busy(ref)) {
638 int err;
639
640 err = flush_lazy_signals(ref);
641 i915_active_release(ref);
642 if (err)
643 return err;
644
645 if (___wait_var_event(ref, i915_active_is_idle(ref),
646 state, 0, 0, schedule()))
647 return -EINTR;
648 }
649
650 /*
651 * After the wait is complete, the caller may free the active.
652 * We have to flush any concurrent retirement before returning.
653 */
654 flush_work(&ref->work);
655 return 0;
656 }
657
__await_active(struct i915_active_fence * active,int (* fn)(void * arg,struct dma_fence * fence),void * arg)658 static int __await_active(struct i915_active_fence *active,
659 int (*fn)(void *arg, struct dma_fence *fence),
660 void *arg)
661 {
662 struct dma_fence *fence;
663
664 if (is_barrier(active)) /* XXX flush the barrier? */
665 return 0;
666
667 fence = i915_active_fence_get(active);
668 if (fence) {
669 int err;
670
671 err = fn(arg, fence);
672 dma_fence_put(fence);
673 if (err < 0)
674 return err;
675 }
676
677 return 0;
678 }
679
680 struct wait_barrier {
681 struct wait_queue_entry base;
682 struct i915_active *ref;
683 };
684
685 static int
barrier_wake(wait_queue_entry_t * wq,unsigned int mode,int flags,void * key)686 barrier_wake(wait_queue_entry_t *wq, unsigned int mode, int flags, void *key)
687 {
688 struct wait_barrier *wb = container_of(wq, typeof(*wb), base);
689
690 if (i915_active_is_idle(wb->ref)) {
691 list_del(&wq->entry);
692 i915_sw_fence_complete(wq->private);
693 kfree(wq);
694 }
695
696 return 0;
697 }
698
__await_barrier(struct i915_active * ref,struct i915_sw_fence * fence)699 static int __await_barrier(struct i915_active *ref, struct i915_sw_fence *fence)
700 {
701 struct wait_barrier *wb;
702
703 wb = kmalloc(sizeof(*wb), GFP_KERNEL);
704 if (unlikely(!wb))
705 return -ENOMEM;
706
707 GEM_BUG_ON(i915_active_is_idle(ref));
708 if (!i915_sw_fence_await(fence)) {
709 kfree(wb);
710 return -EINVAL;
711 }
712
713 wb->base.flags = 0;
714 wb->base.func = barrier_wake;
715 wb->base.private = fence;
716 wb->ref = ref;
717
718 add_wait_queue(__var_waitqueue(ref), &wb->base);
719 return 0;
720 }
721
await_active(struct i915_active * ref,unsigned int flags,int (* fn)(void * arg,struct dma_fence * fence),void * arg,struct i915_sw_fence * barrier)722 static int await_active(struct i915_active *ref,
723 unsigned int flags,
724 int (*fn)(void *arg, struct dma_fence *fence),
725 void *arg, struct i915_sw_fence *barrier)
726 {
727 int err = 0;
728
729 if (!i915_active_acquire_if_busy(ref))
730 return 0;
731
732 if (flags & I915_ACTIVE_AWAIT_EXCL &&
733 rcu_access_pointer(ref->excl.fence)) {
734 err = __await_active(&ref->excl, fn, arg);
735 if (err)
736 goto out;
737 }
738
739 if (flags & I915_ACTIVE_AWAIT_ACTIVE) {
740 struct active_node *it, *n;
741
742 rbtree_postorder_for_each_entry_safe(it, n, &ref->tree, node) {
743 err = __await_active(&it->base, fn, arg);
744 if (err)
745 goto out;
746 }
747 }
748
749 if (flags & I915_ACTIVE_AWAIT_BARRIER) {
750 err = flush_lazy_signals(ref);
751 if (err)
752 goto out;
753
754 err = __await_barrier(ref, barrier);
755 if (err)
756 goto out;
757 }
758
759 out:
760 i915_active_release(ref);
761 return err;
762 }
763
rq_await_fence(void * arg,struct dma_fence * fence)764 static int rq_await_fence(void *arg, struct dma_fence *fence)
765 {
766 return i915_request_await_dma_fence(arg, fence);
767 }
768
i915_request_await_active(struct i915_request * rq,struct i915_active * ref,unsigned int flags)769 int i915_request_await_active(struct i915_request *rq,
770 struct i915_active *ref,
771 unsigned int flags)
772 {
773 return await_active(ref, flags, rq_await_fence, rq, &rq->submit);
774 }
775
sw_await_fence(void * arg,struct dma_fence * fence)776 static int sw_await_fence(void *arg, struct dma_fence *fence)
777 {
778 return i915_sw_fence_await_dma_fence(arg, fence, 0,
779 GFP_NOWAIT | __GFP_NOWARN);
780 }
781
i915_sw_fence_await_active(struct i915_sw_fence * fence,struct i915_active * ref,unsigned int flags)782 int i915_sw_fence_await_active(struct i915_sw_fence *fence,
783 struct i915_active *ref,
784 unsigned int flags)
785 {
786 return await_active(ref, flags, sw_await_fence, fence, fence);
787 }
788
i915_active_fini(struct i915_active * ref)789 void i915_active_fini(struct i915_active *ref)
790 {
791 debug_active_fini(ref);
792 GEM_BUG_ON(atomic_read(&ref->count));
793 GEM_BUG_ON(work_pending(&ref->work));
794 mutex_destroy(&ref->mutex);
795
796 if (ref->cache)
797 kmem_cache_free(global.slab_cache, ref->cache);
798 }
799
is_idle_barrier(struct active_node * node,u64 idx)800 static inline bool is_idle_barrier(struct active_node *node, u64 idx)
801 {
802 return node->timeline == idx && !i915_active_fence_isset(&node->base);
803 }
804
reuse_idle_barrier(struct i915_active * ref,u64 idx)805 static struct active_node *reuse_idle_barrier(struct i915_active *ref, u64 idx)
806 {
807 struct rb_node *prev, *p;
808
809 if (RB_EMPTY_ROOT(&ref->tree))
810 return NULL;
811
812 GEM_BUG_ON(i915_active_is_idle(ref));
813
814 /*
815 * Try to reuse any existing barrier nodes already allocated for this
816 * i915_active, due to overlapping active phases there is likely a
817 * node kept alive (as we reuse before parking). We prefer to reuse
818 * completely idle barriers (less hassle in manipulating the llists),
819 * but otherwise any will do.
820 */
821 if (ref->cache && is_idle_barrier(ref->cache, idx)) {
822 p = &ref->cache->node;
823 goto match;
824 }
825
826 prev = NULL;
827 p = ref->tree.rb_node;
828 while (p) {
829 struct active_node *node =
830 rb_entry(p, struct active_node, node);
831
832 if (is_idle_barrier(node, idx))
833 goto match;
834
835 prev = p;
836 if (node->timeline < idx)
837 p = READ_ONCE(p->rb_right);
838 else
839 p = READ_ONCE(p->rb_left);
840 }
841
842 /*
843 * No quick match, but we did find the leftmost rb_node for the
844 * kernel_context. Walk the rb_tree in-order to see if there were
845 * any idle-barriers on this timeline that we missed, or just use
846 * the first pending barrier.
847 */
848 for (p = prev; p; p = rb_next(p)) {
849 struct active_node *node =
850 rb_entry(p, struct active_node, node);
851 struct intel_engine_cs *engine;
852
853 if (node->timeline > idx)
854 break;
855
856 if (node->timeline < idx)
857 continue;
858
859 if (is_idle_barrier(node, idx))
860 goto match;
861
862 /*
863 * The list of pending barriers is protected by the
864 * kernel_context timeline, which notably we do not hold
865 * here. i915_request_add_active_barriers() may consume
866 * the barrier before we claim it, so we have to check
867 * for success.
868 */
869 engine = __barrier_to_engine(node);
870 smp_rmb(); /* serialise with add_active_barriers */
871 if (is_barrier(&node->base) &&
872 ____active_del_barrier(ref, node, engine))
873 goto match;
874 }
875
876 return NULL;
877
878 match:
879 spin_lock_irq(&ref->tree_lock);
880 rb_erase(p, &ref->tree); /* Hide from waits and sibling allocations */
881 if (p == &ref->cache->node)
882 WRITE_ONCE(ref->cache, NULL);
883 spin_unlock_irq(&ref->tree_lock);
884
885 return rb_entry(p, struct active_node, node);
886 }
887
i915_active_acquire_preallocate_barrier(struct i915_active * ref,struct intel_engine_cs * engine)888 int i915_active_acquire_preallocate_barrier(struct i915_active *ref,
889 struct intel_engine_cs *engine)
890 {
891 intel_engine_mask_t tmp, mask = engine->mask;
892 struct llist_node *first = NULL, *last = NULL;
893 struct intel_gt *gt = engine->gt;
894
895 GEM_BUG_ON(i915_active_is_idle(ref));
896
897 /* Wait until the previous preallocation is completed */
898 while (!llist_empty(&ref->preallocated_barriers))
899 cond_resched();
900
901 /*
902 * Preallocate a node for each physical engine supporting the target
903 * engine (remember virtual engines have more than one sibling).
904 * We can then use the preallocated nodes in
905 * i915_active_acquire_barrier()
906 */
907 GEM_BUG_ON(!mask);
908 for_each_engine_masked(engine, gt, mask, tmp) {
909 u64 idx = engine->kernel_context->timeline->fence_context;
910 struct llist_node *prev = first;
911 struct active_node *node;
912
913 rcu_read_lock();
914 node = reuse_idle_barrier(ref, idx);
915 rcu_read_unlock();
916 if (!node) {
917 node = kmem_cache_alloc(global.slab_cache, GFP_KERNEL);
918 if (!node)
919 goto unwind;
920
921 RCU_INIT_POINTER(node->base.fence, NULL);
922 node->base.cb.func = node_retire;
923 node->timeline = idx;
924 node->ref = ref;
925 }
926
927 if (!i915_active_fence_isset(&node->base)) {
928 /*
929 * Mark this as being *our* unconnected proto-node.
930 *
931 * Since this node is not in any list, and we have
932 * decoupled it from the rbtree, we can reuse the
933 * request to indicate this is an idle-barrier node
934 * and then we can use the rb_node and list pointers
935 * for our tracking of the pending barrier.
936 */
937 RCU_INIT_POINTER(node->base.fence, ERR_PTR(-EAGAIN));
938 node->base.cb.node.prev = (void *)engine;
939 __i915_active_acquire(ref);
940 }
941 GEM_BUG_ON(rcu_access_pointer(node->base.fence) != ERR_PTR(-EAGAIN));
942
943 GEM_BUG_ON(barrier_to_engine(node) != engine);
944 first = barrier_to_ll(node);
945 first->next = prev;
946 if (!last)
947 last = first;
948 intel_engine_pm_get(engine);
949 }
950
951 GEM_BUG_ON(!llist_empty(&ref->preallocated_barriers));
952 llist_add_batch(first, last, &ref->preallocated_barriers);
953
954 return 0;
955
956 unwind:
957 while (first) {
958 struct active_node *node = barrier_from_ll(first);
959
960 first = first->next;
961
962 atomic_dec(&ref->count);
963 intel_engine_pm_put(barrier_to_engine(node));
964
965 kmem_cache_free(global.slab_cache, node);
966 }
967 return -ENOMEM;
968 }
969
i915_active_acquire_barrier(struct i915_active * ref)970 void i915_active_acquire_barrier(struct i915_active *ref)
971 {
972 struct llist_node *pos, *next;
973 unsigned long flags;
974
975 GEM_BUG_ON(i915_active_is_idle(ref));
976
977 /*
978 * Transfer the list of preallocated barriers into the
979 * i915_active rbtree, but only as proto-nodes. They will be
980 * populated by i915_request_add_active_barriers() to point to the
981 * request that will eventually release them.
982 */
983 llist_for_each_safe(pos, next, take_preallocated_barriers(ref)) {
984 struct active_node *node = barrier_from_ll(pos);
985 struct intel_engine_cs *engine = barrier_to_engine(node);
986 struct rb_node **p, *parent;
987
988 spin_lock_irqsave_nested(&ref->tree_lock, flags,
989 SINGLE_DEPTH_NESTING);
990 parent = NULL;
991 p = &ref->tree.rb_node;
992 while (*p) {
993 struct active_node *it;
994
995 parent = *p;
996
997 it = rb_entry(parent, struct active_node, node);
998 if (it->timeline < node->timeline)
999 p = &parent->rb_right;
1000 else
1001 p = &parent->rb_left;
1002 }
1003 rb_link_node(&node->node, parent, p);
1004 rb_insert_color(&node->node, &ref->tree);
1005 spin_unlock_irqrestore(&ref->tree_lock, flags);
1006
1007 GEM_BUG_ON(!intel_engine_pm_is_awake(engine));
1008 llist_add(barrier_to_ll(node), &engine->barrier_tasks);
1009 intel_engine_pm_put_delay(engine, 1);
1010 }
1011 }
1012
ll_to_fence_slot(struct llist_node * node)1013 static struct dma_fence **ll_to_fence_slot(struct llist_node *node)
1014 {
1015 return __active_fence_slot(&barrier_from_ll(node)->base);
1016 }
1017
i915_request_add_active_barriers(struct i915_request * rq)1018 void i915_request_add_active_barriers(struct i915_request *rq)
1019 {
1020 struct intel_engine_cs *engine = rq->engine;
1021 struct llist_node *node, *next;
1022 unsigned long flags;
1023
1024 GEM_BUG_ON(!intel_context_is_barrier(rq->context));
1025 GEM_BUG_ON(intel_engine_is_virtual(engine));
1026 GEM_BUG_ON(i915_request_timeline(rq) != engine->kernel_context->timeline);
1027
1028 node = llist_del_all(&engine->barrier_tasks);
1029 if (!node)
1030 return;
1031 /*
1032 * Attach the list of proto-fences to the in-flight request such
1033 * that the parent i915_active will be released when this request
1034 * is retired.
1035 */
1036 spin_lock_irqsave(&rq->lock, flags);
1037 llist_for_each_safe(node, next, node) {
1038 /* serialise with reuse_idle_barrier */
1039 smp_store_mb(*ll_to_fence_slot(node), &rq->fence);
1040 list_add_tail((struct list_head *)node, &rq->fence.cb_list);
1041 }
1042 spin_unlock_irqrestore(&rq->lock, flags);
1043 }
1044
1045 /*
1046 * __i915_active_fence_set: Update the last active fence along its timeline
1047 * @active: the active tracker
1048 * @fence: the new fence (under construction)
1049 *
1050 * Records the new @fence as the last active fence along its timeline in
1051 * this active tracker, moving the tracking callbacks from the previous
1052 * fence onto this one. Returns the previous fence (if not already completed),
1053 * which the caller must ensure is executed before the new fence. To ensure
1054 * that the order of fences within the timeline of the i915_active_fence is
1055 * understood, it should be locked by the caller.
1056 */
1057 struct dma_fence *
__i915_active_fence_set(struct i915_active_fence * active,struct dma_fence * fence)1058 __i915_active_fence_set(struct i915_active_fence *active,
1059 struct dma_fence *fence)
1060 {
1061 struct dma_fence *prev;
1062 unsigned long flags;
1063
1064 if (fence == rcu_access_pointer(active->fence))
1065 return fence;
1066
1067 GEM_BUG_ON(test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags));
1068
1069 /*
1070 * Consider that we have two threads arriving (A and B), with
1071 * C already resident as the active->fence.
1072 *
1073 * A does the xchg first, and so it sees C or NULL depending
1074 * on the timing of the interrupt handler. If it is NULL, the
1075 * previous fence must have been signaled and we know that
1076 * we are first on the timeline. If it is still present,
1077 * we acquire the lock on that fence and serialise with the interrupt
1078 * handler, in the process removing it from any future interrupt
1079 * callback. A will then wait on C before executing (if present).
1080 *
1081 * As B is second, it sees A as the previous fence and so waits for
1082 * it to complete its transition and takes over the occupancy for
1083 * itself -- remembering that it needs to wait on A before executing.
1084 *
1085 * Note the strong ordering of the timeline also provides consistent
1086 * nesting rules for the fence->lock; the inner lock is always the
1087 * older lock.
1088 */
1089 spin_lock_irqsave(fence->lock, flags);
1090 prev = xchg(__active_fence_slot(active), fence);
1091 if (prev) {
1092 GEM_BUG_ON(prev == fence);
1093 spin_lock_nested(prev->lock, SINGLE_DEPTH_NESTING);
1094 __list_del_entry(&active->cb.node);
1095 spin_unlock(prev->lock); /* serialise with prev->cb_list */
1096 }
1097 list_add_tail(&active->cb.node, &fence->cb_list);
1098 spin_unlock_irqrestore(fence->lock, flags);
1099
1100 return prev;
1101 }
1102
i915_active_fence_set(struct i915_active_fence * active,struct i915_request * rq)1103 int i915_active_fence_set(struct i915_active_fence *active,
1104 struct i915_request *rq)
1105 {
1106 struct dma_fence *fence;
1107 int err = 0;
1108
1109 /* Must maintain timeline ordering wrt previous active requests */
1110 rcu_read_lock();
1111 fence = __i915_active_fence_set(active, &rq->fence);
1112 if (fence) /* but the previous fence may not belong to that timeline! */
1113 fence = dma_fence_get_rcu(fence);
1114 rcu_read_unlock();
1115 if (fence) {
1116 err = i915_request_await_dma_fence(rq, fence);
1117 dma_fence_put(fence);
1118 }
1119
1120 return err;
1121 }
1122
i915_active_noop(struct dma_fence * fence,struct dma_fence_cb * cb)1123 void i915_active_noop(struct dma_fence *fence, struct dma_fence_cb *cb)
1124 {
1125 active_fence_cb(fence, cb);
1126 }
1127
1128 struct auto_active {
1129 struct i915_active base;
1130 struct kref ref;
1131 };
1132
i915_active_get(struct i915_active * ref)1133 struct i915_active *i915_active_get(struct i915_active *ref)
1134 {
1135 struct auto_active *aa = container_of(ref, typeof(*aa), base);
1136
1137 kref_get(&aa->ref);
1138 return &aa->base;
1139 }
1140
auto_release(struct kref * ref)1141 static void auto_release(struct kref *ref)
1142 {
1143 struct auto_active *aa = container_of(ref, typeof(*aa), ref);
1144
1145 i915_active_fini(&aa->base);
1146 kfree(aa);
1147 }
1148
i915_active_put(struct i915_active * ref)1149 void i915_active_put(struct i915_active *ref)
1150 {
1151 struct auto_active *aa = container_of(ref, typeof(*aa), base);
1152
1153 kref_put(&aa->ref, auto_release);
1154 }
1155
auto_active(struct i915_active * ref)1156 static int auto_active(struct i915_active *ref)
1157 {
1158 i915_active_get(ref);
1159 return 0;
1160 }
1161
1162 __i915_active_call static void
auto_retire(struct i915_active * ref)1163 auto_retire(struct i915_active *ref)
1164 {
1165 i915_active_put(ref);
1166 }
1167
i915_active_create(void)1168 struct i915_active *i915_active_create(void)
1169 {
1170 struct auto_active *aa;
1171
1172 aa = kmalloc(sizeof(*aa), GFP_KERNEL);
1173 if (!aa)
1174 return NULL;
1175
1176 kref_init(&aa->ref);
1177 i915_active_init(&aa->base, auto_active, auto_retire);
1178
1179 return &aa->base;
1180 }
1181
1182 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
1183 #include "selftests/i915_active.c"
1184 #endif
1185
i915_global_active_shrink(void)1186 static void i915_global_active_shrink(void)
1187 {
1188 kmem_cache_shrink(global.slab_cache);
1189 }
1190
i915_global_active_exit(void)1191 static void i915_global_active_exit(void)
1192 {
1193 kmem_cache_destroy(global.slab_cache);
1194 }
1195
1196 static struct i915_global_active global = { {
1197 .shrink = i915_global_active_shrink,
1198 .exit = i915_global_active_exit,
1199 } };
1200
i915_global_active_init(void)1201 int __init i915_global_active_init(void)
1202 {
1203 global.slab_cache = KMEM_CACHE(active_node, SLAB_HWCACHE_ALIGN);
1204 if (!global.slab_cache)
1205 return -ENOMEM;
1206
1207 i915_global_register(&global.base);
1208 return 0;
1209 }
1210