1 /*
2 * SPDX-License-Identifier: MIT
3 *
4 * Copyright © 2018 Intel Corporation
5 */
6
7 #include <linux/mutex.h>
8
9 #include "i915_drv.h"
10 #include "i915_globals.h"
11 #include "i915_request.h"
12 #include "i915_scheduler.h"
13
14 static struct i915_global_scheduler {
15 struct i915_global base;
16 struct kmem_cache *slab_dependencies;
17 struct kmem_cache *slab_priorities;
18 } global;
19
20 static DEFINE_SPINLOCK(schedule_lock);
21
22 static const struct i915_request *
node_to_request(const struct i915_sched_node * node)23 node_to_request(const struct i915_sched_node *node)
24 {
25 return container_of(node, const struct i915_request, sched);
26 }
27
node_started(const struct i915_sched_node * node)28 static inline bool node_started(const struct i915_sched_node *node)
29 {
30 return i915_request_started(node_to_request(node));
31 }
32
node_signaled(const struct i915_sched_node * node)33 static inline bool node_signaled(const struct i915_sched_node *node)
34 {
35 return i915_request_completed(node_to_request(node));
36 }
37
to_priolist(struct rb_node * rb)38 static inline struct i915_priolist *to_priolist(struct rb_node *rb)
39 {
40 return rb_entry(rb, struct i915_priolist, node);
41 }
42
assert_priolists(struct intel_engine_execlists * const execlists)43 static void assert_priolists(struct intel_engine_execlists * const execlists)
44 {
45 struct rb_node *rb;
46 long last_prio, i;
47
48 if (!IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM))
49 return;
50
51 GEM_BUG_ON(rb_first_cached(&execlists->queue) !=
52 rb_first(&execlists->queue.rb_root));
53
54 last_prio = INT_MAX;
55 for (rb = rb_first_cached(&execlists->queue); rb; rb = rb_next(rb)) {
56 const struct i915_priolist *p = to_priolist(rb);
57
58 GEM_BUG_ON(p->priority > last_prio);
59 last_prio = p->priority;
60
61 GEM_BUG_ON(!p->used);
62 for (i = 0; i < ARRAY_SIZE(p->requests); i++) {
63 if (list_empty(&p->requests[i]))
64 continue;
65
66 GEM_BUG_ON(!(p->used & BIT(i)));
67 }
68 }
69 }
70
71 struct list_head *
i915_sched_lookup_priolist(struct intel_engine_cs * engine,int prio)72 i915_sched_lookup_priolist(struct intel_engine_cs *engine, int prio)
73 {
74 struct intel_engine_execlists * const execlists = &engine->execlists;
75 struct i915_priolist *p;
76 struct rb_node **parent, *rb;
77 bool first = true;
78 int idx, i;
79
80 lockdep_assert_held(&engine->active.lock);
81 assert_priolists(execlists);
82
83 /* buckets sorted from highest [in slot 0] to lowest priority */
84 idx = I915_PRIORITY_COUNT - (prio & I915_PRIORITY_MASK) - 1;
85 prio >>= I915_USER_PRIORITY_SHIFT;
86 if (unlikely(execlists->no_priolist))
87 prio = I915_PRIORITY_NORMAL;
88
89 find_priolist:
90 /* most positive priority is scheduled first, equal priorities fifo */
91 rb = NULL;
92 parent = &execlists->queue.rb_root.rb_node;
93 while (*parent) {
94 rb = *parent;
95 p = to_priolist(rb);
96 if (prio > p->priority) {
97 parent = &rb->rb_left;
98 } else if (prio < p->priority) {
99 parent = &rb->rb_right;
100 first = false;
101 } else {
102 goto out;
103 }
104 }
105
106 if (prio == I915_PRIORITY_NORMAL) {
107 p = &execlists->default_priolist;
108 } else {
109 p = kmem_cache_alloc(global.slab_priorities, GFP_ATOMIC);
110 /* Convert an allocation failure to a priority bump */
111 if (unlikely(!p)) {
112 prio = I915_PRIORITY_NORMAL; /* recurses just once */
113
114 /* To maintain ordering with all rendering, after an
115 * allocation failure we have to disable all scheduling.
116 * Requests will then be executed in fifo, and schedule
117 * will ensure that dependencies are emitted in fifo.
118 * There will be still some reordering with existing
119 * requests, so if userspace lied about their
120 * dependencies that reordering may be visible.
121 */
122 execlists->no_priolist = true;
123 goto find_priolist;
124 }
125 }
126
127 p->priority = prio;
128 for (i = 0; i < ARRAY_SIZE(p->requests); i++)
129 INIT_LIST_HEAD(&p->requests[i]);
130 rb_link_node(&p->node, rb, parent);
131 rb_insert_color_cached(&p->node, &execlists->queue, first);
132 p->used = 0;
133
134 out:
135 p->used |= BIT(idx);
136 return &p->requests[idx];
137 }
138
__i915_priolist_free(struct i915_priolist * p)139 void __i915_priolist_free(struct i915_priolist *p)
140 {
141 kmem_cache_free(global.slab_priorities, p);
142 }
143
144 struct sched_cache {
145 struct list_head *priolist;
146 };
147
148 static struct intel_engine_cs *
sched_lock_engine(const struct i915_sched_node * node,struct intel_engine_cs * locked,struct sched_cache * cache)149 sched_lock_engine(const struct i915_sched_node *node,
150 struct intel_engine_cs *locked,
151 struct sched_cache *cache)
152 {
153 const struct i915_request *rq = node_to_request(node);
154 struct intel_engine_cs *engine;
155
156 GEM_BUG_ON(!locked);
157
158 /*
159 * Virtual engines complicate acquiring the engine timeline lock,
160 * as their rq->engine pointer is not stable until under that
161 * engine lock. The simple ploy we use is to take the lock then
162 * check that the rq still belongs to the newly locked engine.
163 */
164 while (locked != (engine = READ_ONCE(rq->engine))) {
165 spin_unlock(&locked->active.lock);
166 memset(cache, 0, sizeof(*cache));
167 spin_lock(&engine->active.lock);
168 locked = engine;
169 }
170
171 GEM_BUG_ON(locked != engine);
172 return locked;
173 }
174
rq_prio(const struct i915_request * rq)175 static inline int rq_prio(const struct i915_request *rq)
176 {
177 return rq->sched.attr.priority;
178 }
179
need_preempt(int prio,int active)180 static inline bool need_preempt(int prio, int active)
181 {
182 /*
183 * Allow preemption of low -> normal -> high, but we do
184 * not allow low priority tasks to preempt other low priority
185 * tasks under the impression that latency for low priority
186 * tasks does not matter (as much as background throughput),
187 * so kiss.
188 */
189 return prio >= max(I915_PRIORITY_NORMAL, active);
190 }
191
kick_submission(struct intel_engine_cs * engine,const struct i915_request * rq,int prio)192 static void kick_submission(struct intel_engine_cs *engine,
193 const struct i915_request *rq,
194 int prio)
195 {
196 const struct i915_request *inflight;
197
198 /*
199 * We only need to kick the tasklet once for the high priority
200 * new context we add into the queue.
201 */
202 if (prio <= engine->execlists.queue_priority_hint)
203 return;
204
205 rcu_read_lock();
206
207 /* Nothing currently active? We're overdue for a submission! */
208 inflight = execlists_active(&engine->execlists);
209 if (!inflight)
210 goto unlock;
211
212 /*
213 * If we are already the currently executing context, don't
214 * bother evaluating if we should preempt ourselves.
215 */
216 if (inflight->context == rq->context)
217 goto unlock;
218
219 ENGINE_TRACE(engine,
220 "bumping queue-priority-hint:%d for rq:%llx:%lld, inflight:%llx:%lld prio %d\n",
221 prio,
222 rq->fence.context, rq->fence.seqno,
223 inflight->fence.context, inflight->fence.seqno,
224 inflight->sched.attr.priority);
225
226 engine->execlists.queue_priority_hint = prio;
227 if (need_preempt(prio, rq_prio(inflight)))
228 tasklet_hi_schedule(&engine->execlists.tasklet);
229
230 unlock:
231 rcu_read_unlock();
232 }
233
__i915_schedule(struct i915_sched_node * node,const struct i915_sched_attr * attr)234 static void __i915_schedule(struct i915_sched_node *node,
235 const struct i915_sched_attr *attr)
236 {
237 const int prio = max(attr->priority, node->attr.priority);
238 struct intel_engine_cs *engine;
239 struct i915_dependency *dep, *p;
240 struct i915_dependency stack;
241 struct sched_cache cache;
242 LIST_HEAD(dfs);
243
244 /* Needed in order to use the temporary link inside i915_dependency */
245 lockdep_assert_held(&schedule_lock);
246 GEM_BUG_ON(prio == I915_PRIORITY_INVALID);
247
248 if (node_signaled(node))
249 return;
250
251 stack.signaler = node;
252 list_add(&stack.dfs_link, &dfs);
253
254 /*
255 * Recursively bump all dependent priorities to match the new request.
256 *
257 * A naive approach would be to use recursion:
258 * static void update_priorities(struct i915_sched_node *node, prio) {
259 * list_for_each_entry(dep, &node->signalers_list, signal_link)
260 * update_priorities(dep->signal, prio)
261 * queue_request(node);
262 * }
263 * but that may have unlimited recursion depth and so runs a very
264 * real risk of overunning the kernel stack. Instead, we build
265 * a flat list of all dependencies starting with the current request.
266 * As we walk the list of dependencies, we add all of its dependencies
267 * to the end of the list (this may include an already visited
268 * request) and continue to walk onwards onto the new dependencies. The
269 * end result is a topological list of requests in reverse order, the
270 * last element in the list is the request we must execute first.
271 */
272 list_for_each_entry(dep, &dfs, dfs_link) {
273 struct i915_sched_node *node = dep->signaler;
274
275 /* If we are already flying, we know we have no signalers */
276 if (node_started(node))
277 continue;
278
279 /*
280 * Within an engine, there can be no cycle, but we may
281 * refer to the same dependency chain multiple times
282 * (redundant dependencies are not eliminated) and across
283 * engines.
284 */
285 list_for_each_entry(p, &node->signalers_list, signal_link) {
286 GEM_BUG_ON(p == dep); /* no cycles! */
287
288 if (node_signaled(p->signaler))
289 continue;
290
291 if (prio > READ_ONCE(p->signaler->attr.priority))
292 list_move_tail(&p->dfs_link, &dfs);
293 }
294 }
295
296 /*
297 * If we didn't need to bump any existing priorities, and we haven't
298 * yet submitted this request (i.e. there is no potential race with
299 * execlists_submit_request()), we can set our own priority and skip
300 * acquiring the engine locks.
301 */
302 if (node->attr.priority == I915_PRIORITY_INVALID) {
303 GEM_BUG_ON(!list_empty(&node->link));
304 node->attr = *attr;
305
306 if (stack.dfs_link.next == stack.dfs_link.prev)
307 return;
308
309 __list_del_entry(&stack.dfs_link);
310 }
311
312 memset(&cache, 0, sizeof(cache));
313 engine = node_to_request(node)->engine;
314 spin_lock(&engine->active.lock);
315
316 /* Fifo and depth-first replacement ensure our deps execute before us */
317 engine = sched_lock_engine(node, engine, &cache);
318 list_for_each_entry_safe_reverse(dep, p, &dfs, dfs_link) {
319 INIT_LIST_HEAD(&dep->dfs_link);
320
321 node = dep->signaler;
322 engine = sched_lock_engine(node, engine, &cache);
323 lockdep_assert_held(&engine->active.lock);
324
325 /* Recheck after acquiring the engine->timeline.lock */
326 if (prio <= node->attr.priority || node_signaled(node))
327 continue;
328
329 GEM_BUG_ON(node_to_request(node)->engine != engine);
330
331 WRITE_ONCE(node->attr.priority, prio);
332
333 /*
334 * Once the request is ready, it will be placed into the
335 * priority lists and then onto the HW runlist. Before the
336 * request is ready, it does not contribute to our preemption
337 * decisions and we can safely ignore it, as it will, and
338 * any preemption required, be dealt with upon submission.
339 * See engine->submit_request()
340 */
341 if (list_empty(&node->link))
342 continue;
343
344 if (i915_request_in_priority_queue(node_to_request(node))) {
345 if (!cache.priolist)
346 cache.priolist =
347 i915_sched_lookup_priolist(engine,
348 prio);
349 list_move_tail(&node->link, cache.priolist);
350 }
351
352 /* Defer (tasklet) submission until after all of our updates. */
353 kick_submission(engine, node_to_request(node), prio);
354 }
355
356 spin_unlock(&engine->active.lock);
357 }
358
i915_schedule(struct i915_request * rq,const struct i915_sched_attr * attr)359 void i915_schedule(struct i915_request *rq, const struct i915_sched_attr *attr)
360 {
361 spin_lock_irq(&schedule_lock);
362 __i915_schedule(&rq->sched, attr);
363 spin_unlock_irq(&schedule_lock);
364 }
365
__bump_priority(struct i915_sched_node * node,unsigned int bump)366 static void __bump_priority(struct i915_sched_node *node, unsigned int bump)
367 {
368 struct i915_sched_attr attr = node->attr;
369
370 if (attr.priority & bump)
371 return;
372
373 attr.priority |= bump;
374 __i915_schedule(node, &attr);
375 }
376
i915_schedule_bump_priority(struct i915_request * rq,unsigned int bump)377 void i915_schedule_bump_priority(struct i915_request *rq, unsigned int bump)
378 {
379 unsigned long flags;
380
381 GEM_BUG_ON(bump & ~I915_PRIORITY_MASK);
382 if (READ_ONCE(rq->sched.attr.priority) & bump)
383 return;
384
385 spin_lock_irqsave(&schedule_lock, flags);
386 __bump_priority(&rq->sched, bump);
387 spin_unlock_irqrestore(&schedule_lock, flags);
388 }
389
i915_sched_node_init(struct i915_sched_node * node)390 void i915_sched_node_init(struct i915_sched_node *node)
391 {
392 INIT_LIST_HEAD(&node->signalers_list);
393 INIT_LIST_HEAD(&node->waiters_list);
394 INIT_LIST_HEAD(&node->link);
395
396 i915_sched_node_reinit(node);
397 }
398
i915_sched_node_reinit(struct i915_sched_node * node)399 void i915_sched_node_reinit(struct i915_sched_node *node)
400 {
401 node->attr.priority = I915_PRIORITY_INVALID;
402 node->semaphores = 0;
403 node->flags = 0;
404
405 GEM_BUG_ON(!list_empty(&node->signalers_list));
406 GEM_BUG_ON(!list_empty(&node->waiters_list));
407 GEM_BUG_ON(!list_empty(&node->link));
408 }
409
410 static struct i915_dependency *
i915_dependency_alloc(void)411 i915_dependency_alloc(void)
412 {
413 return kmem_cache_alloc(global.slab_dependencies, GFP_KERNEL);
414 }
415
416 static void
i915_dependency_free(struct i915_dependency * dep)417 i915_dependency_free(struct i915_dependency *dep)
418 {
419 kmem_cache_free(global.slab_dependencies, dep);
420 }
421
__i915_sched_node_add_dependency(struct i915_sched_node * node,struct i915_sched_node * signal,struct i915_dependency * dep,unsigned long flags)422 bool __i915_sched_node_add_dependency(struct i915_sched_node *node,
423 struct i915_sched_node *signal,
424 struct i915_dependency *dep,
425 unsigned long flags)
426 {
427 bool ret = false;
428
429 spin_lock_irq(&schedule_lock);
430
431 if (!node_signaled(signal)) {
432 INIT_LIST_HEAD(&dep->dfs_link);
433 dep->signaler = signal;
434 dep->waiter = node;
435 dep->flags = flags;
436
437 /* All set, now publish. Beware the lockless walkers. */
438 list_add_rcu(&dep->signal_link, &node->signalers_list);
439 list_add_rcu(&dep->wait_link, &signal->waiters_list);
440
441 /* Propagate the chains */
442 node->flags |= signal->flags;
443 ret = true;
444 }
445
446 spin_unlock_irq(&schedule_lock);
447
448 return ret;
449 }
450
i915_sched_node_add_dependency(struct i915_sched_node * node,struct i915_sched_node * signal,unsigned long flags)451 int i915_sched_node_add_dependency(struct i915_sched_node *node,
452 struct i915_sched_node *signal,
453 unsigned long flags)
454 {
455 struct i915_dependency *dep;
456
457 dep = i915_dependency_alloc();
458 if (!dep)
459 return -ENOMEM;
460
461 local_bh_disable();
462
463 if (!__i915_sched_node_add_dependency(node, signal, dep,
464 flags | I915_DEPENDENCY_ALLOC))
465 i915_dependency_free(dep);
466
467 local_bh_enable(); /* kick submission tasklet */
468
469 return 0;
470 }
471
i915_sched_node_fini(struct i915_sched_node * node)472 void i915_sched_node_fini(struct i915_sched_node *node)
473 {
474 struct i915_dependency *dep, *tmp;
475
476 spin_lock_irq(&schedule_lock);
477
478 /*
479 * Everyone we depended upon (the fences we wait to be signaled)
480 * should retire before us and remove themselves from our list.
481 * However, retirement is run independently on each timeline and
482 * so we may be called out-of-order.
483 */
484 list_for_each_entry_safe(dep, tmp, &node->signalers_list, signal_link) {
485 GEM_BUG_ON(!list_empty(&dep->dfs_link));
486
487 list_del_rcu(&dep->wait_link);
488 if (dep->flags & I915_DEPENDENCY_ALLOC)
489 i915_dependency_free(dep);
490 }
491 INIT_LIST_HEAD(&node->signalers_list);
492
493 /* Remove ourselves from everyone who depends upon us */
494 list_for_each_entry_safe(dep, tmp, &node->waiters_list, wait_link) {
495 GEM_BUG_ON(dep->signaler != node);
496 GEM_BUG_ON(!list_empty(&dep->dfs_link));
497
498 list_del_rcu(&dep->signal_link);
499 if (dep->flags & I915_DEPENDENCY_ALLOC)
500 i915_dependency_free(dep);
501 }
502 INIT_LIST_HEAD(&node->waiters_list);
503
504 spin_unlock_irq(&schedule_lock);
505 }
506
i915_global_scheduler_shrink(void)507 static void i915_global_scheduler_shrink(void)
508 {
509 kmem_cache_shrink(global.slab_dependencies);
510 kmem_cache_shrink(global.slab_priorities);
511 }
512
i915_global_scheduler_exit(void)513 static void i915_global_scheduler_exit(void)
514 {
515 kmem_cache_destroy(global.slab_dependencies);
516 kmem_cache_destroy(global.slab_priorities);
517 }
518
519 static struct i915_global_scheduler global = { {
520 .shrink = i915_global_scheduler_shrink,
521 .exit = i915_global_scheduler_exit,
522 } };
523
i915_global_scheduler_init(void)524 int __init i915_global_scheduler_init(void)
525 {
526 global.slab_dependencies = KMEM_CACHE(i915_dependency,
527 SLAB_HWCACHE_ALIGN |
528 SLAB_TYPESAFE_BY_RCU);
529 if (!global.slab_dependencies)
530 return -ENOMEM;
531
532 global.slab_priorities = KMEM_CACHE(i915_priolist,
533 SLAB_HWCACHE_ALIGN);
534 if (!global.slab_priorities)
535 goto err_priorities;
536
537 i915_global_register(&global.base);
538 return 0;
539
540 err_priorities:
541 kmem_cache_destroy(global.slab_priorities);
542 return -ENOMEM;
543 }
544