1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (c) 2018, Intel Corporation. */
3
4 #include "ice.h"
5 #include "ice_base.h"
6 #include "ice_flow.h"
7 #include "ice_lib.h"
8 #include "ice_fltr.h"
9 #include "ice_dcb_lib.h"
10 #include "ice_devlink.h"
11
12 /**
13 * ice_vsi_type_str - maps VSI type enum to string equivalents
14 * @vsi_type: VSI type enum
15 */
ice_vsi_type_str(enum ice_vsi_type vsi_type)16 const char *ice_vsi_type_str(enum ice_vsi_type vsi_type)
17 {
18 switch (vsi_type) {
19 case ICE_VSI_PF:
20 return "ICE_VSI_PF";
21 case ICE_VSI_VF:
22 return "ICE_VSI_VF";
23 case ICE_VSI_CTRL:
24 return "ICE_VSI_CTRL";
25 case ICE_VSI_LB:
26 return "ICE_VSI_LB";
27 default:
28 return "unknown";
29 }
30 }
31
32 /**
33 * ice_vsi_ctrl_all_rx_rings - Start or stop a VSI's Rx rings
34 * @vsi: the VSI being configured
35 * @ena: start or stop the Rx rings
36 *
37 * First enable/disable all of the Rx rings, flush any remaining writes, and
38 * then verify that they have all been enabled/disabled successfully. This will
39 * let all of the register writes complete when enabling/disabling the Rx rings
40 * before waiting for the change in hardware to complete.
41 */
ice_vsi_ctrl_all_rx_rings(struct ice_vsi * vsi,bool ena)42 static int ice_vsi_ctrl_all_rx_rings(struct ice_vsi *vsi, bool ena)
43 {
44 int ret = 0;
45 u16 i;
46
47 for (i = 0; i < vsi->num_rxq; i++)
48 ice_vsi_ctrl_one_rx_ring(vsi, ena, i, false);
49
50 ice_flush(&vsi->back->hw);
51
52 for (i = 0; i < vsi->num_rxq; i++) {
53 ret = ice_vsi_wait_one_rx_ring(vsi, ena, i);
54 if (ret)
55 break;
56 }
57
58 return ret;
59 }
60
61 /**
62 * ice_vsi_alloc_arrays - Allocate queue and vector pointer arrays for the VSI
63 * @vsi: VSI pointer
64 *
65 * On error: returns error code (negative)
66 * On success: returns 0
67 */
ice_vsi_alloc_arrays(struct ice_vsi * vsi)68 static int ice_vsi_alloc_arrays(struct ice_vsi *vsi)
69 {
70 struct ice_pf *pf = vsi->back;
71 struct device *dev;
72
73 dev = ice_pf_to_dev(pf);
74
75 /* allocate memory for both Tx and Rx ring pointers */
76 vsi->tx_rings = devm_kcalloc(dev, vsi->alloc_txq,
77 sizeof(*vsi->tx_rings), GFP_KERNEL);
78 if (!vsi->tx_rings)
79 return -ENOMEM;
80
81 vsi->rx_rings = devm_kcalloc(dev, vsi->alloc_rxq,
82 sizeof(*vsi->rx_rings), GFP_KERNEL);
83 if (!vsi->rx_rings)
84 goto err_rings;
85
86 /* txq_map needs to have enough space to track both Tx (stack) rings
87 * and XDP rings; at this point vsi->num_xdp_txq might not be set,
88 * so use num_possible_cpus() as we want to always provide XDP ring
89 * per CPU, regardless of queue count settings from user that might
90 * have come from ethtool's set_channels() callback;
91 */
92 vsi->txq_map = devm_kcalloc(dev, (vsi->alloc_txq + num_possible_cpus()),
93 sizeof(*vsi->txq_map), GFP_KERNEL);
94
95 if (!vsi->txq_map)
96 goto err_txq_map;
97
98 vsi->rxq_map = devm_kcalloc(dev, vsi->alloc_rxq,
99 sizeof(*vsi->rxq_map), GFP_KERNEL);
100 if (!vsi->rxq_map)
101 goto err_rxq_map;
102
103 /* There is no need to allocate q_vectors for a loopback VSI. */
104 if (vsi->type == ICE_VSI_LB)
105 return 0;
106
107 /* allocate memory for q_vector pointers */
108 vsi->q_vectors = devm_kcalloc(dev, vsi->num_q_vectors,
109 sizeof(*vsi->q_vectors), GFP_KERNEL);
110 if (!vsi->q_vectors)
111 goto err_vectors;
112
113 return 0;
114
115 err_vectors:
116 devm_kfree(dev, vsi->rxq_map);
117 err_rxq_map:
118 devm_kfree(dev, vsi->txq_map);
119 err_txq_map:
120 devm_kfree(dev, vsi->rx_rings);
121 err_rings:
122 devm_kfree(dev, vsi->tx_rings);
123 return -ENOMEM;
124 }
125
126 /**
127 * ice_vsi_set_num_desc - Set number of descriptors for queues on this VSI
128 * @vsi: the VSI being configured
129 */
ice_vsi_set_num_desc(struct ice_vsi * vsi)130 static void ice_vsi_set_num_desc(struct ice_vsi *vsi)
131 {
132 switch (vsi->type) {
133 case ICE_VSI_PF:
134 case ICE_VSI_CTRL:
135 case ICE_VSI_LB:
136 /* a user could change the values of num_[tr]x_desc using
137 * ethtool -G so we should keep those values instead of
138 * overwriting them with the defaults.
139 */
140 if (!vsi->num_rx_desc)
141 vsi->num_rx_desc = ICE_DFLT_NUM_RX_DESC;
142 if (!vsi->num_tx_desc)
143 vsi->num_tx_desc = ICE_DFLT_NUM_TX_DESC;
144 break;
145 default:
146 dev_dbg(ice_pf_to_dev(vsi->back), "Not setting number of Tx/Rx descriptors for VSI type %d\n",
147 vsi->type);
148 break;
149 }
150 }
151
152 /**
153 * ice_vsi_set_num_qs - Set number of queues, descriptors and vectors for a VSI
154 * @vsi: the VSI being configured
155 * @vf_id: ID of the VF being configured
156 *
157 * Return 0 on success and a negative value on error
158 */
ice_vsi_set_num_qs(struct ice_vsi * vsi,u16 vf_id)159 static void ice_vsi_set_num_qs(struct ice_vsi *vsi, u16 vf_id)
160 {
161 struct ice_pf *pf = vsi->back;
162 struct ice_vf *vf = NULL;
163
164 if (vsi->type == ICE_VSI_VF)
165 vsi->vf_id = vf_id;
166
167 switch (vsi->type) {
168 case ICE_VSI_PF:
169 vsi->alloc_txq = min3(pf->num_lan_msix,
170 ice_get_avail_txq_count(pf),
171 (u16)num_online_cpus());
172 if (vsi->req_txq) {
173 vsi->alloc_txq = vsi->req_txq;
174 vsi->num_txq = vsi->req_txq;
175 }
176
177 pf->num_lan_tx = vsi->alloc_txq;
178
179 /* only 1 Rx queue unless RSS is enabled */
180 if (!test_bit(ICE_FLAG_RSS_ENA, pf->flags)) {
181 vsi->alloc_rxq = 1;
182 } else {
183 vsi->alloc_rxq = min3(pf->num_lan_msix,
184 ice_get_avail_rxq_count(pf),
185 (u16)num_online_cpus());
186 if (vsi->req_rxq) {
187 vsi->alloc_rxq = vsi->req_rxq;
188 vsi->num_rxq = vsi->req_rxq;
189 }
190 }
191
192 pf->num_lan_rx = vsi->alloc_rxq;
193
194 vsi->num_q_vectors = min_t(int, pf->num_lan_msix,
195 max_t(int, vsi->alloc_rxq,
196 vsi->alloc_txq));
197 break;
198 case ICE_VSI_VF:
199 vf = &pf->vf[vsi->vf_id];
200 if (vf->num_req_qs)
201 vf->num_vf_qs = vf->num_req_qs;
202 vsi->alloc_txq = vf->num_vf_qs;
203 vsi->alloc_rxq = vf->num_vf_qs;
204 /* pf->num_msix_per_vf includes (VF miscellaneous vector +
205 * data queue interrupts). Since vsi->num_q_vectors is number
206 * of queues vectors, subtract 1 (ICE_NONQ_VECS_VF) from the
207 * original vector count
208 */
209 vsi->num_q_vectors = pf->num_msix_per_vf - ICE_NONQ_VECS_VF;
210 break;
211 case ICE_VSI_CTRL:
212 vsi->alloc_txq = 1;
213 vsi->alloc_rxq = 1;
214 vsi->num_q_vectors = 1;
215 break;
216 case ICE_VSI_LB:
217 vsi->alloc_txq = 1;
218 vsi->alloc_rxq = 1;
219 break;
220 default:
221 dev_warn(ice_pf_to_dev(pf), "Unknown VSI type %d\n", vsi->type);
222 break;
223 }
224
225 ice_vsi_set_num_desc(vsi);
226 }
227
228 /**
229 * ice_get_free_slot - get the next non-NULL location index in array
230 * @array: array to search
231 * @size: size of the array
232 * @curr: last known occupied index to be used as a search hint
233 *
234 * void * is being used to keep the functionality generic. This lets us use this
235 * function on any array of pointers.
236 */
ice_get_free_slot(void * array,int size,int curr)237 static int ice_get_free_slot(void *array, int size, int curr)
238 {
239 int **tmp_array = (int **)array;
240 int next;
241
242 if (curr < (size - 1) && !tmp_array[curr + 1]) {
243 next = curr + 1;
244 } else {
245 int i = 0;
246
247 while ((i < size) && (tmp_array[i]))
248 i++;
249 if (i == size)
250 next = ICE_NO_VSI;
251 else
252 next = i;
253 }
254 return next;
255 }
256
257 /**
258 * ice_vsi_delete - delete a VSI from the switch
259 * @vsi: pointer to VSI being removed
260 */
ice_vsi_delete(struct ice_vsi * vsi)261 static void ice_vsi_delete(struct ice_vsi *vsi)
262 {
263 struct ice_pf *pf = vsi->back;
264 struct ice_vsi_ctx *ctxt;
265 enum ice_status status;
266
267 ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL);
268 if (!ctxt)
269 return;
270
271 if (vsi->type == ICE_VSI_VF)
272 ctxt->vf_num = vsi->vf_id;
273 ctxt->vsi_num = vsi->vsi_num;
274
275 memcpy(&ctxt->info, &vsi->info, sizeof(ctxt->info));
276
277 status = ice_free_vsi(&pf->hw, vsi->idx, ctxt, false, NULL);
278 if (status)
279 dev_err(ice_pf_to_dev(pf), "Failed to delete VSI %i in FW - error: %s\n",
280 vsi->vsi_num, ice_stat_str(status));
281
282 kfree(ctxt);
283 }
284
285 /**
286 * ice_vsi_free_arrays - De-allocate queue and vector pointer arrays for the VSI
287 * @vsi: pointer to VSI being cleared
288 */
ice_vsi_free_arrays(struct ice_vsi * vsi)289 static void ice_vsi_free_arrays(struct ice_vsi *vsi)
290 {
291 struct ice_pf *pf = vsi->back;
292 struct device *dev;
293
294 dev = ice_pf_to_dev(pf);
295
296 /* free the ring and vector containers */
297 if (vsi->q_vectors) {
298 devm_kfree(dev, vsi->q_vectors);
299 vsi->q_vectors = NULL;
300 }
301 if (vsi->tx_rings) {
302 devm_kfree(dev, vsi->tx_rings);
303 vsi->tx_rings = NULL;
304 }
305 if (vsi->rx_rings) {
306 devm_kfree(dev, vsi->rx_rings);
307 vsi->rx_rings = NULL;
308 }
309 if (vsi->txq_map) {
310 devm_kfree(dev, vsi->txq_map);
311 vsi->txq_map = NULL;
312 }
313 if (vsi->rxq_map) {
314 devm_kfree(dev, vsi->rxq_map);
315 vsi->rxq_map = NULL;
316 }
317 }
318
319 /**
320 * ice_vsi_clear - clean up and deallocate the provided VSI
321 * @vsi: pointer to VSI being cleared
322 *
323 * This deallocates the VSI's queue resources, removes it from the PF's
324 * VSI array if necessary, and deallocates the VSI
325 *
326 * Returns 0 on success, negative on failure
327 */
ice_vsi_clear(struct ice_vsi * vsi)328 static int ice_vsi_clear(struct ice_vsi *vsi)
329 {
330 struct ice_pf *pf = NULL;
331 struct device *dev;
332
333 if (!vsi)
334 return 0;
335
336 if (!vsi->back)
337 return -EINVAL;
338
339 pf = vsi->back;
340 dev = ice_pf_to_dev(pf);
341
342 if (!pf->vsi[vsi->idx] || pf->vsi[vsi->idx] != vsi) {
343 dev_dbg(dev, "vsi does not exist at pf->vsi[%d]\n", vsi->idx);
344 return -EINVAL;
345 }
346
347 mutex_lock(&pf->sw_mutex);
348 /* updates the PF for this cleared VSI */
349
350 pf->vsi[vsi->idx] = NULL;
351 if (vsi->idx < pf->next_vsi && vsi->type != ICE_VSI_CTRL)
352 pf->next_vsi = vsi->idx;
353
354 ice_vsi_free_arrays(vsi);
355 mutex_unlock(&pf->sw_mutex);
356 devm_kfree(dev, vsi);
357
358 return 0;
359 }
360
361 /**
362 * ice_msix_clean_ctrl_vsi - MSIX mode interrupt handler for ctrl VSI
363 * @irq: interrupt number
364 * @data: pointer to a q_vector
365 */
ice_msix_clean_ctrl_vsi(int __always_unused irq,void * data)366 static irqreturn_t ice_msix_clean_ctrl_vsi(int __always_unused irq, void *data)
367 {
368 struct ice_q_vector *q_vector = (struct ice_q_vector *)data;
369
370 if (!q_vector->tx.ring)
371 return IRQ_HANDLED;
372
373 #define FDIR_RX_DESC_CLEAN_BUDGET 64
374 ice_clean_rx_irq(q_vector->rx.ring, FDIR_RX_DESC_CLEAN_BUDGET);
375 ice_clean_ctrl_tx_irq(q_vector->tx.ring);
376
377 return IRQ_HANDLED;
378 }
379
380 /**
381 * ice_msix_clean_rings - MSIX mode Interrupt Handler
382 * @irq: interrupt number
383 * @data: pointer to a q_vector
384 */
ice_msix_clean_rings(int __always_unused irq,void * data)385 static irqreturn_t ice_msix_clean_rings(int __always_unused irq, void *data)
386 {
387 struct ice_q_vector *q_vector = (struct ice_q_vector *)data;
388
389 if (!q_vector->tx.ring && !q_vector->rx.ring)
390 return IRQ_HANDLED;
391
392 napi_schedule(&q_vector->napi);
393
394 return IRQ_HANDLED;
395 }
396
397 /**
398 * ice_vsi_alloc - Allocates the next available struct VSI in the PF
399 * @pf: board private structure
400 * @vsi_type: type of VSI
401 * @vf_id: ID of the VF being configured
402 *
403 * returns a pointer to a VSI on success, NULL on failure.
404 */
405 static struct ice_vsi *
ice_vsi_alloc(struct ice_pf * pf,enum ice_vsi_type vsi_type,u16 vf_id)406 ice_vsi_alloc(struct ice_pf *pf, enum ice_vsi_type vsi_type, u16 vf_id)
407 {
408 struct device *dev = ice_pf_to_dev(pf);
409 struct ice_vsi *vsi = NULL;
410
411 /* Need to protect the allocation of the VSIs at the PF level */
412 mutex_lock(&pf->sw_mutex);
413
414 /* If we have already allocated our maximum number of VSIs,
415 * pf->next_vsi will be ICE_NO_VSI. If not, pf->next_vsi index
416 * is available to be populated
417 */
418 if (pf->next_vsi == ICE_NO_VSI) {
419 dev_dbg(dev, "out of VSI slots!\n");
420 goto unlock_pf;
421 }
422
423 vsi = devm_kzalloc(dev, sizeof(*vsi), GFP_KERNEL);
424 if (!vsi)
425 goto unlock_pf;
426
427 vsi->type = vsi_type;
428 vsi->back = pf;
429 set_bit(__ICE_DOWN, vsi->state);
430
431 if (vsi_type == ICE_VSI_VF)
432 ice_vsi_set_num_qs(vsi, vf_id);
433 else
434 ice_vsi_set_num_qs(vsi, ICE_INVAL_VFID);
435
436 switch (vsi->type) {
437 case ICE_VSI_PF:
438 if (ice_vsi_alloc_arrays(vsi))
439 goto err_rings;
440
441 /* Setup default MSIX irq handler for VSI */
442 vsi->irq_handler = ice_msix_clean_rings;
443 break;
444 case ICE_VSI_CTRL:
445 if (ice_vsi_alloc_arrays(vsi))
446 goto err_rings;
447
448 /* Setup ctrl VSI MSIX irq handler */
449 vsi->irq_handler = ice_msix_clean_ctrl_vsi;
450 break;
451 case ICE_VSI_VF:
452 if (ice_vsi_alloc_arrays(vsi))
453 goto err_rings;
454 break;
455 case ICE_VSI_LB:
456 if (ice_vsi_alloc_arrays(vsi))
457 goto err_rings;
458 break;
459 default:
460 dev_warn(dev, "Unknown VSI type %d\n", vsi->type);
461 goto unlock_pf;
462 }
463
464 if (vsi->type == ICE_VSI_CTRL) {
465 /* Use the last VSI slot as the index for the control VSI */
466 vsi->idx = pf->num_alloc_vsi - 1;
467 pf->ctrl_vsi_idx = vsi->idx;
468 pf->vsi[vsi->idx] = vsi;
469 } else {
470 /* fill slot and make note of the index */
471 vsi->idx = pf->next_vsi;
472 pf->vsi[pf->next_vsi] = vsi;
473
474 /* prepare pf->next_vsi for next use */
475 pf->next_vsi = ice_get_free_slot(pf->vsi, pf->num_alloc_vsi,
476 pf->next_vsi);
477 }
478 goto unlock_pf;
479
480 err_rings:
481 devm_kfree(dev, vsi);
482 vsi = NULL;
483 unlock_pf:
484 mutex_unlock(&pf->sw_mutex);
485 return vsi;
486 }
487
488 /**
489 * ice_alloc_fd_res - Allocate FD resource for a VSI
490 * @vsi: pointer to the ice_vsi
491 *
492 * This allocates the FD resources
493 *
494 * Returns 0 on success, -EPERM on no-op or -EIO on failure
495 */
ice_alloc_fd_res(struct ice_vsi * vsi)496 static int ice_alloc_fd_res(struct ice_vsi *vsi)
497 {
498 struct ice_pf *pf = vsi->back;
499 u32 g_val, b_val;
500
501 /* Flow Director filters are only allocated/assigned to the PF VSI which
502 * passes the traffic. The CTRL VSI is only used to add/delete filters
503 * so we don't allocate resources to it
504 */
505
506 /* FD filters from guaranteed pool per VSI */
507 g_val = pf->hw.func_caps.fd_fltr_guar;
508 if (!g_val)
509 return -EPERM;
510
511 /* FD filters from best effort pool */
512 b_val = pf->hw.func_caps.fd_fltr_best_effort;
513 if (!b_val)
514 return -EPERM;
515
516 if (vsi->type != ICE_VSI_PF)
517 return -EPERM;
518
519 if (!test_bit(ICE_FLAG_FD_ENA, pf->flags))
520 return -EPERM;
521
522 vsi->num_gfltr = g_val / pf->num_alloc_vsi;
523
524 /* each VSI gets same "best_effort" quota */
525 vsi->num_bfltr = b_val;
526
527 return 0;
528 }
529
530 /**
531 * ice_vsi_get_qs - Assign queues from PF to VSI
532 * @vsi: the VSI to assign queues to
533 *
534 * Returns 0 on success and a negative value on error
535 */
ice_vsi_get_qs(struct ice_vsi * vsi)536 static int ice_vsi_get_qs(struct ice_vsi *vsi)
537 {
538 struct ice_pf *pf = vsi->back;
539 struct ice_qs_cfg tx_qs_cfg = {
540 .qs_mutex = &pf->avail_q_mutex,
541 .pf_map = pf->avail_txqs,
542 .pf_map_size = pf->max_pf_txqs,
543 .q_count = vsi->alloc_txq,
544 .scatter_count = ICE_MAX_SCATTER_TXQS,
545 .vsi_map = vsi->txq_map,
546 .vsi_map_offset = 0,
547 .mapping_mode = ICE_VSI_MAP_CONTIG
548 };
549 struct ice_qs_cfg rx_qs_cfg = {
550 .qs_mutex = &pf->avail_q_mutex,
551 .pf_map = pf->avail_rxqs,
552 .pf_map_size = pf->max_pf_rxqs,
553 .q_count = vsi->alloc_rxq,
554 .scatter_count = ICE_MAX_SCATTER_RXQS,
555 .vsi_map = vsi->rxq_map,
556 .vsi_map_offset = 0,
557 .mapping_mode = ICE_VSI_MAP_CONTIG
558 };
559 int ret;
560
561 ret = __ice_vsi_get_qs(&tx_qs_cfg);
562 if (ret)
563 return ret;
564 vsi->tx_mapping_mode = tx_qs_cfg.mapping_mode;
565
566 ret = __ice_vsi_get_qs(&rx_qs_cfg);
567 if (ret)
568 return ret;
569 vsi->rx_mapping_mode = rx_qs_cfg.mapping_mode;
570
571 return 0;
572 }
573
574 /**
575 * ice_vsi_put_qs - Release queues from VSI to PF
576 * @vsi: the VSI that is going to release queues
577 */
ice_vsi_put_qs(struct ice_vsi * vsi)578 static void ice_vsi_put_qs(struct ice_vsi *vsi)
579 {
580 struct ice_pf *pf = vsi->back;
581 int i;
582
583 mutex_lock(&pf->avail_q_mutex);
584
585 for (i = 0; i < vsi->alloc_txq; i++) {
586 clear_bit(vsi->txq_map[i], pf->avail_txqs);
587 vsi->txq_map[i] = ICE_INVAL_Q_INDEX;
588 }
589
590 for (i = 0; i < vsi->alloc_rxq; i++) {
591 clear_bit(vsi->rxq_map[i], pf->avail_rxqs);
592 vsi->rxq_map[i] = ICE_INVAL_Q_INDEX;
593 }
594
595 mutex_unlock(&pf->avail_q_mutex);
596 }
597
598 /**
599 * ice_is_safe_mode
600 * @pf: pointer to the PF struct
601 *
602 * returns true if driver is in safe mode, false otherwise
603 */
ice_is_safe_mode(struct ice_pf * pf)604 bool ice_is_safe_mode(struct ice_pf *pf)
605 {
606 return !test_bit(ICE_FLAG_ADV_FEATURES, pf->flags);
607 }
608
609 /**
610 * ice_vsi_clean_rss_flow_fld - Delete RSS configuration
611 * @vsi: the VSI being cleaned up
612 *
613 * This function deletes RSS input set for all flows that were configured
614 * for this VSI
615 */
ice_vsi_clean_rss_flow_fld(struct ice_vsi * vsi)616 static void ice_vsi_clean_rss_flow_fld(struct ice_vsi *vsi)
617 {
618 struct ice_pf *pf = vsi->back;
619 enum ice_status status;
620
621 if (ice_is_safe_mode(pf))
622 return;
623
624 status = ice_rem_vsi_rss_cfg(&pf->hw, vsi->idx);
625 if (status)
626 dev_dbg(ice_pf_to_dev(pf), "ice_rem_vsi_rss_cfg failed for vsi = %d, error = %s\n",
627 vsi->vsi_num, ice_stat_str(status));
628 }
629
630 /**
631 * ice_rss_clean - Delete RSS related VSI structures and configuration
632 * @vsi: the VSI being removed
633 */
ice_rss_clean(struct ice_vsi * vsi)634 static void ice_rss_clean(struct ice_vsi *vsi)
635 {
636 struct ice_pf *pf = vsi->back;
637 struct device *dev;
638
639 dev = ice_pf_to_dev(pf);
640
641 if (vsi->rss_hkey_user)
642 devm_kfree(dev, vsi->rss_hkey_user);
643 if (vsi->rss_lut_user)
644 devm_kfree(dev, vsi->rss_lut_user);
645
646 ice_vsi_clean_rss_flow_fld(vsi);
647 /* remove RSS replay list */
648 if (!ice_is_safe_mode(pf))
649 ice_rem_vsi_rss_list(&pf->hw, vsi->idx);
650 }
651
652 /**
653 * ice_vsi_set_rss_params - Setup RSS capabilities per VSI type
654 * @vsi: the VSI being configured
655 */
ice_vsi_set_rss_params(struct ice_vsi * vsi)656 static void ice_vsi_set_rss_params(struct ice_vsi *vsi)
657 {
658 struct ice_hw_common_caps *cap;
659 struct ice_pf *pf = vsi->back;
660
661 if (!test_bit(ICE_FLAG_RSS_ENA, pf->flags)) {
662 vsi->rss_size = 1;
663 return;
664 }
665
666 cap = &pf->hw.func_caps.common_cap;
667 switch (vsi->type) {
668 case ICE_VSI_PF:
669 /* PF VSI will inherit RSS instance of PF */
670 vsi->rss_table_size = (u16)cap->rss_table_size;
671 vsi->rss_size = min_t(u16, num_online_cpus(),
672 BIT(cap->rss_table_entry_width));
673 vsi->rss_lut_type = ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_PF;
674 break;
675 case ICE_VSI_VF:
676 /* VF VSI will get a small RSS table.
677 * For VSI_LUT, LUT size should be set to 64 bytes.
678 */
679 vsi->rss_table_size = ICE_VSIQF_HLUT_ARRAY_SIZE;
680 vsi->rss_size = ICE_MAX_RSS_QS_PER_VF;
681 vsi->rss_lut_type = ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_VSI;
682 break;
683 case ICE_VSI_LB:
684 break;
685 default:
686 dev_dbg(ice_pf_to_dev(pf), "Unsupported VSI type %s\n",
687 ice_vsi_type_str(vsi->type));
688 break;
689 }
690 }
691
692 /**
693 * ice_set_dflt_vsi_ctx - Set default VSI context before adding a VSI
694 * @ctxt: the VSI context being set
695 *
696 * This initializes a default VSI context for all sections except the Queues.
697 */
ice_set_dflt_vsi_ctx(struct ice_vsi_ctx * ctxt)698 static void ice_set_dflt_vsi_ctx(struct ice_vsi_ctx *ctxt)
699 {
700 u32 table = 0;
701
702 memset(&ctxt->info, 0, sizeof(ctxt->info));
703 /* VSI's should be allocated from shared pool */
704 ctxt->alloc_from_pool = true;
705 /* Src pruning enabled by default */
706 ctxt->info.sw_flags = ICE_AQ_VSI_SW_FLAG_SRC_PRUNE;
707 /* Traffic from VSI can be sent to LAN */
708 ctxt->info.sw_flags2 = ICE_AQ_VSI_SW_FLAG_LAN_ENA;
709 /* By default bits 3 and 4 in vlan_flags are 0's which results in legacy
710 * behavior (show VLAN, DEI, and UP) in descriptor. Also, allow all
711 * packets untagged/tagged.
712 */
713 ctxt->info.vlan_flags = ((ICE_AQ_VSI_VLAN_MODE_ALL &
714 ICE_AQ_VSI_VLAN_MODE_M) >>
715 ICE_AQ_VSI_VLAN_MODE_S);
716 /* Have 1:1 UP mapping for both ingress/egress tables */
717 table |= ICE_UP_TABLE_TRANSLATE(0, 0);
718 table |= ICE_UP_TABLE_TRANSLATE(1, 1);
719 table |= ICE_UP_TABLE_TRANSLATE(2, 2);
720 table |= ICE_UP_TABLE_TRANSLATE(3, 3);
721 table |= ICE_UP_TABLE_TRANSLATE(4, 4);
722 table |= ICE_UP_TABLE_TRANSLATE(5, 5);
723 table |= ICE_UP_TABLE_TRANSLATE(6, 6);
724 table |= ICE_UP_TABLE_TRANSLATE(7, 7);
725 ctxt->info.ingress_table = cpu_to_le32(table);
726 ctxt->info.egress_table = cpu_to_le32(table);
727 /* Have 1:1 UP mapping for outer to inner UP table */
728 ctxt->info.outer_up_table = cpu_to_le32(table);
729 /* No Outer tag support outer_tag_flags remains to zero */
730 }
731
732 /**
733 * ice_vsi_setup_q_map - Setup a VSI queue map
734 * @vsi: the VSI being configured
735 * @ctxt: VSI context structure
736 */
ice_vsi_setup_q_map(struct ice_vsi * vsi,struct ice_vsi_ctx * ctxt)737 static void ice_vsi_setup_q_map(struct ice_vsi *vsi, struct ice_vsi_ctx *ctxt)
738 {
739 u16 offset = 0, qmap = 0, tx_count = 0;
740 u16 qcount_tx = vsi->alloc_txq;
741 u16 qcount_rx = vsi->alloc_rxq;
742 u16 tx_numq_tc, rx_numq_tc;
743 u16 pow = 0, max_rss = 0;
744 bool ena_tc0 = false;
745 u8 netdev_tc = 0;
746 int i;
747
748 /* at least TC0 should be enabled by default */
749 if (vsi->tc_cfg.numtc) {
750 if (!(vsi->tc_cfg.ena_tc & BIT(0)))
751 ena_tc0 = true;
752 } else {
753 ena_tc0 = true;
754 }
755
756 if (ena_tc0) {
757 vsi->tc_cfg.numtc++;
758 vsi->tc_cfg.ena_tc |= 1;
759 }
760
761 rx_numq_tc = qcount_rx / vsi->tc_cfg.numtc;
762 if (!rx_numq_tc)
763 rx_numq_tc = 1;
764 tx_numq_tc = qcount_tx / vsi->tc_cfg.numtc;
765 if (!tx_numq_tc)
766 tx_numq_tc = 1;
767
768 /* TC mapping is a function of the number of Rx queues assigned to the
769 * VSI for each traffic class and the offset of these queues.
770 * The first 10 bits are for queue offset for TC0, next 4 bits for no:of
771 * queues allocated to TC0. No:of queues is a power-of-2.
772 *
773 * If TC is not enabled, the queue offset is set to 0, and allocate one
774 * queue, this way, traffic for the given TC will be sent to the default
775 * queue.
776 *
777 * Setup number and offset of Rx queues for all TCs for the VSI
778 */
779
780 qcount_rx = rx_numq_tc;
781
782 /* qcount will change if RSS is enabled */
783 if (test_bit(ICE_FLAG_RSS_ENA, vsi->back->flags)) {
784 if (vsi->type == ICE_VSI_PF || vsi->type == ICE_VSI_VF) {
785 if (vsi->type == ICE_VSI_PF)
786 max_rss = ICE_MAX_LG_RSS_QS;
787 else
788 max_rss = ICE_MAX_RSS_QS_PER_VF;
789 qcount_rx = min_t(u16, rx_numq_tc, max_rss);
790 if (!vsi->req_rxq)
791 qcount_rx = min_t(u16, qcount_rx,
792 vsi->rss_size);
793 }
794 }
795
796 /* find the (rounded up) power-of-2 of qcount */
797 pow = (u16)order_base_2(qcount_rx);
798
799 ice_for_each_traffic_class(i) {
800 if (!(vsi->tc_cfg.ena_tc & BIT(i))) {
801 /* TC is not enabled */
802 vsi->tc_cfg.tc_info[i].qoffset = 0;
803 vsi->tc_cfg.tc_info[i].qcount_rx = 1;
804 vsi->tc_cfg.tc_info[i].qcount_tx = 1;
805 vsi->tc_cfg.tc_info[i].netdev_tc = 0;
806 ctxt->info.tc_mapping[i] = 0;
807 continue;
808 }
809
810 /* TC is enabled */
811 vsi->tc_cfg.tc_info[i].qoffset = offset;
812 vsi->tc_cfg.tc_info[i].qcount_rx = qcount_rx;
813 vsi->tc_cfg.tc_info[i].qcount_tx = tx_numq_tc;
814 vsi->tc_cfg.tc_info[i].netdev_tc = netdev_tc++;
815
816 qmap = ((offset << ICE_AQ_VSI_TC_Q_OFFSET_S) &
817 ICE_AQ_VSI_TC_Q_OFFSET_M) |
818 ((pow << ICE_AQ_VSI_TC_Q_NUM_S) &
819 ICE_AQ_VSI_TC_Q_NUM_M);
820 offset += qcount_rx;
821 tx_count += tx_numq_tc;
822 ctxt->info.tc_mapping[i] = cpu_to_le16(qmap);
823 }
824
825 /* if offset is non-zero, means it is calculated correctly based on
826 * enabled TCs for a given VSI otherwise qcount_rx will always
827 * be correct and non-zero because it is based off - VSI's
828 * allocated Rx queues which is at least 1 (hence qcount_tx will be
829 * at least 1)
830 */
831 if (offset)
832 vsi->num_rxq = offset;
833 else
834 vsi->num_rxq = qcount_rx;
835
836 vsi->num_txq = tx_count;
837
838 if (vsi->type == ICE_VSI_VF && vsi->num_txq != vsi->num_rxq) {
839 dev_dbg(ice_pf_to_dev(vsi->back), "VF VSI should have same number of Tx and Rx queues. Hence making them equal\n");
840 /* since there is a chance that num_rxq could have been changed
841 * in the above for loop, make num_txq equal to num_rxq.
842 */
843 vsi->num_txq = vsi->num_rxq;
844 }
845
846 /* Rx queue mapping */
847 ctxt->info.mapping_flags |= cpu_to_le16(ICE_AQ_VSI_Q_MAP_CONTIG);
848 /* q_mapping buffer holds the info for the first queue allocated for
849 * this VSI in the PF space and also the number of queues associated
850 * with this VSI.
851 */
852 ctxt->info.q_mapping[0] = cpu_to_le16(vsi->rxq_map[0]);
853 ctxt->info.q_mapping[1] = cpu_to_le16(vsi->num_rxq);
854 }
855
856 /**
857 * ice_set_fd_vsi_ctx - Set FD VSI context before adding a VSI
858 * @ctxt: the VSI context being set
859 * @vsi: the VSI being configured
860 */
ice_set_fd_vsi_ctx(struct ice_vsi_ctx * ctxt,struct ice_vsi * vsi)861 static void ice_set_fd_vsi_ctx(struct ice_vsi_ctx *ctxt, struct ice_vsi *vsi)
862 {
863 u8 dflt_q_group, dflt_q_prio;
864 u16 dflt_q, report_q, val;
865
866 if (vsi->type != ICE_VSI_PF && vsi->type != ICE_VSI_CTRL)
867 return;
868
869 val = ICE_AQ_VSI_PROP_FLOW_DIR_VALID;
870 ctxt->info.valid_sections |= cpu_to_le16(val);
871 dflt_q = 0;
872 dflt_q_group = 0;
873 report_q = 0;
874 dflt_q_prio = 0;
875
876 /* enable flow director filtering/programming */
877 val = ICE_AQ_VSI_FD_ENABLE | ICE_AQ_VSI_FD_PROG_ENABLE;
878 ctxt->info.fd_options = cpu_to_le16(val);
879 /* max of allocated flow director filters */
880 ctxt->info.max_fd_fltr_dedicated =
881 cpu_to_le16(vsi->num_gfltr);
882 /* max of shared flow director filters any VSI may program */
883 ctxt->info.max_fd_fltr_shared =
884 cpu_to_le16(vsi->num_bfltr);
885 /* default queue index within the VSI of the default FD */
886 val = ((dflt_q << ICE_AQ_VSI_FD_DEF_Q_S) &
887 ICE_AQ_VSI_FD_DEF_Q_M);
888 /* target queue or queue group to the FD filter */
889 val |= ((dflt_q_group << ICE_AQ_VSI_FD_DEF_GRP_S) &
890 ICE_AQ_VSI_FD_DEF_GRP_M);
891 ctxt->info.fd_def_q = cpu_to_le16(val);
892 /* queue index on which FD filter completion is reported */
893 val = ((report_q << ICE_AQ_VSI_FD_REPORT_Q_S) &
894 ICE_AQ_VSI_FD_REPORT_Q_M);
895 /* priority of the default qindex action */
896 val |= ((dflt_q_prio << ICE_AQ_VSI_FD_DEF_PRIORITY_S) &
897 ICE_AQ_VSI_FD_DEF_PRIORITY_M);
898 ctxt->info.fd_report_opt = cpu_to_le16(val);
899 }
900
901 /**
902 * ice_set_rss_vsi_ctx - Set RSS VSI context before adding a VSI
903 * @ctxt: the VSI context being set
904 * @vsi: the VSI being configured
905 */
ice_set_rss_vsi_ctx(struct ice_vsi_ctx * ctxt,struct ice_vsi * vsi)906 static void ice_set_rss_vsi_ctx(struct ice_vsi_ctx *ctxt, struct ice_vsi *vsi)
907 {
908 u8 lut_type, hash_type;
909 struct device *dev;
910 struct ice_pf *pf;
911
912 pf = vsi->back;
913 dev = ice_pf_to_dev(pf);
914
915 switch (vsi->type) {
916 case ICE_VSI_PF:
917 /* PF VSI will inherit RSS instance of PF */
918 lut_type = ICE_AQ_VSI_Q_OPT_RSS_LUT_PF;
919 hash_type = ICE_AQ_VSI_Q_OPT_RSS_TPLZ;
920 break;
921 case ICE_VSI_VF:
922 /* VF VSI will gets a small RSS table which is a VSI LUT type */
923 lut_type = ICE_AQ_VSI_Q_OPT_RSS_LUT_VSI;
924 hash_type = ICE_AQ_VSI_Q_OPT_RSS_TPLZ;
925 break;
926 default:
927 dev_dbg(dev, "Unsupported VSI type %s\n",
928 ice_vsi_type_str(vsi->type));
929 return;
930 }
931
932 ctxt->info.q_opt_rss = ((lut_type << ICE_AQ_VSI_Q_OPT_RSS_LUT_S) &
933 ICE_AQ_VSI_Q_OPT_RSS_LUT_M) |
934 ((hash_type << ICE_AQ_VSI_Q_OPT_RSS_HASH_S) &
935 ICE_AQ_VSI_Q_OPT_RSS_HASH_M);
936 }
937
938 /**
939 * ice_vsi_init - Create and initialize a VSI
940 * @vsi: the VSI being configured
941 * @init_vsi: is this call creating a VSI
942 *
943 * This initializes a VSI context depending on the VSI type to be added and
944 * passes it down to the add_vsi aq command to create a new VSI.
945 */
ice_vsi_init(struct ice_vsi * vsi,bool init_vsi)946 static int ice_vsi_init(struct ice_vsi *vsi, bool init_vsi)
947 {
948 struct ice_pf *pf = vsi->back;
949 struct ice_hw *hw = &pf->hw;
950 struct ice_vsi_ctx *ctxt;
951 struct device *dev;
952 int ret = 0;
953
954 dev = ice_pf_to_dev(pf);
955 ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL);
956 if (!ctxt)
957 return -ENOMEM;
958
959 switch (vsi->type) {
960 case ICE_VSI_CTRL:
961 case ICE_VSI_LB:
962 case ICE_VSI_PF:
963 ctxt->flags = ICE_AQ_VSI_TYPE_PF;
964 break;
965 case ICE_VSI_VF:
966 ctxt->flags = ICE_AQ_VSI_TYPE_VF;
967 /* VF number here is the absolute VF number (0-255) */
968 ctxt->vf_num = vsi->vf_id + hw->func_caps.vf_base_id;
969 break;
970 default:
971 ret = -ENODEV;
972 goto out;
973 }
974
975 ice_set_dflt_vsi_ctx(ctxt);
976 if (test_bit(ICE_FLAG_FD_ENA, pf->flags))
977 ice_set_fd_vsi_ctx(ctxt, vsi);
978 /* if the switch is in VEB mode, allow VSI loopback */
979 if (vsi->vsw->bridge_mode == BRIDGE_MODE_VEB)
980 ctxt->info.sw_flags |= ICE_AQ_VSI_SW_FLAG_ALLOW_LB;
981
982 /* Set LUT type and HASH type if RSS is enabled */
983 if (test_bit(ICE_FLAG_RSS_ENA, pf->flags) &&
984 vsi->type != ICE_VSI_CTRL) {
985 ice_set_rss_vsi_ctx(ctxt, vsi);
986 /* if updating VSI context, make sure to set valid_section:
987 * to indicate which section of VSI context being updated
988 */
989 if (!init_vsi)
990 ctxt->info.valid_sections |=
991 cpu_to_le16(ICE_AQ_VSI_PROP_Q_OPT_VALID);
992 }
993
994 ctxt->info.sw_id = vsi->port_info->sw_id;
995 ice_vsi_setup_q_map(vsi, ctxt);
996 if (!init_vsi) /* means VSI being updated */
997 /* must to indicate which section of VSI context are
998 * being modified
999 */
1000 ctxt->info.valid_sections |=
1001 cpu_to_le16(ICE_AQ_VSI_PROP_RXQ_MAP_VALID);
1002
1003 /* enable/disable MAC and VLAN anti-spoof when spoofchk is on/off
1004 * respectively
1005 */
1006 if (vsi->type == ICE_VSI_VF) {
1007 ctxt->info.valid_sections |=
1008 cpu_to_le16(ICE_AQ_VSI_PROP_SECURITY_VALID);
1009 if (pf->vf[vsi->vf_id].spoofchk) {
1010 ctxt->info.sec_flags |=
1011 ICE_AQ_VSI_SEC_FLAG_ENA_MAC_ANTI_SPOOF |
1012 (ICE_AQ_VSI_SEC_TX_VLAN_PRUNE_ENA <<
1013 ICE_AQ_VSI_SEC_TX_PRUNE_ENA_S);
1014 } else {
1015 ctxt->info.sec_flags &=
1016 ~(ICE_AQ_VSI_SEC_FLAG_ENA_MAC_ANTI_SPOOF |
1017 (ICE_AQ_VSI_SEC_TX_VLAN_PRUNE_ENA <<
1018 ICE_AQ_VSI_SEC_TX_PRUNE_ENA_S));
1019 }
1020 }
1021
1022 /* Allow control frames out of main VSI */
1023 if (vsi->type == ICE_VSI_PF) {
1024 ctxt->info.sec_flags |= ICE_AQ_VSI_SEC_FLAG_ALLOW_DEST_OVRD;
1025 ctxt->info.valid_sections |=
1026 cpu_to_le16(ICE_AQ_VSI_PROP_SECURITY_VALID);
1027 }
1028
1029 if (init_vsi) {
1030 ret = ice_add_vsi(hw, vsi->idx, ctxt, NULL);
1031 if (ret) {
1032 dev_err(dev, "Add VSI failed, err %d\n", ret);
1033 ret = -EIO;
1034 goto out;
1035 }
1036 } else {
1037 ret = ice_update_vsi(hw, vsi->idx, ctxt, NULL);
1038 if (ret) {
1039 dev_err(dev, "Update VSI failed, err %d\n", ret);
1040 ret = -EIO;
1041 goto out;
1042 }
1043 }
1044
1045 /* keep context for update VSI operations */
1046 vsi->info = ctxt->info;
1047
1048 /* record VSI number returned */
1049 vsi->vsi_num = ctxt->vsi_num;
1050
1051 out:
1052 kfree(ctxt);
1053 return ret;
1054 }
1055
1056 /**
1057 * ice_free_res - free a block of resources
1058 * @res: pointer to the resource
1059 * @index: starting index previously returned by ice_get_res
1060 * @id: identifier to track owner
1061 *
1062 * Returns number of resources freed
1063 */
ice_free_res(struct ice_res_tracker * res,u16 index,u16 id)1064 int ice_free_res(struct ice_res_tracker *res, u16 index, u16 id)
1065 {
1066 int count = 0;
1067 int i;
1068
1069 if (!res || index >= res->end)
1070 return -EINVAL;
1071
1072 id |= ICE_RES_VALID_BIT;
1073 for (i = index; i < res->end && res->list[i] == id; i++) {
1074 res->list[i] = 0;
1075 count++;
1076 }
1077
1078 return count;
1079 }
1080
1081 /**
1082 * ice_search_res - Search the tracker for a block of resources
1083 * @res: pointer to the resource
1084 * @needed: size of the block needed
1085 * @id: identifier to track owner
1086 *
1087 * Returns the base item index of the block, or -ENOMEM for error
1088 */
ice_search_res(struct ice_res_tracker * res,u16 needed,u16 id)1089 static int ice_search_res(struct ice_res_tracker *res, u16 needed, u16 id)
1090 {
1091 u16 start = 0, end = 0;
1092
1093 if (needed > res->end)
1094 return -ENOMEM;
1095
1096 id |= ICE_RES_VALID_BIT;
1097
1098 do {
1099 /* skip already allocated entries */
1100 if (res->list[end++] & ICE_RES_VALID_BIT) {
1101 start = end;
1102 if ((start + needed) > res->end)
1103 break;
1104 }
1105
1106 if (end == (start + needed)) {
1107 int i = start;
1108
1109 /* there was enough, so assign it to the requestor */
1110 while (i != end)
1111 res->list[i++] = id;
1112
1113 return start;
1114 }
1115 } while (end < res->end);
1116
1117 return -ENOMEM;
1118 }
1119
1120 /**
1121 * ice_get_free_res_count - Get free count from a resource tracker
1122 * @res: Resource tracker instance
1123 */
ice_get_free_res_count(struct ice_res_tracker * res)1124 static u16 ice_get_free_res_count(struct ice_res_tracker *res)
1125 {
1126 u16 i, count = 0;
1127
1128 for (i = 0; i < res->end; i++)
1129 if (!(res->list[i] & ICE_RES_VALID_BIT))
1130 count++;
1131
1132 return count;
1133 }
1134
1135 /**
1136 * ice_get_res - get a block of resources
1137 * @pf: board private structure
1138 * @res: pointer to the resource
1139 * @needed: size of the block needed
1140 * @id: identifier to track owner
1141 *
1142 * Returns the base item index of the block, or negative for error
1143 */
1144 int
ice_get_res(struct ice_pf * pf,struct ice_res_tracker * res,u16 needed,u16 id)1145 ice_get_res(struct ice_pf *pf, struct ice_res_tracker *res, u16 needed, u16 id)
1146 {
1147 if (!res || !pf)
1148 return -EINVAL;
1149
1150 if (!needed || needed > res->num_entries || id >= ICE_RES_VALID_BIT) {
1151 dev_err(ice_pf_to_dev(pf), "param err: needed=%d, num_entries = %d id=0x%04x\n",
1152 needed, res->num_entries, id);
1153 return -EINVAL;
1154 }
1155
1156 return ice_search_res(res, needed, id);
1157 }
1158
1159 /**
1160 * ice_vsi_setup_vector_base - Set up the base vector for the given VSI
1161 * @vsi: ptr to the VSI
1162 *
1163 * This should only be called after ice_vsi_alloc() which allocates the
1164 * corresponding SW VSI structure and initializes num_queue_pairs for the
1165 * newly allocated VSI.
1166 *
1167 * Returns 0 on success or negative on failure
1168 */
ice_vsi_setup_vector_base(struct ice_vsi * vsi)1169 static int ice_vsi_setup_vector_base(struct ice_vsi *vsi)
1170 {
1171 struct ice_pf *pf = vsi->back;
1172 struct device *dev;
1173 u16 num_q_vectors;
1174 int base;
1175
1176 dev = ice_pf_to_dev(pf);
1177 /* SRIOV doesn't grab irq_tracker entries for each VSI */
1178 if (vsi->type == ICE_VSI_VF)
1179 return 0;
1180
1181 if (vsi->base_vector) {
1182 dev_dbg(dev, "VSI %d has non-zero base vector %d\n",
1183 vsi->vsi_num, vsi->base_vector);
1184 return -EEXIST;
1185 }
1186
1187 num_q_vectors = vsi->num_q_vectors;
1188 /* reserve slots from OS requested IRQs */
1189 base = ice_get_res(pf, pf->irq_tracker, num_q_vectors, vsi->idx);
1190
1191 if (base < 0) {
1192 dev_err(dev, "%d MSI-X interrupts available. %s %d failed to get %d MSI-X vectors\n",
1193 ice_get_free_res_count(pf->irq_tracker),
1194 ice_vsi_type_str(vsi->type), vsi->idx, num_q_vectors);
1195 return -ENOENT;
1196 }
1197 vsi->base_vector = (u16)base;
1198 pf->num_avail_sw_msix -= num_q_vectors;
1199
1200 return 0;
1201 }
1202
1203 /**
1204 * ice_vsi_clear_rings - Deallocates the Tx and Rx rings for VSI
1205 * @vsi: the VSI having rings deallocated
1206 */
ice_vsi_clear_rings(struct ice_vsi * vsi)1207 static void ice_vsi_clear_rings(struct ice_vsi *vsi)
1208 {
1209 int i;
1210
1211 /* Avoid stale references by clearing map from vector to ring */
1212 if (vsi->q_vectors) {
1213 ice_for_each_q_vector(vsi, i) {
1214 struct ice_q_vector *q_vector = vsi->q_vectors[i];
1215
1216 if (q_vector) {
1217 q_vector->tx.ring = NULL;
1218 q_vector->rx.ring = NULL;
1219 }
1220 }
1221 }
1222
1223 if (vsi->tx_rings) {
1224 for (i = 0; i < vsi->alloc_txq; i++) {
1225 if (vsi->tx_rings[i]) {
1226 kfree_rcu(vsi->tx_rings[i], rcu);
1227 WRITE_ONCE(vsi->tx_rings[i], NULL);
1228 }
1229 }
1230 }
1231 if (vsi->rx_rings) {
1232 for (i = 0; i < vsi->alloc_rxq; i++) {
1233 if (vsi->rx_rings[i]) {
1234 kfree_rcu(vsi->rx_rings[i], rcu);
1235 WRITE_ONCE(vsi->rx_rings[i], NULL);
1236 }
1237 }
1238 }
1239 }
1240
1241 /**
1242 * ice_vsi_alloc_rings - Allocates Tx and Rx rings for the VSI
1243 * @vsi: VSI which is having rings allocated
1244 */
ice_vsi_alloc_rings(struct ice_vsi * vsi)1245 static int ice_vsi_alloc_rings(struct ice_vsi *vsi)
1246 {
1247 struct ice_pf *pf = vsi->back;
1248 struct device *dev;
1249 u16 i;
1250
1251 dev = ice_pf_to_dev(pf);
1252 /* Allocate Tx rings */
1253 for (i = 0; i < vsi->alloc_txq; i++) {
1254 struct ice_ring *ring;
1255
1256 /* allocate with kzalloc(), free with kfree_rcu() */
1257 ring = kzalloc(sizeof(*ring), GFP_KERNEL);
1258
1259 if (!ring)
1260 goto err_out;
1261
1262 ring->q_index = i;
1263 ring->reg_idx = vsi->txq_map[i];
1264 ring->ring_active = false;
1265 ring->vsi = vsi;
1266 ring->dev = dev;
1267 ring->count = vsi->num_tx_desc;
1268 ring->txq_teid = ICE_INVAL_TEID;
1269 WRITE_ONCE(vsi->tx_rings[i], ring);
1270 }
1271
1272 /* Allocate Rx rings */
1273 for (i = 0; i < vsi->alloc_rxq; i++) {
1274 struct ice_ring *ring;
1275
1276 /* allocate with kzalloc(), free with kfree_rcu() */
1277 ring = kzalloc(sizeof(*ring), GFP_KERNEL);
1278 if (!ring)
1279 goto err_out;
1280
1281 ring->q_index = i;
1282 ring->reg_idx = vsi->rxq_map[i];
1283 ring->ring_active = false;
1284 ring->vsi = vsi;
1285 ring->netdev = vsi->netdev;
1286 ring->dev = dev;
1287 ring->count = vsi->num_rx_desc;
1288 WRITE_ONCE(vsi->rx_rings[i], ring);
1289 }
1290
1291 return 0;
1292
1293 err_out:
1294 ice_vsi_clear_rings(vsi);
1295 return -ENOMEM;
1296 }
1297
1298 /**
1299 * ice_vsi_manage_rss_lut - disable/enable RSS
1300 * @vsi: the VSI being changed
1301 * @ena: boolean value indicating if this is an enable or disable request
1302 *
1303 * In the event of disable request for RSS, this function will zero out RSS
1304 * LUT, while in the event of enable request for RSS, it will reconfigure RSS
1305 * LUT.
1306 */
ice_vsi_manage_rss_lut(struct ice_vsi * vsi,bool ena)1307 int ice_vsi_manage_rss_lut(struct ice_vsi *vsi, bool ena)
1308 {
1309 int err = 0;
1310 u8 *lut;
1311
1312 lut = kzalloc(vsi->rss_table_size, GFP_KERNEL);
1313 if (!lut)
1314 return -ENOMEM;
1315
1316 if (ena) {
1317 if (vsi->rss_lut_user)
1318 memcpy(lut, vsi->rss_lut_user, vsi->rss_table_size);
1319 else
1320 ice_fill_rss_lut(lut, vsi->rss_table_size,
1321 vsi->rss_size);
1322 }
1323
1324 err = ice_set_rss(vsi, NULL, lut, vsi->rss_table_size);
1325 kfree(lut);
1326 return err;
1327 }
1328
1329 /**
1330 * ice_vsi_cfg_rss_lut_key - Configure RSS params for a VSI
1331 * @vsi: VSI to be configured
1332 */
ice_vsi_cfg_rss_lut_key(struct ice_vsi * vsi)1333 static int ice_vsi_cfg_rss_lut_key(struct ice_vsi *vsi)
1334 {
1335 struct ice_aqc_get_set_rss_keys *key;
1336 struct ice_pf *pf = vsi->back;
1337 enum ice_status status;
1338 struct device *dev;
1339 int err = 0;
1340 u8 *lut;
1341
1342 dev = ice_pf_to_dev(pf);
1343 vsi->rss_size = min_t(u16, vsi->rss_size, vsi->num_rxq);
1344
1345 lut = kzalloc(vsi->rss_table_size, GFP_KERNEL);
1346 if (!lut)
1347 return -ENOMEM;
1348
1349 if (vsi->rss_lut_user)
1350 memcpy(lut, vsi->rss_lut_user, vsi->rss_table_size);
1351 else
1352 ice_fill_rss_lut(lut, vsi->rss_table_size, vsi->rss_size);
1353
1354 status = ice_aq_set_rss_lut(&pf->hw, vsi->idx, vsi->rss_lut_type, lut,
1355 vsi->rss_table_size);
1356
1357 if (status) {
1358 dev_err(dev, "set_rss_lut failed, error %s\n",
1359 ice_stat_str(status));
1360 err = -EIO;
1361 goto ice_vsi_cfg_rss_exit;
1362 }
1363
1364 key = kzalloc(sizeof(*key), GFP_KERNEL);
1365 if (!key) {
1366 err = -ENOMEM;
1367 goto ice_vsi_cfg_rss_exit;
1368 }
1369
1370 if (vsi->rss_hkey_user)
1371 memcpy(key,
1372 (struct ice_aqc_get_set_rss_keys *)vsi->rss_hkey_user,
1373 ICE_GET_SET_RSS_KEY_EXTEND_KEY_SIZE);
1374 else
1375 netdev_rss_key_fill((void *)key,
1376 ICE_GET_SET_RSS_KEY_EXTEND_KEY_SIZE);
1377
1378 status = ice_aq_set_rss_key(&pf->hw, vsi->idx, key);
1379
1380 if (status) {
1381 dev_err(dev, "set_rss_key failed, error %s\n",
1382 ice_stat_str(status));
1383 err = -EIO;
1384 }
1385
1386 kfree(key);
1387 ice_vsi_cfg_rss_exit:
1388 kfree(lut);
1389 return err;
1390 }
1391
1392 /**
1393 * ice_vsi_set_vf_rss_flow_fld - Sets VF VSI RSS input set for different flows
1394 * @vsi: VSI to be configured
1395 *
1396 * This function will only be called during the VF VSI setup. Upon successful
1397 * completion of package download, this function will configure default RSS
1398 * input sets for VF VSI.
1399 */
ice_vsi_set_vf_rss_flow_fld(struct ice_vsi * vsi)1400 static void ice_vsi_set_vf_rss_flow_fld(struct ice_vsi *vsi)
1401 {
1402 struct ice_pf *pf = vsi->back;
1403 enum ice_status status;
1404 struct device *dev;
1405
1406 dev = ice_pf_to_dev(pf);
1407 if (ice_is_safe_mode(pf)) {
1408 dev_dbg(dev, "Advanced RSS disabled. Package download failed, vsi num = %d\n",
1409 vsi->vsi_num);
1410 return;
1411 }
1412
1413 status = ice_add_avf_rss_cfg(&pf->hw, vsi->idx, ICE_DEFAULT_RSS_HENA);
1414 if (status)
1415 dev_dbg(dev, "ice_add_avf_rss_cfg failed for vsi = %d, error = %s\n",
1416 vsi->vsi_num, ice_stat_str(status));
1417 }
1418
1419 /**
1420 * ice_vsi_set_rss_flow_fld - Sets RSS input set for different flows
1421 * @vsi: VSI to be configured
1422 *
1423 * This function will only be called after successful download package call
1424 * during initialization of PF. Since the downloaded package will erase the
1425 * RSS section, this function will configure RSS input sets for different
1426 * flow types. The last profile added has the highest priority, therefore 2
1427 * tuple profiles (i.e. IPv4 src/dst) are added before 4 tuple profiles
1428 * (i.e. IPv4 src/dst TCP src/dst port).
1429 */
ice_vsi_set_rss_flow_fld(struct ice_vsi * vsi)1430 static void ice_vsi_set_rss_flow_fld(struct ice_vsi *vsi)
1431 {
1432 u16 vsi_handle = vsi->idx, vsi_num = vsi->vsi_num;
1433 struct ice_pf *pf = vsi->back;
1434 struct ice_hw *hw = &pf->hw;
1435 enum ice_status status;
1436 struct device *dev;
1437
1438 dev = ice_pf_to_dev(pf);
1439 if (ice_is_safe_mode(pf)) {
1440 dev_dbg(dev, "Advanced RSS disabled. Package download failed, vsi num = %d\n",
1441 vsi_num);
1442 return;
1443 }
1444 /* configure RSS for IPv4 with input set IP src/dst */
1445 status = ice_add_rss_cfg(hw, vsi_handle, ICE_FLOW_HASH_IPV4,
1446 ICE_FLOW_SEG_HDR_IPV4);
1447 if (status)
1448 dev_dbg(dev, "ice_add_rss_cfg failed for ipv4 flow, vsi = %d, error = %s\n",
1449 vsi_num, ice_stat_str(status));
1450
1451 /* configure RSS for IPv6 with input set IPv6 src/dst */
1452 status = ice_add_rss_cfg(hw, vsi_handle, ICE_FLOW_HASH_IPV6,
1453 ICE_FLOW_SEG_HDR_IPV6);
1454 if (status)
1455 dev_dbg(dev, "ice_add_rss_cfg failed for ipv6 flow, vsi = %d, error = %s\n",
1456 vsi_num, ice_stat_str(status));
1457
1458 /* configure RSS for tcp4 with input set IP src/dst, TCP src/dst */
1459 status = ice_add_rss_cfg(hw, vsi_handle, ICE_HASH_TCP_IPV4,
1460 ICE_FLOW_SEG_HDR_TCP | ICE_FLOW_SEG_HDR_IPV4);
1461 if (status)
1462 dev_dbg(dev, "ice_add_rss_cfg failed for tcp4 flow, vsi = %d, error = %s\n",
1463 vsi_num, ice_stat_str(status));
1464
1465 /* configure RSS for udp4 with input set IP src/dst, UDP src/dst */
1466 status = ice_add_rss_cfg(hw, vsi_handle, ICE_HASH_UDP_IPV4,
1467 ICE_FLOW_SEG_HDR_UDP | ICE_FLOW_SEG_HDR_IPV4);
1468 if (status)
1469 dev_dbg(dev, "ice_add_rss_cfg failed for udp4 flow, vsi = %d, error = %s\n",
1470 vsi_num, ice_stat_str(status));
1471
1472 /* configure RSS for sctp4 with input set IP src/dst */
1473 status = ice_add_rss_cfg(hw, vsi_handle, ICE_FLOW_HASH_IPV4,
1474 ICE_FLOW_SEG_HDR_SCTP | ICE_FLOW_SEG_HDR_IPV4);
1475 if (status)
1476 dev_dbg(dev, "ice_add_rss_cfg failed for sctp4 flow, vsi = %d, error = %s\n",
1477 vsi_num, ice_stat_str(status));
1478
1479 /* configure RSS for tcp6 with input set IPv6 src/dst, TCP src/dst */
1480 status = ice_add_rss_cfg(hw, vsi_handle, ICE_HASH_TCP_IPV6,
1481 ICE_FLOW_SEG_HDR_TCP | ICE_FLOW_SEG_HDR_IPV6);
1482 if (status)
1483 dev_dbg(dev, "ice_add_rss_cfg failed for tcp6 flow, vsi = %d, error = %s\n",
1484 vsi_num, ice_stat_str(status));
1485
1486 /* configure RSS for udp6 with input set IPv6 src/dst, UDP src/dst */
1487 status = ice_add_rss_cfg(hw, vsi_handle, ICE_HASH_UDP_IPV6,
1488 ICE_FLOW_SEG_HDR_UDP | ICE_FLOW_SEG_HDR_IPV6);
1489 if (status)
1490 dev_dbg(dev, "ice_add_rss_cfg failed for udp6 flow, vsi = %d, error = %s\n",
1491 vsi_num, ice_stat_str(status));
1492
1493 /* configure RSS for sctp6 with input set IPv6 src/dst */
1494 status = ice_add_rss_cfg(hw, vsi_handle, ICE_FLOW_HASH_IPV6,
1495 ICE_FLOW_SEG_HDR_SCTP | ICE_FLOW_SEG_HDR_IPV6);
1496 if (status)
1497 dev_dbg(dev, "ice_add_rss_cfg failed for sctp6 flow, vsi = %d, error = %s\n",
1498 vsi_num, ice_stat_str(status));
1499 }
1500
1501 /**
1502 * ice_pf_state_is_nominal - checks the PF for nominal state
1503 * @pf: pointer to PF to check
1504 *
1505 * Check the PF's state for a collection of bits that would indicate
1506 * the PF is in a state that would inhibit normal operation for
1507 * driver functionality.
1508 *
1509 * Returns true if PF is in a nominal state, false otherwise
1510 */
ice_pf_state_is_nominal(struct ice_pf * pf)1511 bool ice_pf_state_is_nominal(struct ice_pf *pf)
1512 {
1513 DECLARE_BITMAP(check_bits, __ICE_STATE_NBITS) = { 0 };
1514
1515 if (!pf)
1516 return false;
1517
1518 bitmap_set(check_bits, 0, __ICE_STATE_NOMINAL_CHECK_BITS);
1519 if (bitmap_intersects(pf->state, check_bits, __ICE_STATE_NBITS))
1520 return false;
1521
1522 return true;
1523 }
1524
1525 /**
1526 * ice_update_eth_stats - Update VSI-specific ethernet statistics counters
1527 * @vsi: the VSI to be updated
1528 */
ice_update_eth_stats(struct ice_vsi * vsi)1529 void ice_update_eth_stats(struct ice_vsi *vsi)
1530 {
1531 struct ice_eth_stats *prev_es, *cur_es;
1532 struct ice_hw *hw = &vsi->back->hw;
1533 u16 vsi_num = vsi->vsi_num; /* HW absolute index of a VSI */
1534
1535 prev_es = &vsi->eth_stats_prev;
1536 cur_es = &vsi->eth_stats;
1537
1538 ice_stat_update40(hw, GLV_GORCL(vsi_num), vsi->stat_offsets_loaded,
1539 &prev_es->rx_bytes, &cur_es->rx_bytes);
1540
1541 ice_stat_update40(hw, GLV_UPRCL(vsi_num), vsi->stat_offsets_loaded,
1542 &prev_es->rx_unicast, &cur_es->rx_unicast);
1543
1544 ice_stat_update40(hw, GLV_MPRCL(vsi_num), vsi->stat_offsets_loaded,
1545 &prev_es->rx_multicast, &cur_es->rx_multicast);
1546
1547 ice_stat_update40(hw, GLV_BPRCL(vsi_num), vsi->stat_offsets_loaded,
1548 &prev_es->rx_broadcast, &cur_es->rx_broadcast);
1549
1550 ice_stat_update32(hw, GLV_RDPC(vsi_num), vsi->stat_offsets_loaded,
1551 &prev_es->rx_discards, &cur_es->rx_discards);
1552
1553 ice_stat_update40(hw, GLV_GOTCL(vsi_num), vsi->stat_offsets_loaded,
1554 &prev_es->tx_bytes, &cur_es->tx_bytes);
1555
1556 ice_stat_update40(hw, GLV_UPTCL(vsi_num), vsi->stat_offsets_loaded,
1557 &prev_es->tx_unicast, &cur_es->tx_unicast);
1558
1559 ice_stat_update40(hw, GLV_MPTCL(vsi_num), vsi->stat_offsets_loaded,
1560 &prev_es->tx_multicast, &cur_es->tx_multicast);
1561
1562 ice_stat_update40(hw, GLV_BPTCL(vsi_num), vsi->stat_offsets_loaded,
1563 &prev_es->tx_broadcast, &cur_es->tx_broadcast);
1564
1565 ice_stat_update32(hw, GLV_TEPC(vsi_num), vsi->stat_offsets_loaded,
1566 &prev_es->tx_errors, &cur_es->tx_errors);
1567
1568 vsi->stat_offsets_loaded = true;
1569 }
1570
1571 /**
1572 * ice_vsi_add_vlan - Add VSI membership for given VLAN
1573 * @vsi: the VSI being configured
1574 * @vid: VLAN ID to be added
1575 * @action: filter action to be performed on match
1576 */
1577 int
ice_vsi_add_vlan(struct ice_vsi * vsi,u16 vid,enum ice_sw_fwd_act_type action)1578 ice_vsi_add_vlan(struct ice_vsi *vsi, u16 vid, enum ice_sw_fwd_act_type action)
1579 {
1580 struct ice_pf *pf = vsi->back;
1581 struct device *dev;
1582 int err = 0;
1583
1584 dev = ice_pf_to_dev(pf);
1585
1586 if (!ice_fltr_add_vlan(vsi, vid, action)) {
1587 vsi->num_vlan++;
1588 } else {
1589 err = -ENODEV;
1590 dev_err(dev, "Failure Adding VLAN %d on VSI %i\n", vid,
1591 vsi->vsi_num);
1592 }
1593
1594 return err;
1595 }
1596
1597 /**
1598 * ice_vsi_kill_vlan - Remove VSI membership for a given VLAN
1599 * @vsi: the VSI being configured
1600 * @vid: VLAN ID to be removed
1601 *
1602 * Returns 0 on success and negative on failure
1603 */
ice_vsi_kill_vlan(struct ice_vsi * vsi,u16 vid)1604 int ice_vsi_kill_vlan(struct ice_vsi *vsi, u16 vid)
1605 {
1606 struct ice_pf *pf = vsi->back;
1607 enum ice_status status;
1608 struct device *dev;
1609 int err = 0;
1610
1611 dev = ice_pf_to_dev(pf);
1612
1613 status = ice_fltr_remove_vlan(vsi, vid, ICE_FWD_TO_VSI);
1614 if (!status) {
1615 vsi->num_vlan--;
1616 } else if (status == ICE_ERR_DOES_NOT_EXIST) {
1617 dev_dbg(dev, "Failed to remove VLAN %d on VSI %i, it does not exist, status: %s\n",
1618 vid, vsi->vsi_num, ice_stat_str(status));
1619 } else {
1620 dev_err(dev, "Error removing VLAN %d on vsi %i error: %s\n",
1621 vid, vsi->vsi_num, ice_stat_str(status));
1622 err = -EIO;
1623 }
1624
1625 return err;
1626 }
1627
1628 /**
1629 * ice_vsi_cfg_frame_size - setup max frame size and Rx buffer length
1630 * @vsi: VSI
1631 */
ice_vsi_cfg_frame_size(struct ice_vsi * vsi)1632 void ice_vsi_cfg_frame_size(struct ice_vsi *vsi)
1633 {
1634 if (!vsi->netdev || test_bit(ICE_FLAG_LEGACY_RX, vsi->back->flags)) {
1635 vsi->max_frame = ICE_AQ_SET_MAC_FRAME_SIZE_MAX;
1636 vsi->rx_buf_len = ICE_RXBUF_2048;
1637 #if (PAGE_SIZE < 8192)
1638 } else if (!ICE_2K_TOO_SMALL_WITH_PADDING &&
1639 (vsi->netdev->mtu <= ETH_DATA_LEN)) {
1640 vsi->max_frame = ICE_RXBUF_1536 - NET_IP_ALIGN;
1641 vsi->rx_buf_len = ICE_RXBUF_1536 - NET_IP_ALIGN;
1642 #endif
1643 } else {
1644 vsi->max_frame = ICE_AQ_SET_MAC_FRAME_SIZE_MAX;
1645 #if (PAGE_SIZE < 8192)
1646 vsi->rx_buf_len = ICE_RXBUF_3072;
1647 #else
1648 vsi->rx_buf_len = ICE_RXBUF_2048;
1649 #endif
1650 }
1651 }
1652
1653 /**
1654 * ice_write_qrxflxp_cntxt - write/configure QRXFLXP_CNTXT register
1655 * @hw: HW pointer
1656 * @pf_q: index of the Rx queue in the PF's queue space
1657 * @rxdid: flexible descriptor RXDID
1658 * @prio: priority for the RXDID for this queue
1659 */
1660 void
ice_write_qrxflxp_cntxt(struct ice_hw * hw,u16 pf_q,u32 rxdid,u32 prio)1661 ice_write_qrxflxp_cntxt(struct ice_hw *hw, u16 pf_q, u32 rxdid, u32 prio)
1662 {
1663 int regval = rd32(hw, QRXFLXP_CNTXT(pf_q));
1664
1665 /* clear any previous values */
1666 regval &= ~(QRXFLXP_CNTXT_RXDID_IDX_M |
1667 QRXFLXP_CNTXT_RXDID_PRIO_M |
1668 QRXFLXP_CNTXT_TS_M);
1669
1670 regval |= (rxdid << QRXFLXP_CNTXT_RXDID_IDX_S) &
1671 QRXFLXP_CNTXT_RXDID_IDX_M;
1672
1673 regval |= (prio << QRXFLXP_CNTXT_RXDID_PRIO_S) &
1674 QRXFLXP_CNTXT_RXDID_PRIO_M;
1675
1676 wr32(hw, QRXFLXP_CNTXT(pf_q), regval);
1677 }
1678
1679 /**
1680 * ice_vsi_cfg_rxqs - Configure the VSI for Rx
1681 * @vsi: the VSI being configured
1682 *
1683 * Return 0 on success and a negative value on error
1684 * Configure the Rx VSI for operation.
1685 */
ice_vsi_cfg_rxqs(struct ice_vsi * vsi)1686 int ice_vsi_cfg_rxqs(struct ice_vsi *vsi)
1687 {
1688 u16 i;
1689
1690 if (vsi->type == ICE_VSI_VF)
1691 goto setup_rings;
1692
1693 ice_vsi_cfg_frame_size(vsi);
1694 setup_rings:
1695 /* set up individual rings */
1696 for (i = 0; i < vsi->num_rxq; i++) {
1697 int err;
1698
1699 err = ice_setup_rx_ctx(vsi->rx_rings[i]);
1700 if (err) {
1701 dev_err(ice_pf_to_dev(vsi->back), "ice_setup_rx_ctx failed for RxQ %d, err %d\n",
1702 i, err);
1703 return err;
1704 }
1705 }
1706
1707 return 0;
1708 }
1709
1710 /**
1711 * ice_vsi_cfg_txqs - Configure the VSI for Tx
1712 * @vsi: the VSI being configured
1713 * @rings: Tx ring array to be configured
1714 * @count: number of Tx ring array elements
1715 *
1716 * Return 0 on success and a negative value on error
1717 * Configure the Tx VSI for operation.
1718 */
1719 static int
ice_vsi_cfg_txqs(struct ice_vsi * vsi,struct ice_ring ** rings,u16 count)1720 ice_vsi_cfg_txqs(struct ice_vsi *vsi, struct ice_ring **rings, u16 count)
1721 {
1722 struct ice_aqc_add_tx_qgrp *qg_buf;
1723 u16 q_idx = 0;
1724 int err = 0;
1725
1726 qg_buf = kzalloc(struct_size(qg_buf, txqs, 1), GFP_KERNEL);
1727 if (!qg_buf)
1728 return -ENOMEM;
1729
1730 qg_buf->num_txqs = 1;
1731
1732 for (q_idx = 0; q_idx < count; q_idx++) {
1733 err = ice_vsi_cfg_txq(vsi, rings[q_idx], qg_buf);
1734 if (err)
1735 goto err_cfg_txqs;
1736 }
1737
1738 err_cfg_txqs:
1739 kfree(qg_buf);
1740 return err;
1741 }
1742
1743 /**
1744 * ice_vsi_cfg_lan_txqs - Configure the VSI for Tx
1745 * @vsi: the VSI being configured
1746 *
1747 * Return 0 on success and a negative value on error
1748 * Configure the Tx VSI for operation.
1749 */
ice_vsi_cfg_lan_txqs(struct ice_vsi * vsi)1750 int ice_vsi_cfg_lan_txqs(struct ice_vsi *vsi)
1751 {
1752 return ice_vsi_cfg_txqs(vsi, vsi->tx_rings, vsi->num_txq);
1753 }
1754
1755 /**
1756 * ice_vsi_cfg_xdp_txqs - Configure Tx queues dedicated for XDP in given VSI
1757 * @vsi: the VSI being configured
1758 *
1759 * Return 0 on success and a negative value on error
1760 * Configure the Tx queues dedicated for XDP in given VSI for operation.
1761 */
ice_vsi_cfg_xdp_txqs(struct ice_vsi * vsi)1762 int ice_vsi_cfg_xdp_txqs(struct ice_vsi *vsi)
1763 {
1764 int ret;
1765 int i;
1766
1767 ret = ice_vsi_cfg_txqs(vsi, vsi->xdp_rings, vsi->num_xdp_txq);
1768 if (ret)
1769 return ret;
1770
1771 for (i = 0; i < vsi->num_xdp_txq; i++)
1772 vsi->xdp_rings[i]->xsk_pool = ice_xsk_pool(vsi->xdp_rings[i]);
1773
1774 return ret;
1775 }
1776
1777 /**
1778 * ice_intrl_usec_to_reg - convert interrupt rate limit to register value
1779 * @intrl: interrupt rate limit in usecs
1780 * @gran: interrupt rate limit granularity in usecs
1781 *
1782 * This function converts a decimal interrupt rate limit in usecs to the format
1783 * expected by firmware.
1784 */
ice_intrl_usec_to_reg(u8 intrl,u8 gran)1785 u32 ice_intrl_usec_to_reg(u8 intrl, u8 gran)
1786 {
1787 u32 val = intrl / gran;
1788
1789 if (val)
1790 return val | GLINT_RATE_INTRL_ENA_M;
1791 return 0;
1792 }
1793
1794 /**
1795 * ice_vsi_cfg_msix - MSIX mode Interrupt Config in the HW
1796 * @vsi: the VSI being configured
1797 *
1798 * This configures MSIX mode interrupts for the PF VSI, and should not be used
1799 * for the VF VSI.
1800 */
ice_vsi_cfg_msix(struct ice_vsi * vsi)1801 void ice_vsi_cfg_msix(struct ice_vsi *vsi)
1802 {
1803 struct ice_pf *pf = vsi->back;
1804 struct ice_hw *hw = &pf->hw;
1805 u16 txq = 0, rxq = 0;
1806 int i, q;
1807
1808 for (i = 0; i < vsi->num_q_vectors; i++) {
1809 struct ice_q_vector *q_vector = vsi->q_vectors[i];
1810 u16 reg_idx = q_vector->reg_idx;
1811
1812 ice_cfg_itr(hw, q_vector);
1813
1814 wr32(hw, GLINT_RATE(reg_idx),
1815 ice_intrl_usec_to_reg(q_vector->intrl, hw->intrl_gran));
1816
1817 /* Both Transmit Queue Interrupt Cause Control register
1818 * and Receive Queue Interrupt Cause control register
1819 * expects MSIX_INDX field to be the vector index
1820 * within the function space and not the absolute
1821 * vector index across PF or across device.
1822 * For SR-IOV VF VSIs queue vector index always starts
1823 * with 1 since first vector index(0) is used for OICR
1824 * in VF space. Since VMDq and other PF VSIs are within
1825 * the PF function space, use the vector index that is
1826 * tracked for this PF.
1827 */
1828 for (q = 0; q < q_vector->num_ring_tx; q++) {
1829 ice_cfg_txq_interrupt(vsi, txq, reg_idx,
1830 q_vector->tx.itr_idx);
1831 txq++;
1832 }
1833
1834 for (q = 0; q < q_vector->num_ring_rx; q++) {
1835 ice_cfg_rxq_interrupt(vsi, rxq, reg_idx,
1836 q_vector->rx.itr_idx);
1837 rxq++;
1838 }
1839 }
1840 }
1841
1842 /**
1843 * ice_vsi_manage_vlan_insertion - Manage VLAN insertion for the VSI for Tx
1844 * @vsi: the VSI being changed
1845 */
ice_vsi_manage_vlan_insertion(struct ice_vsi * vsi)1846 int ice_vsi_manage_vlan_insertion(struct ice_vsi *vsi)
1847 {
1848 struct ice_hw *hw = &vsi->back->hw;
1849 struct ice_vsi_ctx *ctxt;
1850 enum ice_status status;
1851 int ret = 0;
1852
1853 ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL);
1854 if (!ctxt)
1855 return -ENOMEM;
1856
1857 /* Here we are configuring the VSI to let the driver add VLAN tags by
1858 * setting vlan_flags to ICE_AQ_VSI_VLAN_MODE_ALL. The actual VLAN tag
1859 * insertion happens in the Tx hot path, in ice_tx_map.
1860 */
1861 ctxt->info.vlan_flags = ICE_AQ_VSI_VLAN_MODE_ALL;
1862
1863 /* Preserve existing VLAN strip setting */
1864 ctxt->info.vlan_flags |= (vsi->info.vlan_flags &
1865 ICE_AQ_VSI_VLAN_EMOD_M);
1866
1867 ctxt->info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_VLAN_VALID);
1868
1869 status = ice_update_vsi(hw, vsi->idx, ctxt, NULL);
1870 if (status) {
1871 dev_err(ice_pf_to_dev(vsi->back), "update VSI for VLAN insert failed, err %s aq_err %s\n",
1872 ice_stat_str(status),
1873 ice_aq_str(hw->adminq.sq_last_status));
1874 ret = -EIO;
1875 goto out;
1876 }
1877
1878 vsi->info.vlan_flags = ctxt->info.vlan_flags;
1879 out:
1880 kfree(ctxt);
1881 return ret;
1882 }
1883
1884 /**
1885 * ice_vsi_manage_vlan_stripping - Manage VLAN stripping for the VSI for Rx
1886 * @vsi: the VSI being changed
1887 * @ena: boolean value indicating if this is a enable or disable request
1888 */
ice_vsi_manage_vlan_stripping(struct ice_vsi * vsi,bool ena)1889 int ice_vsi_manage_vlan_stripping(struct ice_vsi *vsi, bool ena)
1890 {
1891 struct ice_hw *hw = &vsi->back->hw;
1892 struct ice_vsi_ctx *ctxt;
1893 enum ice_status status;
1894 int ret = 0;
1895
1896 /* do not allow modifying VLAN stripping when a port VLAN is configured
1897 * on this VSI
1898 */
1899 if (vsi->info.pvid)
1900 return 0;
1901
1902 ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL);
1903 if (!ctxt)
1904 return -ENOMEM;
1905
1906 /* Here we are configuring what the VSI should do with the VLAN tag in
1907 * the Rx packet. We can either leave the tag in the packet or put it in
1908 * the Rx descriptor.
1909 */
1910 if (ena)
1911 /* Strip VLAN tag from Rx packet and put it in the desc */
1912 ctxt->info.vlan_flags = ICE_AQ_VSI_VLAN_EMOD_STR_BOTH;
1913 else
1914 /* Disable stripping. Leave tag in packet */
1915 ctxt->info.vlan_flags = ICE_AQ_VSI_VLAN_EMOD_NOTHING;
1916
1917 /* Allow all packets untagged/tagged */
1918 ctxt->info.vlan_flags |= ICE_AQ_VSI_VLAN_MODE_ALL;
1919
1920 ctxt->info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_VLAN_VALID);
1921
1922 status = ice_update_vsi(hw, vsi->idx, ctxt, NULL);
1923 if (status) {
1924 dev_err(ice_pf_to_dev(vsi->back), "update VSI for VLAN strip failed, ena = %d err %s aq_err %s\n",
1925 ena, ice_stat_str(status),
1926 ice_aq_str(hw->adminq.sq_last_status));
1927 ret = -EIO;
1928 goto out;
1929 }
1930
1931 vsi->info.vlan_flags = ctxt->info.vlan_flags;
1932 out:
1933 kfree(ctxt);
1934 return ret;
1935 }
1936
1937 /**
1938 * ice_vsi_start_all_rx_rings - start/enable all of a VSI's Rx rings
1939 * @vsi: the VSI whose rings are to be enabled
1940 *
1941 * Returns 0 on success and a negative value on error
1942 */
ice_vsi_start_all_rx_rings(struct ice_vsi * vsi)1943 int ice_vsi_start_all_rx_rings(struct ice_vsi *vsi)
1944 {
1945 return ice_vsi_ctrl_all_rx_rings(vsi, true);
1946 }
1947
1948 /**
1949 * ice_vsi_stop_all_rx_rings - stop/disable all of a VSI's Rx rings
1950 * @vsi: the VSI whose rings are to be disabled
1951 *
1952 * Returns 0 on success and a negative value on error
1953 */
ice_vsi_stop_all_rx_rings(struct ice_vsi * vsi)1954 int ice_vsi_stop_all_rx_rings(struct ice_vsi *vsi)
1955 {
1956 return ice_vsi_ctrl_all_rx_rings(vsi, false);
1957 }
1958
1959 /**
1960 * ice_vsi_stop_tx_rings - Disable Tx rings
1961 * @vsi: the VSI being configured
1962 * @rst_src: reset source
1963 * @rel_vmvf_num: Relative ID of VF/VM
1964 * @rings: Tx ring array to be stopped
1965 * @count: number of Tx ring array elements
1966 */
1967 static int
ice_vsi_stop_tx_rings(struct ice_vsi * vsi,enum ice_disq_rst_src rst_src,u16 rel_vmvf_num,struct ice_ring ** rings,u16 count)1968 ice_vsi_stop_tx_rings(struct ice_vsi *vsi, enum ice_disq_rst_src rst_src,
1969 u16 rel_vmvf_num, struct ice_ring **rings, u16 count)
1970 {
1971 u16 q_idx;
1972
1973 if (vsi->num_txq > ICE_LAN_TXQ_MAX_QDIS)
1974 return -EINVAL;
1975
1976 for (q_idx = 0; q_idx < count; q_idx++) {
1977 struct ice_txq_meta txq_meta = { };
1978 int status;
1979
1980 if (!rings || !rings[q_idx])
1981 return -EINVAL;
1982
1983 ice_fill_txq_meta(vsi, rings[q_idx], &txq_meta);
1984 status = ice_vsi_stop_tx_ring(vsi, rst_src, rel_vmvf_num,
1985 rings[q_idx], &txq_meta);
1986
1987 if (status)
1988 return status;
1989 }
1990
1991 return 0;
1992 }
1993
1994 /**
1995 * ice_vsi_stop_lan_tx_rings - Disable LAN Tx rings
1996 * @vsi: the VSI being configured
1997 * @rst_src: reset source
1998 * @rel_vmvf_num: Relative ID of VF/VM
1999 */
2000 int
ice_vsi_stop_lan_tx_rings(struct ice_vsi * vsi,enum ice_disq_rst_src rst_src,u16 rel_vmvf_num)2001 ice_vsi_stop_lan_tx_rings(struct ice_vsi *vsi, enum ice_disq_rst_src rst_src,
2002 u16 rel_vmvf_num)
2003 {
2004 return ice_vsi_stop_tx_rings(vsi, rst_src, rel_vmvf_num, vsi->tx_rings, vsi->num_txq);
2005 }
2006
2007 /**
2008 * ice_vsi_stop_xdp_tx_rings - Disable XDP Tx rings
2009 * @vsi: the VSI being configured
2010 */
ice_vsi_stop_xdp_tx_rings(struct ice_vsi * vsi)2011 int ice_vsi_stop_xdp_tx_rings(struct ice_vsi *vsi)
2012 {
2013 return ice_vsi_stop_tx_rings(vsi, ICE_NO_RESET, 0, vsi->xdp_rings, vsi->num_xdp_txq);
2014 }
2015
2016 /**
2017 * ice_vsi_is_vlan_pruning_ena - check if VLAN pruning is enabled or not
2018 * @vsi: VSI to check whether or not VLAN pruning is enabled.
2019 *
2020 * returns true if Rx VLAN pruning is enabled and false otherwise.
2021 */
ice_vsi_is_vlan_pruning_ena(struct ice_vsi * vsi)2022 bool ice_vsi_is_vlan_pruning_ena(struct ice_vsi *vsi)
2023 {
2024 if (!vsi)
2025 return false;
2026
2027 return (vsi->info.sw_flags2 & ICE_AQ_VSI_SW_FLAG_RX_VLAN_PRUNE_ENA);
2028 }
2029
2030 /**
2031 * ice_cfg_vlan_pruning - enable or disable VLAN pruning on the VSI
2032 * @vsi: VSI to enable or disable VLAN pruning on
2033 * @ena: set to true to enable VLAN pruning and false to disable it
2034 * @vlan_promisc: enable valid security flags if not in VLAN promiscuous mode
2035 *
2036 * returns 0 if VSI is updated, negative otherwise
2037 */
ice_cfg_vlan_pruning(struct ice_vsi * vsi,bool ena,bool vlan_promisc)2038 int ice_cfg_vlan_pruning(struct ice_vsi *vsi, bool ena, bool vlan_promisc)
2039 {
2040 struct ice_vsi_ctx *ctxt;
2041 struct ice_pf *pf;
2042 int status;
2043
2044 if (!vsi)
2045 return -EINVAL;
2046
2047 /* Don't enable VLAN pruning if the netdev is currently in promiscuous
2048 * mode. VLAN pruning will be enabled when the interface exits
2049 * promiscuous mode if any VLAN filters are active.
2050 */
2051 if (vsi->netdev && vsi->netdev->flags & IFF_PROMISC && ena)
2052 return 0;
2053
2054 pf = vsi->back;
2055 ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL);
2056 if (!ctxt)
2057 return -ENOMEM;
2058
2059 ctxt->info = vsi->info;
2060
2061 if (ena)
2062 ctxt->info.sw_flags2 |= ICE_AQ_VSI_SW_FLAG_RX_VLAN_PRUNE_ENA;
2063 else
2064 ctxt->info.sw_flags2 &= ~ICE_AQ_VSI_SW_FLAG_RX_VLAN_PRUNE_ENA;
2065
2066 if (!vlan_promisc)
2067 ctxt->info.valid_sections =
2068 cpu_to_le16(ICE_AQ_VSI_PROP_SW_VALID);
2069
2070 status = ice_update_vsi(&pf->hw, vsi->idx, ctxt, NULL);
2071 if (status) {
2072 netdev_err(vsi->netdev, "%sabling VLAN pruning on VSI handle: %d, VSI HW ID: %d failed, err = %s, aq_err = %s\n",
2073 ena ? "En" : "Dis", vsi->idx, vsi->vsi_num,
2074 ice_stat_str(status),
2075 ice_aq_str(pf->hw.adminq.sq_last_status));
2076 goto err_out;
2077 }
2078
2079 vsi->info.sw_flags2 = ctxt->info.sw_flags2;
2080
2081 kfree(ctxt);
2082 return 0;
2083
2084 err_out:
2085 kfree(ctxt);
2086 return -EIO;
2087 }
2088
ice_vsi_set_tc_cfg(struct ice_vsi * vsi)2089 static void ice_vsi_set_tc_cfg(struct ice_vsi *vsi)
2090 {
2091 struct ice_dcbx_cfg *cfg = &vsi->port_info->qos_cfg.local_dcbx_cfg;
2092
2093 vsi->tc_cfg.ena_tc = ice_dcb_get_ena_tc(cfg);
2094 vsi->tc_cfg.numtc = ice_dcb_get_num_tc(cfg);
2095 }
2096
2097 /**
2098 * ice_vsi_set_q_vectors_reg_idx - set the HW register index for all q_vectors
2099 * @vsi: VSI to set the q_vectors register index on
2100 */
2101 static int
ice_vsi_set_q_vectors_reg_idx(struct ice_vsi * vsi)2102 ice_vsi_set_q_vectors_reg_idx(struct ice_vsi *vsi)
2103 {
2104 u16 i;
2105
2106 if (!vsi || !vsi->q_vectors)
2107 return -EINVAL;
2108
2109 ice_for_each_q_vector(vsi, i) {
2110 struct ice_q_vector *q_vector = vsi->q_vectors[i];
2111
2112 if (!q_vector) {
2113 dev_err(ice_pf_to_dev(vsi->back), "Failed to set reg_idx on q_vector %d VSI %d\n",
2114 i, vsi->vsi_num);
2115 goto clear_reg_idx;
2116 }
2117
2118 if (vsi->type == ICE_VSI_VF) {
2119 struct ice_vf *vf = &vsi->back->vf[vsi->vf_id];
2120
2121 q_vector->reg_idx = ice_calc_vf_reg_idx(vf, q_vector);
2122 } else {
2123 q_vector->reg_idx =
2124 q_vector->v_idx + vsi->base_vector;
2125 }
2126 }
2127
2128 return 0;
2129
2130 clear_reg_idx:
2131 ice_for_each_q_vector(vsi, i) {
2132 struct ice_q_vector *q_vector = vsi->q_vectors[i];
2133
2134 if (q_vector)
2135 q_vector->reg_idx = 0;
2136 }
2137
2138 return -EINVAL;
2139 }
2140
2141 /**
2142 * ice_cfg_sw_lldp - Config switch rules for LLDP packet handling
2143 * @vsi: the VSI being configured
2144 * @tx: bool to determine Tx or Rx rule
2145 * @create: bool to determine create or remove Rule
2146 */
ice_cfg_sw_lldp(struct ice_vsi * vsi,bool tx,bool create)2147 void ice_cfg_sw_lldp(struct ice_vsi *vsi, bool tx, bool create)
2148 {
2149 enum ice_status (*eth_fltr)(struct ice_vsi *v, u16 type, u16 flag,
2150 enum ice_sw_fwd_act_type act);
2151 struct ice_pf *pf = vsi->back;
2152 enum ice_status status;
2153 struct device *dev;
2154
2155 dev = ice_pf_to_dev(pf);
2156 eth_fltr = create ? ice_fltr_add_eth : ice_fltr_remove_eth;
2157
2158 if (tx)
2159 status = eth_fltr(vsi, ETH_P_LLDP, ICE_FLTR_TX,
2160 ICE_DROP_PACKET);
2161 else
2162 status = eth_fltr(vsi, ETH_P_LLDP, ICE_FLTR_RX, ICE_FWD_TO_VSI);
2163
2164 if (status)
2165 dev_err(dev, "Fail %s %s LLDP rule on VSI %i error: %s\n",
2166 create ? "adding" : "removing", tx ? "TX" : "RX",
2167 vsi->vsi_num, ice_stat_str(status));
2168 }
2169
2170 /**
2171 * ice_vsi_setup - Set up a VSI by a given type
2172 * @pf: board private structure
2173 * @pi: pointer to the port_info instance
2174 * @vsi_type: VSI type
2175 * @vf_id: defines VF ID to which this VSI connects. This field is meant to be
2176 * used only for ICE_VSI_VF VSI type. For other VSI types, should
2177 * fill-in ICE_INVAL_VFID as input.
2178 *
2179 * This allocates the sw VSI structure and its queue resources.
2180 *
2181 * Returns pointer to the successfully allocated and configured VSI sw struct on
2182 * success, NULL on failure.
2183 */
2184 struct ice_vsi *
ice_vsi_setup(struct ice_pf * pf,struct ice_port_info * pi,enum ice_vsi_type vsi_type,u16 vf_id)2185 ice_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi,
2186 enum ice_vsi_type vsi_type, u16 vf_id)
2187 {
2188 u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 };
2189 struct device *dev = ice_pf_to_dev(pf);
2190 enum ice_status status;
2191 struct ice_vsi *vsi;
2192 int ret, i;
2193
2194 if (vsi_type == ICE_VSI_VF)
2195 vsi = ice_vsi_alloc(pf, vsi_type, vf_id);
2196 else
2197 vsi = ice_vsi_alloc(pf, vsi_type, ICE_INVAL_VFID);
2198
2199 if (!vsi) {
2200 dev_err(dev, "could not allocate VSI\n");
2201 return NULL;
2202 }
2203
2204 vsi->port_info = pi;
2205 vsi->vsw = pf->first_sw;
2206 if (vsi->type == ICE_VSI_PF)
2207 vsi->ethtype = ETH_P_PAUSE;
2208
2209 if (vsi->type == ICE_VSI_VF)
2210 vsi->vf_id = vf_id;
2211
2212 ice_alloc_fd_res(vsi);
2213
2214 if (ice_vsi_get_qs(vsi)) {
2215 dev_err(dev, "Failed to allocate queues. vsi->idx = %d\n",
2216 vsi->idx);
2217 goto unroll_vsi_alloc;
2218 }
2219
2220 /* set RSS capabilities */
2221 ice_vsi_set_rss_params(vsi);
2222
2223 /* set TC configuration */
2224 ice_vsi_set_tc_cfg(vsi);
2225
2226 /* create the VSI */
2227 ret = ice_vsi_init(vsi, true);
2228 if (ret)
2229 goto unroll_get_qs;
2230
2231 switch (vsi->type) {
2232 case ICE_VSI_CTRL:
2233 case ICE_VSI_PF:
2234 ret = ice_vsi_alloc_q_vectors(vsi);
2235 if (ret)
2236 goto unroll_vsi_init;
2237
2238 ret = ice_vsi_setup_vector_base(vsi);
2239 if (ret)
2240 goto unroll_alloc_q_vector;
2241
2242 ret = ice_vsi_set_q_vectors_reg_idx(vsi);
2243 if (ret)
2244 goto unroll_vector_base;
2245
2246 ret = ice_vsi_alloc_rings(vsi);
2247 if (ret)
2248 goto unroll_vector_base;
2249
2250 /* Always add VLAN ID 0 switch rule by default. This is needed
2251 * in order to allow all untagged and 0 tagged priority traffic
2252 * if Rx VLAN pruning is enabled. Also there are cases where we
2253 * don't get the call to add VLAN 0 via ice_vlan_rx_add_vid()
2254 * so this handles those cases (i.e. adding the PF to a bridge
2255 * without the 8021q module loaded).
2256 */
2257 ret = ice_vsi_add_vlan(vsi, 0, ICE_FWD_TO_VSI);
2258 if (ret)
2259 goto unroll_clear_rings;
2260
2261 ice_vsi_map_rings_to_vectors(vsi);
2262
2263 /* ICE_VSI_CTRL does not need RSS so skip RSS processing */
2264 if (vsi->type != ICE_VSI_CTRL)
2265 /* Do not exit if configuring RSS had an issue, at
2266 * least receive traffic on first queue. Hence no
2267 * need to capture return value
2268 */
2269 if (test_bit(ICE_FLAG_RSS_ENA, pf->flags)) {
2270 ice_vsi_cfg_rss_lut_key(vsi);
2271 ice_vsi_set_rss_flow_fld(vsi);
2272 }
2273 ice_init_arfs(vsi);
2274 break;
2275 case ICE_VSI_VF:
2276 /* VF driver will take care of creating netdev for this type and
2277 * map queues to vectors through Virtchnl, PF driver only
2278 * creates a VSI and corresponding structures for bookkeeping
2279 * purpose
2280 */
2281 ret = ice_vsi_alloc_q_vectors(vsi);
2282 if (ret)
2283 goto unroll_vsi_init;
2284
2285 ret = ice_vsi_alloc_rings(vsi);
2286 if (ret)
2287 goto unroll_alloc_q_vector;
2288
2289 ret = ice_vsi_set_q_vectors_reg_idx(vsi);
2290 if (ret)
2291 goto unroll_vector_base;
2292
2293 /* Do not exit if configuring RSS had an issue, at least
2294 * receive traffic on first queue. Hence no need to capture
2295 * return value
2296 */
2297 if (test_bit(ICE_FLAG_RSS_ENA, pf->flags)) {
2298 ice_vsi_cfg_rss_lut_key(vsi);
2299 ice_vsi_set_vf_rss_flow_fld(vsi);
2300 }
2301 break;
2302 case ICE_VSI_LB:
2303 ret = ice_vsi_alloc_rings(vsi);
2304 if (ret)
2305 goto unroll_vsi_init;
2306 break;
2307 default:
2308 /* clean up the resources and exit */
2309 goto unroll_vsi_init;
2310 }
2311
2312 /* configure VSI nodes based on number of queues and TC's */
2313 for (i = 0; i < vsi->tc_cfg.numtc; i++)
2314 max_txqs[i] = vsi->alloc_txq;
2315
2316 status = ice_cfg_vsi_lan(vsi->port_info, vsi->idx, vsi->tc_cfg.ena_tc,
2317 max_txqs);
2318 if (status) {
2319 dev_err(dev, "VSI %d failed lan queue config, error %s\n",
2320 vsi->vsi_num, ice_stat_str(status));
2321 goto unroll_clear_rings;
2322 }
2323
2324 /* Add switch rule to drop all Tx Flow Control Frames, of look up
2325 * type ETHERTYPE from VSIs, and restrict malicious VF from sending
2326 * out PAUSE or PFC frames. If enabled, FW can still send FC frames.
2327 * The rule is added once for PF VSI in order to create appropriate
2328 * recipe, since VSI/VSI list is ignored with drop action...
2329 * Also add rules to handle LLDP Tx packets. Tx LLDP packets need to
2330 * be dropped so that VFs cannot send LLDP packets to reconfig DCB
2331 * settings in the HW.
2332 */
2333 if (!ice_is_safe_mode(pf))
2334 if (vsi->type == ICE_VSI_PF) {
2335 ice_fltr_add_eth(vsi, ETH_P_PAUSE, ICE_FLTR_TX,
2336 ICE_DROP_PACKET);
2337 ice_cfg_sw_lldp(vsi, true, true);
2338 }
2339
2340 return vsi;
2341
2342 unroll_clear_rings:
2343 ice_vsi_clear_rings(vsi);
2344 unroll_vector_base:
2345 /* reclaim SW interrupts back to the common pool */
2346 ice_free_res(pf->irq_tracker, vsi->base_vector, vsi->idx);
2347 pf->num_avail_sw_msix += vsi->num_q_vectors;
2348 unroll_alloc_q_vector:
2349 ice_vsi_free_q_vectors(vsi);
2350 unroll_vsi_init:
2351 ice_vsi_delete(vsi);
2352 unroll_get_qs:
2353 ice_vsi_put_qs(vsi);
2354 unroll_vsi_alloc:
2355 ice_vsi_clear(vsi);
2356
2357 return NULL;
2358 }
2359
2360 /**
2361 * ice_vsi_release_msix - Clear the queue to Interrupt mapping in HW
2362 * @vsi: the VSI being cleaned up
2363 */
ice_vsi_release_msix(struct ice_vsi * vsi)2364 static void ice_vsi_release_msix(struct ice_vsi *vsi)
2365 {
2366 struct ice_pf *pf = vsi->back;
2367 struct ice_hw *hw = &pf->hw;
2368 u32 txq = 0;
2369 u32 rxq = 0;
2370 int i, q;
2371
2372 for (i = 0; i < vsi->num_q_vectors; i++) {
2373 struct ice_q_vector *q_vector = vsi->q_vectors[i];
2374 u16 reg_idx = q_vector->reg_idx;
2375
2376 wr32(hw, GLINT_ITR(ICE_IDX_ITR0, reg_idx), 0);
2377 wr32(hw, GLINT_ITR(ICE_IDX_ITR1, reg_idx), 0);
2378 for (q = 0; q < q_vector->num_ring_tx; q++) {
2379 wr32(hw, QINT_TQCTL(vsi->txq_map[txq]), 0);
2380 if (ice_is_xdp_ena_vsi(vsi)) {
2381 u32 xdp_txq = txq + vsi->num_xdp_txq;
2382
2383 wr32(hw, QINT_TQCTL(vsi->txq_map[xdp_txq]), 0);
2384 }
2385 txq++;
2386 }
2387
2388 for (q = 0; q < q_vector->num_ring_rx; q++) {
2389 wr32(hw, QINT_RQCTL(vsi->rxq_map[rxq]), 0);
2390 rxq++;
2391 }
2392 }
2393
2394 ice_flush(hw);
2395 }
2396
2397 /**
2398 * ice_vsi_free_irq - Free the IRQ association with the OS
2399 * @vsi: the VSI being configured
2400 */
ice_vsi_free_irq(struct ice_vsi * vsi)2401 void ice_vsi_free_irq(struct ice_vsi *vsi)
2402 {
2403 struct ice_pf *pf = vsi->back;
2404 int base = vsi->base_vector;
2405 int i;
2406
2407 if (!vsi->q_vectors || !vsi->irqs_ready)
2408 return;
2409
2410 ice_vsi_release_msix(vsi);
2411 if (vsi->type == ICE_VSI_VF)
2412 return;
2413
2414 vsi->irqs_ready = false;
2415 ice_for_each_q_vector(vsi, i) {
2416 u16 vector = i + base;
2417 int irq_num;
2418
2419 irq_num = pf->msix_entries[vector].vector;
2420
2421 /* free only the irqs that were actually requested */
2422 if (!vsi->q_vectors[i] ||
2423 !(vsi->q_vectors[i]->num_ring_tx ||
2424 vsi->q_vectors[i]->num_ring_rx))
2425 continue;
2426
2427 /* clear the affinity notifier in the IRQ descriptor */
2428 irq_set_affinity_notifier(irq_num, NULL);
2429
2430 /* clear the affinity_mask in the IRQ descriptor */
2431 irq_set_affinity_hint(irq_num, NULL);
2432 synchronize_irq(irq_num);
2433 devm_free_irq(ice_pf_to_dev(pf), irq_num, vsi->q_vectors[i]);
2434 }
2435 }
2436
2437 /**
2438 * ice_vsi_free_tx_rings - Free Tx resources for VSI queues
2439 * @vsi: the VSI having resources freed
2440 */
ice_vsi_free_tx_rings(struct ice_vsi * vsi)2441 void ice_vsi_free_tx_rings(struct ice_vsi *vsi)
2442 {
2443 int i;
2444
2445 if (!vsi->tx_rings)
2446 return;
2447
2448 ice_for_each_txq(vsi, i)
2449 if (vsi->tx_rings[i] && vsi->tx_rings[i]->desc)
2450 ice_free_tx_ring(vsi->tx_rings[i]);
2451 }
2452
2453 /**
2454 * ice_vsi_free_rx_rings - Free Rx resources for VSI queues
2455 * @vsi: the VSI having resources freed
2456 */
ice_vsi_free_rx_rings(struct ice_vsi * vsi)2457 void ice_vsi_free_rx_rings(struct ice_vsi *vsi)
2458 {
2459 int i;
2460
2461 if (!vsi->rx_rings)
2462 return;
2463
2464 ice_for_each_rxq(vsi, i)
2465 if (vsi->rx_rings[i] && vsi->rx_rings[i]->desc)
2466 ice_free_rx_ring(vsi->rx_rings[i]);
2467 }
2468
2469 /**
2470 * ice_vsi_close - Shut down a VSI
2471 * @vsi: the VSI being shut down
2472 */
ice_vsi_close(struct ice_vsi * vsi)2473 void ice_vsi_close(struct ice_vsi *vsi)
2474 {
2475 if (!test_and_set_bit(__ICE_DOWN, vsi->state))
2476 ice_down(vsi);
2477
2478 ice_vsi_free_irq(vsi);
2479 ice_vsi_free_tx_rings(vsi);
2480 ice_vsi_free_rx_rings(vsi);
2481 }
2482
2483 /**
2484 * ice_ena_vsi - resume a VSI
2485 * @vsi: the VSI being resume
2486 * @locked: is the rtnl_lock already held
2487 */
ice_ena_vsi(struct ice_vsi * vsi,bool locked)2488 int ice_ena_vsi(struct ice_vsi *vsi, bool locked)
2489 {
2490 int err = 0;
2491
2492 if (!test_bit(__ICE_NEEDS_RESTART, vsi->state))
2493 return 0;
2494
2495 clear_bit(__ICE_NEEDS_RESTART, vsi->state);
2496
2497 if (vsi->netdev && vsi->type == ICE_VSI_PF) {
2498 if (netif_running(vsi->netdev)) {
2499 if (!locked)
2500 rtnl_lock();
2501
2502 err = ice_open_internal(vsi->netdev);
2503
2504 if (!locked)
2505 rtnl_unlock();
2506 }
2507 } else if (vsi->type == ICE_VSI_CTRL) {
2508 err = ice_vsi_open_ctrl(vsi);
2509 }
2510
2511 return err;
2512 }
2513
2514 /**
2515 * ice_dis_vsi - pause a VSI
2516 * @vsi: the VSI being paused
2517 * @locked: is the rtnl_lock already held
2518 */
ice_dis_vsi(struct ice_vsi * vsi,bool locked)2519 void ice_dis_vsi(struct ice_vsi *vsi, bool locked)
2520 {
2521 if (test_bit(__ICE_DOWN, vsi->state))
2522 return;
2523
2524 set_bit(__ICE_NEEDS_RESTART, vsi->state);
2525
2526 if (vsi->type == ICE_VSI_PF && vsi->netdev) {
2527 if (netif_running(vsi->netdev)) {
2528 if (!locked)
2529 rtnl_lock();
2530
2531 ice_vsi_close(vsi);
2532
2533 if (!locked)
2534 rtnl_unlock();
2535 } else {
2536 ice_vsi_close(vsi);
2537 }
2538 } else if (vsi->type == ICE_VSI_CTRL) {
2539 ice_vsi_close(vsi);
2540 }
2541 }
2542
2543 /**
2544 * ice_vsi_dis_irq - Mask off queue interrupt generation on the VSI
2545 * @vsi: the VSI being un-configured
2546 */
ice_vsi_dis_irq(struct ice_vsi * vsi)2547 void ice_vsi_dis_irq(struct ice_vsi *vsi)
2548 {
2549 int base = vsi->base_vector;
2550 struct ice_pf *pf = vsi->back;
2551 struct ice_hw *hw = &pf->hw;
2552 u32 val;
2553 int i;
2554
2555 /* disable interrupt causation from each queue */
2556 if (vsi->tx_rings) {
2557 ice_for_each_txq(vsi, i) {
2558 if (vsi->tx_rings[i]) {
2559 u16 reg;
2560
2561 reg = vsi->tx_rings[i]->reg_idx;
2562 val = rd32(hw, QINT_TQCTL(reg));
2563 val &= ~QINT_TQCTL_CAUSE_ENA_M;
2564 wr32(hw, QINT_TQCTL(reg), val);
2565 }
2566 }
2567 }
2568
2569 if (vsi->rx_rings) {
2570 ice_for_each_rxq(vsi, i) {
2571 if (vsi->rx_rings[i]) {
2572 u16 reg;
2573
2574 reg = vsi->rx_rings[i]->reg_idx;
2575 val = rd32(hw, QINT_RQCTL(reg));
2576 val &= ~QINT_RQCTL_CAUSE_ENA_M;
2577 wr32(hw, QINT_RQCTL(reg), val);
2578 }
2579 }
2580 }
2581
2582 /* disable each interrupt */
2583 ice_for_each_q_vector(vsi, i) {
2584 if (!vsi->q_vectors[i])
2585 continue;
2586 wr32(hw, GLINT_DYN_CTL(vsi->q_vectors[i]->reg_idx), 0);
2587 }
2588
2589 ice_flush(hw);
2590
2591 /* don't call synchronize_irq() for VF's from the host */
2592 if (vsi->type == ICE_VSI_VF)
2593 return;
2594
2595 ice_for_each_q_vector(vsi, i)
2596 synchronize_irq(pf->msix_entries[i + base].vector);
2597 }
2598
2599 /**
2600 * ice_napi_del - Remove NAPI handler for the VSI
2601 * @vsi: VSI for which NAPI handler is to be removed
2602 */
ice_napi_del(struct ice_vsi * vsi)2603 void ice_napi_del(struct ice_vsi *vsi)
2604 {
2605 int v_idx;
2606
2607 if (!vsi->netdev)
2608 return;
2609
2610 ice_for_each_q_vector(vsi, v_idx)
2611 netif_napi_del(&vsi->q_vectors[v_idx]->napi);
2612 }
2613
2614 /**
2615 * ice_vsi_release - Delete a VSI and free its resources
2616 * @vsi: the VSI being removed
2617 *
2618 * Returns 0 on success or < 0 on error
2619 */
ice_vsi_release(struct ice_vsi * vsi)2620 int ice_vsi_release(struct ice_vsi *vsi)
2621 {
2622 struct ice_pf *pf;
2623
2624 if (!vsi->back)
2625 return -ENODEV;
2626 pf = vsi->back;
2627
2628 /* do not unregister while driver is in the reset recovery pending
2629 * state. Since reset/rebuild happens through PF service task workqueue,
2630 * it's not a good idea to unregister netdev that is associated to the
2631 * PF that is running the work queue items currently. This is done to
2632 * avoid check_flush_dependency() warning on this wq
2633 */
2634 if (vsi->netdev && !ice_is_reset_in_progress(pf->state)) {
2635 unregister_netdev(vsi->netdev);
2636 ice_devlink_destroy_port(vsi);
2637 }
2638
2639 if (test_bit(ICE_FLAG_RSS_ENA, pf->flags))
2640 ice_rss_clean(vsi);
2641
2642 /* Disable VSI and free resources */
2643 if (vsi->type != ICE_VSI_LB)
2644 ice_vsi_dis_irq(vsi);
2645 ice_vsi_close(vsi);
2646
2647 /* SR-IOV determines needed MSIX resources all at once instead of per
2648 * VSI since when VFs are spawned we know how many VFs there are and how
2649 * many interrupts each VF needs. SR-IOV MSIX resources are also
2650 * cleared in the same manner.
2651 */
2652 if (vsi->type != ICE_VSI_VF) {
2653 /* reclaim SW interrupts back to the common pool */
2654 ice_free_res(pf->irq_tracker, vsi->base_vector, vsi->idx);
2655 pf->num_avail_sw_msix += vsi->num_q_vectors;
2656 }
2657
2658 if (!ice_is_safe_mode(pf)) {
2659 if (vsi->type == ICE_VSI_PF) {
2660 ice_fltr_remove_eth(vsi, ETH_P_PAUSE, ICE_FLTR_TX,
2661 ICE_DROP_PACKET);
2662 ice_cfg_sw_lldp(vsi, true, false);
2663 /* The Rx rule will only exist to remove if the LLDP FW
2664 * engine is currently stopped
2665 */
2666 if (!test_bit(ICE_FLAG_FW_LLDP_AGENT, pf->flags))
2667 ice_cfg_sw_lldp(vsi, false, false);
2668 }
2669 }
2670
2671 if (ice_is_vsi_dflt_vsi(pf->first_sw, vsi))
2672 ice_clear_dflt_vsi(pf->first_sw);
2673 ice_fltr_remove_all(vsi);
2674 ice_rm_vsi_lan_cfg(vsi->port_info, vsi->idx);
2675 ice_vsi_delete(vsi);
2676 ice_vsi_free_q_vectors(vsi);
2677
2678 /* make sure unregister_netdev() was called by checking __ICE_DOWN */
2679 if (vsi->netdev && test_bit(__ICE_DOWN, vsi->state)) {
2680 free_netdev(vsi->netdev);
2681 vsi->netdev = NULL;
2682 }
2683
2684 ice_vsi_clear_rings(vsi);
2685
2686 ice_vsi_put_qs(vsi);
2687
2688 /* retain SW VSI data structure since it is needed to unregister and
2689 * free VSI netdev when PF is not in reset recovery pending state,\
2690 * for ex: during rmmod.
2691 */
2692 if (!ice_is_reset_in_progress(pf->state))
2693 ice_vsi_clear(vsi);
2694
2695 return 0;
2696 }
2697
2698 /**
2699 * ice_vsi_rebuild_update_coalesce_intrl - set interrupt rate limit for a q_vector
2700 * @q_vector: pointer to q_vector which is being updated
2701 * @stored_intrl_setting: original INTRL setting
2702 *
2703 * Set coalesce param in q_vector and update these parameters in HW.
2704 */
2705 static void
ice_vsi_rebuild_update_coalesce_intrl(struct ice_q_vector * q_vector,u16 stored_intrl_setting)2706 ice_vsi_rebuild_update_coalesce_intrl(struct ice_q_vector *q_vector,
2707 u16 stored_intrl_setting)
2708 {
2709 struct ice_hw *hw = &q_vector->vsi->back->hw;
2710
2711 q_vector->intrl = stored_intrl_setting;
2712 wr32(hw, GLINT_RATE(q_vector->reg_idx),
2713 ice_intrl_usec_to_reg(q_vector->intrl, hw->intrl_gran));
2714 }
2715
2716 /**
2717 * ice_vsi_rebuild_update_coalesce_itr - set coalesce for a q_vector
2718 * @q_vector: pointer to q_vector which is being updated
2719 * @rc: pointer to ring container
2720 * @stored_itr_setting: original ITR setting
2721 *
2722 * Set coalesce param in q_vector and update these parameters in HW.
2723 */
2724 static void
ice_vsi_rebuild_update_coalesce_itr(struct ice_q_vector * q_vector,struct ice_ring_container * rc,u16 stored_itr_setting)2725 ice_vsi_rebuild_update_coalesce_itr(struct ice_q_vector *q_vector,
2726 struct ice_ring_container *rc,
2727 u16 stored_itr_setting)
2728 {
2729 struct ice_hw *hw = &q_vector->vsi->back->hw;
2730
2731 rc->itr_setting = stored_itr_setting;
2732
2733 /* dynamic ITR values will be updated during Tx/Rx */
2734 if (!ITR_IS_DYNAMIC(rc->itr_setting))
2735 wr32(hw, GLINT_ITR(rc->itr_idx, q_vector->reg_idx),
2736 ITR_REG_ALIGN(rc->itr_setting) >> ICE_ITR_GRAN_S);
2737 }
2738
2739 /**
2740 * ice_vsi_rebuild_get_coalesce - get coalesce from all q_vectors
2741 * @vsi: VSI connected with q_vectors
2742 * @coalesce: array of struct with stored coalesce
2743 *
2744 * Returns array size.
2745 */
2746 static int
ice_vsi_rebuild_get_coalesce(struct ice_vsi * vsi,struct ice_coalesce_stored * coalesce)2747 ice_vsi_rebuild_get_coalesce(struct ice_vsi *vsi,
2748 struct ice_coalesce_stored *coalesce)
2749 {
2750 int i;
2751
2752 ice_for_each_q_vector(vsi, i) {
2753 struct ice_q_vector *q_vector = vsi->q_vectors[i];
2754
2755 coalesce[i].itr_tx = q_vector->tx.itr_setting;
2756 coalesce[i].itr_rx = q_vector->rx.itr_setting;
2757 coalesce[i].intrl = q_vector->intrl;
2758
2759 if (i < vsi->num_txq)
2760 coalesce[i].tx_valid = true;
2761 if (i < vsi->num_rxq)
2762 coalesce[i].rx_valid = true;
2763 }
2764
2765 return vsi->num_q_vectors;
2766 }
2767
2768 /**
2769 * ice_vsi_rebuild_set_coalesce - set coalesce from earlier saved arrays
2770 * @vsi: VSI connected with q_vectors
2771 * @coalesce: pointer to array of struct with stored coalesce
2772 * @size: size of coalesce array
2773 *
2774 * Before this function, ice_vsi_rebuild_get_coalesce should be called to save
2775 * ITR params in arrays. If size is 0 or coalesce wasn't stored set coalesce
2776 * to default value.
2777 */
2778 static void
ice_vsi_rebuild_set_coalesce(struct ice_vsi * vsi,struct ice_coalesce_stored * coalesce,int size)2779 ice_vsi_rebuild_set_coalesce(struct ice_vsi *vsi,
2780 struct ice_coalesce_stored *coalesce, int size)
2781 {
2782 int i;
2783
2784 if ((size && !coalesce) || !vsi)
2785 return;
2786
2787 /* There are a couple of cases that have to be handled here:
2788 * 1. The case where the number of queue vectors stays the same, but
2789 * the number of Tx or Rx rings changes (the first for loop)
2790 * 2. The case where the number of queue vectors increased (the
2791 * second for loop)
2792 */
2793 for (i = 0; i < size && i < vsi->num_q_vectors; i++) {
2794 /* There are 2 cases to handle here and they are the same for
2795 * both Tx and Rx:
2796 * if the entry was valid previously (coalesce[i].[tr]x_valid
2797 * and the loop variable is less than the number of rings
2798 * allocated, then write the previous values
2799 *
2800 * if the entry was not valid previously, but the number of
2801 * rings is less than are allocated (this means the number of
2802 * rings increased from previously), then write out the
2803 * values in the first element
2804 */
2805 if (i < vsi->alloc_rxq && coalesce[i].rx_valid)
2806 ice_vsi_rebuild_update_coalesce_itr(vsi->q_vectors[i],
2807 &vsi->q_vectors[i]->rx,
2808 coalesce[i].itr_rx);
2809 else if (i < vsi->alloc_rxq)
2810 ice_vsi_rebuild_update_coalesce_itr(vsi->q_vectors[i],
2811 &vsi->q_vectors[i]->rx,
2812 coalesce[0].itr_rx);
2813
2814 if (i < vsi->alloc_txq && coalesce[i].tx_valid)
2815 ice_vsi_rebuild_update_coalesce_itr(vsi->q_vectors[i],
2816 &vsi->q_vectors[i]->tx,
2817 coalesce[i].itr_tx);
2818 else if (i < vsi->alloc_txq)
2819 ice_vsi_rebuild_update_coalesce_itr(vsi->q_vectors[i],
2820 &vsi->q_vectors[i]->tx,
2821 coalesce[0].itr_tx);
2822
2823 ice_vsi_rebuild_update_coalesce_intrl(vsi->q_vectors[i],
2824 coalesce[i].intrl);
2825 }
2826
2827 /* the number of queue vectors increased so write whatever is in
2828 * the first element
2829 */
2830 for (; i < vsi->num_q_vectors; i++) {
2831 ice_vsi_rebuild_update_coalesce_itr(vsi->q_vectors[i],
2832 &vsi->q_vectors[i]->tx,
2833 coalesce[0].itr_tx);
2834 ice_vsi_rebuild_update_coalesce_itr(vsi->q_vectors[i],
2835 &vsi->q_vectors[i]->rx,
2836 coalesce[0].itr_rx);
2837 ice_vsi_rebuild_update_coalesce_intrl(vsi->q_vectors[i],
2838 coalesce[0].intrl);
2839 }
2840 }
2841
2842 /**
2843 * ice_vsi_rebuild - Rebuild VSI after reset
2844 * @vsi: VSI to be rebuild
2845 * @init_vsi: is this an initialization or a reconfigure of the VSI
2846 *
2847 * Returns 0 on success and negative value on failure
2848 */
ice_vsi_rebuild(struct ice_vsi * vsi,bool init_vsi)2849 int ice_vsi_rebuild(struct ice_vsi *vsi, bool init_vsi)
2850 {
2851 u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 };
2852 struct ice_coalesce_stored *coalesce;
2853 int prev_num_q_vectors = 0;
2854 struct ice_vf *vf = NULL;
2855 enum ice_status status;
2856 struct ice_pf *pf;
2857 int ret, i;
2858
2859 if (!vsi)
2860 return -EINVAL;
2861
2862 pf = vsi->back;
2863 if (vsi->type == ICE_VSI_VF)
2864 vf = &pf->vf[vsi->vf_id];
2865
2866 coalesce = kcalloc(vsi->num_q_vectors,
2867 sizeof(struct ice_coalesce_stored), GFP_KERNEL);
2868 if (!coalesce)
2869 return -ENOMEM;
2870
2871 prev_num_q_vectors = ice_vsi_rebuild_get_coalesce(vsi, coalesce);
2872
2873 ice_rm_vsi_lan_cfg(vsi->port_info, vsi->idx);
2874 ice_vsi_free_q_vectors(vsi);
2875
2876 /* SR-IOV determines needed MSIX resources all at once instead of per
2877 * VSI since when VFs are spawned we know how many VFs there are and how
2878 * many interrupts each VF needs. SR-IOV MSIX resources are also
2879 * cleared in the same manner.
2880 */
2881 if (vsi->type != ICE_VSI_VF) {
2882 /* reclaim SW interrupts back to the common pool */
2883 ice_free_res(pf->irq_tracker, vsi->base_vector, vsi->idx);
2884 pf->num_avail_sw_msix += vsi->num_q_vectors;
2885 vsi->base_vector = 0;
2886 }
2887
2888 if (ice_is_xdp_ena_vsi(vsi))
2889 /* return value check can be skipped here, it always returns
2890 * 0 if reset is in progress
2891 */
2892 ice_destroy_xdp_rings(vsi);
2893 ice_vsi_put_qs(vsi);
2894 ice_vsi_clear_rings(vsi);
2895 ice_vsi_free_arrays(vsi);
2896 if (vsi->type == ICE_VSI_VF)
2897 ice_vsi_set_num_qs(vsi, vf->vf_id);
2898 else
2899 ice_vsi_set_num_qs(vsi, ICE_INVAL_VFID);
2900
2901 ret = ice_vsi_alloc_arrays(vsi);
2902 if (ret < 0)
2903 goto err_vsi;
2904
2905 ice_vsi_get_qs(vsi);
2906
2907 ice_alloc_fd_res(vsi);
2908 ice_vsi_set_tc_cfg(vsi);
2909
2910 /* Initialize VSI struct elements and create VSI in FW */
2911 ret = ice_vsi_init(vsi, init_vsi);
2912 if (ret < 0)
2913 goto err_vsi;
2914
2915 switch (vsi->type) {
2916 case ICE_VSI_CTRL:
2917 case ICE_VSI_PF:
2918 ret = ice_vsi_alloc_q_vectors(vsi);
2919 if (ret)
2920 goto err_rings;
2921
2922 ret = ice_vsi_setup_vector_base(vsi);
2923 if (ret)
2924 goto err_vectors;
2925
2926 ret = ice_vsi_set_q_vectors_reg_idx(vsi);
2927 if (ret)
2928 goto err_vectors;
2929
2930 ret = ice_vsi_alloc_rings(vsi);
2931 if (ret)
2932 goto err_vectors;
2933
2934 ice_vsi_map_rings_to_vectors(vsi);
2935 if (ice_is_xdp_ena_vsi(vsi)) {
2936 vsi->num_xdp_txq = vsi->alloc_rxq;
2937 ret = ice_prepare_xdp_rings(vsi, vsi->xdp_prog);
2938 if (ret)
2939 goto err_vectors;
2940 }
2941 /* ICE_VSI_CTRL does not need RSS so skip RSS processing */
2942 if (vsi->type != ICE_VSI_CTRL)
2943 /* Do not exit if configuring RSS had an issue, at
2944 * least receive traffic on first queue. Hence no
2945 * need to capture return value
2946 */
2947 if (test_bit(ICE_FLAG_RSS_ENA, pf->flags))
2948 ice_vsi_cfg_rss_lut_key(vsi);
2949 break;
2950 case ICE_VSI_VF:
2951 ret = ice_vsi_alloc_q_vectors(vsi);
2952 if (ret)
2953 goto err_rings;
2954
2955 ret = ice_vsi_set_q_vectors_reg_idx(vsi);
2956 if (ret)
2957 goto err_vectors;
2958
2959 ret = ice_vsi_alloc_rings(vsi);
2960 if (ret)
2961 goto err_vectors;
2962
2963 break;
2964 default:
2965 break;
2966 }
2967
2968 /* configure VSI nodes based on number of queues and TC's */
2969 for (i = 0; i < vsi->tc_cfg.numtc; i++) {
2970 max_txqs[i] = vsi->alloc_txq;
2971
2972 if (ice_is_xdp_ena_vsi(vsi))
2973 max_txqs[i] += vsi->num_xdp_txq;
2974 }
2975
2976 status = ice_cfg_vsi_lan(vsi->port_info, vsi->idx, vsi->tc_cfg.ena_tc,
2977 max_txqs);
2978 if (status) {
2979 dev_err(ice_pf_to_dev(pf), "VSI %d failed lan queue config, error %s\n",
2980 vsi->vsi_num, ice_stat_str(status));
2981 if (init_vsi) {
2982 ret = -EIO;
2983 goto err_vectors;
2984 } else {
2985 return ice_schedule_reset(pf, ICE_RESET_PFR);
2986 }
2987 }
2988 ice_vsi_rebuild_set_coalesce(vsi, coalesce, prev_num_q_vectors);
2989 kfree(coalesce);
2990
2991 return 0;
2992
2993 err_vectors:
2994 ice_vsi_free_q_vectors(vsi);
2995 err_rings:
2996 if (vsi->netdev) {
2997 vsi->current_netdev_flags = 0;
2998 unregister_netdev(vsi->netdev);
2999 free_netdev(vsi->netdev);
3000 vsi->netdev = NULL;
3001 }
3002 err_vsi:
3003 ice_vsi_clear(vsi);
3004 set_bit(__ICE_RESET_FAILED, pf->state);
3005 kfree(coalesce);
3006 return ret;
3007 }
3008
3009 /**
3010 * ice_is_reset_in_progress - check for a reset in progress
3011 * @state: PF state field
3012 */
ice_is_reset_in_progress(unsigned long * state)3013 bool ice_is_reset_in_progress(unsigned long *state)
3014 {
3015 return test_bit(__ICE_RESET_OICR_RECV, state) ||
3016 test_bit(__ICE_PFR_REQ, state) ||
3017 test_bit(__ICE_CORER_REQ, state) ||
3018 test_bit(__ICE_GLOBR_REQ, state);
3019 }
3020
3021 #ifdef CONFIG_DCB
3022 /**
3023 * ice_vsi_update_q_map - update our copy of the VSI info with new queue map
3024 * @vsi: VSI being configured
3025 * @ctx: the context buffer returned from AQ VSI update command
3026 */
ice_vsi_update_q_map(struct ice_vsi * vsi,struct ice_vsi_ctx * ctx)3027 static void ice_vsi_update_q_map(struct ice_vsi *vsi, struct ice_vsi_ctx *ctx)
3028 {
3029 vsi->info.mapping_flags = ctx->info.mapping_flags;
3030 memcpy(&vsi->info.q_mapping, &ctx->info.q_mapping,
3031 sizeof(vsi->info.q_mapping));
3032 memcpy(&vsi->info.tc_mapping, ctx->info.tc_mapping,
3033 sizeof(vsi->info.tc_mapping));
3034 }
3035
3036 /**
3037 * ice_vsi_cfg_tc - Configure VSI Tx Sched for given TC map
3038 * @vsi: VSI to be configured
3039 * @ena_tc: TC bitmap
3040 *
3041 * VSI queues expected to be quiesced before calling this function
3042 */
ice_vsi_cfg_tc(struct ice_vsi * vsi,u8 ena_tc)3043 int ice_vsi_cfg_tc(struct ice_vsi *vsi, u8 ena_tc)
3044 {
3045 u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 };
3046 struct ice_pf *pf = vsi->back;
3047 struct ice_vsi_ctx *ctx;
3048 enum ice_status status;
3049 struct device *dev;
3050 int i, ret = 0;
3051 u8 num_tc = 0;
3052
3053 dev = ice_pf_to_dev(pf);
3054
3055 ice_for_each_traffic_class(i) {
3056 /* build bitmap of enabled TCs */
3057 if (ena_tc & BIT(i))
3058 num_tc++;
3059 /* populate max_txqs per TC */
3060 max_txqs[i] = vsi->alloc_txq;
3061 }
3062
3063 vsi->tc_cfg.ena_tc = ena_tc;
3064 vsi->tc_cfg.numtc = num_tc;
3065
3066 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
3067 if (!ctx)
3068 return -ENOMEM;
3069
3070 ctx->vf_num = 0;
3071 ctx->info = vsi->info;
3072
3073 ice_vsi_setup_q_map(vsi, ctx);
3074
3075 /* must to indicate which section of VSI context are being modified */
3076 ctx->info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_RXQ_MAP_VALID);
3077 status = ice_update_vsi(&pf->hw, vsi->idx, ctx, NULL);
3078 if (status) {
3079 dev_info(dev, "Failed VSI Update\n");
3080 ret = -EIO;
3081 goto out;
3082 }
3083
3084 status = ice_cfg_vsi_lan(vsi->port_info, vsi->idx, vsi->tc_cfg.ena_tc,
3085 max_txqs);
3086
3087 if (status) {
3088 dev_err(dev, "VSI %d failed TC config, error %s\n",
3089 vsi->vsi_num, ice_stat_str(status));
3090 ret = -EIO;
3091 goto out;
3092 }
3093 ice_vsi_update_q_map(vsi, ctx);
3094 vsi->info.valid_sections = 0;
3095
3096 ice_vsi_cfg_netdev_tc(vsi, ena_tc);
3097 out:
3098 kfree(ctx);
3099 return ret;
3100 }
3101 #endif /* CONFIG_DCB */
3102
3103 /**
3104 * ice_update_ring_stats - Update ring statistics
3105 * @ring: ring to update
3106 * @cont: used to increment per-vector counters
3107 * @pkts: number of processed packets
3108 * @bytes: number of processed bytes
3109 *
3110 * This function assumes that caller has acquired a u64_stats_sync lock.
3111 */
3112 static void
ice_update_ring_stats(struct ice_ring * ring,struct ice_ring_container * cont,u64 pkts,u64 bytes)3113 ice_update_ring_stats(struct ice_ring *ring, struct ice_ring_container *cont,
3114 u64 pkts, u64 bytes)
3115 {
3116 ring->stats.bytes += bytes;
3117 ring->stats.pkts += pkts;
3118 cont->total_bytes += bytes;
3119 cont->total_pkts += pkts;
3120 }
3121
3122 /**
3123 * ice_update_tx_ring_stats - Update Tx ring specific counters
3124 * @tx_ring: ring to update
3125 * @pkts: number of processed packets
3126 * @bytes: number of processed bytes
3127 */
ice_update_tx_ring_stats(struct ice_ring * tx_ring,u64 pkts,u64 bytes)3128 void ice_update_tx_ring_stats(struct ice_ring *tx_ring, u64 pkts, u64 bytes)
3129 {
3130 u64_stats_update_begin(&tx_ring->syncp);
3131 ice_update_ring_stats(tx_ring, &tx_ring->q_vector->tx, pkts, bytes);
3132 u64_stats_update_end(&tx_ring->syncp);
3133 }
3134
3135 /**
3136 * ice_update_rx_ring_stats - Update Rx ring specific counters
3137 * @rx_ring: ring to update
3138 * @pkts: number of processed packets
3139 * @bytes: number of processed bytes
3140 */
ice_update_rx_ring_stats(struct ice_ring * rx_ring,u64 pkts,u64 bytes)3141 void ice_update_rx_ring_stats(struct ice_ring *rx_ring, u64 pkts, u64 bytes)
3142 {
3143 u64_stats_update_begin(&rx_ring->syncp);
3144 ice_update_ring_stats(rx_ring, &rx_ring->q_vector->rx, pkts, bytes);
3145 u64_stats_update_end(&rx_ring->syncp);
3146 }
3147
3148 /**
3149 * ice_status_to_errno - convert from enum ice_status to Linux errno
3150 * @err: ice_status value to convert
3151 */
ice_status_to_errno(enum ice_status err)3152 int ice_status_to_errno(enum ice_status err)
3153 {
3154 switch (err) {
3155 case ICE_SUCCESS:
3156 return 0;
3157 case ICE_ERR_DOES_NOT_EXIST:
3158 return -ENOENT;
3159 case ICE_ERR_OUT_OF_RANGE:
3160 return -ENOTTY;
3161 case ICE_ERR_PARAM:
3162 return -EINVAL;
3163 case ICE_ERR_NO_MEMORY:
3164 return -ENOMEM;
3165 case ICE_ERR_MAX_LIMIT:
3166 return -EAGAIN;
3167 default:
3168 return -EINVAL;
3169 }
3170 }
3171
3172 /**
3173 * ice_is_dflt_vsi_in_use - check if the default forwarding VSI is being used
3174 * @sw: switch to check if its default forwarding VSI is free
3175 *
3176 * Return true if the default forwarding VSI is already being used, else returns
3177 * false signalling that it's available to use.
3178 */
ice_is_dflt_vsi_in_use(struct ice_sw * sw)3179 bool ice_is_dflt_vsi_in_use(struct ice_sw *sw)
3180 {
3181 return (sw->dflt_vsi && sw->dflt_vsi_ena);
3182 }
3183
3184 /**
3185 * ice_is_vsi_dflt_vsi - check if the VSI passed in is the default VSI
3186 * @sw: switch for the default forwarding VSI to compare against
3187 * @vsi: VSI to compare against default forwarding VSI
3188 *
3189 * If this VSI passed in is the default forwarding VSI then return true, else
3190 * return false
3191 */
ice_is_vsi_dflt_vsi(struct ice_sw * sw,struct ice_vsi * vsi)3192 bool ice_is_vsi_dflt_vsi(struct ice_sw *sw, struct ice_vsi *vsi)
3193 {
3194 return (sw->dflt_vsi == vsi && sw->dflt_vsi_ena);
3195 }
3196
3197 /**
3198 * ice_set_dflt_vsi - set the default forwarding VSI
3199 * @sw: switch used to assign the default forwarding VSI
3200 * @vsi: VSI getting set as the default forwarding VSI on the switch
3201 *
3202 * If the VSI passed in is already the default VSI and it's enabled just return
3203 * success.
3204 *
3205 * If there is already a default VSI on the switch and it's enabled then return
3206 * -EEXIST since there can only be one default VSI per switch.
3207 *
3208 * Otherwise try to set the VSI passed in as the switch's default VSI and
3209 * return the result.
3210 */
ice_set_dflt_vsi(struct ice_sw * sw,struct ice_vsi * vsi)3211 int ice_set_dflt_vsi(struct ice_sw *sw, struct ice_vsi *vsi)
3212 {
3213 enum ice_status status;
3214 struct device *dev;
3215
3216 if (!sw || !vsi)
3217 return -EINVAL;
3218
3219 dev = ice_pf_to_dev(vsi->back);
3220
3221 /* the VSI passed in is already the default VSI */
3222 if (ice_is_vsi_dflt_vsi(sw, vsi)) {
3223 dev_dbg(dev, "VSI %d passed in is already the default forwarding VSI, nothing to do\n",
3224 vsi->vsi_num);
3225 return 0;
3226 }
3227
3228 /* another VSI is already the default VSI for this switch */
3229 if (ice_is_dflt_vsi_in_use(sw)) {
3230 dev_err(dev, "Default forwarding VSI %d already in use, disable it and try again\n",
3231 sw->dflt_vsi->vsi_num);
3232 return -EEXIST;
3233 }
3234
3235 status = ice_cfg_dflt_vsi(&vsi->back->hw, vsi->idx, true, ICE_FLTR_RX);
3236 if (status) {
3237 dev_err(dev, "Failed to set VSI %d as the default forwarding VSI, error %s\n",
3238 vsi->vsi_num, ice_stat_str(status));
3239 return -EIO;
3240 }
3241
3242 sw->dflt_vsi = vsi;
3243 sw->dflt_vsi_ena = true;
3244
3245 return 0;
3246 }
3247
3248 /**
3249 * ice_clear_dflt_vsi - clear the default forwarding VSI
3250 * @sw: switch used to clear the default VSI
3251 *
3252 * If the switch has no default VSI or it's not enabled then return error.
3253 *
3254 * Otherwise try to clear the default VSI and return the result.
3255 */
ice_clear_dflt_vsi(struct ice_sw * sw)3256 int ice_clear_dflt_vsi(struct ice_sw *sw)
3257 {
3258 struct ice_vsi *dflt_vsi;
3259 enum ice_status status;
3260 struct device *dev;
3261
3262 if (!sw)
3263 return -EINVAL;
3264
3265 dev = ice_pf_to_dev(sw->pf);
3266
3267 dflt_vsi = sw->dflt_vsi;
3268
3269 /* there is no default VSI configured */
3270 if (!ice_is_dflt_vsi_in_use(sw))
3271 return -ENODEV;
3272
3273 status = ice_cfg_dflt_vsi(&dflt_vsi->back->hw, dflt_vsi->idx, false,
3274 ICE_FLTR_RX);
3275 if (status) {
3276 dev_err(dev, "Failed to clear the default forwarding VSI %d, error %s\n",
3277 dflt_vsi->vsi_num, ice_stat_str(status));
3278 return -EIO;
3279 }
3280
3281 sw->dflt_vsi = NULL;
3282 sw->dflt_vsi_ena = false;
3283
3284 return 0;
3285 }
3286