1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (c) 2019, Intel Corporation. */
3
4 #include <net/xdp_sock_drv.h>
5 #include "ice_base.h"
6 #include "ice_lib.h"
7 #include "ice_dcb_lib.h"
8
9 /**
10 * __ice_vsi_get_qs_contig - Assign a contiguous chunk of queues to VSI
11 * @qs_cfg: gathered variables needed for PF->VSI queues assignment
12 *
13 * Return 0 on success and -ENOMEM in case of no left space in PF queue bitmap
14 */
__ice_vsi_get_qs_contig(struct ice_qs_cfg * qs_cfg)15 static int __ice_vsi_get_qs_contig(struct ice_qs_cfg *qs_cfg)
16 {
17 unsigned int offset, i;
18
19 mutex_lock(qs_cfg->qs_mutex);
20 offset = bitmap_find_next_zero_area(qs_cfg->pf_map, qs_cfg->pf_map_size,
21 0, qs_cfg->q_count, 0);
22 if (offset >= qs_cfg->pf_map_size) {
23 mutex_unlock(qs_cfg->qs_mutex);
24 return -ENOMEM;
25 }
26
27 bitmap_set(qs_cfg->pf_map, offset, qs_cfg->q_count);
28 for (i = 0; i < qs_cfg->q_count; i++)
29 qs_cfg->vsi_map[i + qs_cfg->vsi_map_offset] = (u16)(i + offset);
30 mutex_unlock(qs_cfg->qs_mutex);
31
32 return 0;
33 }
34
35 /**
36 * __ice_vsi_get_qs_sc - Assign a scattered queues from PF to VSI
37 * @qs_cfg: gathered variables needed for pf->vsi queues assignment
38 *
39 * Return 0 on success and -ENOMEM in case of no left space in PF queue bitmap
40 */
__ice_vsi_get_qs_sc(struct ice_qs_cfg * qs_cfg)41 static int __ice_vsi_get_qs_sc(struct ice_qs_cfg *qs_cfg)
42 {
43 unsigned int i, index = 0;
44
45 mutex_lock(qs_cfg->qs_mutex);
46 for (i = 0; i < qs_cfg->q_count; i++) {
47 index = find_next_zero_bit(qs_cfg->pf_map,
48 qs_cfg->pf_map_size, index);
49 if (index >= qs_cfg->pf_map_size)
50 goto err_scatter;
51 set_bit(index, qs_cfg->pf_map);
52 qs_cfg->vsi_map[i + qs_cfg->vsi_map_offset] = (u16)index;
53 }
54 mutex_unlock(qs_cfg->qs_mutex);
55
56 return 0;
57 err_scatter:
58 for (index = 0; index < i; index++) {
59 clear_bit(qs_cfg->vsi_map[index], qs_cfg->pf_map);
60 qs_cfg->vsi_map[index + qs_cfg->vsi_map_offset] = 0;
61 }
62 mutex_unlock(qs_cfg->qs_mutex);
63
64 return -ENOMEM;
65 }
66
67 /**
68 * ice_pf_rxq_wait - Wait for a PF's Rx queue to be enabled or disabled
69 * @pf: the PF being configured
70 * @pf_q: the PF queue
71 * @ena: enable or disable state of the queue
72 *
73 * This routine will wait for the given Rx queue of the PF to reach the
74 * enabled or disabled state.
75 * Returns -ETIMEDOUT in case of failing to reach the requested state after
76 * multiple retries; else will return 0 in case of success.
77 */
ice_pf_rxq_wait(struct ice_pf * pf,int pf_q,bool ena)78 static int ice_pf_rxq_wait(struct ice_pf *pf, int pf_q, bool ena)
79 {
80 int i;
81
82 for (i = 0; i < ICE_Q_WAIT_MAX_RETRY; i++) {
83 if (ena == !!(rd32(&pf->hw, QRX_CTRL(pf_q)) &
84 QRX_CTRL_QENA_STAT_M))
85 return 0;
86
87 usleep_range(20, 40);
88 }
89
90 return -ETIMEDOUT;
91 }
92
93 /**
94 * ice_vsi_alloc_q_vector - Allocate memory for a single interrupt vector
95 * @vsi: the VSI being configured
96 * @v_idx: index of the vector in the VSI struct
97 *
98 * We allocate one q_vector and set default value for ITR setting associated
99 * with this q_vector. If allocation fails we return -ENOMEM.
100 */
ice_vsi_alloc_q_vector(struct ice_vsi * vsi,u16 v_idx)101 static int ice_vsi_alloc_q_vector(struct ice_vsi *vsi, u16 v_idx)
102 {
103 struct ice_pf *pf = vsi->back;
104 struct ice_q_vector *q_vector;
105
106 /* allocate q_vector */
107 q_vector = devm_kzalloc(ice_pf_to_dev(pf), sizeof(*q_vector),
108 GFP_KERNEL);
109 if (!q_vector)
110 return -ENOMEM;
111
112 q_vector->vsi = vsi;
113 q_vector->v_idx = v_idx;
114 q_vector->tx.itr_setting = ICE_DFLT_TX_ITR;
115 q_vector->rx.itr_setting = ICE_DFLT_RX_ITR;
116 if (vsi->type == ICE_VSI_VF)
117 goto out;
118 /* only set affinity_mask if the CPU is online */
119 if (cpu_online(v_idx))
120 cpumask_set_cpu(v_idx, &q_vector->affinity_mask);
121
122 /* This will not be called in the driver load path because the netdev
123 * will not be created yet. All other cases with register the NAPI
124 * handler here (i.e. resume, reset/rebuild, etc.)
125 */
126 if (vsi->netdev)
127 netif_napi_add(vsi->netdev, &q_vector->napi, ice_napi_poll,
128 NAPI_POLL_WEIGHT);
129
130 out:
131 /* tie q_vector and VSI together */
132 vsi->q_vectors[v_idx] = q_vector;
133
134 return 0;
135 }
136
137 /**
138 * ice_free_q_vector - Free memory allocated for a specific interrupt vector
139 * @vsi: VSI having the memory freed
140 * @v_idx: index of the vector to be freed
141 */
ice_free_q_vector(struct ice_vsi * vsi,int v_idx)142 static void ice_free_q_vector(struct ice_vsi *vsi, int v_idx)
143 {
144 struct ice_q_vector *q_vector;
145 struct ice_pf *pf = vsi->back;
146 struct ice_ring *ring;
147 struct device *dev;
148
149 dev = ice_pf_to_dev(pf);
150 if (!vsi->q_vectors[v_idx]) {
151 dev_dbg(dev, "Queue vector at index %d not found\n", v_idx);
152 return;
153 }
154 q_vector = vsi->q_vectors[v_idx];
155
156 ice_for_each_ring(ring, q_vector->tx)
157 ring->q_vector = NULL;
158 ice_for_each_ring(ring, q_vector->rx)
159 ring->q_vector = NULL;
160
161 /* only VSI with an associated netdev is set up with NAPI */
162 if (vsi->netdev)
163 netif_napi_del(&q_vector->napi);
164
165 devm_kfree(dev, q_vector);
166 vsi->q_vectors[v_idx] = NULL;
167 }
168
169 /**
170 * ice_cfg_itr_gran - set the ITR granularity to 2 usecs if not already set
171 * @hw: board specific structure
172 */
ice_cfg_itr_gran(struct ice_hw * hw)173 static void ice_cfg_itr_gran(struct ice_hw *hw)
174 {
175 u32 regval = rd32(hw, GLINT_CTL);
176
177 /* no need to update global register if ITR gran is already set */
178 if (!(regval & GLINT_CTL_DIS_AUTOMASK_M) &&
179 (((regval & GLINT_CTL_ITR_GRAN_200_M) >>
180 GLINT_CTL_ITR_GRAN_200_S) == ICE_ITR_GRAN_US) &&
181 (((regval & GLINT_CTL_ITR_GRAN_100_M) >>
182 GLINT_CTL_ITR_GRAN_100_S) == ICE_ITR_GRAN_US) &&
183 (((regval & GLINT_CTL_ITR_GRAN_50_M) >>
184 GLINT_CTL_ITR_GRAN_50_S) == ICE_ITR_GRAN_US) &&
185 (((regval & GLINT_CTL_ITR_GRAN_25_M) >>
186 GLINT_CTL_ITR_GRAN_25_S) == ICE_ITR_GRAN_US))
187 return;
188
189 regval = ((ICE_ITR_GRAN_US << GLINT_CTL_ITR_GRAN_200_S) &
190 GLINT_CTL_ITR_GRAN_200_M) |
191 ((ICE_ITR_GRAN_US << GLINT_CTL_ITR_GRAN_100_S) &
192 GLINT_CTL_ITR_GRAN_100_M) |
193 ((ICE_ITR_GRAN_US << GLINT_CTL_ITR_GRAN_50_S) &
194 GLINT_CTL_ITR_GRAN_50_M) |
195 ((ICE_ITR_GRAN_US << GLINT_CTL_ITR_GRAN_25_S) &
196 GLINT_CTL_ITR_GRAN_25_M);
197 wr32(hw, GLINT_CTL, regval);
198 }
199
200 /**
201 * ice_calc_q_handle - calculate the queue handle
202 * @vsi: VSI that ring belongs to
203 * @ring: ring to get the absolute queue index
204 * @tc: traffic class number
205 */
ice_calc_q_handle(struct ice_vsi * vsi,struct ice_ring * ring,u8 tc)206 static u16 ice_calc_q_handle(struct ice_vsi *vsi, struct ice_ring *ring, u8 tc)
207 {
208 WARN_ONCE(ice_ring_is_xdp(ring) && tc, "XDP ring can't belong to TC other than 0\n");
209
210 /* Idea here for calculation is that we subtract the number of queue
211 * count from TC that ring belongs to from it's absolute queue index
212 * and as a result we get the queue's index within TC.
213 */
214 return ring->q_index - vsi->tc_cfg.tc_info[tc].qoffset;
215 }
216
217 /**
218 * ice_setup_tx_ctx - setup a struct ice_tlan_ctx instance
219 * @ring: The Tx ring to configure
220 * @tlan_ctx: Pointer to the Tx LAN queue context structure to be initialized
221 * @pf_q: queue index in the PF space
222 *
223 * Configure the Tx descriptor ring in TLAN context.
224 */
225 static void
ice_setup_tx_ctx(struct ice_ring * ring,struct ice_tlan_ctx * tlan_ctx,u16 pf_q)226 ice_setup_tx_ctx(struct ice_ring *ring, struct ice_tlan_ctx *tlan_ctx, u16 pf_q)
227 {
228 struct ice_vsi *vsi = ring->vsi;
229 struct ice_hw *hw = &vsi->back->hw;
230
231 tlan_ctx->base = ring->dma >> ICE_TLAN_CTX_BASE_S;
232
233 tlan_ctx->port_num = vsi->port_info->lport;
234
235 /* Transmit Queue Length */
236 tlan_ctx->qlen = ring->count;
237
238 ice_set_cgd_num(tlan_ctx, ring);
239
240 /* PF number */
241 tlan_ctx->pf_num = hw->pf_id;
242
243 /* queue belongs to a specific VSI type
244 * VF / VM index should be programmed per vmvf_type setting:
245 * for vmvf_type = VF, it is VF number between 0-256
246 * for vmvf_type = VM, it is VM number between 0-767
247 * for PF or EMP this field should be set to zero
248 */
249 switch (vsi->type) {
250 case ICE_VSI_LB:
251 case ICE_VSI_CTRL:
252 case ICE_VSI_PF:
253 tlan_ctx->vmvf_type = ICE_TLAN_CTX_VMVF_TYPE_PF;
254 break;
255 case ICE_VSI_VF:
256 /* Firmware expects vmvf_num to be absolute VF ID */
257 tlan_ctx->vmvf_num = hw->func_caps.vf_base_id + vsi->vf_id;
258 tlan_ctx->vmvf_type = ICE_TLAN_CTX_VMVF_TYPE_VF;
259 break;
260 default:
261 return;
262 }
263
264 /* make sure the context is associated with the right VSI */
265 tlan_ctx->src_vsi = ice_get_hw_vsi_num(hw, vsi->idx);
266
267 tlan_ctx->tso_ena = ICE_TX_LEGACY;
268 tlan_ctx->tso_qnum = pf_q;
269
270 /* Legacy or Advanced Host Interface:
271 * 0: Advanced Host Interface
272 * 1: Legacy Host Interface
273 */
274 tlan_ctx->legacy_int = ICE_TX_LEGACY;
275 }
276
277 /**
278 * ice_setup_rx_ctx - Configure a receive ring context
279 * @ring: The Rx ring to configure
280 *
281 * Configure the Rx descriptor ring in RLAN context.
282 */
ice_setup_rx_ctx(struct ice_ring * ring)283 int ice_setup_rx_ctx(struct ice_ring *ring)
284 {
285 struct device *dev = ice_pf_to_dev(ring->vsi->back);
286 int chain_len = ICE_MAX_CHAINED_RX_BUFS;
287 u16 num_bufs = ICE_DESC_UNUSED(ring);
288 struct ice_vsi *vsi = ring->vsi;
289 u32 rxdid = ICE_RXDID_FLEX_NIC;
290 struct ice_rlan_ctx rlan_ctx;
291 struct ice_hw *hw;
292 u16 pf_q;
293 int err;
294
295 hw = &vsi->back->hw;
296
297 /* what is Rx queue number in global space of 2K Rx queues */
298 pf_q = vsi->rxq_map[ring->q_index];
299
300 /* clear the context structure first */
301 memset(&rlan_ctx, 0, sizeof(rlan_ctx));
302
303 ring->rx_buf_len = vsi->rx_buf_len;
304
305 if (ring->vsi->type == ICE_VSI_PF) {
306 if (!xdp_rxq_info_is_reg(&ring->xdp_rxq))
307 /* coverity[check_return] */
308 xdp_rxq_info_reg(&ring->xdp_rxq, ring->netdev,
309 ring->q_index);
310
311 ring->xsk_pool = ice_xsk_pool(ring);
312 if (ring->xsk_pool) {
313 xdp_rxq_info_unreg_mem_model(&ring->xdp_rxq);
314
315 ring->rx_buf_len =
316 xsk_pool_get_rx_frame_size(ring->xsk_pool);
317 /* For AF_XDP ZC, we disallow packets to span on
318 * multiple buffers, thus letting us skip that
319 * handling in the fast-path.
320 */
321 chain_len = 1;
322 err = xdp_rxq_info_reg_mem_model(&ring->xdp_rxq,
323 MEM_TYPE_XSK_BUFF_POOL,
324 NULL);
325 if (err)
326 return err;
327 xsk_pool_set_rxq_info(ring->xsk_pool, &ring->xdp_rxq);
328
329 dev_info(dev, "Registered XDP mem model MEM_TYPE_XSK_BUFF_POOL on Rx ring %d\n",
330 ring->q_index);
331 } else {
332 if (!xdp_rxq_info_is_reg(&ring->xdp_rxq))
333 /* coverity[check_return] */
334 xdp_rxq_info_reg(&ring->xdp_rxq,
335 ring->netdev,
336 ring->q_index);
337
338 err = xdp_rxq_info_reg_mem_model(&ring->xdp_rxq,
339 MEM_TYPE_PAGE_SHARED,
340 NULL);
341 if (err)
342 return err;
343 }
344 }
345 /* Receive Queue Base Address.
346 * Indicates the starting address of the descriptor queue defined in
347 * 128 Byte units.
348 */
349 rlan_ctx.base = ring->dma >> 7;
350
351 rlan_ctx.qlen = ring->count;
352
353 /* Receive Packet Data Buffer Size.
354 * The Packet Data Buffer Size is defined in 128 byte units.
355 */
356 rlan_ctx.dbuf = ring->rx_buf_len >> ICE_RLAN_CTX_DBUF_S;
357
358 /* use 32 byte descriptors */
359 rlan_ctx.dsize = 1;
360
361 /* Strip the Ethernet CRC bytes before the packet is posted to host
362 * memory.
363 */
364 rlan_ctx.crcstrip = 1;
365
366 /* L2TSEL flag defines the reported L2 Tags in the receive descriptor */
367 rlan_ctx.l2tsel = 1;
368
369 rlan_ctx.dtype = ICE_RX_DTYPE_NO_SPLIT;
370 rlan_ctx.hsplit_0 = ICE_RLAN_RX_HSPLIT_0_NO_SPLIT;
371 rlan_ctx.hsplit_1 = ICE_RLAN_RX_HSPLIT_1_NO_SPLIT;
372
373 /* This controls whether VLAN is stripped from inner headers
374 * The VLAN in the inner L2 header is stripped to the receive
375 * descriptor if enabled by this flag.
376 */
377 rlan_ctx.showiv = 0;
378
379 /* Max packet size for this queue - must not be set to a larger value
380 * than 5 x DBUF
381 */
382 rlan_ctx.rxmax = min_t(u32, vsi->max_frame,
383 chain_len * ring->rx_buf_len);
384
385 /* Rx queue threshold in units of 64 */
386 rlan_ctx.lrxqthresh = 1;
387
388 /* Enable Flexible Descriptors in the queue context which
389 * allows this driver to select a specific receive descriptor format
390 * increasing context priority to pick up profile ID; default is 0x01;
391 * setting to 0x03 to ensure profile is programming if prev context is
392 * of same priority
393 */
394 if (vsi->type != ICE_VSI_VF)
395 ice_write_qrxflxp_cntxt(hw, pf_q, rxdid, 0x3);
396 else
397 ice_write_qrxflxp_cntxt(hw, pf_q, ICE_RXDID_LEGACY_1, 0x3);
398
399 /* Absolute queue number out of 2K needs to be passed */
400 err = ice_write_rxq_ctx(hw, &rlan_ctx, pf_q);
401 if (err) {
402 dev_err(dev, "Failed to set LAN Rx queue context for absolute Rx queue %d error: %d\n",
403 pf_q, err);
404 return -EIO;
405 }
406
407 if (vsi->type == ICE_VSI_VF)
408 return 0;
409
410 /* configure Rx buffer alignment */
411 if (!vsi->netdev || test_bit(ICE_FLAG_LEGACY_RX, vsi->back->flags))
412 ice_clear_ring_build_skb_ena(ring);
413 else
414 ice_set_ring_build_skb_ena(ring);
415
416 /* init queue specific tail register */
417 ring->tail = hw->hw_addr + QRX_TAIL(pf_q);
418 writel(0, ring->tail);
419
420 if (ring->xsk_pool) {
421 if (!xsk_buff_can_alloc(ring->xsk_pool, num_bufs)) {
422 dev_warn(dev, "XSK buffer pool does not provide enough addresses to fill %d buffers on Rx ring %d\n",
423 num_bufs, ring->q_index);
424 dev_warn(dev, "Change Rx ring/fill queue size to avoid performance issues\n");
425
426 return 0;
427 }
428
429 err = ice_alloc_rx_bufs_zc(ring, num_bufs);
430 if (err)
431 dev_info(dev, "Failed to allocate some buffers on XSK buffer pool enabled Rx ring %d (pf_q %d)\n",
432 ring->q_index, pf_q);
433 return 0;
434 }
435
436 ice_alloc_rx_bufs(ring, num_bufs);
437
438 return 0;
439 }
440
441 /**
442 * __ice_vsi_get_qs - helper function for assigning queues from PF to VSI
443 * @qs_cfg: gathered variables needed for pf->vsi queues assignment
444 *
445 * This function first tries to find contiguous space. If it is not successful,
446 * it tries with the scatter approach.
447 *
448 * Return 0 on success and -ENOMEM in case of no left space in PF queue bitmap
449 */
__ice_vsi_get_qs(struct ice_qs_cfg * qs_cfg)450 int __ice_vsi_get_qs(struct ice_qs_cfg *qs_cfg)
451 {
452 int ret = 0;
453
454 ret = __ice_vsi_get_qs_contig(qs_cfg);
455 if (ret) {
456 /* contig failed, so try with scatter approach */
457 qs_cfg->mapping_mode = ICE_VSI_MAP_SCATTER;
458 qs_cfg->q_count = min_t(unsigned int, qs_cfg->q_count,
459 qs_cfg->scatter_count);
460 ret = __ice_vsi_get_qs_sc(qs_cfg);
461 }
462 return ret;
463 }
464
465 /**
466 * ice_vsi_ctrl_one_rx_ring - start/stop VSI's Rx ring with no busy wait
467 * @vsi: the VSI being configured
468 * @ena: start or stop the Rx ring
469 * @rxq_idx: 0-based Rx queue index for the VSI passed in
470 * @wait: wait or don't wait for configuration to finish in hardware
471 *
472 * Return 0 on success and negative on error.
473 */
474 int
ice_vsi_ctrl_one_rx_ring(struct ice_vsi * vsi,bool ena,u16 rxq_idx,bool wait)475 ice_vsi_ctrl_one_rx_ring(struct ice_vsi *vsi, bool ena, u16 rxq_idx, bool wait)
476 {
477 int pf_q = vsi->rxq_map[rxq_idx];
478 struct ice_pf *pf = vsi->back;
479 struct ice_hw *hw = &pf->hw;
480 u32 rx_reg;
481
482 rx_reg = rd32(hw, QRX_CTRL(pf_q));
483
484 /* Skip if the queue is already in the requested state */
485 if (ena == !!(rx_reg & QRX_CTRL_QENA_STAT_M))
486 return 0;
487
488 /* turn on/off the queue */
489 if (ena)
490 rx_reg |= QRX_CTRL_QENA_REQ_M;
491 else
492 rx_reg &= ~QRX_CTRL_QENA_REQ_M;
493 wr32(hw, QRX_CTRL(pf_q), rx_reg);
494
495 if (!wait)
496 return 0;
497
498 ice_flush(hw);
499 return ice_pf_rxq_wait(pf, pf_q, ena);
500 }
501
502 /**
503 * ice_vsi_wait_one_rx_ring - wait for a VSI's Rx ring to be stopped/started
504 * @vsi: the VSI being configured
505 * @ena: true/false to verify Rx ring has been enabled/disabled respectively
506 * @rxq_idx: 0-based Rx queue index for the VSI passed in
507 *
508 * This routine will wait for the given Rx queue of the VSI to reach the
509 * enabled or disabled state. Returns -ETIMEDOUT in case of failing to reach
510 * the requested state after multiple retries; else will return 0 in case of
511 * success.
512 */
ice_vsi_wait_one_rx_ring(struct ice_vsi * vsi,bool ena,u16 rxq_idx)513 int ice_vsi_wait_one_rx_ring(struct ice_vsi *vsi, bool ena, u16 rxq_idx)
514 {
515 int pf_q = vsi->rxq_map[rxq_idx];
516 struct ice_pf *pf = vsi->back;
517
518 return ice_pf_rxq_wait(pf, pf_q, ena);
519 }
520
521 /**
522 * ice_vsi_alloc_q_vectors - Allocate memory for interrupt vectors
523 * @vsi: the VSI being configured
524 *
525 * We allocate one q_vector per queue interrupt. If allocation fails we
526 * return -ENOMEM.
527 */
ice_vsi_alloc_q_vectors(struct ice_vsi * vsi)528 int ice_vsi_alloc_q_vectors(struct ice_vsi *vsi)
529 {
530 struct device *dev = ice_pf_to_dev(vsi->back);
531 u16 v_idx;
532 int err;
533
534 if (vsi->q_vectors[0]) {
535 dev_dbg(dev, "VSI %d has existing q_vectors\n", vsi->vsi_num);
536 return -EEXIST;
537 }
538
539 for (v_idx = 0; v_idx < vsi->num_q_vectors; v_idx++) {
540 err = ice_vsi_alloc_q_vector(vsi, v_idx);
541 if (err)
542 goto err_out;
543 }
544
545 return 0;
546
547 err_out:
548 while (v_idx--)
549 ice_free_q_vector(vsi, v_idx);
550
551 dev_err(dev, "Failed to allocate %d q_vector for VSI %d, ret=%d\n",
552 vsi->num_q_vectors, vsi->vsi_num, err);
553 vsi->num_q_vectors = 0;
554 return err;
555 }
556
557 /**
558 * ice_vsi_map_rings_to_vectors - Map VSI rings to interrupt vectors
559 * @vsi: the VSI being configured
560 *
561 * This function maps descriptor rings to the queue-specific vectors allotted
562 * through the MSI-X enabling code. On a constrained vector budget, we map Tx
563 * and Rx rings to the vector as "efficiently" as possible.
564 */
ice_vsi_map_rings_to_vectors(struct ice_vsi * vsi)565 void ice_vsi_map_rings_to_vectors(struct ice_vsi *vsi)
566 {
567 int q_vectors = vsi->num_q_vectors;
568 u16 tx_rings_rem, rx_rings_rem;
569 int v_id;
570
571 /* initially assigning remaining rings count to VSIs num queue value */
572 tx_rings_rem = vsi->num_txq;
573 rx_rings_rem = vsi->num_rxq;
574
575 for (v_id = 0; v_id < q_vectors; v_id++) {
576 struct ice_q_vector *q_vector = vsi->q_vectors[v_id];
577 u8 tx_rings_per_v, rx_rings_per_v;
578 u16 q_id, q_base;
579
580 /* Tx rings mapping to vector */
581 tx_rings_per_v = (u8)DIV_ROUND_UP(tx_rings_rem,
582 q_vectors - v_id);
583 q_vector->num_ring_tx = tx_rings_per_v;
584 q_vector->tx.ring = NULL;
585 q_vector->tx.itr_idx = ICE_TX_ITR;
586 q_base = vsi->num_txq - tx_rings_rem;
587
588 for (q_id = q_base; q_id < (q_base + tx_rings_per_v); q_id++) {
589 struct ice_ring *tx_ring = vsi->tx_rings[q_id];
590
591 tx_ring->q_vector = q_vector;
592 tx_ring->next = q_vector->tx.ring;
593 q_vector->tx.ring = tx_ring;
594 }
595 tx_rings_rem -= tx_rings_per_v;
596
597 /* Rx rings mapping to vector */
598 rx_rings_per_v = (u8)DIV_ROUND_UP(rx_rings_rem,
599 q_vectors - v_id);
600 q_vector->num_ring_rx = rx_rings_per_v;
601 q_vector->rx.ring = NULL;
602 q_vector->rx.itr_idx = ICE_RX_ITR;
603 q_base = vsi->num_rxq - rx_rings_rem;
604
605 for (q_id = q_base; q_id < (q_base + rx_rings_per_v); q_id++) {
606 struct ice_ring *rx_ring = vsi->rx_rings[q_id];
607
608 rx_ring->q_vector = q_vector;
609 rx_ring->next = q_vector->rx.ring;
610 q_vector->rx.ring = rx_ring;
611 }
612 rx_rings_rem -= rx_rings_per_v;
613 }
614 }
615
616 /**
617 * ice_vsi_free_q_vectors - Free memory allocated for interrupt vectors
618 * @vsi: the VSI having memory freed
619 */
ice_vsi_free_q_vectors(struct ice_vsi * vsi)620 void ice_vsi_free_q_vectors(struct ice_vsi *vsi)
621 {
622 int v_idx;
623
624 ice_for_each_q_vector(vsi, v_idx)
625 ice_free_q_vector(vsi, v_idx);
626 }
627
628 /**
629 * ice_vsi_cfg_txq - Configure single Tx queue
630 * @vsi: the VSI that queue belongs to
631 * @ring: Tx ring to be configured
632 * @qg_buf: queue group buffer
633 */
634 int
ice_vsi_cfg_txq(struct ice_vsi * vsi,struct ice_ring * ring,struct ice_aqc_add_tx_qgrp * qg_buf)635 ice_vsi_cfg_txq(struct ice_vsi *vsi, struct ice_ring *ring,
636 struct ice_aqc_add_tx_qgrp *qg_buf)
637 {
638 u8 buf_len = struct_size(qg_buf, txqs, 1);
639 struct ice_tlan_ctx tlan_ctx = { 0 };
640 struct ice_aqc_add_txqs_perq *txq;
641 struct ice_pf *pf = vsi->back;
642 struct ice_hw *hw = &pf->hw;
643 enum ice_status status;
644 u16 pf_q;
645 u8 tc;
646
647 pf_q = ring->reg_idx;
648 ice_setup_tx_ctx(ring, &tlan_ctx, pf_q);
649 /* copy context contents into the qg_buf */
650 qg_buf->txqs[0].txq_id = cpu_to_le16(pf_q);
651 ice_set_ctx(hw, (u8 *)&tlan_ctx, qg_buf->txqs[0].txq_ctx,
652 ice_tlan_ctx_info);
653
654 /* init queue specific tail reg. It is referred as
655 * transmit comm scheduler queue doorbell.
656 */
657 ring->tail = hw->hw_addr + QTX_COMM_DBELL(pf_q);
658
659 if (IS_ENABLED(CONFIG_DCB))
660 tc = ring->dcb_tc;
661 else
662 tc = 0;
663
664 /* Add unique software queue handle of the Tx queue per
665 * TC into the VSI Tx ring
666 */
667 ring->q_handle = ice_calc_q_handle(vsi, ring, tc);
668
669 status = ice_ena_vsi_txq(vsi->port_info, vsi->idx, tc, ring->q_handle,
670 1, qg_buf, buf_len, NULL);
671 if (status) {
672 dev_err(ice_pf_to_dev(pf), "Failed to set LAN Tx queue context, error: %s\n",
673 ice_stat_str(status));
674 return -ENODEV;
675 }
676
677 /* Add Tx Queue TEID into the VSI Tx ring from the
678 * response. This will complete configuring and
679 * enabling the queue.
680 */
681 txq = &qg_buf->txqs[0];
682 if (pf_q == le16_to_cpu(txq->txq_id))
683 ring->txq_teid = le32_to_cpu(txq->q_teid);
684
685 return 0;
686 }
687
688 /**
689 * ice_cfg_itr - configure the initial interrupt throttle values
690 * @hw: pointer to the HW structure
691 * @q_vector: interrupt vector that's being configured
692 *
693 * Configure interrupt throttling values for the ring containers that are
694 * associated with the interrupt vector passed in.
695 */
ice_cfg_itr(struct ice_hw * hw,struct ice_q_vector * q_vector)696 void ice_cfg_itr(struct ice_hw *hw, struct ice_q_vector *q_vector)
697 {
698 ice_cfg_itr_gran(hw);
699
700 if (q_vector->num_ring_rx) {
701 struct ice_ring_container *rc = &q_vector->rx;
702
703 rc->target_itr = ITR_TO_REG(rc->itr_setting);
704 rc->next_update = jiffies + 1;
705 rc->current_itr = rc->target_itr;
706 wr32(hw, GLINT_ITR(rc->itr_idx, q_vector->reg_idx),
707 ITR_REG_ALIGN(rc->current_itr) >> ICE_ITR_GRAN_S);
708 }
709
710 if (q_vector->num_ring_tx) {
711 struct ice_ring_container *rc = &q_vector->tx;
712
713 rc->target_itr = ITR_TO_REG(rc->itr_setting);
714 rc->next_update = jiffies + 1;
715 rc->current_itr = rc->target_itr;
716 wr32(hw, GLINT_ITR(rc->itr_idx, q_vector->reg_idx),
717 ITR_REG_ALIGN(rc->current_itr) >> ICE_ITR_GRAN_S);
718 }
719 }
720
721 /**
722 * ice_cfg_txq_interrupt - configure interrupt on Tx queue
723 * @vsi: the VSI being configured
724 * @txq: Tx queue being mapped to MSI-X vector
725 * @msix_idx: MSI-X vector index within the function
726 * @itr_idx: ITR index of the interrupt cause
727 *
728 * Configure interrupt on Tx queue by associating Tx queue to MSI-X vector
729 * within the function space.
730 */
731 void
ice_cfg_txq_interrupt(struct ice_vsi * vsi,u16 txq,u16 msix_idx,u16 itr_idx)732 ice_cfg_txq_interrupt(struct ice_vsi *vsi, u16 txq, u16 msix_idx, u16 itr_idx)
733 {
734 struct ice_pf *pf = vsi->back;
735 struct ice_hw *hw = &pf->hw;
736 u32 val;
737
738 itr_idx = (itr_idx << QINT_TQCTL_ITR_INDX_S) & QINT_TQCTL_ITR_INDX_M;
739
740 val = QINT_TQCTL_CAUSE_ENA_M | itr_idx |
741 ((msix_idx << QINT_TQCTL_MSIX_INDX_S) & QINT_TQCTL_MSIX_INDX_M);
742
743 wr32(hw, QINT_TQCTL(vsi->txq_map[txq]), val);
744 if (ice_is_xdp_ena_vsi(vsi)) {
745 u32 xdp_txq = txq + vsi->num_xdp_txq;
746
747 wr32(hw, QINT_TQCTL(vsi->txq_map[xdp_txq]),
748 val);
749 }
750 ice_flush(hw);
751 }
752
753 /**
754 * ice_cfg_rxq_interrupt - configure interrupt on Rx queue
755 * @vsi: the VSI being configured
756 * @rxq: Rx queue being mapped to MSI-X vector
757 * @msix_idx: MSI-X vector index within the function
758 * @itr_idx: ITR index of the interrupt cause
759 *
760 * Configure interrupt on Rx queue by associating Rx queue to MSI-X vector
761 * within the function space.
762 */
763 void
ice_cfg_rxq_interrupt(struct ice_vsi * vsi,u16 rxq,u16 msix_idx,u16 itr_idx)764 ice_cfg_rxq_interrupt(struct ice_vsi *vsi, u16 rxq, u16 msix_idx, u16 itr_idx)
765 {
766 struct ice_pf *pf = vsi->back;
767 struct ice_hw *hw = &pf->hw;
768 u32 val;
769
770 itr_idx = (itr_idx << QINT_RQCTL_ITR_INDX_S) & QINT_RQCTL_ITR_INDX_M;
771
772 val = QINT_RQCTL_CAUSE_ENA_M | itr_idx |
773 ((msix_idx << QINT_RQCTL_MSIX_INDX_S) & QINT_RQCTL_MSIX_INDX_M);
774
775 wr32(hw, QINT_RQCTL(vsi->rxq_map[rxq]), val);
776
777 ice_flush(hw);
778 }
779
780 /**
781 * ice_trigger_sw_intr - trigger a software interrupt
782 * @hw: pointer to the HW structure
783 * @q_vector: interrupt vector to trigger the software interrupt for
784 */
ice_trigger_sw_intr(struct ice_hw * hw,struct ice_q_vector * q_vector)785 void ice_trigger_sw_intr(struct ice_hw *hw, struct ice_q_vector *q_vector)
786 {
787 wr32(hw, GLINT_DYN_CTL(q_vector->reg_idx),
788 (ICE_ITR_NONE << GLINT_DYN_CTL_ITR_INDX_S) |
789 GLINT_DYN_CTL_SWINT_TRIG_M |
790 GLINT_DYN_CTL_INTENA_M);
791 }
792
793 /**
794 * ice_vsi_stop_tx_ring - Disable single Tx ring
795 * @vsi: the VSI being configured
796 * @rst_src: reset source
797 * @rel_vmvf_num: Relative ID of VF/VM
798 * @ring: Tx ring to be stopped
799 * @txq_meta: Meta data of Tx ring to be stopped
800 */
801 int
ice_vsi_stop_tx_ring(struct ice_vsi * vsi,enum ice_disq_rst_src rst_src,u16 rel_vmvf_num,struct ice_ring * ring,struct ice_txq_meta * txq_meta)802 ice_vsi_stop_tx_ring(struct ice_vsi *vsi, enum ice_disq_rst_src rst_src,
803 u16 rel_vmvf_num, struct ice_ring *ring,
804 struct ice_txq_meta *txq_meta)
805 {
806 struct ice_pf *pf = vsi->back;
807 struct ice_q_vector *q_vector;
808 struct ice_hw *hw = &pf->hw;
809 enum ice_status status;
810 u32 val;
811
812 /* clear cause_ena bit for disabled queues */
813 val = rd32(hw, QINT_TQCTL(ring->reg_idx));
814 val &= ~QINT_TQCTL_CAUSE_ENA_M;
815 wr32(hw, QINT_TQCTL(ring->reg_idx), val);
816
817 /* software is expected to wait for 100 ns */
818 ndelay(100);
819
820 /* trigger a software interrupt for the vector
821 * associated to the queue to schedule NAPI handler
822 */
823 q_vector = ring->q_vector;
824 if (q_vector)
825 ice_trigger_sw_intr(hw, q_vector);
826
827 status = ice_dis_vsi_txq(vsi->port_info, txq_meta->vsi_idx,
828 txq_meta->tc, 1, &txq_meta->q_handle,
829 &txq_meta->q_id, &txq_meta->q_teid, rst_src,
830 rel_vmvf_num, NULL);
831
832 /* if the disable queue command was exercised during an
833 * active reset flow, ICE_ERR_RESET_ONGOING is returned.
834 * This is not an error as the reset operation disables
835 * queues at the hardware level anyway.
836 */
837 if (status == ICE_ERR_RESET_ONGOING) {
838 dev_dbg(ice_pf_to_dev(vsi->back), "Reset in progress. LAN Tx queues already disabled\n");
839 } else if (status == ICE_ERR_DOES_NOT_EXIST) {
840 dev_dbg(ice_pf_to_dev(vsi->back), "LAN Tx queues do not exist, nothing to disable\n");
841 } else if (status) {
842 dev_dbg(ice_pf_to_dev(vsi->back), "Failed to disable LAN Tx queues, error: %s\n",
843 ice_stat_str(status));
844 return -ENODEV;
845 }
846
847 return 0;
848 }
849
850 /**
851 * ice_fill_txq_meta - Prepare the Tx queue's meta data
852 * @vsi: VSI that ring belongs to
853 * @ring: ring that txq_meta will be based on
854 * @txq_meta: a helper struct that wraps Tx queue's information
855 *
856 * Set up a helper struct that will contain all the necessary fields that
857 * are needed for stopping Tx queue
858 */
859 void
ice_fill_txq_meta(struct ice_vsi * vsi,struct ice_ring * ring,struct ice_txq_meta * txq_meta)860 ice_fill_txq_meta(struct ice_vsi *vsi, struct ice_ring *ring,
861 struct ice_txq_meta *txq_meta)
862 {
863 u8 tc;
864
865 if (IS_ENABLED(CONFIG_DCB))
866 tc = ring->dcb_tc;
867 else
868 tc = 0;
869
870 txq_meta->q_id = ring->reg_idx;
871 txq_meta->q_teid = ring->txq_teid;
872 txq_meta->q_handle = ring->q_handle;
873 txq_meta->vsi_idx = vsi->idx;
874 txq_meta->tc = tc;
875 }
876