• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright © 2016 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  */
24 
25 #include <drm/drm_print.h>
26 
27 #include "gem/i915_gem_context.h"
28 
29 #include "i915_drv.h"
30 
31 #include "intel_breadcrumbs.h"
32 #include "intel_context.h"
33 #include "intel_engine.h"
34 #include "intel_engine_pm.h"
35 #include "intel_engine_user.h"
36 #include "intel_gt.h"
37 #include "intel_gt_requests.h"
38 #include "intel_gt_pm.h"
39 #include "intel_lrc.h"
40 #include "intel_reset.h"
41 #include "intel_ring.h"
42 
43 /* Haswell does have the CXT_SIZE register however it does not appear to be
44  * valid. Now, docs explain in dwords what is in the context object. The full
45  * size is 70720 bytes, however, the power context and execlist context will
46  * never be saved (power context is stored elsewhere, and execlists don't work
47  * on HSW) - so the final size, including the extra state required for the
48  * Resource Streamer, is 66944 bytes, which rounds to 17 pages.
49  */
50 #define HSW_CXT_TOTAL_SIZE		(17 * PAGE_SIZE)
51 
52 #define DEFAULT_LR_CONTEXT_RENDER_SIZE	(22 * PAGE_SIZE)
53 #define GEN8_LR_CONTEXT_RENDER_SIZE	(20 * PAGE_SIZE)
54 #define GEN9_LR_CONTEXT_RENDER_SIZE	(22 * PAGE_SIZE)
55 #define GEN10_LR_CONTEXT_RENDER_SIZE	(18 * PAGE_SIZE)
56 #define GEN11_LR_CONTEXT_RENDER_SIZE	(14 * PAGE_SIZE)
57 
58 #define GEN8_LR_CONTEXT_OTHER_SIZE	( 2 * PAGE_SIZE)
59 
60 #define MAX_MMIO_BASES 3
61 struct engine_info {
62 	unsigned int hw_id;
63 	u8 class;
64 	u8 instance;
65 	/* mmio bases table *must* be sorted in reverse gen order */
66 	struct engine_mmio_base {
67 		u32 gen : 8;
68 		u32 base : 24;
69 	} mmio_bases[MAX_MMIO_BASES];
70 };
71 
72 static const struct engine_info intel_engines[] = {
73 	[RCS0] = {
74 		.hw_id = RCS0_HW,
75 		.class = RENDER_CLASS,
76 		.instance = 0,
77 		.mmio_bases = {
78 			{ .gen = 1, .base = RENDER_RING_BASE }
79 		},
80 	},
81 	[BCS0] = {
82 		.hw_id = BCS0_HW,
83 		.class = COPY_ENGINE_CLASS,
84 		.instance = 0,
85 		.mmio_bases = {
86 			{ .gen = 6, .base = BLT_RING_BASE }
87 		},
88 	},
89 	[VCS0] = {
90 		.hw_id = VCS0_HW,
91 		.class = VIDEO_DECODE_CLASS,
92 		.instance = 0,
93 		.mmio_bases = {
94 			{ .gen = 11, .base = GEN11_BSD_RING_BASE },
95 			{ .gen = 6, .base = GEN6_BSD_RING_BASE },
96 			{ .gen = 4, .base = BSD_RING_BASE }
97 		},
98 	},
99 	[VCS1] = {
100 		.hw_id = VCS1_HW,
101 		.class = VIDEO_DECODE_CLASS,
102 		.instance = 1,
103 		.mmio_bases = {
104 			{ .gen = 11, .base = GEN11_BSD2_RING_BASE },
105 			{ .gen = 8, .base = GEN8_BSD2_RING_BASE }
106 		},
107 	},
108 	[VCS2] = {
109 		.hw_id = VCS2_HW,
110 		.class = VIDEO_DECODE_CLASS,
111 		.instance = 2,
112 		.mmio_bases = {
113 			{ .gen = 11, .base = GEN11_BSD3_RING_BASE }
114 		},
115 	},
116 	[VCS3] = {
117 		.hw_id = VCS3_HW,
118 		.class = VIDEO_DECODE_CLASS,
119 		.instance = 3,
120 		.mmio_bases = {
121 			{ .gen = 11, .base = GEN11_BSD4_RING_BASE }
122 		},
123 	},
124 	[VECS0] = {
125 		.hw_id = VECS0_HW,
126 		.class = VIDEO_ENHANCEMENT_CLASS,
127 		.instance = 0,
128 		.mmio_bases = {
129 			{ .gen = 11, .base = GEN11_VEBOX_RING_BASE },
130 			{ .gen = 7, .base = VEBOX_RING_BASE }
131 		},
132 	},
133 	[VECS1] = {
134 		.hw_id = VECS1_HW,
135 		.class = VIDEO_ENHANCEMENT_CLASS,
136 		.instance = 1,
137 		.mmio_bases = {
138 			{ .gen = 11, .base = GEN11_VEBOX2_RING_BASE }
139 		},
140 	},
141 };
142 
143 /**
144  * intel_engine_context_size() - return the size of the context for an engine
145  * @gt: the gt
146  * @class: engine class
147  *
148  * Each engine class may require a different amount of space for a context
149  * image.
150  *
151  * Return: size (in bytes) of an engine class specific context image
152  *
153  * Note: this size includes the HWSP, which is part of the context image
154  * in LRC mode, but does not include the "shared data page" used with
155  * GuC submission. The caller should account for this if using the GuC.
156  */
intel_engine_context_size(struct intel_gt * gt,u8 class)157 u32 intel_engine_context_size(struct intel_gt *gt, u8 class)
158 {
159 	struct intel_uncore *uncore = gt->uncore;
160 	u32 cxt_size;
161 
162 	BUILD_BUG_ON(I915_GTT_PAGE_SIZE != PAGE_SIZE);
163 
164 	switch (class) {
165 	case RENDER_CLASS:
166 		switch (INTEL_GEN(gt->i915)) {
167 		default:
168 			MISSING_CASE(INTEL_GEN(gt->i915));
169 			return DEFAULT_LR_CONTEXT_RENDER_SIZE;
170 		case 12:
171 		case 11:
172 			return GEN11_LR_CONTEXT_RENDER_SIZE;
173 		case 10:
174 			return GEN10_LR_CONTEXT_RENDER_SIZE;
175 		case 9:
176 			return GEN9_LR_CONTEXT_RENDER_SIZE;
177 		case 8:
178 			return GEN8_LR_CONTEXT_RENDER_SIZE;
179 		case 7:
180 			if (IS_HASWELL(gt->i915))
181 				return HSW_CXT_TOTAL_SIZE;
182 
183 			cxt_size = intel_uncore_read(uncore, GEN7_CXT_SIZE);
184 			return round_up(GEN7_CXT_TOTAL_SIZE(cxt_size) * 64,
185 					PAGE_SIZE);
186 		case 6:
187 			cxt_size = intel_uncore_read(uncore, CXT_SIZE);
188 			return round_up(GEN6_CXT_TOTAL_SIZE(cxt_size) * 64,
189 					PAGE_SIZE);
190 		case 5:
191 		case 4:
192 			/*
193 			 * There is a discrepancy here between the size reported
194 			 * by the register and the size of the context layout
195 			 * in the docs. Both are described as authorative!
196 			 *
197 			 * The discrepancy is on the order of a few cachelines,
198 			 * but the total is under one page (4k), which is our
199 			 * minimum allocation anyway so it should all come
200 			 * out in the wash.
201 			 */
202 			cxt_size = intel_uncore_read(uncore, CXT_SIZE) + 1;
203 			drm_dbg(&gt->i915->drm,
204 				"gen%d CXT_SIZE = %d bytes [0x%08x]\n",
205 				INTEL_GEN(gt->i915), cxt_size * 64,
206 				cxt_size - 1);
207 			return round_up(cxt_size * 64, PAGE_SIZE);
208 		case 3:
209 		case 2:
210 		/* For the special day when i810 gets merged. */
211 		case 1:
212 			return 0;
213 		}
214 		break;
215 	default:
216 		MISSING_CASE(class);
217 		fallthrough;
218 	case VIDEO_DECODE_CLASS:
219 	case VIDEO_ENHANCEMENT_CLASS:
220 	case COPY_ENGINE_CLASS:
221 		if (INTEL_GEN(gt->i915) < 8)
222 			return 0;
223 		return GEN8_LR_CONTEXT_OTHER_SIZE;
224 	}
225 }
226 
__engine_mmio_base(struct drm_i915_private * i915,const struct engine_mmio_base * bases)227 static u32 __engine_mmio_base(struct drm_i915_private *i915,
228 			      const struct engine_mmio_base *bases)
229 {
230 	int i;
231 
232 	for (i = 0; i < MAX_MMIO_BASES; i++)
233 		if (INTEL_GEN(i915) >= bases[i].gen)
234 			break;
235 
236 	GEM_BUG_ON(i == MAX_MMIO_BASES);
237 	GEM_BUG_ON(!bases[i].base);
238 
239 	return bases[i].base;
240 }
241 
__sprint_engine_name(struct intel_engine_cs * engine)242 static void __sprint_engine_name(struct intel_engine_cs *engine)
243 {
244 	/*
245 	 * Before we know what the uABI name for this engine will be,
246 	 * we still would like to keep track of this engine in the debug logs.
247 	 * We throw in a ' here as a reminder that this isn't its final name.
248 	 */
249 	GEM_WARN_ON(snprintf(engine->name, sizeof(engine->name), "%s'%u",
250 			     intel_engine_class_repr(engine->class),
251 			     engine->instance) >= sizeof(engine->name));
252 }
253 
intel_engine_set_hwsp_writemask(struct intel_engine_cs * engine,u32 mask)254 void intel_engine_set_hwsp_writemask(struct intel_engine_cs *engine, u32 mask)
255 {
256 	/*
257 	 * Though they added more rings on g4x/ilk, they did not add
258 	 * per-engine HWSTAM until gen6.
259 	 */
260 	if (INTEL_GEN(engine->i915) < 6 && engine->class != RENDER_CLASS)
261 		return;
262 
263 	if (INTEL_GEN(engine->i915) >= 3)
264 		ENGINE_WRITE(engine, RING_HWSTAM, mask);
265 	else
266 		ENGINE_WRITE16(engine, RING_HWSTAM, mask);
267 }
268 
intel_engine_sanitize_mmio(struct intel_engine_cs * engine)269 static void intel_engine_sanitize_mmio(struct intel_engine_cs *engine)
270 {
271 	/* Mask off all writes into the unknown HWSP */
272 	intel_engine_set_hwsp_writemask(engine, ~0u);
273 }
274 
intel_engine_setup(struct intel_gt * gt,enum intel_engine_id id)275 static int intel_engine_setup(struct intel_gt *gt, enum intel_engine_id id)
276 {
277 	const struct engine_info *info = &intel_engines[id];
278 	struct drm_i915_private *i915 = gt->i915;
279 	struct intel_engine_cs *engine;
280 
281 	BUILD_BUG_ON(MAX_ENGINE_CLASS >= BIT(GEN11_ENGINE_CLASS_WIDTH));
282 	BUILD_BUG_ON(MAX_ENGINE_INSTANCE >= BIT(GEN11_ENGINE_INSTANCE_WIDTH));
283 
284 	if (GEM_DEBUG_WARN_ON(id >= ARRAY_SIZE(gt->engine)))
285 		return -EINVAL;
286 
287 	if (GEM_DEBUG_WARN_ON(info->class > MAX_ENGINE_CLASS))
288 		return -EINVAL;
289 
290 	if (GEM_DEBUG_WARN_ON(info->instance > MAX_ENGINE_INSTANCE))
291 		return -EINVAL;
292 
293 	if (GEM_DEBUG_WARN_ON(gt->engine_class[info->class][info->instance]))
294 		return -EINVAL;
295 
296 	engine = kzalloc(sizeof(*engine), GFP_KERNEL);
297 	if (!engine)
298 		return -ENOMEM;
299 
300 	BUILD_BUG_ON(BITS_PER_TYPE(engine->mask) < I915_NUM_ENGINES);
301 
302 	engine->id = id;
303 	engine->legacy_idx = INVALID_ENGINE;
304 	engine->mask = BIT(id);
305 	engine->i915 = i915;
306 	engine->gt = gt;
307 	engine->uncore = gt->uncore;
308 	engine->mmio_base = __engine_mmio_base(i915, info->mmio_bases);
309 	engine->hw_id = info->hw_id;
310 	engine->guc_id = MAKE_GUC_ID(info->class, info->instance);
311 
312 	engine->class = info->class;
313 	engine->instance = info->instance;
314 	__sprint_engine_name(engine);
315 
316 	engine->props.heartbeat_interval_ms =
317 		CONFIG_DRM_I915_HEARTBEAT_INTERVAL;
318 	engine->props.max_busywait_duration_ns =
319 		CONFIG_DRM_I915_MAX_REQUEST_BUSYWAIT;
320 	engine->props.preempt_timeout_ms =
321 		CONFIG_DRM_I915_PREEMPT_TIMEOUT;
322 	engine->props.stop_timeout_ms =
323 		CONFIG_DRM_I915_STOP_TIMEOUT;
324 	engine->props.timeslice_duration_ms =
325 		CONFIG_DRM_I915_TIMESLICE_DURATION;
326 
327 	/* Override to uninterruptible for OpenCL workloads. */
328 	if (INTEL_GEN(i915) == 12 && engine->class == RENDER_CLASS)
329 		engine->props.preempt_timeout_ms = 0;
330 
331 	engine->defaults = engine->props; /* never to change again */
332 
333 	engine->context_size = intel_engine_context_size(gt, engine->class);
334 	if (WARN_ON(engine->context_size > BIT(20)))
335 		engine->context_size = 0;
336 	if (engine->context_size)
337 		DRIVER_CAPS(i915)->has_logical_contexts = true;
338 
339 	/* Nothing to do here, execute in order of dependencies */
340 	engine->schedule = NULL;
341 
342 	ewma__engine_latency_init(&engine->latency);
343 	seqlock_init(&engine->stats.lock);
344 
345 	ATOMIC_INIT_NOTIFIER_HEAD(&engine->context_status_notifier);
346 
347 	/* Scrub mmio state on takeover */
348 	intel_engine_sanitize_mmio(engine);
349 
350 	gt->engine_class[info->class][info->instance] = engine;
351 	gt->engine[id] = engine;
352 
353 	return 0;
354 }
355 
__setup_engine_capabilities(struct intel_engine_cs * engine)356 static void __setup_engine_capabilities(struct intel_engine_cs *engine)
357 {
358 	struct drm_i915_private *i915 = engine->i915;
359 
360 	if (engine->class == VIDEO_DECODE_CLASS) {
361 		/*
362 		 * HEVC support is present on first engine instance
363 		 * before Gen11 and on all instances afterwards.
364 		 */
365 		if (INTEL_GEN(i915) >= 11 ||
366 		    (INTEL_GEN(i915) >= 9 && engine->instance == 0))
367 			engine->uabi_capabilities |=
368 				I915_VIDEO_CLASS_CAPABILITY_HEVC;
369 
370 		/*
371 		 * SFC block is present only on even logical engine
372 		 * instances.
373 		 */
374 		if ((INTEL_GEN(i915) >= 11 &&
375 		     (engine->gt->info.vdbox_sfc_access &
376 		      BIT(engine->instance))) ||
377 		    (INTEL_GEN(i915) >= 9 && engine->instance == 0))
378 			engine->uabi_capabilities |=
379 				I915_VIDEO_AND_ENHANCE_CLASS_CAPABILITY_SFC;
380 	} else if (engine->class == VIDEO_ENHANCEMENT_CLASS) {
381 		if (INTEL_GEN(i915) >= 9)
382 			engine->uabi_capabilities |=
383 				I915_VIDEO_AND_ENHANCE_CLASS_CAPABILITY_SFC;
384 	}
385 }
386 
intel_setup_engine_capabilities(struct intel_gt * gt)387 static void intel_setup_engine_capabilities(struct intel_gt *gt)
388 {
389 	struct intel_engine_cs *engine;
390 	enum intel_engine_id id;
391 
392 	for_each_engine(engine, gt, id)
393 		__setup_engine_capabilities(engine);
394 }
395 
396 /**
397  * intel_engines_release() - free the resources allocated for Command Streamers
398  * @gt: pointer to struct intel_gt
399  */
intel_engines_release(struct intel_gt * gt)400 void intel_engines_release(struct intel_gt *gt)
401 {
402 	struct intel_engine_cs *engine;
403 	enum intel_engine_id id;
404 
405 	/*
406 	 * Before we release the resources held by engine, we must be certain
407 	 * that the HW is no longer accessing them -- having the GPU scribble
408 	 * to or read from a page being used for something else causes no end
409 	 * of fun.
410 	 *
411 	 * The GPU should be reset by this point, but assume the worst just
412 	 * in case we aborted before completely initialising the engines.
413 	 */
414 	GEM_BUG_ON(intel_gt_pm_is_awake(gt));
415 	if (!INTEL_INFO(gt->i915)->gpu_reset_clobbers_display)
416 		__intel_gt_reset(gt, ALL_ENGINES);
417 
418 	/* Decouple the backend; but keep the layout for late GPU resets */
419 	for_each_engine(engine, gt, id) {
420 		if (!engine->release)
421 			continue;
422 
423 		intel_wakeref_wait_for_idle(&engine->wakeref);
424 		GEM_BUG_ON(intel_engine_pm_is_awake(engine));
425 
426 		engine->release(engine);
427 		engine->release = NULL;
428 
429 		memset(&engine->reset, 0, sizeof(engine->reset));
430 	}
431 }
432 
intel_engine_free_request_pool(struct intel_engine_cs * engine)433 void intel_engine_free_request_pool(struct intel_engine_cs *engine)
434 {
435 	if (!engine->request_pool)
436 		return;
437 
438 	kmem_cache_free(i915_request_slab_cache(), engine->request_pool);
439 }
440 
intel_engines_free(struct intel_gt * gt)441 void intel_engines_free(struct intel_gt *gt)
442 {
443 	struct intel_engine_cs *engine;
444 	enum intel_engine_id id;
445 
446 	/* Free the requests! dma-resv keeps fences around for an eternity */
447 	rcu_barrier();
448 
449 	for_each_engine(engine, gt, id) {
450 		intel_engine_free_request_pool(engine);
451 		kfree(engine);
452 		gt->engine[id] = NULL;
453 	}
454 }
455 
456 /*
457  * Determine which engines are fused off in our particular hardware.
458  * Note that we have a catch-22 situation where we need to be able to access
459  * the blitter forcewake domain to read the engine fuses, but at the same time
460  * we need to know which engines are available on the system to know which
461  * forcewake domains are present. We solve this by intializing the forcewake
462  * domains based on the full engine mask in the platform capabilities before
463  * calling this function and pruning the domains for fused-off engines
464  * afterwards.
465  */
init_engine_mask(struct intel_gt * gt)466 static intel_engine_mask_t init_engine_mask(struct intel_gt *gt)
467 {
468 	struct drm_i915_private *i915 = gt->i915;
469 	struct intel_gt_info *info = &gt->info;
470 	struct intel_uncore *uncore = gt->uncore;
471 	unsigned int logical_vdbox = 0;
472 	unsigned int i;
473 	u32 media_fuse;
474 	u16 vdbox_mask;
475 	u16 vebox_mask;
476 
477 	info->engine_mask = INTEL_INFO(i915)->platform_engine_mask;
478 
479 	if (INTEL_GEN(i915) < 11)
480 		return info->engine_mask;
481 
482 	media_fuse = ~intel_uncore_read(uncore, GEN11_GT_VEBOX_VDBOX_DISABLE);
483 
484 	vdbox_mask = media_fuse & GEN11_GT_VDBOX_DISABLE_MASK;
485 	vebox_mask = (media_fuse & GEN11_GT_VEBOX_DISABLE_MASK) >>
486 		      GEN11_GT_VEBOX_DISABLE_SHIFT;
487 
488 	for (i = 0; i < I915_MAX_VCS; i++) {
489 		if (!HAS_ENGINE(gt, _VCS(i))) {
490 			vdbox_mask &= ~BIT(i);
491 			continue;
492 		}
493 
494 		if (!(BIT(i) & vdbox_mask)) {
495 			info->engine_mask &= ~BIT(_VCS(i));
496 			drm_dbg(&i915->drm, "vcs%u fused off\n", i);
497 			continue;
498 		}
499 
500 		/*
501 		 * In Gen11, only even numbered logical VDBOXes are
502 		 * hooked up to an SFC (Scaler & Format Converter) unit.
503 		 * In TGL each VDBOX has access to an SFC.
504 		 */
505 		if (INTEL_GEN(i915) >= 12 || logical_vdbox++ % 2 == 0)
506 			gt->info.vdbox_sfc_access |= BIT(i);
507 	}
508 	drm_dbg(&i915->drm, "vdbox enable: %04x, instances: %04lx\n",
509 		vdbox_mask, VDBOX_MASK(gt));
510 	GEM_BUG_ON(vdbox_mask != VDBOX_MASK(gt));
511 
512 	for (i = 0; i < I915_MAX_VECS; i++) {
513 		if (!HAS_ENGINE(gt, _VECS(i))) {
514 			vebox_mask &= ~BIT(i);
515 			continue;
516 		}
517 
518 		if (!(BIT(i) & vebox_mask)) {
519 			info->engine_mask &= ~BIT(_VECS(i));
520 			drm_dbg(&i915->drm, "vecs%u fused off\n", i);
521 		}
522 	}
523 	drm_dbg(&i915->drm, "vebox enable: %04x, instances: %04lx\n",
524 		vebox_mask, VEBOX_MASK(gt));
525 	GEM_BUG_ON(vebox_mask != VEBOX_MASK(gt));
526 
527 	return info->engine_mask;
528 }
529 
530 /**
531  * intel_engines_init_mmio() - allocate and prepare the Engine Command Streamers
532  * @gt: pointer to struct intel_gt
533  *
534  * Return: non-zero if the initialization failed.
535  */
intel_engines_init_mmio(struct intel_gt * gt)536 int intel_engines_init_mmio(struct intel_gt *gt)
537 {
538 	struct drm_i915_private *i915 = gt->i915;
539 	const unsigned int engine_mask = init_engine_mask(gt);
540 	unsigned int mask = 0;
541 	unsigned int i;
542 	int err;
543 
544 	drm_WARN_ON(&i915->drm, engine_mask == 0);
545 	drm_WARN_ON(&i915->drm, engine_mask &
546 		    GENMASK(BITS_PER_TYPE(mask) - 1, I915_NUM_ENGINES));
547 
548 	if (i915_inject_probe_failure(i915))
549 		return -ENODEV;
550 
551 	for (i = 0; i < ARRAY_SIZE(intel_engines); i++) {
552 		if (!HAS_ENGINE(gt, i))
553 			continue;
554 
555 		err = intel_engine_setup(gt, i);
556 		if (err)
557 			goto cleanup;
558 
559 		mask |= BIT(i);
560 	}
561 
562 	/*
563 	 * Catch failures to update intel_engines table when the new engines
564 	 * are added to the driver by a warning and disabling the forgotten
565 	 * engines.
566 	 */
567 	if (drm_WARN_ON(&i915->drm, mask != engine_mask))
568 		gt->info.engine_mask = mask;
569 
570 	gt->info.num_engines = hweight32(mask);
571 
572 	intel_gt_check_and_clear_faults(gt);
573 
574 	intel_setup_engine_capabilities(gt);
575 
576 	intel_uncore_prune_engine_fw_domains(gt->uncore, gt);
577 
578 	return 0;
579 
580 cleanup:
581 	intel_engines_free(gt);
582 	return err;
583 }
584 
intel_engine_init_execlists(struct intel_engine_cs * engine)585 void intel_engine_init_execlists(struct intel_engine_cs *engine)
586 {
587 	struct intel_engine_execlists * const execlists = &engine->execlists;
588 
589 	execlists->port_mask = 1;
590 	GEM_BUG_ON(!is_power_of_2(execlists_num_ports(execlists)));
591 	GEM_BUG_ON(execlists_num_ports(execlists) > EXECLIST_MAX_PORTS);
592 
593 	memset(execlists->pending, 0, sizeof(execlists->pending));
594 	execlists->active =
595 		memset(execlists->inflight, 0, sizeof(execlists->inflight));
596 
597 	execlists->queue_priority_hint = INT_MIN;
598 	execlists->queue = RB_ROOT_CACHED;
599 }
600 
cleanup_status_page(struct intel_engine_cs * engine)601 static void cleanup_status_page(struct intel_engine_cs *engine)
602 {
603 	struct i915_vma *vma;
604 
605 	/* Prevent writes into HWSP after returning the page to the system */
606 	intel_engine_set_hwsp_writemask(engine, ~0u);
607 
608 	vma = fetch_and_zero(&engine->status_page.vma);
609 	if (!vma)
610 		return;
611 
612 	if (!HWS_NEEDS_PHYSICAL(engine->i915))
613 		i915_vma_unpin(vma);
614 
615 	i915_gem_object_unpin_map(vma->obj);
616 	i915_gem_object_put(vma->obj);
617 }
618 
pin_ggtt_status_page(struct intel_engine_cs * engine,struct i915_vma * vma)619 static int pin_ggtt_status_page(struct intel_engine_cs *engine,
620 				struct i915_vma *vma)
621 {
622 	unsigned int flags;
623 
624 	if (!HAS_LLC(engine->i915) && i915_ggtt_has_aperture(engine->gt->ggtt))
625 		/*
626 		 * On g33, we cannot place HWS above 256MiB, so
627 		 * restrict its pinning to the low mappable arena.
628 		 * Though this restriction is not documented for
629 		 * gen4, gen5, or byt, they also behave similarly
630 		 * and hang if the HWS is placed at the top of the
631 		 * GTT. To generalise, it appears that all !llc
632 		 * platforms have issues with us placing the HWS
633 		 * above the mappable region (even though we never
634 		 * actually map it).
635 		 */
636 		flags = PIN_MAPPABLE;
637 	else
638 		flags = PIN_HIGH;
639 
640 	return i915_ggtt_pin(vma, NULL, 0, flags);
641 }
642 
init_status_page(struct intel_engine_cs * engine)643 static int init_status_page(struct intel_engine_cs *engine)
644 {
645 	struct drm_i915_gem_object *obj;
646 	struct i915_vma *vma;
647 	void *vaddr;
648 	int ret;
649 
650 	/*
651 	 * Though the HWS register does support 36bit addresses, historically
652 	 * we have had hangs and corruption reported due to wild writes if
653 	 * the HWS is placed above 4G. We only allow objects to be allocated
654 	 * in GFP_DMA32 for i965, and no earlier physical address users had
655 	 * access to more than 4G.
656 	 */
657 	obj = i915_gem_object_create_internal(engine->i915, PAGE_SIZE);
658 	if (IS_ERR(obj)) {
659 		drm_err(&engine->i915->drm,
660 			"Failed to allocate status page\n");
661 		return PTR_ERR(obj);
662 	}
663 
664 	i915_gem_object_set_cache_coherency(obj, I915_CACHE_LLC);
665 
666 	vma = i915_vma_instance(obj, &engine->gt->ggtt->vm, NULL);
667 	if (IS_ERR(vma)) {
668 		ret = PTR_ERR(vma);
669 		goto err;
670 	}
671 
672 	vaddr = i915_gem_object_pin_map(obj, I915_MAP_WB);
673 	if (IS_ERR(vaddr)) {
674 		ret = PTR_ERR(vaddr);
675 		goto err;
676 	}
677 
678 	engine->status_page.addr = memset(vaddr, 0, PAGE_SIZE);
679 	engine->status_page.vma = vma;
680 
681 	if (!HWS_NEEDS_PHYSICAL(engine->i915)) {
682 		ret = pin_ggtt_status_page(engine, vma);
683 		if (ret)
684 			goto err_unpin;
685 	}
686 
687 	return 0;
688 
689 err_unpin:
690 	i915_gem_object_unpin_map(obj);
691 err:
692 	i915_gem_object_put(obj);
693 	return ret;
694 }
695 
engine_setup_common(struct intel_engine_cs * engine)696 static int engine_setup_common(struct intel_engine_cs *engine)
697 {
698 	int err;
699 
700 	init_llist_head(&engine->barrier_tasks);
701 
702 	err = init_status_page(engine);
703 	if (err)
704 		return err;
705 
706 	engine->breadcrumbs = intel_breadcrumbs_create(engine);
707 	if (!engine->breadcrumbs) {
708 		err = -ENOMEM;
709 		goto err_status;
710 	}
711 
712 	err = intel_engine_init_cmd_parser(engine);
713 	if (err)
714 		goto err_cmd_parser;
715 
716 	intel_engine_init_active(engine, ENGINE_PHYSICAL);
717 	intel_engine_init_execlists(engine);
718 	intel_engine_init__pm(engine);
719 	intel_engine_init_retire(engine);
720 
721 	/* Use the whole device by default */
722 	engine->sseu =
723 		intel_sseu_from_device_info(&engine->gt->info.sseu);
724 
725 	intel_engine_init_workarounds(engine);
726 	intel_engine_init_whitelist(engine);
727 	intel_engine_init_ctx_wa(engine);
728 
729 	return 0;
730 
731 err_cmd_parser:
732 	intel_breadcrumbs_free(engine->breadcrumbs);
733 err_status:
734 	cleanup_status_page(engine);
735 	return err;
736 }
737 
738 struct measure_breadcrumb {
739 	struct i915_request rq;
740 	struct intel_ring ring;
741 	u32 cs[2048];
742 };
743 
measure_breadcrumb_dw(struct intel_context * ce)744 static int measure_breadcrumb_dw(struct intel_context *ce)
745 {
746 	struct intel_engine_cs *engine = ce->engine;
747 	struct measure_breadcrumb *frame;
748 	int dw;
749 
750 	GEM_BUG_ON(!engine->gt->scratch);
751 
752 	frame = kzalloc(sizeof(*frame), GFP_KERNEL);
753 	if (!frame)
754 		return -ENOMEM;
755 
756 	frame->rq.engine = engine;
757 	frame->rq.context = ce;
758 	rcu_assign_pointer(frame->rq.timeline, ce->timeline);
759 
760 	frame->ring.vaddr = frame->cs;
761 	frame->ring.size = sizeof(frame->cs);
762 	frame->ring.wrap =
763 		BITS_PER_TYPE(frame->ring.size) - ilog2(frame->ring.size);
764 	frame->ring.effective_size = frame->ring.size;
765 	intel_ring_update_space(&frame->ring);
766 	frame->rq.ring = &frame->ring;
767 
768 	mutex_lock(&ce->timeline->mutex);
769 	spin_lock_irq(&engine->active.lock);
770 
771 	dw = engine->emit_fini_breadcrumb(&frame->rq, frame->cs) - frame->cs;
772 
773 	spin_unlock_irq(&engine->active.lock);
774 	mutex_unlock(&ce->timeline->mutex);
775 
776 	GEM_BUG_ON(dw & 1); /* RING_TAIL must be qword aligned */
777 
778 	kfree(frame);
779 	return dw;
780 }
781 
782 void
intel_engine_init_active(struct intel_engine_cs * engine,unsigned int subclass)783 intel_engine_init_active(struct intel_engine_cs *engine, unsigned int subclass)
784 {
785 	INIT_LIST_HEAD(&engine->active.requests);
786 	INIT_LIST_HEAD(&engine->active.hold);
787 
788 	spin_lock_init(&engine->active.lock);
789 	lockdep_set_subclass(&engine->active.lock, subclass);
790 
791 	/*
792 	 * Due to an interesting quirk in lockdep's internal debug tracking,
793 	 * after setting a subclass we must ensure the lock is used. Otherwise,
794 	 * nr_unused_locks is incremented once too often.
795 	 */
796 #ifdef CONFIG_DEBUG_LOCK_ALLOC
797 	local_irq_disable();
798 	lock_map_acquire(&engine->active.lock.dep_map);
799 	lock_map_release(&engine->active.lock.dep_map);
800 	local_irq_enable();
801 #endif
802 }
803 
804 static struct intel_context *
create_pinned_context(struct intel_engine_cs * engine,unsigned int hwsp,struct lock_class_key * key,const char * name)805 create_pinned_context(struct intel_engine_cs *engine,
806 		      unsigned int hwsp,
807 		      struct lock_class_key *key,
808 		      const char *name)
809 {
810 	struct intel_context *ce;
811 	int err;
812 
813 	ce = intel_context_create(engine);
814 	if (IS_ERR(ce))
815 		return ce;
816 
817 	__set_bit(CONTEXT_BARRIER_BIT, &ce->flags);
818 	ce->timeline = page_pack_bits(NULL, hwsp);
819 
820 	err = intel_context_pin(ce); /* perma-pin so it is always available */
821 	if (err) {
822 		intel_context_put(ce);
823 		return ERR_PTR(err);
824 	}
825 
826 	/*
827 	 * Give our perma-pinned kernel timelines a separate lockdep class,
828 	 * so that we can use them from within the normal user timelines
829 	 * should we need to inject GPU operations during their request
830 	 * construction.
831 	 */
832 	lockdep_set_class_and_name(&ce->timeline->mutex, key, name);
833 
834 	return ce;
835 }
836 
837 static struct intel_context *
create_kernel_context(struct intel_engine_cs * engine)838 create_kernel_context(struct intel_engine_cs *engine)
839 {
840 	static struct lock_class_key kernel;
841 
842 	return create_pinned_context(engine, I915_GEM_HWS_SEQNO_ADDR,
843 				     &kernel, "kernel_context");
844 }
845 
846 /**
847  * intel_engines_init_common - initialize cengine state which might require hw access
848  * @engine: Engine to initialize.
849  *
850  * Initializes @engine@ structure members shared between legacy and execlists
851  * submission modes which do require hardware access.
852  *
853  * Typcally done at later stages of submission mode specific engine setup.
854  *
855  * Returns zero on success or an error code on failure.
856  */
engine_init_common(struct intel_engine_cs * engine)857 static int engine_init_common(struct intel_engine_cs *engine)
858 {
859 	struct intel_context *ce;
860 	int ret;
861 
862 	engine->set_default_submission(engine);
863 
864 	/*
865 	 * We may need to do things with the shrinker which
866 	 * require us to immediately switch back to the default
867 	 * context. This can cause a problem as pinning the
868 	 * default context also requires GTT space which may not
869 	 * be available. To avoid this we always pin the default
870 	 * context.
871 	 */
872 	ce = create_kernel_context(engine);
873 	if (IS_ERR(ce))
874 		return PTR_ERR(ce);
875 
876 	ret = measure_breadcrumb_dw(ce);
877 	if (ret < 0)
878 		goto err_context;
879 
880 	engine->emit_fini_breadcrumb_dw = ret;
881 	engine->kernel_context = ce;
882 
883 	return 0;
884 
885 err_context:
886 	intel_context_put(ce);
887 	return ret;
888 }
889 
intel_engines_init(struct intel_gt * gt)890 int intel_engines_init(struct intel_gt *gt)
891 {
892 	int (*setup)(struct intel_engine_cs *engine);
893 	struct intel_engine_cs *engine;
894 	enum intel_engine_id id;
895 	int err;
896 
897 	if (HAS_EXECLISTS(gt->i915))
898 		setup = intel_execlists_submission_setup;
899 	else
900 		setup = intel_ring_submission_setup;
901 
902 	for_each_engine(engine, gt, id) {
903 		err = engine_setup_common(engine);
904 		if (err)
905 			return err;
906 
907 		err = setup(engine);
908 		if (err)
909 			return err;
910 
911 		err = engine_init_common(engine);
912 		if (err)
913 			return err;
914 
915 		intel_engine_add_user(engine);
916 	}
917 
918 	return 0;
919 }
920 
921 /**
922  * intel_engines_cleanup_common - cleans up the engine state created by
923  *                                the common initiailizers.
924  * @engine: Engine to cleanup.
925  *
926  * This cleans up everything created by the common helpers.
927  */
intel_engine_cleanup_common(struct intel_engine_cs * engine)928 void intel_engine_cleanup_common(struct intel_engine_cs *engine)
929 {
930 	GEM_BUG_ON(!list_empty(&engine->active.requests));
931 	tasklet_kill(&engine->execlists.tasklet); /* flush the callback */
932 
933 	cleanup_status_page(engine);
934 	intel_breadcrumbs_free(engine->breadcrumbs);
935 
936 	intel_engine_fini_retire(engine);
937 	intel_engine_cleanup_cmd_parser(engine);
938 
939 	if (engine->default_state)
940 		fput(engine->default_state);
941 
942 	if (engine->kernel_context) {
943 		intel_context_unpin(engine->kernel_context);
944 		intel_context_put(engine->kernel_context);
945 	}
946 	GEM_BUG_ON(!llist_empty(&engine->barrier_tasks));
947 
948 	intel_wa_list_free(&engine->ctx_wa_list);
949 	intel_wa_list_free(&engine->wa_list);
950 	intel_wa_list_free(&engine->whitelist);
951 }
952 
953 /**
954  * intel_engine_resume - re-initializes the HW state of the engine
955  * @engine: Engine to resume.
956  *
957  * Returns zero on success or an error code on failure.
958  */
intel_engine_resume(struct intel_engine_cs * engine)959 int intel_engine_resume(struct intel_engine_cs *engine)
960 {
961 	intel_engine_apply_workarounds(engine);
962 	intel_engine_apply_whitelist(engine);
963 
964 	return engine->resume(engine);
965 }
966 
intel_engine_get_active_head(const struct intel_engine_cs * engine)967 u64 intel_engine_get_active_head(const struct intel_engine_cs *engine)
968 {
969 	struct drm_i915_private *i915 = engine->i915;
970 
971 	u64 acthd;
972 
973 	if (INTEL_GEN(i915) >= 8)
974 		acthd = ENGINE_READ64(engine, RING_ACTHD, RING_ACTHD_UDW);
975 	else if (INTEL_GEN(i915) >= 4)
976 		acthd = ENGINE_READ(engine, RING_ACTHD);
977 	else
978 		acthd = ENGINE_READ(engine, ACTHD);
979 
980 	return acthd;
981 }
982 
intel_engine_get_last_batch_head(const struct intel_engine_cs * engine)983 u64 intel_engine_get_last_batch_head(const struct intel_engine_cs *engine)
984 {
985 	u64 bbaddr;
986 
987 	if (INTEL_GEN(engine->i915) >= 8)
988 		bbaddr = ENGINE_READ64(engine, RING_BBADDR, RING_BBADDR_UDW);
989 	else
990 		bbaddr = ENGINE_READ(engine, RING_BBADDR);
991 
992 	return bbaddr;
993 }
994 
stop_timeout(const struct intel_engine_cs * engine)995 static unsigned long stop_timeout(const struct intel_engine_cs *engine)
996 {
997 	if (in_atomic() || irqs_disabled()) /* inside atomic preempt-reset? */
998 		return 0;
999 
1000 	/*
1001 	 * If we are doing a normal GPU reset, we can take our time and allow
1002 	 * the engine to quiesce. We've stopped submission to the engine, and
1003 	 * if we wait long enough an innocent context should complete and
1004 	 * leave the engine idle. So they should not be caught unaware by
1005 	 * the forthcoming GPU reset (which usually follows the stop_cs)!
1006 	 */
1007 	return READ_ONCE(engine->props.stop_timeout_ms);
1008 }
1009 
intel_engine_stop_cs(struct intel_engine_cs * engine)1010 int intel_engine_stop_cs(struct intel_engine_cs *engine)
1011 {
1012 	struct intel_uncore *uncore = engine->uncore;
1013 	const u32 base = engine->mmio_base;
1014 	const i915_reg_t mode = RING_MI_MODE(base);
1015 	int err;
1016 
1017 	if (INTEL_GEN(engine->i915) < 3)
1018 		return -ENODEV;
1019 
1020 	ENGINE_TRACE(engine, "\n");
1021 
1022 	intel_uncore_write_fw(uncore, mode, _MASKED_BIT_ENABLE(STOP_RING));
1023 
1024 	err = 0;
1025 	if (__intel_wait_for_register_fw(uncore,
1026 					 mode, MODE_IDLE, MODE_IDLE,
1027 					 1000, stop_timeout(engine),
1028 					 NULL)) {
1029 		ENGINE_TRACE(engine, "timed out on STOP_RING -> IDLE\n");
1030 		err = -ETIMEDOUT;
1031 	}
1032 
1033 	/* A final mmio read to let GPU writes be hopefully flushed to memory */
1034 	intel_uncore_posting_read_fw(uncore, mode);
1035 
1036 	return err;
1037 }
1038 
intel_engine_cancel_stop_cs(struct intel_engine_cs * engine)1039 void intel_engine_cancel_stop_cs(struct intel_engine_cs *engine)
1040 {
1041 	ENGINE_TRACE(engine, "\n");
1042 
1043 	ENGINE_WRITE_FW(engine, RING_MI_MODE, _MASKED_BIT_DISABLE(STOP_RING));
1044 }
1045 
i915_cache_level_str(struct drm_i915_private * i915,int type)1046 const char *i915_cache_level_str(struct drm_i915_private *i915, int type)
1047 {
1048 	switch (type) {
1049 	case I915_CACHE_NONE: return " uncached";
1050 	case I915_CACHE_LLC: return HAS_LLC(i915) ? " LLC" : " snooped";
1051 	case I915_CACHE_L3_LLC: return " L3+LLC";
1052 	case I915_CACHE_WT: return " WT";
1053 	default: return "";
1054 	}
1055 }
1056 
1057 static u32
read_subslice_reg(const struct intel_engine_cs * engine,int slice,int subslice,i915_reg_t reg)1058 read_subslice_reg(const struct intel_engine_cs *engine,
1059 		  int slice, int subslice, i915_reg_t reg)
1060 {
1061 	struct drm_i915_private *i915 = engine->i915;
1062 	struct intel_uncore *uncore = engine->uncore;
1063 	u32 mcr_mask, mcr_ss, mcr, old_mcr, val;
1064 	enum forcewake_domains fw_domains;
1065 
1066 	if (INTEL_GEN(i915) >= 11) {
1067 		mcr_mask = GEN11_MCR_SLICE_MASK | GEN11_MCR_SUBSLICE_MASK;
1068 		mcr_ss = GEN11_MCR_SLICE(slice) | GEN11_MCR_SUBSLICE(subslice);
1069 	} else {
1070 		mcr_mask = GEN8_MCR_SLICE_MASK | GEN8_MCR_SUBSLICE_MASK;
1071 		mcr_ss = GEN8_MCR_SLICE(slice) | GEN8_MCR_SUBSLICE(subslice);
1072 	}
1073 
1074 	fw_domains = intel_uncore_forcewake_for_reg(uncore, reg,
1075 						    FW_REG_READ);
1076 	fw_domains |= intel_uncore_forcewake_for_reg(uncore,
1077 						     GEN8_MCR_SELECTOR,
1078 						     FW_REG_READ | FW_REG_WRITE);
1079 
1080 	spin_lock_irq(&uncore->lock);
1081 	intel_uncore_forcewake_get__locked(uncore, fw_domains);
1082 
1083 	old_mcr = mcr = intel_uncore_read_fw(uncore, GEN8_MCR_SELECTOR);
1084 
1085 	mcr &= ~mcr_mask;
1086 	mcr |= mcr_ss;
1087 	intel_uncore_write_fw(uncore, GEN8_MCR_SELECTOR, mcr);
1088 
1089 	val = intel_uncore_read_fw(uncore, reg);
1090 
1091 	mcr &= ~mcr_mask;
1092 	mcr |= old_mcr & mcr_mask;
1093 
1094 	intel_uncore_write_fw(uncore, GEN8_MCR_SELECTOR, mcr);
1095 
1096 	intel_uncore_forcewake_put__locked(uncore, fw_domains);
1097 	spin_unlock_irq(&uncore->lock);
1098 
1099 	return val;
1100 }
1101 
1102 /* NB: please notice the memset */
intel_engine_get_instdone(const struct intel_engine_cs * engine,struct intel_instdone * instdone)1103 void intel_engine_get_instdone(const struct intel_engine_cs *engine,
1104 			       struct intel_instdone *instdone)
1105 {
1106 	struct drm_i915_private *i915 = engine->i915;
1107 	const struct sseu_dev_info *sseu = &engine->gt->info.sseu;
1108 	struct intel_uncore *uncore = engine->uncore;
1109 	u32 mmio_base = engine->mmio_base;
1110 	int slice;
1111 	int subslice;
1112 
1113 	memset(instdone, 0, sizeof(*instdone));
1114 
1115 	switch (INTEL_GEN(i915)) {
1116 	default:
1117 		instdone->instdone =
1118 			intel_uncore_read(uncore, RING_INSTDONE(mmio_base));
1119 
1120 		if (engine->id != RCS0)
1121 			break;
1122 
1123 		instdone->slice_common =
1124 			intel_uncore_read(uncore, GEN7_SC_INSTDONE);
1125 		if (INTEL_GEN(i915) >= 12) {
1126 			instdone->slice_common_extra[0] =
1127 				intel_uncore_read(uncore, GEN12_SC_INSTDONE_EXTRA);
1128 			instdone->slice_common_extra[1] =
1129 				intel_uncore_read(uncore, GEN12_SC_INSTDONE_EXTRA2);
1130 		}
1131 		for_each_instdone_slice_subslice(i915, sseu, slice, subslice) {
1132 			instdone->sampler[slice][subslice] =
1133 				read_subslice_reg(engine, slice, subslice,
1134 						  GEN7_SAMPLER_INSTDONE);
1135 			instdone->row[slice][subslice] =
1136 				read_subslice_reg(engine, slice, subslice,
1137 						  GEN7_ROW_INSTDONE);
1138 		}
1139 		break;
1140 	case 7:
1141 		instdone->instdone =
1142 			intel_uncore_read(uncore, RING_INSTDONE(mmio_base));
1143 
1144 		if (engine->id != RCS0)
1145 			break;
1146 
1147 		instdone->slice_common =
1148 			intel_uncore_read(uncore, GEN7_SC_INSTDONE);
1149 		instdone->sampler[0][0] =
1150 			intel_uncore_read(uncore, GEN7_SAMPLER_INSTDONE);
1151 		instdone->row[0][0] =
1152 			intel_uncore_read(uncore, GEN7_ROW_INSTDONE);
1153 
1154 		break;
1155 	case 6:
1156 	case 5:
1157 	case 4:
1158 		instdone->instdone =
1159 			intel_uncore_read(uncore, RING_INSTDONE(mmio_base));
1160 		if (engine->id == RCS0)
1161 			/* HACK: Using the wrong struct member */
1162 			instdone->slice_common =
1163 				intel_uncore_read(uncore, GEN4_INSTDONE1);
1164 		break;
1165 	case 3:
1166 	case 2:
1167 		instdone->instdone = intel_uncore_read(uncore, GEN2_INSTDONE);
1168 		break;
1169 	}
1170 }
1171 
ring_is_idle(struct intel_engine_cs * engine)1172 static bool ring_is_idle(struct intel_engine_cs *engine)
1173 {
1174 	bool idle = true;
1175 
1176 	if (I915_SELFTEST_ONLY(!engine->mmio_base))
1177 		return true;
1178 
1179 	if (!intel_engine_pm_get_if_awake(engine))
1180 		return true;
1181 
1182 	/* First check that no commands are left in the ring */
1183 	if ((ENGINE_READ(engine, RING_HEAD) & HEAD_ADDR) !=
1184 	    (ENGINE_READ(engine, RING_TAIL) & TAIL_ADDR))
1185 		idle = false;
1186 
1187 	/* No bit for gen2, so assume the CS parser is idle */
1188 	if (INTEL_GEN(engine->i915) > 2 &&
1189 	    !(ENGINE_READ(engine, RING_MI_MODE) & MODE_IDLE))
1190 		idle = false;
1191 
1192 	intel_engine_pm_put(engine);
1193 
1194 	return idle;
1195 }
1196 
intel_engine_flush_submission(struct intel_engine_cs * engine)1197 void intel_engine_flush_submission(struct intel_engine_cs *engine)
1198 {
1199 	struct tasklet_struct *t = &engine->execlists.tasklet;
1200 
1201 	if (!t->func)
1202 		return;
1203 
1204 	/* Synchronise and wait for the tasklet on another CPU */
1205 	tasklet_kill(t);
1206 
1207 	/* Having cancelled the tasklet, ensure that is run */
1208 	local_bh_disable();
1209 	if (tasklet_trylock(t)) {
1210 		/* Must wait for any GPU reset in progress. */
1211 		if (__tasklet_is_enabled(t))
1212 			t->func(t->data);
1213 		tasklet_unlock(t);
1214 	}
1215 	local_bh_enable();
1216 }
1217 
1218 /**
1219  * intel_engine_is_idle() - Report if the engine has finished process all work
1220  * @engine: the intel_engine_cs
1221  *
1222  * Return true if there are no requests pending, nothing left to be submitted
1223  * to hardware, and that the engine is idle.
1224  */
intel_engine_is_idle(struct intel_engine_cs * engine)1225 bool intel_engine_is_idle(struct intel_engine_cs *engine)
1226 {
1227 	/* More white lies, if wedged, hw state is inconsistent */
1228 	if (intel_gt_is_wedged(engine->gt))
1229 		return true;
1230 
1231 	if (!intel_engine_pm_is_awake(engine))
1232 		return true;
1233 
1234 	/* Waiting to drain ELSP? */
1235 	if (execlists_active(&engine->execlists)) {
1236 		synchronize_hardirq(engine->i915->drm.pdev->irq);
1237 
1238 		intel_engine_flush_submission(engine);
1239 
1240 		if (execlists_active(&engine->execlists))
1241 			return false;
1242 	}
1243 
1244 	/* ELSP is empty, but there are ready requests? E.g. after reset */
1245 	if (!RB_EMPTY_ROOT(&engine->execlists.queue.rb_root))
1246 		return false;
1247 
1248 	/* Ring stopped? */
1249 	return ring_is_idle(engine);
1250 }
1251 
intel_engines_are_idle(struct intel_gt * gt)1252 bool intel_engines_are_idle(struct intel_gt *gt)
1253 {
1254 	struct intel_engine_cs *engine;
1255 	enum intel_engine_id id;
1256 
1257 	/*
1258 	 * If the driver is wedged, HW state may be very inconsistent and
1259 	 * report that it is still busy, even though we have stopped using it.
1260 	 */
1261 	if (intel_gt_is_wedged(gt))
1262 		return true;
1263 
1264 	/* Already parked (and passed an idleness test); must still be idle */
1265 	if (!READ_ONCE(gt->awake))
1266 		return true;
1267 
1268 	for_each_engine(engine, gt, id) {
1269 		if (!intel_engine_is_idle(engine))
1270 			return false;
1271 	}
1272 
1273 	return true;
1274 }
1275 
intel_engines_reset_default_submission(struct intel_gt * gt)1276 void intel_engines_reset_default_submission(struct intel_gt *gt)
1277 {
1278 	struct intel_engine_cs *engine;
1279 	enum intel_engine_id id;
1280 
1281 	for_each_engine(engine, gt, id)
1282 		engine->set_default_submission(engine);
1283 }
1284 
intel_engine_can_store_dword(struct intel_engine_cs * engine)1285 bool intel_engine_can_store_dword(struct intel_engine_cs *engine)
1286 {
1287 	switch (INTEL_GEN(engine->i915)) {
1288 	case 2:
1289 		return false; /* uses physical not virtual addresses */
1290 	case 3:
1291 		/* maybe only uses physical not virtual addresses */
1292 		return !(IS_I915G(engine->i915) || IS_I915GM(engine->i915));
1293 	case 4:
1294 		return !IS_I965G(engine->i915); /* who knows! */
1295 	case 6:
1296 		return engine->class != VIDEO_DECODE_CLASS; /* b0rked */
1297 	default:
1298 		return true;
1299 	}
1300 }
1301 
print_sched_attr(const struct i915_sched_attr * attr,char * buf,int x,int len)1302 static int print_sched_attr(const struct i915_sched_attr *attr,
1303 			    char *buf, int x, int len)
1304 {
1305 	if (attr->priority == I915_PRIORITY_INVALID)
1306 		return x;
1307 
1308 	x += snprintf(buf + x, len - x,
1309 		      " prio=%d", attr->priority);
1310 
1311 	return x;
1312 }
1313 
print_request(struct drm_printer * m,struct i915_request * rq,const char * prefix)1314 static void print_request(struct drm_printer *m,
1315 			  struct i915_request *rq,
1316 			  const char *prefix)
1317 {
1318 	const char *name = rq->fence.ops->get_timeline_name(&rq->fence);
1319 	char buf[80] = "";
1320 	int x = 0;
1321 
1322 	x = print_sched_attr(&rq->sched.attr, buf, x, sizeof(buf));
1323 
1324 	drm_printf(m, "%s %llx:%llx%s%s %s @ %dms: %s\n",
1325 		   prefix,
1326 		   rq->fence.context, rq->fence.seqno,
1327 		   i915_request_completed(rq) ? "!" :
1328 		   i915_request_started(rq) ? "*" :
1329 		   "",
1330 		   test_bit(DMA_FENCE_FLAG_SIGNALED_BIT,
1331 			    &rq->fence.flags) ? "+" :
1332 		   test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT,
1333 			    &rq->fence.flags) ? "-" :
1334 		   "",
1335 		   buf,
1336 		   jiffies_to_msecs(jiffies - rq->emitted_jiffies),
1337 		   name);
1338 }
1339 
get_timeline(struct i915_request * rq)1340 static struct intel_timeline *get_timeline(struct i915_request *rq)
1341 {
1342 	struct intel_timeline *tl;
1343 
1344 	/*
1345 	 * Even though we are holding the engine->active.lock here, there
1346 	 * is no control over the submission queue per-se and we are
1347 	 * inspecting the active state at a random point in time, with an
1348 	 * unknown queue. Play safe and make sure the timeline remains valid.
1349 	 * (Only being used for pretty printing, one extra kref shouldn't
1350 	 * cause a camel stampede!)
1351 	 */
1352 	rcu_read_lock();
1353 	tl = rcu_dereference(rq->timeline);
1354 	if (!kref_get_unless_zero(&tl->kref))
1355 		tl = NULL;
1356 	rcu_read_unlock();
1357 
1358 	return tl;
1359 }
1360 
print_ring(char * buf,int sz,struct i915_request * rq)1361 static int print_ring(char *buf, int sz, struct i915_request *rq)
1362 {
1363 	int len = 0;
1364 
1365 	if (!i915_request_signaled(rq)) {
1366 		struct intel_timeline *tl = get_timeline(rq);
1367 
1368 		len = scnprintf(buf, sz,
1369 				"ring:{start:%08x, hwsp:%08x, seqno:%08x, runtime:%llums}, ",
1370 				i915_ggtt_offset(rq->ring->vma),
1371 				tl ? tl->hwsp_offset : 0,
1372 				hwsp_seqno(rq),
1373 				DIV_ROUND_CLOSEST_ULL(intel_context_get_total_runtime_ns(rq->context),
1374 						      1000 * 1000));
1375 
1376 		if (tl)
1377 			intel_timeline_put(tl);
1378 	}
1379 
1380 	return len;
1381 }
1382 
hexdump(struct drm_printer * m,const void * buf,size_t len)1383 static void hexdump(struct drm_printer *m, const void *buf, size_t len)
1384 {
1385 	const size_t rowsize = 8 * sizeof(u32);
1386 	const void *prev = NULL;
1387 	bool skip = false;
1388 	size_t pos;
1389 
1390 	for (pos = 0; pos < len; pos += rowsize) {
1391 		char line[128];
1392 
1393 		if (prev && !memcmp(prev, buf + pos, rowsize)) {
1394 			if (!skip) {
1395 				drm_printf(m, "*\n");
1396 				skip = true;
1397 			}
1398 			continue;
1399 		}
1400 
1401 		WARN_ON_ONCE(hex_dump_to_buffer(buf + pos, len - pos,
1402 						rowsize, sizeof(u32),
1403 						line, sizeof(line),
1404 						false) >= sizeof(line));
1405 		drm_printf(m, "[%04zx] %s\n", pos, line);
1406 
1407 		prev = buf + pos;
1408 		skip = false;
1409 	}
1410 }
1411 
repr_timer(const struct timer_list * t)1412 static const char *repr_timer(const struct timer_list *t)
1413 {
1414 	if (!READ_ONCE(t->expires))
1415 		return "inactive";
1416 
1417 	if (timer_pending(t))
1418 		return "active";
1419 
1420 	return "expired";
1421 }
1422 
intel_engine_print_registers(struct intel_engine_cs * engine,struct drm_printer * m)1423 static void intel_engine_print_registers(struct intel_engine_cs *engine,
1424 					 struct drm_printer *m)
1425 {
1426 	struct drm_i915_private *dev_priv = engine->i915;
1427 	struct intel_engine_execlists * const execlists = &engine->execlists;
1428 	u64 addr;
1429 
1430 	if (engine->id == RENDER_CLASS && IS_GEN_RANGE(dev_priv, 4, 7))
1431 		drm_printf(m, "\tCCID: 0x%08x\n", ENGINE_READ(engine, CCID));
1432 	if (HAS_EXECLISTS(dev_priv)) {
1433 		drm_printf(m, "\tEL_STAT_HI: 0x%08x\n",
1434 			   ENGINE_READ(engine, RING_EXECLIST_STATUS_HI));
1435 		drm_printf(m, "\tEL_STAT_LO: 0x%08x\n",
1436 			   ENGINE_READ(engine, RING_EXECLIST_STATUS_LO));
1437 	}
1438 	drm_printf(m, "\tRING_START: 0x%08x\n",
1439 		   ENGINE_READ(engine, RING_START));
1440 	drm_printf(m, "\tRING_HEAD:  0x%08x\n",
1441 		   ENGINE_READ(engine, RING_HEAD) & HEAD_ADDR);
1442 	drm_printf(m, "\tRING_TAIL:  0x%08x\n",
1443 		   ENGINE_READ(engine, RING_TAIL) & TAIL_ADDR);
1444 	drm_printf(m, "\tRING_CTL:   0x%08x%s\n",
1445 		   ENGINE_READ(engine, RING_CTL),
1446 		   ENGINE_READ(engine, RING_CTL) & (RING_WAIT | RING_WAIT_SEMAPHORE) ? " [waiting]" : "");
1447 	if (INTEL_GEN(engine->i915) > 2) {
1448 		drm_printf(m, "\tRING_MODE:  0x%08x%s\n",
1449 			   ENGINE_READ(engine, RING_MI_MODE),
1450 			   ENGINE_READ(engine, RING_MI_MODE) & (MODE_IDLE) ? " [idle]" : "");
1451 	}
1452 
1453 	if (INTEL_GEN(dev_priv) >= 6) {
1454 		drm_printf(m, "\tRING_IMR:   0x%08x\n",
1455 			   ENGINE_READ(engine, RING_IMR));
1456 		drm_printf(m, "\tRING_ESR:   0x%08x\n",
1457 			   ENGINE_READ(engine, RING_ESR));
1458 		drm_printf(m, "\tRING_EMR:   0x%08x\n",
1459 			   ENGINE_READ(engine, RING_EMR));
1460 		drm_printf(m, "\tRING_EIR:   0x%08x\n",
1461 			   ENGINE_READ(engine, RING_EIR));
1462 	}
1463 
1464 	addr = intel_engine_get_active_head(engine);
1465 	drm_printf(m, "\tACTHD:  0x%08x_%08x\n",
1466 		   upper_32_bits(addr), lower_32_bits(addr));
1467 	addr = intel_engine_get_last_batch_head(engine);
1468 	drm_printf(m, "\tBBADDR: 0x%08x_%08x\n",
1469 		   upper_32_bits(addr), lower_32_bits(addr));
1470 	if (INTEL_GEN(dev_priv) >= 8)
1471 		addr = ENGINE_READ64(engine, RING_DMA_FADD, RING_DMA_FADD_UDW);
1472 	else if (INTEL_GEN(dev_priv) >= 4)
1473 		addr = ENGINE_READ(engine, RING_DMA_FADD);
1474 	else
1475 		addr = ENGINE_READ(engine, DMA_FADD_I8XX);
1476 	drm_printf(m, "\tDMA_FADDR: 0x%08x_%08x\n",
1477 		   upper_32_bits(addr), lower_32_bits(addr));
1478 	if (INTEL_GEN(dev_priv) >= 4) {
1479 		drm_printf(m, "\tIPEIR: 0x%08x\n",
1480 			   ENGINE_READ(engine, RING_IPEIR));
1481 		drm_printf(m, "\tIPEHR: 0x%08x\n",
1482 			   ENGINE_READ(engine, RING_IPEHR));
1483 	} else {
1484 		drm_printf(m, "\tIPEIR: 0x%08x\n", ENGINE_READ(engine, IPEIR));
1485 		drm_printf(m, "\tIPEHR: 0x%08x\n", ENGINE_READ(engine, IPEHR));
1486 	}
1487 
1488 	if (HAS_EXECLISTS(dev_priv)) {
1489 		struct i915_request * const *port, *rq;
1490 		const u32 *hws =
1491 			&engine->status_page.addr[I915_HWS_CSB_BUF0_INDEX];
1492 		const u8 num_entries = execlists->csb_size;
1493 		unsigned int idx;
1494 		u8 read, write;
1495 
1496 		drm_printf(m, "\tExeclist tasklet queued? %s (%s), preempt? %s, timeslice? %s\n",
1497 			   yesno(test_bit(TASKLET_STATE_SCHED,
1498 					  &engine->execlists.tasklet.state)),
1499 			   enableddisabled(!atomic_read(&engine->execlists.tasklet.count)),
1500 			   repr_timer(&engine->execlists.preempt),
1501 			   repr_timer(&engine->execlists.timer));
1502 
1503 		read = execlists->csb_head;
1504 		write = READ_ONCE(*execlists->csb_write);
1505 
1506 		drm_printf(m, "\tExeclist status: 0x%08x %08x; CSB read:%d, write:%d, entries:%d\n",
1507 			   ENGINE_READ(engine, RING_EXECLIST_STATUS_LO),
1508 			   ENGINE_READ(engine, RING_EXECLIST_STATUS_HI),
1509 			   read, write, num_entries);
1510 
1511 		if (read >= num_entries)
1512 			read = 0;
1513 		if (write >= num_entries)
1514 			write = 0;
1515 		if (read > write)
1516 			write += num_entries;
1517 		while (read < write) {
1518 			idx = ++read % num_entries;
1519 			drm_printf(m, "\tExeclist CSB[%d]: 0x%08x, context: %d\n",
1520 				   idx, hws[idx * 2], hws[idx * 2 + 1]);
1521 		}
1522 
1523 		execlists_active_lock_bh(execlists);
1524 		rcu_read_lock();
1525 		for (port = execlists->active; (rq = *port); port++) {
1526 			char hdr[160];
1527 			int len;
1528 
1529 			len = scnprintf(hdr, sizeof(hdr),
1530 					"\t\tActive[%d]:  ccid:%08x%s%s, ",
1531 					(int)(port - execlists->active),
1532 					rq->context->lrc.ccid,
1533 					intel_context_is_closed(rq->context) ? "!" : "",
1534 					intel_context_is_banned(rq->context) ? "*" : "");
1535 			len += print_ring(hdr + len, sizeof(hdr) - len, rq);
1536 			scnprintf(hdr + len, sizeof(hdr) - len, "rq: ");
1537 			print_request(m, rq, hdr);
1538 		}
1539 		for (port = execlists->pending; (rq = *port); port++) {
1540 			char hdr[160];
1541 			int len;
1542 
1543 			len = scnprintf(hdr, sizeof(hdr),
1544 					"\t\tPending[%d]: ccid:%08x%s%s, ",
1545 					(int)(port - execlists->pending),
1546 					rq->context->lrc.ccid,
1547 					intel_context_is_closed(rq->context) ? "!" : "",
1548 					intel_context_is_banned(rq->context) ? "*" : "");
1549 			len += print_ring(hdr + len, sizeof(hdr) - len, rq);
1550 			scnprintf(hdr + len, sizeof(hdr) - len, "rq: ");
1551 			print_request(m, rq, hdr);
1552 		}
1553 		rcu_read_unlock();
1554 		execlists_active_unlock_bh(execlists);
1555 	} else if (INTEL_GEN(dev_priv) > 6) {
1556 		drm_printf(m, "\tPP_DIR_BASE: 0x%08x\n",
1557 			   ENGINE_READ(engine, RING_PP_DIR_BASE));
1558 		drm_printf(m, "\tPP_DIR_BASE_READ: 0x%08x\n",
1559 			   ENGINE_READ(engine, RING_PP_DIR_BASE_READ));
1560 		drm_printf(m, "\tPP_DIR_DCLV: 0x%08x\n",
1561 			   ENGINE_READ(engine, RING_PP_DIR_DCLV));
1562 	}
1563 }
1564 
print_request_ring(struct drm_printer * m,struct i915_request * rq)1565 static void print_request_ring(struct drm_printer *m, struct i915_request *rq)
1566 {
1567 	void *ring;
1568 	int size;
1569 
1570 	drm_printf(m,
1571 		   "[head %04x, postfix %04x, tail %04x, batch 0x%08x_%08x]:\n",
1572 		   rq->head, rq->postfix, rq->tail,
1573 		   rq->batch ? upper_32_bits(rq->batch->node.start) : ~0u,
1574 		   rq->batch ? lower_32_bits(rq->batch->node.start) : ~0u);
1575 
1576 	size = rq->tail - rq->head;
1577 	if (rq->tail < rq->head)
1578 		size += rq->ring->size;
1579 
1580 	ring = kmalloc(size, GFP_ATOMIC);
1581 	if (ring) {
1582 		const void *vaddr = rq->ring->vaddr;
1583 		unsigned int head = rq->head;
1584 		unsigned int len = 0;
1585 
1586 		if (rq->tail < head) {
1587 			len = rq->ring->size - head;
1588 			memcpy(ring, vaddr + head, len);
1589 			head = 0;
1590 		}
1591 		memcpy(ring + len, vaddr + head, size - len);
1592 
1593 		hexdump(m, ring, size);
1594 		kfree(ring);
1595 	}
1596 }
1597 
list_count(struct list_head * list)1598 static unsigned long list_count(struct list_head *list)
1599 {
1600 	struct list_head *pos;
1601 	unsigned long count = 0;
1602 
1603 	list_for_each(pos, list)
1604 		count++;
1605 
1606 	return count;
1607 }
1608 
intel_engine_dump(struct intel_engine_cs * engine,struct drm_printer * m,const char * header,...)1609 void intel_engine_dump(struct intel_engine_cs *engine,
1610 		       struct drm_printer *m,
1611 		       const char *header, ...)
1612 {
1613 	struct i915_gpu_error * const error = &engine->i915->gpu_error;
1614 	struct i915_request *rq;
1615 	intel_wakeref_t wakeref;
1616 	unsigned long flags;
1617 	ktime_t dummy;
1618 
1619 	if (header) {
1620 		va_list ap;
1621 
1622 		va_start(ap, header);
1623 		drm_vprintf(m, header, &ap);
1624 		va_end(ap);
1625 	}
1626 
1627 	if (intel_gt_is_wedged(engine->gt))
1628 		drm_printf(m, "*** WEDGED ***\n");
1629 
1630 	drm_printf(m, "\tAwake? %d\n", atomic_read(&engine->wakeref.count));
1631 	drm_printf(m, "\tBarriers?: %s\n",
1632 		   yesno(!llist_empty(&engine->barrier_tasks)));
1633 	drm_printf(m, "\tLatency: %luus\n",
1634 		   ewma__engine_latency_read(&engine->latency));
1635 	if (intel_engine_supports_stats(engine))
1636 		drm_printf(m, "\tRuntime: %llums\n",
1637 			   ktime_to_ms(intel_engine_get_busy_time(engine,
1638 								  &dummy)));
1639 	drm_printf(m, "\tForcewake: %x domains, %d active\n",
1640 		   engine->fw_domain, atomic_read(&engine->fw_active));
1641 
1642 	rcu_read_lock();
1643 	rq = READ_ONCE(engine->heartbeat.systole);
1644 	if (rq)
1645 		drm_printf(m, "\tHeartbeat: %d ms ago\n",
1646 			   jiffies_to_msecs(jiffies - rq->emitted_jiffies));
1647 	rcu_read_unlock();
1648 	drm_printf(m, "\tReset count: %d (global %d)\n",
1649 		   i915_reset_engine_count(error, engine),
1650 		   i915_reset_count(error));
1651 
1652 	drm_printf(m, "\tRequests:\n");
1653 
1654 	spin_lock_irqsave(&engine->active.lock, flags);
1655 	rq = intel_engine_find_active_request(engine);
1656 	if (rq) {
1657 		struct intel_timeline *tl = get_timeline(rq);
1658 
1659 		print_request(m, rq, "\t\tactive ");
1660 
1661 		drm_printf(m, "\t\tring->start:  0x%08x\n",
1662 			   i915_ggtt_offset(rq->ring->vma));
1663 		drm_printf(m, "\t\tring->head:   0x%08x\n",
1664 			   rq->ring->head);
1665 		drm_printf(m, "\t\tring->tail:   0x%08x\n",
1666 			   rq->ring->tail);
1667 		drm_printf(m, "\t\tring->emit:   0x%08x\n",
1668 			   rq->ring->emit);
1669 		drm_printf(m, "\t\tring->space:  0x%08x\n",
1670 			   rq->ring->space);
1671 
1672 		if (tl) {
1673 			drm_printf(m, "\t\tring->hwsp:   0x%08x\n",
1674 				   tl->hwsp_offset);
1675 			intel_timeline_put(tl);
1676 		}
1677 
1678 		print_request_ring(m, rq);
1679 
1680 		if (rq->context->lrc_reg_state) {
1681 			drm_printf(m, "Logical Ring Context:\n");
1682 			hexdump(m, rq->context->lrc_reg_state, PAGE_SIZE);
1683 		}
1684 	}
1685 	drm_printf(m, "\tOn hold?: %lu\n", list_count(&engine->active.hold));
1686 	spin_unlock_irqrestore(&engine->active.lock, flags);
1687 
1688 	drm_printf(m, "\tMMIO base:  0x%08x\n", engine->mmio_base);
1689 	wakeref = intel_runtime_pm_get_if_in_use(engine->uncore->rpm);
1690 	if (wakeref) {
1691 		intel_engine_print_registers(engine, m);
1692 		intel_runtime_pm_put(engine->uncore->rpm, wakeref);
1693 	} else {
1694 		drm_printf(m, "\tDevice is asleep; skipping register dump\n");
1695 	}
1696 
1697 	intel_execlists_show_requests(engine, m, print_request, 8);
1698 
1699 	drm_printf(m, "HWSP:\n");
1700 	hexdump(m, engine->status_page.addr, PAGE_SIZE);
1701 
1702 	drm_printf(m, "Idle? %s\n", yesno(intel_engine_is_idle(engine)));
1703 
1704 	intel_engine_print_breadcrumbs(engine, m);
1705 }
1706 
__intel_engine_get_busy_time(struct intel_engine_cs * engine,ktime_t * now)1707 static ktime_t __intel_engine_get_busy_time(struct intel_engine_cs *engine,
1708 					    ktime_t *now)
1709 {
1710 	ktime_t total = engine->stats.total;
1711 
1712 	/*
1713 	 * If the engine is executing something at the moment
1714 	 * add it to the total.
1715 	 */
1716 	*now = ktime_get();
1717 	if (atomic_read(&engine->stats.active))
1718 		total = ktime_add(total, ktime_sub(*now, engine->stats.start));
1719 
1720 	return total;
1721 }
1722 
1723 /**
1724  * intel_engine_get_busy_time() - Return current accumulated engine busyness
1725  * @engine: engine to report on
1726  * @now: monotonic timestamp of sampling
1727  *
1728  * Returns accumulated time @engine was busy since engine stats were enabled.
1729  */
intel_engine_get_busy_time(struct intel_engine_cs * engine,ktime_t * now)1730 ktime_t intel_engine_get_busy_time(struct intel_engine_cs *engine, ktime_t *now)
1731 {
1732 	unsigned int seq;
1733 	ktime_t total;
1734 
1735 	do {
1736 		seq = read_seqbegin(&engine->stats.lock);
1737 		total = __intel_engine_get_busy_time(engine, now);
1738 	} while (read_seqretry(&engine->stats.lock, seq));
1739 
1740 	return total;
1741 }
1742 
match_ring(struct i915_request * rq)1743 static bool match_ring(struct i915_request *rq)
1744 {
1745 	u32 ring = ENGINE_READ(rq->engine, RING_START);
1746 
1747 	return ring == i915_ggtt_offset(rq->ring->vma);
1748 }
1749 
1750 struct i915_request *
intel_engine_find_active_request(struct intel_engine_cs * engine)1751 intel_engine_find_active_request(struct intel_engine_cs *engine)
1752 {
1753 	struct i915_request *request, *active = NULL;
1754 
1755 	/*
1756 	 * We are called by the error capture, reset and to dump engine
1757 	 * state at random points in time. In particular, note that neither is
1758 	 * crucially ordered with an interrupt. After a hang, the GPU is dead
1759 	 * and we assume that no more writes can happen (we waited long enough
1760 	 * for all writes that were in transaction to be flushed) - adding an
1761 	 * extra delay for a recent interrupt is pointless. Hence, we do
1762 	 * not need an engine->irq_seqno_barrier() before the seqno reads.
1763 	 * At all other times, we must assume the GPU is still running, but
1764 	 * we only care about the snapshot of this moment.
1765 	 */
1766 	lockdep_assert_held(&engine->active.lock);
1767 
1768 	rcu_read_lock();
1769 	request = execlists_active(&engine->execlists);
1770 	if (request) {
1771 		struct intel_timeline *tl = request->context->timeline;
1772 
1773 		list_for_each_entry_from_reverse(request, &tl->requests, link) {
1774 			if (i915_request_completed(request))
1775 				break;
1776 
1777 			active = request;
1778 		}
1779 	}
1780 	rcu_read_unlock();
1781 	if (active)
1782 		return active;
1783 
1784 	list_for_each_entry(request, &engine->active.requests, sched.link) {
1785 		if (i915_request_completed(request))
1786 			continue;
1787 
1788 		if (!i915_request_started(request))
1789 			continue;
1790 
1791 		/* More than one preemptible request may match! */
1792 		if (!match_ring(request))
1793 			continue;
1794 
1795 		active = request;
1796 		break;
1797 	}
1798 
1799 	return active;
1800 }
1801 
1802 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
1803 #include "mock_engine.c"
1804 #include "selftest_engine.c"
1805 #include "selftest_engine_cs.c"
1806 #endif
1807