1 // SPDX-License-Identifier: GPL-2.0
2 #include <linux/bitops.h>
3 #include <linux/types.h>
4 #include <linux/slab.h>
5
6 #include <asm/cpu_entry_area.h>
7 #include <asm/perf_event.h>
8 #include <asm/tlbflush.h>
9 #include <asm/insn.h>
10 #include <asm/io.h>
11
12 #include "../perf_event.h"
13
14 /* Waste a full page so it can be mapped into the cpu_entry_area */
15 DEFINE_PER_CPU_PAGE_ALIGNED(struct debug_store, cpu_debug_store);
16
17 /* The size of a BTS record in bytes: */
18 #define BTS_RECORD_SIZE 24
19
20 #define PEBS_FIXUP_SIZE PAGE_SIZE
21
22 /*
23 * pebs_record_32 for p4 and core not supported
24
25 struct pebs_record_32 {
26 u32 flags, ip;
27 u32 ax, bc, cx, dx;
28 u32 si, di, bp, sp;
29 };
30
31 */
32
33 union intel_x86_pebs_dse {
34 u64 val;
35 struct {
36 unsigned int ld_dse:4;
37 unsigned int ld_stlb_miss:1;
38 unsigned int ld_locked:1;
39 unsigned int ld_reserved:26;
40 };
41 struct {
42 unsigned int st_l1d_hit:1;
43 unsigned int st_reserved1:3;
44 unsigned int st_stlb_miss:1;
45 unsigned int st_locked:1;
46 unsigned int st_reserved2:26;
47 };
48 };
49
50
51 /*
52 * Map PEBS Load Latency Data Source encodings to generic
53 * memory data source information
54 */
55 #define P(a, b) PERF_MEM_S(a, b)
56 #define OP_LH (P(OP, LOAD) | P(LVL, HIT))
57 #define LEVEL(x) P(LVLNUM, x)
58 #define REM P(REMOTE, REMOTE)
59 #define SNOOP_NONE_MISS (P(SNOOP, NONE) | P(SNOOP, MISS))
60
61 /* Version for Sandy Bridge and later */
62 static u64 pebs_data_source[] = {
63 P(OP, LOAD) | P(LVL, MISS) | LEVEL(L3) | P(SNOOP, NA),/* 0x00:ukn L3 */
64 OP_LH | P(LVL, L1) | LEVEL(L1) | P(SNOOP, NONE), /* 0x01: L1 local */
65 OP_LH | P(LVL, LFB) | LEVEL(LFB) | P(SNOOP, NONE), /* 0x02: LFB hit */
66 OP_LH | P(LVL, L2) | LEVEL(L2) | P(SNOOP, NONE), /* 0x03: L2 hit */
67 OP_LH | P(LVL, L3) | LEVEL(L3) | P(SNOOP, NONE), /* 0x04: L3 hit */
68 OP_LH | P(LVL, L3) | LEVEL(L3) | P(SNOOP, MISS), /* 0x05: L3 hit, snoop miss */
69 OP_LH | P(LVL, L3) | LEVEL(L3) | P(SNOOP, HIT), /* 0x06: L3 hit, snoop hit */
70 OP_LH | P(LVL, L3) | LEVEL(L3) | P(SNOOP, HITM), /* 0x07: L3 hit, snoop hitm */
71 OP_LH | P(LVL, REM_CCE1) | REM | LEVEL(L3) | P(SNOOP, HIT), /* 0x08: L3 miss snoop hit */
72 OP_LH | P(LVL, REM_CCE1) | REM | LEVEL(L3) | P(SNOOP, HITM), /* 0x09: L3 miss snoop hitm*/
73 OP_LH | P(LVL, LOC_RAM) | LEVEL(RAM) | P(SNOOP, HIT), /* 0x0a: L3 miss, shared */
74 OP_LH | P(LVL, REM_RAM1) | REM | LEVEL(L3) | P(SNOOP, HIT), /* 0x0b: L3 miss, shared */
75 OP_LH | P(LVL, LOC_RAM) | LEVEL(RAM) | SNOOP_NONE_MISS, /* 0x0c: L3 miss, excl */
76 OP_LH | P(LVL, REM_RAM1) | LEVEL(RAM) | REM | SNOOP_NONE_MISS, /* 0x0d: L3 miss, excl */
77 OP_LH | P(LVL, IO) | LEVEL(NA) | P(SNOOP, NONE), /* 0x0e: I/O */
78 OP_LH | P(LVL, UNC) | LEVEL(NA) | P(SNOOP, NONE), /* 0x0f: uncached */
79 };
80
81 /* Patch up minor differences in the bits */
intel_pmu_pebs_data_source_nhm(void)82 void __init intel_pmu_pebs_data_source_nhm(void)
83 {
84 pebs_data_source[0x05] = OP_LH | P(LVL, L3) | LEVEL(L3) | P(SNOOP, HIT);
85 pebs_data_source[0x06] = OP_LH | P(LVL, L3) | LEVEL(L3) | P(SNOOP, HITM);
86 pebs_data_source[0x07] = OP_LH | P(LVL, L3) | LEVEL(L3) | P(SNOOP, HITM);
87 }
88
intel_pmu_pebs_data_source_skl(bool pmem)89 void __init intel_pmu_pebs_data_source_skl(bool pmem)
90 {
91 u64 pmem_or_l4 = pmem ? LEVEL(PMEM) : LEVEL(L4);
92
93 pebs_data_source[0x08] = OP_LH | pmem_or_l4 | P(SNOOP, HIT);
94 pebs_data_source[0x09] = OP_LH | pmem_or_l4 | REM | P(SNOOP, HIT);
95 pebs_data_source[0x0b] = OP_LH | LEVEL(RAM) | REM | P(SNOOP, NONE);
96 pebs_data_source[0x0c] = OP_LH | LEVEL(ANY_CACHE) | REM | P(SNOOPX, FWD);
97 pebs_data_source[0x0d] = OP_LH | LEVEL(ANY_CACHE) | REM | P(SNOOP, HITM);
98 }
99
precise_store_data(u64 status)100 static u64 precise_store_data(u64 status)
101 {
102 union intel_x86_pebs_dse dse;
103 u64 val = P(OP, STORE) | P(SNOOP, NA) | P(LVL, L1) | P(TLB, L2);
104
105 dse.val = status;
106
107 /*
108 * bit 4: TLB access
109 * 1 = stored missed 2nd level TLB
110 *
111 * so it either hit the walker or the OS
112 * otherwise hit 2nd level TLB
113 */
114 if (dse.st_stlb_miss)
115 val |= P(TLB, MISS);
116 else
117 val |= P(TLB, HIT);
118
119 /*
120 * bit 0: hit L1 data cache
121 * if not set, then all we know is that
122 * it missed L1D
123 */
124 if (dse.st_l1d_hit)
125 val |= P(LVL, HIT);
126 else
127 val |= P(LVL, MISS);
128
129 /*
130 * bit 5: Locked prefix
131 */
132 if (dse.st_locked)
133 val |= P(LOCK, LOCKED);
134
135 return val;
136 }
137
precise_datala_hsw(struct perf_event * event,u64 status)138 static u64 precise_datala_hsw(struct perf_event *event, u64 status)
139 {
140 union perf_mem_data_src dse;
141
142 dse.val = PERF_MEM_NA;
143
144 if (event->hw.flags & PERF_X86_EVENT_PEBS_ST_HSW)
145 dse.mem_op = PERF_MEM_OP_STORE;
146 else if (event->hw.flags & PERF_X86_EVENT_PEBS_LD_HSW)
147 dse.mem_op = PERF_MEM_OP_LOAD;
148
149 /*
150 * L1 info only valid for following events:
151 *
152 * MEM_UOPS_RETIRED.STLB_MISS_STORES
153 * MEM_UOPS_RETIRED.LOCK_STORES
154 * MEM_UOPS_RETIRED.SPLIT_STORES
155 * MEM_UOPS_RETIRED.ALL_STORES
156 */
157 if (event->hw.flags & PERF_X86_EVENT_PEBS_ST_HSW) {
158 if (status & 1)
159 dse.mem_lvl = PERF_MEM_LVL_L1 | PERF_MEM_LVL_HIT;
160 else
161 dse.mem_lvl = PERF_MEM_LVL_L1 | PERF_MEM_LVL_MISS;
162 }
163 return dse.val;
164 }
165
load_latency_data(u64 status)166 static u64 load_latency_data(u64 status)
167 {
168 union intel_x86_pebs_dse dse;
169 u64 val;
170
171 dse.val = status;
172
173 /*
174 * use the mapping table for bit 0-3
175 */
176 val = pebs_data_source[dse.ld_dse];
177
178 /*
179 * Nehalem models do not support TLB, Lock infos
180 */
181 if (x86_pmu.pebs_no_tlb) {
182 val |= P(TLB, NA) | P(LOCK, NA);
183 return val;
184 }
185 /*
186 * bit 4: TLB access
187 * 0 = did not miss 2nd level TLB
188 * 1 = missed 2nd level TLB
189 */
190 if (dse.ld_stlb_miss)
191 val |= P(TLB, MISS) | P(TLB, L2);
192 else
193 val |= P(TLB, HIT) | P(TLB, L1) | P(TLB, L2);
194
195 /*
196 * bit 5: locked prefix
197 */
198 if (dse.ld_locked)
199 val |= P(LOCK, LOCKED);
200
201 return val;
202 }
203
204 struct pebs_record_core {
205 u64 flags, ip;
206 u64 ax, bx, cx, dx;
207 u64 si, di, bp, sp;
208 u64 r8, r9, r10, r11;
209 u64 r12, r13, r14, r15;
210 };
211
212 struct pebs_record_nhm {
213 u64 flags, ip;
214 u64 ax, bx, cx, dx;
215 u64 si, di, bp, sp;
216 u64 r8, r9, r10, r11;
217 u64 r12, r13, r14, r15;
218 u64 status, dla, dse, lat;
219 };
220
221 /*
222 * Same as pebs_record_nhm, with two additional fields.
223 */
224 struct pebs_record_hsw {
225 u64 flags, ip;
226 u64 ax, bx, cx, dx;
227 u64 si, di, bp, sp;
228 u64 r8, r9, r10, r11;
229 u64 r12, r13, r14, r15;
230 u64 status, dla, dse, lat;
231 u64 real_ip, tsx_tuning;
232 };
233
234 union hsw_tsx_tuning {
235 struct {
236 u32 cycles_last_block : 32,
237 hle_abort : 1,
238 rtm_abort : 1,
239 instruction_abort : 1,
240 non_instruction_abort : 1,
241 retry : 1,
242 data_conflict : 1,
243 capacity_writes : 1,
244 capacity_reads : 1;
245 };
246 u64 value;
247 };
248
249 #define PEBS_HSW_TSX_FLAGS 0xff00000000ULL
250
251 /* Same as HSW, plus TSC */
252
253 struct pebs_record_skl {
254 u64 flags, ip;
255 u64 ax, bx, cx, dx;
256 u64 si, di, bp, sp;
257 u64 r8, r9, r10, r11;
258 u64 r12, r13, r14, r15;
259 u64 status, dla, dse, lat;
260 u64 real_ip, tsx_tuning;
261 u64 tsc;
262 };
263
init_debug_store_on_cpu(int cpu)264 void init_debug_store_on_cpu(int cpu)
265 {
266 struct debug_store *ds = per_cpu(cpu_hw_events, cpu).ds;
267
268 if (!ds)
269 return;
270
271 wrmsr_on_cpu(cpu, MSR_IA32_DS_AREA,
272 (u32)((u64)(unsigned long)ds),
273 (u32)((u64)(unsigned long)ds >> 32));
274 }
275
fini_debug_store_on_cpu(int cpu)276 void fini_debug_store_on_cpu(int cpu)
277 {
278 if (!per_cpu(cpu_hw_events, cpu).ds)
279 return;
280
281 wrmsr_on_cpu(cpu, MSR_IA32_DS_AREA, 0, 0);
282 }
283
284 static DEFINE_PER_CPU(void *, insn_buffer);
285
ds_update_cea(void * cea,void * addr,size_t size,pgprot_t prot)286 static void ds_update_cea(void *cea, void *addr, size_t size, pgprot_t prot)
287 {
288 unsigned long start = (unsigned long)cea;
289 phys_addr_t pa;
290 size_t msz = 0;
291
292 pa = virt_to_phys(addr);
293
294 preempt_disable();
295 for (; msz < size; msz += PAGE_SIZE, pa += PAGE_SIZE, cea += PAGE_SIZE)
296 cea_set_pte(cea, pa, prot);
297
298 /*
299 * This is a cross-CPU update of the cpu_entry_area, we must shoot down
300 * all TLB entries for it.
301 */
302 flush_tlb_kernel_range(start, start + size);
303 preempt_enable();
304 }
305
ds_clear_cea(void * cea,size_t size)306 static void ds_clear_cea(void *cea, size_t size)
307 {
308 unsigned long start = (unsigned long)cea;
309 size_t msz = 0;
310
311 preempt_disable();
312 for (; msz < size; msz += PAGE_SIZE, cea += PAGE_SIZE)
313 cea_set_pte(cea, 0, PAGE_NONE);
314
315 flush_tlb_kernel_range(start, start + size);
316 preempt_enable();
317 }
318
dsalloc_pages(size_t size,gfp_t flags,int cpu)319 static void *dsalloc_pages(size_t size, gfp_t flags, int cpu)
320 {
321 unsigned int order = get_order(size);
322 int node = cpu_to_node(cpu);
323 struct page *page;
324
325 page = __alloc_pages_node(node, flags | __GFP_ZERO, order);
326 return page ? page_address(page) : NULL;
327 }
328
dsfree_pages(const void * buffer,size_t size)329 static void dsfree_pages(const void *buffer, size_t size)
330 {
331 if (buffer)
332 free_pages((unsigned long)buffer, get_order(size));
333 }
334
alloc_pebs_buffer(int cpu)335 static int alloc_pebs_buffer(int cpu)
336 {
337 struct cpu_hw_events *hwev = per_cpu_ptr(&cpu_hw_events, cpu);
338 struct debug_store *ds = hwev->ds;
339 size_t bsiz = x86_pmu.pebs_buffer_size;
340 int max, node = cpu_to_node(cpu);
341 void *buffer, *insn_buff, *cea;
342
343 if (!x86_pmu.pebs)
344 return 0;
345
346 buffer = dsalloc_pages(bsiz, GFP_KERNEL, cpu);
347 if (unlikely(!buffer))
348 return -ENOMEM;
349
350 /*
351 * HSW+ already provides us the eventing ip; no need to allocate this
352 * buffer then.
353 */
354 if (x86_pmu.intel_cap.pebs_format < 2) {
355 insn_buff = kzalloc_node(PEBS_FIXUP_SIZE, GFP_KERNEL, node);
356 if (!insn_buff) {
357 dsfree_pages(buffer, bsiz);
358 return -ENOMEM;
359 }
360 per_cpu(insn_buffer, cpu) = insn_buff;
361 }
362 hwev->ds_pebs_vaddr = buffer;
363 /* Update the cpu entry area mapping */
364 cea = &get_cpu_entry_area(cpu)->cpu_debug_buffers.pebs_buffer;
365 ds->pebs_buffer_base = (unsigned long) cea;
366 ds_update_cea(cea, buffer, bsiz, PAGE_KERNEL);
367 ds->pebs_index = ds->pebs_buffer_base;
368 max = x86_pmu.pebs_record_size * (bsiz / x86_pmu.pebs_record_size);
369 ds->pebs_absolute_maximum = ds->pebs_buffer_base + max;
370 return 0;
371 }
372
release_pebs_buffer(int cpu)373 static void release_pebs_buffer(int cpu)
374 {
375 struct cpu_hw_events *hwev = per_cpu_ptr(&cpu_hw_events, cpu);
376 void *cea;
377
378 if (!x86_pmu.pebs)
379 return;
380
381 kfree(per_cpu(insn_buffer, cpu));
382 per_cpu(insn_buffer, cpu) = NULL;
383
384 /* Clear the fixmap */
385 cea = &get_cpu_entry_area(cpu)->cpu_debug_buffers.pebs_buffer;
386 ds_clear_cea(cea, x86_pmu.pebs_buffer_size);
387 dsfree_pages(hwev->ds_pebs_vaddr, x86_pmu.pebs_buffer_size);
388 hwev->ds_pebs_vaddr = NULL;
389 }
390
alloc_bts_buffer(int cpu)391 static int alloc_bts_buffer(int cpu)
392 {
393 struct cpu_hw_events *hwev = per_cpu_ptr(&cpu_hw_events, cpu);
394 struct debug_store *ds = hwev->ds;
395 void *buffer, *cea;
396 int max;
397
398 if (!x86_pmu.bts)
399 return 0;
400
401 buffer = dsalloc_pages(BTS_BUFFER_SIZE, GFP_KERNEL | __GFP_NOWARN, cpu);
402 if (unlikely(!buffer)) {
403 WARN_ONCE(1, "%s: BTS buffer allocation failure\n", __func__);
404 return -ENOMEM;
405 }
406 hwev->ds_bts_vaddr = buffer;
407 /* Update the fixmap */
408 cea = &get_cpu_entry_area(cpu)->cpu_debug_buffers.bts_buffer;
409 ds->bts_buffer_base = (unsigned long) cea;
410 ds_update_cea(cea, buffer, BTS_BUFFER_SIZE, PAGE_KERNEL);
411 ds->bts_index = ds->bts_buffer_base;
412 max = BTS_BUFFER_SIZE / BTS_RECORD_SIZE;
413 ds->bts_absolute_maximum = ds->bts_buffer_base +
414 max * BTS_RECORD_SIZE;
415 ds->bts_interrupt_threshold = ds->bts_absolute_maximum -
416 (max / 16) * BTS_RECORD_SIZE;
417 return 0;
418 }
419
release_bts_buffer(int cpu)420 static void release_bts_buffer(int cpu)
421 {
422 struct cpu_hw_events *hwev = per_cpu_ptr(&cpu_hw_events, cpu);
423 void *cea;
424
425 if (!x86_pmu.bts)
426 return;
427
428 /* Clear the fixmap */
429 cea = &get_cpu_entry_area(cpu)->cpu_debug_buffers.bts_buffer;
430 ds_clear_cea(cea, BTS_BUFFER_SIZE);
431 dsfree_pages(hwev->ds_bts_vaddr, BTS_BUFFER_SIZE);
432 hwev->ds_bts_vaddr = NULL;
433 }
434
alloc_ds_buffer(int cpu)435 static int alloc_ds_buffer(int cpu)
436 {
437 struct debug_store *ds = &get_cpu_entry_area(cpu)->cpu_debug_store;
438
439 memset(ds, 0, sizeof(*ds));
440 per_cpu(cpu_hw_events, cpu).ds = ds;
441 return 0;
442 }
443
release_ds_buffer(int cpu)444 static void release_ds_buffer(int cpu)
445 {
446 per_cpu(cpu_hw_events, cpu).ds = NULL;
447 }
448
release_ds_buffers(void)449 void release_ds_buffers(void)
450 {
451 int cpu;
452
453 if (!x86_pmu.bts && !x86_pmu.pebs)
454 return;
455
456 for_each_possible_cpu(cpu)
457 release_ds_buffer(cpu);
458
459 for_each_possible_cpu(cpu) {
460 /*
461 * Again, ignore errors from offline CPUs, they will no longer
462 * observe cpu_hw_events.ds and not program the DS_AREA when
463 * they come up.
464 */
465 fini_debug_store_on_cpu(cpu);
466 }
467
468 for_each_possible_cpu(cpu) {
469 release_pebs_buffer(cpu);
470 release_bts_buffer(cpu);
471 }
472 }
473
reserve_ds_buffers(void)474 void reserve_ds_buffers(void)
475 {
476 int bts_err = 0, pebs_err = 0;
477 int cpu;
478
479 x86_pmu.bts_active = 0;
480 x86_pmu.pebs_active = 0;
481
482 if (!x86_pmu.bts && !x86_pmu.pebs)
483 return;
484
485 if (!x86_pmu.bts)
486 bts_err = 1;
487
488 if (!x86_pmu.pebs)
489 pebs_err = 1;
490
491 for_each_possible_cpu(cpu) {
492 if (alloc_ds_buffer(cpu)) {
493 bts_err = 1;
494 pebs_err = 1;
495 }
496
497 if (!bts_err && alloc_bts_buffer(cpu))
498 bts_err = 1;
499
500 if (!pebs_err && alloc_pebs_buffer(cpu))
501 pebs_err = 1;
502
503 if (bts_err && pebs_err)
504 break;
505 }
506
507 if (bts_err) {
508 for_each_possible_cpu(cpu)
509 release_bts_buffer(cpu);
510 }
511
512 if (pebs_err) {
513 for_each_possible_cpu(cpu)
514 release_pebs_buffer(cpu);
515 }
516
517 if (bts_err && pebs_err) {
518 for_each_possible_cpu(cpu)
519 release_ds_buffer(cpu);
520 } else {
521 if (x86_pmu.bts && !bts_err)
522 x86_pmu.bts_active = 1;
523
524 if (x86_pmu.pebs && !pebs_err)
525 x86_pmu.pebs_active = 1;
526
527 for_each_possible_cpu(cpu) {
528 /*
529 * Ignores wrmsr_on_cpu() errors for offline CPUs they
530 * will get this call through intel_pmu_cpu_starting().
531 */
532 init_debug_store_on_cpu(cpu);
533 }
534 }
535 }
536
537 /*
538 * BTS
539 */
540
541 struct event_constraint bts_constraint =
542 EVENT_CONSTRAINT(0, 1ULL << INTEL_PMC_IDX_FIXED_BTS, 0);
543
intel_pmu_enable_bts(u64 config)544 void intel_pmu_enable_bts(u64 config)
545 {
546 unsigned long debugctlmsr;
547
548 debugctlmsr = get_debugctlmsr();
549
550 debugctlmsr |= DEBUGCTLMSR_TR;
551 debugctlmsr |= DEBUGCTLMSR_BTS;
552 if (config & ARCH_PERFMON_EVENTSEL_INT)
553 debugctlmsr |= DEBUGCTLMSR_BTINT;
554
555 if (!(config & ARCH_PERFMON_EVENTSEL_OS))
556 debugctlmsr |= DEBUGCTLMSR_BTS_OFF_OS;
557
558 if (!(config & ARCH_PERFMON_EVENTSEL_USR))
559 debugctlmsr |= DEBUGCTLMSR_BTS_OFF_USR;
560
561 update_debugctlmsr(debugctlmsr);
562 }
563
intel_pmu_disable_bts(void)564 void intel_pmu_disable_bts(void)
565 {
566 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
567 unsigned long debugctlmsr;
568
569 if (!cpuc->ds)
570 return;
571
572 debugctlmsr = get_debugctlmsr();
573
574 debugctlmsr &=
575 ~(DEBUGCTLMSR_TR | DEBUGCTLMSR_BTS | DEBUGCTLMSR_BTINT |
576 DEBUGCTLMSR_BTS_OFF_OS | DEBUGCTLMSR_BTS_OFF_USR);
577
578 update_debugctlmsr(debugctlmsr);
579 }
580
intel_pmu_drain_bts_buffer(void)581 int intel_pmu_drain_bts_buffer(void)
582 {
583 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
584 struct debug_store *ds = cpuc->ds;
585 struct bts_record {
586 u64 from;
587 u64 to;
588 u64 flags;
589 };
590 struct perf_event *event = cpuc->events[INTEL_PMC_IDX_FIXED_BTS];
591 struct bts_record *at, *base, *top;
592 struct perf_output_handle handle;
593 struct perf_event_header header;
594 struct perf_sample_data data;
595 unsigned long skip = 0;
596 struct pt_regs regs;
597
598 if (!event)
599 return 0;
600
601 if (!x86_pmu.bts_active)
602 return 0;
603
604 base = (struct bts_record *)(unsigned long)ds->bts_buffer_base;
605 top = (struct bts_record *)(unsigned long)ds->bts_index;
606
607 if (top <= base)
608 return 0;
609
610 memset(®s, 0, sizeof(regs));
611
612 ds->bts_index = ds->bts_buffer_base;
613
614 perf_sample_data_init(&data, 0, event->hw.last_period);
615
616 /*
617 * BTS leaks kernel addresses in branches across the cpl boundary,
618 * such as traps or system calls, so unless the user is asking for
619 * kernel tracing (and right now it's not possible), we'd need to
620 * filter them out. But first we need to count how many of those we
621 * have in the current batch. This is an extra O(n) pass, however,
622 * it's much faster than the other one especially considering that
623 * n <= 2560 (BTS_BUFFER_SIZE / BTS_RECORD_SIZE * 15/16; see the
624 * alloc_bts_buffer()).
625 */
626 for (at = base; at < top; at++) {
627 /*
628 * Note that right now *this* BTS code only works if
629 * attr::exclude_kernel is set, but let's keep this extra
630 * check here in case that changes.
631 */
632 if (event->attr.exclude_kernel &&
633 (kernel_ip(at->from) || kernel_ip(at->to)))
634 skip++;
635 }
636
637 /*
638 * Prepare a generic sample, i.e. fill in the invariant fields.
639 * We will overwrite the from and to address before we output
640 * the sample.
641 */
642 rcu_read_lock();
643 perf_prepare_sample(&header, &data, event, ®s);
644
645 if (perf_output_begin(&handle, &data, event,
646 header.size * (top - base - skip)))
647 goto unlock;
648
649 for (at = base; at < top; at++) {
650 /* Filter out any records that contain kernel addresses. */
651 if (event->attr.exclude_kernel &&
652 (kernel_ip(at->from) || kernel_ip(at->to)))
653 continue;
654
655 data.ip = at->from;
656 data.addr = at->to;
657
658 perf_output_sample(&handle, &header, &data, event);
659 }
660
661 perf_output_end(&handle);
662
663 /* There's new data available. */
664 event->hw.interrupts++;
665 event->pending_kill = POLL_IN;
666 unlock:
667 rcu_read_unlock();
668 return 1;
669 }
670
intel_pmu_drain_pebs_buffer(void)671 static inline void intel_pmu_drain_pebs_buffer(void)
672 {
673 struct perf_sample_data data;
674
675 x86_pmu.drain_pebs(NULL, &data);
676 }
677
678 /*
679 * PEBS
680 */
681 struct event_constraint intel_core2_pebs_event_constraints[] = {
682 INTEL_FLAGS_UEVENT_CONSTRAINT(0x00c0, 0x1), /* INST_RETIRED.ANY */
683 INTEL_FLAGS_UEVENT_CONSTRAINT(0xfec1, 0x1), /* X87_OPS_RETIRED.ANY */
684 INTEL_FLAGS_UEVENT_CONSTRAINT(0x00c5, 0x1), /* BR_INST_RETIRED.MISPRED */
685 INTEL_FLAGS_UEVENT_CONSTRAINT(0x1fc7, 0x1), /* SIMD_INST_RETURED.ANY */
686 INTEL_FLAGS_EVENT_CONSTRAINT(0xcb, 0x1), /* MEM_LOAD_RETIRED.* */
687 /* INST_RETIRED.ANY_P, inv=1, cmask=16 (cycles:p). */
688 INTEL_FLAGS_UEVENT_CONSTRAINT(0x108000c0, 0x01),
689 EVENT_CONSTRAINT_END
690 };
691
692 struct event_constraint intel_atom_pebs_event_constraints[] = {
693 INTEL_FLAGS_UEVENT_CONSTRAINT(0x00c0, 0x1), /* INST_RETIRED.ANY */
694 INTEL_FLAGS_UEVENT_CONSTRAINT(0x00c5, 0x1), /* MISPREDICTED_BRANCH_RETIRED */
695 INTEL_FLAGS_EVENT_CONSTRAINT(0xcb, 0x1), /* MEM_LOAD_RETIRED.* */
696 /* INST_RETIRED.ANY_P, inv=1, cmask=16 (cycles:p). */
697 INTEL_FLAGS_UEVENT_CONSTRAINT(0x108000c0, 0x01),
698 /* Allow all events as PEBS with no flags */
699 INTEL_ALL_EVENT_CONSTRAINT(0, 0x1),
700 EVENT_CONSTRAINT_END
701 };
702
703 struct event_constraint intel_slm_pebs_event_constraints[] = {
704 /* INST_RETIRED.ANY_P, inv=1, cmask=16 (cycles:p). */
705 INTEL_FLAGS_UEVENT_CONSTRAINT(0x108000c0, 0x1),
706 /* Allow all events as PEBS with no flags */
707 INTEL_ALL_EVENT_CONSTRAINT(0, 0x1),
708 EVENT_CONSTRAINT_END
709 };
710
711 struct event_constraint intel_glm_pebs_event_constraints[] = {
712 /* Allow all events as PEBS with no flags */
713 INTEL_ALL_EVENT_CONSTRAINT(0, 0x1),
714 EVENT_CONSTRAINT_END
715 };
716
717 struct event_constraint intel_nehalem_pebs_event_constraints[] = {
718 INTEL_PLD_CONSTRAINT(0x100b, 0xf), /* MEM_INST_RETIRED.* */
719 INTEL_FLAGS_EVENT_CONSTRAINT(0x0f, 0xf), /* MEM_UNCORE_RETIRED.* */
720 INTEL_FLAGS_UEVENT_CONSTRAINT(0x010c, 0xf), /* MEM_STORE_RETIRED.DTLB_MISS */
721 INTEL_FLAGS_EVENT_CONSTRAINT(0xc0, 0xf), /* INST_RETIRED.ANY */
722 INTEL_EVENT_CONSTRAINT(0xc2, 0xf), /* UOPS_RETIRED.* */
723 INTEL_FLAGS_EVENT_CONSTRAINT(0xc4, 0xf), /* BR_INST_RETIRED.* */
724 INTEL_FLAGS_UEVENT_CONSTRAINT(0x02c5, 0xf), /* BR_MISP_RETIRED.NEAR_CALL */
725 INTEL_FLAGS_EVENT_CONSTRAINT(0xc7, 0xf), /* SSEX_UOPS_RETIRED.* */
726 INTEL_FLAGS_UEVENT_CONSTRAINT(0x20c8, 0xf), /* ITLB_MISS_RETIRED */
727 INTEL_FLAGS_EVENT_CONSTRAINT(0xcb, 0xf), /* MEM_LOAD_RETIRED.* */
728 INTEL_FLAGS_EVENT_CONSTRAINT(0xf7, 0xf), /* FP_ASSIST.* */
729 /* INST_RETIRED.ANY_P, inv=1, cmask=16 (cycles:p). */
730 INTEL_FLAGS_UEVENT_CONSTRAINT(0x108000c0, 0x0f),
731 EVENT_CONSTRAINT_END
732 };
733
734 struct event_constraint intel_westmere_pebs_event_constraints[] = {
735 INTEL_PLD_CONSTRAINT(0x100b, 0xf), /* MEM_INST_RETIRED.* */
736 INTEL_FLAGS_EVENT_CONSTRAINT(0x0f, 0xf), /* MEM_UNCORE_RETIRED.* */
737 INTEL_FLAGS_UEVENT_CONSTRAINT(0x010c, 0xf), /* MEM_STORE_RETIRED.DTLB_MISS */
738 INTEL_FLAGS_EVENT_CONSTRAINT(0xc0, 0xf), /* INSTR_RETIRED.* */
739 INTEL_EVENT_CONSTRAINT(0xc2, 0xf), /* UOPS_RETIRED.* */
740 INTEL_FLAGS_EVENT_CONSTRAINT(0xc4, 0xf), /* BR_INST_RETIRED.* */
741 INTEL_FLAGS_EVENT_CONSTRAINT(0xc5, 0xf), /* BR_MISP_RETIRED.* */
742 INTEL_FLAGS_EVENT_CONSTRAINT(0xc7, 0xf), /* SSEX_UOPS_RETIRED.* */
743 INTEL_FLAGS_UEVENT_CONSTRAINT(0x20c8, 0xf), /* ITLB_MISS_RETIRED */
744 INTEL_FLAGS_EVENT_CONSTRAINT(0xcb, 0xf), /* MEM_LOAD_RETIRED.* */
745 INTEL_FLAGS_EVENT_CONSTRAINT(0xf7, 0xf), /* FP_ASSIST.* */
746 /* INST_RETIRED.ANY_P, inv=1, cmask=16 (cycles:p). */
747 INTEL_FLAGS_UEVENT_CONSTRAINT(0x108000c0, 0x0f),
748 EVENT_CONSTRAINT_END
749 };
750
751 struct event_constraint intel_snb_pebs_event_constraints[] = {
752 INTEL_FLAGS_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PRECDIST */
753 INTEL_PLD_CONSTRAINT(0x01cd, 0x8), /* MEM_TRANS_RETIRED.LAT_ABOVE_THR */
754 INTEL_PST_CONSTRAINT(0x02cd, 0x8), /* MEM_TRANS_RETIRED.PRECISE_STORES */
755 /* UOPS_RETIRED.ALL, inv=1, cmask=16 (cycles:p). */
756 INTEL_FLAGS_UEVENT_CONSTRAINT(0x108001c2, 0xf),
757 INTEL_EXCLEVT_CONSTRAINT(0xd0, 0xf), /* MEM_UOP_RETIRED.* */
758 INTEL_EXCLEVT_CONSTRAINT(0xd1, 0xf), /* MEM_LOAD_UOPS_RETIRED.* */
759 INTEL_EXCLEVT_CONSTRAINT(0xd2, 0xf), /* MEM_LOAD_UOPS_LLC_HIT_RETIRED.* */
760 INTEL_EXCLEVT_CONSTRAINT(0xd3, 0xf), /* MEM_LOAD_UOPS_LLC_MISS_RETIRED.* */
761 /* Allow all events as PEBS with no flags */
762 INTEL_ALL_EVENT_CONSTRAINT(0, 0xf),
763 EVENT_CONSTRAINT_END
764 };
765
766 struct event_constraint intel_ivb_pebs_event_constraints[] = {
767 INTEL_FLAGS_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PRECDIST */
768 INTEL_PLD_CONSTRAINT(0x01cd, 0x8), /* MEM_TRANS_RETIRED.LAT_ABOVE_THR */
769 INTEL_PST_CONSTRAINT(0x02cd, 0x8), /* MEM_TRANS_RETIRED.PRECISE_STORES */
770 /* UOPS_RETIRED.ALL, inv=1, cmask=16 (cycles:p). */
771 INTEL_FLAGS_UEVENT_CONSTRAINT(0x108001c2, 0xf),
772 /* INST_RETIRED.PREC_DIST, inv=1, cmask=16 (cycles:ppp). */
773 INTEL_FLAGS_UEVENT_CONSTRAINT(0x108001c0, 0x2),
774 INTEL_EXCLEVT_CONSTRAINT(0xd0, 0xf), /* MEM_UOP_RETIRED.* */
775 INTEL_EXCLEVT_CONSTRAINT(0xd1, 0xf), /* MEM_LOAD_UOPS_RETIRED.* */
776 INTEL_EXCLEVT_CONSTRAINT(0xd2, 0xf), /* MEM_LOAD_UOPS_LLC_HIT_RETIRED.* */
777 INTEL_EXCLEVT_CONSTRAINT(0xd3, 0xf), /* MEM_LOAD_UOPS_LLC_MISS_RETIRED.* */
778 /* Allow all events as PEBS with no flags */
779 INTEL_ALL_EVENT_CONSTRAINT(0, 0xf),
780 EVENT_CONSTRAINT_END
781 };
782
783 struct event_constraint intel_hsw_pebs_event_constraints[] = {
784 INTEL_FLAGS_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PRECDIST */
785 INTEL_PLD_CONSTRAINT(0x01cd, 0xf), /* MEM_TRANS_RETIRED.* */
786 /* UOPS_RETIRED.ALL, inv=1, cmask=16 (cycles:p). */
787 INTEL_FLAGS_UEVENT_CONSTRAINT(0x108001c2, 0xf),
788 /* INST_RETIRED.PREC_DIST, inv=1, cmask=16 (cycles:ppp). */
789 INTEL_FLAGS_UEVENT_CONSTRAINT(0x108001c0, 0x2),
790 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_NA(0x01c2, 0xf), /* UOPS_RETIRED.ALL */
791 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_XLD(0x11d0, 0xf), /* MEM_UOPS_RETIRED.STLB_MISS_LOADS */
792 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_XLD(0x21d0, 0xf), /* MEM_UOPS_RETIRED.LOCK_LOADS */
793 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_XLD(0x41d0, 0xf), /* MEM_UOPS_RETIRED.SPLIT_LOADS */
794 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_XLD(0x81d0, 0xf), /* MEM_UOPS_RETIRED.ALL_LOADS */
795 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_XST(0x12d0, 0xf), /* MEM_UOPS_RETIRED.STLB_MISS_STORES */
796 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_XST(0x42d0, 0xf), /* MEM_UOPS_RETIRED.SPLIT_STORES */
797 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_XST(0x82d0, 0xf), /* MEM_UOPS_RETIRED.ALL_STORES */
798 INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_XLD(0xd1, 0xf), /* MEM_LOAD_UOPS_RETIRED.* */
799 INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_XLD(0xd2, 0xf), /* MEM_LOAD_UOPS_L3_HIT_RETIRED.* */
800 INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_XLD(0xd3, 0xf), /* MEM_LOAD_UOPS_L3_MISS_RETIRED.* */
801 /* Allow all events as PEBS with no flags */
802 INTEL_ALL_EVENT_CONSTRAINT(0, 0xf),
803 EVENT_CONSTRAINT_END
804 };
805
806 struct event_constraint intel_bdw_pebs_event_constraints[] = {
807 INTEL_FLAGS_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PRECDIST */
808 INTEL_PLD_CONSTRAINT(0x01cd, 0xf), /* MEM_TRANS_RETIRED.* */
809 /* UOPS_RETIRED.ALL, inv=1, cmask=16 (cycles:p). */
810 INTEL_FLAGS_UEVENT_CONSTRAINT(0x108001c2, 0xf),
811 /* INST_RETIRED.PREC_DIST, inv=1, cmask=16 (cycles:ppp). */
812 INTEL_FLAGS_UEVENT_CONSTRAINT(0x108001c0, 0x2),
813 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_NA(0x01c2, 0xf), /* UOPS_RETIRED.ALL */
814 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x11d0, 0xf), /* MEM_UOPS_RETIRED.STLB_MISS_LOADS */
815 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x21d0, 0xf), /* MEM_UOPS_RETIRED.LOCK_LOADS */
816 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x41d0, 0xf), /* MEM_UOPS_RETIRED.SPLIT_LOADS */
817 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x81d0, 0xf), /* MEM_UOPS_RETIRED.ALL_LOADS */
818 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x12d0, 0xf), /* MEM_UOPS_RETIRED.STLB_MISS_STORES */
819 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x42d0, 0xf), /* MEM_UOPS_RETIRED.SPLIT_STORES */
820 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x82d0, 0xf), /* MEM_UOPS_RETIRED.ALL_STORES */
821 INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_LD(0xd1, 0xf), /* MEM_LOAD_UOPS_RETIRED.* */
822 INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_LD(0xd2, 0xf), /* MEM_LOAD_UOPS_L3_HIT_RETIRED.* */
823 INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_LD(0xd3, 0xf), /* MEM_LOAD_UOPS_L3_MISS_RETIRED.* */
824 /* Allow all events as PEBS with no flags */
825 INTEL_ALL_EVENT_CONSTRAINT(0, 0xf),
826 EVENT_CONSTRAINT_END
827 };
828
829
830 struct event_constraint intel_skl_pebs_event_constraints[] = {
831 INTEL_FLAGS_UEVENT_CONSTRAINT(0x1c0, 0x2), /* INST_RETIRED.PREC_DIST */
832 /* INST_RETIRED.PREC_DIST, inv=1, cmask=16 (cycles:ppp). */
833 INTEL_FLAGS_UEVENT_CONSTRAINT(0x108001c0, 0x2),
834 /* INST_RETIRED.TOTAL_CYCLES_PS (inv=1, cmask=16) (cycles:p). */
835 INTEL_FLAGS_UEVENT_CONSTRAINT(0x108000c0, 0x0f),
836 INTEL_PLD_CONSTRAINT(0x1cd, 0xf), /* MEM_TRANS_RETIRED.* */
837 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x11d0, 0xf), /* MEM_INST_RETIRED.STLB_MISS_LOADS */
838 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x12d0, 0xf), /* MEM_INST_RETIRED.STLB_MISS_STORES */
839 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x21d0, 0xf), /* MEM_INST_RETIRED.LOCK_LOADS */
840 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x22d0, 0xf), /* MEM_INST_RETIRED.LOCK_STORES */
841 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x41d0, 0xf), /* MEM_INST_RETIRED.SPLIT_LOADS */
842 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x42d0, 0xf), /* MEM_INST_RETIRED.SPLIT_STORES */
843 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x81d0, 0xf), /* MEM_INST_RETIRED.ALL_LOADS */
844 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x82d0, 0xf), /* MEM_INST_RETIRED.ALL_STORES */
845 INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_LD(0xd1, 0xf), /* MEM_LOAD_RETIRED.* */
846 INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_LD(0xd2, 0xf), /* MEM_LOAD_L3_HIT_RETIRED.* */
847 INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_LD(0xd3, 0xf), /* MEM_LOAD_L3_MISS_RETIRED.* */
848 /* Allow all events as PEBS with no flags */
849 INTEL_ALL_EVENT_CONSTRAINT(0, 0xf),
850 EVENT_CONSTRAINT_END
851 };
852
853 struct event_constraint intel_icl_pebs_event_constraints[] = {
854 INTEL_FLAGS_UEVENT_CONSTRAINT(0x1c0, 0x100000000ULL), /* INST_RETIRED.PREC_DIST */
855 INTEL_FLAGS_UEVENT_CONSTRAINT(0x0400, 0x800000000ULL), /* SLOTS */
856
857 INTEL_PLD_CONSTRAINT(0x1cd, 0xff), /* MEM_TRANS_RETIRED.LOAD_LATENCY */
858 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x11d0, 0xf), /* MEM_INST_RETIRED.STLB_MISS_LOADS */
859 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x12d0, 0xf), /* MEM_INST_RETIRED.STLB_MISS_STORES */
860 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x21d0, 0xf), /* MEM_INST_RETIRED.LOCK_LOADS */
861 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x41d0, 0xf), /* MEM_INST_RETIRED.SPLIT_LOADS */
862 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x42d0, 0xf), /* MEM_INST_RETIRED.SPLIT_STORES */
863 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x81d0, 0xf), /* MEM_INST_RETIRED.ALL_LOADS */
864 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x82d0, 0xf), /* MEM_INST_RETIRED.ALL_STORES */
865
866 INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_LD_RANGE(0xd1, 0xd4, 0xf), /* MEM_LOAD_*_RETIRED.* */
867
868 INTEL_FLAGS_EVENT_CONSTRAINT(0xd0, 0xf), /* MEM_INST_RETIRED.* */
869
870 /*
871 * Everything else is handled by PMU_FL_PEBS_ALL, because we
872 * need the full constraints from the main table.
873 */
874
875 EVENT_CONSTRAINT_END
876 };
877
intel_pebs_constraints(struct perf_event * event)878 struct event_constraint *intel_pebs_constraints(struct perf_event *event)
879 {
880 struct event_constraint *c;
881
882 if (!event->attr.precise_ip)
883 return NULL;
884
885 if (x86_pmu.pebs_constraints) {
886 for_each_event_constraint(c, x86_pmu.pebs_constraints) {
887 if (constraint_match(c, event->hw.config)) {
888 event->hw.flags |= c->flags;
889 return c;
890 }
891 }
892 }
893
894 /*
895 * Extended PEBS support
896 * Makes the PEBS code search the normal constraints.
897 */
898 if (x86_pmu.flags & PMU_FL_PEBS_ALL)
899 return NULL;
900
901 return &emptyconstraint;
902 }
903
904 /*
905 * We need the sched_task callback even for per-cpu events when we use
906 * the large interrupt threshold, such that we can provide PID and TID
907 * to PEBS samples.
908 */
pebs_needs_sched_cb(struct cpu_hw_events * cpuc)909 static inline bool pebs_needs_sched_cb(struct cpu_hw_events *cpuc)
910 {
911 if (cpuc->n_pebs == cpuc->n_pebs_via_pt)
912 return false;
913
914 return cpuc->n_pebs && (cpuc->n_pebs == cpuc->n_large_pebs);
915 }
916
intel_pmu_pebs_sched_task(struct perf_event_context * ctx,bool sched_in)917 void intel_pmu_pebs_sched_task(struct perf_event_context *ctx, bool sched_in)
918 {
919 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
920
921 if (!sched_in && pebs_needs_sched_cb(cpuc))
922 intel_pmu_drain_pebs_buffer();
923 }
924
pebs_update_threshold(struct cpu_hw_events * cpuc)925 static inline void pebs_update_threshold(struct cpu_hw_events *cpuc)
926 {
927 struct debug_store *ds = cpuc->ds;
928 u64 threshold;
929 int reserved;
930
931 if (cpuc->n_pebs_via_pt)
932 return;
933
934 if (x86_pmu.flags & PMU_FL_PEBS_ALL)
935 reserved = x86_pmu.max_pebs_events + x86_pmu.num_counters_fixed;
936 else
937 reserved = x86_pmu.max_pebs_events;
938
939 if (cpuc->n_pebs == cpuc->n_large_pebs) {
940 threshold = ds->pebs_absolute_maximum -
941 reserved * cpuc->pebs_record_size;
942 } else {
943 threshold = ds->pebs_buffer_base + cpuc->pebs_record_size;
944 }
945
946 ds->pebs_interrupt_threshold = threshold;
947 }
948
adaptive_pebs_record_size_update(void)949 static void adaptive_pebs_record_size_update(void)
950 {
951 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
952 u64 pebs_data_cfg = cpuc->pebs_data_cfg;
953 int sz = sizeof(struct pebs_basic);
954
955 if (pebs_data_cfg & PEBS_DATACFG_MEMINFO)
956 sz += sizeof(struct pebs_meminfo);
957 if (pebs_data_cfg & PEBS_DATACFG_GP)
958 sz += sizeof(struct pebs_gprs);
959 if (pebs_data_cfg & PEBS_DATACFG_XMMS)
960 sz += sizeof(struct pebs_xmm);
961 if (pebs_data_cfg & PEBS_DATACFG_LBRS)
962 sz += x86_pmu.lbr_nr * sizeof(struct lbr_entry);
963
964 cpuc->pebs_record_size = sz;
965 }
966
967 #define PERF_PEBS_MEMINFO_TYPE (PERF_SAMPLE_ADDR | PERF_SAMPLE_DATA_SRC | \
968 PERF_SAMPLE_PHYS_ADDR | PERF_SAMPLE_WEIGHT | \
969 PERF_SAMPLE_TRANSACTION)
970
pebs_update_adaptive_cfg(struct perf_event * event)971 static u64 pebs_update_adaptive_cfg(struct perf_event *event)
972 {
973 struct perf_event_attr *attr = &event->attr;
974 u64 sample_type = attr->sample_type;
975 u64 pebs_data_cfg = 0;
976 bool gprs, tsx_weight;
977
978 if (!(sample_type & ~(PERF_SAMPLE_IP|PERF_SAMPLE_TIME)) &&
979 attr->precise_ip > 1)
980 return pebs_data_cfg;
981
982 if (sample_type & PERF_PEBS_MEMINFO_TYPE)
983 pebs_data_cfg |= PEBS_DATACFG_MEMINFO;
984
985 /*
986 * We need GPRs when:
987 * + user requested them
988 * + precise_ip < 2 for the non event IP
989 * + For RTM TSX weight we need GPRs for the abort code.
990 */
991 gprs = (sample_type & PERF_SAMPLE_REGS_INTR) &&
992 (attr->sample_regs_intr & PEBS_GP_REGS);
993
994 tsx_weight = (sample_type & PERF_SAMPLE_WEIGHT) &&
995 ((attr->config & INTEL_ARCH_EVENT_MASK) ==
996 x86_pmu.rtm_abort_event);
997
998 if (gprs || (attr->precise_ip < 2) || tsx_weight)
999 pebs_data_cfg |= PEBS_DATACFG_GP;
1000
1001 if ((sample_type & PERF_SAMPLE_REGS_INTR) &&
1002 (attr->sample_regs_intr & PERF_REG_EXTENDED_MASK))
1003 pebs_data_cfg |= PEBS_DATACFG_XMMS;
1004
1005 if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
1006 /*
1007 * For now always log all LBRs. Could configure this
1008 * later.
1009 */
1010 pebs_data_cfg |= PEBS_DATACFG_LBRS |
1011 ((x86_pmu.lbr_nr-1) << PEBS_DATACFG_LBR_SHIFT);
1012 }
1013
1014 return pebs_data_cfg;
1015 }
1016
1017 static void
pebs_update_state(bool needed_cb,struct cpu_hw_events * cpuc,struct perf_event * event,bool add)1018 pebs_update_state(bool needed_cb, struct cpu_hw_events *cpuc,
1019 struct perf_event *event, bool add)
1020 {
1021 struct pmu *pmu = event->ctx->pmu;
1022 /*
1023 * Make sure we get updated with the first PEBS
1024 * event. It will trigger also during removal, but
1025 * that does not hurt:
1026 */
1027 bool update = cpuc->n_pebs == 1;
1028
1029 if (needed_cb != pebs_needs_sched_cb(cpuc)) {
1030 if (!needed_cb)
1031 perf_sched_cb_inc(pmu);
1032 else
1033 perf_sched_cb_dec(pmu);
1034
1035 update = true;
1036 }
1037
1038 /*
1039 * The PEBS record doesn't shrink on pmu::del(). Doing so would require
1040 * iterating all remaining PEBS events to reconstruct the config.
1041 */
1042 if (x86_pmu.intel_cap.pebs_baseline && add) {
1043 u64 pebs_data_cfg;
1044
1045 /* Clear pebs_data_cfg and pebs_record_size for first PEBS. */
1046 if (cpuc->n_pebs == 1) {
1047 cpuc->pebs_data_cfg = 0;
1048 cpuc->pebs_record_size = sizeof(struct pebs_basic);
1049 }
1050
1051 pebs_data_cfg = pebs_update_adaptive_cfg(event);
1052
1053 /* Update pebs_record_size if new event requires more data. */
1054 if (pebs_data_cfg & ~cpuc->pebs_data_cfg) {
1055 cpuc->pebs_data_cfg |= pebs_data_cfg;
1056 adaptive_pebs_record_size_update();
1057 update = true;
1058 }
1059 }
1060
1061 if (update)
1062 pebs_update_threshold(cpuc);
1063 }
1064
intel_pmu_pebs_add(struct perf_event * event)1065 void intel_pmu_pebs_add(struct perf_event *event)
1066 {
1067 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1068 struct hw_perf_event *hwc = &event->hw;
1069 bool needed_cb = pebs_needs_sched_cb(cpuc);
1070
1071 cpuc->n_pebs++;
1072 if (hwc->flags & PERF_X86_EVENT_LARGE_PEBS)
1073 cpuc->n_large_pebs++;
1074 if (hwc->flags & PERF_X86_EVENT_PEBS_VIA_PT)
1075 cpuc->n_pebs_via_pt++;
1076
1077 pebs_update_state(needed_cb, cpuc, event, true);
1078 }
1079
intel_pmu_pebs_via_pt_disable(struct perf_event * event)1080 static void intel_pmu_pebs_via_pt_disable(struct perf_event *event)
1081 {
1082 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1083
1084 if (!is_pebs_pt(event))
1085 return;
1086
1087 if (!(cpuc->pebs_enabled & ~PEBS_VIA_PT_MASK))
1088 cpuc->pebs_enabled &= ~PEBS_VIA_PT_MASK;
1089 }
1090
intel_pmu_pebs_via_pt_enable(struct perf_event * event)1091 static void intel_pmu_pebs_via_pt_enable(struct perf_event *event)
1092 {
1093 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1094 struct hw_perf_event *hwc = &event->hw;
1095 struct debug_store *ds = cpuc->ds;
1096
1097 if (!is_pebs_pt(event))
1098 return;
1099
1100 if (!(event->hw.flags & PERF_X86_EVENT_LARGE_PEBS))
1101 cpuc->pebs_enabled |= PEBS_PMI_AFTER_EACH_RECORD;
1102
1103 cpuc->pebs_enabled |= PEBS_OUTPUT_PT;
1104
1105 wrmsrl(MSR_RELOAD_PMC0 + hwc->idx, ds->pebs_event_reset[hwc->idx]);
1106 }
1107
intel_pmu_pebs_enable(struct perf_event * event)1108 void intel_pmu_pebs_enable(struct perf_event *event)
1109 {
1110 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1111 struct hw_perf_event *hwc = &event->hw;
1112 struct debug_store *ds = cpuc->ds;
1113
1114 hwc->config &= ~ARCH_PERFMON_EVENTSEL_INT;
1115
1116 cpuc->pebs_enabled |= 1ULL << hwc->idx;
1117
1118 if ((event->hw.flags & PERF_X86_EVENT_PEBS_LDLAT) && (x86_pmu.version < 5))
1119 cpuc->pebs_enabled |= 1ULL << (hwc->idx + 32);
1120 else if (event->hw.flags & PERF_X86_EVENT_PEBS_ST)
1121 cpuc->pebs_enabled |= 1ULL << 63;
1122
1123 if (x86_pmu.intel_cap.pebs_baseline) {
1124 hwc->config |= ICL_EVENTSEL_ADAPTIVE;
1125 if (cpuc->pebs_data_cfg != cpuc->active_pebs_data_cfg) {
1126 wrmsrl(MSR_PEBS_DATA_CFG, cpuc->pebs_data_cfg);
1127 cpuc->active_pebs_data_cfg = cpuc->pebs_data_cfg;
1128 }
1129 }
1130
1131 /*
1132 * Use auto-reload if possible to save a MSR write in the PMI.
1133 * This must be done in pmu::start(), because PERF_EVENT_IOC_PERIOD.
1134 */
1135 if (hwc->flags & PERF_X86_EVENT_AUTO_RELOAD) {
1136 unsigned int idx = hwc->idx;
1137
1138 if (idx >= INTEL_PMC_IDX_FIXED)
1139 idx = MAX_PEBS_EVENTS + (idx - INTEL_PMC_IDX_FIXED);
1140 ds->pebs_event_reset[idx] =
1141 (u64)(-hwc->sample_period) & x86_pmu.cntval_mask;
1142 } else {
1143 ds->pebs_event_reset[hwc->idx] = 0;
1144 }
1145
1146 intel_pmu_pebs_via_pt_enable(event);
1147 }
1148
intel_pmu_pebs_del(struct perf_event * event)1149 void intel_pmu_pebs_del(struct perf_event *event)
1150 {
1151 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1152 struct hw_perf_event *hwc = &event->hw;
1153 bool needed_cb = pebs_needs_sched_cb(cpuc);
1154
1155 cpuc->n_pebs--;
1156 if (hwc->flags & PERF_X86_EVENT_LARGE_PEBS)
1157 cpuc->n_large_pebs--;
1158 if (hwc->flags & PERF_X86_EVENT_PEBS_VIA_PT)
1159 cpuc->n_pebs_via_pt--;
1160
1161 pebs_update_state(needed_cb, cpuc, event, false);
1162 }
1163
intel_pmu_pebs_disable(struct perf_event * event)1164 void intel_pmu_pebs_disable(struct perf_event *event)
1165 {
1166 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1167 struct hw_perf_event *hwc = &event->hw;
1168
1169 if (cpuc->n_pebs == cpuc->n_large_pebs &&
1170 cpuc->n_pebs != cpuc->n_pebs_via_pt)
1171 intel_pmu_drain_pebs_buffer();
1172
1173 cpuc->pebs_enabled &= ~(1ULL << hwc->idx);
1174
1175 if ((event->hw.flags & PERF_X86_EVENT_PEBS_LDLAT) &&
1176 (x86_pmu.version < 5))
1177 cpuc->pebs_enabled &= ~(1ULL << (hwc->idx + 32));
1178 else if (event->hw.flags & PERF_X86_EVENT_PEBS_ST)
1179 cpuc->pebs_enabled &= ~(1ULL << 63);
1180
1181 intel_pmu_pebs_via_pt_disable(event);
1182
1183 if (cpuc->enabled)
1184 wrmsrl(MSR_IA32_PEBS_ENABLE, cpuc->pebs_enabled);
1185
1186 hwc->config |= ARCH_PERFMON_EVENTSEL_INT;
1187 }
1188
intel_pmu_pebs_enable_all(void)1189 void intel_pmu_pebs_enable_all(void)
1190 {
1191 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1192
1193 if (cpuc->pebs_enabled)
1194 wrmsrl(MSR_IA32_PEBS_ENABLE, cpuc->pebs_enabled);
1195 }
1196
intel_pmu_pebs_disable_all(void)1197 void intel_pmu_pebs_disable_all(void)
1198 {
1199 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1200
1201 if (cpuc->pebs_enabled)
1202 wrmsrl(MSR_IA32_PEBS_ENABLE, 0);
1203 }
1204
intel_pmu_pebs_fixup_ip(struct pt_regs * regs)1205 static int intel_pmu_pebs_fixup_ip(struct pt_regs *regs)
1206 {
1207 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1208 unsigned long from = cpuc->lbr_entries[0].from;
1209 unsigned long old_to, to = cpuc->lbr_entries[0].to;
1210 unsigned long ip = regs->ip;
1211 int is_64bit = 0;
1212 void *kaddr;
1213 int size;
1214
1215 /*
1216 * We don't need to fixup if the PEBS assist is fault like
1217 */
1218 if (!x86_pmu.intel_cap.pebs_trap)
1219 return 1;
1220
1221 /*
1222 * No LBR entry, no basic block, no rewinding
1223 */
1224 if (!cpuc->lbr_stack.nr || !from || !to)
1225 return 0;
1226
1227 /*
1228 * Basic blocks should never cross user/kernel boundaries
1229 */
1230 if (kernel_ip(ip) != kernel_ip(to))
1231 return 0;
1232
1233 /*
1234 * unsigned math, either ip is before the start (impossible) or
1235 * the basic block is larger than 1 page (sanity)
1236 */
1237 if ((ip - to) > PEBS_FIXUP_SIZE)
1238 return 0;
1239
1240 /*
1241 * We sampled a branch insn, rewind using the LBR stack
1242 */
1243 if (ip == to) {
1244 set_linear_ip(regs, from);
1245 return 1;
1246 }
1247
1248 size = ip - to;
1249 if (!kernel_ip(ip)) {
1250 int bytes;
1251 u8 *buf = this_cpu_read(insn_buffer);
1252
1253 /* 'size' must fit our buffer, see above */
1254 bytes = copy_from_user_nmi(buf, (void __user *)to, size);
1255 if (bytes != 0)
1256 return 0;
1257
1258 kaddr = buf;
1259 } else {
1260 kaddr = (void *)to;
1261 }
1262
1263 do {
1264 struct insn insn;
1265
1266 old_to = to;
1267
1268 #ifdef CONFIG_X86_64
1269 is_64bit = kernel_ip(to) || !test_thread_flag(TIF_IA32);
1270 #endif
1271 insn_init(&insn, kaddr, size, is_64bit);
1272 insn_get_length(&insn);
1273 /*
1274 * Make sure there was not a problem decoding the
1275 * instruction and getting the length. This is
1276 * doubly important because we have an infinite
1277 * loop if insn.length=0.
1278 */
1279 if (!insn.length)
1280 break;
1281
1282 to += insn.length;
1283 kaddr += insn.length;
1284 size -= insn.length;
1285 } while (to < ip);
1286
1287 if (to == ip) {
1288 set_linear_ip(regs, old_to);
1289 return 1;
1290 }
1291
1292 /*
1293 * Even though we decoded the basic block, the instruction stream
1294 * never matched the given IP, either the TO or the IP got corrupted.
1295 */
1296 return 0;
1297 }
1298
intel_get_tsx_weight(u64 tsx_tuning)1299 static inline u64 intel_get_tsx_weight(u64 tsx_tuning)
1300 {
1301 if (tsx_tuning) {
1302 union hsw_tsx_tuning tsx = { .value = tsx_tuning };
1303 return tsx.cycles_last_block;
1304 }
1305 return 0;
1306 }
1307
intel_get_tsx_transaction(u64 tsx_tuning,u64 ax)1308 static inline u64 intel_get_tsx_transaction(u64 tsx_tuning, u64 ax)
1309 {
1310 u64 txn = (tsx_tuning & PEBS_HSW_TSX_FLAGS) >> 32;
1311
1312 /* For RTM XABORTs also log the abort code from AX */
1313 if ((txn & PERF_TXN_TRANSACTION) && (ax & 1))
1314 txn |= ((ax >> 24) & 0xff) << PERF_TXN_ABORT_SHIFT;
1315 return txn;
1316 }
1317
get_pebs_status(void * n)1318 static inline u64 get_pebs_status(void *n)
1319 {
1320 if (x86_pmu.intel_cap.pebs_format < 4)
1321 return ((struct pebs_record_nhm *)n)->status;
1322 return ((struct pebs_basic *)n)->applicable_counters;
1323 }
1324
1325 #define PERF_X86_EVENT_PEBS_HSW_PREC \
1326 (PERF_X86_EVENT_PEBS_ST_HSW | \
1327 PERF_X86_EVENT_PEBS_LD_HSW | \
1328 PERF_X86_EVENT_PEBS_NA_HSW)
1329
get_data_src(struct perf_event * event,u64 aux)1330 static u64 get_data_src(struct perf_event *event, u64 aux)
1331 {
1332 u64 val = PERF_MEM_NA;
1333 int fl = event->hw.flags;
1334 bool fst = fl & (PERF_X86_EVENT_PEBS_ST | PERF_X86_EVENT_PEBS_HSW_PREC);
1335
1336 if (fl & PERF_X86_EVENT_PEBS_LDLAT)
1337 val = load_latency_data(aux);
1338 else if (fst && (fl & PERF_X86_EVENT_PEBS_HSW_PREC))
1339 val = precise_datala_hsw(event, aux);
1340 else if (fst)
1341 val = precise_store_data(aux);
1342 return val;
1343 }
1344
setup_pebs_fixed_sample_data(struct perf_event * event,struct pt_regs * iregs,void * __pebs,struct perf_sample_data * data,struct pt_regs * regs)1345 static void setup_pebs_fixed_sample_data(struct perf_event *event,
1346 struct pt_regs *iregs, void *__pebs,
1347 struct perf_sample_data *data,
1348 struct pt_regs *regs)
1349 {
1350 /*
1351 * We cast to the biggest pebs_record but are careful not to
1352 * unconditionally access the 'extra' entries.
1353 */
1354 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1355 struct pebs_record_skl *pebs = __pebs;
1356 u64 sample_type;
1357 int fll;
1358
1359 if (pebs == NULL)
1360 return;
1361
1362 sample_type = event->attr.sample_type;
1363 fll = event->hw.flags & PERF_X86_EVENT_PEBS_LDLAT;
1364
1365 perf_sample_data_init(data, 0, event->hw.last_period);
1366
1367 data->period = event->hw.last_period;
1368
1369 /*
1370 * Use latency for weight (only avail with PEBS-LL)
1371 */
1372 if (fll && (sample_type & PERF_SAMPLE_WEIGHT))
1373 data->weight = pebs->lat;
1374
1375 /*
1376 * data.data_src encodes the data source
1377 */
1378 if (sample_type & PERF_SAMPLE_DATA_SRC)
1379 data->data_src.val = get_data_src(event, pebs->dse);
1380
1381 /*
1382 * We must however always use iregs for the unwinder to stay sane; the
1383 * record BP,SP,IP can point into thin air when the record is from a
1384 * previous PMI context or an (I)RET happened between the record and
1385 * PMI.
1386 */
1387 if (sample_type & PERF_SAMPLE_CALLCHAIN)
1388 data->callchain = perf_callchain(event, iregs);
1389
1390 /*
1391 * We use the interrupt regs as a base because the PEBS record does not
1392 * contain a full regs set, specifically it seems to lack segment
1393 * descriptors, which get used by things like user_mode().
1394 *
1395 * In the simple case fix up only the IP for PERF_SAMPLE_IP.
1396 */
1397 *regs = *iregs;
1398
1399 /*
1400 * Initialize regs_>flags from PEBS,
1401 * Clear exact bit (which uses x86 EFLAGS Reserved bit 3),
1402 * i.e., do not rely on it being zero:
1403 */
1404 regs->flags = pebs->flags & ~PERF_EFLAGS_EXACT;
1405
1406 if (sample_type & PERF_SAMPLE_REGS_INTR) {
1407 regs->ax = pebs->ax;
1408 regs->bx = pebs->bx;
1409 regs->cx = pebs->cx;
1410 regs->dx = pebs->dx;
1411 regs->si = pebs->si;
1412 regs->di = pebs->di;
1413
1414 regs->bp = pebs->bp;
1415 regs->sp = pebs->sp;
1416
1417 #ifndef CONFIG_X86_32
1418 regs->r8 = pebs->r8;
1419 regs->r9 = pebs->r9;
1420 regs->r10 = pebs->r10;
1421 regs->r11 = pebs->r11;
1422 regs->r12 = pebs->r12;
1423 regs->r13 = pebs->r13;
1424 regs->r14 = pebs->r14;
1425 regs->r15 = pebs->r15;
1426 #endif
1427 }
1428
1429 if (event->attr.precise_ip > 1) {
1430 /*
1431 * Haswell and later processors have an 'eventing IP'
1432 * (real IP) which fixes the off-by-1 skid in hardware.
1433 * Use it when precise_ip >= 2 :
1434 */
1435 if (x86_pmu.intel_cap.pebs_format >= 2) {
1436 set_linear_ip(regs, pebs->real_ip);
1437 regs->flags |= PERF_EFLAGS_EXACT;
1438 } else {
1439 /* Otherwise, use PEBS off-by-1 IP: */
1440 set_linear_ip(regs, pebs->ip);
1441
1442 /*
1443 * With precise_ip >= 2, try to fix up the off-by-1 IP
1444 * using the LBR. If successful, the fixup function
1445 * corrects regs->ip and calls set_linear_ip() on regs:
1446 */
1447 if (intel_pmu_pebs_fixup_ip(regs))
1448 regs->flags |= PERF_EFLAGS_EXACT;
1449 }
1450 } else {
1451 /*
1452 * When precise_ip == 1, return the PEBS off-by-1 IP,
1453 * no fixup attempted:
1454 */
1455 set_linear_ip(regs, pebs->ip);
1456 }
1457
1458
1459 if ((sample_type & (PERF_SAMPLE_ADDR | PERF_SAMPLE_PHYS_ADDR)) &&
1460 x86_pmu.intel_cap.pebs_format >= 1)
1461 data->addr = pebs->dla;
1462
1463 if (x86_pmu.intel_cap.pebs_format >= 2) {
1464 /* Only set the TSX weight when no memory weight. */
1465 if ((sample_type & PERF_SAMPLE_WEIGHT) && !fll)
1466 data->weight = intel_get_tsx_weight(pebs->tsx_tuning);
1467
1468 if (sample_type & PERF_SAMPLE_TRANSACTION)
1469 data->txn = intel_get_tsx_transaction(pebs->tsx_tuning,
1470 pebs->ax);
1471 }
1472
1473 /*
1474 * v3 supplies an accurate time stamp, so we use that
1475 * for the time stamp.
1476 *
1477 * We can only do this for the default trace clock.
1478 */
1479 if (x86_pmu.intel_cap.pebs_format >= 3 &&
1480 event->attr.use_clockid == 0)
1481 data->time = native_sched_clock_from_tsc(pebs->tsc);
1482
1483 if (has_branch_stack(event))
1484 data->br_stack = &cpuc->lbr_stack;
1485 }
1486
adaptive_pebs_save_regs(struct pt_regs * regs,struct pebs_gprs * gprs)1487 static void adaptive_pebs_save_regs(struct pt_regs *regs,
1488 struct pebs_gprs *gprs)
1489 {
1490 regs->ax = gprs->ax;
1491 regs->bx = gprs->bx;
1492 regs->cx = gprs->cx;
1493 regs->dx = gprs->dx;
1494 regs->si = gprs->si;
1495 regs->di = gprs->di;
1496 regs->bp = gprs->bp;
1497 regs->sp = gprs->sp;
1498 #ifndef CONFIG_X86_32
1499 regs->r8 = gprs->r8;
1500 regs->r9 = gprs->r9;
1501 regs->r10 = gprs->r10;
1502 regs->r11 = gprs->r11;
1503 regs->r12 = gprs->r12;
1504 regs->r13 = gprs->r13;
1505 regs->r14 = gprs->r14;
1506 regs->r15 = gprs->r15;
1507 #endif
1508 }
1509
1510 /*
1511 * With adaptive PEBS the layout depends on what fields are configured.
1512 */
1513
setup_pebs_adaptive_sample_data(struct perf_event * event,struct pt_regs * iregs,void * __pebs,struct perf_sample_data * data,struct pt_regs * regs)1514 static void setup_pebs_adaptive_sample_data(struct perf_event *event,
1515 struct pt_regs *iregs, void *__pebs,
1516 struct perf_sample_data *data,
1517 struct pt_regs *regs)
1518 {
1519 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1520 struct pebs_basic *basic = __pebs;
1521 void *next_record = basic + 1;
1522 u64 sample_type;
1523 u64 format_size;
1524 struct pebs_meminfo *meminfo = NULL;
1525 struct pebs_gprs *gprs = NULL;
1526 struct x86_perf_regs *perf_regs;
1527
1528 if (basic == NULL)
1529 return;
1530
1531 perf_regs = container_of(regs, struct x86_perf_regs, regs);
1532 perf_regs->xmm_regs = NULL;
1533
1534 sample_type = event->attr.sample_type;
1535 format_size = basic->format_size;
1536 perf_sample_data_init(data, 0, event->hw.last_period);
1537 data->period = event->hw.last_period;
1538
1539 if (event->attr.use_clockid == 0)
1540 data->time = native_sched_clock_from_tsc(basic->tsc);
1541
1542 /*
1543 * We must however always use iregs for the unwinder to stay sane; the
1544 * record BP,SP,IP can point into thin air when the record is from a
1545 * previous PMI context or an (I)RET happened between the record and
1546 * PMI.
1547 */
1548 if (sample_type & PERF_SAMPLE_CALLCHAIN)
1549 data->callchain = perf_callchain(event, iregs);
1550
1551 *regs = *iregs;
1552 /* The ip in basic is EventingIP */
1553 set_linear_ip(regs, basic->ip);
1554 regs->flags = PERF_EFLAGS_EXACT;
1555
1556 /*
1557 * The record for MEMINFO is in front of GP
1558 * But PERF_SAMPLE_TRANSACTION needs gprs->ax.
1559 * Save the pointer here but process later.
1560 */
1561 if (format_size & PEBS_DATACFG_MEMINFO) {
1562 meminfo = next_record;
1563 next_record = meminfo + 1;
1564 }
1565
1566 if (format_size & PEBS_DATACFG_GP) {
1567 gprs = next_record;
1568 next_record = gprs + 1;
1569
1570 if (event->attr.precise_ip < 2) {
1571 set_linear_ip(regs, gprs->ip);
1572 regs->flags &= ~PERF_EFLAGS_EXACT;
1573 }
1574
1575 if (sample_type & PERF_SAMPLE_REGS_INTR)
1576 adaptive_pebs_save_regs(regs, gprs);
1577 }
1578
1579 if (format_size & PEBS_DATACFG_MEMINFO) {
1580 if (sample_type & PERF_SAMPLE_WEIGHT)
1581 data->weight = meminfo->latency ?:
1582 intel_get_tsx_weight(meminfo->tsx_tuning);
1583
1584 if (sample_type & PERF_SAMPLE_DATA_SRC)
1585 data->data_src.val = get_data_src(event, meminfo->aux);
1586
1587 if (sample_type & (PERF_SAMPLE_ADDR | PERF_SAMPLE_PHYS_ADDR))
1588 data->addr = meminfo->address;
1589
1590 if (sample_type & PERF_SAMPLE_TRANSACTION)
1591 data->txn = intel_get_tsx_transaction(meminfo->tsx_tuning,
1592 gprs ? gprs->ax : 0);
1593 }
1594
1595 if (format_size & PEBS_DATACFG_XMMS) {
1596 struct pebs_xmm *xmm = next_record;
1597
1598 next_record = xmm + 1;
1599 perf_regs->xmm_regs = xmm->xmm;
1600 }
1601
1602 if (format_size & PEBS_DATACFG_LBRS) {
1603 struct lbr_entry *lbr = next_record;
1604 int num_lbr = ((format_size >> PEBS_DATACFG_LBR_SHIFT)
1605 & 0xff) + 1;
1606 next_record = next_record + num_lbr * sizeof(struct lbr_entry);
1607
1608 if (has_branch_stack(event)) {
1609 intel_pmu_store_pebs_lbrs(lbr);
1610 data->br_stack = &cpuc->lbr_stack;
1611 }
1612 }
1613
1614 WARN_ONCE(next_record != __pebs + (format_size >> 48),
1615 "PEBS record size %llu, expected %llu, config %llx\n",
1616 format_size >> 48,
1617 (u64)(next_record - __pebs),
1618 basic->format_size);
1619 }
1620
1621 static inline void *
get_next_pebs_record_by_bit(void * base,void * top,int bit)1622 get_next_pebs_record_by_bit(void *base, void *top, int bit)
1623 {
1624 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1625 void *at;
1626 u64 pebs_status;
1627
1628 /*
1629 * fmt0 does not have a status bitfield (does not use
1630 * perf_record_nhm format)
1631 */
1632 if (x86_pmu.intel_cap.pebs_format < 1)
1633 return base;
1634
1635 if (base == NULL)
1636 return NULL;
1637
1638 for (at = base; at < top; at += cpuc->pebs_record_size) {
1639 unsigned long status = get_pebs_status(at);
1640
1641 if (test_bit(bit, (unsigned long *)&status)) {
1642 /* PEBS v3 has accurate status bits */
1643 if (x86_pmu.intel_cap.pebs_format >= 3)
1644 return at;
1645
1646 if (status == (1 << bit))
1647 return at;
1648
1649 /* clear non-PEBS bit and re-check */
1650 pebs_status = status & cpuc->pebs_enabled;
1651 pebs_status &= PEBS_COUNTER_MASK;
1652 if (pebs_status == (1 << bit))
1653 return at;
1654 }
1655 }
1656 return NULL;
1657 }
1658
intel_pmu_auto_reload_read(struct perf_event * event)1659 void intel_pmu_auto_reload_read(struct perf_event *event)
1660 {
1661 WARN_ON(!(event->hw.flags & PERF_X86_EVENT_AUTO_RELOAD));
1662
1663 perf_pmu_disable(event->pmu);
1664 intel_pmu_drain_pebs_buffer();
1665 perf_pmu_enable(event->pmu);
1666 }
1667
1668 /*
1669 * Special variant of intel_pmu_save_and_restart() for auto-reload.
1670 */
1671 static int
intel_pmu_save_and_restart_reload(struct perf_event * event,int count)1672 intel_pmu_save_and_restart_reload(struct perf_event *event, int count)
1673 {
1674 struct hw_perf_event *hwc = &event->hw;
1675 int shift = 64 - x86_pmu.cntval_bits;
1676 u64 period = hwc->sample_period;
1677 u64 prev_raw_count, new_raw_count;
1678 s64 new, old;
1679
1680 WARN_ON(!period);
1681
1682 /*
1683 * drain_pebs() only happens when the PMU is disabled.
1684 */
1685 WARN_ON(this_cpu_read(cpu_hw_events.enabled));
1686
1687 prev_raw_count = local64_read(&hwc->prev_count);
1688 rdpmcl(hwc->event_base_rdpmc, new_raw_count);
1689 local64_set(&hwc->prev_count, new_raw_count);
1690
1691 /*
1692 * Since the counter increments a negative counter value and
1693 * overflows on the sign switch, giving the interval:
1694 *
1695 * [-period, 0]
1696 *
1697 * the difference between two consequtive reads is:
1698 *
1699 * A) value2 - value1;
1700 * when no overflows have happened in between,
1701 *
1702 * B) (0 - value1) + (value2 - (-period));
1703 * when one overflow happened in between,
1704 *
1705 * C) (0 - value1) + (n - 1) * (period) + (value2 - (-period));
1706 * when @n overflows happened in between.
1707 *
1708 * Here A) is the obvious difference, B) is the extension to the
1709 * discrete interval, where the first term is to the top of the
1710 * interval and the second term is from the bottom of the next
1711 * interval and C) the extension to multiple intervals, where the
1712 * middle term is the whole intervals covered.
1713 *
1714 * An equivalent of C, by reduction, is:
1715 *
1716 * value2 - value1 + n * period
1717 */
1718 new = ((s64)(new_raw_count << shift) >> shift);
1719 old = ((s64)(prev_raw_count << shift) >> shift);
1720 local64_add(new - old + count * period, &event->count);
1721
1722 local64_set(&hwc->period_left, -new);
1723
1724 perf_event_update_userpage(event);
1725
1726 return 0;
1727 }
1728
1729 static __always_inline void
__intel_pmu_pebs_event(struct perf_event * event,struct pt_regs * iregs,struct perf_sample_data * data,void * base,void * top,int bit,int count,void (* setup_sample)(struct perf_event *,struct pt_regs *,void *,struct perf_sample_data *,struct pt_regs *))1730 __intel_pmu_pebs_event(struct perf_event *event,
1731 struct pt_regs *iregs,
1732 struct perf_sample_data *data,
1733 void *base, void *top,
1734 int bit, int count,
1735 void (*setup_sample)(struct perf_event *,
1736 struct pt_regs *,
1737 void *,
1738 struct perf_sample_data *,
1739 struct pt_regs *))
1740 {
1741 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1742 struct hw_perf_event *hwc = &event->hw;
1743 struct x86_perf_regs perf_regs;
1744 struct pt_regs *regs = &perf_regs.regs;
1745 void *at = get_next_pebs_record_by_bit(base, top, bit);
1746 static struct pt_regs dummy_iregs;
1747
1748 if (hwc->flags & PERF_X86_EVENT_AUTO_RELOAD) {
1749 /*
1750 * Now, auto-reload is only enabled in fixed period mode.
1751 * The reload value is always hwc->sample_period.
1752 * May need to change it, if auto-reload is enabled in
1753 * freq mode later.
1754 */
1755 intel_pmu_save_and_restart_reload(event, count);
1756 } else if (!intel_pmu_save_and_restart(event))
1757 return;
1758
1759 if (!iregs)
1760 iregs = &dummy_iregs;
1761
1762 while (count > 1) {
1763 setup_sample(event, iregs, at, data, regs);
1764 perf_event_output(event, data, regs);
1765 at += cpuc->pebs_record_size;
1766 at = get_next_pebs_record_by_bit(at, top, bit);
1767 count--;
1768 }
1769
1770 setup_sample(event, iregs, at, data, regs);
1771 if (iregs == &dummy_iregs) {
1772 /*
1773 * The PEBS records may be drained in the non-overflow context,
1774 * e.g., large PEBS + context switch. Perf should treat the
1775 * last record the same as other PEBS records, and doesn't
1776 * invoke the generic overflow handler.
1777 */
1778 perf_event_output(event, data, regs);
1779 } else {
1780 /*
1781 * All but the last records are processed.
1782 * The last one is left to be able to call the overflow handler.
1783 */
1784 if (perf_event_overflow(event, data, regs))
1785 x86_pmu_stop(event, 0);
1786 }
1787 }
1788
intel_pmu_drain_pebs_core(struct pt_regs * iregs,struct perf_sample_data * data)1789 static void intel_pmu_drain_pebs_core(struct pt_regs *iregs, struct perf_sample_data *data)
1790 {
1791 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1792 struct debug_store *ds = cpuc->ds;
1793 struct perf_event *event = cpuc->events[0]; /* PMC0 only */
1794 struct pebs_record_core *at, *top;
1795 int n;
1796
1797 if (!x86_pmu.pebs_active)
1798 return;
1799
1800 at = (struct pebs_record_core *)(unsigned long)ds->pebs_buffer_base;
1801 top = (struct pebs_record_core *)(unsigned long)ds->pebs_index;
1802
1803 /*
1804 * Whatever else happens, drain the thing
1805 */
1806 ds->pebs_index = ds->pebs_buffer_base;
1807
1808 if (!test_bit(0, cpuc->active_mask))
1809 return;
1810
1811 WARN_ON_ONCE(!event);
1812
1813 if (!event->attr.precise_ip)
1814 return;
1815
1816 n = top - at;
1817 if (n <= 0) {
1818 if (event->hw.flags & PERF_X86_EVENT_AUTO_RELOAD)
1819 intel_pmu_save_and_restart_reload(event, 0);
1820 return;
1821 }
1822
1823 __intel_pmu_pebs_event(event, iregs, data, at, top, 0, n,
1824 setup_pebs_fixed_sample_data);
1825 }
1826
intel_pmu_pebs_event_update_no_drain(struct cpu_hw_events * cpuc,int size)1827 static void intel_pmu_pebs_event_update_no_drain(struct cpu_hw_events *cpuc, int size)
1828 {
1829 struct perf_event *event;
1830 int bit;
1831
1832 /*
1833 * The drain_pebs() could be called twice in a short period
1834 * for auto-reload event in pmu::read(). There are no
1835 * overflows have happened in between.
1836 * It needs to call intel_pmu_save_and_restart_reload() to
1837 * update the event->count for this case.
1838 */
1839 for_each_set_bit(bit, (unsigned long *)&cpuc->pebs_enabled, size) {
1840 event = cpuc->events[bit];
1841 if (event->hw.flags & PERF_X86_EVENT_AUTO_RELOAD)
1842 intel_pmu_save_and_restart_reload(event, 0);
1843 }
1844 }
1845
intel_pmu_drain_pebs_nhm(struct pt_regs * iregs,struct perf_sample_data * data)1846 static void intel_pmu_drain_pebs_nhm(struct pt_regs *iregs, struct perf_sample_data *data)
1847 {
1848 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1849 struct debug_store *ds = cpuc->ds;
1850 struct perf_event *event;
1851 void *base, *at, *top;
1852 short counts[INTEL_PMC_IDX_FIXED + MAX_FIXED_PEBS_EVENTS] = {};
1853 short error[INTEL_PMC_IDX_FIXED + MAX_FIXED_PEBS_EVENTS] = {};
1854 int bit, i, size;
1855 u64 mask;
1856
1857 if (!x86_pmu.pebs_active)
1858 return;
1859
1860 base = (struct pebs_record_nhm *)(unsigned long)ds->pebs_buffer_base;
1861 top = (struct pebs_record_nhm *)(unsigned long)ds->pebs_index;
1862
1863 ds->pebs_index = ds->pebs_buffer_base;
1864
1865 mask = (1ULL << x86_pmu.max_pebs_events) - 1;
1866 size = x86_pmu.max_pebs_events;
1867 if (x86_pmu.flags & PMU_FL_PEBS_ALL) {
1868 mask |= ((1ULL << x86_pmu.num_counters_fixed) - 1) << INTEL_PMC_IDX_FIXED;
1869 size = INTEL_PMC_IDX_FIXED + x86_pmu.num_counters_fixed;
1870 }
1871
1872 if (unlikely(base >= top)) {
1873 intel_pmu_pebs_event_update_no_drain(cpuc, size);
1874 return;
1875 }
1876
1877 for (at = base; at < top; at += x86_pmu.pebs_record_size) {
1878 struct pebs_record_nhm *p = at;
1879 u64 pebs_status;
1880
1881 pebs_status = p->status & cpuc->pebs_enabled;
1882 pebs_status &= mask;
1883
1884 /* PEBS v3 has more accurate status bits */
1885 if (x86_pmu.intel_cap.pebs_format >= 3) {
1886 for_each_set_bit(bit, (unsigned long *)&pebs_status, size)
1887 counts[bit]++;
1888
1889 continue;
1890 }
1891
1892 /*
1893 * On some CPUs the PEBS status can be zero when PEBS is
1894 * racing with clearing of GLOBAL_STATUS.
1895 *
1896 * Normally we would drop that record, but in the
1897 * case when there is only a single active PEBS event
1898 * we can assume it's for that event.
1899 */
1900 if (!pebs_status && cpuc->pebs_enabled &&
1901 !(cpuc->pebs_enabled & (cpuc->pebs_enabled-1)))
1902 pebs_status = p->status = cpuc->pebs_enabled;
1903
1904 bit = find_first_bit((unsigned long *)&pebs_status,
1905 x86_pmu.max_pebs_events);
1906 if (bit >= x86_pmu.max_pebs_events)
1907 continue;
1908
1909 /*
1910 * The PEBS hardware does not deal well with the situation
1911 * when events happen near to each other and multiple bits
1912 * are set. But it should happen rarely.
1913 *
1914 * If these events include one PEBS and multiple non-PEBS
1915 * events, it doesn't impact PEBS record. The record will
1916 * be handled normally. (slow path)
1917 *
1918 * If these events include two or more PEBS events, the
1919 * records for the events can be collapsed into a single
1920 * one, and it's not possible to reconstruct all events
1921 * that caused the PEBS record. It's called collision.
1922 * If collision happened, the record will be dropped.
1923 */
1924 if (pebs_status != (1ULL << bit)) {
1925 for_each_set_bit(i, (unsigned long *)&pebs_status, size)
1926 error[i]++;
1927 continue;
1928 }
1929
1930 counts[bit]++;
1931 }
1932
1933 for_each_set_bit(bit, (unsigned long *)&mask, size) {
1934 if ((counts[bit] == 0) && (error[bit] == 0))
1935 continue;
1936
1937 event = cpuc->events[bit];
1938 if (WARN_ON_ONCE(!event))
1939 continue;
1940
1941 if (WARN_ON_ONCE(!event->attr.precise_ip))
1942 continue;
1943
1944 /* log dropped samples number */
1945 if (error[bit]) {
1946 perf_log_lost_samples(event, error[bit]);
1947
1948 if (iregs && perf_event_account_interrupt(event))
1949 x86_pmu_stop(event, 0);
1950 }
1951
1952 if (counts[bit]) {
1953 __intel_pmu_pebs_event(event, iregs, data, base,
1954 top, bit, counts[bit],
1955 setup_pebs_fixed_sample_data);
1956 }
1957 }
1958 }
1959
intel_pmu_drain_pebs_icl(struct pt_regs * iregs,struct perf_sample_data * data)1960 static void intel_pmu_drain_pebs_icl(struct pt_regs *iregs, struct perf_sample_data *data)
1961 {
1962 short counts[INTEL_PMC_IDX_FIXED + MAX_FIXED_PEBS_EVENTS] = {};
1963 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1964 struct debug_store *ds = cpuc->ds;
1965 struct perf_event *event;
1966 void *base, *at, *top;
1967 int bit, size;
1968 u64 mask;
1969
1970 if (!x86_pmu.pebs_active)
1971 return;
1972
1973 base = (struct pebs_basic *)(unsigned long)ds->pebs_buffer_base;
1974 top = (struct pebs_basic *)(unsigned long)ds->pebs_index;
1975
1976 ds->pebs_index = ds->pebs_buffer_base;
1977
1978 mask = ((1ULL << x86_pmu.max_pebs_events) - 1) |
1979 (((1ULL << x86_pmu.num_counters_fixed) - 1) << INTEL_PMC_IDX_FIXED);
1980 size = INTEL_PMC_IDX_FIXED + x86_pmu.num_counters_fixed;
1981
1982 if (unlikely(base >= top)) {
1983 intel_pmu_pebs_event_update_no_drain(cpuc, size);
1984 return;
1985 }
1986
1987 for (at = base; at < top; at += cpuc->pebs_record_size) {
1988 u64 pebs_status;
1989
1990 pebs_status = get_pebs_status(at) & cpuc->pebs_enabled;
1991 pebs_status &= mask;
1992
1993 for_each_set_bit(bit, (unsigned long *)&pebs_status, size)
1994 counts[bit]++;
1995 }
1996
1997 for_each_set_bit(bit, (unsigned long *)&mask, size) {
1998 if (counts[bit] == 0)
1999 continue;
2000
2001 event = cpuc->events[bit];
2002 if (WARN_ON_ONCE(!event))
2003 continue;
2004
2005 if (WARN_ON_ONCE(!event->attr.precise_ip))
2006 continue;
2007
2008 __intel_pmu_pebs_event(event, iregs, data, base,
2009 top, bit, counts[bit],
2010 setup_pebs_adaptive_sample_data);
2011 }
2012 }
2013
2014 /*
2015 * BTS, PEBS probe and setup
2016 */
2017
intel_ds_init(void)2018 void __init intel_ds_init(void)
2019 {
2020 /*
2021 * No support for 32bit formats
2022 */
2023 if (!boot_cpu_has(X86_FEATURE_DTES64))
2024 return;
2025
2026 x86_pmu.bts = boot_cpu_has(X86_FEATURE_BTS);
2027 x86_pmu.pebs = boot_cpu_has(X86_FEATURE_PEBS);
2028 x86_pmu.pebs_buffer_size = PEBS_BUFFER_SIZE;
2029 if (x86_pmu.version <= 4)
2030 x86_pmu.pebs_no_isolation = 1;
2031
2032 if (x86_pmu.pebs) {
2033 char pebs_type = x86_pmu.intel_cap.pebs_trap ? '+' : '-';
2034 char *pebs_qual = "";
2035 int format = x86_pmu.intel_cap.pebs_format;
2036
2037 if (format < 4)
2038 x86_pmu.intel_cap.pebs_baseline = 0;
2039
2040 switch (format) {
2041 case 0:
2042 pr_cont("PEBS fmt0%c, ", pebs_type);
2043 x86_pmu.pebs_record_size = sizeof(struct pebs_record_core);
2044 /*
2045 * Using >PAGE_SIZE buffers makes the WRMSR to
2046 * PERF_GLOBAL_CTRL in intel_pmu_enable_all()
2047 * mysteriously hang on Core2.
2048 *
2049 * As a workaround, we don't do this.
2050 */
2051 x86_pmu.pebs_buffer_size = PAGE_SIZE;
2052 x86_pmu.drain_pebs = intel_pmu_drain_pebs_core;
2053 break;
2054
2055 case 1:
2056 pr_cont("PEBS fmt1%c, ", pebs_type);
2057 x86_pmu.pebs_record_size = sizeof(struct pebs_record_nhm);
2058 x86_pmu.drain_pebs = intel_pmu_drain_pebs_nhm;
2059 break;
2060
2061 case 2:
2062 pr_cont("PEBS fmt2%c, ", pebs_type);
2063 x86_pmu.pebs_record_size = sizeof(struct pebs_record_hsw);
2064 x86_pmu.drain_pebs = intel_pmu_drain_pebs_nhm;
2065 break;
2066
2067 case 3:
2068 pr_cont("PEBS fmt3%c, ", pebs_type);
2069 x86_pmu.pebs_record_size =
2070 sizeof(struct pebs_record_skl);
2071 x86_pmu.drain_pebs = intel_pmu_drain_pebs_nhm;
2072 x86_pmu.large_pebs_flags |= PERF_SAMPLE_TIME;
2073 break;
2074
2075 case 4:
2076 x86_pmu.drain_pebs = intel_pmu_drain_pebs_icl;
2077 x86_pmu.pebs_record_size = sizeof(struct pebs_basic);
2078 if (x86_pmu.intel_cap.pebs_baseline) {
2079 x86_pmu.large_pebs_flags |=
2080 PERF_SAMPLE_BRANCH_STACK |
2081 PERF_SAMPLE_TIME;
2082 x86_pmu.flags |= PMU_FL_PEBS_ALL;
2083 pebs_qual = "-baseline";
2084 x86_get_pmu(smp_processor_id())->capabilities |= PERF_PMU_CAP_EXTENDED_REGS;
2085 } else {
2086 /* Only basic record supported */
2087 x86_pmu.large_pebs_flags &=
2088 ~(PERF_SAMPLE_ADDR |
2089 PERF_SAMPLE_TIME |
2090 PERF_SAMPLE_DATA_SRC |
2091 PERF_SAMPLE_TRANSACTION |
2092 PERF_SAMPLE_REGS_USER |
2093 PERF_SAMPLE_REGS_INTR);
2094 }
2095 pr_cont("PEBS fmt4%c%s, ", pebs_type, pebs_qual);
2096
2097 if (x86_pmu.intel_cap.pebs_output_pt_available) {
2098 pr_cont("PEBS-via-PT, ");
2099 x86_get_pmu(smp_processor_id())->capabilities |= PERF_PMU_CAP_AUX_OUTPUT;
2100 }
2101
2102 break;
2103
2104 default:
2105 pr_cont("no PEBS fmt%d%c, ", format, pebs_type);
2106 x86_pmu.pebs = 0;
2107 }
2108 }
2109 }
2110
perf_restore_debug_store(void)2111 void perf_restore_debug_store(void)
2112 {
2113 struct debug_store *ds = __this_cpu_read(cpu_hw_events.ds);
2114
2115 if (!x86_pmu.bts && !x86_pmu.pebs)
2116 return;
2117
2118 wrmsrl(MSR_IA32_DS_AREA, (unsigned long)ds);
2119 }
2120