1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 2010 Red Hat, Inc.
4 * Copyright (C) 2016-2019 Christoph Hellwig.
5 */
6 #include <linux/module.h>
7 #include <linux/compiler.h>
8 #include <linux/fs.h>
9 #include <linux/iomap.h>
10 #include <linux/pagemap.h>
11 #include <linux/uio.h>
12 #include <linux/buffer_head.h>
13 #include <linux/dax.h>
14 #include <linux/writeback.h>
15 #include <linux/list_sort.h>
16 #include <linux/swap.h>
17 #include <linux/bio.h>
18 #include <linux/sched/signal.h>
19 #include <linux/migrate.h>
20 #include "trace.h"
21
22 #include "../internal.h"
23
24 /*
25 * Structure allocated for each page or THP when block size < page size
26 * to track sub-page uptodate status and I/O completions.
27 */
28 struct iomap_page {
29 atomic_t read_bytes_pending;
30 atomic_t write_bytes_pending;
31 spinlock_t uptodate_lock;
32 unsigned long uptodate[];
33 };
34
to_iomap_page(struct page * page)35 static inline struct iomap_page *to_iomap_page(struct page *page)
36 {
37 /*
38 * per-block data is stored in the head page. Callers should
39 * not be dealing with tail pages (and if they are, they can
40 * call thp_head() first.
41 */
42 VM_BUG_ON_PGFLAGS(PageTail(page), page);
43
44 if (page_has_private(page))
45 return (struct iomap_page *)page_private(page);
46 return NULL;
47 }
48
49 static struct bio_set iomap_ioend_bioset;
50
51 static struct iomap_page *
iomap_page_create(struct inode * inode,struct page * page)52 iomap_page_create(struct inode *inode, struct page *page)
53 {
54 struct iomap_page *iop = to_iomap_page(page);
55 unsigned int nr_blocks = i_blocks_per_page(inode, page);
56
57 if (iop || nr_blocks <= 1)
58 return iop;
59
60 iop = kzalloc(struct_size(iop, uptodate, BITS_TO_LONGS(nr_blocks)),
61 GFP_NOFS | __GFP_NOFAIL);
62 spin_lock_init(&iop->uptodate_lock);
63 if (PageUptodate(page))
64 bitmap_fill(iop->uptodate, nr_blocks);
65 attach_page_private(page, iop);
66 return iop;
67 }
68
69 static void
iomap_page_release(struct page * page)70 iomap_page_release(struct page *page)
71 {
72 struct iomap_page *iop = detach_page_private(page);
73 unsigned int nr_blocks = i_blocks_per_page(page->mapping->host, page);
74
75 if (!iop)
76 return;
77 WARN_ON_ONCE(atomic_read(&iop->read_bytes_pending));
78 WARN_ON_ONCE(atomic_read(&iop->write_bytes_pending));
79 WARN_ON_ONCE(bitmap_full(iop->uptodate, nr_blocks) !=
80 PageUptodate(page));
81 kfree(iop);
82 }
83
84 /*
85 * Calculate the range inside the page that we actually need to read.
86 */
87 static void
iomap_adjust_read_range(struct inode * inode,struct iomap_page * iop,loff_t * pos,loff_t length,unsigned * offp,unsigned * lenp)88 iomap_adjust_read_range(struct inode *inode, struct iomap_page *iop,
89 loff_t *pos, loff_t length, unsigned *offp, unsigned *lenp)
90 {
91 loff_t orig_pos = *pos;
92 loff_t isize = i_size_read(inode);
93 unsigned block_bits = inode->i_blkbits;
94 unsigned block_size = (1 << block_bits);
95 unsigned poff = offset_in_page(*pos);
96 unsigned plen = min_t(loff_t, PAGE_SIZE - poff, length);
97 unsigned first = poff >> block_bits;
98 unsigned last = (poff + plen - 1) >> block_bits;
99
100 /*
101 * If the block size is smaller than the page size we need to check the
102 * per-block uptodate status and adjust the offset and length if needed
103 * to avoid reading in already uptodate ranges.
104 */
105 if (iop) {
106 unsigned int i;
107
108 /* move forward for each leading block marked uptodate */
109 for (i = first; i <= last; i++) {
110 if (!test_bit(i, iop->uptodate))
111 break;
112 *pos += block_size;
113 poff += block_size;
114 plen -= block_size;
115 first++;
116 }
117
118 /* truncate len if we find any trailing uptodate block(s) */
119 for ( ; i <= last; i++) {
120 if (test_bit(i, iop->uptodate)) {
121 plen -= (last - i + 1) * block_size;
122 last = i - 1;
123 break;
124 }
125 }
126 }
127
128 /*
129 * If the extent spans the block that contains the i_size we need to
130 * handle both halves separately so that we properly zero data in the
131 * page cache for blocks that are entirely outside of i_size.
132 */
133 if (orig_pos <= isize && orig_pos + length > isize) {
134 unsigned end = offset_in_page(isize - 1) >> block_bits;
135
136 if (first <= end && last > end)
137 plen -= (last - end) * block_size;
138 }
139
140 *offp = poff;
141 *lenp = plen;
142 }
143
144 static void
iomap_iop_set_range_uptodate(struct page * page,unsigned off,unsigned len)145 iomap_iop_set_range_uptodate(struct page *page, unsigned off, unsigned len)
146 {
147 struct iomap_page *iop = to_iomap_page(page);
148 struct inode *inode = page->mapping->host;
149 unsigned first = off >> inode->i_blkbits;
150 unsigned last = (off + len - 1) >> inode->i_blkbits;
151 unsigned long flags;
152
153 spin_lock_irqsave(&iop->uptodate_lock, flags);
154 bitmap_set(iop->uptodate, first, last - first + 1);
155 if (bitmap_full(iop->uptodate, i_blocks_per_page(inode, page)))
156 SetPageUptodate(page);
157 spin_unlock_irqrestore(&iop->uptodate_lock, flags);
158 }
159
160 static void
iomap_set_range_uptodate(struct page * page,unsigned off,unsigned len)161 iomap_set_range_uptodate(struct page *page, unsigned off, unsigned len)
162 {
163 if (PageError(page))
164 return;
165
166 if (page_has_private(page))
167 iomap_iop_set_range_uptodate(page, off, len);
168 else
169 SetPageUptodate(page);
170 }
171
172 static void
iomap_read_page_end_io(struct bio_vec * bvec,int error)173 iomap_read_page_end_io(struct bio_vec *bvec, int error)
174 {
175 struct page *page = bvec->bv_page;
176 struct iomap_page *iop = to_iomap_page(page);
177
178 if (unlikely(error)) {
179 ClearPageUptodate(page);
180 SetPageError(page);
181 } else {
182 iomap_set_range_uptodate(page, bvec->bv_offset, bvec->bv_len);
183 }
184
185 if (!iop || atomic_sub_and_test(bvec->bv_len, &iop->read_bytes_pending))
186 unlock_page(page);
187 }
188
189 static void
iomap_read_end_io(struct bio * bio)190 iomap_read_end_io(struct bio *bio)
191 {
192 int error = blk_status_to_errno(bio->bi_status);
193 struct bio_vec *bvec;
194 struct bvec_iter_all iter_all;
195
196 bio_for_each_segment_all(bvec, bio, iter_all)
197 iomap_read_page_end_io(bvec, error);
198 bio_put(bio);
199 }
200
201 struct iomap_readpage_ctx {
202 struct page *cur_page;
203 bool cur_page_in_bio;
204 struct bio *bio;
205 struct readahead_control *rac;
206 };
207
208 static void
iomap_read_inline_data(struct inode * inode,struct page * page,struct iomap * iomap)209 iomap_read_inline_data(struct inode *inode, struct page *page,
210 struct iomap *iomap)
211 {
212 size_t size = i_size_read(inode);
213 void *addr;
214
215 if (PageUptodate(page))
216 return;
217
218 BUG_ON(page->index);
219 BUG_ON(size > PAGE_SIZE - offset_in_page(iomap->inline_data));
220
221 addr = kmap_atomic(page);
222 memcpy(addr, iomap->inline_data, size);
223 memset(addr + size, 0, PAGE_SIZE - size);
224 kunmap_atomic(addr);
225 SetPageUptodate(page);
226 }
227
iomap_block_needs_zeroing(struct inode * inode,struct iomap * iomap,loff_t pos)228 static inline bool iomap_block_needs_zeroing(struct inode *inode,
229 struct iomap *iomap, loff_t pos)
230 {
231 return iomap->type != IOMAP_MAPPED ||
232 (iomap->flags & IOMAP_F_NEW) ||
233 pos >= i_size_read(inode);
234 }
235
236 static loff_t
iomap_readpage_actor(struct inode * inode,loff_t pos,loff_t length,void * data,struct iomap * iomap,struct iomap * srcmap)237 iomap_readpage_actor(struct inode *inode, loff_t pos, loff_t length, void *data,
238 struct iomap *iomap, struct iomap *srcmap)
239 {
240 struct iomap_readpage_ctx *ctx = data;
241 struct page *page = ctx->cur_page;
242 struct iomap_page *iop = iomap_page_create(inode, page);
243 bool same_page = false, is_contig = false;
244 loff_t orig_pos = pos;
245 unsigned poff, plen;
246 sector_t sector;
247
248 if (iomap->type == IOMAP_INLINE) {
249 WARN_ON_ONCE(pos);
250 iomap_read_inline_data(inode, page, iomap);
251 return PAGE_SIZE;
252 }
253
254 /* zero post-eof blocks as the page may be mapped */
255 iomap_adjust_read_range(inode, iop, &pos, length, &poff, &plen);
256 if (plen == 0)
257 goto done;
258
259 if (iomap_block_needs_zeroing(inode, iomap, pos)) {
260 zero_user(page, poff, plen);
261 iomap_set_range_uptodate(page, poff, plen);
262 goto done;
263 }
264
265 ctx->cur_page_in_bio = true;
266 if (iop)
267 atomic_add(plen, &iop->read_bytes_pending);
268
269 /* Try to merge into a previous segment if we can */
270 sector = iomap_sector(iomap, pos);
271 if (ctx->bio && bio_end_sector(ctx->bio) == sector) {
272 if (__bio_try_merge_page(ctx->bio, page, plen, poff,
273 &same_page))
274 goto done;
275 is_contig = true;
276 }
277
278 if (!is_contig || bio_full(ctx->bio, plen)) {
279 gfp_t gfp = mapping_gfp_constraint(page->mapping, GFP_KERNEL);
280 gfp_t orig_gfp = gfp;
281 int nr_vecs = (length + PAGE_SIZE - 1) >> PAGE_SHIFT;
282
283 if (ctx->bio)
284 submit_bio(ctx->bio);
285
286 if (ctx->rac) /* same as readahead_gfp_mask */
287 gfp |= __GFP_NORETRY | __GFP_NOWARN;
288 ctx->bio = bio_alloc(gfp, min(BIO_MAX_PAGES, nr_vecs));
289 /*
290 * If the bio_alloc fails, try it again for a single page to
291 * avoid having to deal with partial page reads. This emulates
292 * what do_mpage_readpage does.
293 */
294 if (!ctx->bio)
295 ctx->bio = bio_alloc(orig_gfp, 1);
296 ctx->bio->bi_opf = REQ_OP_READ;
297 if (ctx->rac)
298 ctx->bio->bi_opf |= REQ_RAHEAD;
299 ctx->bio->bi_iter.bi_sector = sector;
300 bio_set_dev(ctx->bio, iomap->bdev);
301 ctx->bio->bi_end_io = iomap_read_end_io;
302 }
303
304 bio_add_page(ctx->bio, page, plen, poff);
305 done:
306 /*
307 * Move the caller beyond our range so that it keeps making progress.
308 * For that we have to include any leading non-uptodate ranges, but
309 * we can skip trailing ones as they will be handled in the next
310 * iteration.
311 */
312 return pos - orig_pos + plen;
313 }
314
315 int
iomap_readpage(struct page * page,const struct iomap_ops * ops)316 iomap_readpage(struct page *page, const struct iomap_ops *ops)
317 {
318 struct iomap_readpage_ctx ctx = { .cur_page = page };
319 struct inode *inode = page->mapping->host;
320 unsigned poff;
321 loff_t ret;
322
323 trace_iomap_readpage(page->mapping->host, 1);
324
325 for (poff = 0; poff < PAGE_SIZE; poff += ret) {
326 ret = iomap_apply(inode, page_offset(page) + poff,
327 PAGE_SIZE - poff, 0, ops, &ctx,
328 iomap_readpage_actor);
329 if (ret <= 0) {
330 WARN_ON_ONCE(ret == 0);
331 SetPageError(page);
332 break;
333 }
334 }
335
336 if (ctx.bio) {
337 submit_bio(ctx.bio);
338 WARN_ON_ONCE(!ctx.cur_page_in_bio);
339 } else {
340 WARN_ON_ONCE(ctx.cur_page_in_bio);
341 unlock_page(page);
342 }
343
344 /*
345 * Just like mpage_readahead and block_read_full_page we always
346 * return 0 and just mark the page as PageError on errors. This
347 * should be cleaned up all through the stack eventually.
348 */
349 return 0;
350 }
351 EXPORT_SYMBOL_GPL(iomap_readpage);
352
353 static loff_t
iomap_readahead_actor(struct inode * inode,loff_t pos,loff_t length,void * data,struct iomap * iomap,struct iomap * srcmap)354 iomap_readahead_actor(struct inode *inode, loff_t pos, loff_t length,
355 void *data, struct iomap *iomap, struct iomap *srcmap)
356 {
357 struct iomap_readpage_ctx *ctx = data;
358 loff_t done, ret;
359
360 for (done = 0; done < length; done += ret) {
361 if (ctx->cur_page && offset_in_page(pos + done) == 0) {
362 if (!ctx->cur_page_in_bio)
363 unlock_page(ctx->cur_page);
364 put_page(ctx->cur_page);
365 ctx->cur_page = NULL;
366 }
367 if (!ctx->cur_page) {
368 ctx->cur_page = readahead_page(ctx->rac);
369 ctx->cur_page_in_bio = false;
370 }
371 ret = iomap_readpage_actor(inode, pos + done, length - done,
372 ctx, iomap, srcmap);
373 }
374
375 return done;
376 }
377
378 /**
379 * iomap_readahead - Attempt to read pages from a file.
380 * @rac: Describes the pages to be read.
381 * @ops: The operations vector for the filesystem.
382 *
383 * This function is for filesystems to call to implement their readahead
384 * address_space operation.
385 *
386 * Context: The @ops callbacks may submit I/O (eg to read the addresses of
387 * blocks from disc), and may wait for it. The caller may be trying to
388 * access a different page, and so sleeping excessively should be avoided.
389 * It may allocate memory, but should avoid costly allocations. This
390 * function is called with memalloc_nofs set, so allocations will not cause
391 * the filesystem to be reentered.
392 */
iomap_readahead(struct readahead_control * rac,const struct iomap_ops * ops)393 void iomap_readahead(struct readahead_control *rac, const struct iomap_ops *ops)
394 {
395 struct inode *inode = rac->mapping->host;
396 loff_t pos = readahead_pos(rac);
397 loff_t length = readahead_length(rac);
398 struct iomap_readpage_ctx ctx = {
399 .rac = rac,
400 };
401
402 trace_iomap_readahead(inode, readahead_count(rac));
403
404 while (length > 0) {
405 loff_t ret = iomap_apply(inode, pos, length, 0, ops,
406 &ctx, iomap_readahead_actor);
407 if (ret <= 0) {
408 WARN_ON_ONCE(ret == 0);
409 break;
410 }
411 pos += ret;
412 length -= ret;
413 }
414
415 if (ctx.bio)
416 submit_bio(ctx.bio);
417 if (ctx.cur_page) {
418 if (!ctx.cur_page_in_bio)
419 unlock_page(ctx.cur_page);
420 put_page(ctx.cur_page);
421 }
422 }
423 EXPORT_SYMBOL_GPL(iomap_readahead);
424
425 /*
426 * iomap_is_partially_uptodate checks whether blocks within a page are
427 * uptodate or not.
428 *
429 * Returns true if all blocks which correspond to a file portion
430 * we want to read within the page are uptodate.
431 */
432 int
iomap_is_partially_uptodate(struct page * page,unsigned long from,unsigned long count)433 iomap_is_partially_uptodate(struct page *page, unsigned long from,
434 unsigned long count)
435 {
436 struct iomap_page *iop = to_iomap_page(page);
437 struct inode *inode = page->mapping->host;
438 unsigned len, first, last;
439 unsigned i;
440
441 /* Limit range to one page */
442 len = min_t(unsigned, PAGE_SIZE - from, count);
443
444 /* First and last blocks in range within page */
445 first = from >> inode->i_blkbits;
446 last = (from + len - 1) >> inode->i_blkbits;
447
448 if (iop) {
449 for (i = first; i <= last; i++)
450 if (!test_bit(i, iop->uptodate))
451 return 0;
452 return 1;
453 }
454
455 return 0;
456 }
457 EXPORT_SYMBOL_GPL(iomap_is_partially_uptodate);
458
459 int
iomap_releasepage(struct page * page,gfp_t gfp_mask)460 iomap_releasepage(struct page *page, gfp_t gfp_mask)
461 {
462 trace_iomap_releasepage(page->mapping->host, page_offset(page),
463 PAGE_SIZE);
464
465 /*
466 * mm accommodates an old ext3 case where clean pages might not have had
467 * the dirty bit cleared. Thus, it can send actual dirty pages to
468 * ->releasepage() via shrink_active_list(), skip those here.
469 */
470 if (PageDirty(page) || PageWriteback(page))
471 return 0;
472 iomap_page_release(page);
473 return 1;
474 }
475 EXPORT_SYMBOL_GPL(iomap_releasepage);
476
477 void
iomap_invalidatepage(struct page * page,unsigned int offset,unsigned int len)478 iomap_invalidatepage(struct page *page, unsigned int offset, unsigned int len)
479 {
480 trace_iomap_invalidatepage(page->mapping->host, offset, len);
481
482 /*
483 * If we are invalidating the entire page, clear the dirty state from it
484 * and release it to avoid unnecessary buildup of the LRU.
485 */
486 if (offset == 0 && len == PAGE_SIZE) {
487 WARN_ON_ONCE(PageWriteback(page));
488 cancel_dirty_page(page);
489 iomap_page_release(page);
490 }
491 }
492 EXPORT_SYMBOL_GPL(iomap_invalidatepage);
493
494 #ifdef CONFIG_MIGRATION
495 int
iomap_migrate_page(struct address_space * mapping,struct page * newpage,struct page * page,enum migrate_mode mode)496 iomap_migrate_page(struct address_space *mapping, struct page *newpage,
497 struct page *page, enum migrate_mode mode)
498 {
499 int ret;
500
501 ret = migrate_page_move_mapping(mapping, newpage, page, 0);
502 if (ret != MIGRATEPAGE_SUCCESS)
503 return ret;
504
505 if (page_has_private(page))
506 attach_page_private(newpage, detach_page_private(page));
507
508 if (mode != MIGRATE_SYNC_NO_COPY)
509 migrate_page_copy(newpage, page);
510 else
511 migrate_page_states(newpage, page);
512 return MIGRATEPAGE_SUCCESS;
513 }
514 EXPORT_SYMBOL_GPL(iomap_migrate_page);
515 #endif /* CONFIG_MIGRATION */
516
517 enum {
518 IOMAP_WRITE_F_UNSHARE = (1 << 0),
519 };
520
521 static void
iomap_write_failed(struct inode * inode,loff_t pos,unsigned len)522 iomap_write_failed(struct inode *inode, loff_t pos, unsigned len)
523 {
524 loff_t i_size = i_size_read(inode);
525
526 /*
527 * Only truncate newly allocated pages beyoned EOF, even if the
528 * write started inside the existing inode size.
529 */
530 if (pos + len > i_size)
531 truncate_pagecache_range(inode, max(pos, i_size),
532 pos + len - 1);
533 }
534
535 static int
iomap_read_page_sync(loff_t block_start,struct page * page,unsigned poff,unsigned plen,struct iomap * iomap)536 iomap_read_page_sync(loff_t block_start, struct page *page, unsigned poff,
537 unsigned plen, struct iomap *iomap)
538 {
539 struct bio_vec bvec;
540 struct bio bio;
541
542 bio_init(&bio, &bvec, 1);
543 bio.bi_opf = REQ_OP_READ;
544 bio.bi_iter.bi_sector = iomap_sector(iomap, block_start);
545 bio_set_dev(&bio, iomap->bdev);
546 __bio_add_page(&bio, page, plen, poff);
547 return submit_bio_wait(&bio);
548 }
549
550 static int
__iomap_write_begin(struct inode * inode,loff_t pos,unsigned len,int flags,struct page * page,struct iomap * srcmap)551 __iomap_write_begin(struct inode *inode, loff_t pos, unsigned len, int flags,
552 struct page *page, struct iomap *srcmap)
553 {
554 struct iomap_page *iop = iomap_page_create(inode, page);
555 loff_t block_size = i_blocksize(inode);
556 loff_t block_start = round_down(pos, block_size);
557 loff_t block_end = round_up(pos + len, block_size);
558 unsigned from = offset_in_page(pos), to = from + len, poff, plen;
559
560 if (PageUptodate(page))
561 return 0;
562 ClearPageError(page);
563
564 do {
565 iomap_adjust_read_range(inode, iop, &block_start,
566 block_end - block_start, &poff, &plen);
567 if (plen == 0)
568 break;
569
570 if (!(flags & IOMAP_WRITE_F_UNSHARE) &&
571 (from <= poff || from >= poff + plen) &&
572 (to <= poff || to >= poff + plen))
573 continue;
574
575 if (iomap_block_needs_zeroing(inode, srcmap, block_start)) {
576 if (WARN_ON_ONCE(flags & IOMAP_WRITE_F_UNSHARE))
577 return -EIO;
578 zero_user_segments(page, poff, from, to, poff + plen);
579 } else {
580 int status = iomap_read_page_sync(block_start, page,
581 poff, plen, srcmap);
582 if (status)
583 return status;
584 }
585 iomap_set_range_uptodate(page, poff, plen);
586 } while ((block_start += plen) < block_end);
587
588 return 0;
589 }
590
591 static int
iomap_write_begin(struct inode * inode,loff_t pos,unsigned len,unsigned flags,struct page ** pagep,struct iomap * iomap,struct iomap * srcmap)592 iomap_write_begin(struct inode *inode, loff_t pos, unsigned len, unsigned flags,
593 struct page **pagep, struct iomap *iomap, struct iomap *srcmap)
594 {
595 const struct iomap_page_ops *page_ops = iomap->page_ops;
596 struct page *page;
597 int status = 0;
598
599 BUG_ON(pos + len > iomap->offset + iomap->length);
600 if (srcmap != iomap)
601 BUG_ON(pos + len > srcmap->offset + srcmap->length);
602
603 if (fatal_signal_pending(current))
604 return -EINTR;
605
606 if (page_ops && page_ops->page_prepare) {
607 status = page_ops->page_prepare(inode, pos, len, iomap);
608 if (status)
609 return status;
610 }
611
612 page = grab_cache_page_write_begin(inode->i_mapping, pos >> PAGE_SHIFT,
613 AOP_FLAG_NOFS);
614 if (!page) {
615 status = -ENOMEM;
616 goto out_no_page;
617 }
618
619 if (srcmap->type == IOMAP_INLINE)
620 iomap_read_inline_data(inode, page, srcmap);
621 else if (iomap->flags & IOMAP_F_BUFFER_HEAD)
622 status = __block_write_begin_int(page, pos, len, NULL, srcmap);
623 else
624 status = __iomap_write_begin(inode, pos, len, flags, page,
625 srcmap);
626
627 if (unlikely(status))
628 goto out_unlock;
629
630 *pagep = page;
631 return 0;
632
633 out_unlock:
634 unlock_page(page);
635 put_page(page);
636 iomap_write_failed(inode, pos, len);
637
638 out_no_page:
639 if (page_ops && page_ops->page_done)
640 page_ops->page_done(inode, pos, 0, NULL, iomap);
641 return status;
642 }
643
644 int
iomap_set_page_dirty(struct page * page)645 iomap_set_page_dirty(struct page *page)
646 {
647 struct address_space *mapping = page_mapping(page);
648 int newly_dirty;
649
650 if (unlikely(!mapping))
651 return !TestSetPageDirty(page);
652
653 /*
654 * Lock out page->mem_cgroup migration to keep PageDirty
655 * synchronized with per-memcg dirty page counters.
656 */
657 lock_page_memcg(page);
658 newly_dirty = !TestSetPageDirty(page);
659 if (newly_dirty)
660 __set_page_dirty(page, mapping, 0);
661 unlock_page_memcg(page);
662
663 if (newly_dirty)
664 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
665 return newly_dirty;
666 }
667 EXPORT_SYMBOL_GPL(iomap_set_page_dirty);
668
__iomap_write_end(struct inode * inode,loff_t pos,size_t len,size_t copied,struct page * page)669 static size_t __iomap_write_end(struct inode *inode, loff_t pos, size_t len,
670 size_t copied, struct page *page)
671 {
672 flush_dcache_page(page);
673
674 /*
675 * The blocks that were entirely written will now be uptodate, so we
676 * don't have to worry about a readpage reading them and overwriting a
677 * partial write. However if we have encountered a short write and only
678 * partially written into a block, it will not be marked uptodate, so a
679 * readpage might come in and destroy our partial write.
680 *
681 * Do the simplest thing, and just treat any short write to a non
682 * uptodate page as a zero-length write, and force the caller to redo
683 * the whole thing.
684 */
685 if (unlikely(copied < len && !PageUptodate(page)))
686 return 0;
687 iomap_set_range_uptodate(page, offset_in_page(pos), len);
688 iomap_set_page_dirty(page);
689 return copied;
690 }
691
iomap_write_end_inline(struct inode * inode,struct page * page,struct iomap * iomap,loff_t pos,size_t copied)692 static size_t iomap_write_end_inline(struct inode *inode, struct page *page,
693 struct iomap *iomap, loff_t pos, size_t copied)
694 {
695 void *addr;
696
697 WARN_ON_ONCE(!PageUptodate(page));
698 BUG_ON(pos + copied > PAGE_SIZE - offset_in_page(iomap->inline_data));
699
700 flush_dcache_page(page);
701 addr = kmap_atomic(page);
702 memcpy(iomap->inline_data + pos, addr + pos, copied);
703 kunmap_atomic(addr);
704
705 mark_inode_dirty(inode);
706 return copied;
707 }
708
709 /* Returns the number of bytes copied. May be 0. Cannot be an errno. */
iomap_write_end(struct inode * inode,loff_t pos,size_t len,size_t copied,struct page * page,struct iomap * iomap,struct iomap * srcmap)710 static size_t iomap_write_end(struct inode *inode, loff_t pos, size_t len,
711 size_t copied, struct page *page, struct iomap *iomap,
712 struct iomap *srcmap)
713 {
714 const struct iomap_page_ops *page_ops = iomap->page_ops;
715 loff_t old_size = inode->i_size;
716 size_t ret;
717
718 if (srcmap->type == IOMAP_INLINE) {
719 ret = iomap_write_end_inline(inode, page, iomap, pos, copied);
720 } else if (srcmap->flags & IOMAP_F_BUFFER_HEAD) {
721 ret = block_write_end(NULL, inode->i_mapping, pos, len, copied,
722 page, NULL);
723 } else {
724 ret = __iomap_write_end(inode, pos, len, copied, page);
725 }
726
727 /*
728 * Update the in-memory inode size after copying the data into the page
729 * cache. It's up to the file system to write the updated size to disk,
730 * preferably after I/O completion so that no stale data is exposed.
731 */
732 if (pos + ret > old_size) {
733 i_size_write(inode, pos + ret);
734 iomap->flags |= IOMAP_F_SIZE_CHANGED;
735 }
736 unlock_page(page);
737
738 if (old_size < pos)
739 pagecache_isize_extended(inode, old_size, pos);
740 if (page_ops && page_ops->page_done)
741 page_ops->page_done(inode, pos, ret, page, iomap);
742 put_page(page);
743
744 if (ret < len)
745 iomap_write_failed(inode, pos, len);
746 return ret;
747 }
748
749 static loff_t
iomap_write_actor(struct inode * inode,loff_t pos,loff_t length,void * data,struct iomap * iomap,struct iomap * srcmap)750 iomap_write_actor(struct inode *inode, loff_t pos, loff_t length, void *data,
751 struct iomap *iomap, struct iomap *srcmap)
752 {
753 struct iov_iter *i = data;
754 long status = 0;
755 ssize_t written = 0;
756
757 do {
758 struct page *page;
759 unsigned long offset; /* Offset into pagecache page */
760 unsigned long bytes; /* Bytes to write to page */
761 size_t copied; /* Bytes copied from user */
762
763 offset = offset_in_page(pos);
764 bytes = min_t(unsigned long, PAGE_SIZE - offset,
765 iov_iter_count(i));
766 again:
767 if (bytes > length)
768 bytes = length;
769
770 /*
771 * Bring in the user page that we will copy from _first_.
772 * Otherwise there's a nasty deadlock on copying from the
773 * same page as we're writing to, without it being marked
774 * up-to-date.
775 *
776 * Not only is this an optimisation, but it is also required
777 * to check that the address is actually valid, when atomic
778 * usercopies are used, below.
779 */
780 if (unlikely(iov_iter_fault_in_readable(i, bytes))) {
781 status = -EFAULT;
782 break;
783 }
784
785 status = iomap_write_begin(inode, pos, bytes, 0, &page, iomap,
786 srcmap);
787 if (unlikely(status))
788 break;
789
790 if (mapping_writably_mapped(inode->i_mapping))
791 flush_dcache_page(page);
792
793 copied = iov_iter_copy_from_user_atomic(page, i, offset, bytes);
794
795 copied = iomap_write_end(inode, pos, bytes, copied, page, iomap,
796 srcmap);
797
798 cond_resched();
799
800 iov_iter_advance(i, copied);
801 if (unlikely(copied == 0)) {
802 /*
803 * If we were unable to copy any data at all, we must
804 * fall back to a single segment length write.
805 *
806 * If we didn't fallback here, we could livelock
807 * because not all segments in the iov can be copied at
808 * once without a pagefault.
809 */
810 bytes = min_t(unsigned long, PAGE_SIZE - offset,
811 iov_iter_single_seg_count(i));
812 goto again;
813 }
814 pos += copied;
815 written += copied;
816 length -= copied;
817
818 balance_dirty_pages_ratelimited(inode->i_mapping);
819 } while (iov_iter_count(i) && length);
820
821 return written ? written : status;
822 }
823
824 ssize_t
iomap_file_buffered_write(struct kiocb * iocb,struct iov_iter * iter,const struct iomap_ops * ops)825 iomap_file_buffered_write(struct kiocb *iocb, struct iov_iter *iter,
826 const struct iomap_ops *ops)
827 {
828 struct inode *inode = iocb->ki_filp->f_mapping->host;
829 loff_t pos = iocb->ki_pos, ret = 0, written = 0;
830
831 while (iov_iter_count(iter)) {
832 ret = iomap_apply(inode, pos, iov_iter_count(iter),
833 IOMAP_WRITE, ops, iter, iomap_write_actor);
834 if (ret <= 0)
835 break;
836 pos += ret;
837 written += ret;
838 }
839
840 return written ? written : ret;
841 }
842 EXPORT_SYMBOL_GPL(iomap_file_buffered_write);
843
844 static loff_t
iomap_unshare_actor(struct inode * inode,loff_t pos,loff_t length,void * data,struct iomap * iomap,struct iomap * srcmap)845 iomap_unshare_actor(struct inode *inode, loff_t pos, loff_t length, void *data,
846 struct iomap *iomap, struct iomap *srcmap)
847 {
848 long status = 0;
849 loff_t written = 0;
850
851 /* don't bother with blocks that are not shared to start with */
852 if (!(iomap->flags & IOMAP_F_SHARED))
853 return length;
854 /* don't bother with holes or unwritten extents */
855 if (srcmap->type == IOMAP_HOLE || srcmap->type == IOMAP_UNWRITTEN)
856 return length;
857
858 do {
859 unsigned long offset = offset_in_page(pos);
860 unsigned long bytes = min_t(loff_t, PAGE_SIZE - offset, length);
861 struct page *page;
862
863 status = iomap_write_begin(inode, pos, bytes,
864 IOMAP_WRITE_F_UNSHARE, &page, iomap, srcmap);
865 if (unlikely(status))
866 return status;
867
868 status = iomap_write_end(inode, pos, bytes, bytes, page, iomap,
869 srcmap);
870 if (WARN_ON_ONCE(status == 0))
871 return -EIO;
872
873 cond_resched();
874
875 pos += status;
876 written += status;
877 length -= status;
878
879 balance_dirty_pages_ratelimited(inode->i_mapping);
880 } while (length);
881
882 return written;
883 }
884
885 int
iomap_file_unshare(struct inode * inode,loff_t pos,loff_t len,const struct iomap_ops * ops)886 iomap_file_unshare(struct inode *inode, loff_t pos, loff_t len,
887 const struct iomap_ops *ops)
888 {
889 loff_t ret;
890
891 while (len) {
892 ret = iomap_apply(inode, pos, len, IOMAP_WRITE, ops, NULL,
893 iomap_unshare_actor);
894 if (ret <= 0)
895 return ret;
896 pos += ret;
897 len -= ret;
898 }
899
900 return 0;
901 }
902 EXPORT_SYMBOL_GPL(iomap_file_unshare);
903
iomap_zero(struct inode * inode,loff_t pos,u64 length,struct iomap * iomap,struct iomap * srcmap)904 static s64 iomap_zero(struct inode *inode, loff_t pos, u64 length,
905 struct iomap *iomap, struct iomap *srcmap)
906 {
907 struct page *page;
908 int status;
909 unsigned offset = offset_in_page(pos);
910 unsigned bytes = min_t(u64, PAGE_SIZE - offset, length);
911
912 status = iomap_write_begin(inode, pos, bytes, 0, &page, iomap, srcmap);
913 if (status)
914 return status;
915
916 zero_user(page, offset, bytes);
917 mark_page_accessed(page);
918
919 return iomap_write_end(inode, pos, bytes, bytes, page, iomap, srcmap);
920 }
921
iomap_zero_range_actor(struct inode * inode,loff_t pos,loff_t length,void * data,struct iomap * iomap,struct iomap * srcmap)922 static loff_t iomap_zero_range_actor(struct inode *inode, loff_t pos,
923 loff_t length, void *data, struct iomap *iomap,
924 struct iomap *srcmap)
925 {
926 bool *did_zero = data;
927 loff_t written = 0;
928
929 /* already zeroed? we're done. */
930 if (srcmap->type == IOMAP_HOLE || srcmap->type == IOMAP_UNWRITTEN)
931 return length;
932
933 do {
934 s64 bytes;
935
936 if (IS_DAX(inode))
937 bytes = dax_iomap_zero(pos, length, iomap);
938 else
939 bytes = iomap_zero(inode, pos, length, iomap, srcmap);
940 if (bytes < 0)
941 return bytes;
942
943 pos += bytes;
944 length -= bytes;
945 written += bytes;
946 if (did_zero)
947 *did_zero = true;
948 } while (length > 0);
949
950 return written;
951 }
952
953 int
iomap_zero_range(struct inode * inode,loff_t pos,loff_t len,bool * did_zero,const struct iomap_ops * ops)954 iomap_zero_range(struct inode *inode, loff_t pos, loff_t len, bool *did_zero,
955 const struct iomap_ops *ops)
956 {
957 loff_t ret;
958
959 while (len > 0) {
960 ret = iomap_apply(inode, pos, len, IOMAP_ZERO,
961 ops, did_zero, iomap_zero_range_actor);
962 if (ret <= 0)
963 return ret;
964
965 pos += ret;
966 len -= ret;
967 }
968
969 return 0;
970 }
971 EXPORT_SYMBOL_GPL(iomap_zero_range);
972
973 int
iomap_truncate_page(struct inode * inode,loff_t pos,bool * did_zero,const struct iomap_ops * ops)974 iomap_truncate_page(struct inode *inode, loff_t pos, bool *did_zero,
975 const struct iomap_ops *ops)
976 {
977 unsigned int blocksize = i_blocksize(inode);
978 unsigned int off = pos & (blocksize - 1);
979
980 /* Block boundary? Nothing to do */
981 if (!off)
982 return 0;
983 return iomap_zero_range(inode, pos, blocksize - off, did_zero, ops);
984 }
985 EXPORT_SYMBOL_GPL(iomap_truncate_page);
986
987 static loff_t
iomap_page_mkwrite_actor(struct inode * inode,loff_t pos,loff_t length,void * data,struct iomap * iomap,struct iomap * srcmap)988 iomap_page_mkwrite_actor(struct inode *inode, loff_t pos, loff_t length,
989 void *data, struct iomap *iomap, struct iomap *srcmap)
990 {
991 struct page *page = data;
992 int ret;
993
994 if (iomap->flags & IOMAP_F_BUFFER_HEAD) {
995 ret = __block_write_begin_int(page, pos, length, NULL, iomap);
996 if (ret)
997 return ret;
998 block_commit_write(page, 0, length);
999 } else {
1000 WARN_ON_ONCE(!PageUptodate(page));
1001 iomap_page_create(inode, page);
1002 set_page_dirty(page);
1003 }
1004
1005 return length;
1006 }
1007
iomap_page_mkwrite(struct vm_fault * vmf,const struct iomap_ops * ops)1008 vm_fault_t iomap_page_mkwrite(struct vm_fault *vmf, const struct iomap_ops *ops)
1009 {
1010 struct page *page = vmf->page;
1011 struct inode *inode = file_inode(vmf->vma->vm_file);
1012 unsigned long length;
1013 loff_t offset;
1014 ssize_t ret;
1015
1016 lock_page(page);
1017 ret = page_mkwrite_check_truncate(page, inode);
1018 if (ret < 0)
1019 goto out_unlock;
1020 length = ret;
1021
1022 offset = page_offset(page);
1023 while (length > 0) {
1024 ret = iomap_apply(inode, offset, length,
1025 IOMAP_WRITE | IOMAP_FAULT, ops, page,
1026 iomap_page_mkwrite_actor);
1027 if (unlikely(ret <= 0))
1028 goto out_unlock;
1029 offset += ret;
1030 length -= ret;
1031 }
1032
1033 wait_for_stable_page(page);
1034 return VM_FAULT_LOCKED;
1035 out_unlock:
1036 unlock_page(page);
1037 return block_page_mkwrite_return(ret);
1038 }
1039 EXPORT_SYMBOL_GPL(iomap_page_mkwrite);
1040
1041 static void
iomap_finish_page_writeback(struct inode * inode,struct page * page,int error,unsigned int len)1042 iomap_finish_page_writeback(struct inode *inode, struct page *page,
1043 int error, unsigned int len)
1044 {
1045 struct iomap_page *iop = to_iomap_page(page);
1046
1047 if (error) {
1048 SetPageError(page);
1049 mapping_set_error(inode->i_mapping, error);
1050 }
1051
1052 WARN_ON_ONCE(i_blocks_per_page(inode, page) > 1 && !iop);
1053 WARN_ON_ONCE(iop && atomic_read(&iop->write_bytes_pending) <= 0);
1054
1055 if (!iop || atomic_sub_and_test(len, &iop->write_bytes_pending))
1056 end_page_writeback(page);
1057 }
1058
1059 /*
1060 * We're now finished for good with this ioend structure. Update the page
1061 * state, release holds on bios, and finally free up memory. Do not use the
1062 * ioend after this.
1063 */
1064 static void
iomap_finish_ioend(struct iomap_ioend * ioend,int error)1065 iomap_finish_ioend(struct iomap_ioend *ioend, int error)
1066 {
1067 struct inode *inode = ioend->io_inode;
1068 struct bio *bio = &ioend->io_inline_bio;
1069 struct bio *last = ioend->io_bio, *next;
1070 u64 start = bio->bi_iter.bi_sector;
1071 loff_t offset = ioend->io_offset;
1072 bool quiet = bio_flagged(bio, BIO_QUIET);
1073
1074 for (bio = &ioend->io_inline_bio; bio; bio = next) {
1075 struct bio_vec *bv;
1076 struct bvec_iter_all iter_all;
1077
1078 /*
1079 * For the last bio, bi_private points to the ioend, so we
1080 * need to explicitly end the iteration here.
1081 */
1082 if (bio == last)
1083 next = NULL;
1084 else
1085 next = bio->bi_private;
1086
1087 /* walk each page on bio, ending page IO on them */
1088 bio_for_each_segment_all(bv, bio, iter_all)
1089 iomap_finish_page_writeback(inode, bv->bv_page, error,
1090 bv->bv_len);
1091 bio_put(bio);
1092 }
1093 /* The ioend has been freed by bio_put() */
1094
1095 if (unlikely(error && !quiet)) {
1096 printk_ratelimited(KERN_ERR
1097 "%s: writeback error on inode %lu, offset %lld, sector %llu",
1098 inode->i_sb->s_id, inode->i_ino, offset, start);
1099 }
1100 }
1101
1102 void
iomap_finish_ioends(struct iomap_ioend * ioend,int error)1103 iomap_finish_ioends(struct iomap_ioend *ioend, int error)
1104 {
1105 struct list_head tmp;
1106
1107 list_replace_init(&ioend->io_list, &tmp);
1108 iomap_finish_ioend(ioend, error);
1109
1110 while (!list_empty(&tmp)) {
1111 ioend = list_first_entry(&tmp, struct iomap_ioend, io_list);
1112 list_del_init(&ioend->io_list);
1113 iomap_finish_ioend(ioend, error);
1114 }
1115 }
1116 EXPORT_SYMBOL_GPL(iomap_finish_ioends);
1117
1118 /*
1119 * We can merge two adjacent ioends if they have the same set of work to do.
1120 */
1121 static bool
iomap_ioend_can_merge(struct iomap_ioend * ioend,struct iomap_ioend * next)1122 iomap_ioend_can_merge(struct iomap_ioend *ioend, struct iomap_ioend *next)
1123 {
1124 if (ioend->io_bio->bi_status != next->io_bio->bi_status)
1125 return false;
1126 if ((ioend->io_flags & IOMAP_F_SHARED) ^
1127 (next->io_flags & IOMAP_F_SHARED))
1128 return false;
1129 if ((ioend->io_type == IOMAP_UNWRITTEN) ^
1130 (next->io_type == IOMAP_UNWRITTEN))
1131 return false;
1132 if (ioend->io_offset + ioend->io_size != next->io_offset)
1133 return false;
1134 return true;
1135 }
1136
1137 void
iomap_ioend_try_merge(struct iomap_ioend * ioend,struct list_head * more_ioends,void (* merge_private)(struct iomap_ioend * ioend,struct iomap_ioend * next))1138 iomap_ioend_try_merge(struct iomap_ioend *ioend, struct list_head *more_ioends,
1139 void (*merge_private)(struct iomap_ioend *ioend,
1140 struct iomap_ioend *next))
1141 {
1142 struct iomap_ioend *next;
1143
1144 INIT_LIST_HEAD(&ioend->io_list);
1145
1146 while ((next = list_first_entry_or_null(more_ioends, struct iomap_ioend,
1147 io_list))) {
1148 if (!iomap_ioend_can_merge(ioend, next))
1149 break;
1150 list_move_tail(&next->io_list, &ioend->io_list);
1151 ioend->io_size += next->io_size;
1152 if (next->io_private && merge_private)
1153 merge_private(ioend, next);
1154 }
1155 }
1156 EXPORT_SYMBOL_GPL(iomap_ioend_try_merge);
1157
1158 static int
iomap_ioend_compare(void * priv,const struct list_head * a,const struct list_head * b)1159 iomap_ioend_compare(void *priv, const struct list_head *a,
1160 const struct list_head *b)
1161 {
1162 struct iomap_ioend *ia = container_of(a, struct iomap_ioend, io_list);
1163 struct iomap_ioend *ib = container_of(b, struct iomap_ioend, io_list);
1164
1165 if (ia->io_offset < ib->io_offset)
1166 return -1;
1167 if (ia->io_offset > ib->io_offset)
1168 return 1;
1169 return 0;
1170 }
1171
1172 void
iomap_sort_ioends(struct list_head * ioend_list)1173 iomap_sort_ioends(struct list_head *ioend_list)
1174 {
1175 list_sort(NULL, ioend_list, iomap_ioend_compare);
1176 }
1177 EXPORT_SYMBOL_GPL(iomap_sort_ioends);
1178
iomap_writepage_end_bio(struct bio * bio)1179 static void iomap_writepage_end_bio(struct bio *bio)
1180 {
1181 struct iomap_ioend *ioend = bio->bi_private;
1182
1183 iomap_finish_ioend(ioend, blk_status_to_errno(bio->bi_status));
1184 }
1185
1186 /*
1187 * Submit the final bio for an ioend.
1188 *
1189 * If @error is non-zero, it means that we have a situation where some part of
1190 * the submission process has failed after we have marked paged for writeback
1191 * and unlocked them. In this situation, we need to fail the bio instead of
1192 * submitting it. This typically only happens on a filesystem shutdown.
1193 */
1194 static int
iomap_submit_ioend(struct iomap_writepage_ctx * wpc,struct iomap_ioend * ioend,int error)1195 iomap_submit_ioend(struct iomap_writepage_ctx *wpc, struct iomap_ioend *ioend,
1196 int error)
1197 {
1198 ioend->io_bio->bi_private = ioend;
1199 ioend->io_bio->bi_end_io = iomap_writepage_end_bio;
1200
1201 if (wpc->ops->prepare_ioend)
1202 error = wpc->ops->prepare_ioend(ioend, error);
1203 if (error) {
1204 /*
1205 * If we are failing the IO now, just mark the ioend with an
1206 * error and finish it. This will run IO completion immediately
1207 * as there is only one reference to the ioend at this point in
1208 * time.
1209 */
1210 ioend->io_bio->bi_status = errno_to_blk_status(error);
1211 bio_endio(ioend->io_bio);
1212 return error;
1213 }
1214
1215 submit_bio(ioend->io_bio);
1216 return 0;
1217 }
1218
1219 static struct iomap_ioend *
iomap_alloc_ioend(struct inode * inode,struct iomap_writepage_ctx * wpc,loff_t offset,sector_t sector,struct writeback_control * wbc)1220 iomap_alloc_ioend(struct inode *inode, struct iomap_writepage_ctx *wpc,
1221 loff_t offset, sector_t sector, struct writeback_control *wbc)
1222 {
1223 struct iomap_ioend *ioend;
1224 struct bio *bio;
1225
1226 bio = bio_alloc_bioset(GFP_NOFS, BIO_MAX_PAGES, &iomap_ioend_bioset);
1227 bio_set_dev(bio, wpc->iomap.bdev);
1228 bio->bi_iter.bi_sector = sector;
1229 bio->bi_opf = REQ_OP_WRITE | wbc_to_write_flags(wbc);
1230 bio->bi_write_hint = inode->i_write_hint;
1231 wbc_init_bio(wbc, bio);
1232
1233 ioend = container_of(bio, struct iomap_ioend, io_inline_bio);
1234 INIT_LIST_HEAD(&ioend->io_list);
1235 ioend->io_type = wpc->iomap.type;
1236 ioend->io_flags = wpc->iomap.flags;
1237 ioend->io_inode = inode;
1238 ioend->io_size = 0;
1239 ioend->io_offset = offset;
1240 ioend->io_private = NULL;
1241 ioend->io_bio = bio;
1242 return ioend;
1243 }
1244
1245 /*
1246 * Allocate a new bio, and chain the old bio to the new one.
1247 *
1248 * Note that we have to do perform the chaining in this unintuitive order
1249 * so that the bi_private linkage is set up in the right direction for the
1250 * traversal in iomap_finish_ioend().
1251 */
1252 static struct bio *
iomap_chain_bio(struct bio * prev)1253 iomap_chain_bio(struct bio *prev)
1254 {
1255 struct bio *new;
1256
1257 new = bio_alloc(GFP_NOFS, BIO_MAX_PAGES);
1258 bio_copy_dev(new, prev);/* also copies over blkcg information */
1259 new->bi_iter.bi_sector = bio_end_sector(prev);
1260 new->bi_opf = prev->bi_opf;
1261 new->bi_write_hint = prev->bi_write_hint;
1262
1263 bio_chain(prev, new);
1264 bio_get(prev); /* for iomap_finish_ioend */
1265 submit_bio(prev);
1266 return new;
1267 }
1268
1269 static bool
iomap_can_add_to_ioend(struct iomap_writepage_ctx * wpc,loff_t offset,sector_t sector)1270 iomap_can_add_to_ioend(struct iomap_writepage_ctx *wpc, loff_t offset,
1271 sector_t sector)
1272 {
1273 if ((wpc->iomap.flags & IOMAP_F_SHARED) !=
1274 (wpc->ioend->io_flags & IOMAP_F_SHARED))
1275 return false;
1276 if (wpc->iomap.type != wpc->ioend->io_type)
1277 return false;
1278 if (offset != wpc->ioend->io_offset + wpc->ioend->io_size)
1279 return false;
1280 if (sector != bio_end_sector(wpc->ioend->io_bio))
1281 return false;
1282 return true;
1283 }
1284
1285 /*
1286 * Test to see if we have an existing ioend structure that we could append to
1287 * first, otherwise finish off the current ioend and start another.
1288 */
1289 static void
iomap_add_to_ioend(struct inode * inode,loff_t offset,struct page * page,struct iomap_page * iop,struct iomap_writepage_ctx * wpc,struct writeback_control * wbc,struct list_head * iolist)1290 iomap_add_to_ioend(struct inode *inode, loff_t offset, struct page *page,
1291 struct iomap_page *iop, struct iomap_writepage_ctx *wpc,
1292 struct writeback_control *wbc, struct list_head *iolist)
1293 {
1294 sector_t sector = iomap_sector(&wpc->iomap, offset);
1295 unsigned len = i_blocksize(inode);
1296 unsigned poff = offset & (PAGE_SIZE - 1);
1297 bool merged, same_page = false;
1298
1299 if (!wpc->ioend || !iomap_can_add_to_ioend(wpc, offset, sector)) {
1300 if (wpc->ioend)
1301 list_add(&wpc->ioend->io_list, iolist);
1302 wpc->ioend = iomap_alloc_ioend(inode, wpc, offset, sector, wbc);
1303 }
1304
1305 merged = __bio_try_merge_page(wpc->ioend->io_bio, page, len, poff,
1306 &same_page);
1307 if (iop)
1308 atomic_add(len, &iop->write_bytes_pending);
1309
1310 if (!merged) {
1311 if (bio_full(wpc->ioend->io_bio, len)) {
1312 wpc->ioend->io_bio =
1313 iomap_chain_bio(wpc->ioend->io_bio);
1314 }
1315 bio_add_page(wpc->ioend->io_bio, page, len, poff);
1316 }
1317
1318 wpc->ioend->io_size += len;
1319 wbc_account_cgroup_owner(wbc, page, len);
1320 }
1321
1322 /*
1323 * We implement an immediate ioend submission policy here to avoid needing to
1324 * chain multiple ioends and hence nest mempool allocations which can violate
1325 * forward progress guarantees we need to provide. The current ioend we are
1326 * adding blocks to is cached on the writepage context, and if the new block
1327 * does not append to the cached ioend it will create a new ioend and cache that
1328 * instead.
1329 *
1330 * If a new ioend is created and cached, the old ioend is returned and queued
1331 * locally for submission once the entire page is processed or an error has been
1332 * detected. While ioends are submitted immediately after they are completed,
1333 * batching optimisations are provided by higher level block plugging.
1334 *
1335 * At the end of a writeback pass, there will be a cached ioend remaining on the
1336 * writepage context that the caller will need to submit.
1337 */
1338 static int
iomap_writepage_map(struct iomap_writepage_ctx * wpc,struct writeback_control * wbc,struct inode * inode,struct page * page,u64 end_offset)1339 iomap_writepage_map(struct iomap_writepage_ctx *wpc,
1340 struct writeback_control *wbc, struct inode *inode,
1341 struct page *page, u64 end_offset)
1342 {
1343 struct iomap_page *iop = to_iomap_page(page);
1344 struct iomap_ioend *ioend, *next;
1345 unsigned len = i_blocksize(inode);
1346 u64 file_offset; /* file offset of page */
1347 int error = 0, count = 0, i;
1348 LIST_HEAD(submit_list);
1349
1350 WARN_ON_ONCE(i_blocks_per_page(inode, page) > 1 && !iop);
1351 WARN_ON_ONCE(iop && atomic_read(&iop->write_bytes_pending) != 0);
1352
1353 /*
1354 * Walk through the page to find areas to write back. If we run off the
1355 * end of the current map or find the current map invalid, grab a new
1356 * one.
1357 */
1358 for (i = 0, file_offset = page_offset(page);
1359 i < (PAGE_SIZE >> inode->i_blkbits) && file_offset < end_offset;
1360 i++, file_offset += len) {
1361 if (iop && !test_bit(i, iop->uptodate))
1362 continue;
1363
1364 error = wpc->ops->map_blocks(wpc, inode, file_offset);
1365 if (error)
1366 break;
1367 if (WARN_ON_ONCE(wpc->iomap.type == IOMAP_INLINE))
1368 continue;
1369 if (wpc->iomap.type == IOMAP_HOLE)
1370 continue;
1371 iomap_add_to_ioend(inode, file_offset, page, iop, wpc, wbc,
1372 &submit_list);
1373 count++;
1374 }
1375
1376 WARN_ON_ONCE(!wpc->ioend && !list_empty(&submit_list));
1377 WARN_ON_ONCE(!PageLocked(page));
1378 WARN_ON_ONCE(PageWriteback(page));
1379 WARN_ON_ONCE(PageDirty(page));
1380
1381 /*
1382 * We cannot cancel the ioend directly here on error. We may have
1383 * already set other pages under writeback and hence we have to run I/O
1384 * completion to mark the error state of the pages under writeback
1385 * appropriately.
1386 */
1387 if (unlikely(error)) {
1388 /*
1389 * Let the filesystem know what portion of the current page
1390 * failed to map. If the page wasn't been added to ioend, it
1391 * won't be affected by I/O completion and we must unlock it
1392 * now.
1393 */
1394 if (wpc->ops->discard_page)
1395 wpc->ops->discard_page(page, file_offset);
1396 if (!count) {
1397 ClearPageUptodate(page);
1398 unlock_page(page);
1399 goto done;
1400 }
1401 }
1402
1403 set_page_writeback(page);
1404 unlock_page(page);
1405
1406 /*
1407 * Preserve the original error if there was one, otherwise catch
1408 * submission errors here and propagate into subsequent ioend
1409 * submissions.
1410 */
1411 list_for_each_entry_safe(ioend, next, &submit_list, io_list) {
1412 int error2;
1413
1414 list_del_init(&ioend->io_list);
1415 error2 = iomap_submit_ioend(wpc, ioend, error);
1416 if (error2 && !error)
1417 error = error2;
1418 }
1419
1420 /*
1421 * We can end up here with no error and nothing to write only if we race
1422 * with a partial page truncate on a sub-page block sized filesystem.
1423 */
1424 if (!count)
1425 end_page_writeback(page);
1426 done:
1427 mapping_set_error(page->mapping, error);
1428 return error;
1429 }
1430
1431 /*
1432 * Write out a dirty page.
1433 *
1434 * For delalloc space on the page we need to allocate space and flush it.
1435 * For unwritten space on the page we need to start the conversion to
1436 * regular allocated space.
1437 */
1438 static int
iomap_do_writepage(struct page * page,struct writeback_control * wbc,void * data)1439 iomap_do_writepage(struct page *page, struct writeback_control *wbc, void *data)
1440 {
1441 struct iomap_writepage_ctx *wpc = data;
1442 struct inode *inode = page->mapping->host;
1443 pgoff_t end_index;
1444 u64 end_offset;
1445 loff_t offset;
1446
1447 trace_iomap_writepage(inode, page_offset(page), PAGE_SIZE);
1448
1449 /*
1450 * Refuse to write the page out if we are called from reclaim context.
1451 *
1452 * This avoids stack overflows when called from deeply used stacks in
1453 * random callers for direct reclaim or memcg reclaim. We explicitly
1454 * allow reclaim from kswapd as the stack usage there is relatively low.
1455 *
1456 * This should never happen except in the case of a VM regression so
1457 * warn about it.
1458 */
1459 if (WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD)) ==
1460 PF_MEMALLOC))
1461 goto redirty;
1462
1463 /*
1464 * Is this page beyond the end of the file?
1465 *
1466 * The page index is less than the end_index, adjust the end_offset
1467 * to the highest offset that this page should represent.
1468 * -----------------------------------------------------
1469 * | file mapping | <EOF> |
1470 * -----------------------------------------------------
1471 * | Page ... | Page N-2 | Page N-1 | Page N | |
1472 * ^--------------------------------^----------|--------
1473 * | desired writeback range | see else |
1474 * ---------------------------------^------------------|
1475 */
1476 offset = i_size_read(inode);
1477 end_index = offset >> PAGE_SHIFT;
1478 if (page->index < end_index)
1479 end_offset = (loff_t)(page->index + 1) << PAGE_SHIFT;
1480 else {
1481 /*
1482 * Check whether the page to write out is beyond or straddles
1483 * i_size or not.
1484 * -------------------------------------------------------
1485 * | file mapping | <EOF> |
1486 * -------------------------------------------------------
1487 * | Page ... | Page N-2 | Page N-1 | Page N | Beyond |
1488 * ^--------------------------------^-----------|---------
1489 * | | Straddles |
1490 * ---------------------------------^-----------|--------|
1491 */
1492 unsigned offset_into_page = offset & (PAGE_SIZE - 1);
1493
1494 /*
1495 * Skip the page if it is fully outside i_size, e.g. due to a
1496 * truncate operation that is in progress. We must redirty the
1497 * page so that reclaim stops reclaiming it. Otherwise
1498 * iomap_vm_releasepage() is called on it and gets confused.
1499 *
1500 * Note that the end_index is unsigned long, it would overflow
1501 * if the given offset is greater than 16TB on 32-bit system
1502 * and if we do check the page is fully outside i_size or not
1503 * via "if (page->index >= end_index + 1)" as "end_index + 1"
1504 * will be evaluated to 0. Hence this page will be redirtied
1505 * and be written out repeatedly which would result in an
1506 * infinite loop, the user program that perform this operation
1507 * will hang. Instead, we can verify this situation by checking
1508 * if the page to write is totally beyond the i_size or if it's
1509 * offset is just equal to the EOF.
1510 */
1511 if (page->index > end_index ||
1512 (page->index == end_index && offset_into_page == 0))
1513 goto redirty;
1514
1515 /*
1516 * The page straddles i_size. It must be zeroed out on each
1517 * and every writepage invocation because it may be mmapped.
1518 * "A file is mapped in multiples of the page size. For a file
1519 * that is not a multiple of the page size, the remaining
1520 * memory is zeroed when mapped, and writes to that region are
1521 * not written out to the file."
1522 */
1523 zero_user_segment(page, offset_into_page, PAGE_SIZE);
1524
1525 /* Adjust the end_offset to the end of file */
1526 end_offset = offset;
1527 }
1528
1529 return iomap_writepage_map(wpc, wbc, inode, page, end_offset);
1530
1531 redirty:
1532 redirty_page_for_writepage(wbc, page);
1533 unlock_page(page);
1534 return 0;
1535 }
1536
1537 int
iomap_writepage(struct page * page,struct writeback_control * wbc,struct iomap_writepage_ctx * wpc,const struct iomap_writeback_ops * ops)1538 iomap_writepage(struct page *page, struct writeback_control *wbc,
1539 struct iomap_writepage_ctx *wpc,
1540 const struct iomap_writeback_ops *ops)
1541 {
1542 int ret;
1543
1544 wpc->ops = ops;
1545 ret = iomap_do_writepage(page, wbc, wpc);
1546 if (!wpc->ioend)
1547 return ret;
1548 return iomap_submit_ioend(wpc, wpc->ioend, ret);
1549 }
1550 EXPORT_SYMBOL_GPL(iomap_writepage);
1551
1552 int
iomap_writepages(struct address_space * mapping,struct writeback_control * wbc,struct iomap_writepage_ctx * wpc,const struct iomap_writeback_ops * ops)1553 iomap_writepages(struct address_space *mapping, struct writeback_control *wbc,
1554 struct iomap_writepage_ctx *wpc,
1555 const struct iomap_writeback_ops *ops)
1556 {
1557 int ret;
1558
1559 wpc->ops = ops;
1560 ret = write_cache_pages(mapping, wbc, iomap_do_writepage, wpc);
1561 if (!wpc->ioend)
1562 return ret;
1563 return iomap_submit_ioend(wpc, wpc->ioend, ret);
1564 }
1565 EXPORT_SYMBOL_GPL(iomap_writepages);
1566
iomap_init(void)1567 static int __init iomap_init(void)
1568 {
1569 return bioset_init(&iomap_ioend_bioset, 4 * (PAGE_SIZE / SECTOR_SIZE),
1570 offsetof(struct iomap_ioend, io_inline_bio),
1571 BIOSET_NEED_BVECS);
1572 }
1573 fs_initcall(iomap_init);
1574