1 /*
2 * Copyright (C) 2015 Rob Clark <robclark@freedesktop.org>
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21 * SOFTWARE.
22 *
23 * Authors:
24 * Rob Clark <robclark@freedesktop.org>
25 */
26
27 #include <stdarg.h>
28
29 #include "util/u_math.h"
30 #include "util/u_memory.h"
31 #include "util/u_string.h"
32
33 #include "ir3_compiler.h"
34 #include "ir3_image.h"
35 #include "ir3_nir.h"
36 #include "ir3_shader.h"
37
38 #include "instr-a3xx.h"
39 #include "ir3.h"
40 #include "ir3_context.h"
41
42 void
ir3_handle_nonuniform(struct ir3_instruction * instr,nir_intrinsic_instr * intrin)43 ir3_handle_nonuniform(struct ir3_instruction *instr,
44 nir_intrinsic_instr *intrin)
45 {
46 if (nir_intrinsic_has_access(intrin) &&
47 (nir_intrinsic_access(intrin) & ACCESS_NON_UNIFORM)) {
48 instr->flags |= IR3_INSTR_NONUNIF;
49 }
50 }
51
52 void
ir3_handle_bindless_cat6(struct ir3_instruction * instr,nir_src rsrc)53 ir3_handle_bindless_cat6(struct ir3_instruction *instr, nir_src rsrc)
54 {
55 nir_intrinsic_instr *intrin = ir3_bindless_resource(rsrc);
56 if (!intrin)
57 return;
58
59 instr->flags |= IR3_INSTR_B;
60 instr->cat6.base = nir_intrinsic_desc_set(intrin);
61 }
62
63 static struct ir3_instruction *
create_input(struct ir3_context * ctx,unsigned compmask)64 create_input(struct ir3_context *ctx, unsigned compmask)
65 {
66 struct ir3_instruction *in;
67
68 in = ir3_instr_create(ctx->in_block, OPC_META_INPUT, 1, 0);
69 in->input.sysval = ~0;
70 __ssa_dst(in)->wrmask = compmask;
71
72 array_insert(ctx->ir, ctx->ir->inputs, in);
73
74 return in;
75 }
76
77 static struct ir3_instruction *
create_frag_input(struct ir3_context * ctx,struct ir3_instruction * coord,unsigned n)78 create_frag_input(struct ir3_context *ctx, struct ir3_instruction *coord,
79 unsigned n)
80 {
81 struct ir3_block *block = ctx->block;
82 struct ir3_instruction *instr;
83 /* packed inloc is fixed up later: */
84 struct ir3_instruction *inloc = create_immed(block, n);
85
86 if (coord) {
87 instr = ir3_BARY_F(block, inloc, 0, coord, 0);
88 } else if (ctx->compiler->flat_bypass) {
89 if (ctx->compiler->gen >= 6) {
90 instr = ir3_FLAT_B(block, inloc, 0, inloc, 0);
91 } else {
92 instr = ir3_LDLV(block, inloc, 0, create_immed(block, 1), 0);
93 instr->cat6.type = TYPE_U32;
94 instr->cat6.iim_val = 1;
95 }
96 } else {
97 instr = ir3_BARY_F(block, inloc, 0, ctx->ij[IJ_PERSP_PIXEL], 0);
98 instr->srcs[1]->wrmask = 0x3;
99 }
100
101 return instr;
102 }
103
104 static struct ir3_instruction *
create_driver_param(struct ir3_context * ctx,enum ir3_driver_param dp)105 create_driver_param(struct ir3_context *ctx, enum ir3_driver_param dp)
106 {
107 /* first four vec4 sysval's reserved for UBOs: */
108 /* NOTE: dp is in scalar, but there can be >4 dp components: */
109 struct ir3_const_state *const_state = ir3_const_state(ctx->so);
110 unsigned n = const_state->offsets.driver_param;
111 unsigned r = regid(n + dp / 4, dp % 4);
112 return create_uniform(ctx->block, r);
113 }
114
115 /*
116 * Adreno's comparisons produce a 1 for true and 0 for false, in either 16 or
117 * 32-bit registers. We use NIR's 1-bit integers to represent bools, and
118 * trust that we will only see and/or/xor on those 1-bit values, so we can
119 * safely store NIR i1s in a 32-bit reg while always containing either a 1 or
120 * 0.
121 */
122
123 /*
124 * alu/sfu instructions:
125 */
126
127 static struct ir3_instruction *
create_cov(struct ir3_context * ctx,struct ir3_instruction * src,unsigned src_bitsize,nir_op op)128 create_cov(struct ir3_context *ctx, struct ir3_instruction *src,
129 unsigned src_bitsize, nir_op op)
130 {
131 type_t src_type, dst_type;
132
133 switch (op) {
134 case nir_op_f2f32:
135 case nir_op_f2f16_rtne:
136 case nir_op_f2f16_rtz:
137 case nir_op_f2f16:
138 case nir_op_f2i32:
139 case nir_op_f2i16:
140 case nir_op_f2i8:
141 case nir_op_f2u32:
142 case nir_op_f2u16:
143 case nir_op_f2u8:
144 switch (src_bitsize) {
145 case 32:
146 src_type = TYPE_F32;
147 break;
148 case 16:
149 src_type = TYPE_F16;
150 break;
151 default:
152 ir3_context_error(ctx, "invalid src bit size: %u", src_bitsize);
153 }
154 break;
155
156 case nir_op_i2f32:
157 case nir_op_i2f16:
158 case nir_op_i2i32:
159 case nir_op_i2i16:
160 case nir_op_i2i8:
161 switch (src_bitsize) {
162 case 32:
163 src_type = TYPE_S32;
164 break;
165 case 16:
166 src_type = TYPE_S16;
167 break;
168 case 8:
169 src_type = TYPE_S8;
170 break;
171 default:
172 ir3_context_error(ctx, "invalid src bit size: %u", src_bitsize);
173 }
174 break;
175
176 case nir_op_u2f32:
177 case nir_op_u2f16:
178 case nir_op_u2u32:
179 case nir_op_u2u16:
180 case nir_op_u2u8:
181 switch (src_bitsize) {
182 case 32:
183 src_type = TYPE_U32;
184 break;
185 case 16:
186 src_type = TYPE_U16;
187 break;
188 case 8:
189 src_type = TYPE_U8;
190 break;
191 default:
192 ir3_context_error(ctx, "invalid src bit size: %u", src_bitsize);
193 }
194 break;
195
196 case nir_op_b2f16:
197 case nir_op_b2f32:
198 case nir_op_b2i8:
199 case nir_op_b2i16:
200 case nir_op_b2i32:
201 src_type = ctx->compiler->bool_type;
202 break;
203
204 default:
205 ir3_context_error(ctx, "invalid conversion op: %u", op);
206 }
207
208 switch (op) {
209 case nir_op_f2f32:
210 case nir_op_i2f32:
211 case nir_op_u2f32:
212 case nir_op_b2f32:
213 dst_type = TYPE_F32;
214 break;
215
216 case nir_op_f2f16_rtne:
217 case nir_op_f2f16_rtz:
218 case nir_op_f2f16:
219 case nir_op_i2f16:
220 case nir_op_u2f16:
221 case nir_op_b2f16:
222 dst_type = TYPE_F16;
223 break;
224
225 case nir_op_f2i32:
226 case nir_op_i2i32:
227 case nir_op_b2i32:
228 dst_type = TYPE_S32;
229 break;
230
231 case nir_op_f2i16:
232 case nir_op_i2i16:
233 case nir_op_b2i16:
234 dst_type = TYPE_S16;
235 break;
236
237 case nir_op_f2i8:
238 case nir_op_i2i8:
239 case nir_op_b2i8:
240 dst_type = TYPE_S8;
241 break;
242
243 case nir_op_f2u32:
244 case nir_op_u2u32:
245 dst_type = TYPE_U32;
246 break;
247
248 case nir_op_f2u16:
249 case nir_op_u2u16:
250 dst_type = TYPE_U16;
251 break;
252
253 case nir_op_f2u8:
254 case nir_op_u2u8:
255 dst_type = TYPE_U8;
256 break;
257
258 default:
259 ir3_context_error(ctx, "invalid conversion op: %u", op);
260 }
261
262 if (src_type == dst_type)
263 return src;
264
265 struct ir3_instruction *cov = ir3_COV(ctx->block, src, src_type, dst_type);
266
267 if (op == nir_op_f2f16_rtne) {
268 cov->cat1.round = ROUND_EVEN;
269 } else if (op == nir_op_f2f16) {
270 unsigned execution_mode = ctx->s->info.float_controls_execution_mode;
271 nir_rounding_mode rounding_mode =
272 nir_get_rounding_mode_from_float_controls(execution_mode,
273 nir_type_float16);
274 if (rounding_mode == nir_rounding_mode_rtne)
275 cov->cat1.round = ROUND_EVEN;
276 }
277
278 return cov;
279 }
280
281 /* For shift instructions NIR always has shift amount as 32 bit integer */
282 static struct ir3_instruction *
resize_shift_amount(struct ir3_context * ctx,struct ir3_instruction * src,unsigned bs)283 resize_shift_amount(struct ir3_context *ctx, struct ir3_instruction *src,
284 unsigned bs)
285 {
286 if (bs != 16)
287 return src;
288
289 return ir3_COV(ctx->block, src, TYPE_U32, TYPE_U16);
290 }
291
292 static void
emit_alu_dot_4x8_as_dp4acc(struct ir3_context * ctx,nir_alu_instr * alu,struct ir3_instruction ** dst,struct ir3_instruction ** src)293 emit_alu_dot_4x8_as_dp4acc(struct ir3_context *ctx, nir_alu_instr *alu,
294 struct ir3_instruction **dst,
295 struct ir3_instruction **src)
296 {
297 struct ir3_instruction *accumulator = NULL;
298 if (alu->op == nir_op_udot_4x8_uadd_sat) {
299 accumulator = create_immed(ctx->block, 0);
300 } else {
301 accumulator = src[2];
302 }
303
304 dst[0] = ir3_DP4ACC(ctx->block, src[0], 0, src[1], 0, accumulator, 0);
305
306 if (alu->op == nir_op_udot_4x8_uadd ||
307 alu->op == nir_op_udot_4x8_uadd_sat) {
308 dst[0]->cat3.signedness = IR3_SRC_UNSIGNED;
309 } else {
310 dst[0]->cat3.signedness = IR3_SRC_MIXED;
311 }
312
313 /* For some reason (sat) doesn't work in unsigned case so
314 * we have to emulate it.
315 */
316 if (alu->op == nir_op_udot_4x8_uadd_sat) {
317 dst[0] = ir3_ADD_U(ctx->block, dst[0], 0, src[2], 0);
318 dst[0]->flags |= IR3_INSTR_SAT;
319 } else if (alu->op == nir_op_sudot_4x8_iadd_sat) {
320 dst[0]->flags |= IR3_INSTR_SAT;
321 }
322 }
323
324 static void
emit_alu_dot_4x8_as_dp2acc(struct ir3_context * ctx,nir_alu_instr * alu,struct ir3_instruction ** dst,struct ir3_instruction ** src)325 emit_alu_dot_4x8_as_dp2acc(struct ir3_context *ctx, nir_alu_instr *alu,
326 struct ir3_instruction **dst,
327 struct ir3_instruction **src)
328 {
329 int signedness;
330 if (alu->op == nir_op_udot_4x8_uadd ||
331 alu->op == nir_op_udot_4x8_uadd_sat) {
332 signedness = IR3_SRC_UNSIGNED;
333 } else {
334 signedness = IR3_SRC_MIXED;
335 }
336
337 struct ir3_instruction *accumulator = NULL;
338 if (alu->op == nir_op_udot_4x8_uadd_sat ||
339 alu->op == nir_op_sudot_4x8_iadd_sat) {
340 accumulator = create_immed(ctx->block, 0);
341 } else {
342 accumulator = src[2];
343 }
344
345 dst[0] = ir3_DP2ACC(ctx->block, src[0], 0, src[1], 0, accumulator, 0);
346 dst[0]->cat3.packed = IR3_SRC_PACKED_LOW;
347 dst[0]->cat3.signedness = signedness;
348
349 dst[0] = ir3_DP2ACC(ctx->block, src[0], 0, src[1], 0, dst[0], 0);
350 dst[0]->cat3.packed = IR3_SRC_PACKED_HIGH;
351 dst[0]->cat3.signedness = signedness;
352
353 if (alu->op == nir_op_udot_4x8_uadd_sat) {
354 dst[0] = ir3_ADD_U(ctx->block, dst[0], 0, src[2], 0);
355 dst[0]->flags |= IR3_INSTR_SAT;
356 } else if (alu->op == nir_op_sudot_4x8_iadd_sat) {
357 dst[0] = ir3_ADD_S(ctx->block, dst[0], 0, src[2], 0);
358 dst[0]->flags |= IR3_INSTR_SAT;
359 }
360 }
361
362 static void
emit_alu(struct ir3_context * ctx,nir_alu_instr * alu)363 emit_alu(struct ir3_context *ctx, nir_alu_instr *alu)
364 {
365 const nir_op_info *info = &nir_op_infos[alu->op];
366 struct ir3_instruction **dst, *src[info->num_inputs];
367 unsigned bs[info->num_inputs]; /* bit size */
368 struct ir3_block *b = ctx->block;
369 unsigned dst_sz, wrmask;
370 type_t dst_type = type_uint_size(nir_dest_bit_size(alu->dest.dest));
371
372 if (alu->dest.dest.is_ssa) {
373 dst_sz = alu->dest.dest.ssa.num_components;
374 wrmask = (1 << dst_sz) - 1;
375 } else {
376 dst_sz = alu->dest.dest.reg.reg->num_components;
377 wrmask = alu->dest.write_mask;
378 }
379
380 dst = ir3_get_dst(ctx, &alu->dest.dest, dst_sz);
381
382 /* Vectors are special in that they have non-scalarized writemasks,
383 * and just take the first swizzle channel for each argument in
384 * order into each writemask channel.
385 */
386 if ((alu->op == nir_op_vec2) || (alu->op == nir_op_vec3) ||
387 (alu->op == nir_op_vec4) || (alu->op == nir_op_vec8) ||
388 (alu->op == nir_op_vec16)) {
389
390 for (int i = 0; i < info->num_inputs; i++) {
391 nir_alu_src *asrc = &alu->src[i];
392
393 compile_assert(ctx, !asrc->abs);
394 compile_assert(ctx, !asrc->negate);
395
396 src[i] = ir3_get_src(ctx, &asrc->src)[asrc->swizzle[0]];
397 if (!src[i])
398 src[i] = create_immed_typed(ctx->block, 0, dst_type);
399 dst[i] = ir3_MOV(b, src[i], dst_type);
400 }
401
402 ir3_put_dst(ctx, &alu->dest.dest);
403 return;
404 }
405
406 /* We also get mov's with more than one component for mov's so
407 * handle those specially:
408 */
409 if (alu->op == nir_op_mov) {
410 nir_alu_src *asrc = &alu->src[0];
411 struct ir3_instruction *const *src0 = ir3_get_src(ctx, &asrc->src);
412
413 for (unsigned i = 0; i < dst_sz; i++) {
414 if (wrmask & (1 << i)) {
415 dst[i] = ir3_MOV(b, src0[asrc->swizzle[i]], dst_type);
416 } else {
417 dst[i] = NULL;
418 }
419 }
420
421 ir3_put_dst(ctx, &alu->dest.dest);
422 return;
423 }
424
425 /* General case: We can just grab the one used channel per src. */
426 for (int i = 0; i < info->num_inputs; i++) {
427 unsigned chan = ffs(alu->dest.write_mask) - 1;
428 nir_alu_src *asrc = &alu->src[i];
429
430 compile_assert(ctx, !asrc->abs);
431 compile_assert(ctx, !asrc->negate);
432
433 src[i] = ir3_get_src(ctx, &asrc->src)[asrc->swizzle[chan]];
434 bs[i] = nir_src_bit_size(asrc->src);
435
436 compile_assert(ctx, src[i]);
437 }
438
439 switch (alu->op) {
440 case nir_op_f2f32:
441 case nir_op_f2f16_rtne:
442 case nir_op_f2f16_rtz:
443 case nir_op_f2f16:
444 case nir_op_f2i32:
445 case nir_op_f2i16:
446 case nir_op_f2i8:
447 case nir_op_f2u32:
448 case nir_op_f2u16:
449 case nir_op_f2u8:
450 case nir_op_i2f32:
451 case nir_op_i2f16:
452 case nir_op_i2i32:
453 case nir_op_i2i16:
454 case nir_op_i2i8:
455 case nir_op_u2f32:
456 case nir_op_u2f16:
457 case nir_op_u2u32:
458 case nir_op_u2u16:
459 case nir_op_u2u8:
460 case nir_op_b2f16:
461 case nir_op_b2f32:
462 case nir_op_b2i8:
463 case nir_op_b2i16:
464 case nir_op_b2i32:
465 dst[0] = create_cov(ctx, src[0], bs[0], alu->op);
466 break;
467
468 case nir_op_fquantize2f16:
469 dst[0] = create_cov(ctx, create_cov(ctx, src[0], 32, nir_op_f2f16_rtne),
470 16, nir_op_f2f32);
471 break;
472 case nir_op_f2b1:
473 dst[0] = ir3_CMPS_F(
474 b, src[0], 0,
475 create_immed_typed(b, 0, type_float_size(bs[0])), 0);
476 dst[0]->cat2.condition = IR3_COND_NE;
477 break;
478
479 case nir_op_i2b1:
480 /* i2b1 will appear when translating from nir_load_ubo or
481 * nir_intrinsic_load_ssbo, where any non-zero value is true.
482 */
483 dst[0] = ir3_CMPS_S(
484 b, src[0], 0,
485 create_immed_typed(b, 0, type_uint_size(bs[0])), 0);
486 dst[0]->cat2.condition = IR3_COND_NE;
487 break;
488
489 case nir_op_b2b1:
490 /* b2b1 will appear when translating from
491 *
492 * - nir_intrinsic_load_shared of a 32-bit 0/~0 value.
493 * - nir_intrinsic_load_constant of a 32-bit 0/~0 value
494 *
495 * A negate can turn those into a 1 or 0 for us.
496 */
497 dst[0] = ir3_ABSNEG_S(b, src[0], IR3_REG_SNEG);
498 break;
499
500 case nir_op_b2b32:
501 /* b2b32 will appear when converting our 1-bit bools to a store_shared
502 * argument.
503 *
504 * A negate can turn those into a ~0 for us.
505 */
506 dst[0] = ir3_ABSNEG_S(b, src[0], IR3_REG_SNEG);
507 break;
508
509 case nir_op_fneg:
510 dst[0] = ir3_ABSNEG_F(b, src[0], IR3_REG_FNEG);
511 break;
512 case nir_op_fabs:
513 dst[0] = ir3_ABSNEG_F(b, src[0], IR3_REG_FABS);
514 break;
515 case nir_op_fmax:
516 dst[0] = ir3_MAX_F(b, src[0], 0, src[1], 0);
517 break;
518 case nir_op_fmin:
519 dst[0] = ir3_MIN_F(b, src[0], 0, src[1], 0);
520 break;
521 case nir_op_fsat:
522 /* if there is just a single use of the src, and it supports
523 * (sat) bit, we can just fold the (sat) flag back to the
524 * src instruction and create a mov. This is easier for cp
525 * to eliminate.
526 */
527 if (alu->src[0].src.is_ssa && is_sat_compatible(src[0]->opc) &&
528 (list_length(&alu->src[0].src.ssa->uses) == 1)) {
529 src[0]->flags |= IR3_INSTR_SAT;
530 dst[0] = ir3_MOV(b, src[0], dst_type);
531 } else {
532 /* otherwise generate a max.f that saturates.. blob does
533 * similar (generating a cat2 mov using max.f)
534 */
535 dst[0] = ir3_MAX_F(b, src[0], 0, src[0], 0);
536 dst[0]->flags |= IR3_INSTR_SAT;
537 }
538 break;
539 case nir_op_fmul:
540 dst[0] = ir3_MUL_F(b, src[0], 0, src[1], 0);
541 break;
542 case nir_op_fadd:
543 dst[0] = ir3_ADD_F(b, src[0], 0, src[1], 0);
544 break;
545 case nir_op_fsub:
546 dst[0] = ir3_ADD_F(b, src[0], 0, src[1], IR3_REG_FNEG);
547 break;
548 case nir_op_ffma:
549 dst[0] = ir3_MAD_F32(b, src[0], 0, src[1], 0, src[2], 0);
550 break;
551 case nir_op_fddx:
552 case nir_op_fddx_coarse:
553 dst[0] = ir3_DSX(b, src[0], 0);
554 dst[0]->cat5.type = TYPE_F32;
555 break;
556 case nir_op_fddx_fine:
557 dst[0] = ir3_DSXPP_MACRO(b, src[0], 0);
558 dst[0]->cat5.type = TYPE_F32;
559 break;
560 case nir_op_fddy:
561 case nir_op_fddy_coarse:
562 dst[0] = ir3_DSY(b, src[0], 0);
563 dst[0]->cat5.type = TYPE_F32;
564 break;
565 break;
566 case nir_op_fddy_fine:
567 dst[0] = ir3_DSYPP_MACRO(b, src[0], 0);
568 dst[0]->cat5.type = TYPE_F32;
569 break;
570 case nir_op_flt:
571 dst[0] = ir3_CMPS_F(b, src[0], 0, src[1], 0);
572 dst[0]->cat2.condition = IR3_COND_LT;
573 break;
574 case nir_op_fge:
575 dst[0] = ir3_CMPS_F(b, src[0], 0, src[1], 0);
576 dst[0]->cat2.condition = IR3_COND_GE;
577 break;
578 case nir_op_feq:
579 dst[0] = ir3_CMPS_F(b, src[0], 0, src[1], 0);
580 dst[0]->cat2.condition = IR3_COND_EQ;
581 break;
582 case nir_op_fneu:
583 dst[0] = ir3_CMPS_F(b, src[0], 0, src[1], 0);
584 dst[0]->cat2.condition = IR3_COND_NE;
585 break;
586 case nir_op_fceil:
587 dst[0] = ir3_CEIL_F(b, src[0], 0);
588 break;
589 case nir_op_ffloor:
590 dst[0] = ir3_FLOOR_F(b, src[0], 0);
591 break;
592 case nir_op_ftrunc:
593 dst[0] = ir3_TRUNC_F(b, src[0], 0);
594 break;
595 case nir_op_fround_even:
596 dst[0] = ir3_RNDNE_F(b, src[0], 0);
597 break;
598 case nir_op_fsign:
599 dst[0] = ir3_SIGN_F(b, src[0], 0);
600 break;
601
602 case nir_op_fsin:
603 dst[0] = ir3_SIN(b, src[0], 0);
604 break;
605 case nir_op_fcos:
606 dst[0] = ir3_COS(b, src[0], 0);
607 break;
608 case nir_op_frsq:
609 dst[0] = ir3_RSQ(b, src[0], 0);
610 break;
611 case nir_op_frcp:
612 dst[0] = ir3_RCP(b, src[0], 0);
613 break;
614 case nir_op_flog2:
615 dst[0] = ir3_LOG2(b, src[0], 0);
616 break;
617 case nir_op_fexp2:
618 dst[0] = ir3_EXP2(b, src[0], 0);
619 break;
620 case nir_op_fsqrt:
621 dst[0] = ir3_SQRT(b, src[0], 0);
622 break;
623
624 case nir_op_iabs:
625 dst[0] = ir3_ABSNEG_S(b, src[0], IR3_REG_SABS);
626 break;
627 case nir_op_iadd:
628 dst[0] = ir3_ADD_U(b, src[0], 0, src[1], 0);
629 break;
630 case nir_op_ihadd:
631 dst[0] = ir3_ADD_S(b, src[0], 0, src[1], 0);
632 dst[0]->dsts[0]->flags |= IR3_REG_EI;
633 break;
634 case nir_op_uhadd:
635 dst[0] = ir3_ADD_U(b, src[0], 0, src[1], 0);
636 dst[0]->dsts[0]->flags |= IR3_REG_EI;
637 break;
638 case nir_op_iand:
639 dst[0] = ir3_AND_B(b, src[0], 0, src[1], 0);
640 break;
641 case nir_op_imax:
642 dst[0] = ir3_MAX_S(b, src[0], 0, src[1], 0);
643 break;
644 case nir_op_umax:
645 dst[0] = ir3_MAX_U(b, src[0], 0, src[1], 0);
646 break;
647 case nir_op_imin:
648 dst[0] = ir3_MIN_S(b, src[0], 0, src[1], 0);
649 break;
650 case nir_op_umin:
651 dst[0] = ir3_MIN_U(b, src[0], 0, src[1], 0);
652 break;
653 case nir_op_umul_low:
654 dst[0] = ir3_MULL_U(b, src[0], 0, src[1], 0);
655 break;
656 case nir_op_imadsh_mix16:
657 dst[0] = ir3_MADSH_M16(b, src[0], 0, src[1], 0, src[2], 0);
658 break;
659 case nir_op_imad24_ir3:
660 dst[0] = ir3_MAD_S24(b, src[0], 0, src[1], 0, src[2], 0);
661 break;
662 case nir_op_imul:
663 compile_assert(ctx, nir_dest_bit_size(alu->dest.dest) == 16);
664 dst[0] = ir3_MUL_S24(b, src[0], 0, src[1], 0);
665 break;
666 case nir_op_imul24:
667 dst[0] = ir3_MUL_S24(b, src[0], 0, src[1], 0);
668 break;
669 case nir_op_ineg:
670 dst[0] = ir3_ABSNEG_S(b, src[0], IR3_REG_SNEG);
671 break;
672 case nir_op_inot:
673 if (bs[0] == 1) {
674 struct ir3_instruction *one =
675 create_immed_typed(ctx->block, 1, ctx->compiler->bool_type);
676 dst[0] = ir3_SUB_U(b, one, 0, src[0], 0);
677 } else {
678 dst[0] = ir3_NOT_B(b, src[0], 0);
679 }
680 break;
681 case nir_op_ior:
682 dst[0] = ir3_OR_B(b, src[0], 0, src[1], 0);
683 break;
684 case nir_op_ishl:
685 dst[0] =
686 ir3_SHL_B(b, src[0], 0, resize_shift_amount(ctx, src[1], bs[0]), 0);
687 break;
688 case nir_op_ishr:
689 dst[0] =
690 ir3_ASHR_B(b, src[0], 0, resize_shift_amount(ctx, src[1], bs[0]), 0);
691 break;
692 case nir_op_isub:
693 dst[0] = ir3_SUB_U(b, src[0], 0, src[1], 0);
694 break;
695 case nir_op_ixor:
696 dst[0] = ir3_XOR_B(b, src[0], 0, src[1], 0);
697 break;
698 case nir_op_ushr:
699 dst[0] =
700 ir3_SHR_B(b, src[0], 0, resize_shift_amount(ctx, src[1], bs[0]), 0);
701 break;
702 case nir_op_ilt:
703 dst[0] = ir3_CMPS_S(b, src[0], 0, src[1], 0);
704 dst[0]->cat2.condition = IR3_COND_LT;
705 break;
706 case nir_op_ige:
707 dst[0] = ir3_CMPS_S(b, src[0], 0, src[1], 0);
708 dst[0]->cat2.condition = IR3_COND_GE;
709 break;
710 case nir_op_ieq:
711 dst[0] = ir3_CMPS_S(b, src[0], 0, src[1], 0);
712 dst[0]->cat2.condition = IR3_COND_EQ;
713 break;
714 case nir_op_ine:
715 dst[0] = ir3_CMPS_S(b, src[0], 0, src[1], 0);
716 dst[0]->cat2.condition = IR3_COND_NE;
717 break;
718 case nir_op_ult:
719 dst[0] = ir3_CMPS_U(b, src[0], 0, src[1], 0);
720 dst[0]->cat2.condition = IR3_COND_LT;
721 break;
722 case nir_op_uge:
723 dst[0] = ir3_CMPS_U(b, src[0], 0, src[1], 0);
724 dst[0]->cat2.condition = IR3_COND_GE;
725 break;
726
727 case nir_op_bcsel: {
728 struct ir3_instruction *cond = src[0];
729
730 /* If src[0] is a negation (likely as a result of an ir3_b2n(cond)),
731 * we can ignore that and use original cond, since the nonzero-ness of
732 * cond stays the same.
733 */
734 if (cond->opc == OPC_ABSNEG_S && cond->flags == 0 &&
735 (cond->srcs[0]->flags & (IR3_REG_SNEG | IR3_REG_SABS)) ==
736 IR3_REG_SNEG) {
737 cond = cond->srcs[0]->def->instr;
738 }
739
740 compile_assert(ctx, bs[1] == bs[2]);
741
742 /* The condition's size has to match the other two arguments' size, so
743 * convert down if necessary.
744 *
745 * Single hashtable is fine, because the conversion will either be
746 * 16->32 or 32->16, but never both
747 */
748 if (is_half(src[1]) != is_half(cond)) {
749 struct hash_entry *prev_entry =
750 _mesa_hash_table_search(ctx->sel_cond_conversions, src[0]);
751 if (prev_entry) {
752 cond = prev_entry->data;
753 } else {
754 if (is_half(cond)) {
755 cond = ir3_COV(b, cond, TYPE_U16, TYPE_U32);
756 } else {
757 cond = ir3_COV(b, cond, TYPE_U32, TYPE_U16);
758 }
759 _mesa_hash_table_insert(ctx->sel_cond_conversions, src[0], cond);
760 }
761 }
762
763 if (is_half(src[1])) {
764 dst[0] = ir3_SEL_B16(b, src[1], 0, cond, 0, src[2], 0);
765 } else {
766 dst[0] = ir3_SEL_B32(b, src[1], 0, cond, 0, src[2], 0);
767 }
768
769 break;
770 }
771 case nir_op_bit_count: {
772 if (ctx->compiler->gen < 5 || (src[0]->dsts[0]->flags & IR3_REG_HALF)) {
773 dst[0] = ir3_CBITS_B(b, src[0], 0);
774 break;
775 }
776
777 // We need to do this 16b at a time on a5xx+a6xx. Once half-precision
778 // support is in place, this should probably move to a NIR lowering pass:
779 struct ir3_instruction *hi, *lo;
780
781 hi = ir3_COV(b, ir3_SHR_B(b, src[0], 0, create_immed(b, 16), 0), TYPE_U32,
782 TYPE_U16);
783 lo = ir3_COV(b, src[0], TYPE_U32, TYPE_U16);
784
785 hi = ir3_CBITS_B(b, hi, 0);
786 lo = ir3_CBITS_B(b, lo, 0);
787
788 // TODO maybe the builders should default to making dst half-precision
789 // if the src's were half precision, to make this less awkward.. otoh
790 // we should probably just do this lowering in NIR.
791 hi->dsts[0]->flags |= IR3_REG_HALF;
792 lo->dsts[0]->flags |= IR3_REG_HALF;
793
794 dst[0] = ir3_ADD_S(b, hi, 0, lo, 0);
795 dst[0]->dsts[0]->flags |= IR3_REG_HALF;
796 dst[0] = ir3_COV(b, dst[0], TYPE_U16, TYPE_U32);
797 break;
798 }
799 case nir_op_ifind_msb: {
800 struct ir3_instruction *cmp;
801 dst[0] = ir3_CLZ_S(b, src[0], 0);
802 cmp = ir3_CMPS_S(b, dst[0], 0, create_immed(b, 0), 0);
803 cmp->cat2.condition = IR3_COND_GE;
804 dst[0] = ir3_SEL_B32(b, ir3_SUB_U(b, create_immed(b, 31), 0, dst[0], 0),
805 0, cmp, 0, dst[0], 0);
806 break;
807 }
808 case nir_op_ufind_msb:
809 dst[0] = ir3_CLZ_B(b, src[0], 0);
810 dst[0] = ir3_SEL_B32(b, ir3_SUB_U(b, create_immed(b, 31), 0, dst[0], 0),
811 0, src[0], 0, dst[0], 0);
812 break;
813 case nir_op_find_lsb:
814 dst[0] = ir3_BFREV_B(b, src[0], 0);
815 dst[0] = ir3_CLZ_B(b, dst[0], 0);
816 break;
817 case nir_op_bitfield_reverse:
818 dst[0] = ir3_BFREV_B(b, src[0], 0);
819 break;
820
821 case nir_op_uadd_sat:
822 dst[0] = ir3_ADD_U(b, src[0], 0, src[1], 0);
823 dst[0]->flags |= IR3_INSTR_SAT;
824 break;
825 case nir_op_iadd_sat:
826 dst[0] = ir3_ADD_S(b, src[0], 0, src[1], 0);
827 dst[0]->flags |= IR3_INSTR_SAT;
828 break;
829 case nir_op_usub_sat:
830 dst[0] = ir3_SUB_U(b, src[0], 0, src[1], 0);
831 dst[0]->flags |= IR3_INSTR_SAT;
832 break;
833 case nir_op_isub_sat:
834 dst[0] = ir3_SUB_S(b, src[0], 0, src[1], 0);
835 dst[0]->flags |= IR3_INSTR_SAT;
836 break;
837
838 case nir_op_udot_4x8_uadd:
839 case nir_op_udot_4x8_uadd_sat:
840 case nir_op_sudot_4x8_iadd:
841 case nir_op_sudot_4x8_iadd_sat: {
842 if (ctx->compiler->has_dp4acc) {
843 emit_alu_dot_4x8_as_dp4acc(ctx, alu, dst, src);
844 } else if (ctx->compiler->has_dp2acc) {
845 emit_alu_dot_4x8_as_dp2acc(ctx, alu, dst, src);
846 } else {
847 ir3_context_error(ctx, "ALU op should have been lowered: %s\n",
848 nir_op_infos[alu->op].name);
849 }
850
851 break;
852 }
853
854 default:
855 ir3_context_error(ctx, "Unhandled ALU op: %s\n",
856 nir_op_infos[alu->op].name);
857 break;
858 }
859
860 if (nir_alu_type_get_base_type(info->output_type) == nir_type_bool) {
861 assert(nir_dest_bit_size(alu->dest.dest) == 1 || alu->op == nir_op_b2b32);
862 assert(dst_sz == 1);
863 } else {
864 /* 1-bit values stored in 32-bit registers are only valid for certain
865 * ALU ops.
866 */
867 switch (alu->op) {
868 case nir_op_iand:
869 case nir_op_ior:
870 case nir_op_ixor:
871 case nir_op_inot:
872 case nir_op_bcsel:
873 break;
874 default:
875 compile_assert(ctx, nir_dest_bit_size(alu->dest.dest) != 1);
876 }
877 }
878
879 ir3_put_dst(ctx, &alu->dest.dest);
880 }
881
882 static void
emit_intrinsic_load_ubo_ldc(struct ir3_context * ctx,nir_intrinsic_instr * intr,struct ir3_instruction ** dst)883 emit_intrinsic_load_ubo_ldc(struct ir3_context *ctx, nir_intrinsic_instr *intr,
884 struct ir3_instruction **dst)
885 {
886 struct ir3_block *b = ctx->block;
887
888 /* This is only generated for us by nir_lower_ubo_vec4, which leaves base =
889 * 0.
890 */
891 assert(nir_intrinsic_base(intr) == 0);
892
893 unsigned ncomp = intr->num_components;
894 struct ir3_instruction *offset = ir3_get_src(ctx, &intr->src[1])[0];
895 struct ir3_instruction *idx = ir3_get_src(ctx, &intr->src[0])[0];
896 struct ir3_instruction *ldc = ir3_LDC(b, idx, 0, offset, 0);
897 ldc->dsts[0]->wrmask = MASK(ncomp);
898 ldc->cat6.iim_val = ncomp;
899 ldc->cat6.d = nir_intrinsic_component(intr);
900 ldc->cat6.type = TYPE_U32;
901
902 ir3_handle_bindless_cat6(ldc, intr->src[0]);
903 if (ldc->flags & IR3_INSTR_B)
904 ctx->so->bindless_ubo = true;
905 ir3_handle_nonuniform(ldc, intr);
906
907 ir3_split_dest(b, dst, ldc, 0, ncomp);
908 }
909
910 static void
emit_intrinsic_copy_ubo_to_uniform(struct ir3_context * ctx,nir_intrinsic_instr * intr)911 emit_intrinsic_copy_ubo_to_uniform(struct ir3_context *ctx,
912 nir_intrinsic_instr *intr)
913 {
914 struct ir3_block *b = ctx->block;
915
916 unsigned base = nir_intrinsic_base(intr);
917 unsigned size = nir_intrinsic_range(intr);
918
919 struct ir3_instruction *addr1 = ir3_get_addr1(ctx, base);
920
921 struct ir3_instruction *offset = ir3_get_src(ctx, &intr->src[1])[0];
922 struct ir3_instruction *idx = ir3_get_src(ctx, &intr->src[0])[0];
923 struct ir3_instruction *ldc = ir3_LDC_K(b, idx, 0, offset, 0);
924 ldc->cat6.iim_val = size;
925 ldc->barrier_class = ldc->barrier_conflict = IR3_BARRIER_CONST_W;
926
927 ir3_handle_bindless_cat6(ldc, intr->src[0]);
928 if (ldc->flags & IR3_INSTR_B)
929 ctx->so->bindless_ubo = true;
930
931 ir3_instr_set_address(ldc, addr1);
932
933 array_insert(b, b->keeps, ldc);
934 }
935
936 /* handles direct/indirect UBO reads: */
937 static void
emit_intrinsic_load_ubo(struct ir3_context * ctx,nir_intrinsic_instr * intr,struct ir3_instruction ** dst)938 emit_intrinsic_load_ubo(struct ir3_context *ctx, nir_intrinsic_instr *intr,
939 struct ir3_instruction **dst)
940 {
941 struct ir3_block *b = ctx->block;
942 struct ir3_instruction *base_lo, *base_hi, *addr, *src0, *src1;
943 const struct ir3_const_state *const_state = ir3_const_state(ctx->so);
944 unsigned ubo = regid(const_state->offsets.ubo, 0);
945 const unsigned ptrsz = ir3_pointer_size(ctx->compiler);
946
947 int off = 0;
948
949 /* First src is ubo index, which could either be an immed or not: */
950 src0 = ir3_get_src(ctx, &intr->src[0])[0];
951 if (is_same_type_mov(src0) && (src0->srcs[0]->flags & IR3_REG_IMMED)) {
952 base_lo = create_uniform(b, ubo + (src0->srcs[0]->iim_val * ptrsz));
953 base_hi = create_uniform(b, ubo + (src0->srcs[0]->iim_val * ptrsz) + 1);
954 } else {
955 base_lo = create_uniform_indirect(b, ubo, TYPE_U32,
956 ir3_get_addr0(ctx, src0, ptrsz));
957 base_hi = create_uniform_indirect(b, ubo + 1, TYPE_U32,
958 ir3_get_addr0(ctx, src0, ptrsz));
959
960 /* NOTE: since relative addressing is used, make sure constlen is
961 * at least big enough to cover all the UBO addresses, since the
962 * assembler won't know what the max address reg is.
963 */
964 ctx->so->constlen =
965 MAX2(ctx->so->constlen,
966 const_state->offsets.ubo + (ctx->s->info.num_ubos * ptrsz));
967 }
968
969 /* note: on 32bit gpu's base_hi is ignored and DCE'd */
970 addr = base_lo;
971
972 if (nir_src_is_const(intr->src[1])) {
973 off += nir_src_as_uint(intr->src[1]);
974 } else {
975 /* For load_ubo_indirect, second src is indirect offset: */
976 src1 = ir3_get_src(ctx, &intr->src[1])[0];
977
978 /* and add offset to addr: */
979 addr = ir3_ADD_S(b, addr, 0, src1, 0);
980 }
981
982 /* if offset is to large to encode in the ldg, split it out: */
983 if ((off + (intr->num_components * 4)) > 1024) {
984 /* split out the minimal amount to improve the odds that
985 * cp can fit the immediate in the add.s instruction:
986 */
987 unsigned off2 = off + (intr->num_components * 4) - 1024;
988 addr = ir3_ADD_S(b, addr, 0, create_immed(b, off2), 0);
989 off -= off2;
990 }
991
992 if (ptrsz == 2) {
993 struct ir3_instruction *carry;
994
995 /* handle 32b rollover, ie:
996 * if (addr < base_lo)
997 * base_hi++
998 */
999 carry = ir3_CMPS_U(b, addr, 0, base_lo, 0);
1000 carry->cat2.condition = IR3_COND_LT;
1001 base_hi = ir3_ADD_S(b, base_hi, 0, carry, 0);
1002
1003 addr = ir3_collect(b, addr, base_hi);
1004 }
1005
1006 for (int i = 0; i < intr->num_components; i++) {
1007 struct ir3_instruction *load =
1008 ir3_LDG(b, addr, 0, create_immed(b, off + i * 4), 0,
1009 create_immed(b, 1), 0); /* num components */
1010 load->cat6.type = TYPE_U32;
1011 dst[i] = load;
1012 }
1013 }
1014
1015 /* Load a kernel param: src[] = { address }. */
1016 static void
emit_intrinsic_load_kernel_input(struct ir3_context * ctx,nir_intrinsic_instr * intr,struct ir3_instruction ** dst)1017 emit_intrinsic_load_kernel_input(struct ir3_context *ctx,
1018 nir_intrinsic_instr *intr,
1019 struct ir3_instruction **dst)
1020 {
1021 const struct ir3_const_state *const_state = ir3_const_state(ctx->so);
1022 struct ir3_block *b = ctx->block;
1023 unsigned offset = nir_intrinsic_base(intr);
1024 unsigned p = regid(const_state->offsets.kernel_params, 0);
1025
1026 struct ir3_instruction *src0 = ir3_get_src(ctx, &intr->src[0])[0];
1027
1028 if (is_same_type_mov(src0) && (src0->srcs[0]->flags & IR3_REG_IMMED)) {
1029 offset += src0->srcs[0]->iim_val;
1030
1031 /* kernel param position is in bytes, but constant space is 32b registers: */
1032 compile_assert(ctx, !(offset & 0x3));
1033
1034 dst[0] = create_uniform(b, p + (offset / 4));
1035 } else {
1036 /* kernel param position is in bytes, but constant space is 32b registers: */
1037 compile_assert(ctx, !(offset & 0x3));
1038
1039 /* TODO we should probably be lowering this in nir, and also handling
1040 * non-32b inputs.. Also we probably don't want to be using
1041 * SP_MODE_CONTROL.CONSTANT_DEMOTION_ENABLE for KERNEL shaders..
1042 */
1043 src0 = ir3_SHR_B(b, src0, 0, create_immed(b, 2), 0);
1044
1045 dst[0] = create_uniform_indirect(b, offset / 4, TYPE_U32,
1046 ir3_get_addr0(ctx, src0, 1));
1047 }
1048 }
1049
1050 /* src[] = { block_index } */
1051 static void
emit_intrinsic_ssbo_size(struct ir3_context * ctx,nir_intrinsic_instr * intr,struct ir3_instruction ** dst)1052 emit_intrinsic_ssbo_size(struct ir3_context *ctx, nir_intrinsic_instr *intr,
1053 struct ir3_instruction **dst)
1054 {
1055 struct ir3_block *b = ctx->block;
1056 struct ir3_instruction *ibo = ir3_ssbo_to_ibo(ctx, intr->src[0]);
1057 struct ir3_instruction *resinfo = ir3_RESINFO(b, ibo, 0);
1058 resinfo->cat6.iim_val = 1;
1059 resinfo->cat6.d = ctx->compiler->gen >= 6 ? 1 : 2;
1060 resinfo->cat6.type = TYPE_U32;
1061 resinfo->cat6.typed = false;
1062 /* resinfo has no writemask and always writes out 3 components */
1063 resinfo->dsts[0]->wrmask = MASK(3);
1064 ir3_handle_bindless_cat6(resinfo, intr->src[0]);
1065 ir3_handle_nonuniform(resinfo, intr);
1066
1067 if (ctx->compiler->gen >= 6) {
1068 ir3_split_dest(b, dst, resinfo, 0, 1);
1069 } else {
1070 /* On a5xx, resinfo returns the low 16 bits of ssbo size in .x and the high 16 bits in .y */
1071 struct ir3_instruction *resinfo_dst[2];
1072 ir3_split_dest(b, resinfo_dst, resinfo, 0, 2);
1073 *dst = ir3_ADD_U(b, ir3_SHL_B(b, resinfo_dst[1], 0, create_immed(b, 16), 0), 0, resinfo_dst[0], 0);
1074 }
1075 }
1076
1077 /* src[] = { offset }. const_index[] = { base } */
1078 static void
emit_intrinsic_load_shared(struct ir3_context * ctx,nir_intrinsic_instr * intr,struct ir3_instruction ** dst)1079 emit_intrinsic_load_shared(struct ir3_context *ctx, nir_intrinsic_instr *intr,
1080 struct ir3_instruction **dst)
1081 {
1082 struct ir3_block *b = ctx->block;
1083 struct ir3_instruction *ldl, *offset;
1084 unsigned base;
1085
1086 offset = ir3_get_src(ctx, &intr->src[0])[0];
1087 base = nir_intrinsic_base(intr);
1088
1089 ldl = ir3_LDL(b, offset, 0, create_immed(b, base), 0,
1090 create_immed(b, intr->num_components), 0);
1091
1092 ldl->cat6.type = utype_dst(intr->dest);
1093 ldl->dsts[0]->wrmask = MASK(intr->num_components);
1094
1095 ldl->barrier_class = IR3_BARRIER_SHARED_R;
1096 ldl->barrier_conflict = IR3_BARRIER_SHARED_W;
1097
1098 ir3_split_dest(b, dst, ldl, 0, intr->num_components);
1099 }
1100
1101 /* src[] = { value, offset }. const_index[] = { base, write_mask } */
1102 static void
emit_intrinsic_store_shared(struct ir3_context * ctx,nir_intrinsic_instr * intr)1103 emit_intrinsic_store_shared(struct ir3_context *ctx, nir_intrinsic_instr *intr)
1104 {
1105 struct ir3_block *b = ctx->block;
1106 struct ir3_instruction *stl, *offset;
1107 struct ir3_instruction *const *value;
1108 unsigned base, wrmask, ncomp;
1109
1110 value = ir3_get_src(ctx, &intr->src[0]);
1111 offset = ir3_get_src(ctx, &intr->src[1])[0];
1112
1113 base = nir_intrinsic_base(intr);
1114 wrmask = nir_intrinsic_write_mask(intr);
1115 ncomp = ffs(~wrmask) - 1;
1116
1117 assert(wrmask == BITFIELD_MASK(intr->num_components));
1118
1119 stl = ir3_STL(b, offset, 0, ir3_create_collect(b, value, ncomp), 0,
1120 create_immed(b, ncomp), 0);
1121 stl->cat6.dst_offset = base;
1122 stl->cat6.type = utype_src(intr->src[0]);
1123 stl->barrier_class = IR3_BARRIER_SHARED_W;
1124 stl->barrier_conflict = IR3_BARRIER_SHARED_R | IR3_BARRIER_SHARED_W;
1125
1126 array_insert(b, b->keeps, stl);
1127 }
1128
1129 /* src[] = { offset }. const_index[] = { base } */
1130 static void
emit_intrinsic_load_shared_ir3(struct ir3_context * ctx,nir_intrinsic_instr * intr,struct ir3_instruction ** dst)1131 emit_intrinsic_load_shared_ir3(struct ir3_context *ctx,
1132 nir_intrinsic_instr *intr,
1133 struct ir3_instruction **dst)
1134 {
1135 struct ir3_block *b = ctx->block;
1136 struct ir3_instruction *load, *offset;
1137 unsigned base;
1138
1139 offset = ir3_get_src(ctx, &intr->src[0])[0];
1140 base = nir_intrinsic_base(intr);
1141
1142 load = ir3_LDLW(b, offset, 0, create_immed(b, base), 0,
1143 create_immed(b, intr->num_components), 0);
1144
1145 /* for a650, use LDL for tess ctrl inputs: */
1146 if (ctx->so->type == MESA_SHADER_TESS_CTRL && ctx->compiler->tess_use_shared)
1147 load->opc = OPC_LDL;
1148
1149 load->cat6.type = utype_dst(intr->dest);
1150 load->dsts[0]->wrmask = MASK(intr->num_components);
1151
1152 load->barrier_class = IR3_BARRIER_SHARED_R;
1153 load->barrier_conflict = IR3_BARRIER_SHARED_W;
1154
1155 ir3_split_dest(b, dst, load, 0, intr->num_components);
1156 }
1157
1158 /* src[] = { value, offset }. const_index[] = { base } */
1159 static void
emit_intrinsic_store_shared_ir3(struct ir3_context * ctx,nir_intrinsic_instr * intr)1160 emit_intrinsic_store_shared_ir3(struct ir3_context *ctx,
1161 nir_intrinsic_instr *intr)
1162 {
1163 struct ir3_block *b = ctx->block;
1164 struct ir3_instruction *store, *offset;
1165 struct ir3_instruction *const *value;
1166
1167 value = ir3_get_src(ctx, &intr->src[0]);
1168 offset = ir3_get_src(ctx, &intr->src[1])[0];
1169
1170 store = ir3_STLW(b, offset, 0,
1171 ir3_create_collect(b, value, intr->num_components), 0,
1172 create_immed(b, intr->num_components), 0);
1173
1174 /* for a650, use STL for vertex outputs used by tess ctrl shader: */
1175 if (ctx->so->type == MESA_SHADER_VERTEX && ctx->so->key.tessellation &&
1176 ctx->compiler->tess_use_shared)
1177 store->opc = OPC_STL;
1178
1179 store->cat6.dst_offset = nir_intrinsic_base(intr);
1180 store->cat6.type = utype_src(intr->src[0]);
1181 store->barrier_class = IR3_BARRIER_SHARED_W;
1182 store->barrier_conflict = IR3_BARRIER_SHARED_R | IR3_BARRIER_SHARED_W;
1183
1184 array_insert(b, b->keeps, store);
1185 }
1186
1187 /*
1188 * CS shared variable atomic intrinsics
1189 *
1190 * All of the shared variable atomic memory operations read a value from
1191 * memory, compute a new value using one of the operations below, write the
1192 * new value to memory, and return the original value read.
1193 *
1194 * All operations take 2 sources except CompSwap that takes 3. These
1195 * sources represent:
1196 *
1197 * 0: The offset into the shared variable storage region that the atomic
1198 * operation will operate on.
1199 * 1: The data parameter to the atomic function (i.e. the value to add
1200 * in shared_atomic_add, etc).
1201 * 2: For CompSwap only: the second data parameter.
1202 */
1203 static struct ir3_instruction *
emit_intrinsic_atomic_shared(struct ir3_context * ctx,nir_intrinsic_instr * intr)1204 emit_intrinsic_atomic_shared(struct ir3_context *ctx, nir_intrinsic_instr *intr)
1205 {
1206 struct ir3_block *b = ctx->block;
1207 struct ir3_instruction *atomic, *src0, *src1;
1208 type_t type = TYPE_U32;
1209
1210 src0 = ir3_get_src(ctx, &intr->src[0])[0]; /* offset */
1211 src1 = ir3_get_src(ctx, &intr->src[1])[0]; /* value */
1212
1213 switch (intr->intrinsic) {
1214 case nir_intrinsic_shared_atomic_add:
1215 atomic = ir3_ATOMIC_ADD(b, src0, 0, src1, 0);
1216 break;
1217 case nir_intrinsic_shared_atomic_imin:
1218 atomic = ir3_ATOMIC_MIN(b, src0, 0, src1, 0);
1219 type = TYPE_S32;
1220 break;
1221 case nir_intrinsic_shared_atomic_umin:
1222 atomic = ir3_ATOMIC_MIN(b, src0, 0, src1, 0);
1223 break;
1224 case nir_intrinsic_shared_atomic_imax:
1225 atomic = ir3_ATOMIC_MAX(b, src0, 0, src1, 0);
1226 type = TYPE_S32;
1227 break;
1228 case nir_intrinsic_shared_atomic_umax:
1229 atomic = ir3_ATOMIC_MAX(b, src0, 0, src1, 0);
1230 break;
1231 case nir_intrinsic_shared_atomic_and:
1232 atomic = ir3_ATOMIC_AND(b, src0, 0, src1, 0);
1233 break;
1234 case nir_intrinsic_shared_atomic_or:
1235 atomic = ir3_ATOMIC_OR(b, src0, 0, src1, 0);
1236 break;
1237 case nir_intrinsic_shared_atomic_xor:
1238 atomic = ir3_ATOMIC_XOR(b, src0, 0, src1, 0);
1239 break;
1240 case nir_intrinsic_shared_atomic_exchange:
1241 atomic = ir3_ATOMIC_XCHG(b, src0, 0, src1, 0);
1242 break;
1243 case nir_intrinsic_shared_atomic_comp_swap:
1244 /* for cmpxchg, src1 is [ui]vec2(data, compare): */
1245 src1 = ir3_collect(b, ir3_get_src(ctx, &intr->src[2])[0], src1);
1246 atomic = ir3_ATOMIC_CMPXCHG(b, src0, 0, src1, 0);
1247 break;
1248 default:
1249 unreachable("boo");
1250 }
1251
1252 atomic->cat6.iim_val = 1;
1253 atomic->cat6.d = 1;
1254 atomic->cat6.type = type;
1255 atomic->barrier_class = IR3_BARRIER_SHARED_W;
1256 atomic->barrier_conflict = IR3_BARRIER_SHARED_R | IR3_BARRIER_SHARED_W;
1257
1258 /* even if nothing consume the result, we can't DCE the instruction: */
1259 array_insert(b, b->keeps, atomic);
1260
1261 return atomic;
1262 }
1263
1264 static void
stp_ldp_offset(struct ir3_context * ctx,nir_src * src,struct ir3_instruction ** offset,int32_t * base)1265 stp_ldp_offset(struct ir3_context *ctx, nir_src *src,
1266 struct ir3_instruction **offset, int32_t *base)
1267 {
1268 struct ir3_block *b = ctx->block;
1269
1270 if (nir_src_is_const(*src)) {
1271 unsigned src_offset = nir_src_as_uint(*src);
1272 /* The base offset field is only 13 bits, and it's signed. Try to make the
1273 * offset constant whenever the original offsets are similar, to avoid
1274 * creating too many constants in the final shader.
1275 */
1276 *base = ((int32_t) src_offset << (32 - 13)) >> (32 - 13);
1277 uint32_t offset_val = src_offset - *base;
1278 *offset = create_immed(b, offset_val);
1279 } else {
1280 /* TODO: match on nir_iadd with a constant that fits */
1281 *base = 0;
1282 *offset = ir3_get_src(ctx, src)[0];
1283 }
1284 }
1285
1286 /* src[] = { offset }. */
1287 static void
emit_intrinsic_load_scratch(struct ir3_context * ctx,nir_intrinsic_instr * intr,struct ir3_instruction ** dst)1288 emit_intrinsic_load_scratch(struct ir3_context *ctx, nir_intrinsic_instr *intr,
1289 struct ir3_instruction **dst)
1290 {
1291 struct ir3_block *b = ctx->block;
1292 struct ir3_instruction *ldp, *offset;
1293 int32_t base;
1294
1295 stp_ldp_offset(ctx, &intr->src[0], &offset, &base);
1296
1297 ldp = ir3_LDP(b, offset, 0, create_immed(b, base), 0,
1298 create_immed(b, intr->num_components), 0);
1299
1300 ldp->cat6.type = utype_dst(intr->dest);
1301 ldp->dsts[0]->wrmask = MASK(intr->num_components);
1302
1303 ldp->barrier_class = IR3_BARRIER_PRIVATE_R;
1304 ldp->barrier_conflict = IR3_BARRIER_PRIVATE_W;
1305
1306 ir3_split_dest(b, dst, ldp, 0, intr->num_components);
1307 }
1308
1309 /* src[] = { value, offset }. const_index[] = { write_mask } */
1310 static void
emit_intrinsic_store_scratch(struct ir3_context * ctx,nir_intrinsic_instr * intr)1311 emit_intrinsic_store_scratch(struct ir3_context *ctx, nir_intrinsic_instr *intr)
1312 {
1313 struct ir3_block *b = ctx->block;
1314 struct ir3_instruction *stp, *offset;
1315 struct ir3_instruction *const *value;
1316 unsigned wrmask, ncomp;
1317 int32_t base;
1318
1319 value = ir3_get_src(ctx, &intr->src[0]);
1320
1321 stp_ldp_offset(ctx, &intr->src[1], &offset, &base);
1322
1323 wrmask = nir_intrinsic_write_mask(intr);
1324 ncomp = ffs(~wrmask) - 1;
1325
1326 assert(wrmask == BITFIELD_MASK(intr->num_components));
1327
1328 stp = ir3_STP(b, offset, 0, ir3_create_collect(b, value, ncomp), 0,
1329 create_immed(b, ncomp), 0);
1330 stp->cat6.dst_offset = base;
1331 stp->cat6.type = utype_src(intr->src[0]);
1332 stp->barrier_class = IR3_BARRIER_PRIVATE_W;
1333 stp->barrier_conflict = IR3_BARRIER_PRIVATE_R | IR3_BARRIER_PRIVATE_W;
1334
1335 array_insert(b, b->keeps, stp);
1336 }
1337
1338 struct tex_src_info {
1339 /* For prefetch */
1340 unsigned tex_base, samp_base, tex_idx, samp_idx;
1341 /* For normal tex instructions */
1342 unsigned base, a1_val, flags;
1343 struct ir3_instruction *samp_tex;
1344 };
1345
1346 /* TODO handle actual indirect/dynamic case.. which is going to be weird
1347 * to handle with the image_mapping table..
1348 */
1349 static struct tex_src_info
get_image_ssbo_samp_tex_src(struct ir3_context * ctx,nir_src * src)1350 get_image_ssbo_samp_tex_src(struct ir3_context *ctx, nir_src *src)
1351 {
1352 struct ir3_block *b = ctx->block;
1353 struct tex_src_info info = {0};
1354 nir_intrinsic_instr *bindless_tex = ir3_bindless_resource(*src);
1355
1356 if (bindless_tex) {
1357 /* Bindless case */
1358 ctx->so->bindless_tex = true;
1359 info.flags |= IR3_INSTR_B;
1360
1361 /* Gather information required to determine which encoding to
1362 * choose as well as for prefetch.
1363 */
1364 info.tex_base = nir_intrinsic_desc_set(bindless_tex);
1365 bool tex_const = nir_src_is_const(bindless_tex->src[0]);
1366 if (tex_const)
1367 info.tex_idx = nir_src_as_uint(bindless_tex->src[0]);
1368 info.samp_idx = 0;
1369
1370 /* Choose encoding. */
1371 if (tex_const && info.tex_idx < 256) {
1372 if (info.tex_idx < 16) {
1373 /* Everything fits within the instruction */
1374 info.base = info.tex_base;
1375 } else {
1376 info.base = info.tex_base;
1377 info.a1_val = info.tex_idx << 3;
1378 info.flags |= IR3_INSTR_A1EN;
1379 }
1380 info.samp_tex = NULL;
1381 } else {
1382 info.flags |= IR3_INSTR_S2EN;
1383 info.base = info.tex_base;
1384
1385 /* Note: the indirect source is now a vec2 instead of hvec2 */
1386 struct ir3_instruction *texture, *sampler;
1387
1388 texture = ir3_get_src(ctx, src)[0];
1389 sampler = create_immed(b, 0);
1390 info.samp_tex = ir3_collect(b, texture, sampler);
1391 }
1392 } else {
1393 info.flags |= IR3_INSTR_S2EN;
1394 unsigned slot = nir_src_as_uint(*src);
1395 unsigned tex_idx = ir3_image_to_tex(&ctx->so->image_mapping, slot);
1396 struct ir3_instruction *texture, *sampler;
1397
1398 texture = create_immed_typed(ctx->block, tex_idx, TYPE_U16);
1399 sampler = create_immed_typed(ctx->block, tex_idx, TYPE_U16);
1400
1401 info.samp_tex = ir3_collect(b, sampler, texture);
1402 }
1403
1404 return info;
1405 }
1406
1407 static struct ir3_instruction *
emit_sam(struct ir3_context * ctx,opc_t opc,struct tex_src_info info,type_t type,unsigned wrmask,struct ir3_instruction * src0,struct ir3_instruction * src1)1408 emit_sam(struct ir3_context *ctx, opc_t opc, struct tex_src_info info,
1409 type_t type, unsigned wrmask, struct ir3_instruction *src0,
1410 struct ir3_instruction *src1)
1411 {
1412 struct ir3_instruction *sam, *addr;
1413 if (info.flags & IR3_INSTR_A1EN) {
1414 addr = ir3_get_addr1(ctx, info.a1_val);
1415 }
1416 sam = ir3_SAM(ctx->block, opc, type, wrmask, info.flags, info.samp_tex, src0,
1417 src1);
1418 if (info.flags & IR3_INSTR_A1EN) {
1419 ir3_instr_set_address(sam, addr);
1420 }
1421 if (info.flags & IR3_INSTR_B) {
1422 sam->cat5.tex_base = info.base;
1423 sam->cat5.samp = info.samp_idx;
1424 sam->cat5.tex = info.tex_idx;
1425 }
1426 return sam;
1427 }
1428
1429 /* src[] = { deref, coord, sample_index }. const_index[] = {} */
1430 static void
emit_intrinsic_load_image(struct ir3_context * ctx,nir_intrinsic_instr * intr,struct ir3_instruction ** dst)1431 emit_intrinsic_load_image(struct ir3_context *ctx, nir_intrinsic_instr *intr,
1432 struct ir3_instruction **dst)
1433 {
1434 /* If the image can be written, must use LDIB to retrieve data, rather than
1435 * through ISAM (which uses the texture cache and won't get previous writes).
1436 */
1437 if (!(nir_intrinsic_access(intr) & ACCESS_CAN_REORDER)) {
1438 ctx->funcs->emit_intrinsic_load_image(ctx, intr, dst);
1439 return;
1440 }
1441
1442 /* The sparse set of texture descriptors for non-coherent load_images means we can't do indirection, so
1443 * fall back to coherent load.
1444 */
1445 if (ctx->compiler->gen >= 5 &&
1446 !ir3_bindless_resource(intr->src[0]) &&
1447 !nir_src_is_const(intr->src[0])) {
1448 ctx->funcs->emit_intrinsic_load_image(ctx, intr, dst);
1449 return;
1450 }
1451
1452 struct ir3_block *b = ctx->block;
1453 struct tex_src_info info = get_image_ssbo_samp_tex_src(ctx, &intr->src[0]);
1454 struct ir3_instruction *sam;
1455 struct ir3_instruction *const *src0 = ir3_get_src(ctx, &intr->src[1]);
1456 struct ir3_instruction *coords[4];
1457 unsigned flags, ncoords = ir3_get_image_coords(intr, &flags);
1458 type_t type = ir3_get_type_for_image_intrinsic(intr);
1459
1460 info.flags |= flags;
1461
1462 /* hw doesn't do 1d, so we treat it as 2d with height of 1, and patch up the
1463 * y coord. Note that the array index must come after the fake y coord.
1464 */
1465 enum glsl_sampler_dim dim = nir_intrinsic_image_dim(intr);
1466 if (dim == GLSL_SAMPLER_DIM_1D || dim == GLSL_SAMPLER_DIM_BUF) {
1467 coords[0] = src0[0];
1468 coords[1] = create_immed(b, 0);
1469 for (unsigned i = 1; i < ncoords; i++)
1470 coords[i + 1] = src0[i];
1471 ncoords++;
1472 } else {
1473 for (unsigned i = 0; i < ncoords; i++)
1474 coords[i] = src0[i];
1475 }
1476
1477 sam = emit_sam(ctx, OPC_ISAM, info, type, 0b1111,
1478 ir3_create_collect(b, coords, ncoords), NULL);
1479
1480 ir3_handle_nonuniform(sam, intr);
1481
1482 sam->barrier_class = IR3_BARRIER_IMAGE_R;
1483 sam->barrier_conflict = IR3_BARRIER_IMAGE_W;
1484
1485 ir3_split_dest(b, dst, sam, 0, 4);
1486 }
1487
1488 /* A4xx version of image_size, see ir3_a6xx.c for newer resinfo version. */
1489 void
emit_intrinsic_image_size_tex(struct ir3_context * ctx,nir_intrinsic_instr * intr,struct ir3_instruction ** dst)1490 emit_intrinsic_image_size_tex(struct ir3_context *ctx,
1491 nir_intrinsic_instr *intr,
1492 struct ir3_instruction **dst)
1493 {
1494 struct ir3_block *b = ctx->block;
1495 struct tex_src_info info = get_image_ssbo_samp_tex_src(ctx, &intr->src[0]);
1496 struct ir3_instruction *sam, *lod;
1497 unsigned flags, ncoords = ir3_get_image_coords(intr, &flags);
1498 type_t dst_type = nir_dest_bit_size(intr->dest) == 16 ? TYPE_U16 : TYPE_U32;
1499
1500 info.flags |= flags;
1501 assert(nir_src_as_uint(intr->src[1]) == 0);
1502 lod = create_immed(b, 0);
1503 sam = emit_sam(ctx, OPC_GETSIZE, info, dst_type, 0b1111, lod, NULL);
1504
1505 /* Array size actually ends up in .w rather than .z. This doesn't
1506 * matter for miplevel 0, but for higher mips the value in z is
1507 * minified whereas w stays. Also, the value in TEX_CONST_3_DEPTH is
1508 * returned, which means that we have to add 1 to it for arrays for
1509 * a3xx.
1510 *
1511 * Note use a temporary dst and then copy, since the size of the dst
1512 * array that is passed in is based on nir's understanding of the
1513 * result size, not the hardware's
1514 */
1515 struct ir3_instruction *tmp[4];
1516
1517 ir3_split_dest(b, tmp, sam, 0, 4);
1518
1519 for (unsigned i = 0; i < ncoords; i++)
1520 dst[i] = tmp[i];
1521
1522 if (flags & IR3_INSTR_A) {
1523 if (ctx->compiler->levels_add_one) {
1524 dst[ncoords - 1] = ir3_ADD_U(b, tmp[3], 0, create_immed(b, 1), 0);
1525 } else {
1526 dst[ncoords - 1] = ir3_MOV(b, tmp[3], TYPE_U32);
1527 }
1528 }
1529 }
1530
1531 /* src[] = { buffer_index, offset }. No const_index */
1532 static void
emit_intrinsic_load_ssbo(struct ir3_context * ctx,nir_intrinsic_instr * intr,struct ir3_instruction ** dst)1533 emit_intrinsic_load_ssbo(struct ir3_context *ctx,
1534 nir_intrinsic_instr *intr,
1535 struct ir3_instruction **dst)
1536 {
1537 /* Note: isam currently can't handle vectorized loads/stores */
1538 if (!(nir_intrinsic_access(intr) & ACCESS_CAN_REORDER) ||
1539 !ir3_bindless_resource(intr->src[0]) ||
1540 intr->dest.ssa.num_components > 1) {
1541 ctx->funcs->emit_intrinsic_load_ssbo(ctx, intr, dst);
1542 return;
1543 }
1544
1545 struct ir3_block *b = ctx->block;
1546 struct ir3_instruction *offset = ir3_get_src(ctx, &intr->src[2])[0];
1547 struct ir3_instruction *coords = ir3_collect(b, offset, create_immed(b, 0));
1548 struct tex_src_info info = get_image_ssbo_samp_tex_src(ctx, &intr->src[0]);
1549
1550 unsigned num_components = intr->dest.ssa.num_components;
1551 struct ir3_instruction *sam =
1552 emit_sam(ctx, OPC_ISAM, info, utype_for_size(intr->dest.ssa.bit_size),
1553 MASK(num_components), coords, NULL);
1554
1555 ir3_handle_nonuniform(sam, intr);
1556
1557 sam->barrier_class = IR3_BARRIER_BUFFER_R;
1558 sam->barrier_conflict = IR3_BARRIER_BUFFER_W;
1559
1560 ir3_split_dest(b, dst, sam, 0, num_components);
1561 }
1562
1563 static void
emit_control_barrier(struct ir3_context * ctx)1564 emit_control_barrier(struct ir3_context *ctx)
1565 {
1566 /* Hull shaders dispatch 32 wide so an entire patch will always
1567 * fit in a single warp and execute in lock-step. Consequently,
1568 * we don't need to do anything for TCS barriers. Emitting
1569 * barrier instruction will deadlock.
1570 */
1571 if (ctx->so->type == MESA_SHADER_TESS_CTRL)
1572 return;
1573
1574 struct ir3_block *b = ctx->block;
1575 struct ir3_instruction *barrier = ir3_BAR(b);
1576 barrier->cat7.g = true;
1577 if (ctx->compiler->gen < 6)
1578 barrier->cat7.l = true;
1579 barrier->flags = IR3_INSTR_SS | IR3_INSTR_SY;
1580 barrier->barrier_class = IR3_BARRIER_EVERYTHING;
1581 array_insert(b, b->keeps, barrier);
1582
1583 ctx->so->has_barrier = true;
1584 }
1585
1586 static void
emit_intrinsic_barrier(struct ir3_context * ctx,nir_intrinsic_instr * intr)1587 emit_intrinsic_barrier(struct ir3_context *ctx, nir_intrinsic_instr *intr)
1588 {
1589 struct ir3_block *b = ctx->block;
1590 struct ir3_instruction *barrier;
1591
1592 /* TODO: find out why there is a major difference of .l usage
1593 * between a5xx and a6xx,
1594 */
1595
1596 switch (intr->intrinsic) {
1597 case nir_intrinsic_control_barrier:
1598 emit_control_barrier(ctx);
1599 return;
1600 case nir_intrinsic_scoped_barrier: {
1601 nir_scope exec_scope = nir_intrinsic_execution_scope(intr);
1602 nir_variable_mode modes = nir_intrinsic_memory_modes(intr);
1603 /* loads/stores are always cache-coherent so we can filter out
1604 * available/visible.
1605 */
1606 nir_memory_semantics semantics =
1607 nir_intrinsic_memory_semantics(intr) & (NIR_MEMORY_ACQUIRE |
1608 NIR_MEMORY_RELEASE);
1609
1610 if (ctx->so->type == MESA_SHADER_TESS_CTRL) {
1611 /* Remove mode corresponding to nir_intrinsic_memory_barrier_tcs_patch,
1612 * because hull shaders dispatch 32 wide so an entire patch will
1613 * always fit in a single warp and execute in lock-step.
1614 *
1615 * TODO: memory barrier also tells us not to reorder stores, this
1616 * information is lost here (backend doesn't reorder stores so we
1617 * are safe for now).
1618 */
1619 modes &= ~nir_var_shader_out;
1620 }
1621
1622 assert(!(modes & nir_var_shader_out));
1623
1624 if ((modes &
1625 (nir_var_mem_shared | nir_var_mem_ssbo | nir_var_mem_global |
1626 nir_var_image)) && semantics) {
1627 barrier = ir3_FENCE(b);
1628 barrier->cat7.r = true;
1629 barrier->cat7.w = true;
1630
1631 if (modes & (nir_var_mem_ssbo | nir_var_image | nir_var_mem_global)) {
1632 barrier->cat7.g = true;
1633 }
1634
1635 if (ctx->compiler->gen >= 6) {
1636 if (modes & (nir_var_mem_ssbo | nir_var_image)) {
1637 barrier->cat7.l = true;
1638 }
1639 } else {
1640 if (modes & (nir_var_mem_shared | nir_var_mem_ssbo | nir_var_image)) {
1641 barrier->cat7.l = true;
1642 }
1643 }
1644
1645 barrier->barrier_class = 0;
1646 barrier->barrier_conflict = 0;
1647
1648 if (modes & nir_var_mem_shared) {
1649 barrier->barrier_class |= IR3_BARRIER_SHARED_W;
1650 barrier->barrier_conflict |=
1651 IR3_BARRIER_SHARED_R | IR3_BARRIER_SHARED_W;
1652 }
1653
1654 if (modes & (nir_var_mem_ssbo | nir_var_mem_global)) {
1655 barrier->barrier_class |= IR3_BARRIER_BUFFER_W;
1656 barrier->barrier_conflict |=
1657 IR3_BARRIER_BUFFER_R | IR3_BARRIER_BUFFER_W;
1658 }
1659
1660 if (modes & nir_var_image) {
1661 barrier->barrier_class |= IR3_BARRIER_IMAGE_W;
1662 barrier->barrier_conflict |=
1663 IR3_BARRIER_IMAGE_W | IR3_BARRIER_IMAGE_R;
1664 }
1665 array_insert(b, b->keeps, barrier);
1666 }
1667
1668 if (exec_scope >= NIR_SCOPE_WORKGROUP) {
1669 emit_control_barrier(ctx);
1670 }
1671
1672 return;
1673 }
1674 case nir_intrinsic_memory_barrier_tcs_patch:
1675 /* Not applicable, see explanation for scoped_barrier + shader_out */
1676 return;
1677 case nir_intrinsic_memory_barrier_buffer:
1678 barrier = ir3_FENCE(b);
1679 barrier->cat7.g = true;
1680 if (ctx->compiler->gen >= 6)
1681 barrier->cat7.l = true;
1682 barrier->cat7.r = true;
1683 barrier->cat7.w = true;
1684 barrier->barrier_class = IR3_BARRIER_BUFFER_W;
1685 barrier->barrier_conflict = IR3_BARRIER_BUFFER_R | IR3_BARRIER_BUFFER_W;
1686 break;
1687 case nir_intrinsic_memory_barrier_image:
1688 barrier = ir3_FENCE(b);
1689 barrier->cat7.g = true;
1690 barrier->cat7.l = true;
1691 barrier->cat7.r = true;
1692 barrier->cat7.w = true;
1693 barrier->barrier_class = IR3_BARRIER_IMAGE_W;
1694 barrier->barrier_conflict = IR3_BARRIER_IMAGE_R | IR3_BARRIER_IMAGE_W;
1695 break;
1696 case nir_intrinsic_memory_barrier_shared:
1697 barrier = ir3_FENCE(b);
1698 if (ctx->compiler->gen < 6)
1699 barrier->cat7.l = true;
1700 barrier->cat7.r = true;
1701 barrier->cat7.w = true;
1702 barrier->barrier_class = IR3_BARRIER_SHARED_W;
1703 barrier->barrier_conflict = IR3_BARRIER_SHARED_R | IR3_BARRIER_SHARED_W;
1704 break;
1705 case nir_intrinsic_memory_barrier:
1706 case nir_intrinsic_group_memory_barrier:
1707 barrier = ir3_FENCE(b);
1708 barrier->cat7.g = true;
1709 barrier->cat7.l = true;
1710 barrier->cat7.r = true;
1711 barrier->cat7.w = true;
1712 barrier->barrier_class =
1713 IR3_BARRIER_SHARED_W | IR3_BARRIER_IMAGE_W | IR3_BARRIER_BUFFER_W;
1714 barrier->barrier_conflict = IR3_BARRIER_SHARED_R | IR3_BARRIER_SHARED_W |
1715 IR3_BARRIER_IMAGE_R | IR3_BARRIER_IMAGE_W |
1716 IR3_BARRIER_BUFFER_R | IR3_BARRIER_BUFFER_W;
1717 break;
1718 default:
1719 unreachable("boo");
1720 }
1721
1722 /* make sure barrier doesn't get DCE'd */
1723 array_insert(b, b->keeps, barrier);
1724 }
1725
1726 static void
add_sysval_input_compmask(struct ir3_context * ctx,gl_system_value slot,unsigned compmask,struct ir3_instruction * instr)1727 add_sysval_input_compmask(struct ir3_context *ctx, gl_system_value slot,
1728 unsigned compmask, struct ir3_instruction *instr)
1729 {
1730 struct ir3_shader_variant *so = ctx->so;
1731 unsigned n = so->inputs_count++;
1732
1733 assert(instr->opc == OPC_META_INPUT);
1734 instr->input.inidx = n;
1735 instr->input.sysval = slot;
1736
1737 so->inputs[n].sysval = true;
1738 so->inputs[n].slot = slot;
1739 so->inputs[n].compmask = compmask;
1740 so->total_in++;
1741
1742 so->sysval_in += util_last_bit(compmask);
1743 }
1744
1745 static struct ir3_instruction *
create_sysval_input(struct ir3_context * ctx,gl_system_value slot,unsigned compmask)1746 create_sysval_input(struct ir3_context *ctx, gl_system_value slot,
1747 unsigned compmask)
1748 {
1749 assert(compmask);
1750 struct ir3_instruction *sysval = create_input(ctx, compmask);
1751 add_sysval_input_compmask(ctx, slot, compmask, sysval);
1752 return sysval;
1753 }
1754
1755 static struct ir3_instruction *
get_barycentric(struct ir3_context * ctx,enum ir3_bary bary)1756 get_barycentric(struct ir3_context *ctx, enum ir3_bary bary)
1757 {
1758 STATIC_ASSERT(SYSTEM_VALUE_BARYCENTRIC_PERSP_PIXEL + IJ_PERSP_PIXEL ==
1759 SYSTEM_VALUE_BARYCENTRIC_PERSP_PIXEL);
1760 STATIC_ASSERT(SYSTEM_VALUE_BARYCENTRIC_PERSP_PIXEL + IJ_PERSP_SAMPLE ==
1761 SYSTEM_VALUE_BARYCENTRIC_PERSP_SAMPLE);
1762 STATIC_ASSERT(SYSTEM_VALUE_BARYCENTRIC_PERSP_PIXEL + IJ_PERSP_CENTROID ==
1763 SYSTEM_VALUE_BARYCENTRIC_PERSP_CENTROID);
1764 STATIC_ASSERT(SYSTEM_VALUE_BARYCENTRIC_PERSP_PIXEL + IJ_PERSP_CENTER_RHW ==
1765 SYSTEM_VALUE_BARYCENTRIC_PERSP_CENTER_RHW);
1766 STATIC_ASSERT(SYSTEM_VALUE_BARYCENTRIC_PERSP_PIXEL + IJ_LINEAR_PIXEL ==
1767 SYSTEM_VALUE_BARYCENTRIC_LINEAR_PIXEL);
1768 STATIC_ASSERT(SYSTEM_VALUE_BARYCENTRIC_PERSP_PIXEL + IJ_LINEAR_CENTROID ==
1769 SYSTEM_VALUE_BARYCENTRIC_LINEAR_CENTROID);
1770 STATIC_ASSERT(SYSTEM_VALUE_BARYCENTRIC_PERSP_PIXEL + IJ_LINEAR_SAMPLE ==
1771 SYSTEM_VALUE_BARYCENTRIC_LINEAR_SAMPLE);
1772
1773 if (!ctx->ij[bary]) {
1774 struct ir3_instruction *xy[2];
1775 struct ir3_instruction *ij;
1776
1777 ij = create_sysval_input(ctx, SYSTEM_VALUE_BARYCENTRIC_PERSP_PIXEL +
1778 bary, 0x3);
1779 ir3_split_dest(ctx->in_block, xy, ij, 0, 2);
1780
1781 ctx->ij[bary] = ir3_create_collect(ctx->in_block, xy, 2);
1782 }
1783
1784 return ctx->ij[bary];
1785 }
1786
1787 /* TODO: make this a common NIR helper?
1788 * there is a nir_system_value_from_intrinsic but it takes nir_intrinsic_op so
1789 * it can't be extended to work with this
1790 */
1791 static gl_system_value
nir_intrinsic_barycentric_sysval(nir_intrinsic_instr * intr)1792 nir_intrinsic_barycentric_sysval(nir_intrinsic_instr *intr)
1793 {
1794 enum glsl_interp_mode interp_mode = nir_intrinsic_interp_mode(intr);
1795 gl_system_value sysval;
1796
1797 switch (intr->intrinsic) {
1798 case nir_intrinsic_load_barycentric_pixel:
1799 if (interp_mode == INTERP_MODE_NOPERSPECTIVE)
1800 sysval = SYSTEM_VALUE_BARYCENTRIC_LINEAR_PIXEL;
1801 else
1802 sysval = SYSTEM_VALUE_BARYCENTRIC_PERSP_PIXEL;
1803 break;
1804 case nir_intrinsic_load_barycentric_centroid:
1805 if (interp_mode == INTERP_MODE_NOPERSPECTIVE)
1806 sysval = SYSTEM_VALUE_BARYCENTRIC_LINEAR_CENTROID;
1807 else
1808 sysval = SYSTEM_VALUE_BARYCENTRIC_PERSP_CENTROID;
1809 break;
1810 case nir_intrinsic_load_barycentric_sample:
1811 if (interp_mode == INTERP_MODE_NOPERSPECTIVE)
1812 sysval = SYSTEM_VALUE_BARYCENTRIC_LINEAR_SAMPLE;
1813 else
1814 sysval = SYSTEM_VALUE_BARYCENTRIC_PERSP_SAMPLE;
1815 break;
1816 default:
1817 unreachable("invalid barycentric intrinsic");
1818 }
1819
1820 return sysval;
1821 }
1822
1823 static void
emit_intrinsic_barycentric(struct ir3_context * ctx,nir_intrinsic_instr * intr,struct ir3_instruction ** dst)1824 emit_intrinsic_barycentric(struct ir3_context *ctx, nir_intrinsic_instr *intr,
1825 struct ir3_instruction **dst)
1826 {
1827 gl_system_value sysval = nir_intrinsic_barycentric_sysval(intr);
1828
1829 if (!ctx->so->key.msaa) {
1830 switch (sysval) {
1831 case SYSTEM_VALUE_BARYCENTRIC_PERSP_SAMPLE:
1832 sysval = SYSTEM_VALUE_BARYCENTRIC_PERSP_PIXEL;
1833 break;
1834 case SYSTEM_VALUE_BARYCENTRIC_PERSP_CENTROID:
1835 if (ctx->compiler->gen < 6)
1836 sysval = SYSTEM_VALUE_BARYCENTRIC_PERSP_PIXEL;
1837 break;
1838 case SYSTEM_VALUE_BARYCENTRIC_LINEAR_SAMPLE:
1839 sysval = SYSTEM_VALUE_BARYCENTRIC_LINEAR_PIXEL;
1840 break;
1841 case SYSTEM_VALUE_BARYCENTRIC_LINEAR_CENTROID:
1842 if (ctx->compiler->gen < 6)
1843 sysval = SYSTEM_VALUE_BARYCENTRIC_LINEAR_PIXEL;
1844 break;
1845 default:
1846 break;
1847 }
1848 }
1849
1850 enum ir3_bary bary = sysval - SYSTEM_VALUE_BARYCENTRIC_PERSP_PIXEL;
1851
1852 struct ir3_instruction *ij = get_barycentric(ctx, bary);
1853 ir3_split_dest(ctx->block, dst, ij, 0, 2);
1854 }
1855
1856 static struct ir3_instruction *
get_frag_coord(struct ir3_context * ctx,nir_intrinsic_instr * intr)1857 get_frag_coord(struct ir3_context *ctx, nir_intrinsic_instr *intr)
1858 {
1859 if (!ctx->frag_coord) {
1860 struct ir3_block *b = ir3_after_preamble(ctx->ir);
1861 struct ir3_instruction *xyzw[4];
1862 struct ir3_instruction *hw_frag_coord;
1863
1864 hw_frag_coord = create_sysval_input(ctx, SYSTEM_VALUE_FRAG_COORD, 0xf);
1865 ir3_split_dest(b, xyzw, hw_frag_coord, 0, 4);
1866
1867 /* for frag_coord.xy, we get unsigned values.. we need
1868 * to subtract (integer) 8 and divide by 16 (right-
1869 * shift by 4) then convert to float:
1870 *
1871 * sub.s tmp, src, 8
1872 * shr.b tmp, tmp, 4
1873 * mov.u32f32 dst, tmp
1874 *
1875 */
1876 for (int i = 0; i < 2; i++) {
1877 xyzw[i] = ir3_COV(b, xyzw[i], TYPE_U32, TYPE_F32);
1878 xyzw[i] =
1879 ir3_MUL_F(b, xyzw[i], 0, create_immed(b, fui(1.0 / 16.0)), 0);
1880 }
1881
1882 ctx->frag_coord = ir3_create_collect(b, xyzw, 4);
1883 }
1884
1885 ctx->so->fragcoord_compmask |= nir_ssa_def_components_read(&intr->dest.ssa);
1886
1887 return ctx->frag_coord;
1888 }
1889
1890 /* This is a bit of a hack until ir3_context is converted to store SSA values
1891 * as ir3_register's instead of ir3_instruction's. Pick out a given destination
1892 * of an instruction with multiple destinations using a mov that will get folded
1893 * away by ir3_cp.
1894 */
1895 static struct ir3_instruction *
create_multidst_mov(struct ir3_block * block,struct ir3_register * dst)1896 create_multidst_mov(struct ir3_block *block, struct ir3_register *dst)
1897 {
1898 struct ir3_instruction *mov = ir3_instr_create(block, OPC_MOV, 1, 1);
1899 unsigned dst_flags = dst->flags & IR3_REG_HALF;
1900 unsigned src_flags = dst->flags & (IR3_REG_HALF | IR3_REG_SHARED);
1901
1902 __ssa_dst(mov)->flags |= dst_flags;
1903 struct ir3_register *src =
1904 ir3_src_create(mov, INVALID_REG, IR3_REG_SSA | src_flags);
1905 src->wrmask = dst->wrmask;
1906 src->def = dst;
1907 assert(!(dst->flags & IR3_REG_RELATIV));
1908 mov->cat1.src_type = mov->cat1.dst_type =
1909 (dst->flags & IR3_REG_HALF) ? TYPE_U16 : TYPE_U32;
1910 return mov;
1911 }
1912
1913 static reduce_op_t
get_reduce_op(nir_op opc)1914 get_reduce_op(nir_op opc)
1915 {
1916 switch (opc) {
1917 case nir_op_iadd: return REDUCE_OP_ADD_U;
1918 case nir_op_fadd: return REDUCE_OP_ADD_F;
1919 case nir_op_imul: return REDUCE_OP_MUL_U;
1920 case nir_op_fmul: return REDUCE_OP_MUL_F;
1921 case nir_op_umin: return REDUCE_OP_MIN_U;
1922 case nir_op_imin: return REDUCE_OP_MIN_S;
1923 case nir_op_fmin: return REDUCE_OP_MIN_F;
1924 case nir_op_umax: return REDUCE_OP_MAX_U;
1925 case nir_op_imax: return REDUCE_OP_MAX_S;
1926 case nir_op_fmax: return REDUCE_OP_MAX_F;
1927 case nir_op_iand: return REDUCE_OP_AND_B;
1928 case nir_op_ior: return REDUCE_OP_OR_B;
1929 case nir_op_ixor: return REDUCE_OP_XOR_B;
1930 default:
1931 unreachable("unknown NIR reduce op");
1932 }
1933 }
1934
1935 static uint32_t
get_reduce_identity(nir_op opc,unsigned size)1936 get_reduce_identity(nir_op opc, unsigned size)
1937 {
1938 switch (opc) {
1939 case nir_op_iadd:
1940 return 0;
1941 case nir_op_fadd:
1942 return size == 32 ? fui(0.0f) : _mesa_float_to_half(0.0f);
1943 case nir_op_imul:
1944 return 1;
1945 case nir_op_fmul:
1946 return size == 32 ? fui(1.0f) : _mesa_float_to_half(1.0f);
1947 case nir_op_umax:
1948 return 0;
1949 case nir_op_imax:
1950 return size == 32 ? INT32_MIN : (uint32_t)INT16_MIN;
1951 case nir_op_fmax:
1952 return size == 32 ? fui(-INFINITY) : _mesa_float_to_half(-INFINITY);
1953 case nir_op_umin:
1954 return size == 32 ? UINT32_MAX : UINT16_MAX;
1955 case nir_op_imin:
1956 return size == 32 ? INT32_MAX : (uint32_t)INT16_MAX;
1957 case nir_op_fmin:
1958 return size == 32 ? fui(INFINITY) : _mesa_float_to_half(INFINITY);
1959 case nir_op_iand:
1960 return size == 32 ? ~0 : (size == 16 ? (uint32_t)(uint16_t)~0 : 1);
1961 case nir_op_ior:
1962 return 0;
1963 case nir_op_ixor:
1964 return 0;
1965 default:
1966 unreachable("unknown NIR reduce op");
1967 }
1968 }
1969
1970 static struct ir3_instruction *
emit_intrinsic_reduce(struct ir3_context * ctx,nir_intrinsic_instr * intr)1971 emit_intrinsic_reduce(struct ir3_context *ctx, nir_intrinsic_instr *intr)
1972 {
1973 struct ir3_instruction *src = ir3_get_src(ctx, &intr->src[0])[0];
1974 nir_op nir_reduce_op = (nir_op) nir_intrinsic_reduction_op(intr);
1975 reduce_op_t reduce_op = get_reduce_op(nir_reduce_op);
1976 unsigned dst_size = nir_dest_bit_size(intr->dest);
1977 unsigned flags = (ir3_bitsize(ctx, dst_size) == 16) ? IR3_REG_HALF : 0;
1978
1979 /* Note: the shared reg is initialized to the identity, so we need it to
1980 * always be 32-bit even when the source isn't because half shared regs are
1981 * not supported.
1982 */
1983 struct ir3_instruction *identity =
1984 create_immed(ctx->block, get_reduce_identity(nir_reduce_op, dst_size));
1985 identity = ir3_READ_FIRST_MACRO(ctx->block, identity, 0);
1986 identity->dsts[0]->flags |= IR3_REG_SHARED;
1987
1988 /* OPC_SCAN_MACRO has the following destinations:
1989 * - Exclusive scan result (interferes with source)
1990 * - Inclusive scan result
1991 * - Shared reg reduction result, must be initialized to the identity
1992 *
1993 * The loop computes all three results at the same time, we just have to
1994 * choose which destination to return.
1995 */
1996 struct ir3_instruction *scan =
1997 ir3_instr_create(ctx->block, OPC_SCAN_MACRO, 3, 2);
1998 scan->cat1.reduce_op = reduce_op;
1999
2000 struct ir3_register *exclusive = __ssa_dst(scan);
2001 exclusive->flags |= flags | IR3_REG_EARLY_CLOBBER;
2002 struct ir3_register *inclusive = __ssa_dst(scan);
2003 inclusive->flags |= flags;
2004 struct ir3_register *reduce = __ssa_dst(scan);
2005 reduce->flags |= IR3_REG_SHARED;
2006
2007 /* The 32-bit multiply macro reads its sources after writing a partial result
2008 * to the destination, therefore inclusive also interferes with the source.
2009 */
2010 if (reduce_op == REDUCE_OP_MUL_U && dst_size == 32)
2011 inclusive->flags |= IR3_REG_EARLY_CLOBBER;
2012
2013 /* Normal source */
2014 __ssa_src(scan, src, 0);
2015
2016 /* shared reg tied source */
2017 struct ir3_register *reduce_init = __ssa_src(scan, identity, IR3_REG_SHARED);
2018 ir3_reg_tie(reduce, reduce_init);
2019
2020 struct ir3_register *dst;
2021 switch (intr->intrinsic) {
2022 case nir_intrinsic_reduce: dst = reduce; break;
2023 case nir_intrinsic_inclusive_scan: dst = inclusive; break;
2024 case nir_intrinsic_exclusive_scan: dst = exclusive; break;
2025 default:
2026 unreachable("unknown reduce intrinsic");
2027 }
2028
2029 return create_multidst_mov(ctx->block, dst);
2030 }
2031
2032 static void setup_input(struct ir3_context *ctx, nir_intrinsic_instr *intr);
2033 static void setup_output(struct ir3_context *ctx, nir_intrinsic_instr *intr);
2034
2035 static void
emit_intrinsic(struct ir3_context * ctx,nir_intrinsic_instr * intr)2036 emit_intrinsic(struct ir3_context *ctx, nir_intrinsic_instr *intr)
2037 {
2038 const nir_intrinsic_info *info = &nir_intrinsic_infos[intr->intrinsic];
2039 struct ir3_instruction **dst;
2040 struct ir3_instruction *const *src;
2041 struct ir3_block *b = ctx->block;
2042 unsigned dest_components = nir_intrinsic_dest_components(intr);
2043 int idx;
2044
2045 if (info->has_dest) {
2046 dst = ir3_get_dst(ctx, &intr->dest, dest_components);
2047 } else {
2048 dst = NULL;
2049 }
2050
2051 const struct ir3_const_state *const_state = ir3_const_state(ctx->so);
2052 const unsigned primitive_param = const_state->offsets.primitive_param * 4;
2053 const unsigned primitive_map = const_state->offsets.primitive_map * 4;
2054
2055 switch (intr->intrinsic) {
2056 case nir_intrinsic_load_uniform:
2057 idx = nir_intrinsic_base(intr);
2058 if (nir_src_is_const(intr->src[0])) {
2059 idx += nir_src_as_uint(intr->src[0]);
2060 for (int i = 0; i < dest_components; i++) {
2061 dst[i] = create_uniform_typed(
2062 b, idx + i,
2063 nir_dest_bit_size(intr->dest) == 16 ? TYPE_F16 : TYPE_F32);
2064 }
2065 } else {
2066 src = ir3_get_src(ctx, &intr->src[0]);
2067 for (int i = 0; i < dest_components; i++) {
2068 dst[i] = create_uniform_indirect(
2069 b, idx + i,
2070 nir_dest_bit_size(intr->dest) == 16 ? TYPE_F16 : TYPE_F32,
2071 ir3_get_addr0(ctx, src[0], 1));
2072 }
2073 /* NOTE: if relative addressing is used, we set
2074 * constlen in the compiler (to worst-case value)
2075 * since we don't know in the assembler what the max
2076 * addr reg value can be:
2077 */
2078 ctx->so->constlen =
2079 MAX2(ctx->so->constlen,
2080 ctx->so->num_reserved_user_consts +
2081 const_state->ubo_state.size / 16);
2082 }
2083 break;
2084
2085 case nir_intrinsic_load_vs_primitive_stride_ir3:
2086 dst[0] = create_uniform(b, primitive_param + 0);
2087 break;
2088 case nir_intrinsic_load_vs_vertex_stride_ir3:
2089 dst[0] = create_uniform(b, primitive_param + 1);
2090 break;
2091 case nir_intrinsic_load_hs_patch_stride_ir3:
2092 dst[0] = create_uniform(b, primitive_param + 2);
2093 break;
2094 case nir_intrinsic_load_patch_vertices_in:
2095 dst[0] = create_uniform(b, primitive_param + 3);
2096 break;
2097 case nir_intrinsic_load_tess_param_base_ir3:
2098 dst[0] = create_uniform(b, primitive_param + 4);
2099 dst[1] = create_uniform(b, primitive_param + 5);
2100 break;
2101 case nir_intrinsic_load_tess_factor_base_ir3:
2102 dst[0] = create_uniform(b, primitive_param + 6);
2103 dst[1] = create_uniform(b, primitive_param + 7);
2104 break;
2105
2106 case nir_intrinsic_load_primitive_location_ir3:
2107 idx = nir_intrinsic_driver_location(intr);
2108 dst[0] = create_uniform(b, primitive_map + idx);
2109 break;
2110
2111 case nir_intrinsic_load_gs_header_ir3:
2112 dst[0] = ctx->gs_header;
2113 break;
2114 case nir_intrinsic_load_tcs_header_ir3:
2115 dst[0] = ctx->tcs_header;
2116 break;
2117
2118 case nir_intrinsic_load_rel_patch_id_ir3:
2119 dst[0] = ctx->rel_patch_id;
2120 break;
2121
2122 case nir_intrinsic_load_primitive_id:
2123 if (!ctx->primitive_id) {
2124 ctx->primitive_id =
2125 create_sysval_input(ctx, SYSTEM_VALUE_PRIMITIVE_ID, 0x1);
2126 }
2127 dst[0] = ctx->primitive_id;
2128 break;
2129
2130 case nir_intrinsic_load_tess_coord:
2131 if (!ctx->tess_coord) {
2132 ctx->tess_coord =
2133 create_sysval_input(ctx, SYSTEM_VALUE_TESS_COORD, 0x3);
2134 }
2135 ir3_split_dest(b, dst, ctx->tess_coord, 0, 2);
2136
2137 /* Unused, but ir3_put_dst() below wants to free something */
2138 dst[2] = create_immed(b, 0);
2139 break;
2140
2141 case nir_intrinsic_end_patch_ir3:
2142 assert(ctx->so->type == MESA_SHADER_TESS_CTRL);
2143 struct ir3_instruction *end = ir3_PREDE(b);
2144 array_insert(b, b->keeps, end);
2145
2146 end->barrier_class = IR3_BARRIER_EVERYTHING;
2147 end->barrier_conflict = IR3_BARRIER_EVERYTHING;
2148 break;
2149
2150 case nir_intrinsic_store_global_ir3:
2151 ctx->funcs->emit_intrinsic_store_global_ir3(ctx, intr);
2152 break;
2153 case nir_intrinsic_load_global_ir3:
2154 ctx->funcs->emit_intrinsic_load_global_ir3(ctx, intr, dst);
2155 break;
2156
2157 case nir_intrinsic_load_ubo:
2158 emit_intrinsic_load_ubo(ctx, intr, dst);
2159 break;
2160 case nir_intrinsic_load_ubo_vec4:
2161 emit_intrinsic_load_ubo_ldc(ctx, intr, dst);
2162 break;
2163 case nir_intrinsic_copy_ubo_to_uniform_ir3:
2164 emit_intrinsic_copy_ubo_to_uniform(ctx, intr);
2165 break;
2166 case nir_intrinsic_load_frag_coord:
2167 ir3_split_dest(b, dst, get_frag_coord(ctx, intr), 0, 4);
2168 break;
2169 case nir_intrinsic_load_sample_pos_from_id: {
2170 /* NOTE: blob seems to always use TYPE_F16 and then cov.f16f32,
2171 * but that doesn't seem necessary.
2172 */
2173 struct ir3_instruction *offset =
2174 ir3_RGETPOS(b, ir3_get_src(ctx, &intr->src[0])[0], 0);
2175 offset->dsts[0]->wrmask = 0x3;
2176 offset->cat5.type = TYPE_F32;
2177
2178 ir3_split_dest(b, dst, offset, 0, 2);
2179
2180 break;
2181 }
2182 case nir_intrinsic_load_persp_center_rhw_ir3:
2183 if (!ctx->ij[IJ_PERSP_CENTER_RHW]) {
2184 ctx->ij[IJ_PERSP_CENTER_RHW] =
2185 create_sysval_input(ctx, SYSTEM_VALUE_BARYCENTRIC_PERSP_CENTER_RHW, 0x1);
2186 }
2187 dst[0] = ctx->ij[IJ_PERSP_CENTER_RHW];
2188 break;
2189 case nir_intrinsic_load_barycentric_centroid:
2190 case nir_intrinsic_load_barycentric_sample:
2191 case nir_intrinsic_load_barycentric_pixel:
2192 emit_intrinsic_barycentric(ctx, intr, dst);
2193 break;
2194 case nir_intrinsic_load_interpolated_input:
2195 case nir_intrinsic_load_input:
2196 setup_input(ctx, intr);
2197 break;
2198 case nir_intrinsic_load_kernel_input:
2199 emit_intrinsic_load_kernel_input(ctx, intr, dst);
2200 break;
2201 /* All SSBO intrinsics should have been lowered by 'lower_io_offsets'
2202 * pass and replaced by an ir3-specifc version that adds the
2203 * dword-offset in the last source.
2204 */
2205 case nir_intrinsic_load_ssbo_ir3:
2206 emit_intrinsic_load_ssbo(ctx, intr, dst);
2207 break;
2208 case nir_intrinsic_store_ssbo_ir3:
2209 ctx->funcs->emit_intrinsic_store_ssbo(ctx, intr);
2210 break;
2211 case nir_intrinsic_get_ssbo_size:
2212 emit_intrinsic_ssbo_size(ctx, intr, dst);
2213 break;
2214 case nir_intrinsic_ssbo_atomic_add_ir3:
2215 case nir_intrinsic_ssbo_atomic_imin_ir3:
2216 case nir_intrinsic_ssbo_atomic_umin_ir3:
2217 case nir_intrinsic_ssbo_atomic_imax_ir3:
2218 case nir_intrinsic_ssbo_atomic_umax_ir3:
2219 case nir_intrinsic_ssbo_atomic_and_ir3:
2220 case nir_intrinsic_ssbo_atomic_or_ir3:
2221 case nir_intrinsic_ssbo_atomic_xor_ir3:
2222 case nir_intrinsic_ssbo_atomic_exchange_ir3:
2223 case nir_intrinsic_ssbo_atomic_comp_swap_ir3:
2224 dst[0] = ctx->funcs->emit_intrinsic_atomic_ssbo(ctx, intr);
2225 break;
2226 case nir_intrinsic_load_shared:
2227 emit_intrinsic_load_shared(ctx, intr, dst);
2228 break;
2229 case nir_intrinsic_store_shared:
2230 emit_intrinsic_store_shared(ctx, intr);
2231 break;
2232 case nir_intrinsic_shared_atomic_add:
2233 case nir_intrinsic_shared_atomic_imin:
2234 case nir_intrinsic_shared_atomic_umin:
2235 case nir_intrinsic_shared_atomic_imax:
2236 case nir_intrinsic_shared_atomic_umax:
2237 case nir_intrinsic_shared_atomic_and:
2238 case nir_intrinsic_shared_atomic_or:
2239 case nir_intrinsic_shared_atomic_xor:
2240 case nir_intrinsic_shared_atomic_exchange:
2241 case nir_intrinsic_shared_atomic_comp_swap:
2242 dst[0] = emit_intrinsic_atomic_shared(ctx, intr);
2243 break;
2244 case nir_intrinsic_load_scratch:
2245 emit_intrinsic_load_scratch(ctx, intr, dst);
2246 break;
2247 case nir_intrinsic_store_scratch:
2248 emit_intrinsic_store_scratch(ctx, intr);
2249 break;
2250 case nir_intrinsic_image_load:
2251 case nir_intrinsic_bindless_image_load:
2252 emit_intrinsic_load_image(ctx, intr, dst);
2253 break;
2254 case nir_intrinsic_image_store:
2255 case nir_intrinsic_bindless_image_store:
2256 ctx->funcs->emit_intrinsic_store_image(ctx, intr);
2257 break;
2258 case nir_intrinsic_image_size:
2259 case nir_intrinsic_bindless_image_size:
2260 ctx->funcs->emit_intrinsic_image_size(ctx, intr, dst);
2261 break;
2262 case nir_intrinsic_image_atomic_add:
2263 case nir_intrinsic_bindless_image_atomic_add:
2264 case nir_intrinsic_image_atomic_imin:
2265 case nir_intrinsic_bindless_image_atomic_imin:
2266 case nir_intrinsic_image_atomic_umin:
2267 case nir_intrinsic_bindless_image_atomic_umin:
2268 case nir_intrinsic_image_atomic_imax:
2269 case nir_intrinsic_bindless_image_atomic_imax:
2270 case nir_intrinsic_image_atomic_umax:
2271 case nir_intrinsic_bindless_image_atomic_umax:
2272 case nir_intrinsic_image_atomic_and:
2273 case nir_intrinsic_bindless_image_atomic_and:
2274 case nir_intrinsic_image_atomic_or:
2275 case nir_intrinsic_bindless_image_atomic_or:
2276 case nir_intrinsic_image_atomic_xor:
2277 case nir_intrinsic_bindless_image_atomic_xor:
2278 case nir_intrinsic_image_atomic_exchange:
2279 case nir_intrinsic_bindless_image_atomic_exchange:
2280 case nir_intrinsic_image_atomic_comp_swap:
2281 case nir_intrinsic_bindless_image_atomic_comp_swap:
2282 dst[0] = ctx->funcs->emit_intrinsic_atomic_image(ctx, intr);
2283 break;
2284 case nir_intrinsic_scoped_barrier:
2285 case nir_intrinsic_control_barrier:
2286 case nir_intrinsic_memory_barrier:
2287 case nir_intrinsic_group_memory_barrier:
2288 case nir_intrinsic_memory_barrier_buffer:
2289 case nir_intrinsic_memory_barrier_image:
2290 case nir_intrinsic_memory_barrier_shared:
2291 case nir_intrinsic_memory_barrier_tcs_patch:
2292 emit_intrinsic_barrier(ctx, intr);
2293 /* note that blk ptr no longer valid, make that obvious: */
2294 b = NULL;
2295 break;
2296 case nir_intrinsic_store_output:
2297 setup_output(ctx, intr);
2298 break;
2299 case nir_intrinsic_load_base_vertex:
2300 case nir_intrinsic_load_first_vertex:
2301 if (!ctx->basevertex) {
2302 ctx->basevertex = create_driver_param(ctx, IR3_DP_VTXID_BASE);
2303 }
2304 dst[0] = ctx->basevertex;
2305 break;
2306 case nir_intrinsic_load_draw_id:
2307 if (!ctx->draw_id) {
2308 ctx->draw_id = create_driver_param(ctx, IR3_DP_DRAWID);
2309 }
2310 dst[0] = ctx->draw_id;
2311 break;
2312 case nir_intrinsic_load_base_instance:
2313 if (!ctx->base_instance) {
2314 ctx->base_instance = create_driver_param(ctx, IR3_DP_INSTID_BASE);
2315 }
2316 dst[0] = ctx->base_instance;
2317 break;
2318 case nir_intrinsic_load_view_index:
2319 if (!ctx->view_index) {
2320 ctx->view_index =
2321 create_sysval_input(ctx, SYSTEM_VALUE_VIEW_INDEX, 0x1);
2322 }
2323 dst[0] = ctx->view_index;
2324 break;
2325 case nir_intrinsic_load_vertex_id_zero_base:
2326 case nir_intrinsic_load_vertex_id:
2327 if (!ctx->vertex_id) {
2328 gl_system_value sv = (intr->intrinsic == nir_intrinsic_load_vertex_id)
2329 ? SYSTEM_VALUE_VERTEX_ID
2330 : SYSTEM_VALUE_VERTEX_ID_ZERO_BASE;
2331 ctx->vertex_id = create_sysval_input(ctx, sv, 0x1);
2332 }
2333 dst[0] = ctx->vertex_id;
2334 break;
2335 case nir_intrinsic_load_instance_id:
2336 if (!ctx->instance_id) {
2337 ctx->instance_id =
2338 create_sysval_input(ctx, SYSTEM_VALUE_INSTANCE_ID, 0x1);
2339 }
2340 dst[0] = ctx->instance_id;
2341 break;
2342 case nir_intrinsic_load_sample_id:
2343 ctx->so->per_samp = true;
2344 FALLTHROUGH;
2345 case nir_intrinsic_load_sample_id_no_per_sample:
2346 if (!ctx->samp_id) {
2347 ctx->samp_id = create_sysval_input(ctx, SYSTEM_VALUE_SAMPLE_ID, 0x1);
2348 ctx->samp_id->dsts[0]->flags |= IR3_REG_HALF;
2349 }
2350 dst[0] = ir3_COV(b, ctx->samp_id, TYPE_U16, TYPE_U32);
2351 break;
2352 case nir_intrinsic_load_sample_mask_in:
2353 if (!ctx->samp_mask_in) {
2354 ctx->samp_mask_in =
2355 create_sysval_input(ctx, SYSTEM_VALUE_SAMPLE_MASK_IN, 0x1);
2356 }
2357 dst[0] = ctx->samp_mask_in;
2358 break;
2359 case nir_intrinsic_load_user_clip_plane:
2360 idx = nir_intrinsic_ucp_id(intr);
2361 for (int i = 0; i < dest_components; i++) {
2362 unsigned n = idx * 4 + i;
2363 dst[i] = create_driver_param(ctx, IR3_DP_UCP0_X + n);
2364 }
2365 break;
2366 case nir_intrinsic_load_front_face:
2367 if (!ctx->frag_face) {
2368 ctx->so->frag_face = true;
2369 ctx->frag_face =
2370 create_sysval_input(ctx, SYSTEM_VALUE_FRONT_FACE, 0x1);
2371 ctx->frag_face->dsts[0]->flags |= IR3_REG_HALF;
2372 }
2373 /* for fragface, we get -1 for back and 0 for front. However this is
2374 * the inverse of what nir expects (where ~0 is true).
2375 */
2376 dst[0] = ir3_CMPS_S(b, ctx->frag_face, 0,
2377 create_immed_typed(b, 0, TYPE_U16), 0);
2378 dst[0]->cat2.condition = IR3_COND_EQ;
2379 break;
2380 case nir_intrinsic_load_local_invocation_id:
2381 if (!ctx->local_invocation_id) {
2382 ctx->local_invocation_id =
2383 create_sysval_input(ctx, SYSTEM_VALUE_LOCAL_INVOCATION_ID, 0x7);
2384 }
2385 ir3_split_dest(b, dst, ctx->local_invocation_id, 0, 3);
2386 break;
2387 case nir_intrinsic_load_workgroup_id:
2388 case nir_intrinsic_load_workgroup_id_zero_base:
2389 if (ctx->compiler->has_shared_regfile) {
2390 if (!ctx->work_group_id) {
2391 ctx->work_group_id =
2392 create_sysval_input(ctx, SYSTEM_VALUE_WORKGROUP_ID, 0x7);
2393 ctx->work_group_id->dsts[0]->flags |= IR3_REG_SHARED;
2394 }
2395 ir3_split_dest(b, dst, ctx->work_group_id, 0, 3);
2396 } else {
2397 /* For a3xx/a4xx, this comes in via const injection by the hw */
2398 for (int i = 0; i < dest_components; i++) {
2399 dst[i] = create_driver_param(ctx, IR3_DP_WORKGROUP_ID_X + i);
2400 }
2401 }
2402 break;
2403 case nir_intrinsic_load_base_workgroup_id:
2404 for (int i = 0; i < dest_components; i++) {
2405 dst[i] = create_driver_param(ctx, IR3_DP_BASE_GROUP_X + i);
2406 }
2407 break;
2408 case nir_intrinsic_load_num_workgroups:
2409 for (int i = 0; i < dest_components; i++) {
2410 dst[i] = create_driver_param(ctx, IR3_DP_NUM_WORK_GROUPS_X + i);
2411 }
2412 break;
2413 case nir_intrinsic_load_workgroup_size:
2414 for (int i = 0; i < dest_components; i++) {
2415 dst[i] = create_driver_param(ctx, IR3_DP_LOCAL_GROUP_SIZE_X + i);
2416 }
2417 break;
2418 case nir_intrinsic_load_subgroup_size: {
2419 assert(ctx->so->type == MESA_SHADER_COMPUTE ||
2420 ctx->so->type == MESA_SHADER_FRAGMENT);
2421 enum ir3_driver_param size = ctx->so->type == MESA_SHADER_COMPUTE ?
2422 IR3_DP_CS_SUBGROUP_SIZE : IR3_DP_FS_SUBGROUP_SIZE;
2423 dst[0] = create_driver_param(ctx, size);
2424 break;
2425 }
2426 case nir_intrinsic_load_subgroup_id_shift_ir3:
2427 dst[0] = create_driver_param(ctx, IR3_DP_SUBGROUP_ID_SHIFT);
2428 break;
2429 case nir_intrinsic_load_work_dim:
2430 dst[0] = create_driver_param(ctx, IR3_DP_WORK_DIM);
2431 break;
2432 case nir_intrinsic_load_subgroup_invocation:
2433 assert(ctx->compiler->has_getfiberid);
2434 dst[0] = ir3_GETFIBERID(b);
2435 dst[0]->cat6.type = TYPE_U32;
2436 __ssa_dst(dst[0]);
2437 break;
2438 case nir_intrinsic_discard_if:
2439 case nir_intrinsic_discard:
2440 case nir_intrinsic_demote:
2441 case nir_intrinsic_demote_if:
2442 case nir_intrinsic_terminate:
2443 case nir_intrinsic_terminate_if: {
2444 struct ir3_instruction *cond, *kill;
2445
2446 if (intr->intrinsic == nir_intrinsic_discard_if ||
2447 intr->intrinsic == nir_intrinsic_demote_if ||
2448 intr->intrinsic == nir_intrinsic_terminate_if) {
2449 /* conditional discard: */
2450 src = ir3_get_src(ctx, &intr->src[0]);
2451 cond = src[0];
2452 } else {
2453 /* unconditional discard: */
2454 cond = create_immed_typed(b, 1, ctx->compiler->bool_type);
2455 }
2456
2457 /* NOTE: only cmps.*.* can write p0.x: */
2458 struct ir3_instruction *zero =
2459 create_immed_typed(b, 0, is_half(cond) ? TYPE_U16 : TYPE_U32);
2460 cond = ir3_CMPS_S(b, cond, 0, zero, 0);
2461 cond->cat2.condition = IR3_COND_NE;
2462
2463 /* condition always goes in predicate register: */
2464 cond->dsts[0]->num = regid(REG_P0, 0);
2465 cond->dsts[0]->flags &= ~IR3_REG_SSA;
2466
2467 if (intr->intrinsic == nir_intrinsic_demote ||
2468 intr->intrinsic == nir_intrinsic_demote_if) {
2469 kill = ir3_DEMOTE(b, cond, 0);
2470 } else {
2471 kill = ir3_KILL(b, cond, 0);
2472 }
2473
2474 /* - Side-effects should not be moved on a different side of the kill
2475 * - Instructions that depend on active fibers should not be reordered
2476 */
2477 kill->barrier_class = IR3_BARRIER_IMAGE_W | IR3_BARRIER_BUFFER_W |
2478 IR3_BARRIER_ACTIVE_FIBERS_W;
2479 kill->barrier_conflict = IR3_BARRIER_IMAGE_W | IR3_BARRIER_BUFFER_W |
2480 IR3_BARRIER_ACTIVE_FIBERS_R;
2481 kill->srcs[0]->num = regid(REG_P0, 0);
2482 array_insert(ctx->ir, ctx->ir->predicates, kill);
2483
2484 array_insert(b, b->keeps, kill);
2485 ctx->so->has_kill = true;
2486
2487 break;
2488 }
2489
2490 case nir_intrinsic_cond_end_ir3: {
2491 struct ir3_instruction *cond, *kill;
2492
2493 src = ir3_get_src(ctx, &intr->src[0]);
2494 cond = src[0];
2495
2496 /* NOTE: only cmps.*.* can write p0.x: */
2497 struct ir3_instruction *zero =
2498 create_immed_typed(b, 0, is_half(cond) ? TYPE_U16 : TYPE_U32);
2499 cond = ir3_CMPS_S(b, cond, 0, zero, 0);
2500 cond->cat2.condition = IR3_COND_NE;
2501
2502 /* condition always goes in predicate register: */
2503 cond->dsts[0]->num = regid(REG_P0, 0);
2504
2505 kill = ir3_PREDT(b, cond, 0);
2506
2507 kill->barrier_class = IR3_BARRIER_EVERYTHING;
2508 kill->barrier_conflict = IR3_BARRIER_EVERYTHING;
2509
2510 array_insert(ctx->ir, ctx->ir->predicates, kill);
2511 array_insert(b, b->keeps, kill);
2512 break;
2513 }
2514
2515 case nir_intrinsic_vote_any:
2516 case nir_intrinsic_vote_all: {
2517 struct ir3_instruction *src = ir3_get_src(ctx, &intr->src[0])[0];
2518 struct ir3_instruction *pred = ir3_get_predicate(ctx, src);
2519 if (intr->intrinsic == nir_intrinsic_vote_any)
2520 dst[0] = ir3_ANY_MACRO(ctx->block, pred, 0);
2521 else
2522 dst[0] = ir3_ALL_MACRO(ctx->block, pred, 0);
2523 dst[0]->srcs[0]->num = regid(REG_P0, 0);
2524 array_insert(ctx->ir, ctx->ir->predicates, dst[0]);
2525 break;
2526 }
2527 case nir_intrinsic_elect:
2528 dst[0] = ir3_ELECT_MACRO(ctx->block);
2529 /* This may expand to a divergent if/then, so allocate stack space for
2530 * it.
2531 */
2532 ctx->max_stack = MAX2(ctx->max_stack, ctx->stack + 1);
2533 break;
2534 case nir_intrinsic_preamble_start_ir3:
2535 dst[0] = ir3_SHPS_MACRO(ctx->block);
2536 ctx->max_stack = MAX2(ctx->max_stack, ctx->stack + 1);
2537 break;
2538
2539 case nir_intrinsic_read_invocation_cond_ir3: {
2540 struct ir3_instruction *src = ir3_get_src(ctx, &intr->src[0])[0];
2541 struct ir3_instruction *cond = ir3_get_src(ctx, &intr->src[1])[0];
2542 dst[0] = ir3_READ_COND_MACRO(ctx->block, ir3_get_predicate(ctx, cond), 0,
2543 src, 0);
2544 dst[0]->dsts[0]->flags |= IR3_REG_SHARED;
2545 dst[0]->srcs[0]->num = regid(REG_P0, 0);
2546 array_insert(ctx->ir, ctx->ir->predicates, dst[0]);
2547 ctx->max_stack = MAX2(ctx->max_stack, ctx->stack + 1);
2548 break;
2549 }
2550
2551 case nir_intrinsic_read_first_invocation: {
2552 struct ir3_instruction *src = ir3_get_src(ctx, &intr->src[0])[0];
2553 dst[0] = ir3_READ_FIRST_MACRO(ctx->block, src, 0);
2554 dst[0]->dsts[0]->flags |= IR3_REG_SHARED;
2555 ctx->max_stack = MAX2(ctx->max_stack, ctx->stack + 1);
2556 break;
2557 }
2558
2559 case nir_intrinsic_ballot: {
2560 struct ir3_instruction *ballot;
2561 unsigned components = intr->dest.ssa.num_components;
2562 if (nir_src_is_const(intr->src[0]) && nir_src_as_bool(intr->src[0])) {
2563 /* ballot(true) is just MOVMSK */
2564 ballot = ir3_MOVMSK(ctx->block, components);
2565 } else {
2566 struct ir3_instruction *src = ir3_get_src(ctx, &intr->src[0])[0];
2567 struct ir3_instruction *pred = ir3_get_predicate(ctx, src);
2568 ballot = ir3_BALLOT_MACRO(ctx->block, pred, components);
2569 ballot->srcs[0]->num = regid(REG_P0, 0);
2570 array_insert(ctx->ir, ctx->ir->predicates, ballot);
2571 ctx->max_stack = MAX2(ctx->max_stack, ctx->stack + 1);
2572 }
2573
2574 ballot->barrier_class = IR3_BARRIER_ACTIVE_FIBERS_R;
2575 ballot->barrier_conflict = IR3_BARRIER_ACTIVE_FIBERS_W;
2576
2577 ir3_split_dest(ctx->block, dst, ballot, 0, components);
2578 break;
2579 }
2580
2581 case nir_intrinsic_quad_broadcast: {
2582 struct ir3_instruction *src = ir3_get_src(ctx, &intr->src[0])[0];
2583 struct ir3_instruction *idx = ir3_get_src(ctx, &intr->src[1])[0];
2584
2585 type_t dst_type = type_uint_size(nir_dest_bit_size(intr->dest));
2586
2587 if (dst_type != TYPE_U32)
2588 idx = ir3_COV(ctx->block, idx, TYPE_U32, dst_type);
2589
2590 dst[0] = ir3_QUAD_SHUFFLE_BRCST(ctx->block, src, 0, idx, 0);
2591 dst[0]->cat5.type = dst_type;
2592 break;
2593 }
2594
2595 case nir_intrinsic_quad_swap_horizontal: {
2596 struct ir3_instruction *src = ir3_get_src(ctx, &intr->src[0])[0];
2597 dst[0] = ir3_QUAD_SHUFFLE_HORIZ(ctx->block, src, 0);
2598 dst[0]->cat5.type = type_uint_size(nir_dest_bit_size(intr->dest));
2599 break;
2600 }
2601
2602 case nir_intrinsic_quad_swap_vertical: {
2603 struct ir3_instruction *src = ir3_get_src(ctx, &intr->src[0])[0];
2604 dst[0] = ir3_QUAD_SHUFFLE_VERT(ctx->block, src, 0);
2605 dst[0]->cat5.type = type_uint_size(nir_dest_bit_size(intr->dest));
2606 break;
2607 }
2608
2609 case nir_intrinsic_quad_swap_diagonal: {
2610 struct ir3_instruction *src = ir3_get_src(ctx, &intr->src[0])[0];
2611 dst[0] = ir3_QUAD_SHUFFLE_DIAG(ctx->block, src, 0);
2612 dst[0]->cat5.type = type_uint_size(nir_dest_bit_size(intr->dest));
2613 break;
2614 }
2615
2616 case nir_intrinsic_load_shared_ir3:
2617 emit_intrinsic_load_shared_ir3(ctx, intr, dst);
2618 break;
2619 case nir_intrinsic_store_shared_ir3:
2620 emit_intrinsic_store_shared_ir3(ctx, intr);
2621 break;
2622 case nir_intrinsic_bindless_resource_ir3:
2623 dst[0] = ir3_get_src(ctx, &intr->src[0])[0];
2624 break;
2625 case nir_intrinsic_global_atomic_add_ir3:
2626 case nir_intrinsic_global_atomic_imin_ir3:
2627 case nir_intrinsic_global_atomic_umin_ir3:
2628 case nir_intrinsic_global_atomic_imax_ir3:
2629 case nir_intrinsic_global_atomic_umax_ir3:
2630 case nir_intrinsic_global_atomic_and_ir3:
2631 case nir_intrinsic_global_atomic_or_ir3:
2632 case nir_intrinsic_global_atomic_xor_ir3:
2633 case nir_intrinsic_global_atomic_exchange_ir3:
2634 case nir_intrinsic_global_atomic_comp_swap_ir3: {
2635 dst[0] = ctx->funcs->emit_intrinsic_atomic_global(ctx, intr);
2636 break;
2637 }
2638
2639 case nir_intrinsic_reduce:
2640 case nir_intrinsic_inclusive_scan:
2641 case nir_intrinsic_exclusive_scan:
2642 dst[0] = emit_intrinsic_reduce(ctx, intr);
2643 break;
2644
2645 case nir_intrinsic_preamble_end_ir3: {
2646 struct ir3_instruction *instr = ir3_SHPE(ctx->block);
2647 instr->barrier_class = instr->barrier_conflict = IR3_BARRIER_CONST_W;
2648 array_insert(b, b->keeps, instr);
2649 break;
2650 }
2651 case nir_intrinsic_store_uniform_ir3: {
2652 unsigned components = nir_src_num_components(intr->src[0]);
2653 unsigned dst = nir_intrinsic_base(intr);
2654 unsigned dst_lo = dst & 0xff;
2655 unsigned dst_hi = dst >> 8;
2656
2657 struct ir3_instruction *src =
2658 ir3_create_collect(b, ir3_get_src(ctx, &intr->src[0]), components);
2659 struct ir3_instruction *a1 = NULL;
2660 if (dst_hi) {
2661 /* Encode only the high part of the destination in a1.x to increase the
2662 * chance that we can reuse the a1.x value in subsequent stc
2663 * instructions.
2664 */
2665 a1 = ir3_get_addr1(ctx, dst_hi << 8);
2666 }
2667
2668 struct ir3_instruction *stc =
2669 ir3_STC(ctx->block, create_immed(b, dst_lo), 0, src, 0);
2670 stc->cat6.iim_val = components;
2671 stc->cat6.type = TYPE_U32;
2672 stc->barrier_conflict = IR3_BARRIER_CONST_W;
2673 if (a1) {
2674 ir3_instr_set_address(stc, a1);
2675 stc->flags |= IR3_INSTR_A1EN;
2676 }
2677 array_insert(b, b->keeps, stc);
2678 break;
2679 }
2680 default:
2681 ir3_context_error(ctx, "Unhandled intrinsic type: %s\n",
2682 nir_intrinsic_infos[intr->intrinsic].name);
2683 break;
2684 }
2685
2686 if (info->has_dest)
2687 ir3_put_dst(ctx, &intr->dest);
2688 }
2689
2690 static void
emit_load_const(struct ir3_context * ctx,nir_load_const_instr * instr)2691 emit_load_const(struct ir3_context *ctx, nir_load_const_instr *instr)
2692 {
2693 struct ir3_instruction **dst =
2694 ir3_get_dst_ssa(ctx, &instr->def, instr->def.num_components);
2695 unsigned bit_size = ir3_bitsize(ctx, instr->def.bit_size);
2696
2697 if (bit_size <= 8) {
2698 for (int i = 0; i < instr->def.num_components; i++)
2699 dst[i] = create_immed_typed(ctx->block, instr->value[i].u8, TYPE_U8);
2700 } else if (bit_size <= 16) {
2701 for (int i = 0; i < instr->def.num_components; i++)
2702 dst[i] = create_immed_typed(ctx->block, instr->value[i].u16, TYPE_U16);
2703 } else {
2704 for (int i = 0; i < instr->def.num_components; i++)
2705 dst[i] = create_immed_typed(ctx->block, instr->value[i].u32, TYPE_U32);
2706 }
2707 }
2708
2709 static void
emit_undef(struct ir3_context * ctx,nir_ssa_undef_instr * undef)2710 emit_undef(struct ir3_context *ctx, nir_ssa_undef_instr *undef)
2711 {
2712 struct ir3_instruction **dst =
2713 ir3_get_dst_ssa(ctx, &undef->def, undef->def.num_components);
2714 type_t type = utype_for_size(ir3_bitsize(ctx, undef->def.bit_size));
2715
2716 /* backend doesn't want undefined instructions, so just plug
2717 * in 0.0..
2718 */
2719 for (int i = 0; i < undef->def.num_components; i++)
2720 dst[i] = create_immed_typed(ctx->block, fui(0.0), type);
2721 }
2722
2723 /*
2724 * texture fetch/sample instructions:
2725 */
2726
2727 static type_t
get_tex_dest_type(nir_tex_instr * tex)2728 get_tex_dest_type(nir_tex_instr *tex)
2729 {
2730 type_t type;
2731
2732 switch (tex->dest_type) {
2733 case nir_type_float32:
2734 return TYPE_F32;
2735 case nir_type_float16:
2736 return TYPE_F16;
2737 case nir_type_int32:
2738 return TYPE_S32;
2739 case nir_type_int16:
2740 return TYPE_S16;
2741 case nir_type_bool32:
2742 case nir_type_uint32:
2743 return TYPE_U32;
2744 case nir_type_bool16:
2745 case nir_type_uint16:
2746 return TYPE_U16;
2747 case nir_type_invalid:
2748 default:
2749 unreachable("bad dest_type");
2750 }
2751
2752 return type;
2753 }
2754
2755 static void
tex_info(nir_tex_instr * tex,unsigned * flagsp,unsigned * coordsp)2756 tex_info(nir_tex_instr *tex, unsigned *flagsp, unsigned *coordsp)
2757 {
2758 unsigned coords =
2759 glsl_get_sampler_dim_coordinate_components(tex->sampler_dim);
2760 unsigned flags = 0;
2761
2762 /* note: would use tex->coord_components.. except txs.. also,
2763 * since array index goes after shadow ref, we don't want to
2764 * count it:
2765 */
2766 if (coords == 3)
2767 flags |= IR3_INSTR_3D;
2768
2769 if (tex->is_shadow && tex->op != nir_texop_lod)
2770 flags |= IR3_INSTR_S;
2771
2772 if (tex->is_array && tex->op != nir_texop_lod)
2773 flags |= IR3_INSTR_A;
2774
2775 *flagsp = flags;
2776 *coordsp = coords;
2777 }
2778
2779 /* Gets the sampler/texture idx as a hvec2. Which could either be dynamic
2780 * or immediate (in which case it will get lowered later to a non .s2en
2781 * version of the tex instruction which encode tex/samp as immediates:
2782 */
2783 static struct tex_src_info
get_tex_samp_tex_src(struct ir3_context * ctx,nir_tex_instr * tex)2784 get_tex_samp_tex_src(struct ir3_context *ctx, nir_tex_instr *tex)
2785 {
2786 struct ir3_block *b = ctx->block;
2787 struct tex_src_info info = {0};
2788 int texture_idx = nir_tex_instr_src_index(tex, nir_tex_src_texture_handle);
2789 int sampler_idx = nir_tex_instr_src_index(tex, nir_tex_src_sampler_handle);
2790 struct ir3_instruction *texture, *sampler;
2791
2792 if (texture_idx >= 0 || sampler_idx >= 0) {
2793 /* Bindless case */
2794 info.flags |= IR3_INSTR_B;
2795
2796 if (tex->texture_non_uniform || tex->sampler_non_uniform)
2797 info.flags |= IR3_INSTR_NONUNIF;
2798
2799 /* Gather information required to determine which encoding to
2800 * choose as well as for prefetch.
2801 */
2802 nir_intrinsic_instr *bindless_tex = NULL;
2803 bool tex_const;
2804 if (texture_idx >= 0) {
2805 ctx->so->bindless_tex = true;
2806 bindless_tex = ir3_bindless_resource(tex->src[texture_idx].src);
2807 assert(bindless_tex);
2808 info.tex_base = nir_intrinsic_desc_set(bindless_tex);
2809 tex_const = nir_src_is_const(bindless_tex->src[0]);
2810 if (tex_const)
2811 info.tex_idx = nir_src_as_uint(bindless_tex->src[0]);
2812 } else {
2813 /* To simplify some of the logic below, assume the index is
2814 * constant 0 when it's not enabled.
2815 */
2816 tex_const = true;
2817 info.tex_idx = 0;
2818 }
2819 nir_intrinsic_instr *bindless_samp = NULL;
2820 bool samp_const;
2821 if (sampler_idx >= 0) {
2822 ctx->so->bindless_samp = true;
2823 bindless_samp = ir3_bindless_resource(tex->src[sampler_idx].src);
2824 assert(bindless_samp);
2825 info.samp_base = nir_intrinsic_desc_set(bindless_samp);
2826 samp_const = nir_src_is_const(bindless_samp->src[0]);
2827 if (samp_const)
2828 info.samp_idx = nir_src_as_uint(bindless_samp->src[0]);
2829 } else {
2830 samp_const = true;
2831 info.samp_idx = 0;
2832 }
2833
2834 /* Choose encoding. */
2835 if (tex_const && samp_const && info.tex_idx < 256 &&
2836 info.samp_idx < 256) {
2837 if (info.tex_idx < 16 && info.samp_idx < 16 &&
2838 (!bindless_tex || !bindless_samp ||
2839 info.tex_base == info.samp_base)) {
2840 /* Everything fits within the instruction */
2841 info.base = info.tex_base;
2842 } else {
2843 info.base = info.tex_base;
2844 info.a1_val = info.tex_idx << 3 | info.samp_base;
2845 info.flags |= IR3_INSTR_A1EN;
2846 }
2847 info.samp_tex = NULL;
2848 } else {
2849 info.flags |= IR3_INSTR_S2EN;
2850 /* In the indirect case, we only use a1.x to store the sampler
2851 * base if it differs from the texture base.
2852 */
2853 if (!bindless_tex || !bindless_samp ||
2854 info.tex_base == info.samp_base) {
2855 info.base = info.tex_base;
2856 } else {
2857 info.base = info.tex_base;
2858 info.a1_val = info.samp_base;
2859 info.flags |= IR3_INSTR_A1EN;
2860 }
2861
2862 /* Note: the indirect source is now a vec2 instead of hvec2, and
2863 * for some reason the texture and sampler are swapped.
2864 */
2865 struct ir3_instruction *texture, *sampler;
2866
2867 if (bindless_tex) {
2868 texture = ir3_get_src(ctx, &tex->src[texture_idx].src)[0];
2869 } else {
2870 texture = create_immed(b, 0);
2871 }
2872
2873 if (bindless_samp) {
2874 sampler = ir3_get_src(ctx, &tex->src[sampler_idx].src)[0];
2875 } else {
2876 sampler = create_immed(b, 0);
2877 }
2878 info.samp_tex = ir3_collect(b, texture, sampler);
2879 }
2880 } else {
2881 info.flags |= IR3_INSTR_S2EN;
2882 texture_idx = nir_tex_instr_src_index(tex, nir_tex_src_texture_offset);
2883 sampler_idx = nir_tex_instr_src_index(tex, nir_tex_src_sampler_offset);
2884 if (texture_idx >= 0) {
2885 texture = ir3_get_src(ctx, &tex->src[texture_idx].src)[0];
2886 texture = ir3_COV(ctx->block, texture, TYPE_U32, TYPE_U16);
2887 } else {
2888 /* TODO what to do for dynamic case? I guess we only need the
2889 * max index for astc srgb workaround so maybe not a problem
2890 * to worry about if we don't enable indirect samplers for
2891 * a4xx?
2892 */
2893 ctx->max_texture_index =
2894 MAX2(ctx->max_texture_index, tex->texture_index);
2895 texture = create_immed_typed(ctx->block, tex->texture_index, TYPE_U16);
2896 info.tex_idx = tex->texture_index;
2897 }
2898
2899 if (sampler_idx >= 0) {
2900 sampler = ir3_get_src(ctx, &tex->src[sampler_idx].src)[0];
2901 sampler = ir3_COV(ctx->block, sampler, TYPE_U32, TYPE_U16);
2902 } else {
2903 sampler = create_immed_typed(ctx->block, tex->sampler_index, TYPE_U16);
2904 info.samp_idx = tex->texture_index;
2905 }
2906
2907 info.samp_tex = ir3_collect(b, sampler, texture);
2908 }
2909
2910 return info;
2911 }
2912
2913 static void
emit_tex(struct ir3_context * ctx,nir_tex_instr * tex)2914 emit_tex(struct ir3_context *ctx, nir_tex_instr *tex)
2915 {
2916 struct ir3_block *b = ctx->block;
2917 struct ir3_instruction **dst, *sam, *src0[12], *src1[4];
2918 struct ir3_instruction *const *coord, *const *off, *const *ddx, *const *ddy;
2919 struct ir3_instruction *lod, *compare, *proj, *sample_index;
2920 struct tex_src_info info = {0};
2921 bool has_bias = false, has_lod = false, has_proj = false, has_off = false;
2922 unsigned i, coords, flags, ncomp;
2923 unsigned nsrc0 = 0, nsrc1 = 0;
2924 type_t type;
2925 opc_t opc = 0;
2926
2927 ncomp = nir_dest_num_components(tex->dest);
2928
2929 coord = off = ddx = ddy = NULL;
2930 lod = proj = compare = sample_index = NULL;
2931
2932 dst = ir3_get_dst(ctx, &tex->dest, ncomp);
2933
2934 for (unsigned i = 0; i < tex->num_srcs; i++) {
2935 switch (tex->src[i].src_type) {
2936 case nir_tex_src_coord:
2937 coord = ir3_get_src(ctx, &tex->src[i].src);
2938 break;
2939 case nir_tex_src_bias:
2940 lod = ir3_get_src(ctx, &tex->src[i].src)[0];
2941 has_bias = true;
2942 break;
2943 case nir_tex_src_lod:
2944 lod = ir3_get_src(ctx, &tex->src[i].src)[0];
2945 has_lod = true;
2946 break;
2947 case nir_tex_src_comparator: /* shadow comparator */
2948 compare = ir3_get_src(ctx, &tex->src[i].src)[0];
2949 break;
2950 case nir_tex_src_projector:
2951 proj = ir3_get_src(ctx, &tex->src[i].src)[0];
2952 has_proj = true;
2953 break;
2954 case nir_tex_src_offset:
2955 off = ir3_get_src(ctx, &tex->src[i].src);
2956 has_off = true;
2957 break;
2958 case nir_tex_src_ddx:
2959 ddx = ir3_get_src(ctx, &tex->src[i].src);
2960 break;
2961 case nir_tex_src_ddy:
2962 ddy = ir3_get_src(ctx, &tex->src[i].src);
2963 break;
2964 case nir_tex_src_ms_index:
2965 sample_index = ir3_get_src(ctx, &tex->src[i].src)[0];
2966 break;
2967 case nir_tex_src_texture_offset:
2968 case nir_tex_src_sampler_offset:
2969 case nir_tex_src_texture_handle:
2970 case nir_tex_src_sampler_handle:
2971 /* handled in get_tex_samp_src() */
2972 break;
2973 default:
2974 ir3_context_error(ctx, "Unhandled NIR tex src type: %d\n",
2975 tex->src[i].src_type);
2976 return;
2977 }
2978 }
2979
2980 switch (tex->op) {
2981 case nir_texop_tex_prefetch:
2982 compile_assert(ctx, !has_bias);
2983 compile_assert(ctx, !has_lod);
2984 compile_assert(ctx, !compare);
2985 compile_assert(ctx, !has_proj);
2986 compile_assert(ctx, !has_off);
2987 compile_assert(ctx, !ddx);
2988 compile_assert(ctx, !ddy);
2989 compile_assert(ctx, !sample_index);
2990 compile_assert(
2991 ctx, nir_tex_instr_src_index(tex, nir_tex_src_texture_offset) < 0);
2992 compile_assert(
2993 ctx, nir_tex_instr_src_index(tex, nir_tex_src_sampler_offset) < 0);
2994
2995 if (ctx->so->num_sampler_prefetch < ctx->prefetch_limit) {
2996 opc = OPC_META_TEX_PREFETCH;
2997 ctx->so->num_sampler_prefetch++;
2998 break;
2999 }
3000 FALLTHROUGH;
3001 case nir_texop_tex:
3002 opc = has_lod ? OPC_SAML : OPC_SAM;
3003 break;
3004 case nir_texop_txb:
3005 opc = OPC_SAMB;
3006 break;
3007 case nir_texop_txl:
3008 opc = OPC_SAML;
3009 break;
3010 case nir_texop_txd:
3011 opc = OPC_SAMGQ;
3012 break;
3013 case nir_texop_txf:
3014 opc = OPC_ISAML;
3015 break;
3016 case nir_texop_lod:
3017 opc = OPC_GETLOD;
3018 break;
3019 case nir_texop_tg4:
3020 switch (tex->component) {
3021 case 0:
3022 opc = OPC_GATHER4R;
3023 break;
3024 case 1:
3025 opc = OPC_GATHER4G;
3026 break;
3027 case 2:
3028 opc = OPC_GATHER4B;
3029 break;
3030 case 3:
3031 opc = OPC_GATHER4A;
3032 break;
3033 }
3034 break;
3035 case nir_texop_txf_ms_fb:
3036 case nir_texop_txf_ms:
3037 opc = OPC_ISAMM;
3038 break;
3039 default:
3040 ir3_context_error(ctx, "Unhandled NIR tex type: %d\n", tex->op);
3041 return;
3042 }
3043
3044 tex_info(tex, &flags, &coords);
3045
3046 /*
3047 * lay out the first argument in the proper order:
3048 * - actual coordinates first
3049 * - shadow reference
3050 * - array index
3051 * - projection w
3052 * - starting at offset 4, dpdx.xy, dpdy.xy
3053 *
3054 * bias/lod go into the second arg
3055 */
3056
3057 /* insert tex coords: */
3058 for (i = 0; i < coords; i++)
3059 src0[i] = coord[i];
3060
3061 nsrc0 = i;
3062
3063 type_t coord_pad_type = is_half(coord[0]) ? TYPE_U16 : TYPE_U32;
3064 /* scale up integer coords for TXF based on the LOD */
3065 if (ctx->compiler->unminify_coords && (opc == OPC_ISAML)) {
3066 assert(has_lod);
3067 for (i = 0; i < coords; i++)
3068 src0[i] = ir3_SHL_B(b, src0[i], 0, lod, 0);
3069 }
3070
3071 if (coords == 1) {
3072 /* hw doesn't do 1d, so we treat it as 2d with
3073 * height of 1, and patch up the y coord.
3074 */
3075 if (is_isam(opc)) {
3076 src0[nsrc0++] = create_immed_typed(b, 0, coord_pad_type);
3077 } else if (is_half(coord[0])) {
3078 src0[nsrc0++] = create_immed_typed(b, _mesa_float_to_half(0.5), coord_pad_type);
3079 } else {
3080 src0[nsrc0++] = create_immed_typed(b, fui(0.5), coord_pad_type);
3081 }
3082 }
3083
3084 if (tex->is_shadow && tex->op != nir_texop_lod)
3085 src0[nsrc0++] = compare;
3086
3087 if (tex->is_array && tex->op != nir_texop_lod)
3088 src0[nsrc0++] = coord[coords];
3089
3090 if (has_proj) {
3091 src0[nsrc0++] = proj;
3092 flags |= IR3_INSTR_P;
3093 }
3094
3095 /* pad to 4, then ddx/ddy: */
3096 if (tex->op == nir_texop_txd) {
3097 while (nsrc0 < 4)
3098 src0[nsrc0++] = create_immed_typed(b, fui(0.0), coord_pad_type);
3099 for (i = 0; i < coords; i++)
3100 src0[nsrc0++] = ddx[i];
3101 if (coords < 2)
3102 src0[nsrc0++] = create_immed_typed(b, fui(0.0), coord_pad_type);
3103 for (i = 0; i < coords; i++)
3104 src0[nsrc0++] = ddy[i];
3105 if (coords < 2)
3106 src0[nsrc0++] = create_immed_typed(b, fui(0.0), coord_pad_type);
3107 }
3108
3109 /* NOTE a3xx (and possibly a4xx?) might be different, using isaml
3110 * with scaled x coord according to requested sample:
3111 */
3112 if (opc == OPC_ISAMM) {
3113 if (ctx->compiler->txf_ms_with_isaml) {
3114 /* the samples are laid out in x dimension as
3115 * 0 1 2 3
3116 * x_ms = (x << ms) + sample_index;
3117 */
3118 struct ir3_instruction *ms;
3119 ms = create_immed(b, (ctx->samples >> (2 * tex->texture_index)) & 3);
3120
3121 src0[0] = ir3_SHL_B(b, src0[0], 0, ms, 0);
3122 src0[0] = ir3_ADD_U(b, src0[0], 0, sample_index, 0);
3123
3124 opc = OPC_ISAML;
3125 } else {
3126 src0[nsrc0++] = sample_index;
3127 }
3128 }
3129
3130 /*
3131 * second argument (if applicable):
3132 * - offsets
3133 * - lod
3134 * - bias
3135 */
3136 if (has_off | has_lod | has_bias) {
3137 if (has_off) {
3138 unsigned off_coords = coords;
3139 if (tex->sampler_dim == GLSL_SAMPLER_DIM_CUBE)
3140 off_coords--;
3141 for (i = 0; i < off_coords; i++)
3142 src1[nsrc1++] = off[i];
3143 if (off_coords < 2)
3144 src1[nsrc1++] = create_immed_typed(b, fui(0.0), coord_pad_type);
3145 flags |= IR3_INSTR_O;
3146 }
3147
3148 if (has_lod | has_bias)
3149 src1[nsrc1++] = lod;
3150 }
3151
3152 type = get_tex_dest_type(tex);
3153
3154 if (opc == OPC_GETLOD)
3155 type = TYPE_S32;
3156
3157 if (tex->op == nir_texop_txf_ms_fb) {
3158 /* only expect a single txf_ms_fb per shader: */
3159 compile_assert(ctx, !ctx->so->fb_read);
3160 compile_assert(ctx, ctx->so->type == MESA_SHADER_FRAGMENT);
3161
3162 ctx->so->fb_read = true;
3163 info.samp_tex = ir3_collect(
3164 b, create_immed_typed(ctx->block, ctx->so->num_samp, TYPE_U16),
3165 create_immed_typed(ctx->block, ctx->so->num_samp, TYPE_U16));
3166 info.flags = IR3_INSTR_S2EN;
3167
3168 ctx->so->num_samp++;
3169 } else {
3170 info = get_tex_samp_tex_src(ctx, tex);
3171 }
3172
3173 bool tg4_swizzle_fixup = false;
3174 if (tex->op == nir_texop_tg4 && ctx->compiler->gen == 4 &&
3175 ctx->sampler_swizzles[tex->texture_index] != 0x688 /* rgba */) {
3176 uint16_t swizzles = ctx->sampler_swizzles[tex->texture_index];
3177 uint16_t swizzle = (swizzles >> (tex->component * 3)) & 7;
3178 if (swizzle > 3) {
3179 /* this would mean that we can just return 0 / 1, no texturing
3180 * necessary
3181 */
3182 struct ir3_instruction *imm = create_immed(b,
3183 type_float(type) ? fui(swizzle - 4) : (swizzle - 4));
3184 for (int i = 0; i < 4; i++)
3185 dst[i] = imm;
3186 ir3_put_dst(ctx, &tex->dest);
3187 return;
3188 }
3189 opc = OPC_GATHER4R + swizzle;
3190 tg4_swizzle_fixup = true;
3191 }
3192
3193 struct ir3_instruction *col0 = ir3_create_collect(b, src0, nsrc0);
3194 struct ir3_instruction *col1 = ir3_create_collect(b, src1, nsrc1);
3195
3196 if (opc == OPC_META_TEX_PREFETCH) {
3197 int idx = nir_tex_instr_src_index(tex, nir_tex_src_coord);
3198
3199 compile_assert(ctx, tex->src[idx].src.is_ssa);
3200
3201 sam = ir3_SAM(ctx->in_block, opc, type, MASK(ncomp), 0, NULL,
3202 get_barycentric(ctx, IJ_PERSP_PIXEL), 0);
3203 sam->prefetch.input_offset = ir3_nir_coord_offset(tex->src[idx].src.ssa);
3204 /* make sure not to add irrelevant flags like S2EN */
3205 sam->flags = flags | (info.flags & IR3_INSTR_B);
3206 sam->prefetch.tex = info.tex_idx;
3207 sam->prefetch.samp = info.samp_idx;
3208 sam->prefetch.tex_base = info.tex_base;
3209 sam->prefetch.samp_base = info.samp_base;
3210 } else {
3211 info.flags |= flags;
3212 sam = emit_sam(ctx, opc, info, type, MASK(ncomp), col0, col1);
3213 }
3214
3215 if (tg4_swizzle_fixup) {
3216 /* TODO: fix-up for ASTC when alpha is selected? */
3217 array_insert(ctx->ir, ctx->ir->tg4, sam);
3218
3219 ir3_split_dest(b, dst, sam, 0, 4);
3220
3221 uint8_t tex_bits = ctx->sampler_swizzles[tex->texture_index] >> 12;
3222 if (!type_float(type) && tex_bits != 3 /* 32bpp */ &&
3223 tex_bits != 0 /* key unset */) {
3224 uint8_t bits = 0;
3225 switch (tex_bits) {
3226 case 1: /* 8bpp */
3227 bits = 8;
3228 break;
3229 case 2: /* 16bpp */
3230 bits = 16;
3231 break;
3232 case 4: /* 10bpp or 2bpp for alpha */
3233 if (opc == OPC_GATHER4A)
3234 bits = 2;
3235 else
3236 bits = 10;
3237 break;
3238 default:
3239 assert(0);
3240 }
3241
3242 sam->cat5.type = TYPE_F32;
3243 for (int i = 0; i < 4; i++) {
3244 /* scale and offset the unorm data */
3245 dst[i] = ir3_MAD_F32(b, dst[i], 0, create_immed(b, fui((1 << bits) - 1)), 0, create_immed(b, fui(0.5f)), 0);
3246 /* convert the scaled value to integer */
3247 dst[i] = ir3_COV(b, dst[i], TYPE_F32, TYPE_U32);
3248 /* sign extend for signed values */
3249 if (type == TYPE_S32) {
3250 dst[i] = ir3_SHL_B(b, dst[i], 0, create_immed(b, 32 - bits), 0);
3251 dst[i] = ir3_ASHR_B(b, dst[i], 0, create_immed(b, 32 - bits), 0);
3252 }
3253 }
3254 }
3255 } else if ((ctx->astc_srgb & (1 << tex->texture_index)) &&
3256 tex->op != nir_texop_tg4 && /* leave out tg4, unless it's on alpha? */
3257 !nir_tex_instr_is_query(tex)) {
3258 assert(opc != OPC_META_TEX_PREFETCH);
3259
3260 /* only need first 3 components: */
3261 sam->dsts[0]->wrmask = 0x7;
3262 ir3_split_dest(b, dst, sam, 0, 3);
3263
3264 /* we need to sample the alpha separately with a non-SRGB
3265 * texture state:
3266 */
3267 sam = ir3_SAM(b, opc, type, 0b1000, flags | info.flags, info.samp_tex,
3268 col0, col1);
3269
3270 array_insert(ctx->ir, ctx->ir->astc_srgb, sam);
3271
3272 /* fixup .w component: */
3273 ir3_split_dest(b, &dst[3], sam, 3, 1);
3274 } else {
3275 /* normal (non-workaround) case: */
3276 ir3_split_dest(b, dst, sam, 0, ncomp);
3277 }
3278
3279 /* GETLOD returns results in 4.8 fixed point */
3280 if (opc == OPC_GETLOD) {
3281 bool half = nir_dest_bit_size(tex->dest) == 16;
3282 struct ir3_instruction *factor =
3283 half ? create_immed_typed(b, _mesa_float_to_half(1.0 / 256), TYPE_F16)
3284 : create_immed(b, fui(1.0 / 256));
3285
3286 for (i = 0; i < 2; i++) {
3287 dst[i] = ir3_MUL_F(
3288 b, ir3_COV(b, dst[i], TYPE_S32, half ? TYPE_F16 : TYPE_F32), 0,
3289 factor, 0);
3290 }
3291 }
3292
3293 ir3_put_dst(ctx, &tex->dest);
3294 }
3295
3296 static void
emit_tex_info(struct ir3_context * ctx,nir_tex_instr * tex,unsigned idx)3297 emit_tex_info(struct ir3_context *ctx, nir_tex_instr *tex, unsigned idx)
3298 {
3299 struct ir3_block *b = ctx->block;
3300 struct ir3_instruction **dst, *sam;
3301 type_t dst_type = get_tex_dest_type(tex);
3302 struct tex_src_info info = get_tex_samp_tex_src(ctx, tex);
3303
3304 dst = ir3_get_dst(ctx, &tex->dest, 1);
3305
3306 sam = emit_sam(ctx, OPC_GETINFO, info, dst_type, 1 << idx, NULL, NULL);
3307
3308 /* even though there is only one component, since it ends
3309 * up in .y/.z/.w rather than .x, we need a split_dest()
3310 */
3311 ir3_split_dest(b, dst, sam, idx, 1);
3312
3313 /* The # of levels comes from getinfo.z. We need to add 1 to it, since
3314 * the value in TEX_CONST_0 is zero-based.
3315 */
3316 if (ctx->compiler->levels_add_one)
3317 dst[0] = ir3_ADD_U(b, dst[0], 0, create_immed(b, 1), 0);
3318
3319 ir3_put_dst(ctx, &tex->dest);
3320 }
3321
3322 static void
emit_tex_txs(struct ir3_context * ctx,nir_tex_instr * tex)3323 emit_tex_txs(struct ir3_context *ctx, nir_tex_instr *tex)
3324 {
3325 struct ir3_block *b = ctx->block;
3326 struct ir3_instruction **dst, *sam;
3327 struct ir3_instruction *lod;
3328 unsigned flags, coords;
3329 type_t dst_type = get_tex_dest_type(tex);
3330 struct tex_src_info info = get_tex_samp_tex_src(ctx, tex);
3331
3332 tex_info(tex, &flags, &coords);
3333 info.flags |= flags;
3334
3335 /* Actually we want the number of dimensions, not coordinates. This
3336 * distinction only matters for cubes.
3337 */
3338 if (tex->sampler_dim == GLSL_SAMPLER_DIM_CUBE)
3339 coords = 2;
3340
3341 dst = ir3_get_dst(ctx, &tex->dest, 4);
3342
3343 int lod_idx = nir_tex_instr_src_index(tex, nir_tex_src_lod);
3344 compile_assert(ctx, lod_idx >= 0);
3345
3346 lod = ir3_get_src(ctx, &tex->src[lod_idx].src)[0];
3347
3348 if (tex->sampler_dim != GLSL_SAMPLER_DIM_BUF) {
3349 sam = emit_sam(ctx, OPC_GETSIZE, info, dst_type, 0b1111, lod, NULL);
3350 } else {
3351 /*
3352 * The maximum value which OPC_GETSIZE could return for one dimension
3353 * is 0x007ff0, however sampler buffer could be much bigger.
3354 * Blob uses OPC_GETBUF for them.
3355 */
3356 sam = emit_sam(ctx, OPC_GETBUF, info, dst_type, 0b1111, NULL, NULL);
3357 }
3358
3359 ir3_split_dest(b, dst, sam, 0, 4);
3360
3361 /* Array size actually ends up in .w rather than .z. This doesn't
3362 * matter for miplevel 0, but for higher mips the value in z is
3363 * minified whereas w stays. Also, the value in TEX_CONST_3_DEPTH is
3364 * returned, which means that we have to add 1 to it for arrays.
3365 */
3366 if (tex->is_array) {
3367 if (ctx->compiler->levels_add_one) {
3368 dst[coords] = ir3_ADD_U(b, dst[3], 0, create_immed(b, 1), 0);
3369 } else {
3370 dst[coords] = ir3_MOV(b, dst[3], TYPE_U32);
3371 }
3372 }
3373
3374 ir3_put_dst(ctx, &tex->dest);
3375 }
3376
3377 /* phi instructions are left partially constructed. We don't resolve
3378 * their srcs until the end of the shader, since (eg. loops) one of
3379 * the phi's srcs might be defined after the phi due to back edges in
3380 * the CFG.
3381 */
3382 static void
emit_phi(struct ir3_context * ctx,nir_phi_instr * nphi)3383 emit_phi(struct ir3_context *ctx, nir_phi_instr *nphi)
3384 {
3385 struct ir3_instruction *phi, **dst;
3386
3387 /* NOTE: phi's should be lowered to scalar at this point */
3388 compile_assert(ctx, nphi->dest.ssa.num_components == 1);
3389
3390 dst = ir3_get_dst(ctx, &nphi->dest, 1);
3391
3392 phi = ir3_instr_create(ctx->block, OPC_META_PHI, 1,
3393 exec_list_length(&nphi->srcs));
3394 __ssa_dst(phi);
3395 phi->phi.nphi = nphi;
3396
3397 dst[0] = phi;
3398
3399 ir3_put_dst(ctx, &nphi->dest);
3400 }
3401
3402 static struct ir3_block *get_block(struct ir3_context *ctx,
3403 const nir_block *nblock);
3404
3405 static struct ir3_instruction *
read_phi_src(struct ir3_context * ctx,struct ir3_block * blk,struct ir3_instruction * phi,nir_phi_instr * nphi)3406 read_phi_src(struct ir3_context *ctx, struct ir3_block *blk,
3407 struct ir3_instruction *phi, nir_phi_instr *nphi)
3408 {
3409 if (!blk->nblock) {
3410 struct ir3_instruction *continue_phi =
3411 ir3_instr_create(blk, OPC_META_PHI, 1, blk->predecessors_count);
3412 __ssa_dst(continue_phi)->flags = phi->dsts[0]->flags;
3413
3414 for (unsigned i = 0; i < blk->predecessors_count; i++) {
3415 struct ir3_instruction *src =
3416 read_phi_src(ctx, blk->predecessors[i], phi, nphi);
3417 if (src)
3418 __ssa_src(continue_phi, src, 0);
3419 else
3420 ir3_src_create(continue_phi, INVALID_REG, phi->dsts[0]->flags);
3421 }
3422
3423 return continue_phi;
3424 }
3425
3426 nir_foreach_phi_src (nsrc, nphi) {
3427 if (blk->nblock == nsrc->pred) {
3428 if (nsrc->src.ssa->parent_instr->type == nir_instr_type_ssa_undef) {
3429 /* Create an ir3 undef */
3430 return NULL;
3431 } else {
3432 return ir3_get_src(ctx, &nsrc->src)[0];
3433 }
3434 }
3435 }
3436
3437 unreachable("couldn't find phi node ir3 block");
3438 return NULL;
3439 }
3440
3441 static void
resolve_phis(struct ir3_context * ctx,struct ir3_block * block)3442 resolve_phis(struct ir3_context *ctx, struct ir3_block *block)
3443 {
3444 foreach_instr (phi, &block->instr_list) {
3445 if (phi->opc != OPC_META_PHI)
3446 break;
3447
3448 nir_phi_instr *nphi = phi->phi.nphi;
3449
3450 if (!nphi) /* skip continue phis created above */
3451 continue;
3452
3453 for (unsigned i = 0; i < block->predecessors_count; i++) {
3454 struct ir3_block *pred = block->predecessors[i];
3455 struct ir3_instruction *src = read_phi_src(ctx, pred, phi, nphi);
3456 if (src) {
3457 __ssa_src(phi, src, 0);
3458 } else {
3459 /* Create an ir3 undef */
3460 ir3_src_create(phi, INVALID_REG, phi->dsts[0]->flags);
3461 }
3462 }
3463 }
3464 }
3465
3466 static void
emit_jump(struct ir3_context * ctx,nir_jump_instr * jump)3467 emit_jump(struct ir3_context *ctx, nir_jump_instr *jump)
3468 {
3469 switch (jump->type) {
3470 case nir_jump_break:
3471 case nir_jump_continue:
3472 case nir_jump_return:
3473 /* I *think* we can simply just ignore this, and use the
3474 * successor block link to figure out where we need to
3475 * jump to for break/continue
3476 */
3477 break;
3478 default:
3479 ir3_context_error(ctx, "Unhandled NIR jump type: %d\n", jump->type);
3480 break;
3481 }
3482 }
3483
3484 static void
emit_instr(struct ir3_context * ctx,nir_instr * instr)3485 emit_instr(struct ir3_context *ctx, nir_instr *instr)
3486 {
3487 switch (instr->type) {
3488 case nir_instr_type_alu:
3489 emit_alu(ctx, nir_instr_as_alu(instr));
3490 break;
3491 case nir_instr_type_deref:
3492 /* ignored, handled as part of the intrinsic they are src to */
3493 break;
3494 case nir_instr_type_intrinsic:
3495 emit_intrinsic(ctx, nir_instr_as_intrinsic(instr));
3496 break;
3497 case nir_instr_type_load_const:
3498 emit_load_const(ctx, nir_instr_as_load_const(instr));
3499 break;
3500 case nir_instr_type_ssa_undef:
3501 emit_undef(ctx, nir_instr_as_ssa_undef(instr));
3502 break;
3503 case nir_instr_type_tex: {
3504 nir_tex_instr *tex = nir_instr_as_tex(instr);
3505 /* couple tex instructions get special-cased:
3506 */
3507 switch (tex->op) {
3508 case nir_texop_txs:
3509 emit_tex_txs(ctx, tex);
3510 break;
3511 case nir_texop_query_levels:
3512 emit_tex_info(ctx, tex, 2);
3513 break;
3514 case nir_texop_texture_samples:
3515 emit_tex_info(ctx, tex, 3);
3516 break;
3517 default:
3518 emit_tex(ctx, tex);
3519 break;
3520 }
3521 break;
3522 }
3523 case nir_instr_type_jump:
3524 emit_jump(ctx, nir_instr_as_jump(instr));
3525 break;
3526 case nir_instr_type_phi:
3527 emit_phi(ctx, nir_instr_as_phi(instr));
3528 break;
3529 case nir_instr_type_call:
3530 case nir_instr_type_parallel_copy:
3531 ir3_context_error(ctx, "Unhandled NIR instruction type: %d\n",
3532 instr->type);
3533 break;
3534 }
3535 }
3536
3537 static struct ir3_block *
get_block(struct ir3_context * ctx,const nir_block * nblock)3538 get_block(struct ir3_context *ctx, const nir_block *nblock)
3539 {
3540 struct ir3_block *block;
3541 struct hash_entry *hentry;
3542
3543 hentry = _mesa_hash_table_search(ctx->block_ht, nblock);
3544 if (hentry)
3545 return hentry->data;
3546
3547 block = ir3_block_create(ctx->ir);
3548 block->nblock = nblock;
3549 _mesa_hash_table_insert(ctx->block_ht, nblock, block);
3550
3551 return block;
3552 }
3553
3554 static struct ir3_block *
get_block_or_continue(struct ir3_context * ctx,const nir_block * nblock)3555 get_block_or_continue(struct ir3_context *ctx, const nir_block *nblock)
3556 {
3557 struct hash_entry *hentry;
3558
3559 hentry = _mesa_hash_table_search(ctx->continue_block_ht, nblock);
3560 if (hentry)
3561 return hentry->data;
3562
3563 return get_block(ctx, nblock);
3564 }
3565
3566 static struct ir3_block *
create_continue_block(struct ir3_context * ctx,const nir_block * nblock)3567 create_continue_block(struct ir3_context *ctx, const nir_block *nblock)
3568 {
3569 struct ir3_block *block = ir3_block_create(ctx->ir);
3570 block->nblock = NULL;
3571 _mesa_hash_table_insert(ctx->continue_block_ht, nblock, block);
3572 return block;
3573 }
3574
3575 static void
emit_block(struct ir3_context * ctx,nir_block * nblock)3576 emit_block(struct ir3_context *ctx, nir_block *nblock)
3577 {
3578 ctx->block = get_block(ctx, nblock);
3579
3580 list_addtail(&ctx->block->node, &ctx->ir->block_list);
3581
3582 ctx->block->loop_id = ctx->loop_id;
3583 ctx->block->loop_depth = ctx->loop_depth;
3584
3585 /* re-emit addr register in each block if needed: */
3586 for (int i = 0; i < ARRAY_SIZE(ctx->addr0_ht); i++) {
3587 _mesa_hash_table_destroy(ctx->addr0_ht[i], NULL);
3588 ctx->addr0_ht[i] = NULL;
3589 }
3590
3591 _mesa_hash_table_u64_destroy(ctx->addr1_ht);
3592 ctx->addr1_ht = NULL;
3593
3594 nir_foreach_instr (instr, nblock) {
3595 ctx->cur_instr = instr;
3596 emit_instr(ctx, instr);
3597 ctx->cur_instr = NULL;
3598 if (ctx->error)
3599 return;
3600 }
3601
3602 for (int i = 0; i < ARRAY_SIZE(ctx->block->successors); i++) {
3603 if (nblock->successors[i]) {
3604 ctx->block->successors[i] =
3605 get_block_or_continue(ctx, nblock->successors[i]);
3606 ctx->block->physical_successors[i] = ctx->block->successors[i];
3607 }
3608 }
3609
3610 _mesa_hash_table_clear(ctx->sel_cond_conversions, NULL);
3611 }
3612
3613 static void emit_cf_list(struct ir3_context *ctx, struct exec_list *list);
3614
3615 static void
emit_if(struct ir3_context * ctx,nir_if * nif)3616 emit_if(struct ir3_context *ctx, nir_if *nif)
3617 {
3618 struct ir3_instruction *condition = ir3_get_src(ctx, &nif->condition)[0];
3619
3620 if (condition->opc == OPC_ANY_MACRO && condition->block == ctx->block) {
3621 ctx->block->condition = ssa(condition->srcs[0]);
3622 ctx->block->brtype = IR3_BRANCH_ANY;
3623 } else if (condition->opc == OPC_ALL_MACRO &&
3624 condition->block == ctx->block) {
3625 ctx->block->condition = ssa(condition->srcs[0]);
3626 ctx->block->brtype = IR3_BRANCH_ALL;
3627 } else if (condition->opc == OPC_ELECT_MACRO &&
3628 condition->block == ctx->block) {
3629 ctx->block->condition = NULL;
3630 ctx->block->brtype = IR3_BRANCH_GETONE;
3631 } else if (condition->opc == OPC_SHPS_MACRO &&
3632 condition->block == ctx->block) {
3633 /* TODO: technically this only works if the block is the only user of the
3634 * shps, but we only use it in very constrained scenarios so this should
3635 * be ok.
3636 */
3637 ctx->block->condition = NULL;
3638 ctx->block->brtype = IR3_BRANCH_SHPS;
3639 } else {
3640 ctx->block->condition = ir3_get_predicate(ctx, condition);
3641 ctx->block->brtype = IR3_BRANCH_COND;
3642 }
3643
3644 emit_cf_list(ctx, &nif->then_list);
3645 emit_cf_list(ctx, &nif->else_list);
3646
3647 struct ir3_block *last_then = get_block(ctx, nir_if_last_then_block(nif));
3648 struct ir3_block *first_else = get_block(ctx, nir_if_first_else_block(nif));
3649 assert(last_then->physical_successors[0] &&
3650 !last_then->physical_successors[1]);
3651 last_then->physical_successors[1] = first_else;
3652
3653 struct ir3_block *last_else = get_block(ctx, nir_if_last_else_block(nif));
3654 struct ir3_block *after_if =
3655 get_block(ctx, nir_cf_node_as_block(nir_cf_node_next(&nif->cf_node)));
3656 assert(last_else->physical_successors[0] &&
3657 !last_else->physical_successors[1]);
3658 if (after_if != last_else->physical_successors[0])
3659 last_else->physical_successors[1] = after_if;
3660 }
3661
3662 static void
emit_loop(struct ir3_context * ctx,nir_loop * nloop)3663 emit_loop(struct ir3_context *ctx, nir_loop *nloop)
3664 {
3665 unsigned old_loop_id = ctx->loop_id;
3666 ctx->loop_id = ctx->so->loops + 1;
3667 ctx->loop_depth++;
3668
3669 struct nir_block *nstart = nir_loop_first_block(nloop);
3670 struct ir3_block *continue_blk = NULL;
3671
3672 /* There's always one incoming edge from outside the loop, and if there
3673 * are more than two backedges from inside the loop (so more than 2 total
3674 * edges) then we need to create a continue block after the loop to ensure
3675 * that control reconverges at the end of each loop iteration.
3676 */
3677 if (nstart->predecessors->entries > 2) {
3678 continue_blk = create_continue_block(ctx, nstart);
3679 }
3680
3681 emit_cf_list(ctx, &nloop->body);
3682
3683 if (continue_blk) {
3684 struct ir3_block *start = get_block(ctx, nstart);
3685 continue_blk->successors[0] = start;
3686 continue_blk->physical_successors[0] = start;
3687 continue_blk->loop_id = ctx->loop_id;
3688 continue_blk->loop_depth = ctx->loop_depth;
3689 list_addtail(&continue_blk->node, &ctx->ir->block_list);
3690 }
3691
3692 ctx->so->loops++;
3693 ctx->loop_depth--;
3694 ctx->loop_id = old_loop_id;
3695 }
3696
3697 static void
stack_push(struct ir3_context * ctx)3698 stack_push(struct ir3_context *ctx)
3699 {
3700 ctx->stack++;
3701 ctx->max_stack = MAX2(ctx->max_stack, ctx->stack);
3702 }
3703
3704 static void
stack_pop(struct ir3_context * ctx)3705 stack_pop(struct ir3_context *ctx)
3706 {
3707 compile_assert(ctx, ctx->stack > 0);
3708 ctx->stack--;
3709 }
3710
3711 static void
emit_cf_list(struct ir3_context * ctx,struct exec_list * list)3712 emit_cf_list(struct ir3_context *ctx, struct exec_list *list)
3713 {
3714 foreach_list_typed (nir_cf_node, node, node, list) {
3715 switch (node->type) {
3716 case nir_cf_node_block:
3717 emit_block(ctx, nir_cf_node_as_block(node));
3718 break;
3719 case nir_cf_node_if:
3720 stack_push(ctx);
3721 emit_if(ctx, nir_cf_node_as_if(node));
3722 stack_pop(ctx);
3723 break;
3724 case nir_cf_node_loop:
3725 stack_push(ctx);
3726 emit_loop(ctx, nir_cf_node_as_loop(node));
3727 stack_pop(ctx);
3728 break;
3729 case nir_cf_node_function:
3730 ir3_context_error(ctx, "TODO\n");
3731 break;
3732 }
3733 }
3734 }
3735
3736 /* emit stream-out code. At this point, the current block is the original
3737 * (nir) end block, and nir ensures that all flow control paths terminate
3738 * into the end block. We re-purpose the original end block to generate
3739 * the 'if (vtxcnt < maxvtxcnt)' condition, then append the conditional
3740 * block holding stream-out write instructions, followed by the new end
3741 * block:
3742 *
3743 * blockOrigEnd {
3744 * p0.x = (vtxcnt < maxvtxcnt)
3745 * // succs: blockStreamOut, blockNewEnd
3746 * }
3747 * blockStreamOut {
3748 * // preds: blockOrigEnd
3749 * ... stream-out instructions ...
3750 * // succs: blockNewEnd
3751 * }
3752 * blockNewEnd {
3753 * // preds: blockOrigEnd, blockStreamOut
3754 * }
3755 */
3756 static void
emit_stream_out(struct ir3_context * ctx)3757 emit_stream_out(struct ir3_context *ctx)
3758 {
3759 struct ir3 *ir = ctx->ir;
3760 struct ir3_stream_output_info *strmout = &ctx->so->stream_output;
3761 struct ir3_block *orig_end_block, *stream_out_block, *new_end_block;
3762 struct ir3_instruction *vtxcnt, *maxvtxcnt, *cond;
3763 struct ir3_instruction *bases[IR3_MAX_SO_BUFFERS];
3764
3765 /* create vtxcnt input in input block at top of shader,
3766 * so that it is seen as live over the entire duration
3767 * of the shader:
3768 */
3769 vtxcnt = create_sysval_input(ctx, SYSTEM_VALUE_VERTEX_CNT, 0x1);
3770 maxvtxcnt = create_driver_param(ctx, IR3_DP_VTXCNT_MAX);
3771
3772 /* at this point, we are at the original 'end' block,
3773 * re-purpose this block to stream-out condition, then
3774 * append stream-out block and new-end block
3775 */
3776 orig_end_block = ctx->block;
3777
3778 // maybe w/ store_global intrinsic, we could do this
3779 // stuff in nir->nir pass
3780
3781 stream_out_block = ir3_block_create(ir);
3782 list_addtail(&stream_out_block->node, &ir->block_list);
3783
3784 new_end_block = ir3_block_create(ir);
3785 list_addtail(&new_end_block->node, &ir->block_list);
3786
3787 orig_end_block->successors[0] = stream_out_block;
3788 orig_end_block->successors[1] = new_end_block;
3789
3790 orig_end_block->physical_successors[0] = stream_out_block;
3791 orig_end_block->physical_successors[1] = new_end_block;
3792
3793 stream_out_block->successors[0] = new_end_block;
3794
3795 stream_out_block->physical_successors[0] = new_end_block;
3796
3797 /* setup 'if (vtxcnt < maxvtxcnt)' condition: */
3798 cond = ir3_CMPS_S(ctx->block, vtxcnt, 0, maxvtxcnt, 0);
3799 cond->dsts[0]->num = regid(REG_P0, 0);
3800 cond->dsts[0]->flags &= ~IR3_REG_SSA;
3801 cond->cat2.condition = IR3_COND_LT;
3802
3803 /* condition goes on previous block to the conditional,
3804 * since it is used to pick which of the two successor
3805 * paths to take:
3806 */
3807 orig_end_block->condition = cond;
3808
3809 /* switch to stream_out_block to generate the stream-out
3810 * instructions:
3811 */
3812 ctx->block = stream_out_block;
3813
3814 /* Calculate base addresses based on vtxcnt. Instructions
3815 * generated for bases not used in following loop will be
3816 * stripped out in the backend.
3817 */
3818 for (unsigned i = 0; i < IR3_MAX_SO_BUFFERS; i++) {
3819 const struct ir3_const_state *const_state = ir3_const_state(ctx->so);
3820 unsigned stride = strmout->stride[i];
3821 struct ir3_instruction *base, *off;
3822
3823 base = create_uniform(ctx->block, regid(const_state->offsets.tfbo, i));
3824
3825 /* 24-bit should be enough: */
3826 off = ir3_MUL_U24(ctx->block, vtxcnt, 0,
3827 create_immed(ctx->block, stride * 4), 0);
3828
3829 bases[i] = ir3_ADD_S(ctx->block, off, 0, base, 0);
3830 }
3831
3832 /* Generate the per-output store instructions: */
3833 for (unsigned i = 0; i < strmout->num_outputs; i++) {
3834 for (unsigned j = 0; j < strmout->output[i].num_components; j++) {
3835 unsigned c = j + strmout->output[i].start_component;
3836 struct ir3_instruction *base, *out, *stg;
3837
3838 base = bases[strmout->output[i].output_buffer];
3839 out = ctx->outputs[regid(strmout->output[i].register_index, c)];
3840
3841 stg = ir3_STG(
3842 ctx->block, base, 0,
3843 create_immed(ctx->block, (strmout->output[i].dst_offset + j) * 4),
3844 0, out, 0, create_immed(ctx->block, 1), 0);
3845 stg->cat6.type = TYPE_U32;
3846
3847 array_insert(ctx->block, ctx->block->keeps, stg);
3848 }
3849 }
3850
3851 /* and finally switch to the new_end_block: */
3852 ctx->block = new_end_block;
3853 }
3854
3855 static void
setup_predecessors(struct ir3 * ir)3856 setup_predecessors(struct ir3 *ir)
3857 {
3858 foreach_block (block, &ir->block_list) {
3859 for (int i = 0; i < ARRAY_SIZE(block->successors); i++) {
3860 if (block->successors[i])
3861 ir3_block_add_predecessor(block->successors[i], block);
3862 if (block->physical_successors[i])
3863 ir3_block_add_physical_predecessor(block->physical_successors[i],
3864 block);
3865 }
3866 }
3867 }
3868
3869 static void
emit_function(struct ir3_context * ctx,nir_function_impl * impl)3870 emit_function(struct ir3_context *ctx, nir_function_impl *impl)
3871 {
3872 nir_metadata_require(impl, nir_metadata_block_index);
3873
3874 compile_assert(ctx, ctx->stack == 0);
3875
3876 emit_cf_list(ctx, &impl->body);
3877 emit_block(ctx, impl->end_block);
3878
3879 compile_assert(ctx, ctx->stack == 0);
3880
3881 /* at this point, we should have a single empty block,
3882 * into which we emit the 'end' instruction.
3883 */
3884 compile_assert(ctx, list_is_empty(&ctx->block->instr_list));
3885
3886 /* If stream-out (aka transform-feedback) enabled, emit the
3887 * stream-out instructions, followed by a new empty block (into
3888 * which the 'end' instruction lands).
3889 *
3890 * NOTE: it is done in this order, rather than inserting before
3891 * we emit end_block, because NIR guarantees that all blocks
3892 * flow into end_block, and that end_block has no successors.
3893 * So by re-purposing end_block as the first block of stream-
3894 * out, we guarantee that all exit paths flow into the stream-
3895 * out instructions.
3896 */
3897 if ((ctx->compiler->gen < 5) &&
3898 (ctx->so->stream_output.num_outputs > 0) &&
3899 !ctx->so->binning_pass) {
3900 assert(ctx->so->type == MESA_SHADER_VERTEX);
3901 emit_stream_out(ctx);
3902 }
3903
3904 setup_predecessors(ctx->ir);
3905 foreach_block (block, &ctx->ir->block_list) {
3906 resolve_phis(ctx, block);
3907 }
3908 }
3909
3910 static void
setup_input(struct ir3_context * ctx,nir_intrinsic_instr * intr)3911 setup_input(struct ir3_context *ctx, nir_intrinsic_instr *intr)
3912 {
3913 struct ir3_shader_variant *so = ctx->so;
3914 struct ir3_instruction *coord = NULL;
3915
3916 if (intr->intrinsic == nir_intrinsic_load_interpolated_input)
3917 coord = ir3_create_collect(ctx->block, ir3_get_src(ctx, &intr->src[0]), 2);
3918
3919 compile_assert(ctx, nir_src_is_const(intr->src[coord ? 1 : 0]));
3920
3921 unsigned frac = nir_intrinsic_component(intr);
3922 unsigned offset = nir_src_as_uint(intr->src[coord ? 1 : 0]);
3923 unsigned ncomp = nir_intrinsic_dest_components(intr);
3924 unsigned n = nir_intrinsic_base(intr) + offset;
3925 unsigned slot = nir_intrinsic_io_semantics(intr).location + offset;
3926 unsigned compmask;
3927
3928 /* Inputs are loaded using ldlw or ldg for other stages. */
3929 compile_assert(ctx, ctx->so->type == MESA_SHADER_FRAGMENT ||
3930 ctx->so->type == MESA_SHADER_VERTEX);
3931
3932 if (ctx->so->type == MESA_SHADER_FRAGMENT)
3933 compmask = BITFIELD_MASK(ncomp) << frac;
3934 else
3935 compmask = BITFIELD_MASK(ncomp + frac);
3936
3937 /* for a4xx+ rasterflat */
3938 if (so->inputs[n].rasterflat && ctx->so->key.rasterflat)
3939 coord = NULL;
3940
3941 so->total_in += util_bitcount(compmask & ~so->inputs[n].compmask);
3942
3943 so->inputs[n].slot = slot;
3944 so->inputs[n].compmask |= compmask;
3945 so->inputs_count = MAX2(so->inputs_count, n + 1);
3946 compile_assert(ctx, so->inputs_count < ARRAY_SIZE(so->inputs));
3947 so->inputs[n].flat = !coord;
3948
3949 if (ctx->so->type == MESA_SHADER_FRAGMENT) {
3950 compile_assert(ctx, slot != VARYING_SLOT_POS);
3951
3952 so->inputs[n].bary = true;
3953
3954 for (int i = 0; i < ncomp; i++) {
3955 unsigned idx = (n * 4) + i + frac;
3956 ctx->last_dst[i] = create_frag_input(ctx, coord, idx);
3957 }
3958 } else {
3959 struct ir3_instruction *input = NULL;
3960
3961 foreach_input (in, ctx->ir) {
3962 if (in->input.inidx == n) {
3963 input = in;
3964 break;
3965 }
3966 }
3967
3968 if (!input) {
3969 input = create_input(ctx, compmask);
3970 input->input.inidx = n;
3971 } else {
3972 /* For aliased inputs, just append to the wrmask.. ie. if we
3973 * first see a vec2 index at slot N, and then later a vec4,
3974 * the wrmask of the resulting overlapped vec2 and vec4 is 0xf
3975 */
3976 input->dsts[0]->wrmask |= compmask;
3977 }
3978
3979 for (int i = 0; i < ncomp + frac; i++) {
3980 unsigned idx = (n * 4) + i;
3981 compile_assert(ctx, idx < ctx->ninputs);
3982
3983 /* fixup the src wrmask to avoid validation fail */
3984 if (ctx->inputs[idx] && (ctx->inputs[idx] != input)) {
3985 ctx->inputs[idx]->srcs[0]->wrmask = input->dsts[0]->wrmask;
3986 continue;
3987 }
3988
3989 ir3_split_dest(ctx->block, &ctx->inputs[idx], input, i, 1);
3990 }
3991
3992 for (int i = 0; i < ncomp; i++) {
3993 unsigned idx = (n * 4) + i + frac;
3994 ctx->last_dst[i] = ctx->inputs[idx];
3995 }
3996 }
3997 }
3998
3999 /* Initially we assign non-packed inloc's for varyings, as we don't really
4000 * know up-front which components will be unused. After all the compilation
4001 * stages we scan the shader to see which components are actually used, and
4002 * re-pack the inlocs to eliminate unneeded varyings.
4003 */
4004 static void
pack_inlocs(struct ir3_context * ctx)4005 pack_inlocs(struct ir3_context *ctx)
4006 {
4007 struct ir3_shader_variant *so = ctx->so;
4008 uint8_t used_components[so->inputs_count];
4009
4010 memset(used_components, 0, sizeof(used_components));
4011
4012 /*
4013 * First Step: scan shader to find which bary.f/ldlv remain:
4014 */
4015
4016 foreach_block (block, &ctx->ir->block_list) {
4017 foreach_instr (instr, &block->instr_list) {
4018 if (is_input(instr)) {
4019 unsigned inloc = instr->srcs[0]->iim_val;
4020 unsigned i = inloc / 4;
4021 unsigned j = inloc % 4;
4022
4023 compile_assert(ctx, instr->srcs[0]->flags & IR3_REG_IMMED);
4024 compile_assert(ctx, i < so->inputs_count);
4025
4026 used_components[i] |= 1 << j;
4027 } else if (instr->opc == OPC_META_TEX_PREFETCH) {
4028 for (int n = 0; n < 2; n++) {
4029 unsigned inloc = instr->prefetch.input_offset + n;
4030 unsigned i = inloc / 4;
4031 unsigned j = inloc % 4;
4032
4033 compile_assert(ctx, i < so->inputs_count);
4034
4035 used_components[i] |= 1 << j;
4036 }
4037 }
4038 }
4039 }
4040
4041 /*
4042 * Second Step: reassign varying inloc/slots:
4043 */
4044
4045 unsigned inloc = 0;
4046
4047 /* for clip+cull distances, unused components can't be eliminated because
4048 * they're read by fixed-function, even if there's a hole. Note that
4049 * clip/cull distance arrays must be declared in the FS, so we can just
4050 * use the NIR clip/cull distances to avoid reading ucp_enables in the
4051 * shader key.
4052 */
4053 unsigned clip_cull_mask = so->clip_mask | so->cull_mask;
4054
4055 for (unsigned i = 0; i < so->inputs_count; i++) {
4056 unsigned compmask = 0, maxcomp = 0;
4057
4058 so->inputs[i].inloc = inloc;
4059 so->inputs[i].bary = false;
4060
4061 if (so->inputs[i].slot == VARYING_SLOT_CLIP_DIST0 ||
4062 so->inputs[i].slot == VARYING_SLOT_CLIP_DIST1) {
4063 if (so->inputs[i].slot == VARYING_SLOT_CLIP_DIST0)
4064 compmask = clip_cull_mask & 0xf;
4065 else
4066 compmask = clip_cull_mask >> 4;
4067 used_components[i] = compmask;
4068 }
4069
4070 for (unsigned j = 0; j < 4; j++) {
4071 if (!(used_components[i] & (1 << j)))
4072 continue;
4073
4074 compmask |= (1 << j);
4075 maxcomp = j + 1;
4076
4077 /* at this point, since used_components[i] mask is only
4078 * considering varyings (ie. not sysvals) we know this
4079 * is a varying:
4080 */
4081 so->inputs[i].bary = true;
4082 }
4083
4084 if (so->inputs[i].bary) {
4085 so->varying_in++;
4086 so->inputs[i].compmask = (1 << maxcomp) - 1;
4087 inloc += maxcomp;
4088 }
4089 }
4090
4091 /*
4092 * Third Step: reassign packed inloc's:
4093 */
4094
4095 foreach_block (block, &ctx->ir->block_list) {
4096 foreach_instr (instr, &block->instr_list) {
4097 if (is_input(instr)) {
4098 unsigned inloc = instr->srcs[0]->iim_val;
4099 unsigned i = inloc / 4;
4100 unsigned j = inloc % 4;
4101
4102 instr->srcs[0]->iim_val = so->inputs[i].inloc + j;
4103 } else if (instr->opc == OPC_META_TEX_PREFETCH) {
4104 unsigned i = instr->prefetch.input_offset / 4;
4105 unsigned j = instr->prefetch.input_offset % 4;
4106 instr->prefetch.input_offset = so->inputs[i].inloc + j;
4107 }
4108 }
4109 }
4110 }
4111
4112 static void
setup_output(struct ir3_context * ctx,nir_intrinsic_instr * intr)4113 setup_output(struct ir3_context *ctx, nir_intrinsic_instr *intr)
4114 {
4115 struct ir3_shader_variant *so = ctx->so;
4116 nir_io_semantics io = nir_intrinsic_io_semantics(intr);
4117
4118 compile_assert(ctx, nir_src_is_const(intr->src[1]));
4119
4120 unsigned offset = nir_src_as_uint(intr->src[1]);
4121 unsigned n = nir_intrinsic_base(intr) + offset;
4122 unsigned frac = nir_intrinsic_component(intr);
4123 unsigned ncomp = nir_intrinsic_src_components(intr, 0);
4124
4125 /* For per-view variables, each user-facing slot corresponds to multiple
4126 * views, each with a corresponding driver_location, and the offset is for
4127 * the driver_location. To properly figure out of the slot, we'd need to
4128 * plumb through the number of views. However, for now we only use
4129 * per-view with gl_Position, so we assume that the variable is not an
4130 * array or matrix (so there are no indirect accesses to the variable
4131 * itself) and the indirect offset corresponds to the view.
4132 */
4133 unsigned slot = io.location + (io.per_view ? 0 : offset);
4134
4135 if (ctx->so->type == MESA_SHADER_FRAGMENT) {
4136 switch (slot) {
4137 case FRAG_RESULT_DEPTH:
4138 so->writes_pos = true;
4139 break;
4140 case FRAG_RESULT_COLOR:
4141 if (!ctx->s->info.fs.color_is_dual_source) {
4142 so->color0_mrt = 1;
4143 } else {
4144 slot = FRAG_RESULT_DATA0 + io.dual_source_blend_index;
4145 }
4146 break;
4147 case FRAG_RESULT_SAMPLE_MASK:
4148 so->writes_smask = true;
4149 break;
4150 case FRAG_RESULT_STENCIL:
4151 so->writes_stencilref = true;
4152 break;
4153 default:
4154 slot += io.dual_source_blend_index; /* For dual-src blend */
4155 if (slot >= FRAG_RESULT_DATA0)
4156 break;
4157 ir3_context_error(ctx, "unknown FS output name: %s\n",
4158 gl_frag_result_name(slot));
4159 }
4160 } else if (ctx->so->type == MESA_SHADER_VERTEX ||
4161 ctx->so->type == MESA_SHADER_TESS_EVAL ||
4162 ctx->so->type == MESA_SHADER_GEOMETRY) {
4163 switch (slot) {
4164 case VARYING_SLOT_POS:
4165 so->writes_pos = true;
4166 break;
4167 case VARYING_SLOT_PSIZ:
4168 so->writes_psize = true;
4169 break;
4170 case VARYING_SLOT_PRIMITIVE_ID:
4171 case VARYING_SLOT_GS_VERTEX_FLAGS_IR3:
4172 assert(ctx->so->type == MESA_SHADER_GEOMETRY);
4173 FALLTHROUGH;
4174 case VARYING_SLOT_COL0:
4175 case VARYING_SLOT_COL1:
4176 case VARYING_SLOT_BFC0:
4177 case VARYING_SLOT_BFC1:
4178 case VARYING_SLOT_FOGC:
4179 case VARYING_SLOT_CLIP_DIST0:
4180 case VARYING_SLOT_CLIP_DIST1:
4181 case VARYING_SLOT_CLIP_VERTEX:
4182 case VARYING_SLOT_LAYER:
4183 case VARYING_SLOT_VIEWPORT:
4184 break;
4185 default:
4186 if (slot >= VARYING_SLOT_VAR0)
4187 break;
4188 if ((VARYING_SLOT_TEX0 <= slot) && (slot <= VARYING_SLOT_TEX7))
4189 break;
4190 ir3_context_error(ctx, "unknown %s shader output name: %s\n",
4191 _mesa_shader_stage_to_string(ctx->so->type),
4192 gl_varying_slot_name_for_stage(slot, ctx->so->type));
4193 }
4194 } else {
4195 ir3_context_error(ctx, "unknown shader type: %d\n", ctx->so->type);
4196 }
4197
4198 so->outputs_count = MAX2(so->outputs_count, n + 1);
4199 compile_assert(ctx, so->outputs_count <= ARRAY_SIZE(so->outputs));
4200
4201 so->outputs[n].slot = slot;
4202 if (io.per_view)
4203 so->outputs[n].view = offset;
4204
4205 for (int i = 0; i < ncomp; i++) {
4206 unsigned idx = (n * 4) + i + frac;
4207 compile_assert(ctx, idx < ctx->noutputs);
4208 ctx->outputs[idx] = create_immed(ctx->block, fui(0.0));
4209 }
4210
4211 /* if varying packing doesn't happen, we could end up in a situation
4212 * with "holes" in the output, and since the per-generation code that
4213 * sets up varying linkage registers doesn't expect to have more than
4214 * one varying per vec4 slot, pad the holes.
4215 *
4216 * Note that this should probably generate a performance warning of
4217 * some sort.
4218 */
4219 for (int i = 0; i < frac; i++) {
4220 unsigned idx = (n * 4) + i;
4221 if (!ctx->outputs[idx]) {
4222 ctx->outputs[idx] = create_immed(ctx->block, fui(0.0));
4223 }
4224 }
4225
4226 struct ir3_instruction *const *src = ir3_get_src(ctx, &intr->src[0]);
4227 for (int i = 0; i < ncomp; i++) {
4228 unsigned idx = (n * 4) + i + frac;
4229 ctx->outputs[idx] = src[i];
4230 }
4231 }
4232
4233 static bool
uses_load_input(struct ir3_shader_variant * so)4234 uses_load_input(struct ir3_shader_variant *so)
4235 {
4236 return so->type == MESA_SHADER_VERTEX || so->type == MESA_SHADER_FRAGMENT;
4237 }
4238
4239 static bool
uses_store_output(struct ir3_shader_variant * so)4240 uses_store_output(struct ir3_shader_variant *so)
4241 {
4242 switch (so->type) {
4243 case MESA_SHADER_VERTEX:
4244 return !so->key.has_gs && !so->key.tessellation;
4245 case MESA_SHADER_TESS_EVAL:
4246 return !so->key.has_gs;
4247 case MESA_SHADER_GEOMETRY:
4248 case MESA_SHADER_FRAGMENT:
4249 return true;
4250 case MESA_SHADER_TESS_CTRL:
4251 case MESA_SHADER_COMPUTE:
4252 case MESA_SHADER_KERNEL:
4253 return false;
4254 default:
4255 unreachable("unknown stage");
4256 }
4257 }
4258
4259 static void
emit_instructions(struct ir3_context * ctx)4260 emit_instructions(struct ir3_context *ctx)
4261 {
4262 nir_function_impl *fxn = nir_shader_get_entrypoint(ctx->s);
4263
4264 /* some varying setup which can't be done in setup_input(): */
4265 if (ctx->so->type == MESA_SHADER_FRAGMENT) {
4266 nir_foreach_shader_in_variable (var, ctx->s) {
4267 /* if any varyings have 'sample' qualifer, that triggers us
4268 * to run in per-sample mode:
4269 */
4270 if (var->data.sample)
4271 ctx->so->per_samp = true;
4272
4273 /* set rasterflat flag for front/back color */
4274 if (var->data.interpolation == INTERP_MODE_NONE) {
4275 switch (var->data.location) {
4276 case VARYING_SLOT_COL0:
4277 case VARYING_SLOT_COL1:
4278 case VARYING_SLOT_BFC0:
4279 case VARYING_SLOT_BFC1:
4280 ctx->so->inputs[var->data.driver_location].rasterflat = true;
4281 break;
4282 default:
4283 break;
4284 }
4285 }
4286 }
4287 }
4288
4289 if (uses_load_input(ctx->so)) {
4290 ctx->so->inputs_count = ctx->s->num_inputs;
4291 compile_assert(ctx, ctx->so->inputs_count < ARRAY_SIZE(ctx->so->inputs));
4292 ctx->ninputs = ctx->s->num_inputs * 4;
4293 ctx->inputs = rzalloc_array(ctx, struct ir3_instruction *, ctx->ninputs);
4294 } else {
4295 ctx->ninputs = 0;
4296 ctx->so->inputs_count = 0;
4297 }
4298
4299 if (uses_store_output(ctx->so)) {
4300 ctx->noutputs = ctx->s->num_outputs * 4;
4301 ctx->outputs =
4302 rzalloc_array(ctx, struct ir3_instruction *, ctx->noutputs);
4303 } else {
4304 ctx->noutputs = 0;
4305 }
4306
4307 ctx->ir = ir3_create(ctx->compiler, ctx->so);
4308
4309 /* Create inputs in first block: */
4310 ctx->block = get_block(ctx, nir_start_block(fxn));
4311 ctx->in_block = ctx->block;
4312
4313 /* for fragment shader, the vcoord input register is used as the
4314 * base for bary.f varying fetch instrs:
4315 *
4316 * TODO defer creating ctx->ij_pixel and corresponding sysvals
4317 * until emit_intrinsic when we know they are actually needed.
4318 * For now, we defer creating ctx->ij_centroid, etc, since we
4319 * only need ij_pixel for "old style" varying inputs (ie.
4320 * tgsi_to_nir)
4321 */
4322 if (ctx->so->type == MESA_SHADER_FRAGMENT) {
4323 ctx->ij[IJ_PERSP_PIXEL] = create_input(ctx, 0x3);
4324 }
4325
4326 /* Defer add_sysval_input() stuff until after setup_inputs(),
4327 * because sysvals need to be appended after varyings:
4328 */
4329 if (ctx->ij[IJ_PERSP_PIXEL]) {
4330 add_sysval_input_compmask(ctx, SYSTEM_VALUE_BARYCENTRIC_PERSP_PIXEL, 0x3,
4331 ctx->ij[IJ_PERSP_PIXEL]);
4332 }
4333
4334 /* Tesselation shaders always need primitive ID for indexing the
4335 * BO. Geometry shaders don't always need it but when they do it has be
4336 * delivered and unclobbered in the VS. To make things easy, we always
4337 * make room for it in VS/DS.
4338 */
4339 bool has_tess = ctx->so->key.tessellation != IR3_TESS_NONE;
4340 bool has_gs = ctx->so->key.has_gs;
4341 switch (ctx->so->type) {
4342 case MESA_SHADER_VERTEX:
4343 if (has_tess) {
4344 ctx->tcs_header =
4345 create_sysval_input(ctx, SYSTEM_VALUE_TCS_HEADER_IR3, 0x1);
4346 ctx->rel_patch_id =
4347 create_sysval_input(ctx, SYSTEM_VALUE_REL_PATCH_ID_IR3, 0x1);
4348 ctx->primitive_id =
4349 create_sysval_input(ctx, SYSTEM_VALUE_PRIMITIVE_ID, 0x1);
4350 } else if (has_gs) {
4351 ctx->gs_header =
4352 create_sysval_input(ctx, SYSTEM_VALUE_GS_HEADER_IR3, 0x1);
4353 ctx->primitive_id =
4354 create_sysval_input(ctx, SYSTEM_VALUE_PRIMITIVE_ID, 0x1);
4355 }
4356 break;
4357 case MESA_SHADER_TESS_CTRL:
4358 ctx->tcs_header =
4359 create_sysval_input(ctx, SYSTEM_VALUE_TCS_HEADER_IR3, 0x1);
4360 ctx->rel_patch_id =
4361 create_sysval_input(ctx, SYSTEM_VALUE_REL_PATCH_ID_IR3, 0x1);
4362 break;
4363 case MESA_SHADER_TESS_EVAL:
4364 if (has_gs) {
4365 ctx->gs_header =
4366 create_sysval_input(ctx, SYSTEM_VALUE_GS_HEADER_IR3, 0x1);
4367 ctx->primitive_id =
4368 create_sysval_input(ctx, SYSTEM_VALUE_PRIMITIVE_ID, 0x1);
4369 }
4370 ctx->rel_patch_id =
4371 create_sysval_input(ctx, SYSTEM_VALUE_REL_PATCH_ID_IR3, 0x1);
4372 break;
4373 case MESA_SHADER_GEOMETRY:
4374 ctx->gs_header =
4375 create_sysval_input(ctx, SYSTEM_VALUE_GS_HEADER_IR3, 0x1);
4376 break;
4377 default:
4378 break;
4379 }
4380
4381 /* Find # of samplers. Just assume that we'll be reading from images.. if
4382 * it is write-only we don't have to count it, but after lowering derefs
4383 * is too late to compact indices for that.
4384 */
4385 ctx->so->num_samp =
4386 BITSET_LAST_BIT(ctx->s->info.textures_used) + ctx->s->info.num_images;
4387
4388 /* Save off clip+cull information. Note that in OpenGL clip planes may
4389 * be individually enabled/disabled, and some gens handle lowering in
4390 * backend, so we also need to consider the shader key:
4391 */
4392 ctx->so->clip_mask = ctx->so->key.ucp_enables |
4393 MASK(ctx->s->info.clip_distance_array_size);
4394 ctx->so->cull_mask = MASK(ctx->s->info.cull_distance_array_size)
4395 << ctx->s->info.clip_distance_array_size;
4396
4397 ctx->so->pvtmem_size = ctx->s->scratch_size;
4398 ctx->so->shared_size = ctx->s->info.shared_size;
4399
4400 /* NOTE: need to do something more clever when we support >1 fxn */
4401 nir_foreach_register (reg, &fxn->registers) {
4402 ir3_declare_array(ctx, reg);
4403 }
4404
4405 if (ctx->so->type == MESA_SHADER_TESS_CTRL &&
4406 ctx->compiler->tess_use_shared) {
4407 struct ir3_instruction *barrier = ir3_BAR(ctx->block);
4408 barrier->flags = IR3_INSTR_SS | IR3_INSTR_SY;
4409 barrier->barrier_class = IR3_BARRIER_EVERYTHING;
4410 array_insert(ctx->block, ctx->block->keeps, barrier);
4411 ctx->so->has_barrier = true;
4412 }
4413
4414 /* And emit the body: */
4415 ctx->impl = fxn;
4416 emit_function(ctx, fxn);
4417 }
4418
4419 /* Fixup tex sampler state for astc/srgb workaround instructions. We
4420 * need to assign the tex state indexes for these after we know the
4421 * max tex index.
4422 */
4423 static void
fixup_astc_srgb(struct ir3_context * ctx)4424 fixup_astc_srgb(struct ir3_context *ctx)
4425 {
4426 struct ir3_shader_variant *so = ctx->so;
4427 /* indexed by original tex idx, value is newly assigned alpha sampler
4428 * state tex idx. Zero is invalid since there is at least one sampler
4429 * if we get here.
4430 */
4431 unsigned alt_tex_state[16] = {0};
4432 unsigned tex_idx = ctx->max_texture_index + 1;
4433 unsigned idx = 0;
4434
4435 so->astc_srgb.base = tex_idx;
4436
4437 for (unsigned i = 0; i < ctx->ir->astc_srgb_count; i++) {
4438 struct ir3_instruction *sam = ctx->ir->astc_srgb[i];
4439
4440 compile_assert(ctx, sam->cat5.tex < ARRAY_SIZE(alt_tex_state));
4441
4442 if (alt_tex_state[sam->cat5.tex] == 0) {
4443 /* assign new alternate/alpha tex state slot: */
4444 alt_tex_state[sam->cat5.tex] = tex_idx++;
4445 so->astc_srgb.orig_idx[idx++] = sam->cat5.tex;
4446 so->astc_srgb.count++;
4447 }
4448
4449 sam->cat5.tex = alt_tex_state[sam->cat5.tex];
4450 }
4451 }
4452
4453 /* Fixup tex sampler state for tg4 workaround instructions. We
4454 * need to assign the tex state indexes for these after we know the
4455 * max tex index.
4456 */
4457 static void
fixup_tg4(struct ir3_context * ctx)4458 fixup_tg4(struct ir3_context *ctx)
4459 {
4460 struct ir3_shader_variant *so = ctx->so;
4461 /* indexed by original tex idx, value is newly assigned alpha sampler
4462 * state tex idx. Zero is invalid since there is at least one sampler
4463 * if we get here.
4464 */
4465 unsigned alt_tex_state[16] = {0};
4466 unsigned tex_idx = ctx->max_texture_index + so->astc_srgb.count + 1;
4467 unsigned idx = 0;
4468
4469 so->tg4.base = tex_idx;
4470
4471 for (unsigned i = 0; i < ctx->ir->tg4_count; i++) {
4472 struct ir3_instruction *sam = ctx->ir->tg4[i];
4473
4474 compile_assert(ctx, sam->cat5.tex < ARRAY_SIZE(alt_tex_state));
4475
4476 if (alt_tex_state[sam->cat5.tex] == 0) {
4477 /* assign new alternate/alpha tex state slot: */
4478 alt_tex_state[sam->cat5.tex] = tex_idx++;
4479 so->tg4.orig_idx[idx++] = sam->cat5.tex;
4480 so->tg4.count++;
4481 }
4482
4483 sam->cat5.tex = alt_tex_state[sam->cat5.tex];
4484 }
4485 }
4486
4487 static bool
output_slot_used_for_binning(gl_varying_slot slot)4488 output_slot_used_for_binning(gl_varying_slot slot)
4489 {
4490 return slot == VARYING_SLOT_POS || slot == VARYING_SLOT_PSIZ ||
4491 slot == VARYING_SLOT_CLIP_DIST0 || slot == VARYING_SLOT_CLIP_DIST1 ||
4492 slot == VARYING_SLOT_VIEWPORT;
4493 }
4494
4495 static struct ir3_instruction *
find_end(struct ir3 * ir)4496 find_end(struct ir3 *ir)
4497 {
4498 foreach_block_rev (block, &ir->block_list) {
4499 foreach_instr_rev (instr, &block->instr_list) {
4500 if (instr->opc == OPC_END || instr->opc == OPC_CHMASK)
4501 return instr;
4502 }
4503 }
4504 unreachable("couldn't find end instruction");
4505 }
4506
4507 static void
fixup_binning_pass(struct ir3_context * ctx,struct ir3_instruction * end)4508 fixup_binning_pass(struct ir3_context *ctx, struct ir3_instruction *end)
4509 {
4510 struct ir3_shader_variant *so = ctx->so;
4511 unsigned i, j;
4512
4513 /* first pass, remove unused outputs from the IR level outputs: */
4514 for (i = 0, j = 0; i < end->srcs_count; i++) {
4515 unsigned outidx = end->end.outidxs[i];
4516 unsigned slot = so->outputs[outidx].slot;
4517
4518 if (output_slot_used_for_binning(slot)) {
4519 end->srcs[j] = end->srcs[i];
4520 end->end.outidxs[j] = end->end.outidxs[i];
4521 j++;
4522 }
4523 }
4524 end->srcs_count = j;
4525
4526 /* second pass, cleanup the unused slots in ir3_shader_variant::outputs
4527 * table:
4528 */
4529 for (i = 0, j = 0; i < so->outputs_count; i++) {
4530 unsigned slot = so->outputs[i].slot;
4531
4532 if (output_slot_used_for_binning(slot)) {
4533 so->outputs[j] = so->outputs[i];
4534
4535 /* fixup outidx to point to new output table entry: */
4536 for (unsigned k = 0; k < end->srcs_count; k++) {
4537 if (end->end.outidxs[k] == i) {
4538 end->end.outidxs[k] = j;
4539 break;
4540 }
4541 }
4542
4543 j++;
4544 }
4545 }
4546 so->outputs_count = j;
4547 }
4548
4549 static void
collect_tex_prefetches(struct ir3_context * ctx,struct ir3 * ir)4550 collect_tex_prefetches(struct ir3_context *ctx, struct ir3 *ir)
4551 {
4552 unsigned idx = 0;
4553
4554 /* Collect sampling instructions eligible for pre-dispatch. */
4555 foreach_block (block, &ir->block_list) {
4556 foreach_instr_safe (instr, &block->instr_list) {
4557 if (instr->opc == OPC_META_TEX_PREFETCH) {
4558 assert(idx < ARRAY_SIZE(ctx->so->sampler_prefetch));
4559 struct ir3_sampler_prefetch *fetch =
4560 &ctx->so->sampler_prefetch[idx];
4561 idx++;
4562
4563 if (instr->flags & IR3_INSTR_B) {
4564 fetch->cmd = IR3_SAMPLER_BINDLESS_PREFETCH_CMD;
4565 /* In bindless mode, the index is actually the base */
4566 fetch->tex_id = instr->prefetch.tex_base;
4567 fetch->samp_id = instr->prefetch.samp_base;
4568 fetch->tex_bindless_id = instr->prefetch.tex;
4569 fetch->samp_bindless_id = instr->prefetch.samp;
4570 } else {
4571 fetch->cmd = IR3_SAMPLER_PREFETCH_CMD;
4572 fetch->tex_id = instr->prefetch.tex;
4573 fetch->samp_id = instr->prefetch.samp;
4574 }
4575 fetch->wrmask = instr->dsts[0]->wrmask;
4576 fetch->dst = instr->dsts[0]->num;
4577 fetch->src = instr->prefetch.input_offset;
4578
4579 /* These are the limits on a5xx/a6xx, we might need to
4580 * revisit if SP_FS_PREFETCH[n] changes on later gens:
4581 */
4582 assert(fetch->dst <= 0x3f);
4583 assert(fetch->tex_id <= 0x1f);
4584 assert(fetch->samp_id <= 0xf);
4585
4586 ctx->so->total_in =
4587 MAX2(ctx->so->total_in, instr->prefetch.input_offset + 2);
4588
4589 fetch->half_precision = !!(instr->dsts[0]->flags & IR3_REG_HALF);
4590
4591 /* Remove the prefetch placeholder instruction: */
4592 list_delinit(&instr->node);
4593 }
4594 }
4595 }
4596 }
4597
4598 int
ir3_compile_shader_nir(struct ir3_compiler * compiler,struct ir3_shader * shader,struct ir3_shader_variant * so)4599 ir3_compile_shader_nir(struct ir3_compiler *compiler,
4600 struct ir3_shader *shader,
4601 struct ir3_shader_variant *so)
4602 {
4603 struct ir3_context *ctx;
4604 struct ir3 *ir;
4605 int ret = 0, max_bary;
4606 bool progress;
4607
4608 assert(!so->ir);
4609
4610 ctx = ir3_context_init(compiler, shader, so);
4611 if (!ctx) {
4612 DBG("INIT failed!");
4613 ret = -1;
4614 goto out;
4615 }
4616
4617 emit_instructions(ctx);
4618
4619 if (ctx->error) {
4620 DBG("EMIT failed!");
4621 ret = -1;
4622 goto out;
4623 }
4624
4625 ir = so->ir = ctx->ir;
4626
4627 if (gl_shader_stage_is_compute(so->type)) {
4628 so->local_size[0] = ctx->s->info.workgroup_size[0];
4629 so->local_size[1] = ctx->s->info.workgroup_size[1];
4630 so->local_size[2] = ctx->s->info.workgroup_size[2];
4631 so->local_size_variable = ctx->s->info.workgroup_size_variable;
4632 }
4633
4634 /* Vertex shaders in a tessellation or geometry pipeline treat END as a
4635 * NOP and has an epilogue that writes the VS outputs to local storage, to
4636 * be read by the HS. Then it resets execution mask (chmask) and chains
4637 * to the next shader (chsh). There are also a few output values which we
4638 * must send to the next stage via registers, and in order for both stages
4639 * to agree on the register used we must force these to be in specific
4640 * registers.
4641 */
4642 if ((so->type == MESA_SHADER_VERTEX &&
4643 (so->key.has_gs || so->key.tessellation)) ||
4644 (so->type == MESA_SHADER_TESS_EVAL && so->key.has_gs)) {
4645 struct ir3_instruction *outputs[3];
4646 unsigned outidxs[3];
4647 unsigned regids[3];
4648 unsigned outputs_count = 0;
4649
4650 if (ctx->primitive_id) {
4651 unsigned n = so->outputs_count++;
4652 so->outputs[n].slot = VARYING_SLOT_PRIMITIVE_ID;
4653
4654 struct ir3_instruction *out = ir3_collect(ctx->block, ctx->primitive_id);
4655 outputs[outputs_count] = out;
4656 outidxs[outputs_count] = n;
4657 if (so->type == MESA_SHADER_VERTEX && ctx->rel_patch_id)
4658 regids[outputs_count] = regid(0, 2);
4659 else
4660 regids[outputs_count] = regid(0, 1);
4661 outputs_count++;
4662 }
4663
4664 if (so->type == MESA_SHADER_VERTEX && ctx->rel_patch_id) {
4665 unsigned n = so->outputs_count++;
4666 so->outputs[n].slot = VARYING_SLOT_REL_PATCH_ID_IR3;
4667 struct ir3_instruction *out = ir3_collect(ctx->block, ctx->rel_patch_id);
4668 outputs[outputs_count] = out;
4669 outidxs[outputs_count] = n;
4670 regids[outputs_count] = regid(0, 1);
4671 outputs_count++;
4672 }
4673
4674 if (ctx->gs_header) {
4675 unsigned n = so->outputs_count++;
4676 so->outputs[n].slot = VARYING_SLOT_GS_HEADER_IR3;
4677 struct ir3_instruction *out = ir3_collect(ctx->block, ctx->gs_header);
4678 outputs[outputs_count] = out;
4679 outidxs[outputs_count] = n;
4680 regids[outputs_count] = regid(0, 0);
4681 outputs_count++;
4682 }
4683
4684 if (ctx->tcs_header) {
4685 unsigned n = so->outputs_count++;
4686 so->outputs[n].slot = VARYING_SLOT_TCS_HEADER_IR3;
4687 struct ir3_instruction *out = ir3_collect(ctx->block, ctx->tcs_header);
4688 outputs[outputs_count] = out;
4689 outidxs[outputs_count] = n;
4690 regids[outputs_count] = regid(0, 0);
4691 outputs_count++;
4692 }
4693
4694 struct ir3_instruction *chmask =
4695 ir3_instr_create(ctx->block, OPC_CHMASK, 0, outputs_count);
4696 chmask->barrier_class = IR3_BARRIER_EVERYTHING;
4697 chmask->barrier_conflict = IR3_BARRIER_EVERYTHING;
4698
4699 for (unsigned i = 0; i < outputs_count; i++)
4700 __ssa_src(chmask, outputs[i], 0)->num = regids[i];
4701
4702 chmask->end.outidxs = ralloc_array(chmask, unsigned, outputs_count);
4703 memcpy(chmask->end.outidxs, outidxs, sizeof(unsigned) * outputs_count);
4704
4705 array_insert(ctx->block, ctx->block->keeps, chmask);
4706
4707 struct ir3_instruction *chsh = ir3_CHSH(ctx->block);
4708 chsh->barrier_class = IR3_BARRIER_EVERYTHING;
4709 chsh->barrier_conflict = IR3_BARRIER_EVERYTHING;
4710 } else {
4711 assert((ctx->noutputs % 4) == 0);
4712 unsigned outidxs[ctx->noutputs / 4];
4713 struct ir3_instruction *outputs[ctx->noutputs / 4];
4714 unsigned outputs_count = 0;
4715
4716 struct ir3_block *b = ctx->block;
4717 /* Insert these collect's in the block before the end-block if
4718 * possible, so that any moves they generate can be shuffled around to
4719 * reduce nop's:
4720 */
4721 if (ctx->block->predecessors_count == 1)
4722 b = ctx->block->predecessors[0];
4723
4724 /* Setup IR level outputs, which are "collects" that gather
4725 * the scalar components of outputs.
4726 */
4727 for (unsigned i = 0; i < ctx->noutputs; i += 4) {
4728 unsigned ncomp = 0;
4729 /* figure out the # of components written:
4730 *
4731 * TODO do we need to handle holes, ie. if .x and .z
4732 * components written, but .y component not written?
4733 */
4734 for (unsigned j = 0; j < 4; j++) {
4735 if (!ctx->outputs[i + j])
4736 break;
4737 ncomp++;
4738 }
4739
4740 /* Note that in some stages, like TCS, store_output is
4741 * lowered to memory writes, so no components of the
4742 * are "written" from the PoV of traditional store-
4743 * output instructions:
4744 */
4745 if (!ncomp)
4746 continue;
4747
4748 struct ir3_instruction *out =
4749 ir3_create_collect(b, &ctx->outputs[i], ncomp);
4750
4751 int outidx = i / 4;
4752 assert(outidx < so->outputs_count);
4753
4754 outidxs[outputs_count] = outidx;
4755 outputs[outputs_count] = out;
4756 outputs_count++;
4757 }
4758
4759 /* for a6xx+, binning and draw pass VS use same VBO state, so we
4760 * need to make sure not to remove any inputs that are used by
4761 * the nonbinning VS.
4762 */
4763 if (ctx->compiler->gen >= 6 && so->binning_pass &&
4764 so->type == MESA_SHADER_VERTEX) {
4765 for (int i = 0; i < ctx->ninputs; i++) {
4766 struct ir3_instruction *in = ctx->inputs[i];
4767
4768 if (!in)
4769 continue;
4770
4771 unsigned n = i / 4;
4772 unsigned c = i % 4;
4773
4774 assert(n < so->nonbinning->inputs_count);
4775
4776 if (so->nonbinning->inputs[n].sysval)
4777 continue;
4778
4779 /* be sure to keep inputs, even if only used in VS */
4780 if (so->nonbinning->inputs[n].compmask & (1 << c))
4781 array_insert(in->block, in->block->keeps, in);
4782 }
4783 }
4784
4785 struct ir3_instruction *end =
4786 ir3_instr_create(ctx->block, OPC_END, 0, outputs_count);
4787
4788 for (unsigned i = 0; i < outputs_count; i++) {
4789 __ssa_src(end, outputs[i], 0);
4790 }
4791
4792 end->end.outidxs = ralloc_array(end, unsigned, outputs_count);
4793 memcpy(end->end.outidxs, outidxs, sizeof(unsigned) * outputs_count);
4794
4795 array_insert(ctx->block, ctx->block->keeps, end);
4796
4797 /* at this point, for binning pass, throw away unneeded outputs: */
4798 if (so->binning_pass && (ctx->compiler->gen < 6))
4799 fixup_binning_pass(ctx, end);
4800 }
4801
4802 ir3_debug_print(ir, "AFTER: nir->ir3");
4803 ir3_validate(ir);
4804
4805 IR3_PASS(ir, ir3_remove_unreachable);
4806
4807 IR3_PASS(ir, ir3_array_to_ssa);
4808
4809 do {
4810 progress = false;
4811
4812 /* the folding doesn't seem to work reliably on a4xx */
4813 if (ctx->compiler->gen != 4)
4814 progress |= IR3_PASS(ir, ir3_cf);
4815 progress |= IR3_PASS(ir, ir3_cp, so);
4816 progress |= IR3_PASS(ir, ir3_cse);
4817 progress |= IR3_PASS(ir, ir3_dce, so);
4818 } while (progress);
4819
4820 /* at this point, for binning pass, throw away unneeded outputs:
4821 * Note that for a6xx and later, we do this after ir3_cp to ensure
4822 * that the uniform/constant layout for BS and VS matches, so that
4823 * we can re-use same VS_CONST state group.
4824 */
4825 if (so->binning_pass && (ctx->compiler->gen >= 6)) {
4826 fixup_binning_pass(ctx, find_end(ctx->so->ir));
4827 /* cleanup the result of removing unneeded outputs: */
4828 while (IR3_PASS(ir, ir3_dce, so)) {
4829 }
4830 }
4831
4832 IR3_PASS(ir, ir3_sched_add_deps);
4833
4834 /* At this point, all the dead code should be long gone: */
4835 assert(!IR3_PASS(ir, ir3_dce, so));
4836
4837 ret = ir3_sched(ir);
4838 if (ret) {
4839 DBG("SCHED failed!");
4840 goto out;
4841 }
4842
4843 ir3_debug_print(ir, "AFTER: ir3_sched");
4844
4845 /* Pre-assign VS inputs on a6xx+ binning pass shader, to align
4846 * with draw pass VS, so binning and draw pass can both use the
4847 * same VBO state.
4848 *
4849 * Note that VS inputs are expected to be full precision.
4850 */
4851 bool pre_assign_inputs = (ir->compiler->gen >= 6) &&
4852 (ir->type == MESA_SHADER_VERTEX) &&
4853 so->binning_pass;
4854
4855 if (pre_assign_inputs) {
4856 foreach_input (in, ir) {
4857 assert(in->opc == OPC_META_INPUT);
4858 unsigned inidx = in->input.inidx;
4859
4860 in->dsts[0]->num = so->nonbinning->inputs[inidx].regid;
4861 }
4862 } else if (ctx->tcs_header) {
4863 /* We need to have these values in the same registers between VS and TCS
4864 * since the VS chains to TCS and doesn't get the sysvals redelivered.
4865 */
4866
4867 ctx->tcs_header->dsts[0]->num = regid(0, 0);
4868 ctx->rel_patch_id->dsts[0]->num = regid(0, 1);
4869 if (ctx->primitive_id)
4870 ctx->primitive_id->dsts[0]->num = regid(0, 2);
4871 } else if (ctx->gs_header) {
4872 /* We need to have these values in the same registers between producer
4873 * (VS or DS) and GS since the producer chains to GS and doesn't get
4874 * the sysvals redelivered.
4875 */
4876
4877 ctx->gs_header->dsts[0]->num = regid(0, 0);
4878 if (ctx->primitive_id)
4879 ctx->primitive_id->dsts[0]->num = regid(0, 1);
4880 } else if (so->num_sampler_prefetch) {
4881 assert(so->type == MESA_SHADER_FRAGMENT);
4882 int idx = 0;
4883
4884 foreach_input (instr, ir) {
4885 if (instr->input.sysval != SYSTEM_VALUE_BARYCENTRIC_PERSP_PIXEL)
4886 continue;
4887
4888 assert(idx < 2);
4889 instr->dsts[0]->num = idx;
4890 idx++;
4891 }
4892 }
4893
4894 ret = ir3_ra(so);
4895
4896 if (ret) {
4897 mesa_loge("ir3_ra() failed!");
4898 goto out;
4899 }
4900
4901 IR3_PASS(ir, ir3_postsched, so);
4902
4903 IR3_PASS(ir, ir3_legalize_relative);
4904 IR3_PASS(ir, ir3_lower_subgroups);
4905
4906 if (so->type == MESA_SHADER_FRAGMENT)
4907 pack_inlocs(ctx);
4908
4909 /*
4910 * Fixup inputs/outputs to point to the actual registers assigned:
4911 *
4912 * 1) initialize to r63.x (invalid/unused)
4913 * 2) iterate IR level inputs/outputs and update the variants
4914 * inputs/outputs table based on the assigned registers for
4915 * the remaining inputs/outputs.
4916 */
4917
4918 for (unsigned i = 0; i < so->inputs_count; i++)
4919 so->inputs[i].regid = INVALID_REG;
4920 for (unsigned i = 0; i < so->outputs_count; i++)
4921 so->outputs[i].regid = INVALID_REG;
4922
4923 struct ir3_instruction *end = find_end(so->ir);
4924
4925 for (unsigned i = 0; i < end->srcs_count; i++) {
4926 unsigned outidx = end->end.outidxs[i];
4927 struct ir3_register *reg = end->srcs[i];
4928
4929 so->outputs[outidx].regid = reg->num;
4930 so->outputs[outidx].half = !!(reg->flags & IR3_REG_HALF);
4931 }
4932
4933 foreach_input (in, ir) {
4934 assert(in->opc == OPC_META_INPUT);
4935 unsigned inidx = in->input.inidx;
4936
4937 if (pre_assign_inputs && !so->inputs[inidx].sysval) {
4938 if (VALIDREG(so->nonbinning->inputs[inidx].regid)) {
4939 compile_assert(
4940 ctx, in->dsts[0]->num == so->nonbinning->inputs[inidx].regid);
4941 compile_assert(ctx, !!(in->dsts[0]->flags & IR3_REG_HALF) ==
4942 so->nonbinning->inputs[inidx].half);
4943 }
4944 so->inputs[inidx].regid = so->nonbinning->inputs[inidx].regid;
4945 so->inputs[inidx].half = so->nonbinning->inputs[inidx].half;
4946 } else {
4947 so->inputs[inidx].regid = in->dsts[0]->num;
4948 so->inputs[inidx].half = !!(in->dsts[0]->flags & IR3_REG_HALF);
4949 }
4950 }
4951
4952 if (ctx->astc_srgb)
4953 fixup_astc_srgb(ctx);
4954
4955 if (ctx->compiler->gen == 4 && ctx->s->info.uses_texture_gather)
4956 fixup_tg4(ctx);
4957
4958 /* We need to do legalize after (for frag shader's) the "bary.f"
4959 * offsets (inloc) have been assigned.
4960 */
4961 IR3_PASS(ir, ir3_legalize, so, &max_bary);
4962
4963 /* Set (ss)(sy) on first TCS and GEOMETRY instructions, since we don't
4964 * know what we might have to wait on when coming in from VS chsh.
4965 */
4966 if (so->type == MESA_SHADER_TESS_CTRL || so->type == MESA_SHADER_GEOMETRY) {
4967 foreach_block (block, &ir->block_list) {
4968 foreach_instr (instr, &block->instr_list) {
4969 instr->flags |= IR3_INSTR_SS | IR3_INSTR_SY;
4970 break;
4971 }
4972 }
4973 }
4974
4975 so->branchstack = ctx->max_stack;
4976
4977 /* Note that max_bary counts inputs that are not bary.f'd for FS: */
4978 if (so->type == MESA_SHADER_FRAGMENT)
4979 so->total_in = max_bary + 1;
4980
4981 /* Collect sampling instructions eligible for pre-dispatch. */
4982 collect_tex_prefetches(ctx, ir);
4983
4984 if (so->type == MESA_SHADER_FRAGMENT &&
4985 ctx->s->info.fs.needs_quad_helper_invocations)
4986 so->need_pixlod = true;
4987
4988 if ((ctx->so->type == MESA_SHADER_FRAGMENT) &&
4989 !ctx->s->info.fs.early_fragment_tests)
4990 ctx->so->no_earlyz |= ctx->s->info.writes_memory;
4991
4992 out:
4993 if (ret) {
4994 if (so->ir)
4995 ir3_destroy(so->ir);
4996 so->ir = NULL;
4997 }
4998 ir3_context_free(ctx);
4999
5000 return ret;
5001 }
5002