• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3  * Scheduler internal types and methods:
4  */
5 #include <linux/sched.h>
6 
7 #include <linux/sched/autogroup.h>
8 #include <linux/sched/clock.h>
9 #include <linux/sched/coredump.h>
10 #include <linux/sched/cpufreq.h>
11 #include <linux/sched/cputime.h>
12 #include <linux/sched/deadline.h>
13 #include <linux/sched/debug.h>
14 #include <linux/sched/hotplug.h>
15 #include <linux/sched/idle.h>
16 #include <linux/sched/init.h>
17 #include <linux/sched/isolation.h>
18 #include <linux/sched/jobctl.h>
19 #include <linux/sched/loadavg.h>
20 #include <linux/sched/mm.h>
21 #include <linux/sched/nohz.h>
22 #include <linux/sched/numa_balancing.h>
23 #include <linux/sched/prio.h>
24 #include <linux/sched/rt.h>
25 #include <linux/sched/signal.h>
26 #include <linux/sched/smt.h>
27 #include <linux/sched/stat.h>
28 #include <linux/sched/sysctl.h>
29 #include <linux/sched/task.h>
30 #include <linux/sched/task_stack.h>
31 #include <linux/sched/topology.h>
32 #include <linux/sched/user.h>
33 #include <linux/sched/wake_q.h>
34 #include <linux/sched/xacct.h>
35 
36 #include <uapi/linux/sched/types.h>
37 
38 #include <linux/binfmts.h>
39 #include <linux/blkdev.h>
40 #include <linux/compat.h>
41 #include <linux/context_tracking.h>
42 #include <linux/cpufreq.h>
43 #include <linux/cpuidle.h>
44 #include <linux/cpuset.h>
45 #include <linux/ctype.h>
46 #include <linux/debugfs.h>
47 #include <linux/delayacct.h>
48 #include <linux/energy_model.h>
49 #include <linux/init_task.h>
50 #include <linux/kprobes.h>
51 #include <linux/kthread.h>
52 #include <linux/membarrier.h>
53 #include <linux/migrate.h>
54 #include <linux/mmu_context.h>
55 #include <linux/nmi.h>
56 #include <linux/proc_fs.h>
57 #include <linux/prefetch.h>
58 #include <linux/profile.h>
59 #include <linux/psi.h>
60 #include <linux/rcupdate_wait.h>
61 #include <linux/security.h>
62 #include <linux/stop_machine.h>
63 #include <linux/suspend.h>
64 #include <linux/swait.h>
65 #include <linux/syscalls.h>
66 #include <linux/task_work.h>
67 #include <linux/tsacct_kern.h>
68 
69 #include <asm/tlb.h>
70 #include <asm-generic/vmlinux.lds.h>
71 
72 #ifdef CONFIG_PARAVIRT
73 # include <asm/paravirt.h>
74 #endif
75 
76 #include "cpupri.h"
77 #include "cpudeadline.h"
78 
79 #include <trace/events/sched.h>
80 
81 #ifdef CONFIG_SCHED_DEBUG
82 # define SCHED_WARN_ON(x)	WARN_ONCE(x, #x)
83 #else
84 # define SCHED_WARN_ON(x)	({ (void)(x), 0; })
85 #endif
86 
87 struct rq;
88 struct cpuidle_state;
89 
90 #ifdef CONFIG_SCHED_RT_CAS
91 extern unsigned long uclamp_task_util(struct task_struct *p);
92 #endif
93 
94 #ifdef CONFIG_SCHED_WALT
95 extern unsigned int sched_ravg_window;
96 extern unsigned int walt_cpu_util_freq_divisor;
97 
98 struct walt_sched_stats {
99 	u64 cumulative_runnable_avg_scaled;
100 };
101 
102 struct load_subtractions {
103 	u64 window_start;
104 	u64 subs;
105 	u64 new_subs;
106 };
107 
108 #define NUM_TRACKED_WINDOWS 2
109 
110 struct sched_cluster {
111 	raw_spinlock_t load_lock;
112 	struct list_head list;
113 	struct cpumask cpus;
114 	int id;
115 	int max_power_cost;
116 	int min_power_cost;
117 	int max_possible_capacity;
118 	int capacity;
119 	int efficiency; /* Differentiate cpus with different IPC capability */
120 	int load_scale_factor;
121 	unsigned int exec_scale_factor;
122 	/*
123 	 * max_freq = user maximum
124 	 * max_possible_freq = maximum supported by hardware
125 	 */
126 	unsigned int cur_freq, max_freq, min_freq;
127 	unsigned int max_possible_freq;
128 	bool freq_init_done;
129 };
130 
131 extern unsigned int sched_disable_window_stats;
132 #endif /* CONFIG_SCHED_WALT */
133 
134 
135 /* task_struct::on_rq states: */
136 #define TASK_ON_RQ_QUEUED	1
137 #define TASK_ON_RQ_MIGRATING	2
138 
139 extern __read_mostly int scheduler_running;
140 
141 extern unsigned long calc_load_update;
142 extern atomic_long_t calc_load_tasks;
143 
144 extern void calc_global_load_tick(struct rq *this_rq);
145 extern long calc_load_fold_active(struct rq *this_rq, long adjust);
146 
147 #ifdef CONFIG_SMP
148 extern void init_sched_groups_capacity(int cpu, struct sched_domain *sd);
149 #endif
150 
151 extern void call_trace_sched_update_nr_running(struct rq *rq, int count);
152 /*
153  * Helpers for converting nanosecond timing to jiffy resolution
154  */
155 #define NS_TO_JIFFIES(TIME)	((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
156 
157 #ifdef CONFIG_SCHED_LATENCY_NICE
158 /*
159  * Latency nice is meant to provide scheduler hints about the relative
160  * latency requirements of a task with respect to other tasks.
161  * Thus a task with latency_nice == 19 can be hinted as the task with no
162  * latency requirements, in contrast to the task with latency_nice == -20
163  * which should be given priority in terms of lower latency.
164  */
165 #define MAX_LATENCY_NICE	19
166 #define MIN_LATENCY_NICE	-20
167 
168 #define LATENCY_NICE_WIDTH	\
169 	(MAX_LATENCY_NICE - MIN_LATENCY_NICE + 1)
170 
171 /*
172  * Default tasks should be treated as a task with latency_nice = 0.
173  */
174 #define DEFAULT_LATENCY_NICE	0
175 #define DEFAULT_LATENCY_PRIO	(DEFAULT_LATENCY_NICE + LATENCY_NICE_WIDTH/2)
176 
177 /*
178  * Convert user-nice values [ -20 ... 0 ... 19 ]
179  * to static latency [ 0..39 ],
180  * and back.
181  */
182 #define NICE_TO_LATENCY(nice)	((nice) + DEFAULT_LATENCY_PRIO)
183 #define LATENCY_TO_NICE(prio)	((prio) - DEFAULT_LATENCY_PRIO)
184 #define NICE_LATENCY_SHIFT	(SCHED_FIXEDPOINT_SHIFT)
185 #define NICE_LATENCY_WEIGHT_MAX	(1L << NICE_LATENCY_SHIFT)
186 #endif /* CONFIG_SCHED_LATENCY_NICE */
187 
188 /*
189  * Increase resolution of nice-level calculations for 64-bit architectures.
190  * The extra resolution improves shares distribution and load balancing of
191  * low-weight task groups (eg. nice +19 on an autogroup), deeper taskgroup
192  * hierarchies, especially on larger systems. This is not a user-visible change
193  * and does not change the user-interface for setting shares/weights.
194  *
195  * We increase resolution only if we have enough bits to allow this increased
196  * resolution (i.e. 64-bit). The costs for increasing resolution when 32-bit
197  * are pretty high and the returns do not justify the increased costs.
198  *
199  * Really only required when CONFIG_FAIR_GROUP_SCHED=y is also set, but to
200  * increase coverage and consistency always enable it on 64-bit platforms.
201  */
202 #ifdef CONFIG_64BIT
203 # define NICE_0_LOAD_SHIFT	(SCHED_FIXEDPOINT_SHIFT + SCHED_FIXEDPOINT_SHIFT)
204 # define scale_load(w)		((w) << SCHED_FIXEDPOINT_SHIFT)
205 # define scale_load_down(w) \
206 ({ \
207 	unsigned long __w = (w); \
208 	if (__w) \
209 		__w = max(2UL, __w >> SCHED_FIXEDPOINT_SHIFT); \
210 	__w; \
211 })
212 #else
213 # define NICE_0_LOAD_SHIFT	(SCHED_FIXEDPOINT_SHIFT)
214 # define scale_load(w)		(w)
215 # define scale_load_down(w)	(w)
216 #endif
217 
218 /*
219  * Task weight (visible to users) and its load (invisible to users) have
220  * independent resolution, but they should be well calibrated. We use
221  * scale_load() and scale_load_down(w) to convert between them. The
222  * following must be true:
223  *
224  *  scale_load(sched_prio_to_weight[USER_PRIO(NICE_TO_PRIO(0))]) == NICE_0_LOAD
225  *
226  */
227 #define NICE_0_LOAD		(1L << NICE_0_LOAD_SHIFT)
228 
229 /*
230  * Single value that decides SCHED_DEADLINE internal math precision.
231  * 10 -> just above 1us
232  * 9  -> just above 0.5us
233  */
234 #define DL_SCALE		10
235 
236 /*
237  * Single value that denotes runtime == period, ie unlimited time.
238  */
239 #define RUNTIME_INF		((u64)~0ULL)
240 
idle_policy(int policy)241 static inline int idle_policy(int policy)
242 {
243 	return policy == SCHED_IDLE;
244 }
fair_policy(int policy)245 static inline int fair_policy(int policy)
246 {
247 	return policy == SCHED_NORMAL || policy == SCHED_BATCH;
248 }
249 
rt_policy(int policy)250 static inline int rt_policy(int policy)
251 {
252 	return policy == SCHED_FIFO || policy == SCHED_RR;
253 }
254 
dl_policy(int policy)255 static inline int dl_policy(int policy)
256 {
257 	return policy == SCHED_DEADLINE;
258 }
valid_policy(int policy)259 static inline bool valid_policy(int policy)
260 {
261 	return idle_policy(policy) || fair_policy(policy) ||
262 		rt_policy(policy) || dl_policy(policy);
263 }
264 
task_has_idle_policy(struct task_struct * p)265 static inline int task_has_idle_policy(struct task_struct *p)
266 {
267 	return idle_policy(p->policy);
268 }
269 
task_has_rt_policy(struct task_struct * p)270 static inline int task_has_rt_policy(struct task_struct *p)
271 {
272 	return rt_policy(p->policy);
273 }
274 
task_has_dl_policy(struct task_struct * p)275 static inline int task_has_dl_policy(struct task_struct *p)
276 {
277 	return dl_policy(p->policy);
278 }
279 
280 #define cap_scale(v, s) ((v)*(s) >> SCHED_CAPACITY_SHIFT)
281 
update_avg(u64 * avg,u64 sample)282 static inline void update_avg(u64 *avg, u64 sample)
283 {
284 	s64 diff = sample - *avg;
285 	*avg += diff / 8;
286 }
287 
288 /*
289  * Shifting a value by an exponent greater *or equal* to the size of said value
290  * is UB; cap at size-1.
291  */
292 #define shr_bound(val, shift)							\
293 	(val >> min_t(typeof(shift), shift, BITS_PER_TYPE(typeof(val)) - 1))
294 
295 /*
296  * !! For sched_setattr_nocheck() (kernel) only !!
297  *
298  * This is actually gross. :(
299  *
300  * It is used to make schedutil kworker(s) higher priority than SCHED_DEADLINE
301  * tasks, but still be able to sleep. We need this on platforms that cannot
302  * atomically change clock frequency. Remove once fast switching will be
303  * available on such platforms.
304  *
305  * SUGOV stands for SchedUtil GOVernor.
306  */
307 #define SCHED_FLAG_SUGOV	0x10000000
308 
309 #define SCHED_DL_FLAGS (SCHED_FLAG_RECLAIM | SCHED_FLAG_DL_OVERRUN | SCHED_FLAG_SUGOV)
310 
dl_entity_is_special(struct sched_dl_entity * dl_se)311 static inline bool dl_entity_is_special(struct sched_dl_entity *dl_se)
312 {
313 #ifdef CONFIG_CPU_FREQ_GOV_SCHEDUTIL
314 	return unlikely(dl_se->flags & SCHED_FLAG_SUGOV);
315 #else
316 	return false;
317 #endif
318 }
319 
320 /*
321  * Tells if entity @a should preempt entity @b.
322  */
323 static inline bool
dl_entity_preempt(struct sched_dl_entity * a,struct sched_dl_entity * b)324 dl_entity_preempt(struct sched_dl_entity *a, struct sched_dl_entity *b)
325 {
326 	return dl_entity_is_special(a) ||
327 	       dl_time_before(a->deadline, b->deadline);
328 }
329 
330 /*
331  * This is the priority-queue data structure of the RT scheduling class:
332  */
333 struct rt_prio_array {
334 	DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
335 	struct list_head queue[MAX_RT_PRIO];
336 };
337 
338 struct rt_bandwidth {
339 	/* nests inside the rq lock: */
340 	raw_spinlock_t		rt_runtime_lock;
341 	ktime_t			rt_period;
342 	u64			rt_runtime;
343 	struct hrtimer		rt_period_timer;
344 	unsigned int		rt_period_active;
345 };
346 
347 void __dl_clear_params(struct task_struct *p);
348 
349 struct dl_bandwidth {
350 	raw_spinlock_t		dl_runtime_lock;
351 	u64			dl_runtime;
352 	u64			dl_period;
353 };
354 
dl_bandwidth_enabled(void)355 static inline int dl_bandwidth_enabled(void)
356 {
357 	return sysctl_sched_rt_runtime >= 0;
358 }
359 
360 /*
361  * To keep the bandwidth of -deadline tasks under control
362  * we need some place where:
363  *  - store the maximum -deadline bandwidth of each cpu;
364  *  - cache the fraction of bandwidth that is currently allocated in
365  *    each root domain;
366  *
367  * This is all done in the data structure below. It is similar to the
368  * one used for RT-throttling (rt_bandwidth), with the main difference
369  * that, since here we are only interested in admission control, we
370  * do not decrease any runtime while the group "executes", neither we
371  * need a timer to replenish it.
372  *
373  * With respect to SMP, bandwidth is given on a per root domain basis,
374  * meaning that:
375  *  - bw (< 100%) is the deadline bandwidth of each CPU;
376  *  - total_bw is the currently allocated bandwidth in each root domain;
377  */
378 struct dl_bw {
379 	raw_spinlock_t		lock;
380 	u64			bw;
381 	u64			total_bw;
382 };
383 
384 static inline void __dl_update(struct dl_bw *dl_b, s64 bw);
385 
386 static inline
__dl_sub(struct dl_bw * dl_b,u64 tsk_bw,int cpus)387 void __dl_sub(struct dl_bw *dl_b, u64 tsk_bw, int cpus)
388 {
389 	dl_b->total_bw -= tsk_bw;
390 	__dl_update(dl_b, (s32)tsk_bw / cpus);
391 }
392 
393 static inline
__dl_add(struct dl_bw * dl_b,u64 tsk_bw,int cpus)394 void __dl_add(struct dl_bw *dl_b, u64 tsk_bw, int cpus)
395 {
396 	dl_b->total_bw += tsk_bw;
397 	__dl_update(dl_b, -((s32)tsk_bw / cpus));
398 }
399 
__dl_overflow(struct dl_bw * dl_b,unsigned long cap,u64 old_bw,u64 new_bw)400 static inline bool __dl_overflow(struct dl_bw *dl_b, unsigned long cap,
401 				 u64 old_bw, u64 new_bw)
402 {
403 	return dl_b->bw != -1 &&
404 	       cap_scale(dl_b->bw, cap) < dl_b->total_bw - old_bw + new_bw;
405 }
406 
407 /*
408  * Verify the fitness of task @p to run on @cpu taking into account the
409  * CPU original capacity and the runtime/deadline ratio of the task.
410  *
411  * The function will return true if the CPU original capacity of the
412  * @cpu scaled by SCHED_CAPACITY_SCALE >= runtime/deadline ratio of the
413  * task and false otherwise.
414  */
dl_task_fits_capacity(struct task_struct * p,int cpu)415 static inline bool dl_task_fits_capacity(struct task_struct *p, int cpu)
416 {
417 	unsigned long cap = arch_scale_cpu_capacity(cpu);
418 
419 	return cap_scale(p->dl.dl_deadline, cap) >= p->dl.dl_runtime;
420 }
421 
422 extern void init_dl_bw(struct dl_bw *dl_b);
423 extern int  sched_dl_global_validate(void);
424 extern void sched_dl_do_global(void);
425 extern int  sched_dl_overflow(struct task_struct *p, int policy, const struct sched_attr *attr);
426 extern void __setparam_dl(struct task_struct *p, const struct sched_attr *attr);
427 extern void __getparam_dl(struct task_struct *p, struct sched_attr *attr);
428 extern bool __checkparam_dl(const struct sched_attr *attr);
429 extern bool dl_param_changed(struct task_struct *p, const struct sched_attr *attr);
430 extern int  dl_cpuset_cpumask_can_shrink(const struct cpumask *cur, const struct cpumask *trial);
431 extern int  dl_cpu_busy(int cpu, struct task_struct *p);
432 
433 #ifdef CONFIG_CGROUP_SCHED
434 
435 #include <linux/cgroup.h>
436 #include <linux/psi.h>
437 
438 struct cfs_rq;
439 struct rt_rq;
440 
441 extern struct list_head task_groups;
442 
443 struct cfs_bandwidth {
444 #ifdef CONFIG_CFS_BANDWIDTH
445 	raw_spinlock_t		lock;
446 	ktime_t			period;
447 	u64			quota;
448 	u64			runtime;
449 	s64			hierarchical_quota;
450 
451 	u8			idle;
452 	u8			period_active;
453 	u8			slack_started;
454 	struct hrtimer		period_timer;
455 	struct hrtimer		slack_timer;
456 	struct list_head	throttled_cfs_rq;
457 
458 	/* Statistics: */
459 	int			nr_periods;
460 	int			nr_throttled;
461 	u64			throttled_time;
462 #endif
463 };
464 
465 /* Task group related information */
466 struct task_group {
467 	struct cgroup_subsys_state css;
468 
469 #ifdef CONFIG_FAIR_GROUP_SCHED
470 	/* schedulable entities of this group on each CPU */
471 	struct sched_entity	**se;
472 	/* runqueue "owned" by this group on each CPU */
473 	struct cfs_rq		**cfs_rq;
474 	unsigned long		shares;
475 
476 #ifdef	CONFIG_SMP
477 	/*
478 	 * load_avg can be heavily contended at clock tick time, so put
479 	 * it in its own cacheline separated from the fields above which
480 	 * will also be accessed at each tick.
481 	 */
482 	atomic_long_t		load_avg ____cacheline_aligned;
483 #endif
484 #endif
485 
486 #ifdef CONFIG_RT_GROUP_SCHED
487 	struct sched_rt_entity	**rt_se;
488 	struct rt_rq		**rt_rq;
489 
490 	struct rt_bandwidth	rt_bandwidth;
491 #endif
492 
493 	struct rcu_head		rcu;
494 	struct list_head	list;
495 
496 	struct task_group	*parent;
497 	struct list_head	siblings;
498 	struct list_head	children;
499 
500 #ifdef CONFIG_SCHED_AUTOGROUP
501 	struct autogroup	*autogroup;
502 #endif
503 
504 	struct cfs_bandwidth	cfs_bandwidth;
505 
506 #ifdef CONFIG_UCLAMP_TASK_GROUP
507 	/* The two decimal precision [%] value requested from user-space */
508 	unsigned int		uclamp_pct[UCLAMP_CNT];
509 	/* Clamp values requested for a task group */
510 	struct uclamp_se	uclamp_req[UCLAMP_CNT];
511 	/* Effective clamp values used for a task group */
512 	struct uclamp_se	uclamp[UCLAMP_CNT];
513 #endif
514 
515 #ifdef CONFIG_SCHED_RTG_CGROUP
516 	/*
517 	 * Controls whether tasks of this cgroup should be colocated with each
518 	 * other and tasks of other cgroups that have the same flag turned on.
519 	 */
520 	bool colocate;
521 
522 	/* Controls whether further updates are allowed to the colocate flag */
523 	bool colocate_update_disabled;
524 #endif
525 };
526 
527 #ifdef CONFIG_FAIR_GROUP_SCHED
528 #define ROOT_TASK_GROUP_LOAD	NICE_0_LOAD
529 
530 /*
531  * A weight of 0 or 1 can cause arithmetics problems.
532  * A weight of a cfs_rq is the sum of weights of which entities
533  * are queued on this cfs_rq, so a weight of a entity should not be
534  * too large, so as the shares value of a task group.
535  * (The default weight is 1024 - so there's no practical
536  *  limitation from this.)
537  */
538 #define MIN_SHARES		(1UL <<  1)
539 #define MAX_SHARES		(1UL << 18)
540 #endif
541 
542 typedef int (*tg_visitor)(struct task_group *, void *);
543 
544 extern int walk_tg_tree_from(struct task_group *from,
545 			     tg_visitor down, tg_visitor up, void *data);
546 
547 /*
548  * Iterate the full tree, calling @down when first entering a node and @up when
549  * leaving it for the final time.
550  *
551  * Caller must hold rcu_lock or sufficient equivalent.
552  */
walk_tg_tree(tg_visitor down,tg_visitor up,void * data)553 static inline int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
554 {
555 	return walk_tg_tree_from(&root_task_group, down, up, data);
556 }
557 
558 extern int tg_nop(struct task_group *tg, void *data);
559 
560 extern void free_fair_sched_group(struct task_group *tg);
561 extern int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent);
562 extern void online_fair_sched_group(struct task_group *tg);
563 extern void unregister_fair_sched_group(struct task_group *tg);
564 extern void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
565 			struct sched_entity *se, int cpu,
566 			struct sched_entity *parent);
567 extern void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b);
568 
569 extern void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b);
570 extern void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b);
571 extern void unthrottle_cfs_rq(struct cfs_rq *cfs_rq);
572 
573 extern void free_rt_sched_group(struct task_group *tg);
574 extern int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent);
575 extern void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
576 		struct sched_rt_entity *rt_se, int cpu,
577 		struct sched_rt_entity *parent);
578 extern int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us);
579 extern int sched_group_set_rt_period(struct task_group *tg, u64 rt_period_us);
580 extern long sched_group_rt_runtime(struct task_group *tg);
581 extern long sched_group_rt_period(struct task_group *tg);
582 extern int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk);
583 
584 extern struct task_group *sched_create_group(struct task_group *parent);
585 extern void sched_online_group(struct task_group *tg,
586 			       struct task_group *parent);
587 extern void sched_destroy_group(struct task_group *tg);
588 extern void sched_offline_group(struct task_group *tg);
589 
590 extern void sched_move_task(struct task_struct *tsk);
591 
592 #ifdef CONFIG_FAIR_GROUP_SCHED
593 extern int sched_group_set_shares(struct task_group *tg, unsigned long shares);
594 
595 #ifdef CONFIG_SMP
596 extern void set_task_rq_fair(struct sched_entity *se,
597 			     struct cfs_rq *prev, struct cfs_rq *next);
598 #else /* !CONFIG_SMP */
set_task_rq_fair(struct sched_entity * se,struct cfs_rq * prev,struct cfs_rq * next)599 static inline void set_task_rq_fair(struct sched_entity *se,
600 			     struct cfs_rq *prev, struct cfs_rq *next) { }
601 #endif /* CONFIG_SMP */
602 #endif /* CONFIG_FAIR_GROUP_SCHED */
603 
604 #else /* CONFIG_CGROUP_SCHED */
605 
606 struct cfs_bandwidth { };
607 
608 #endif	/* CONFIG_CGROUP_SCHED */
609 
610 /* CFS-related fields in a runqueue */
611 struct cfs_rq {
612 	struct load_weight	load;
613 	unsigned int		nr_running;
614 	unsigned int		h_nr_running;      /* SCHED_{NORMAL,BATCH,IDLE} */
615 	unsigned int		idle_h_nr_running; /* SCHED_IDLE */
616 
617 	u64			exec_clock;
618 	u64			min_vruntime;
619 #ifndef CONFIG_64BIT
620 	u64			min_vruntime_copy;
621 #endif
622 
623 	struct rb_root_cached	tasks_timeline;
624 
625 	/*
626 	 * 'curr' points to currently running entity on this cfs_rq.
627 	 * It is set to NULL otherwise (i.e when none are currently running).
628 	 */
629 	struct sched_entity	*curr;
630 	struct sched_entity	*next;
631 	struct sched_entity	*last;
632 	struct sched_entity	*skip;
633 
634 #ifdef	CONFIG_SCHED_DEBUG
635 	unsigned int		nr_spread_over;
636 #endif
637 
638 #ifdef CONFIG_SMP
639 	/*
640 	 * CFS load tracking
641 	 */
642 	struct sched_avg	avg;
643 #ifndef CONFIG_64BIT
644 	u64			load_last_update_time_copy;
645 #endif
646 	struct {
647 		raw_spinlock_t	lock ____cacheline_aligned;
648 		int		nr;
649 		unsigned long	load_avg;
650 		unsigned long	util_avg;
651 		unsigned long	runnable_avg;
652 	} removed;
653 
654 #ifdef CONFIG_FAIR_GROUP_SCHED
655 	unsigned long		tg_load_avg_contrib;
656 	long			propagate;
657 	long			prop_runnable_sum;
658 
659 	/*
660 	 *   h_load = weight * f(tg)
661 	 *
662 	 * Where f(tg) is the recursive weight fraction assigned to
663 	 * this group.
664 	 */
665 	unsigned long		h_load;
666 	u64			last_h_load_update;
667 	struct sched_entity	*h_load_next;
668 #endif /* CONFIG_FAIR_GROUP_SCHED */
669 #endif /* CONFIG_SMP */
670 
671 #ifdef CONFIG_FAIR_GROUP_SCHED
672 	struct rq		*rq;	/* CPU runqueue to which this cfs_rq is attached */
673 
674 	/*
675 	 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
676 	 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
677 	 * (like users, containers etc.)
678 	 *
679 	 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a CPU.
680 	 * This list is used during load balance.
681 	 */
682 	int			on_list;
683 	struct list_head	leaf_cfs_rq_list;
684 	struct task_group	*tg;	/* group that "owns" this runqueue */
685 
686 #ifdef CONFIG_SCHED_WALT
687 	struct walt_sched_stats walt_stats;
688 #endif
689 
690 #ifdef CONFIG_CFS_BANDWIDTH
691 	int			runtime_enabled;
692 	s64			runtime_remaining;
693 
694 	u64			throttled_clock;
695 	u64			throttled_clock_pelt;
696 	u64			throttled_clock_pelt_time;
697 	int			throttled;
698 	int			throttle_count;
699 	struct list_head	throttled_list;
700 #ifdef CONFIG_SCHED_WALT
701 	u64 cumulative_runnable_avg;
702 #endif
703 #endif /* CONFIG_CFS_BANDWIDTH */
704 #endif /* CONFIG_FAIR_GROUP_SCHED */
705 };
706 
rt_bandwidth_enabled(void)707 static inline int rt_bandwidth_enabled(void)
708 {
709 	return sysctl_sched_rt_runtime >= 0;
710 }
711 
712 /* RT IPI pull logic requires IRQ_WORK */
713 #if defined(CONFIG_IRQ_WORK) && defined(CONFIG_SMP)
714 # define HAVE_RT_PUSH_IPI
715 #endif
716 
717 /* Real-Time classes' related field in a runqueue: */
718 struct rt_rq {
719 	struct rt_prio_array	active;
720 	unsigned int		rt_nr_running;
721 	unsigned int		rr_nr_running;
722 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
723 	struct {
724 		int		curr; /* highest queued rt task prio */
725 #ifdef CONFIG_SMP
726 		int		next; /* next highest */
727 #endif
728 	} highest_prio;
729 #endif
730 #ifdef CONFIG_SMP
731 	unsigned long		rt_nr_migratory;
732 	unsigned long		rt_nr_total;
733 	int			overloaded;
734 	struct plist_head	pushable_tasks;
735 
736 #endif /* CONFIG_SMP */
737 	int			rt_queued;
738 
739 	int			rt_throttled;
740 	u64			rt_time;
741 	u64			rt_runtime;
742 	/* Nests inside the rq lock: */
743 	raw_spinlock_t		rt_runtime_lock;
744 
745 #ifdef CONFIG_RT_GROUP_SCHED
746 	unsigned long		rt_nr_boosted;
747 
748 	struct rq		*rq;
749 	struct task_group	*tg;
750 #endif
751 };
752 
rt_rq_is_runnable(struct rt_rq * rt_rq)753 static inline bool rt_rq_is_runnable(struct rt_rq *rt_rq)
754 {
755 	return rt_rq->rt_queued && rt_rq->rt_nr_running;
756 }
757 
758 /* Deadline class' related fields in a runqueue */
759 struct dl_rq {
760 	/* runqueue is an rbtree, ordered by deadline */
761 	struct rb_root_cached	root;
762 
763 	unsigned long		dl_nr_running;
764 
765 #ifdef CONFIG_SMP
766 	/*
767 	 * Deadline values of the currently executing and the
768 	 * earliest ready task on this rq. Caching these facilitates
769 	 * the decision whether or not a ready but not running task
770 	 * should migrate somewhere else.
771 	 */
772 	struct {
773 		u64		curr;
774 		u64		next;
775 	} earliest_dl;
776 
777 	unsigned long		dl_nr_migratory;
778 	int			overloaded;
779 
780 	/*
781 	 * Tasks on this rq that can be pushed away. They are kept in
782 	 * an rb-tree, ordered by tasks' deadlines, with caching
783 	 * of the leftmost (earliest deadline) element.
784 	 */
785 	struct rb_root_cached	pushable_dl_tasks_root;
786 #else
787 	struct dl_bw		dl_bw;
788 #endif
789 	/*
790 	 * "Active utilization" for this runqueue: increased when a
791 	 * task wakes up (becomes TASK_RUNNING) and decreased when a
792 	 * task blocks
793 	 */
794 	u64			running_bw;
795 
796 	/*
797 	 * Utilization of the tasks "assigned" to this runqueue (including
798 	 * the tasks that are in runqueue and the tasks that executed on this
799 	 * CPU and blocked). Increased when a task moves to this runqueue, and
800 	 * decreased when the task moves away (migrates, changes scheduling
801 	 * policy, or terminates).
802 	 * This is needed to compute the "inactive utilization" for the
803 	 * runqueue (inactive utilization = this_bw - running_bw).
804 	 */
805 	u64			this_bw;
806 	u64			extra_bw;
807 
808 	/*
809 	 * Inverse of the fraction of CPU utilization that can be reclaimed
810 	 * by the GRUB algorithm.
811 	 */
812 	u64			bw_ratio;
813 };
814 
815 #ifdef CONFIG_FAIR_GROUP_SCHED
816 /* An entity is a task if it doesn't "own" a runqueue */
817 #define entity_is_task(se)	(!se->my_q)
818 
se_update_runnable(struct sched_entity * se)819 static inline void se_update_runnable(struct sched_entity *se)
820 {
821 	if (!entity_is_task(se))
822 		se->runnable_weight = se->my_q->h_nr_running;
823 }
824 
se_runnable(struct sched_entity * se)825 static inline long se_runnable(struct sched_entity *se)
826 {
827 	if (entity_is_task(se))
828 		return !!se->on_rq;
829 	else
830 		return se->runnable_weight;
831 }
832 
833 #else
834 #define entity_is_task(se)	1
835 
se_update_runnable(struct sched_entity * se)836 static inline void se_update_runnable(struct sched_entity *se) {}
837 
se_runnable(struct sched_entity * se)838 static inline long se_runnable(struct sched_entity *se)
839 {
840 	return !!se->on_rq;
841 }
842 #endif
843 
844 #ifdef CONFIG_SMP
845 /*
846  * XXX we want to get rid of these helpers and use the full load resolution.
847  */
se_weight(struct sched_entity * se)848 static inline long se_weight(struct sched_entity *se)
849 {
850 	return scale_load_down(se->load.weight);
851 }
852 
853 
sched_asym_prefer(int a,int b)854 static inline bool sched_asym_prefer(int a, int b)
855 {
856 	return arch_asym_cpu_priority(a) > arch_asym_cpu_priority(b);
857 }
858 
859 struct perf_domain {
860 	struct em_perf_domain *em_pd;
861 	struct perf_domain *next;
862 	struct rcu_head rcu;
863 };
864 
865 /* Scheduling group status flags */
866 #define SG_OVERLOAD		0x1 /* More than one runnable task on a CPU. */
867 #define SG_OVERUTILIZED		0x2 /* One or more CPUs are over-utilized. */
868 
869 /*
870  * We add the notion of a root-domain which will be used to define per-domain
871  * variables. Each exclusive cpuset essentially defines an island domain by
872  * fully partitioning the member CPUs from any other cpuset. Whenever a new
873  * exclusive cpuset is created, we also create and attach a new root-domain
874  * object.
875  *
876  */
877 struct root_domain {
878 	atomic_t		refcount;
879 	atomic_t		rto_count;
880 	struct rcu_head		rcu;
881 	cpumask_var_t		span;
882 	cpumask_var_t		online;
883 
884 	/*
885 	 * Indicate pullable load on at least one CPU, e.g:
886 	 * - More than one runnable task
887 	 * - Running task is misfit
888 	 */
889 	int			overload;
890 
891 	/* Indicate one or more cpus over-utilized (tipping point) */
892 	int			overutilized;
893 
894 	/*
895 	 * The bit corresponding to a CPU gets set here if such CPU has more
896 	 * than one runnable -deadline task (as it is below for RT tasks).
897 	 */
898 	cpumask_var_t		dlo_mask;
899 	atomic_t		dlo_count;
900 	struct dl_bw		dl_bw;
901 	struct cpudl		cpudl;
902 
903 #ifdef HAVE_RT_PUSH_IPI
904 	/*
905 	 * For IPI pull requests, loop across the rto_mask.
906 	 */
907 	struct irq_work		rto_push_work;
908 	raw_spinlock_t		rto_lock;
909 	/* These are only updated and read within rto_lock */
910 	int			rto_loop;
911 	int			rto_cpu;
912 	/* These atomics are updated outside of a lock */
913 	atomic_t		rto_loop_next;
914 	atomic_t		rto_loop_start;
915 #endif
916 	/*
917 	 * The "RT overload" flag: it gets set if a CPU has more than
918 	 * one runnable RT task.
919 	 */
920 	cpumask_var_t		rto_mask;
921 	struct cpupri		cpupri;
922 
923 	unsigned long		max_cpu_capacity;
924 
925 	/*
926 	 * NULL-terminated list of performance domains intersecting with the
927 	 * CPUs of the rd. Protected by RCU.
928 	 */
929 	struct perf_domain __rcu *pd;
930 #ifdef CONFIG_SCHED_RT_CAS
931 	int max_cap_orig_cpu;
932 #endif
933 };
934 
935 extern void init_defrootdomain(void);
936 extern int sched_init_domains(const struct cpumask *cpu_map);
937 extern void rq_attach_root(struct rq *rq, struct root_domain *rd);
938 extern void sched_get_rd(struct root_domain *rd);
939 extern void sched_put_rd(struct root_domain *rd);
940 
941 #ifdef HAVE_RT_PUSH_IPI
942 extern void rto_push_irq_work_func(struct irq_work *work);
943 #endif
944 #endif /* CONFIG_SMP */
945 
946 #ifdef CONFIG_UCLAMP_TASK
947 /*
948  * struct uclamp_bucket - Utilization clamp bucket
949  * @value: utilization clamp value for tasks on this clamp bucket
950  * @tasks: number of RUNNABLE tasks on this clamp bucket
951  *
952  * Keep track of how many tasks are RUNNABLE for a given utilization
953  * clamp value.
954  */
955 struct uclamp_bucket {
956 	unsigned long value : bits_per(SCHED_CAPACITY_SCALE);
957 	unsigned long tasks : BITS_PER_LONG - bits_per(SCHED_CAPACITY_SCALE);
958 };
959 
960 /*
961  * struct uclamp_rq - rq's utilization clamp
962  * @value: currently active clamp values for a rq
963  * @bucket: utilization clamp buckets affecting a rq
964  *
965  * Keep track of RUNNABLE tasks on a rq to aggregate their clamp values.
966  * A clamp value is affecting a rq when there is at least one task RUNNABLE
967  * (or actually running) with that value.
968  *
969  * There are up to UCLAMP_CNT possible different clamp values, currently there
970  * are only two: minimum utilization and maximum utilization.
971  *
972  * All utilization clamping values are MAX aggregated, since:
973  * - for util_min: we want to run the CPU at least at the max of the minimum
974  *   utilization required by its currently RUNNABLE tasks.
975  * - for util_max: we want to allow the CPU to run up to the max of the
976  *   maximum utilization allowed by its currently RUNNABLE tasks.
977  *
978  * Since on each system we expect only a limited number of different
979  * utilization clamp values (UCLAMP_BUCKETS), use a simple array to track
980  * the metrics required to compute all the per-rq utilization clamp values.
981  */
982 struct uclamp_rq {
983 	unsigned int value;
984 	struct uclamp_bucket bucket[UCLAMP_BUCKETS];
985 };
986 
987 DECLARE_STATIC_KEY_FALSE(sched_uclamp_used);
988 #endif /* CONFIG_UCLAMP_TASK */
989 
990 /*
991  * This is the main, per-CPU runqueue data structure.
992  *
993  * Locking rule: those places that want to lock multiple runqueues
994  * (such as the load balancing or the thread migration code), lock
995  * acquire operations must be ordered by ascending &runqueue.
996  */
997 struct rq {
998 	/* runqueue lock: */
999 	raw_spinlock_t		lock;
1000 
1001 	/*
1002 	 * nr_running and cpu_load should be in the same cacheline because
1003 	 * remote CPUs use both these fields when doing load calculation.
1004 	 */
1005 	unsigned int		nr_running;
1006 #ifdef CONFIG_NUMA_BALANCING
1007 	unsigned int		nr_numa_running;
1008 	unsigned int		nr_preferred_running;
1009 	unsigned int		numa_migrate_on;
1010 #endif
1011 #ifdef CONFIG_NO_HZ_COMMON
1012 #ifdef CONFIG_SMP
1013 	unsigned long		last_blocked_load_update_tick;
1014 	unsigned int		has_blocked_load;
1015 	call_single_data_t	nohz_csd;
1016 #endif /* CONFIG_SMP */
1017 	unsigned int		nohz_tick_stopped;
1018 	atomic_t		nohz_flags;
1019 #endif /* CONFIG_NO_HZ_COMMON */
1020 
1021 #ifdef CONFIG_SMP
1022 	unsigned int		ttwu_pending;
1023 #endif
1024 	u64			nr_switches;
1025 
1026 #ifdef CONFIG_UCLAMP_TASK
1027 	/* Utilization clamp values based on CPU's RUNNABLE tasks */
1028 	struct uclamp_rq	uclamp[UCLAMP_CNT] ____cacheline_aligned;
1029 	unsigned int		uclamp_flags;
1030 #define UCLAMP_FLAG_IDLE 0x01
1031 #endif
1032 
1033 	struct cfs_rq		cfs;
1034 	struct rt_rq		rt;
1035 	struct dl_rq		dl;
1036 
1037 #ifdef CONFIG_FAIR_GROUP_SCHED
1038 	/* list of leaf cfs_rq on this CPU: */
1039 	struct list_head	leaf_cfs_rq_list;
1040 	struct list_head	*tmp_alone_branch;
1041 #endif /* CONFIG_FAIR_GROUP_SCHED */
1042 
1043 	/*
1044 	 * This is part of a global counter where only the total sum
1045 	 * over all CPUs matters. A task can increase this counter on
1046 	 * one CPU and if it got migrated afterwards it may decrease
1047 	 * it on another CPU. Always updated under the runqueue lock:
1048 	 */
1049 	unsigned long		nr_uninterruptible;
1050 
1051 	struct task_struct __rcu	*curr;
1052 	struct task_struct	*idle;
1053 	struct task_struct	*stop;
1054 	unsigned long		next_balance;
1055 	struct mm_struct	*prev_mm;
1056 
1057 	unsigned int		clock_update_flags;
1058 	u64			clock;
1059 	/* Ensure that all clocks are in the same cache line */
1060 	u64			clock_task ____cacheline_aligned;
1061 	u64			clock_pelt;
1062 	unsigned long		lost_idle_time;
1063 
1064 	atomic_t		nr_iowait;
1065 
1066 #ifdef CONFIG_MEMBARRIER
1067 	int membarrier_state;
1068 #endif
1069 
1070 #ifdef CONFIG_SMP
1071 	struct root_domain		*rd;
1072 	struct sched_domain __rcu	*sd;
1073 
1074 	unsigned long		cpu_capacity;
1075 	unsigned long		cpu_capacity_orig;
1076 
1077 	struct callback_head	*balance_callback;
1078 
1079 	unsigned char		nohz_idle_balance;
1080 	unsigned char		idle_balance;
1081 
1082 	unsigned long		misfit_task_load;
1083 
1084 	/* For active balancing */
1085 	int			active_balance;
1086 	int			push_cpu;
1087 #ifdef CONFIG_SCHED_EAS
1088 	struct task_struct	*push_task;
1089 #endif
1090 	struct cpu_stop_work	active_balance_work;
1091 
1092 	/* For rt active balancing */
1093 #ifdef CONFIG_SCHED_RT_ACTIVE_LB
1094 	int rt_active_balance;
1095 	struct task_struct *rt_push_task;
1096 	struct cpu_stop_work rt_active_balance_work;
1097 #endif
1098 
1099 	/* CPU of this runqueue: */
1100 	int			cpu;
1101 	int			online;
1102 
1103 	struct list_head cfs_tasks;
1104 
1105 	struct sched_avg	avg_rt;
1106 	struct sched_avg	avg_dl;
1107 #ifdef CONFIG_HAVE_SCHED_AVG_IRQ
1108 	struct sched_avg	avg_irq;
1109 #endif
1110 #ifdef CONFIG_SCHED_THERMAL_PRESSURE
1111 	struct sched_avg	avg_thermal;
1112 #endif
1113 	u64			idle_stamp;
1114 	u64			avg_idle;
1115 
1116 	/* This is used to determine avg_idle's max value */
1117 	u64			max_idle_balance_cost;
1118 #endif /* CONFIG_SMP */
1119 
1120 #ifdef CONFIG_SCHED_WALT
1121 	struct sched_cluster *cluster;
1122 	struct cpumask freq_domain_cpumask;
1123 	struct walt_sched_stats walt_stats;
1124 
1125 	u64 window_start;
1126 	unsigned long walt_flags;
1127 
1128 	u64 cur_irqload;
1129 	u64 avg_irqload;
1130 	u64 irqload_ts;
1131 	u64 curr_runnable_sum;
1132 	u64 prev_runnable_sum;
1133 	u64 nt_curr_runnable_sum;
1134 	u64 nt_prev_runnable_sum;
1135 	u64 cum_window_demand_scaled;
1136 	struct load_subtractions load_subs[NUM_TRACKED_WINDOWS];
1137 #ifdef CONFIG_SCHED_RTG
1138 	struct group_cpu_time grp_time;
1139 #endif
1140 #endif /* CONFIG_SCHED_WALT */
1141 
1142 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
1143 	u64			prev_irq_time;
1144 #endif
1145 #ifdef CONFIG_PARAVIRT
1146 	u64			prev_steal_time;
1147 #endif
1148 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
1149 	u64			prev_steal_time_rq;
1150 #endif
1151 
1152 	/* calc_load related fields */
1153 	unsigned long		calc_load_update;
1154 	long			calc_load_active;
1155 
1156 #ifdef CONFIG_SCHED_HRTICK
1157 #ifdef CONFIG_SMP
1158 	call_single_data_t	hrtick_csd;
1159 #endif
1160 	struct hrtimer		hrtick_timer;
1161 	ktime_t 		hrtick_time;
1162 #endif
1163 
1164 #ifdef CONFIG_SCHEDSTATS
1165 	/* latency stats */
1166 	struct sched_info	rq_sched_info;
1167 	unsigned long long	rq_cpu_time;
1168 	/* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
1169 
1170 	/* sys_sched_yield() stats */
1171 	unsigned int		yld_count;
1172 
1173 	/* schedule() stats */
1174 	unsigned int		sched_count;
1175 	unsigned int		sched_goidle;
1176 
1177 	/* try_to_wake_up() stats */
1178 	unsigned int		ttwu_count;
1179 	unsigned int		ttwu_local;
1180 #endif
1181 
1182 #ifdef CONFIG_CPU_IDLE
1183 	/* Must be inspected within a rcu lock section */
1184 	struct cpuidle_state	*idle_state;
1185 #endif
1186 };
1187 
1188 #ifdef CONFIG_FAIR_GROUP_SCHED
1189 
1190 /* CPU runqueue to which this cfs_rq is attached */
rq_of(struct cfs_rq * cfs_rq)1191 static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
1192 {
1193 	return cfs_rq->rq;
1194 }
1195 
1196 #else
1197 
rq_of(struct cfs_rq * cfs_rq)1198 static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
1199 {
1200 	return container_of(cfs_rq, struct rq, cfs);
1201 }
1202 #endif
1203 
cpu_of(struct rq * rq)1204 static inline int cpu_of(struct rq *rq)
1205 {
1206 #ifdef CONFIG_SMP
1207 	return rq->cpu;
1208 #else
1209 	return 0;
1210 #endif
1211 }
1212 
1213 
1214 #ifdef CONFIG_SCHED_SMT
1215 extern void __update_idle_core(struct rq *rq);
1216 
update_idle_core(struct rq * rq)1217 static inline void update_idle_core(struct rq *rq)
1218 {
1219 	if (static_branch_unlikely(&sched_smt_present))
1220 		__update_idle_core(rq);
1221 }
1222 
1223 #else
update_idle_core(struct rq * rq)1224 static inline void update_idle_core(struct rq *rq) { }
1225 #endif
1226 
1227 DECLARE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
1228 
1229 #define cpu_rq(cpu)		(&per_cpu(runqueues, (cpu)))
1230 #define this_rq()		this_cpu_ptr(&runqueues)
1231 #define task_rq(p)		cpu_rq(task_cpu(p))
1232 #define cpu_curr(cpu)		(cpu_rq(cpu)->curr)
1233 #define raw_rq()		raw_cpu_ptr(&runqueues)
1234 
1235 extern void update_rq_clock(struct rq *rq);
1236 
__rq_clock_broken(struct rq * rq)1237 static inline u64 __rq_clock_broken(struct rq *rq)
1238 {
1239 	return READ_ONCE(rq->clock);
1240 }
1241 
1242 /*
1243  * rq::clock_update_flags bits
1244  *
1245  * %RQCF_REQ_SKIP - will request skipping of clock update on the next
1246  *  call to __schedule(). This is an optimisation to avoid
1247  *  neighbouring rq clock updates.
1248  *
1249  * %RQCF_ACT_SKIP - is set from inside of __schedule() when skipping is
1250  *  in effect and calls to update_rq_clock() are being ignored.
1251  *
1252  * %RQCF_UPDATED - is a debug flag that indicates whether a call has been
1253  *  made to update_rq_clock() since the last time rq::lock was pinned.
1254  *
1255  * If inside of __schedule(), clock_update_flags will have been
1256  * shifted left (a left shift is a cheap operation for the fast path
1257  * to promote %RQCF_REQ_SKIP to %RQCF_ACT_SKIP), so you must use,
1258  *
1259  *	if (rq-clock_update_flags >= RQCF_UPDATED)
1260  *
1261  * to check if %RQCF_UPADTED is set. It'll never be shifted more than
1262  * one position though, because the next rq_unpin_lock() will shift it
1263  * back.
1264  */
1265 #define RQCF_REQ_SKIP		0x01
1266 #define RQCF_ACT_SKIP		0x02
1267 #define RQCF_UPDATED		0x04
1268 
assert_clock_updated(struct rq * rq)1269 static inline void assert_clock_updated(struct rq *rq)
1270 {
1271 	/*
1272 	 * The only reason for not seeing a clock update since the
1273 	 * last rq_pin_lock() is if we're currently skipping updates.
1274 	 */
1275 	SCHED_WARN_ON(rq->clock_update_flags < RQCF_ACT_SKIP);
1276 }
1277 
rq_clock(struct rq * rq)1278 static inline u64 rq_clock(struct rq *rq)
1279 {
1280 	lockdep_assert_held(&rq->lock);
1281 	assert_clock_updated(rq);
1282 
1283 	return rq->clock;
1284 }
1285 
rq_clock_task(struct rq * rq)1286 static inline u64 rq_clock_task(struct rq *rq)
1287 {
1288 	lockdep_assert_held(&rq->lock);
1289 	assert_clock_updated(rq);
1290 
1291 	return rq->clock_task;
1292 }
1293 
1294 /**
1295  * By default the decay is the default pelt decay period.
1296  * The decay shift can change the decay period in
1297  * multiples of 32.
1298  *  Decay shift		Decay period(ms)
1299  *	0			32
1300  *	1			64
1301  *	2			128
1302  *	3			256
1303  *	4			512
1304  */
1305 extern int sched_thermal_decay_shift;
1306 
rq_clock_thermal(struct rq * rq)1307 static inline u64 rq_clock_thermal(struct rq *rq)
1308 {
1309 	return rq_clock_task(rq) >> sched_thermal_decay_shift;
1310 }
1311 
rq_clock_skip_update(struct rq * rq)1312 static inline void rq_clock_skip_update(struct rq *rq)
1313 {
1314 	lockdep_assert_held(&rq->lock);
1315 	rq->clock_update_flags |= RQCF_REQ_SKIP;
1316 }
1317 
1318 /*
1319  * See rt task throttling, which is the only time a skip
1320  * request is cancelled.
1321  */
rq_clock_cancel_skipupdate(struct rq * rq)1322 static inline void rq_clock_cancel_skipupdate(struct rq *rq)
1323 {
1324 	lockdep_assert_held(&rq->lock);
1325 	rq->clock_update_flags &= ~RQCF_REQ_SKIP;
1326 }
1327 
1328 struct rq_flags {
1329 	unsigned long flags;
1330 	struct pin_cookie cookie;
1331 #ifdef CONFIG_SCHED_DEBUG
1332 	/*
1333 	 * A copy of (rq::clock_update_flags & RQCF_UPDATED) for the
1334 	 * current pin context is stashed here in case it needs to be
1335 	 * restored in rq_repin_lock().
1336 	 */
1337 	unsigned int clock_update_flags;
1338 #endif
1339 };
1340 
1341 /*
1342  * Lockdep annotation that avoids accidental unlocks; it's like a
1343  * sticky/continuous lockdep_assert_held().
1344  *
1345  * This avoids code that has access to 'struct rq *rq' (basically everything in
1346  * the scheduler) from accidentally unlocking the rq if they do not also have a
1347  * copy of the (on-stack) 'struct rq_flags rf'.
1348  *
1349  * Also see Documentation/locking/lockdep-design.rst.
1350  */
rq_pin_lock(struct rq * rq,struct rq_flags * rf)1351 static inline void rq_pin_lock(struct rq *rq, struct rq_flags *rf)
1352 {
1353 	rf->cookie = lockdep_pin_lock(&rq->lock);
1354 
1355 #ifdef CONFIG_SCHED_DEBUG
1356 	rq->clock_update_flags &= (RQCF_REQ_SKIP|RQCF_ACT_SKIP);
1357 	rf->clock_update_flags = 0;
1358 #endif
1359 }
1360 
rq_unpin_lock(struct rq * rq,struct rq_flags * rf)1361 static inline void rq_unpin_lock(struct rq *rq, struct rq_flags *rf)
1362 {
1363 #ifdef CONFIG_SCHED_DEBUG
1364 	if (rq->clock_update_flags > RQCF_ACT_SKIP)
1365 		rf->clock_update_flags = RQCF_UPDATED;
1366 #endif
1367 
1368 	lockdep_unpin_lock(&rq->lock, rf->cookie);
1369 }
1370 
rq_repin_lock(struct rq * rq,struct rq_flags * rf)1371 static inline void rq_repin_lock(struct rq *rq, struct rq_flags *rf)
1372 {
1373 	lockdep_repin_lock(&rq->lock, rf->cookie);
1374 
1375 #ifdef CONFIG_SCHED_DEBUG
1376 	/*
1377 	 * Restore the value we stashed in @rf for this pin context.
1378 	 */
1379 	rq->clock_update_flags |= rf->clock_update_flags;
1380 #endif
1381 }
1382 
1383 struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf)
1384 	__acquires(rq->lock);
1385 
1386 struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf)
1387 	__acquires(p->pi_lock)
1388 	__acquires(rq->lock);
1389 
__task_rq_unlock(struct rq * rq,struct rq_flags * rf)1390 static inline void __task_rq_unlock(struct rq *rq, struct rq_flags *rf)
1391 	__releases(rq->lock)
1392 {
1393 	rq_unpin_lock(rq, rf);
1394 	raw_spin_unlock(&rq->lock);
1395 }
1396 
1397 static inline void
task_rq_unlock(struct rq * rq,struct task_struct * p,struct rq_flags * rf)1398 task_rq_unlock(struct rq *rq, struct task_struct *p, struct rq_flags *rf)
1399 	__releases(rq->lock)
1400 	__releases(p->pi_lock)
1401 {
1402 	rq_unpin_lock(rq, rf);
1403 	raw_spin_unlock(&rq->lock);
1404 	raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags);
1405 }
1406 
1407 static inline void
rq_lock_irqsave(struct rq * rq,struct rq_flags * rf)1408 rq_lock_irqsave(struct rq *rq, struct rq_flags *rf)
1409 	__acquires(rq->lock)
1410 {
1411 	raw_spin_lock_irqsave(&rq->lock, rf->flags);
1412 	rq_pin_lock(rq, rf);
1413 }
1414 
1415 static inline void
rq_lock_irq(struct rq * rq,struct rq_flags * rf)1416 rq_lock_irq(struct rq *rq, struct rq_flags *rf)
1417 	__acquires(rq->lock)
1418 {
1419 	raw_spin_lock_irq(&rq->lock);
1420 	rq_pin_lock(rq, rf);
1421 }
1422 
1423 static inline void
rq_lock(struct rq * rq,struct rq_flags * rf)1424 rq_lock(struct rq *rq, struct rq_flags *rf)
1425 	__acquires(rq->lock)
1426 {
1427 	raw_spin_lock(&rq->lock);
1428 	rq_pin_lock(rq, rf);
1429 }
1430 
1431 static inline void
rq_relock(struct rq * rq,struct rq_flags * rf)1432 rq_relock(struct rq *rq, struct rq_flags *rf)
1433 	__acquires(rq->lock)
1434 {
1435 	raw_spin_lock(&rq->lock);
1436 	rq_repin_lock(rq, rf);
1437 }
1438 
1439 static inline void
rq_unlock_irqrestore(struct rq * rq,struct rq_flags * rf)1440 rq_unlock_irqrestore(struct rq *rq, struct rq_flags *rf)
1441 	__releases(rq->lock)
1442 {
1443 	rq_unpin_lock(rq, rf);
1444 	raw_spin_unlock_irqrestore(&rq->lock, rf->flags);
1445 }
1446 
1447 static inline void
rq_unlock_irq(struct rq * rq,struct rq_flags * rf)1448 rq_unlock_irq(struct rq *rq, struct rq_flags *rf)
1449 	__releases(rq->lock)
1450 {
1451 	rq_unpin_lock(rq, rf);
1452 	raw_spin_unlock_irq(&rq->lock);
1453 }
1454 
1455 static inline void
rq_unlock(struct rq * rq,struct rq_flags * rf)1456 rq_unlock(struct rq *rq, struct rq_flags *rf)
1457 	__releases(rq->lock)
1458 {
1459 	rq_unpin_lock(rq, rf);
1460 	raw_spin_unlock(&rq->lock);
1461 }
1462 
1463 static inline struct rq *
this_rq_lock_irq(struct rq_flags * rf)1464 this_rq_lock_irq(struct rq_flags *rf)
1465 	__acquires(rq->lock)
1466 {
1467 	struct rq *rq;
1468 
1469 	local_irq_disable();
1470 	rq = this_rq();
1471 	rq_lock(rq, rf);
1472 	return rq;
1473 }
1474 
1475 #ifdef CONFIG_NUMA
1476 enum numa_topology_type {
1477 	NUMA_DIRECT,
1478 	NUMA_GLUELESS_MESH,
1479 	NUMA_BACKPLANE,
1480 };
1481 extern enum numa_topology_type sched_numa_topology_type;
1482 extern int sched_max_numa_distance;
1483 extern bool find_numa_distance(int distance);
1484 extern void sched_init_numa(void);
1485 extern void sched_domains_numa_masks_set(unsigned int cpu);
1486 extern void sched_domains_numa_masks_clear(unsigned int cpu);
1487 extern int sched_numa_find_closest(const struct cpumask *cpus, int cpu);
1488 #else
sched_init_numa(void)1489 static inline void sched_init_numa(void) { }
sched_domains_numa_masks_set(unsigned int cpu)1490 static inline void sched_domains_numa_masks_set(unsigned int cpu) { }
sched_domains_numa_masks_clear(unsigned int cpu)1491 static inline void sched_domains_numa_masks_clear(unsigned int cpu) { }
sched_numa_find_closest(const struct cpumask * cpus,int cpu)1492 static inline int sched_numa_find_closest(const struct cpumask *cpus, int cpu)
1493 {
1494 	return nr_cpu_ids;
1495 }
1496 #endif
1497 
1498 #ifdef CONFIG_NUMA_BALANCING
1499 /* The regions in numa_faults array from task_struct */
1500 enum numa_faults_stats {
1501 	NUMA_MEM = 0,
1502 	NUMA_CPU,
1503 	NUMA_MEMBUF,
1504 	NUMA_CPUBUF
1505 };
1506 extern void sched_setnuma(struct task_struct *p, int node);
1507 extern int migrate_task_to(struct task_struct *p, int cpu);
1508 extern int migrate_swap(struct task_struct *p, struct task_struct *t,
1509 			int cpu, int scpu);
1510 extern void init_numa_balancing(unsigned long clone_flags, struct task_struct *p);
1511 #else
1512 static inline void
init_numa_balancing(unsigned long clone_flags,struct task_struct * p)1513 init_numa_balancing(unsigned long clone_flags, struct task_struct *p)
1514 {
1515 }
1516 #endif /* CONFIG_NUMA_BALANCING */
1517 
1518 #ifdef CONFIG_SMP
1519 
1520 static inline void
queue_balance_callback(struct rq * rq,struct callback_head * head,void (* func)(struct rq * rq))1521 queue_balance_callback(struct rq *rq,
1522 		       struct callback_head *head,
1523 		       void (*func)(struct rq *rq))
1524 {
1525 	lockdep_assert_held(&rq->lock);
1526 
1527 	if (unlikely(head->next))
1528 		return;
1529 
1530 	head->func = (void (*)(struct callback_head *))func;
1531 	head->next = rq->balance_callback;
1532 	rq->balance_callback = head;
1533 }
1534 
1535 #define rcu_dereference_check_sched_domain(p) \
1536 	rcu_dereference_check((p), \
1537 			      lockdep_is_held(&sched_domains_mutex))
1538 
1539 /*
1540  * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
1541  * See destroy_sched_domains: call_rcu for details.
1542  *
1543  * The domain tree of any CPU may only be accessed from within
1544  * preempt-disabled sections.
1545  */
1546 #define for_each_domain(cpu, __sd) \
1547 	for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); \
1548 			__sd; __sd = __sd->parent)
1549 
1550 /**
1551  * highest_flag_domain - Return highest sched_domain containing flag.
1552  * @cpu:	The CPU whose highest level of sched domain is to
1553  *		be returned.
1554  * @flag:	The flag to check for the highest sched_domain
1555  *		for the given CPU.
1556  *
1557  * Returns the highest sched_domain of a CPU which contains the given flag.
1558  */
highest_flag_domain(int cpu,int flag)1559 static inline struct sched_domain *highest_flag_domain(int cpu, int flag)
1560 {
1561 	struct sched_domain *sd, *hsd = NULL;
1562 
1563 	for_each_domain(cpu, sd) {
1564 		if (!(sd->flags & flag))
1565 			break;
1566 		hsd = sd;
1567 	}
1568 
1569 	return hsd;
1570 }
1571 
lowest_flag_domain(int cpu,int flag)1572 static inline struct sched_domain *lowest_flag_domain(int cpu, int flag)
1573 {
1574 	struct sched_domain *sd;
1575 
1576 	for_each_domain(cpu, sd) {
1577 		if (sd->flags & flag)
1578 			break;
1579 	}
1580 
1581 	return sd;
1582 }
1583 
1584 DECLARE_PER_CPU(struct sched_domain __rcu *, sd_llc);
1585 DECLARE_PER_CPU(int, sd_llc_size);
1586 DECLARE_PER_CPU(int, sd_llc_id);
1587 DECLARE_PER_CPU(struct sched_domain_shared __rcu *, sd_llc_shared);
1588 DECLARE_PER_CPU(struct sched_domain __rcu *, sd_numa);
1589 DECLARE_PER_CPU(struct sched_domain __rcu *, sd_asym_packing);
1590 DECLARE_PER_CPU(struct sched_domain __rcu *, sd_asym_cpucapacity);
1591 extern struct static_key_false sched_asym_cpucapacity;
1592 
1593 struct sched_group_capacity {
1594 	atomic_t		ref;
1595 	/*
1596 	 * CPU capacity of this group, SCHED_CAPACITY_SCALE being max capacity
1597 	 * for a single CPU.
1598 	 */
1599 	unsigned long		capacity;
1600 	unsigned long		min_capacity;		/* Min per-CPU capacity in group */
1601 	unsigned long		max_capacity;		/* Max per-CPU capacity in group */
1602 	unsigned long		next_update;
1603 	int			imbalance;		/* XXX unrelated to capacity but shared group state */
1604 
1605 #ifdef CONFIG_SCHED_DEBUG
1606 	int			id;
1607 #endif
1608 
1609 	unsigned long		cpumask[];		/* Balance mask */
1610 };
1611 
1612 struct sched_group {
1613 	struct sched_group	*next;			/* Must be a circular list */
1614 	atomic_t		ref;
1615 
1616 	unsigned int		group_weight;
1617 	struct sched_group_capacity *sgc;
1618 	int			asym_prefer_cpu;	/* CPU of highest priority in group */
1619 
1620 	/*
1621 	 * The CPUs this group covers.
1622 	 *
1623 	 * NOTE: this field is variable length. (Allocated dynamically
1624 	 * by attaching extra space to the end of the structure,
1625 	 * depending on how many CPUs the kernel has booted up with)
1626 	 */
1627 	unsigned long		cpumask[];
1628 };
1629 
sched_group_span(struct sched_group * sg)1630 static inline struct cpumask *sched_group_span(struct sched_group *sg)
1631 {
1632 	return to_cpumask(sg->cpumask);
1633 }
1634 
1635 /*
1636  * See build_balance_mask().
1637  */
group_balance_mask(struct sched_group * sg)1638 static inline struct cpumask *group_balance_mask(struct sched_group *sg)
1639 {
1640 	return to_cpumask(sg->sgc->cpumask);
1641 }
1642 
1643 /**
1644  * group_first_cpu - Returns the first CPU in the cpumask of a sched_group.
1645  * @group: The group whose first CPU is to be returned.
1646  */
group_first_cpu(struct sched_group * group)1647 static inline unsigned int group_first_cpu(struct sched_group *group)
1648 {
1649 	return cpumask_first(sched_group_span(group));
1650 }
1651 
1652 extern int group_balance_cpu(struct sched_group *sg);
1653 
1654 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
1655 void register_sched_domain_sysctl(void);
1656 void dirty_sched_domain_sysctl(int cpu);
1657 void unregister_sched_domain_sysctl(void);
1658 #else
register_sched_domain_sysctl(void)1659 static inline void register_sched_domain_sysctl(void)
1660 {
1661 }
dirty_sched_domain_sysctl(int cpu)1662 static inline void dirty_sched_domain_sysctl(int cpu)
1663 {
1664 }
unregister_sched_domain_sysctl(void)1665 static inline void unregister_sched_domain_sysctl(void)
1666 {
1667 }
1668 #endif
1669 
1670 extern void flush_smp_call_function_from_idle(void);
1671 
1672 #else /* !CONFIG_SMP: */
flush_smp_call_function_from_idle(void)1673 static inline void flush_smp_call_function_from_idle(void) { }
1674 #endif
1675 
1676 #include "stats.h"
1677 #include "autogroup.h"
1678 
1679 #ifdef CONFIG_CGROUP_SCHED
1680 
1681 /*
1682  * Return the group to which this tasks belongs.
1683  *
1684  * We cannot use task_css() and friends because the cgroup subsystem
1685  * changes that value before the cgroup_subsys::attach() method is called,
1686  * therefore we cannot pin it and might observe the wrong value.
1687  *
1688  * The same is true for autogroup's p->signal->autogroup->tg, the autogroup
1689  * core changes this before calling sched_move_task().
1690  *
1691  * Instead we use a 'copy' which is updated from sched_move_task() while
1692  * holding both task_struct::pi_lock and rq::lock.
1693  */
task_group(struct task_struct * p)1694 static inline struct task_group *task_group(struct task_struct *p)
1695 {
1696 	return p->sched_task_group;
1697 }
1698 
1699 /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
set_task_rq(struct task_struct * p,unsigned int cpu)1700 static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
1701 {
1702 #if defined(CONFIG_FAIR_GROUP_SCHED) || defined(CONFIG_RT_GROUP_SCHED)
1703 	struct task_group *tg = task_group(p);
1704 #endif
1705 
1706 #ifdef CONFIG_FAIR_GROUP_SCHED
1707 	set_task_rq_fair(&p->se, p->se.cfs_rq, tg->cfs_rq[cpu]);
1708 	p->se.cfs_rq = tg->cfs_rq[cpu];
1709 	p->se.parent = tg->se[cpu];
1710 #endif
1711 
1712 #ifdef CONFIG_RT_GROUP_SCHED
1713 	p->rt.rt_rq  = tg->rt_rq[cpu];
1714 	p->rt.parent = tg->rt_se[cpu];
1715 #endif
1716 }
1717 
1718 #else /* CONFIG_CGROUP_SCHED */
1719 
set_task_rq(struct task_struct * p,unsigned int cpu)1720 static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
task_group(struct task_struct * p)1721 static inline struct task_group *task_group(struct task_struct *p)
1722 {
1723 	return NULL;
1724 }
1725 
1726 #endif /* CONFIG_CGROUP_SCHED */
1727 
__set_task_cpu(struct task_struct * p,unsigned int cpu)1728 static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1729 {
1730 	set_task_rq(p, cpu);
1731 #ifdef CONFIG_SMP
1732 	/*
1733 	 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1734 	 * successfully executed on another CPU. We must ensure that updates of
1735 	 * per-task data have been completed by this moment.
1736 	 */
1737 	smp_wmb();
1738 #ifdef CONFIG_THREAD_INFO_IN_TASK
1739 	WRITE_ONCE(p->cpu, cpu);
1740 #else
1741 	WRITE_ONCE(task_thread_info(p)->cpu, cpu);
1742 #endif
1743 	p->wake_cpu = cpu;
1744 #endif
1745 }
1746 
1747 /*
1748  * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
1749  */
1750 #ifdef CONFIG_SCHED_DEBUG
1751 # include <linux/static_key.h>
1752 # define const_debug __read_mostly
1753 #else
1754 # define const_debug const
1755 #endif
1756 
1757 #define SCHED_FEAT(name, enabled)	\
1758 	__SCHED_FEAT_##name ,
1759 
1760 enum {
1761 #include "features.h"
1762 	__SCHED_FEAT_NR,
1763 };
1764 
1765 #undef SCHED_FEAT
1766 
1767 #ifdef CONFIG_SCHED_DEBUG
1768 
1769 /*
1770  * To support run-time toggling of sched features, all the translation units
1771  * (but core.c) reference the sysctl_sched_features defined in core.c.
1772  */
1773 extern const_debug unsigned int sysctl_sched_features;
1774 
1775 #ifdef CONFIG_JUMP_LABEL
1776 #define SCHED_FEAT(name, enabled)					\
1777 static __always_inline bool static_branch_##name(struct static_key *key) \
1778 {									\
1779 	return static_key_##enabled(key);				\
1780 }
1781 
1782 #include "features.h"
1783 #undef SCHED_FEAT
1784 
1785 extern struct static_key sched_feat_keys[__SCHED_FEAT_NR];
1786 #define sched_feat(x) (static_branch_##x(&sched_feat_keys[__SCHED_FEAT_##x]))
1787 
1788 #else /* !CONFIG_JUMP_LABEL */
1789 
1790 #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
1791 
1792 #endif /* CONFIG_JUMP_LABEL */
1793 
1794 #else /* !SCHED_DEBUG */
1795 
1796 /*
1797  * Each translation unit has its own copy of sysctl_sched_features to allow
1798  * constants propagation at compile time and compiler optimization based on
1799  * features default.
1800  */
1801 #define SCHED_FEAT(name, enabled)	\
1802 	(1UL << __SCHED_FEAT_##name) * enabled |
1803 static const_debug __maybe_unused unsigned int sysctl_sched_features =
1804 #include "features.h"
1805 	0;
1806 #undef SCHED_FEAT
1807 
1808 #define sched_feat(x) !!(sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
1809 
1810 #endif /* SCHED_DEBUG */
1811 
1812 extern struct static_key_false sched_numa_balancing;
1813 extern struct static_key_false sched_schedstats;
1814 
global_rt_period(void)1815 static inline u64 global_rt_period(void)
1816 {
1817 	return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
1818 }
1819 
global_rt_runtime(void)1820 static inline u64 global_rt_runtime(void)
1821 {
1822 	if (sysctl_sched_rt_runtime < 0)
1823 		return RUNTIME_INF;
1824 
1825 	return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
1826 }
1827 
task_current(struct rq * rq,struct task_struct * p)1828 static inline int task_current(struct rq *rq, struct task_struct *p)
1829 {
1830 	return rq->curr == p;
1831 }
1832 
task_running(struct rq * rq,struct task_struct * p)1833 static inline int task_running(struct rq *rq, struct task_struct *p)
1834 {
1835 #ifdef CONFIG_SMP
1836 	return p->on_cpu;
1837 #else
1838 	return task_current(rq, p);
1839 #endif
1840 }
1841 
task_on_rq_queued(struct task_struct * p)1842 static inline int task_on_rq_queued(struct task_struct *p)
1843 {
1844 	return p->on_rq == TASK_ON_RQ_QUEUED;
1845 }
1846 
task_on_rq_migrating(struct task_struct * p)1847 static inline int task_on_rq_migrating(struct task_struct *p)
1848 {
1849 	return READ_ONCE(p->on_rq) == TASK_ON_RQ_MIGRATING;
1850 }
1851 
1852 /*
1853  * wake flags
1854  */
1855 #define WF_SYNC			0x01		/* Waker goes to sleep after wakeup */
1856 #define WF_FORK			0x02		/* Child wakeup after fork */
1857 #define WF_MIGRATED		0x04		/* Internal use, task got migrated */
1858 #define WF_ON_CPU		0x08		/* Wakee is on_cpu */
1859 
1860 /*
1861  * To aid in avoiding the subversion of "niceness" due to uneven distribution
1862  * of tasks with abnormal "nice" values across CPUs the contribution that
1863  * each task makes to its run queue's load is weighted according to its
1864  * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
1865  * scaled version of the new time slice allocation that they receive on time
1866  * slice expiry etc.
1867  */
1868 
1869 #define WEIGHT_IDLEPRIO		3
1870 #define WMULT_IDLEPRIO		1431655765
1871 
1872 extern const int		sched_prio_to_weight[40];
1873 extern const u32		sched_prio_to_wmult[40];
1874 #ifdef CONFIG_SCHED_LATENCY_NICE
1875 extern const int		sched_latency_to_weight[40];
1876 #endif
1877 
1878 /*
1879  * {de,en}queue flags:
1880  *
1881  * DEQUEUE_SLEEP  - task is no longer runnable
1882  * ENQUEUE_WAKEUP - task just became runnable
1883  *
1884  * SAVE/RESTORE - an otherwise spurious dequeue/enqueue, done to ensure tasks
1885  *                are in a known state which allows modification. Such pairs
1886  *                should preserve as much state as possible.
1887  *
1888  * MOVE - paired with SAVE/RESTORE, explicitly does not preserve the location
1889  *        in the runqueue.
1890  *
1891  * ENQUEUE_HEAD      - place at front of runqueue (tail if not specified)
1892  * ENQUEUE_REPLENISH - CBS (replenish runtime and postpone deadline)
1893  * ENQUEUE_MIGRATED  - the task was migrated during wakeup
1894  *
1895  */
1896 
1897 #define DEQUEUE_SLEEP		0x01
1898 #define DEQUEUE_SAVE		0x02 /* Matches ENQUEUE_RESTORE */
1899 #define DEQUEUE_MOVE		0x04 /* Matches ENQUEUE_MOVE */
1900 #define DEQUEUE_NOCLOCK		0x08 /* Matches ENQUEUE_NOCLOCK */
1901 
1902 #define ENQUEUE_WAKEUP		0x01
1903 #define ENQUEUE_RESTORE		0x02
1904 #define ENQUEUE_MOVE		0x04
1905 #define ENQUEUE_NOCLOCK		0x08
1906 
1907 #define ENQUEUE_HEAD		0x10
1908 #define ENQUEUE_REPLENISH	0x20
1909 #ifdef CONFIG_SMP
1910 #define ENQUEUE_MIGRATED	0x40
1911 #else
1912 #define ENQUEUE_MIGRATED	0x00
1913 #endif
1914 
1915 #define RETRY_TASK		((void *)-1UL)
1916 
1917 struct sched_class {
1918 
1919 #ifdef CONFIG_UCLAMP_TASK
1920 	int uclamp_enabled;
1921 #endif
1922 
1923 	void (*enqueue_task) (struct rq *rq, struct task_struct *p, int flags);
1924 	void (*dequeue_task) (struct rq *rq, struct task_struct *p, int flags);
1925 	void (*yield_task)   (struct rq *rq);
1926 	bool (*yield_to_task)(struct rq *rq, struct task_struct *p);
1927 
1928 	void (*check_preempt_curr)(struct rq *rq, struct task_struct *p, int flags);
1929 
1930 	struct task_struct *(*pick_next_task)(struct rq *rq);
1931 
1932 	void (*put_prev_task)(struct rq *rq, struct task_struct *p);
1933 	void (*set_next_task)(struct rq *rq, struct task_struct *p, bool first);
1934 
1935 #ifdef CONFIG_SMP
1936 	int (*balance)(struct rq *rq, struct task_struct *prev, struct rq_flags *rf);
1937 	int  (*select_task_rq)(struct task_struct *p, int task_cpu, int sd_flag, int flags);
1938 	void (*migrate_task_rq)(struct task_struct *p, int new_cpu);
1939 
1940 	void (*task_woken)(struct rq *this_rq, struct task_struct *task);
1941 
1942 	void (*set_cpus_allowed)(struct task_struct *p,
1943 				 const struct cpumask *newmask);
1944 
1945 	void (*rq_online)(struct rq *rq);
1946 	void (*rq_offline)(struct rq *rq);
1947 #endif
1948 
1949 	void (*task_tick)(struct rq *rq, struct task_struct *p, int queued);
1950 	void (*task_fork)(struct task_struct *p);
1951 	void (*task_dead)(struct task_struct *p);
1952 
1953 	/*
1954 	 * The switched_from() call is allowed to drop rq->lock, therefore we
1955 	 * cannot assume the switched_from/switched_to pair is serliazed by
1956 	 * rq->lock. They are however serialized by p->pi_lock.
1957 	 */
1958 	void (*switched_from)(struct rq *this_rq, struct task_struct *task);
1959 	void (*switched_to)  (struct rq *this_rq, struct task_struct *task);
1960 	void (*prio_changed) (struct rq *this_rq, struct task_struct *task,
1961 			      int oldprio);
1962 
1963 	unsigned int (*get_rr_interval)(struct rq *rq,
1964 					struct task_struct *task);
1965 
1966 	void (*update_curr)(struct rq *rq);
1967 
1968 #define TASK_SET_GROUP		0
1969 #define TASK_MOVE_GROUP		1
1970 
1971 #ifdef CONFIG_FAIR_GROUP_SCHED
1972 	void (*task_change_group)(struct task_struct *p, int type);
1973 #endif
1974 #ifdef CONFIG_SCHED_WALT
1975 	void (*fixup_walt_sched_stats)(struct rq *rq, struct task_struct *p,
1976 					u16 updated_demand_scaled);
1977 #endif
1978 #ifdef CONFIG_SCHED_EAS
1979 	void  (*check_for_migration)(struct rq *rq, struct task_struct *p);
1980 #endif
1981 } __aligned(STRUCT_ALIGNMENT); /* STRUCT_ALIGN(), vmlinux.lds.h */
1982 
put_prev_task(struct rq * rq,struct task_struct * prev)1983 static inline void put_prev_task(struct rq *rq, struct task_struct *prev)
1984 {
1985 	WARN_ON_ONCE(rq->curr != prev);
1986 	prev->sched_class->put_prev_task(rq, prev);
1987 }
1988 
set_next_task(struct rq * rq,struct task_struct * next)1989 static inline void set_next_task(struct rq *rq, struct task_struct *next)
1990 {
1991 	WARN_ON_ONCE(rq->curr != next);
1992 	next->sched_class->set_next_task(rq, next, false);
1993 }
1994 
1995 /* Defined in include/asm-generic/vmlinux.lds.h */
1996 extern struct sched_class __begin_sched_classes[];
1997 extern struct sched_class __end_sched_classes[];
1998 
1999 #define sched_class_highest (__end_sched_classes - 1)
2000 #define sched_class_lowest  (__begin_sched_classes - 1)
2001 
2002 #define for_class_range(class, _from, _to) \
2003 	for (class = (_from); class != (_to); class--)
2004 
2005 #define for_each_class(class) \
2006 	for_class_range(class, sched_class_highest, sched_class_lowest)
2007 
2008 extern const struct sched_class stop_sched_class;
2009 extern const struct sched_class dl_sched_class;
2010 extern const struct sched_class rt_sched_class;
2011 extern const struct sched_class fair_sched_class;
2012 extern const struct sched_class idle_sched_class;
2013 
sched_stop_runnable(struct rq * rq)2014 static inline bool sched_stop_runnable(struct rq *rq)
2015 {
2016 	return rq->stop && task_on_rq_queued(rq->stop);
2017 }
2018 
sched_dl_runnable(struct rq * rq)2019 static inline bool sched_dl_runnable(struct rq *rq)
2020 {
2021 	return rq->dl.dl_nr_running > 0;
2022 }
2023 
sched_rt_runnable(struct rq * rq)2024 static inline bool sched_rt_runnable(struct rq *rq)
2025 {
2026 	return rq->rt.rt_queued > 0;
2027 }
2028 
sched_fair_runnable(struct rq * rq)2029 static inline bool sched_fair_runnable(struct rq *rq)
2030 {
2031 	return rq->cfs.nr_running > 0;
2032 }
2033 
2034 extern struct task_struct *pick_next_task_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf);
2035 extern struct task_struct *pick_next_task_idle(struct rq *rq);
2036 
2037 #ifdef CONFIG_SMP
2038 
2039 extern void update_group_capacity(struct sched_domain *sd, int cpu);
2040 
2041 extern void trigger_load_balance(struct rq *rq);
2042 
2043 extern void set_cpus_allowed_common(struct task_struct *p, const struct cpumask *new_mask);
2044 
2045 #endif
2046 
2047 #ifdef CONFIG_CPU_IDLE
idle_set_state(struct rq * rq,struct cpuidle_state * idle_state)2048 static inline void idle_set_state(struct rq *rq,
2049 				  struct cpuidle_state *idle_state)
2050 {
2051 	rq->idle_state = idle_state;
2052 }
2053 
idle_get_state(struct rq * rq)2054 static inline struct cpuidle_state *idle_get_state(struct rq *rq)
2055 {
2056 	SCHED_WARN_ON(!rcu_read_lock_held());
2057 
2058 	return rq->idle_state;
2059 }
2060 #else
idle_set_state(struct rq * rq,struct cpuidle_state * idle_state)2061 static inline void idle_set_state(struct rq *rq,
2062 				  struct cpuidle_state *idle_state)
2063 {
2064 }
2065 
idle_get_state(struct rq * rq)2066 static inline struct cpuidle_state *idle_get_state(struct rq *rq)
2067 {
2068 	return NULL;
2069 }
2070 #endif
2071 
2072 extern void schedule_idle(void);
2073 
2074 extern void sysrq_sched_debug_show(void);
2075 extern void sched_init_granularity(void);
2076 extern void update_max_interval(void);
2077 
2078 extern void init_sched_dl_class(void);
2079 extern void init_sched_rt_class(void);
2080 extern void init_sched_fair_class(void);
2081 
2082 extern void reweight_task(struct task_struct *p, int prio);
2083 
2084 extern void resched_curr(struct rq *rq);
2085 extern void resched_cpu(int cpu);
2086 
2087 extern struct rt_bandwidth def_rt_bandwidth;
2088 extern void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime);
2089 
2090 extern struct dl_bandwidth def_dl_bandwidth;
2091 extern void init_dl_bandwidth(struct dl_bandwidth *dl_b, u64 period, u64 runtime);
2092 extern void init_dl_task_timer(struct sched_dl_entity *dl_se);
2093 extern void init_dl_inactive_task_timer(struct sched_dl_entity *dl_se);
2094 
2095 #define BW_SHIFT		20
2096 #define BW_UNIT			(1 << BW_SHIFT)
2097 #define RATIO_SHIFT		8
2098 #define MAX_BW_BITS		(64 - BW_SHIFT)
2099 #define MAX_BW			((1ULL << MAX_BW_BITS) - 1)
2100 unsigned long to_ratio(u64 period, u64 runtime);
2101 
2102 extern void init_entity_runnable_average(struct sched_entity *se);
2103 extern void post_init_entity_util_avg(struct task_struct *p);
2104 
2105 #ifdef CONFIG_NO_HZ_FULL
2106 extern bool sched_can_stop_tick(struct rq *rq);
2107 extern int __init sched_tick_offload_init(void);
2108 
2109 /*
2110  * Tick may be needed by tasks in the runqueue depending on their policy and
2111  * requirements. If tick is needed, lets send the target an IPI to kick it out of
2112  * nohz mode if necessary.
2113  */
sched_update_tick_dependency(struct rq * rq)2114 static inline void sched_update_tick_dependency(struct rq *rq)
2115 {
2116 	int cpu = cpu_of(rq);
2117 
2118 	if (!tick_nohz_full_cpu(cpu))
2119 		return;
2120 
2121 	if (sched_can_stop_tick(rq))
2122 		tick_nohz_dep_clear_cpu(cpu, TICK_DEP_BIT_SCHED);
2123 	else
2124 		tick_nohz_dep_set_cpu(cpu, TICK_DEP_BIT_SCHED);
2125 }
2126 #else
sched_tick_offload_init(void)2127 static inline int sched_tick_offload_init(void) { return 0; }
sched_update_tick_dependency(struct rq * rq)2128 static inline void sched_update_tick_dependency(struct rq *rq) { }
2129 #endif
2130 
add_nr_running(struct rq * rq,unsigned count)2131 static inline void add_nr_running(struct rq *rq, unsigned count)
2132 {
2133 	unsigned prev_nr = rq->nr_running;
2134 
2135 	rq->nr_running = prev_nr + count;
2136 	if (trace_sched_update_nr_running_tp_enabled()) {
2137 		call_trace_sched_update_nr_running(rq, count);
2138 	}
2139 
2140 #ifdef CONFIG_SMP
2141 	if (prev_nr < 2 && rq->nr_running >= 2) {
2142 		if (!READ_ONCE(rq->rd->overload))
2143 			WRITE_ONCE(rq->rd->overload, 1);
2144 	}
2145 #endif
2146 
2147 	sched_update_tick_dependency(rq);
2148 }
2149 
sub_nr_running(struct rq * rq,unsigned count)2150 static inline void sub_nr_running(struct rq *rq, unsigned count)
2151 {
2152 	rq->nr_running -= count;
2153 	if (trace_sched_update_nr_running_tp_enabled()) {
2154 		call_trace_sched_update_nr_running(rq, -count);
2155 	}
2156 
2157 	/* Check if we still need preemption */
2158 	sched_update_tick_dependency(rq);
2159 }
2160 
2161 extern void activate_task(struct rq *rq, struct task_struct *p, int flags);
2162 extern void deactivate_task(struct rq *rq, struct task_struct *p, int flags);
2163 
2164 extern void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags);
2165 
2166 extern const_debug unsigned int sysctl_sched_nr_migrate;
2167 extern const_debug unsigned int sysctl_sched_migration_cost;
2168 
2169 #ifdef CONFIG_SCHED_HRTICK
2170 
2171 /*
2172  * Use hrtick when:
2173  *  - enabled by features
2174  *  - hrtimer is actually high res
2175  */
hrtick_enabled(struct rq * rq)2176 static inline int hrtick_enabled(struct rq *rq)
2177 {
2178 	if (!sched_feat(HRTICK))
2179 		return 0;
2180 	if (!cpu_active(cpu_of(rq)))
2181 		return 0;
2182 	return hrtimer_is_hres_active(&rq->hrtick_timer);
2183 }
2184 
2185 void hrtick_start(struct rq *rq, u64 delay);
2186 
2187 #else
2188 
hrtick_enabled(struct rq * rq)2189 static inline int hrtick_enabled(struct rq *rq)
2190 {
2191 	return 0;
2192 }
2193 
2194 #endif /* CONFIG_SCHED_HRTICK */
2195 
2196 #ifdef CONFIG_SCHED_WALT
2197 u64 sched_ktime_clock(void);
2198 #else
sched_ktime_clock(void)2199 static inline u64 sched_ktime_clock(void)
2200 {
2201 	return sched_clock();
2202 }
2203 #endif
2204 
2205 #ifndef arch_scale_freq_tick
2206 static __always_inline
arch_scale_freq_tick(void)2207 void arch_scale_freq_tick(void)
2208 {
2209 }
2210 #endif
2211 
2212 #ifndef arch_scale_freq_capacity
2213 /**
2214  * arch_scale_freq_capacity - get the frequency scale factor of a given CPU.
2215  * @cpu: the CPU in question.
2216  *
2217  * Return: the frequency scale factor normalized against SCHED_CAPACITY_SCALE, i.e.
2218  *
2219  *     f_curr
2220  *     ------ * SCHED_CAPACITY_SCALE
2221  *     f_max
2222  */
2223 static __always_inline
arch_scale_freq_capacity(int cpu)2224 unsigned long arch_scale_freq_capacity(int cpu)
2225 {
2226 	return SCHED_CAPACITY_SCALE;
2227 }
2228 #endif
2229 
2230 unsigned long capacity_curr_of(int cpu);
2231 unsigned long cpu_util(int cpu);
2232 
2233 #ifdef CONFIG_SMP
2234 #ifdef CONFIG_SCHED_WALT
2235 extern unsigned int sysctl_sched_use_walt_cpu_util;
2236 extern unsigned int walt_disabled;
2237 #endif
2238 #ifdef CONFIG_PREEMPTION
2239 
2240 static inline void double_rq_lock(struct rq *rq1, struct rq *rq2);
2241 
2242 /*
2243  * fair double_lock_balance: Safely acquires both rq->locks in a fair
2244  * way at the expense of forcing extra atomic operations in all
2245  * invocations.  This assures that the double_lock is acquired using the
2246  * same underlying policy as the spinlock_t on this architecture, which
2247  * reduces latency compared to the unfair variant below.  However, it
2248  * also adds more overhead and therefore may reduce throughput.
2249  */
_double_lock_balance(struct rq * this_rq,struct rq * busiest)2250 static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
2251 	__releases(this_rq->lock)
2252 	__acquires(busiest->lock)
2253 	__acquires(this_rq->lock)
2254 {
2255 	raw_spin_unlock(&this_rq->lock);
2256 	double_rq_lock(this_rq, busiest);
2257 
2258 	return 1;
2259 }
2260 
2261 #else
2262 /*
2263  * Unfair double_lock_balance: Optimizes throughput at the expense of
2264  * latency by eliminating extra atomic operations when the locks are
2265  * already in proper order on entry.  This favors lower CPU-ids and will
2266  * grant the double lock to lower CPUs over higher ids under contention,
2267  * regardless of entry order into the function.
2268  */
_double_lock_balance(struct rq * this_rq,struct rq * busiest)2269 static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
2270 	__releases(this_rq->lock)
2271 	__acquires(busiest->lock)
2272 	__acquires(this_rq->lock)
2273 {
2274 	int ret = 0;
2275 
2276 	if (unlikely(!raw_spin_trylock(&busiest->lock))) {
2277 		if (busiest < this_rq) {
2278 			raw_spin_unlock(&this_rq->lock);
2279 			raw_spin_lock(&busiest->lock);
2280 			raw_spin_lock_nested(&this_rq->lock,
2281 					      SINGLE_DEPTH_NESTING);
2282 			ret = 1;
2283 		} else
2284 			raw_spin_lock_nested(&busiest->lock,
2285 					      SINGLE_DEPTH_NESTING);
2286 	}
2287 	return ret;
2288 }
2289 
2290 #endif /* CONFIG_PREEMPTION */
2291 
2292 /*
2293  * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
2294  */
double_lock_balance(struct rq * this_rq,struct rq * busiest)2295 static inline int double_lock_balance(struct rq *this_rq, struct rq *busiest)
2296 {
2297 	if (unlikely(!irqs_disabled())) {
2298 		/* printk() doesn't work well under rq->lock */
2299 		raw_spin_unlock(&this_rq->lock);
2300 		BUG_ON(1);
2301 	}
2302 
2303 	return _double_lock_balance(this_rq, busiest);
2304 }
2305 
double_unlock_balance(struct rq * this_rq,struct rq * busiest)2306 static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
2307 	__releases(busiest->lock)
2308 {
2309 	raw_spin_unlock(&busiest->lock);
2310 	lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
2311 }
2312 
double_lock(spinlock_t * l1,spinlock_t * l2)2313 static inline void double_lock(spinlock_t *l1, spinlock_t *l2)
2314 {
2315 	if (l1 > l2)
2316 		swap(l1, l2);
2317 
2318 	spin_lock(l1);
2319 	spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
2320 }
2321 
double_lock_irq(spinlock_t * l1,spinlock_t * l2)2322 static inline void double_lock_irq(spinlock_t *l1, spinlock_t *l2)
2323 {
2324 	if (l1 > l2)
2325 		swap(l1, l2);
2326 
2327 	spin_lock_irq(l1);
2328 	spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
2329 }
2330 
double_raw_lock(raw_spinlock_t * l1,raw_spinlock_t * l2)2331 static inline void double_raw_lock(raw_spinlock_t *l1, raw_spinlock_t *l2)
2332 {
2333 	if (l1 > l2)
2334 		swap(l1, l2);
2335 
2336 	raw_spin_lock(l1);
2337 	raw_spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
2338 }
2339 
2340 /*
2341  * double_rq_lock - safely lock two runqueues
2342  *
2343  * Note this does not disable interrupts like task_rq_lock,
2344  * you need to do so manually before calling.
2345  */
double_rq_lock(struct rq * rq1,struct rq * rq2)2346 static inline void double_rq_lock(struct rq *rq1, struct rq *rq2)
2347 	__acquires(rq1->lock)
2348 	__acquires(rq2->lock)
2349 {
2350 	BUG_ON(!irqs_disabled());
2351 	if (rq1 == rq2) {
2352 		raw_spin_lock(&rq1->lock);
2353 		__acquire(rq2->lock);	/* Fake it out ;) */
2354 	} else {
2355 		if (rq1 < rq2) {
2356 			raw_spin_lock(&rq1->lock);
2357 			raw_spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
2358 		} else {
2359 			raw_spin_lock(&rq2->lock);
2360 			raw_spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
2361 		}
2362 	}
2363 }
2364 
2365 /*
2366  * double_rq_unlock - safely unlock two runqueues
2367  *
2368  * Note this does not restore interrupts like task_rq_unlock,
2369  * you need to do so manually after calling.
2370  */
double_rq_unlock(struct rq * rq1,struct rq * rq2)2371 static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2)
2372 	__releases(rq1->lock)
2373 	__releases(rq2->lock)
2374 {
2375 	raw_spin_unlock(&rq1->lock);
2376 	if (rq1 != rq2)
2377 		raw_spin_unlock(&rq2->lock);
2378 	else
2379 		__release(rq2->lock);
2380 }
2381 
2382 extern void set_rq_online (struct rq *rq);
2383 extern void set_rq_offline(struct rq *rq);
2384 extern bool sched_smp_initialized;
2385 
2386 #else /* CONFIG_SMP */
2387 
2388 /*
2389  * double_rq_lock - safely lock two runqueues
2390  *
2391  * Note this does not disable interrupts like task_rq_lock,
2392  * you need to do so manually before calling.
2393  */
double_rq_lock(struct rq * rq1,struct rq * rq2)2394 static inline void double_rq_lock(struct rq *rq1, struct rq *rq2)
2395 	__acquires(rq1->lock)
2396 	__acquires(rq2->lock)
2397 {
2398 	BUG_ON(!irqs_disabled());
2399 	BUG_ON(rq1 != rq2);
2400 	raw_spin_lock(&rq1->lock);
2401 	__acquire(rq2->lock);	/* Fake it out ;) */
2402 }
2403 
2404 /*
2405  * double_rq_unlock - safely unlock two runqueues
2406  *
2407  * Note this does not restore interrupts like task_rq_unlock,
2408  * you need to do so manually after calling.
2409  */
double_rq_unlock(struct rq * rq1,struct rq * rq2)2410 static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2)
2411 	__releases(rq1->lock)
2412 	__releases(rq2->lock)
2413 {
2414 	BUG_ON(rq1 != rq2);
2415 	raw_spin_unlock(&rq1->lock);
2416 	__release(rq2->lock);
2417 }
2418 
2419 #endif
2420 
2421 extern struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq);
2422 extern struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq);
2423 
2424 #ifdef	CONFIG_SCHED_DEBUG
2425 extern bool sched_debug_enabled;
2426 
2427 extern void print_cfs_stats(struct seq_file *m, int cpu);
2428 extern void print_rt_stats(struct seq_file *m, int cpu);
2429 extern void print_dl_stats(struct seq_file *m, int cpu);
2430 extern void print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq);
2431 extern void print_rt_rq(struct seq_file *m, int cpu, struct rt_rq *rt_rq);
2432 extern void print_dl_rq(struct seq_file *m, int cpu, struct dl_rq *dl_rq);
2433 #ifdef CONFIG_NUMA_BALANCING
2434 extern void
2435 show_numa_stats(struct task_struct *p, struct seq_file *m);
2436 extern void
2437 print_numa_stats(struct seq_file *m, int node, unsigned long tsf,
2438 	unsigned long tpf, unsigned long gsf, unsigned long gpf);
2439 #endif /* CONFIG_NUMA_BALANCING */
2440 #endif /* CONFIG_SCHED_DEBUG */
2441 
2442 extern void init_cfs_rq(struct cfs_rq *cfs_rq);
2443 extern void init_rt_rq(struct rt_rq *rt_rq);
2444 extern void init_dl_rq(struct dl_rq *dl_rq);
2445 
2446 extern void cfs_bandwidth_usage_inc(void);
2447 extern void cfs_bandwidth_usage_dec(void);
2448 
2449 #ifdef CONFIG_NO_HZ_COMMON
2450 #define NOHZ_BALANCE_KICK_BIT	0
2451 #define NOHZ_STATS_KICK_BIT	1
2452 
2453 #define NOHZ_BALANCE_KICK	BIT(NOHZ_BALANCE_KICK_BIT)
2454 #define NOHZ_STATS_KICK		BIT(NOHZ_STATS_KICK_BIT)
2455 
2456 #define NOHZ_KICK_MASK	(NOHZ_BALANCE_KICK | NOHZ_STATS_KICK)
2457 
2458 #define nohz_flags(cpu)	(&cpu_rq(cpu)->nohz_flags)
2459 
2460 extern void nohz_balance_exit_idle(struct rq *rq);
2461 #else
nohz_balance_exit_idle(struct rq * rq)2462 static inline void nohz_balance_exit_idle(struct rq *rq) { }
2463 #endif
2464 
2465 
2466 #ifdef CONFIG_SMP
2467 static inline
__dl_update(struct dl_bw * dl_b,s64 bw)2468 void __dl_update(struct dl_bw *dl_b, s64 bw)
2469 {
2470 	struct root_domain *rd = container_of(dl_b, struct root_domain, dl_bw);
2471 	int i;
2472 
2473 	RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
2474 			 "sched RCU must be held");
2475 	for_each_cpu_and(i, rd->span, cpu_active_mask) {
2476 		struct rq *rq = cpu_rq(i);
2477 
2478 		rq->dl.extra_bw += bw;
2479 	}
2480 }
2481 #else
2482 static inline
__dl_update(struct dl_bw * dl_b,s64 bw)2483 void __dl_update(struct dl_bw *dl_b, s64 bw)
2484 {
2485 	struct dl_rq *dl = container_of(dl_b, struct dl_rq, dl_bw);
2486 
2487 	dl->extra_bw += bw;
2488 }
2489 #endif
2490 
2491 
2492 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
2493 struct irqtime {
2494 	u64			total;
2495 	u64			tick_delta;
2496 	u64			irq_start_time;
2497 	struct u64_stats_sync	sync;
2498 };
2499 
2500 DECLARE_PER_CPU(struct irqtime, cpu_irqtime);
2501 
2502 /*
2503  * Returns the irqtime minus the softirq time computed by ksoftirqd.
2504  * Otherwise ksoftirqd's sum_exec_runtime is substracted its own runtime
2505  * and never move forward.
2506  */
irq_time_read(int cpu)2507 static inline u64 irq_time_read(int cpu)
2508 {
2509 	struct irqtime *irqtime = &per_cpu(cpu_irqtime, cpu);
2510 	unsigned int seq;
2511 	u64 total;
2512 
2513 	do {
2514 		seq = __u64_stats_fetch_begin(&irqtime->sync);
2515 		total = irqtime->total;
2516 	} while (__u64_stats_fetch_retry(&irqtime->sync, seq));
2517 
2518 	return total;
2519 }
2520 #endif /* CONFIG_IRQ_TIME_ACCOUNTING */
2521 
2522 #ifdef CONFIG_CPU_FREQ
2523 DECLARE_PER_CPU(struct update_util_data __rcu *, cpufreq_update_util_data);
2524 
2525 /**
2526  * cpufreq_update_util - Take a note about CPU utilization changes.
2527  * @rq: Runqueue to carry out the update for.
2528  * @flags: Update reason flags.
2529  *
2530  * This function is called by the scheduler on the CPU whose utilization is
2531  * being updated.
2532  *
2533  * It can only be called from RCU-sched read-side critical sections.
2534  *
2535  * The way cpufreq is currently arranged requires it to evaluate the CPU
2536  * performance state (frequency/voltage) on a regular basis to prevent it from
2537  * being stuck in a completely inadequate performance level for too long.
2538  * That is not guaranteed to happen if the updates are only triggered from CFS
2539  * and DL, though, because they may not be coming in if only RT tasks are
2540  * active all the time (or there are RT tasks only).
2541  *
2542  * As a workaround for that issue, this function is called periodically by the
2543  * RT sched class to trigger extra cpufreq updates to prevent it from stalling,
2544  * but that really is a band-aid.  Going forward it should be replaced with
2545  * solutions targeted more specifically at RT tasks.
2546  */
cpufreq_update_util(struct rq * rq,unsigned int flags)2547 static inline void cpufreq_update_util(struct rq *rq, unsigned int flags)
2548 {
2549 	struct update_util_data *data;
2550 	u64 clock;
2551 
2552 #ifdef CONFIG_SCHED_WALT
2553 	if (!(flags & SCHED_CPUFREQ_WALT))
2554 		return;
2555 
2556 	clock = sched_ktime_clock();
2557 #else
2558 	clock = rq_clock(rq);
2559 #endif
2560 	data = rcu_dereference_sched(*per_cpu_ptr(&cpufreq_update_util_data,
2561 						  cpu_of(rq)));
2562 	if (data)
2563 		data->func(data, clock, flags);
2564 }
2565 #else
cpufreq_update_util(struct rq * rq,unsigned int flags)2566 static inline void cpufreq_update_util(struct rq *rq, unsigned int flags) {}
2567 #endif /* CONFIG_CPU_FREQ */
2568 
2569 #ifdef CONFIG_UCLAMP_TASK
2570 unsigned long uclamp_eff_value(struct task_struct *p, enum uclamp_id clamp_id);
2571 
2572 /**
2573  * uclamp_rq_util_with - clamp @util with @rq and @p effective uclamp values.
2574  * @rq:		The rq to clamp against. Must not be NULL.
2575  * @util:	The util value to clamp.
2576  * @p:		The task to clamp against. Can be NULL if you want to clamp
2577  *		against @rq only.
2578  *
2579  * Clamps the passed @util to the max(@rq, @p) effective uclamp values.
2580  *
2581  * If sched_uclamp_used static key is disabled, then just return the util
2582  * without any clamping since uclamp aggregation at the rq level in the fast
2583  * path is disabled, rendering this operation a NOP.
2584  *
2585  * Use uclamp_eff_value() if you don't care about uclamp values at rq level. It
2586  * will return the correct effective uclamp value of the task even if the
2587  * static key is disabled.
2588  */
2589 static __always_inline
uclamp_rq_util_with(struct rq * rq,unsigned long util,struct task_struct * p)2590 unsigned long uclamp_rq_util_with(struct rq *rq, unsigned long util,
2591 				  struct task_struct *p)
2592 {
2593 	unsigned long min_util = 0;
2594 	unsigned long max_util = 0;
2595 
2596 	if (!static_branch_likely(&sched_uclamp_used))
2597 		return util;
2598 
2599 	if (p) {
2600 		min_util = uclamp_eff_value(p, UCLAMP_MIN);
2601 		max_util = uclamp_eff_value(p, UCLAMP_MAX);
2602 
2603 		/*
2604 		 * Ignore last runnable task's max clamp, as this task will
2605 		 * reset it. Similarly, no need to read the rq's min clamp.
2606 		 */
2607 		if (rq->uclamp_flags & UCLAMP_FLAG_IDLE)
2608 			goto out;
2609 	}
2610 
2611 	min_util = max_t(unsigned long, min_util, READ_ONCE(rq->uclamp[UCLAMP_MIN].value));
2612 	max_util = max_t(unsigned long, max_util, READ_ONCE(rq->uclamp[UCLAMP_MAX].value));
2613 out:
2614 	/*
2615 	 * Since CPU's {min,max}_util clamps are MAX aggregated considering
2616 	 * RUNNABLE tasks with _different_ clamps, we can end up with an
2617 	 * inversion. Fix it now when the clamps are applied.
2618 	 */
2619 	if (unlikely(min_util >= max_util))
2620 		return min_util;
2621 
2622 	return clamp(util, min_util, max_util);
2623 }
2624 
uclamp_boosted(struct task_struct * p)2625 static inline bool uclamp_boosted(struct task_struct *p)
2626 {
2627 	return uclamp_eff_value(p, UCLAMP_MIN) > 0;
2628 }
2629 
2630 /*
2631  * When uclamp is compiled in, the aggregation at rq level is 'turned off'
2632  * by default in the fast path and only gets turned on once userspace performs
2633  * an operation that requires it.
2634  *
2635  * Returns true if userspace opted-in to use uclamp and aggregation at rq level
2636  * hence is active.
2637  */
uclamp_is_used(void)2638 static inline bool uclamp_is_used(void)
2639 {
2640 	return static_branch_likely(&sched_uclamp_used);
2641 }
2642 #else /* CONFIG_UCLAMP_TASK */
2643 static inline
uclamp_rq_util_with(struct rq * rq,unsigned long util,struct task_struct * p)2644 unsigned long uclamp_rq_util_with(struct rq *rq, unsigned long util,
2645 				  struct task_struct *p)
2646 {
2647 	return util;
2648 }
2649 
uclamp_boosted(struct task_struct * p)2650 static inline bool uclamp_boosted(struct task_struct *p)
2651 {
2652 	return false;
2653 }
2654 
uclamp_is_used(void)2655 static inline bool uclamp_is_used(void)
2656 {
2657 	return false;
2658 }
2659 #endif /* CONFIG_UCLAMP_TASK */
2660 
2661 #ifdef arch_scale_freq_capacity
2662 # ifndef arch_scale_freq_invariant
2663 #  define arch_scale_freq_invariant()	true
2664 # endif
2665 #else
2666 # define arch_scale_freq_invariant()	false
2667 #endif
2668 
2669 #ifdef CONFIG_SMP
capacity_of(int cpu)2670 static inline unsigned long capacity_of(int cpu)
2671 {
2672 	return cpu_rq(cpu)->cpu_capacity;
2673 }
2674 
capacity_orig_of(int cpu)2675 static inline unsigned long capacity_orig_of(int cpu)
2676 {
2677 	return cpu_rq(cpu)->cpu_capacity_orig;
2678 }
2679 #endif
2680 
2681 /**
2682  * enum schedutil_type - CPU utilization type
2683  * @FREQUENCY_UTIL:	Utilization used to select frequency
2684  * @ENERGY_UTIL:	Utilization used during energy calculation
2685  *
2686  * The utilization signals of all scheduling classes (CFS/RT/DL) and IRQ time
2687  * need to be aggregated differently depending on the usage made of them. This
2688  * enum is used within schedutil_freq_util() to differentiate the types of
2689  * utilization expected by the callers, and adjust the aggregation accordingly.
2690  */
2691 enum schedutil_type {
2692 	FREQUENCY_UTIL,
2693 	ENERGY_UTIL,
2694 };
2695 
2696 #ifdef CONFIG_CPU_FREQ_GOV_SCHEDUTIL
2697 
2698 unsigned long schedutil_cpu_util(int cpu, unsigned long util_cfs,
2699 				 unsigned long max, enum schedutil_type type,
2700 				 struct task_struct *p);
2701 
cpu_bw_dl(struct rq * rq)2702 static inline unsigned long cpu_bw_dl(struct rq *rq)
2703 {
2704 	return (rq->dl.running_bw * SCHED_CAPACITY_SCALE) >> BW_SHIFT;
2705 }
2706 
cpu_util_dl(struct rq * rq)2707 static inline unsigned long cpu_util_dl(struct rq *rq)
2708 {
2709 	return READ_ONCE(rq->avg_dl.util_avg);
2710 }
2711 
cpu_util_cfs(struct rq * rq)2712 static inline unsigned long cpu_util_cfs(struct rq *rq)
2713 {
2714 	unsigned long util = READ_ONCE(rq->cfs.avg.util_avg);
2715 
2716 	if (sched_feat(UTIL_EST)) {
2717 		util = max_t(unsigned long, util,
2718 			     READ_ONCE(rq->cfs.avg.util_est.enqueued));
2719 	}
2720 
2721 	return util;
2722 }
2723 
cpu_util_rt(struct rq * rq)2724 static inline unsigned long cpu_util_rt(struct rq *rq)
2725 {
2726 	return READ_ONCE(rq->avg_rt.util_avg);
2727 }
2728 #else /* CONFIG_CPU_FREQ_GOV_SCHEDUTIL */
schedutil_cpu_util(int cpu,unsigned long util_cfs,unsigned long max,enum schedutil_type type,struct task_struct * p)2729 static inline unsigned long schedutil_cpu_util(int cpu, unsigned long util_cfs,
2730 				 unsigned long max, enum schedutil_type type,
2731 				 struct task_struct *p)
2732 {
2733 	return 0;
2734 }
2735 #endif /* CONFIG_CPU_FREQ_GOV_SCHEDUTIL */
2736 
2737 #ifdef CONFIG_HAVE_SCHED_AVG_IRQ
cpu_util_irq(struct rq * rq)2738 static inline unsigned long cpu_util_irq(struct rq *rq)
2739 {
2740 	return rq->avg_irq.util_avg;
2741 }
2742 
2743 static inline
scale_irq_capacity(unsigned long util,unsigned long irq,unsigned long max)2744 unsigned long scale_irq_capacity(unsigned long util, unsigned long irq, unsigned long max)
2745 {
2746 	util *= (max - irq);
2747 	util /= max;
2748 
2749 	return util;
2750 
2751 }
2752 #else
cpu_util_irq(struct rq * rq)2753 static inline unsigned long cpu_util_irq(struct rq *rq)
2754 {
2755 	return 0;
2756 }
2757 
2758 static inline
scale_irq_capacity(unsigned long util,unsigned long irq,unsigned long max)2759 unsigned long scale_irq_capacity(unsigned long util, unsigned long irq, unsigned long max)
2760 {
2761 	return util;
2762 }
2763 #endif
2764 
2765 #if defined(CONFIG_ENERGY_MODEL) && defined(CONFIG_CPU_FREQ_GOV_SCHEDUTIL)
2766 
2767 #define perf_domain_span(pd) (to_cpumask(((pd)->em_pd->cpus)))
2768 
2769 DECLARE_STATIC_KEY_FALSE(sched_energy_present);
2770 
sched_energy_enabled(void)2771 static inline bool sched_energy_enabled(void)
2772 {
2773 	return static_branch_unlikely(&sched_energy_present);
2774 }
2775 
2776 #else /* ! (CONFIG_ENERGY_MODEL && CONFIG_CPU_FREQ_GOV_SCHEDUTIL) */
2777 
2778 #define perf_domain_span(pd) NULL
sched_energy_enabled(void)2779 static inline bool sched_energy_enabled(void) { return false; }
2780 
2781 #endif /* CONFIG_ENERGY_MODEL && CONFIG_CPU_FREQ_GOV_SCHEDUTIL */
2782 
2783 #ifdef CONFIG_MEMBARRIER
2784 /*
2785  * The scheduler provides memory barriers required by membarrier between:
2786  * - prior user-space memory accesses and store to rq->membarrier_state,
2787  * - store to rq->membarrier_state and following user-space memory accesses.
2788  * In the same way it provides those guarantees around store to rq->curr.
2789  */
membarrier_switch_mm(struct rq * rq,struct mm_struct * prev_mm,struct mm_struct * next_mm)2790 static inline void membarrier_switch_mm(struct rq *rq,
2791 					struct mm_struct *prev_mm,
2792 					struct mm_struct *next_mm)
2793 {
2794 	int membarrier_state;
2795 
2796 	if (prev_mm == next_mm)
2797 		return;
2798 
2799 	membarrier_state = atomic_read(&next_mm->membarrier_state);
2800 	if (READ_ONCE(rq->membarrier_state) == membarrier_state)
2801 		return;
2802 
2803 	WRITE_ONCE(rq->membarrier_state, membarrier_state);
2804 }
2805 #else
membarrier_switch_mm(struct rq * rq,struct mm_struct * prev_mm,struct mm_struct * next_mm)2806 static inline void membarrier_switch_mm(struct rq *rq,
2807 					struct mm_struct *prev_mm,
2808 					struct mm_struct *next_mm)
2809 {
2810 }
2811 #endif
2812 
2813 #ifdef CONFIG_SMP
is_per_cpu_kthread(struct task_struct * p)2814 static inline bool is_per_cpu_kthread(struct task_struct *p)
2815 {
2816 	if (!(p->flags & PF_KTHREAD))
2817 		return false;
2818 
2819 	if (p->nr_cpus_allowed != 1)
2820 		return false;
2821 
2822 	return true;
2823 }
2824 #endif
2825 
2826 void swake_up_all_locked(struct swait_queue_head *q);
2827 void __prepare_to_swait(struct swait_queue_head *q, struct swait_queue *wait);
2828 
2829 #ifdef CONFIG_SCHED_RTG
2830 extern bool task_fits_max(struct task_struct *p, int cpu);
2831 extern unsigned long capacity_spare_without(int cpu, struct task_struct *p);
2832 extern int update_preferred_cluster(struct related_thread_group *grp,
2833 			struct task_struct *p, u32 old_load, bool from_tick);
2834 extern struct cpumask *find_rtg_target(struct task_struct *p);
2835 #endif
2836 
2837 #ifdef CONFIG_SCHED_WALT
cluster_first_cpu(struct sched_cluster * cluster)2838 static inline int cluster_first_cpu(struct sched_cluster *cluster)
2839 {
2840 	return cpumask_first(&cluster->cpus);
2841 }
2842 
2843 extern struct list_head cluster_head;
2844 extern struct sched_cluster *sched_cluster[NR_CPUS];
2845 
2846 #define for_each_sched_cluster(cluster) \
2847 	list_for_each_entry_rcu(cluster, &cluster_head, list)
2848 
2849 extern struct mutex policy_mutex;
2850 extern unsigned int sched_disable_window_stats;
2851 extern unsigned int max_possible_freq;
2852 extern unsigned int min_max_freq;
2853 extern unsigned int max_possible_efficiency;
2854 extern unsigned int min_possible_efficiency;
2855 extern unsigned int max_capacity;
2856 extern unsigned int min_capacity;
2857 extern unsigned int max_load_scale_factor;
2858 extern unsigned int max_possible_capacity;
2859 extern unsigned int min_max_possible_capacity;
2860 extern unsigned int max_power_cost;
2861 extern unsigned int __read_mostly sched_init_task_load_windows;
2862 extern unsigned int sysctl_sched_restrict_cluster_spill;
2863 extern unsigned int sched_pred_alert_load;
2864 extern struct sched_cluster init_cluster;
2865 
walt_fixup_cum_window_demand(struct rq * rq,s64 scaled_delta)2866 static inline void walt_fixup_cum_window_demand(struct rq *rq, s64 scaled_delta)
2867 {
2868 	rq->cum_window_demand_scaled += scaled_delta;
2869 	if (unlikely((s64)rq->cum_window_demand_scaled < 0))
2870 		rq->cum_window_demand_scaled = 0;
2871 }
2872 
2873 /* Is frequency of two cpus synchronized with each other? */
same_freq_domain(int src_cpu,int dst_cpu)2874 static inline int same_freq_domain(int src_cpu, int dst_cpu)
2875 {
2876 	struct rq *rq = cpu_rq(src_cpu);
2877 
2878 	if (src_cpu == dst_cpu)
2879 		return 1;
2880 
2881 	return cpumask_test_cpu(dst_cpu, &rq->freq_domain_cpumask);
2882 }
2883 
2884 extern void reset_task_stats(struct task_struct *p);
2885 
2886 #define CPU_RESERVED	1
is_reserved(int cpu)2887 static inline int is_reserved(int cpu)
2888 {
2889 	struct rq *rq = cpu_rq(cpu);
2890 
2891 	return test_bit(CPU_RESERVED, &rq->walt_flags);
2892 }
2893 
mark_reserved(int cpu)2894 static inline int mark_reserved(int cpu)
2895 {
2896 	struct rq *rq = cpu_rq(cpu);
2897 
2898 	return test_and_set_bit(CPU_RESERVED, &rq->walt_flags);
2899 }
2900 
clear_reserved(int cpu)2901 static inline void clear_reserved(int cpu)
2902 {
2903 	struct rq *rq = cpu_rq(cpu);
2904 
2905 	clear_bit(CPU_RESERVED, &rq->walt_flags);
2906 }
2907 
cpu_capacity(int cpu)2908 static inline int cpu_capacity(int cpu)
2909 {
2910 	return cpu_rq(cpu)->cluster->capacity;
2911 }
2912 
cpu_max_possible_capacity(int cpu)2913 static inline int cpu_max_possible_capacity(int cpu)
2914 {
2915 	return cpu_rq(cpu)->cluster->max_possible_capacity;
2916 }
2917 
cpu_load_scale_factor(int cpu)2918 static inline int cpu_load_scale_factor(int cpu)
2919 {
2920 	return cpu_rq(cpu)->cluster->load_scale_factor;
2921 }
2922 
cluster_max_freq(struct sched_cluster * cluster)2923 static inline unsigned int cluster_max_freq(struct sched_cluster *cluster)
2924 {
2925 	/*
2926 	 * Governor and thermal driver don't know the other party's mitigation
2927 	 * voting. So struct cluster saves both and return min() for current
2928 	 * cluster fmax.
2929 	 */
2930 	return cluster->max_freq;
2931 }
2932 
2933 /* Keep track of max/min capacity possible across CPUs "currently" */
__update_min_max_capacity(void)2934 static inline void __update_min_max_capacity(void)
2935 {
2936 	int i;
2937 	int max_cap = 0, min_cap = INT_MAX;
2938 
2939 	for_each_possible_cpu(i) {
2940 		if (!cpu_active(i))
2941 			continue;
2942 
2943 		max_cap = max(max_cap, cpu_capacity(i));
2944 		min_cap = min(min_cap, cpu_capacity(i));
2945 	}
2946 
2947 	max_capacity = max_cap;
2948 	min_capacity = min_cap;
2949 }
2950 
2951 /*
2952  * Return load_scale_factor of a cpu in reference to "most" efficient cpu, so
2953  * that "most" efficient cpu gets a load_scale_factor of 1
2954  */
2955 static inline unsigned long
load_scale_cpu_efficiency(struct sched_cluster * cluster)2956 load_scale_cpu_efficiency(struct sched_cluster *cluster)
2957 {
2958 	return DIV_ROUND_UP(1024 * max_possible_efficiency,
2959 			    cluster->efficiency);
2960 }
2961 
2962 /*
2963  * Return load_scale_factor of a cpu in reference to cpu with best max_freq
2964  * (max_possible_freq), so that one with best max_freq gets a load_scale_factor
2965  * of 1.
2966  */
load_scale_cpu_freq(struct sched_cluster * cluster)2967 static inline unsigned long load_scale_cpu_freq(struct sched_cluster *cluster)
2968 {
2969 	return DIV_ROUND_UP(1024 * max_possible_freq,
2970 			   cluster_max_freq(cluster));
2971 }
2972 
compute_load_scale_factor(struct sched_cluster * cluster)2973 static inline int compute_load_scale_factor(struct sched_cluster *cluster)
2974 {
2975 	int load_scale = 1024;
2976 
2977 	/*
2978 	 * load_scale_factor accounts for the fact that task load
2979 	 * is in reference to "best" performing cpu. Task's load will need to be
2980 	 * scaled (up) by a factor to determine suitability to be placed on a
2981 	 * (little) cpu.
2982 	 */
2983 	load_scale *= load_scale_cpu_efficiency(cluster);
2984 	load_scale >>= 10;
2985 
2986 	load_scale *= load_scale_cpu_freq(cluster);
2987 	load_scale >>= 10;
2988 
2989 	return load_scale;
2990 }
2991 
is_max_capacity_cpu(int cpu)2992 static inline bool is_max_capacity_cpu(int cpu)
2993 {
2994 	return cpu_max_possible_capacity(cpu) == max_possible_capacity;
2995 }
2996 
is_min_capacity_cpu(int cpu)2997 static inline bool is_min_capacity_cpu(int cpu)
2998 {
2999 	return cpu_max_possible_capacity(cpu) == min_max_possible_capacity;
3000 }
3001 
3002 /*
3003  * Return 'capacity' of a cpu in reference to "least" efficient cpu, such that
3004  * least efficient cpu gets capacity of 1024
3005  */
3006 static unsigned long
capacity_scale_cpu_efficiency(struct sched_cluster * cluster)3007 capacity_scale_cpu_efficiency(struct sched_cluster *cluster)
3008 {
3009 	return (1024 * cluster->efficiency) / min_possible_efficiency;
3010 }
3011 
3012 /*
3013  * Return 'capacity' of a cpu in reference to cpu with lowest max_freq
3014  * (min_max_freq), such that one with lowest max_freq gets capacity of 1024.
3015  */
capacity_scale_cpu_freq(struct sched_cluster * cluster)3016 static unsigned long capacity_scale_cpu_freq(struct sched_cluster *cluster)
3017 {
3018 	return (1024 * cluster_max_freq(cluster)) / min_max_freq;
3019 }
3020 
compute_capacity(struct sched_cluster * cluster)3021 static inline int compute_capacity(struct sched_cluster *cluster)
3022 {
3023 	int capacity = 1024;
3024 
3025 	capacity *= capacity_scale_cpu_efficiency(cluster);
3026 	capacity >>= 10;
3027 
3028 	capacity *= capacity_scale_cpu_freq(cluster);
3029 	capacity >>= 10;
3030 
3031 	return capacity;
3032 }
3033 
power_cost(int cpu,u64 demand)3034 static inline unsigned int power_cost(int cpu, u64 demand)
3035 {
3036 	return cpu_max_possible_capacity(cpu);
3037 }
3038 
cpu_util_freq_walt(int cpu)3039 static inline unsigned long cpu_util_freq_walt(int cpu)
3040 {
3041 	u64 util;
3042 	struct rq *rq = cpu_rq(cpu);
3043 	unsigned long capacity = capacity_orig_of(cpu);
3044 
3045 	if (unlikely(walt_disabled || !sysctl_sched_use_walt_cpu_util))
3046 		return cpu_util(cpu);
3047 
3048 	util = rq->prev_runnable_sum << SCHED_CAPACITY_SHIFT;
3049 	util = div_u64(util, sched_ravg_window);
3050 
3051 	return (util >= capacity) ? capacity : util;
3052 }
3053 
hmp_capable(void)3054 static inline bool hmp_capable(void)
3055 {
3056 	return max_possible_capacity != min_max_possible_capacity;
3057 }
3058 #else /* CONFIG_SCHED_WALT */
walt_fixup_cum_window_demand(struct rq * rq,s64 scaled_delta)3059 static inline void walt_fixup_cum_window_demand(struct rq *rq,
3060 						s64 scaled_delta) { }
3061 
same_freq_domain(int src_cpu,int dst_cpu)3062 static inline int same_freq_domain(int src_cpu, int dst_cpu)
3063 {
3064 	return 1;
3065 }
3066 
is_reserved(int cpu)3067 static inline int is_reserved(int cpu)
3068 {
3069 	return 0;
3070 }
3071 
clear_reserved(int cpu)3072 static inline void clear_reserved(int cpu) { }
3073 
hmp_capable(void)3074 static inline bool hmp_capable(void)
3075 {
3076 	return false;
3077 }
3078 #endif /* CONFIG_SCHED_WALT */
3079 
3080 struct sched_avg_stats {
3081 	int nr;
3082 	int nr_misfit;
3083 	int nr_max;
3084 	int nr_scaled;
3085 };
3086 #ifdef CONFIG_SCHED_RUNNING_AVG
3087 extern void sched_get_nr_running_avg(struct sched_avg_stats *stats);
3088 #else
sched_get_nr_running_avg(struct sched_avg_stats * stats)3089 static inline void sched_get_nr_running_avg(struct sched_avg_stats *stats) { }
3090 #endif
3091 
3092 #ifdef CONFIG_CPU_ISOLATION_OPT
3093 extern int group_balance_cpu_not_isolated(struct sched_group *sg);
3094 #else
group_balance_cpu_not_isolated(struct sched_group * sg)3095 static inline int group_balance_cpu_not_isolated(struct sched_group *sg)
3096 {
3097 	return group_balance_cpu(sg);
3098 }
3099 #endif /* CONFIG_CPU_ISOLATION_OPT */
3100 
3101 #ifdef CONFIG_HOTPLUG_CPU
3102 extern void migrate_tasks(struct rq *dead_rq, struct rq_flags *rf,
3103 					bool migrate_pinned_tasks);
3104 #endif
3105