1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Kernel-based Virtual Machine -- Performance Monitoring Unit support
4 *
5 * Copyright 2015 Red Hat, Inc. and/or its affiliates.
6 *
7 * Authors:
8 * Avi Kivity <avi@redhat.com>
9 * Gleb Natapov <gleb@redhat.com>
10 * Wei Huang <wei@redhat.com>
11 */
12
13 #include <linux/types.h>
14 #include <linux/kvm_host.h>
15 #include <linux/perf_event.h>
16 #include <linux/bsearch.h>
17 #include <linux/sort.h>
18 #include <asm/perf_event.h>
19 #include "x86.h"
20 #include "cpuid.h"
21 #include "lapic.h"
22 #include "pmu.h"
23
24 /* This is enough to filter the vast majority of currently defined events. */
25 #define KVM_PMU_EVENT_FILTER_MAX_EVENTS 300
26
27 /* NOTE:
28 * - Each perf counter is defined as "struct kvm_pmc";
29 * - There are two types of perf counters: general purpose (gp) and fixed.
30 * gp counters are stored in gp_counters[] and fixed counters are stored
31 * in fixed_counters[] respectively. Both of them are part of "struct
32 * kvm_pmu";
33 * - pmu.c understands the difference between gp counters and fixed counters.
34 * However AMD doesn't support fixed-counters;
35 * - There are three types of index to access perf counters (PMC):
36 * 1. MSR (named msr): For example Intel has MSR_IA32_PERFCTRn and AMD
37 * has MSR_K7_PERFCTRn.
38 * 2. MSR Index (named idx): This normally is used by RDPMC instruction.
39 * For instance AMD RDPMC instruction uses 0000_0003h in ECX to access
40 * C001_0007h (MSR_K7_PERCTR3). Intel has a similar mechanism, except
41 * that it also supports fixed counters. idx can be used to as index to
42 * gp and fixed counters.
43 * 3. Global PMC Index (named pmc): pmc is an index specific to PMU
44 * code. Each pmc, stored in kvm_pmc.idx field, is unique across
45 * all perf counters (both gp and fixed). The mapping relationship
46 * between pmc and perf counters is as the following:
47 * * Intel: [0 .. INTEL_PMC_MAX_GENERIC-1] <=> gp counters
48 * [INTEL_PMC_IDX_FIXED .. INTEL_PMC_IDX_FIXED + 2] <=> fixed
49 * * AMD: [0 .. AMD64_NUM_COUNTERS-1] <=> gp counters
50 */
51
kvm_pmi_trigger_fn(struct irq_work * irq_work)52 static void kvm_pmi_trigger_fn(struct irq_work *irq_work)
53 {
54 struct kvm_pmu *pmu = container_of(irq_work, struct kvm_pmu, irq_work);
55 struct kvm_vcpu *vcpu = pmu_to_vcpu(pmu);
56
57 kvm_pmu_deliver_pmi(vcpu);
58 }
59
kvm_perf_overflow(struct perf_event * perf_event,struct perf_sample_data * data,struct pt_regs * regs)60 static void kvm_perf_overflow(struct perf_event *perf_event,
61 struct perf_sample_data *data,
62 struct pt_regs *regs)
63 {
64 struct kvm_pmc *pmc = perf_event->overflow_handler_context;
65 struct kvm_pmu *pmu = pmc_to_pmu(pmc);
66
67 if (!test_and_set_bit(pmc->idx, pmu->reprogram_pmi)) {
68 __set_bit(pmc->idx, (unsigned long *)&pmu->global_status);
69 kvm_make_request(KVM_REQ_PMU, pmc->vcpu);
70 }
71 }
72
kvm_perf_overflow_intr(struct perf_event * perf_event,struct perf_sample_data * data,struct pt_regs * regs)73 static void kvm_perf_overflow_intr(struct perf_event *perf_event,
74 struct perf_sample_data *data,
75 struct pt_regs *regs)
76 {
77 struct kvm_pmc *pmc = perf_event->overflow_handler_context;
78 struct kvm_pmu *pmu = pmc_to_pmu(pmc);
79
80 if (!test_and_set_bit(pmc->idx, pmu->reprogram_pmi)) {
81 __set_bit(pmc->idx, (unsigned long *)&pmu->global_status);
82 kvm_make_request(KVM_REQ_PMU, pmc->vcpu);
83
84 /*
85 * Inject PMI. If vcpu was in a guest mode during NMI PMI
86 * can be ejected on a guest mode re-entry. Otherwise we can't
87 * be sure that vcpu wasn't executing hlt instruction at the
88 * time of vmexit and is not going to re-enter guest mode until
89 * woken up. So we should wake it, but this is impossible from
90 * NMI context. Do it from irq work instead.
91 */
92 if (!kvm_is_in_guest())
93 irq_work_queue(&pmc_to_pmu(pmc)->irq_work);
94 else
95 kvm_make_request(KVM_REQ_PMI, pmc->vcpu);
96 }
97 }
98
pmc_reprogram_counter(struct kvm_pmc * pmc,u32 type,u64 config,bool exclude_user,bool exclude_kernel,bool intr,bool in_tx,bool in_tx_cp)99 static void pmc_reprogram_counter(struct kvm_pmc *pmc, u32 type,
100 u64 config, bool exclude_user,
101 bool exclude_kernel, bool intr,
102 bool in_tx, bool in_tx_cp)
103 {
104 struct perf_event *event;
105 struct perf_event_attr attr = {
106 .type = type,
107 .size = sizeof(attr),
108 .pinned = true,
109 .exclude_idle = true,
110 .exclude_host = 1,
111 .exclude_user = exclude_user,
112 .exclude_kernel = exclude_kernel,
113 .config = config,
114 };
115
116 attr.sample_period = get_sample_period(pmc, pmc->counter);
117
118 if (in_tx)
119 attr.config |= HSW_IN_TX;
120 if (in_tx_cp) {
121 /*
122 * HSW_IN_TX_CHECKPOINTED is not supported with nonzero
123 * period. Just clear the sample period so at least
124 * allocating the counter doesn't fail.
125 */
126 attr.sample_period = 0;
127 attr.config |= HSW_IN_TX_CHECKPOINTED;
128 }
129
130 event = perf_event_create_kernel_counter(&attr, -1, current,
131 intr ? kvm_perf_overflow_intr :
132 kvm_perf_overflow, pmc);
133 if (IS_ERR(event)) {
134 pr_debug_ratelimited("kvm_pmu: event creation failed %ld for pmc->idx = %d\n",
135 PTR_ERR(event), pmc->idx);
136 return;
137 }
138
139 pmc->perf_event = event;
140 pmc_to_pmu(pmc)->event_count++;
141 clear_bit(pmc->idx, pmc_to_pmu(pmc)->reprogram_pmi);
142 }
143
pmc_pause_counter(struct kvm_pmc * pmc)144 static void pmc_pause_counter(struct kvm_pmc *pmc)
145 {
146 u64 counter = pmc->counter;
147
148 if (!pmc->perf_event)
149 return;
150
151 /* update counter, reset event value to avoid redundant accumulation */
152 counter += perf_event_pause(pmc->perf_event, true);
153 pmc->counter = counter & pmc_bitmask(pmc);
154 }
155
pmc_resume_counter(struct kvm_pmc * pmc)156 static bool pmc_resume_counter(struct kvm_pmc *pmc)
157 {
158 if (!pmc->perf_event)
159 return false;
160
161 /* recalibrate sample period and check if it's accepted by perf core */
162 if (perf_event_period(pmc->perf_event,
163 get_sample_period(pmc, pmc->counter)))
164 return false;
165
166 /* reuse perf_event to serve as pmc_reprogram_counter() does*/
167 perf_event_enable(pmc->perf_event);
168
169 clear_bit(pmc->idx, (unsigned long *)&pmc_to_pmu(pmc)->reprogram_pmi);
170 return true;
171 }
172
cmp_u64(const void * pa,const void * pb)173 static int cmp_u64(const void *pa, const void *pb)
174 {
175 u64 a = *(u64 *)pa;
176 u64 b = *(u64 *)pb;
177
178 return (a > b) - (a < b);
179 }
180
reprogram_gp_counter(struct kvm_pmc * pmc,u64 eventsel)181 void reprogram_gp_counter(struct kvm_pmc *pmc, u64 eventsel)
182 {
183 u64 config;
184 u32 type = PERF_TYPE_RAW;
185 struct kvm *kvm = pmc->vcpu->kvm;
186 struct kvm_pmu_event_filter *filter;
187 struct kvm_pmu *pmu = vcpu_to_pmu(pmc->vcpu);
188 bool allow_event = true;
189
190 if (eventsel & ARCH_PERFMON_EVENTSEL_PIN_CONTROL)
191 printk_once("kvm pmu: pin control bit is ignored\n");
192
193 pmc->eventsel = eventsel;
194
195 pmc_pause_counter(pmc);
196
197 if (!(eventsel & ARCH_PERFMON_EVENTSEL_ENABLE) || !pmc_is_enabled(pmc))
198 return;
199
200 filter = srcu_dereference(kvm->arch.pmu_event_filter, &kvm->srcu);
201 if (filter) {
202 __u64 key = eventsel & AMD64_RAW_EVENT_MASK_NB;
203
204 if (bsearch(&key, filter->events, filter->nevents,
205 sizeof(__u64), cmp_u64))
206 allow_event = filter->action == KVM_PMU_EVENT_ALLOW;
207 else
208 allow_event = filter->action == KVM_PMU_EVENT_DENY;
209 }
210 if (!allow_event)
211 return;
212
213 if (!(eventsel & (ARCH_PERFMON_EVENTSEL_EDGE |
214 ARCH_PERFMON_EVENTSEL_INV |
215 ARCH_PERFMON_EVENTSEL_CMASK |
216 HSW_IN_TX |
217 HSW_IN_TX_CHECKPOINTED))) {
218 config = kvm_x86_ops.pmu_ops->pmc_perf_hw_id(pmc);
219 if (config != PERF_COUNT_HW_MAX)
220 type = PERF_TYPE_HARDWARE;
221 }
222
223 if (type == PERF_TYPE_RAW)
224 config = eventsel & pmu->raw_event_mask;
225
226 if (pmc->current_config == eventsel && pmc_resume_counter(pmc))
227 return;
228
229 pmc_release_perf_event(pmc);
230
231 pmc->current_config = eventsel;
232 pmc_reprogram_counter(pmc, type, config,
233 !(eventsel & ARCH_PERFMON_EVENTSEL_USR),
234 !(eventsel & ARCH_PERFMON_EVENTSEL_OS),
235 eventsel & ARCH_PERFMON_EVENTSEL_INT,
236 (eventsel & HSW_IN_TX),
237 (eventsel & HSW_IN_TX_CHECKPOINTED));
238 }
239 EXPORT_SYMBOL_GPL(reprogram_gp_counter);
240
reprogram_fixed_counter(struct kvm_pmc * pmc,u8 ctrl,int idx)241 void reprogram_fixed_counter(struct kvm_pmc *pmc, u8 ctrl, int idx)
242 {
243 unsigned en_field = ctrl & 0x3;
244 bool pmi = ctrl & 0x8;
245 struct kvm_pmu_event_filter *filter;
246 struct kvm *kvm = pmc->vcpu->kvm;
247
248 pmc_pause_counter(pmc);
249
250 if (!en_field || !pmc_is_enabled(pmc))
251 return;
252
253 filter = srcu_dereference(kvm->arch.pmu_event_filter, &kvm->srcu);
254 if (filter) {
255 if (filter->action == KVM_PMU_EVENT_DENY &&
256 test_bit(idx, (ulong *)&filter->fixed_counter_bitmap))
257 return;
258 if (filter->action == KVM_PMU_EVENT_ALLOW &&
259 !test_bit(idx, (ulong *)&filter->fixed_counter_bitmap))
260 return;
261 }
262
263 if (pmc->current_config == (u64)ctrl && pmc_resume_counter(pmc))
264 return;
265
266 pmc_release_perf_event(pmc);
267
268 pmc->current_config = (u64)ctrl;
269 pmc_reprogram_counter(pmc, PERF_TYPE_HARDWARE,
270 kvm_x86_ops.pmu_ops->find_fixed_event(idx),
271 !(en_field & 0x2), /* exclude user */
272 !(en_field & 0x1), /* exclude kernel */
273 pmi, false, false);
274 }
275 EXPORT_SYMBOL_GPL(reprogram_fixed_counter);
276
reprogram_counter(struct kvm_pmu * pmu,int pmc_idx)277 void reprogram_counter(struct kvm_pmu *pmu, int pmc_idx)
278 {
279 struct kvm_pmc *pmc = kvm_x86_ops.pmu_ops->pmc_idx_to_pmc(pmu, pmc_idx);
280
281 if (!pmc)
282 return;
283
284 if (pmc_is_gp(pmc))
285 reprogram_gp_counter(pmc, pmc->eventsel);
286 else {
287 int idx = pmc_idx - INTEL_PMC_IDX_FIXED;
288 u8 ctrl = fixed_ctrl_field(pmu->fixed_ctr_ctrl, idx);
289
290 reprogram_fixed_counter(pmc, ctrl, idx);
291 }
292 }
293 EXPORT_SYMBOL_GPL(reprogram_counter);
294
kvm_pmu_handle_event(struct kvm_vcpu * vcpu)295 void kvm_pmu_handle_event(struct kvm_vcpu *vcpu)
296 {
297 struct kvm_pmu *pmu = vcpu_to_pmu(vcpu);
298 int bit;
299
300 for_each_set_bit(bit, pmu->reprogram_pmi, X86_PMC_IDX_MAX) {
301 struct kvm_pmc *pmc = kvm_x86_ops.pmu_ops->pmc_idx_to_pmc(pmu, bit);
302
303 if (unlikely(!pmc || !pmc->perf_event)) {
304 clear_bit(bit, pmu->reprogram_pmi);
305 continue;
306 }
307
308 reprogram_counter(pmu, bit);
309 }
310
311 /*
312 * Unused perf_events are only released if the corresponding MSRs
313 * weren't accessed during the last vCPU time slice. kvm_arch_sched_in
314 * triggers KVM_REQ_PMU if cleanup is needed.
315 */
316 if (unlikely(pmu->need_cleanup))
317 kvm_pmu_cleanup(vcpu);
318 }
319
320 /* check if idx is a valid index to access PMU */
kvm_pmu_is_valid_rdpmc_ecx(struct kvm_vcpu * vcpu,unsigned int idx)321 int kvm_pmu_is_valid_rdpmc_ecx(struct kvm_vcpu *vcpu, unsigned int idx)
322 {
323 return kvm_x86_ops.pmu_ops->is_valid_rdpmc_ecx(vcpu, idx);
324 }
325
is_vmware_backdoor_pmc(u32 pmc_idx)326 bool is_vmware_backdoor_pmc(u32 pmc_idx)
327 {
328 switch (pmc_idx) {
329 case VMWARE_BACKDOOR_PMC_HOST_TSC:
330 case VMWARE_BACKDOOR_PMC_REAL_TIME:
331 case VMWARE_BACKDOOR_PMC_APPARENT_TIME:
332 return true;
333 }
334 return false;
335 }
336
kvm_pmu_rdpmc_vmware(struct kvm_vcpu * vcpu,unsigned idx,u64 * data)337 static int kvm_pmu_rdpmc_vmware(struct kvm_vcpu *vcpu, unsigned idx, u64 *data)
338 {
339 u64 ctr_val;
340
341 switch (idx) {
342 case VMWARE_BACKDOOR_PMC_HOST_TSC:
343 ctr_val = rdtsc();
344 break;
345 case VMWARE_BACKDOOR_PMC_REAL_TIME:
346 ctr_val = ktime_get_boottime_ns();
347 break;
348 case VMWARE_BACKDOOR_PMC_APPARENT_TIME:
349 ctr_val = ktime_get_boottime_ns() +
350 vcpu->kvm->arch.kvmclock_offset;
351 break;
352 default:
353 return 1;
354 }
355
356 *data = ctr_val;
357 return 0;
358 }
359
kvm_pmu_rdpmc(struct kvm_vcpu * vcpu,unsigned idx,u64 * data)360 int kvm_pmu_rdpmc(struct kvm_vcpu *vcpu, unsigned idx, u64 *data)
361 {
362 bool fast_mode = idx & (1u << 31);
363 struct kvm_pmu *pmu = vcpu_to_pmu(vcpu);
364 struct kvm_pmc *pmc;
365 u64 mask = fast_mode ? ~0u : ~0ull;
366
367 if (!pmu->version)
368 return 1;
369
370 if (is_vmware_backdoor_pmc(idx))
371 return kvm_pmu_rdpmc_vmware(vcpu, idx, data);
372
373 pmc = kvm_x86_ops.pmu_ops->rdpmc_ecx_to_pmc(vcpu, idx, &mask);
374 if (!pmc)
375 return 1;
376
377 if (!(kvm_read_cr4(vcpu) & X86_CR4_PCE) &&
378 (kvm_x86_ops.get_cpl(vcpu) != 0) &&
379 (kvm_read_cr0(vcpu) & X86_CR0_PE))
380 return 1;
381
382 *data = pmc_read_counter(pmc) & mask;
383 return 0;
384 }
385
kvm_pmu_deliver_pmi(struct kvm_vcpu * vcpu)386 void kvm_pmu_deliver_pmi(struct kvm_vcpu *vcpu)
387 {
388 if (lapic_in_kernel(vcpu))
389 kvm_apic_local_deliver(vcpu->arch.apic, APIC_LVTPC);
390 }
391
kvm_pmu_is_valid_msr(struct kvm_vcpu * vcpu,u32 msr)392 bool kvm_pmu_is_valid_msr(struct kvm_vcpu *vcpu, u32 msr)
393 {
394 return kvm_x86_ops.pmu_ops->msr_idx_to_pmc(vcpu, msr) ||
395 kvm_x86_ops.pmu_ops->is_valid_msr(vcpu, msr);
396 }
397
kvm_pmu_mark_pmc_in_use(struct kvm_vcpu * vcpu,u32 msr)398 static void kvm_pmu_mark_pmc_in_use(struct kvm_vcpu *vcpu, u32 msr)
399 {
400 struct kvm_pmu *pmu = vcpu_to_pmu(vcpu);
401 struct kvm_pmc *pmc = kvm_x86_ops.pmu_ops->msr_idx_to_pmc(vcpu, msr);
402
403 if (pmc)
404 __set_bit(pmc->idx, pmu->pmc_in_use);
405 }
406
kvm_pmu_get_msr(struct kvm_vcpu * vcpu,struct msr_data * msr_info)407 int kvm_pmu_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
408 {
409 return kvm_x86_ops.pmu_ops->get_msr(vcpu, msr_info);
410 }
411
kvm_pmu_set_msr(struct kvm_vcpu * vcpu,struct msr_data * msr_info)412 int kvm_pmu_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
413 {
414 kvm_pmu_mark_pmc_in_use(vcpu, msr_info->index);
415 return kvm_x86_ops.pmu_ops->set_msr(vcpu, msr_info);
416 }
417
418 /* refresh PMU settings. This function generally is called when underlying
419 * settings are changed (such as changes of PMU CPUID by guest VMs), which
420 * should rarely happen.
421 */
kvm_pmu_refresh(struct kvm_vcpu * vcpu)422 void kvm_pmu_refresh(struct kvm_vcpu *vcpu)
423 {
424 kvm_x86_ops.pmu_ops->refresh(vcpu);
425 }
426
kvm_pmu_reset(struct kvm_vcpu * vcpu)427 void kvm_pmu_reset(struct kvm_vcpu *vcpu)
428 {
429 struct kvm_pmu *pmu = vcpu_to_pmu(vcpu);
430
431 irq_work_sync(&pmu->irq_work);
432 kvm_x86_ops.pmu_ops->reset(vcpu);
433 }
434
kvm_pmu_init(struct kvm_vcpu * vcpu)435 void kvm_pmu_init(struct kvm_vcpu *vcpu)
436 {
437 struct kvm_pmu *pmu = vcpu_to_pmu(vcpu);
438
439 memset(pmu, 0, sizeof(*pmu));
440 kvm_x86_ops.pmu_ops->init(vcpu);
441 init_irq_work(&pmu->irq_work, kvm_pmi_trigger_fn);
442 pmu->event_count = 0;
443 pmu->need_cleanup = false;
444 kvm_pmu_refresh(vcpu);
445 }
446
pmc_speculative_in_use(struct kvm_pmc * pmc)447 static inline bool pmc_speculative_in_use(struct kvm_pmc *pmc)
448 {
449 struct kvm_pmu *pmu = pmc_to_pmu(pmc);
450
451 if (pmc_is_fixed(pmc))
452 return fixed_ctrl_field(pmu->fixed_ctr_ctrl,
453 pmc->idx - INTEL_PMC_IDX_FIXED) & 0x3;
454
455 return pmc->eventsel & ARCH_PERFMON_EVENTSEL_ENABLE;
456 }
457
458 /* Release perf_events for vPMCs that have been unused for a full time slice. */
kvm_pmu_cleanup(struct kvm_vcpu * vcpu)459 void kvm_pmu_cleanup(struct kvm_vcpu *vcpu)
460 {
461 struct kvm_pmu *pmu = vcpu_to_pmu(vcpu);
462 struct kvm_pmc *pmc = NULL;
463 DECLARE_BITMAP(bitmask, X86_PMC_IDX_MAX);
464 int i;
465
466 pmu->need_cleanup = false;
467
468 bitmap_andnot(bitmask, pmu->all_valid_pmc_idx,
469 pmu->pmc_in_use, X86_PMC_IDX_MAX);
470
471 for_each_set_bit(i, bitmask, X86_PMC_IDX_MAX) {
472 pmc = kvm_x86_ops.pmu_ops->pmc_idx_to_pmc(pmu, i);
473
474 if (pmc && pmc->perf_event && !pmc_speculative_in_use(pmc))
475 pmc_stop_counter(pmc);
476 }
477
478 bitmap_zero(pmu->pmc_in_use, X86_PMC_IDX_MAX);
479 }
480
kvm_pmu_destroy(struct kvm_vcpu * vcpu)481 void kvm_pmu_destroy(struct kvm_vcpu *vcpu)
482 {
483 kvm_pmu_reset(vcpu);
484 }
485
kvm_vm_ioctl_set_pmu_event_filter(struct kvm * kvm,void __user * argp)486 int kvm_vm_ioctl_set_pmu_event_filter(struct kvm *kvm, void __user *argp)
487 {
488 struct kvm_pmu_event_filter tmp, *filter;
489 size_t size;
490 int r;
491
492 if (copy_from_user(&tmp, argp, sizeof(tmp)))
493 return -EFAULT;
494
495 if (tmp.action != KVM_PMU_EVENT_ALLOW &&
496 tmp.action != KVM_PMU_EVENT_DENY)
497 return -EINVAL;
498
499 if (tmp.flags != 0)
500 return -EINVAL;
501
502 if (tmp.nevents > KVM_PMU_EVENT_FILTER_MAX_EVENTS)
503 return -E2BIG;
504
505 size = struct_size(filter, events, tmp.nevents);
506 filter = kmalloc(size, GFP_KERNEL_ACCOUNT);
507 if (!filter)
508 return -ENOMEM;
509
510 r = -EFAULT;
511 if (copy_from_user(filter, argp, size))
512 goto cleanup;
513
514 /* Ensure nevents can't be changed between the user copies. */
515 *filter = tmp;
516
517 /*
518 * Sort the in-kernel list so that we can search it with bsearch.
519 */
520 sort(&filter->events, filter->nevents, sizeof(__u64), cmp_u64, NULL);
521
522 mutex_lock(&kvm->lock);
523 filter = rcu_replace_pointer(kvm->arch.pmu_event_filter, filter,
524 mutex_is_locked(&kvm->lock));
525 mutex_unlock(&kvm->lock);
526
527 synchronize_srcu_expedited(&kvm->srcu);
528 r = 0;
529 cleanup:
530 kfree(filter);
531 return r;
532 }
533