• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * linux/fs/jbd2/transaction.c
4  *
5  * Written by Stephen C. Tweedie <sct@redhat.com>, 1998
6  *
7  * Copyright 1998 Red Hat corp --- All Rights Reserved
8  *
9  * Generic filesystem transaction handling code; part of the ext2fs
10  * journaling system.
11  *
12  * This file manages transactions (compound commits managed by the
13  * journaling code) and handles (individual atomic operations by the
14  * filesystem).
15  */
16 
17 #include <linux/time.h>
18 #include <linux/fs.h>
19 #include <linux/jbd2.h>
20 #include <linux/errno.h>
21 #include <linux/slab.h>
22 #include <linux/timer.h>
23 #include <linux/mm.h>
24 #include <linux/highmem.h>
25 #include <linux/hrtimer.h>
26 #include <linux/backing-dev.h>
27 #include <linux/bug.h>
28 #include <linux/module.h>
29 #include <linux/sched/mm.h>
30 
31 #include <trace/events/jbd2.h>
32 
33 static void __jbd2_journal_temp_unlink_buffer(struct journal_head *jh);
34 static void __jbd2_journal_unfile_buffer(struct journal_head *jh);
35 
36 static struct kmem_cache *transaction_cache;
jbd2_journal_init_transaction_cache(void)37 int __init jbd2_journal_init_transaction_cache(void)
38 {
39 	J_ASSERT(!transaction_cache);
40 	transaction_cache = kmem_cache_create("jbd2_transaction_s",
41 					sizeof(transaction_t),
42 					0,
43 					SLAB_HWCACHE_ALIGN|SLAB_TEMPORARY,
44 					NULL);
45 	if (!transaction_cache) {
46 		pr_emerg("JBD2: failed to create transaction cache\n");
47 		return -ENOMEM;
48 	}
49 	return 0;
50 }
51 
jbd2_journal_destroy_transaction_cache(void)52 void jbd2_journal_destroy_transaction_cache(void)
53 {
54 	kmem_cache_destroy(transaction_cache);
55 	transaction_cache = NULL;
56 }
57 
jbd2_journal_free_transaction(transaction_t * transaction)58 void jbd2_journal_free_transaction(transaction_t *transaction)
59 {
60 	if (unlikely(ZERO_OR_NULL_PTR(transaction)))
61 		return;
62 	kmem_cache_free(transaction_cache, transaction);
63 }
64 
65 /*
66  * Base amount of descriptor blocks we reserve for each transaction.
67  */
jbd2_descriptor_blocks_per_trans(journal_t * journal)68 static int jbd2_descriptor_blocks_per_trans(journal_t *journal)
69 {
70 	int tag_space = journal->j_blocksize - sizeof(journal_header_t);
71 	int tags_per_block;
72 
73 	/* Subtract UUID */
74 	tag_space -= 16;
75 	if (jbd2_journal_has_csum_v2or3(journal))
76 		tag_space -= sizeof(struct jbd2_journal_block_tail);
77 	/* Commit code leaves a slack space of 16 bytes at the end of block */
78 	tags_per_block = (tag_space - 16) / journal_tag_bytes(journal);
79 	/*
80 	 * Revoke descriptors are accounted separately so we need to reserve
81 	 * space for commit block and normal transaction descriptor blocks.
82 	 */
83 	return 1 + DIV_ROUND_UP(journal->j_max_transaction_buffers,
84 				tags_per_block);
85 }
86 
87 /*
88  * jbd2_get_transaction: obtain a new transaction_t object.
89  *
90  * Simply initialise a new transaction. Initialize it in
91  * RUNNING state and add it to the current journal (which should not
92  * have an existing running transaction: we only make a new transaction
93  * once we have started to commit the old one).
94  *
95  * Preconditions:
96  *	The journal MUST be locked.  We don't perform atomic mallocs on the
97  *	new transaction	and we can't block without protecting against other
98  *	processes trying to touch the journal while it is in transition.
99  *
100  */
101 
jbd2_get_transaction(journal_t * journal,transaction_t * transaction)102 static void jbd2_get_transaction(journal_t *journal,
103 				transaction_t *transaction)
104 {
105 	transaction->t_journal = journal;
106 	transaction->t_state = T_RUNNING;
107 	transaction->t_start_time = ktime_get();
108 	transaction->t_tid = journal->j_transaction_sequence++;
109 	transaction->t_expires = jiffies + journal->j_commit_interval;
110 	spin_lock_init(&transaction->t_handle_lock);
111 	atomic_set(&transaction->t_updates, 0);
112 	atomic_set(&transaction->t_outstanding_credits,
113 		   jbd2_descriptor_blocks_per_trans(journal) +
114 		   atomic_read(&journal->j_reserved_credits));
115 	atomic_set(&transaction->t_outstanding_revokes, 0);
116 	atomic_set(&transaction->t_handle_count, 0);
117 	INIT_LIST_HEAD(&transaction->t_inode_list);
118 	INIT_LIST_HEAD(&transaction->t_private_list);
119 
120 	/* Set up the commit timer for the new transaction. */
121 	journal->j_commit_timer.expires = round_jiffies_up(transaction->t_expires);
122 	add_timer(&journal->j_commit_timer);
123 
124 	J_ASSERT(journal->j_running_transaction == NULL);
125 	journal->j_running_transaction = transaction;
126 	transaction->t_max_wait = 0;
127 	transaction->t_start = jiffies;
128 	transaction->t_requested = 0;
129 }
130 
131 /*
132  * Handle management.
133  *
134  * A handle_t is an object which represents a single atomic update to a
135  * filesystem, and which tracks all of the modifications which form part
136  * of that one update.
137  */
138 
139 /*
140  * Update transaction's maximum wait time, if debugging is enabled.
141  *
142  * In order for t_max_wait to be reliable, it must be protected by a
143  * lock.  But doing so will mean that start_this_handle() can not be
144  * run in parallel on SMP systems, which limits our scalability.  So
145  * unless debugging is enabled, we no longer update t_max_wait, which
146  * means that maximum wait time reported by the jbd2_run_stats
147  * tracepoint will always be zero.
148  */
update_t_max_wait(transaction_t * transaction,unsigned long ts)149 static inline void update_t_max_wait(transaction_t *transaction,
150 				     unsigned long ts)
151 {
152 #ifdef CONFIG_JBD2_DEBUG
153 	if (jbd2_journal_enable_debug &&
154 	    time_after(transaction->t_start, ts)) {
155 		ts = jbd2_time_diff(ts, transaction->t_start);
156 		spin_lock(&transaction->t_handle_lock);
157 		if (ts > transaction->t_max_wait)
158 			transaction->t_max_wait = ts;
159 		spin_unlock(&transaction->t_handle_lock);
160 	}
161 #endif
162 }
163 
164 /*
165  * Wait until running transaction passes to T_FLUSH state and new transaction
166  * can thus be started. Also starts the commit if needed. The function expects
167  * running transaction to exist and releases j_state_lock.
168  */
wait_transaction_locked(journal_t * journal)169 static void wait_transaction_locked(journal_t *journal)
170 	__releases(journal->j_state_lock)
171 {
172 	DEFINE_WAIT(wait);
173 	int need_to_start;
174 	tid_t tid = journal->j_running_transaction->t_tid;
175 
176 	prepare_to_wait_exclusive(&journal->j_wait_transaction_locked, &wait,
177 			TASK_UNINTERRUPTIBLE);
178 	need_to_start = !tid_geq(journal->j_commit_request, tid);
179 	read_unlock(&journal->j_state_lock);
180 	if (need_to_start)
181 		jbd2_log_start_commit(journal, tid);
182 	jbd2_might_wait_for_commit(journal);
183 	schedule();
184 	finish_wait(&journal->j_wait_transaction_locked, &wait);
185 }
186 
187 /*
188  * Wait until running transaction transitions from T_SWITCH to T_FLUSH
189  * state and new transaction can thus be started. The function releases
190  * j_state_lock.
191  */
wait_transaction_switching(journal_t * journal)192 static void wait_transaction_switching(journal_t *journal)
193 	__releases(journal->j_state_lock)
194 {
195 	DEFINE_WAIT(wait);
196 
197 	if (WARN_ON(!journal->j_running_transaction ||
198 		    journal->j_running_transaction->t_state != T_SWITCH)) {
199 		read_unlock(&journal->j_state_lock);
200 		return;
201 	}
202 	prepare_to_wait_exclusive(&journal->j_wait_transaction_locked, &wait,
203 			TASK_UNINTERRUPTIBLE);
204 	read_unlock(&journal->j_state_lock);
205 	/*
206 	 * We don't call jbd2_might_wait_for_commit() here as there's no
207 	 * waiting for outstanding handles happening anymore in T_SWITCH state
208 	 * and handling of reserved handles actually relies on that for
209 	 * correctness.
210 	 */
211 	schedule();
212 	finish_wait(&journal->j_wait_transaction_locked, &wait);
213 }
214 
sub_reserved_credits(journal_t * journal,int blocks)215 static void sub_reserved_credits(journal_t *journal, int blocks)
216 {
217 	atomic_sub(blocks, &journal->j_reserved_credits);
218 	wake_up(&journal->j_wait_reserved);
219 }
220 
221 /*
222  * Wait until we can add credits for handle to the running transaction.  Called
223  * with j_state_lock held for reading. Returns 0 if handle joined the running
224  * transaction. Returns 1 if we had to wait, j_state_lock is dropped, and
225  * caller must retry.
226  */
add_transaction_credits(journal_t * journal,int blocks,int rsv_blocks)227 static int add_transaction_credits(journal_t *journal, int blocks,
228 				   int rsv_blocks)
229 {
230 	transaction_t *t = journal->j_running_transaction;
231 	int needed;
232 	int total = blocks + rsv_blocks;
233 
234 	/*
235 	 * If the current transaction is locked down for commit, wait
236 	 * for the lock to be released.
237 	 */
238 	if (t->t_state != T_RUNNING) {
239 		WARN_ON_ONCE(t->t_state >= T_FLUSH);
240 		wait_transaction_locked(journal);
241 		return 1;
242 	}
243 
244 	/*
245 	 * If there is not enough space left in the log to write all
246 	 * potential buffers requested by this operation, we need to
247 	 * stall pending a log checkpoint to free some more log space.
248 	 */
249 	needed = atomic_add_return(total, &t->t_outstanding_credits);
250 	if (needed > journal->j_max_transaction_buffers) {
251 		/*
252 		 * If the current transaction is already too large,
253 		 * then start to commit it: we can then go back and
254 		 * attach this handle to a new transaction.
255 		 */
256 		atomic_sub(total, &t->t_outstanding_credits);
257 
258 		/*
259 		 * Is the number of reserved credits in the current transaction too
260 		 * big to fit this handle? Wait until reserved credits are freed.
261 		 */
262 		if (atomic_read(&journal->j_reserved_credits) + total >
263 		    journal->j_max_transaction_buffers) {
264 			read_unlock(&journal->j_state_lock);
265 			jbd2_might_wait_for_commit(journal);
266 			wait_event(journal->j_wait_reserved,
267 				   atomic_read(&journal->j_reserved_credits) + total <=
268 				   journal->j_max_transaction_buffers);
269 			return 1;
270 		}
271 
272 		wait_transaction_locked(journal);
273 		return 1;
274 	}
275 
276 	/*
277 	 * The commit code assumes that it can get enough log space
278 	 * without forcing a checkpoint.  This is *critical* for
279 	 * correctness: a checkpoint of a buffer which is also
280 	 * associated with a committing transaction creates a deadlock,
281 	 * so commit simply cannot force through checkpoints.
282 	 *
283 	 * We must therefore ensure the necessary space in the journal
284 	 * *before* starting to dirty potentially checkpointed buffers
285 	 * in the new transaction.
286 	 */
287 	if (jbd2_log_space_left(journal) < journal->j_max_transaction_buffers) {
288 		atomic_sub(total, &t->t_outstanding_credits);
289 		read_unlock(&journal->j_state_lock);
290 		jbd2_might_wait_for_commit(journal);
291 		write_lock(&journal->j_state_lock);
292 		if (jbd2_log_space_left(journal) <
293 					journal->j_max_transaction_buffers)
294 			__jbd2_log_wait_for_space(journal);
295 		write_unlock(&journal->j_state_lock);
296 		return 1;
297 	}
298 
299 	/* No reservation? We are done... */
300 	if (!rsv_blocks)
301 		return 0;
302 
303 	needed = atomic_add_return(rsv_blocks, &journal->j_reserved_credits);
304 	/* We allow at most half of a transaction to be reserved */
305 	if (needed > journal->j_max_transaction_buffers / 2) {
306 		sub_reserved_credits(journal, rsv_blocks);
307 		atomic_sub(total, &t->t_outstanding_credits);
308 		read_unlock(&journal->j_state_lock);
309 		jbd2_might_wait_for_commit(journal);
310 		wait_event(journal->j_wait_reserved,
311 			 atomic_read(&journal->j_reserved_credits) + rsv_blocks
312 			 <= journal->j_max_transaction_buffers / 2);
313 		return 1;
314 	}
315 	return 0;
316 }
317 
318 /*
319  * start_this_handle: Given a handle, deal with any locking or stalling
320  * needed to make sure that there is enough journal space for the handle
321  * to begin.  Attach the handle to a transaction and set up the
322  * transaction's buffer credits.
323  */
324 
start_this_handle(journal_t * journal,handle_t * handle,gfp_t gfp_mask)325 static int start_this_handle(journal_t *journal, handle_t *handle,
326 			     gfp_t gfp_mask)
327 {
328 	transaction_t	*transaction, *new_transaction = NULL;
329 	int		blocks = handle->h_total_credits;
330 	int		rsv_blocks = 0;
331 	unsigned long ts = jiffies;
332 
333 	if (handle->h_rsv_handle)
334 		rsv_blocks = handle->h_rsv_handle->h_total_credits;
335 
336 	/*
337 	 * Limit the number of reserved credits to 1/2 of maximum transaction
338 	 * size and limit the number of total credits to not exceed maximum
339 	 * transaction size per operation.
340 	 */
341 	if ((rsv_blocks > journal->j_max_transaction_buffers / 2) ||
342 	    (rsv_blocks + blocks > journal->j_max_transaction_buffers)) {
343 		printk(KERN_ERR "JBD2: %s wants too many credits "
344 		       "credits:%d rsv_credits:%d max:%d\n",
345 		       current->comm, blocks, rsv_blocks,
346 		       journal->j_max_transaction_buffers);
347 		WARN_ON(1);
348 		return -ENOSPC;
349 	}
350 
351 alloc_transaction:
352 	/*
353 	 * This check is racy but it is just an optimization of allocating new
354 	 * transaction early if there are high chances we'll need it. If we
355 	 * guess wrong, we'll retry or free unused transaction.
356 	 */
357 	if (!data_race(journal->j_running_transaction)) {
358 		/*
359 		 * If __GFP_FS is not present, then we may be being called from
360 		 * inside the fs writeback layer, so we MUST NOT fail.
361 		 */
362 		if ((gfp_mask & __GFP_FS) == 0)
363 			gfp_mask |= __GFP_NOFAIL;
364 		new_transaction = kmem_cache_zalloc(transaction_cache,
365 						    gfp_mask);
366 		if (!new_transaction)
367 			return -ENOMEM;
368 	}
369 
370 	jbd_debug(3, "New handle %p going live.\n", handle);
371 
372 	/*
373 	 * We need to hold j_state_lock until t_updates has been incremented,
374 	 * for proper journal barrier handling
375 	 */
376 repeat:
377 	read_lock(&journal->j_state_lock);
378 	BUG_ON(journal->j_flags & JBD2_UNMOUNT);
379 	if (is_journal_aborted(journal) ||
380 	    (journal->j_errno != 0 && !(journal->j_flags & JBD2_ACK_ERR))) {
381 		read_unlock(&journal->j_state_lock);
382 		jbd2_journal_free_transaction(new_transaction);
383 		return -EROFS;
384 	}
385 
386 	/*
387 	 * Wait on the journal's transaction barrier if necessary. Specifically
388 	 * we allow reserved handles to proceed because otherwise commit could
389 	 * deadlock on page writeback not being able to complete.
390 	 */
391 	if (!handle->h_reserved && journal->j_barrier_count) {
392 		read_unlock(&journal->j_state_lock);
393 		wait_event(journal->j_wait_transaction_locked,
394 				journal->j_barrier_count == 0);
395 		goto repeat;
396 	}
397 
398 	if (!journal->j_running_transaction) {
399 		read_unlock(&journal->j_state_lock);
400 		if (!new_transaction)
401 			goto alloc_transaction;
402 		write_lock(&journal->j_state_lock);
403 		if (!journal->j_running_transaction &&
404 		    (handle->h_reserved || !journal->j_barrier_count)) {
405 			jbd2_get_transaction(journal, new_transaction);
406 			new_transaction = NULL;
407 		}
408 		write_unlock(&journal->j_state_lock);
409 		goto repeat;
410 	}
411 
412 	transaction = journal->j_running_transaction;
413 
414 	if (!handle->h_reserved) {
415 		/* We may have dropped j_state_lock - restart in that case */
416 		if (add_transaction_credits(journal, blocks, rsv_blocks))
417 			goto repeat;
418 	} else {
419 		/*
420 		 * We have handle reserved so we are allowed to join T_LOCKED
421 		 * transaction and we don't have to check for transaction size
422 		 * and journal space. But we still have to wait while running
423 		 * transaction is being switched to a committing one as it
424 		 * won't wait for any handles anymore.
425 		 */
426 		if (transaction->t_state == T_SWITCH) {
427 			wait_transaction_switching(journal);
428 			goto repeat;
429 		}
430 		sub_reserved_credits(journal, blocks);
431 		handle->h_reserved = 0;
432 	}
433 
434 	/* OK, account for the buffers that this operation expects to
435 	 * use and add the handle to the running transaction.
436 	 */
437 	update_t_max_wait(transaction, ts);
438 	handle->h_transaction = transaction;
439 	handle->h_requested_credits = blocks;
440 	handle->h_revoke_credits_requested = handle->h_revoke_credits;
441 	handle->h_start_jiffies = jiffies;
442 	atomic_inc(&transaction->t_updates);
443 	atomic_inc(&transaction->t_handle_count);
444 	jbd_debug(4, "Handle %p given %d credits (total %d, free %lu)\n",
445 		  handle, blocks,
446 		  atomic_read(&transaction->t_outstanding_credits),
447 		  jbd2_log_space_left(journal));
448 	read_unlock(&journal->j_state_lock);
449 	current->journal_info = handle;
450 
451 	rwsem_acquire_read(&journal->j_trans_commit_map, 0, 0, _THIS_IP_);
452 	jbd2_journal_free_transaction(new_transaction);
453 	/*
454 	 * Ensure that no allocations done while the transaction is open are
455 	 * going to recurse back to the fs layer.
456 	 */
457 	handle->saved_alloc_context = memalloc_nofs_save();
458 	return 0;
459 }
460 
461 /* Allocate a new handle.  This should probably be in a slab... */
new_handle(int nblocks)462 static handle_t *new_handle(int nblocks)
463 {
464 	handle_t *handle = jbd2_alloc_handle(GFP_NOFS);
465 	if (!handle)
466 		return NULL;
467 	handle->h_total_credits = nblocks;
468 	handle->h_ref = 1;
469 
470 	return handle;
471 }
472 
jbd2__journal_start(journal_t * journal,int nblocks,int rsv_blocks,int revoke_records,gfp_t gfp_mask,unsigned int type,unsigned int line_no)473 handle_t *jbd2__journal_start(journal_t *journal, int nblocks, int rsv_blocks,
474 			      int revoke_records, gfp_t gfp_mask,
475 			      unsigned int type, unsigned int line_no)
476 {
477 	handle_t *handle = journal_current_handle();
478 	int err;
479 
480 	if (!journal)
481 		return ERR_PTR(-EROFS);
482 
483 	if (handle) {
484 		J_ASSERT(handle->h_transaction->t_journal == journal);
485 		handle->h_ref++;
486 		return handle;
487 	}
488 
489 	nblocks += DIV_ROUND_UP(revoke_records,
490 				journal->j_revoke_records_per_block);
491 	handle = new_handle(nblocks);
492 	if (!handle)
493 		return ERR_PTR(-ENOMEM);
494 	if (rsv_blocks) {
495 		handle_t *rsv_handle;
496 
497 		rsv_handle = new_handle(rsv_blocks);
498 		if (!rsv_handle) {
499 			jbd2_free_handle(handle);
500 			return ERR_PTR(-ENOMEM);
501 		}
502 		rsv_handle->h_reserved = 1;
503 		rsv_handle->h_journal = journal;
504 		handle->h_rsv_handle = rsv_handle;
505 	}
506 	handle->h_revoke_credits = revoke_records;
507 
508 	err = start_this_handle(journal, handle, gfp_mask);
509 	if (err < 0) {
510 		if (handle->h_rsv_handle)
511 			jbd2_free_handle(handle->h_rsv_handle);
512 		jbd2_free_handle(handle);
513 		return ERR_PTR(err);
514 	}
515 	handle->h_type = type;
516 	handle->h_line_no = line_no;
517 	trace_jbd2_handle_start(journal->j_fs_dev->bd_dev,
518 				handle->h_transaction->t_tid, type,
519 				line_no, nblocks);
520 
521 	return handle;
522 }
523 EXPORT_SYMBOL(jbd2__journal_start);
524 
525 
526 /**
527  * jbd2_journal_start() - Obtain a new handle.
528  * @journal: Journal to start transaction on.
529  * @nblocks: number of block buffer we might modify
530  *
531  * We make sure that the transaction can guarantee at least nblocks of
532  * modified buffers in the log.  We block until the log can guarantee
533  * that much space. Additionally, if rsv_blocks > 0, we also create another
534  * handle with rsv_blocks reserved blocks in the journal. This handle is
535  * stored in h_rsv_handle. It is not attached to any particular transaction
536  * and thus doesn't block transaction commit. If the caller uses this reserved
537  * handle, it has to set h_rsv_handle to NULL as otherwise jbd2_journal_stop()
538  * on the parent handle will dispose the reserved one. Reserved handle has to
539  * be converted to a normal handle using jbd2_journal_start_reserved() before
540  * it can be used.
541  *
542  * Return a pointer to a newly allocated handle, or an ERR_PTR() value
543  * on failure.
544  */
jbd2_journal_start(journal_t * journal,int nblocks)545 handle_t *jbd2_journal_start(journal_t *journal, int nblocks)
546 {
547 	return jbd2__journal_start(journal, nblocks, 0, 0, GFP_NOFS, 0, 0);
548 }
549 EXPORT_SYMBOL(jbd2_journal_start);
550 
__jbd2_journal_unreserve_handle(handle_t * handle,transaction_t * t)551 static void __jbd2_journal_unreserve_handle(handle_t *handle, transaction_t *t)
552 {
553 	journal_t *journal = handle->h_journal;
554 
555 	WARN_ON(!handle->h_reserved);
556 	sub_reserved_credits(journal, handle->h_total_credits);
557 	if (t)
558 		atomic_sub(handle->h_total_credits, &t->t_outstanding_credits);
559 }
560 
jbd2_journal_free_reserved(handle_t * handle)561 void jbd2_journal_free_reserved(handle_t *handle)
562 {
563 	journal_t *journal = handle->h_journal;
564 
565 	/* Get j_state_lock to pin running transaction if it exists */
566 	read_lock(&journal->j_state_lock);
567 	__jbd2_journal_unreserve_handle(handle, journal->j_running_transaction);
568 	read_unlock(&journal->j_state_lock);
569 	jbd2_free_handle(handle);
570 }
571 EXPORT_SYMBOL(jbd2_journal_free_reserved);
572 
573 /**
574  * jbd2_journal_start_reserved() - start reserved handle
575  * @handle: handle to start
576  * @type: for handle statistics
577  * @line_no: for handle statistics
578  *
579  * Start handle that has been previously reserved with jbd2_journal_reserve().
580  * This attaches @handle to the running transaction (or creates one if there's
581  * not transaction running). Unlike jbd2_journal_start() this function cannot
582  * block on journal commit, checkpointing, or similar stuff. It can block on
583  * memory allocation or frozen journal though.
584  *
585  * Return 0 on success, non-zero on error - handle is freed in that case.
586  */
jbd2_journal_start_reserved(handle_t * handle,unsigned int type,unsigned int line_no)587 int jbd2_journal_start_reserved(handle_t *handle, unsigned int type,
588 				unsigned int line_no)
589 {
590 	journal_t *journal = handle->h_journal;
591 	int ret = -EIO;
592 
593 	if (WARN_ON(!handle->h_reserved)) {
594 		/* Someone passed in normal handle? Just stop it. */
595 		jbd2_journal_stop(handle);
596 		return ret;
597 	}
598 	/*
599 	 * Usefulness of mixing of reserved and unreserved handles is
600 	 * questionable. So far nobody seems to need it so just error out.
601 	 */
602 	if (WARN_ON(current->journal_info)) {
603 		jbd2_journal_free_reserved(handle);
604 		return ret;
605 	}
606 
607 	handle->h_journal = NULL;
608 	/*
609 	 * GFP_NOFS is here because callers are likely from writeback or
610 	 * similarly constrained call sites
611 	 */
612 	ret = start_this_handle(journal, handle, GFP_NOFS);
613 	if (ret < 0) {
614 		handle->h_journal = journal;
615 		jbd2_journal_free_reserved(handle);
616 		return ret;
617 	}
618 	handle->h_type = type;
619 	handle->h_line_no = line_no;
620 	trace_jbd2_handle_start(journal->j_fs_dev->bd_dev,
621 				handle->h_transaction->t_tid, type,
622 				line_no, handle->h_total_credits);
623 	return 0;
624 }
625 EXPORT_SYMBOL(jbd2_journal_start_reserved);
626 
627 /**
628  * jbd2_journal_extend() - extend buffer credits.
629  * @handle:  handle to 'extend'
630  * @nblocks: nr blocks to try to extend by.
631  * @revoke_records: number of revoke records to try to extend by.
632  *
633  * Some transactions, such as large extends and truncates, can be done
634  * atomically all at once or in several stages.  The operation requests
635  * a credit for a number of buffer modifications in advance, but can
636  * extend its credit if it needs more.
637  *
638  * jbd2_journal_extend tries to give the running handle more buffer credits.
639  * It does not guarantee that allocation - this is a best-effort only.
640  * The calling process MUST be able to deal cleanly with a failure to
641  * extend here.
642  *
643  * Return 0 on success, non-zero on failure.
644  *
645  * return code < 0 implies an error
646  * return code > 0 implies normal transaction-full status.
647  */
jbd2_journal_extend(handle_t * handle,int nblocks,int revoke_records)648 int jbd2_journal_extend(handle_t *handle, int nblocks, int revoke_records)
649 {
650 	transaction_t *transaction = handle->h_transaction;
651 	journal_t *journal;
652 	int result;
653 	int wanted;
654 
655 	if (is_handle_aborted(handle))
656 		return -EROFS;
657 	journal = transaction->t_journal;
658 
659 	result = 1;
660 
661 	read_lock(&journal->j_state_lock);
662 
663 	/* Don't extend a locked-down transaction! */
664 	if (transaction->t_state != T_RUNNING) {
665 		jbd_debug(3, "denied handle %p %d blocks: "
666 			  "transaction not running\n", handle, nblocks);
667 		goto error_out;
668 	}
669 
670 	nblocks += DIV_ROUND_UP(
671 			handle->h_revoke_credits_requested + revoke_records,
672 			journal->j_revoke_records_per_block) -
673 		DIV_ROUND_UP(
674 			handle->h_revoke_credits_requested,
675 			journal->j_revoke_records_per_block);
676 	spin_lock(&transaction->t_handle_lock);
677 	wanted = atomic_add_return(nblocks,
678 				   &transaction->t_outstanding_credits);
679 
680 	if (wanted > journal->j_max_transaction_buffers) {
681 		jbd_debug(3, "denied handle %p %d blocks: "
682 			  "transaction too large\n", handle, nblocks);
683 		atomic_sub(nblocks, &transaction->t_outstanding_credits);
684 		goto unlock;
685 	}
686 
687 	trace_jbd2_handle_extend(journal->j_fs_dev->bd_dev,
688 				 transaction->t_tid,
689 				 handle->h_type, handle->h_line_no,
690 				 handle->h_total_credits,
691 				 nblocks);
692 
693 	handle->h_total_credits += nblocks;
694 	handle->h_requested_credits += nblocks;
695 	handle->h_revoke_credits += revoke_records;
696 	handle->h_revoke_credits_requested += revoke_records;
697 	result = 0;
698 
699 	jbd_debug(3, "extended handle %p by %d\n", handle, nblocks);
700 unlock:
701 	spin_unlock(&transaction->t_handle_lock);
702 error_out:
703 	read_unlock(&journal->j_state_lock);
704 	return result;
705 }
706 
stop_this_handle(handle_t * handle)707 static void stop_this_handle(handle_t *handle)
708 {
709 	transaction_t *transaction = handle->h_transaction;
710 	journal_t *journal = transaction->t_journal;
711 	int revokes;
712 
713 	J_ASSERT(journal_current_handle() == handle);
714 	J_ASSERT(atomic_read(&transaction->t_updates) > 0);
715 	current->journal_info = NULL;
716 	/*
717 	 * Subtract necessary revoke descriptor blocks from handle credits. We
718 	 * take care to account only for revoke descriptor blocks the
719 	 * transaction will really need as large sequences of transactions with
720 	 * small numbers of revokes are relatively common.
721 	 */
722 	revokes = handle->h_revoke_credits_requested - handle->h_revoke_credits;
723 	if (revokes) {
724 		int t_revokes, revoke_descriptors;
725 		int rr_per_blk = journal->j_revoke_records_per_block;
726 
727 		WARN_ON_ONCE(DIV_ROUND_UP(revokes, rr_per_blk)
728 				> handle->h_total_credits);
729 		t_revokes = atomic_add_return(revokes,
730 				&transaction->t_outstanding_revokes);
731 		revoke_descriptors =
732 			DIV_ROUND_UP(t_revokes, rr_per_blk) -
733 			DIV_ROUND_UP(t_revokes - revokes, rr_per_blk);
734 		handle->h_total_credits -= revoke_descriptors;
735 	}
736 	atomic_sub(handle->h_total_credits,
737 		   &transaction->t_outstanding_credits);
738 	if (handle->h_rsv_handle)
739 		__jbd2_journal_unreserve_handle(handle->h_rsv_handle,
740 						transaction);
741 	if (atomic_dec_and_test(&transaction->t_updates))
742 		wake_up(&journal->j_wait_updates);
743 
744 	rwsem_release(&journal->j_trans_commit_map, _THIS_IP_);
745 	/*
746 	 * Scope of the GFP_NOFS context is over here and so we can restore the
747 	 * original alloc context.
748 	 */
749 	memalloc_nofs_restore(handle->saved_alloc_context);
750 }
751 
752 /**
753  * jbd2__journal_restart() - restart a handle .
754  * @handle:  handle to restart
755  * @nblocks: nr credits requested
756  * @revoke_records: number of revoke record credits requested
757  * @gfp_mask: memory allocation flags (for start_this_handle)
758  *
759  * Restart a handle for a multi-transaction filesystem
760  * operation.
761  *
762  * If the jbd2_journal_extend() call above fails to grant new buffer credits
763  * to a running handle, a call to jbd2_journal_restart will commit the
764  * handle's transaction so far and reattach the handle to a new
765  * transaction capable of guaranteeing the requested number of
766  * credits. We preserve reserved handle if there's any attached to the
767  * passed in handle.
768  */
jbd2__journal_restart(handle_t * handle,int nblocks,int revoke_records,gfp_t gfp_mask)769 int jbd2__journal_restart(handle_t *handle, int nblocks, int revoke_records,
770 			  gfp_t gfp_mask)
771 {
772 	transaction_t *transaction = handle->h_transaction;
773 	journal_t *journal;
774 	tid_t		tid;
775 	int		need_to_start;
776 	int		ret;
777 
778 	/* If we've had an abort of any type, don't even think about
779 	 * actually doing the restart! */
780 	if (is_handle_aborted(handle))
781 		return 0;
782 	journal = transaction->t_journal;
783 	tid = transaction->t_tid;
784 
785 	/*
786 	 * First unlink the handle from its current transaction, and start the
787 	 * commit on that.
788 	 */
789 	jbd_debug(2, "restarting handle %p\n", handle);
790 	stop_this_handle(handle);
791 	handle->h_transaction = NULL;
792 
793 	/*
794 	 * TODO: If we use READ_ONCE / WRITE_ONCE for j_commit_request we can
795  	 * get rid of pointless j_state_lock traffic like this.
796 	 */
797 	read_lock(&journal->j_state_lock);
798 	need_to_start = !tid_geq(journal->j_commit_request, tid);
799 	read_unlock(&journal->j_state_lock);
800 	if (need_to_start)
801 		jbd2_log_start_commit(journal, tid);
802 	handle->h_total_credits = nblocks +
803 		DIV_ROUND_UP(revoke_records,
804 			     journal->j_revoke_records_per_block);
805 	handle->h_revoke_credits = revoke_records;
806 	ret = start_this_handle(journal, handle, gfp_mask);
807 	trace_jbd2_handle_restart(journal->j_fs_dev->bd_dev,
808 				 ret ? 0 : handle->h_transaction->t_tid,
809 				 handle->h_type, handle->h_line_no,
810 				 handle->h_total_credits);
811 	return ret;
812 }
813 EXPORT_SYMBOL(jbd2__journal_restart);
814 
815 
jbd2_journal_restart(handle_t * handle,int nblocks)816 int jbd2_journal_restart(handle_t *handle, int nblocks)
817 {
818 	return jbd2__journal_restart(handle, nblocks, 0, GFP_NOFS);
819 }
820 EXPORT_SYMBOL(jbd2_journal_restart);
821 
822 /**
823  * jbd2_journal_lock_updates () - establish a transaction barrier.
824  * @journal:  Journal to establish a barrier on.
825  *
826  * This locks out any further updates from being started, and blocks
827  * until all existing updates have completed, returning only once the
828  * journal is in a quiescent state with no updates running.
829  *
830  * The journal lock should not be held on entry.
831  */
jbd2_journal_lock_updates(journal_t * journal)832 void jbd2_journal_lock_updates(journal_t *journal)
833 {
834 	DEFINE_WAIT(wait);
835 
836 	jbd2_might_wait_for_commit(journal);
837 
838 	write_lock(&journal->j_state_lock);
839 	++journal->j_barrier_count;
840 
841 	/* Wait until there are no reserved handles */
842 	if (atomic_read(&journal->j_reserved_credits)) {
843 		write_unlock(&journal->j_state_lock);
844 		wait_event(journal->j_wait_reserved,
845 			   atomic_read(&journal->j_reserved_credits) == 0);
846 		write_lock(&journal->j_state_lock);
847 	}
848 
849 	/* Wait until there are no running updates */
850 	while (1) {
851 		transaction_t *transaction = journal->j_running_transaction;
852 
853 		if (!transaction)
854 			break;
855 
856 		spin_lock(&transaction->t_handle_lock);
857 		prepare_to_wait(&journal->j_wait_updates, &wait,
858 				TASK_UNINTERRUPTIBLE);
859 		if (!atomic_read(&transaction->t_updates)) {
860 			spin_unlock(&transaction->t_handle_lock);
861 			finish_wait(&journal->j_wait_updates, &wait);
862 			break;
863 		}
864 		spin_unlock(&transaction->t_handle_lock);
865 		write_unlock(&journal->j_state_lock);
866 		schedule();
867 		finish_wait(&journal->j_wait_updates, &wait);
868 		write_lock(&journal->j_state_lock);
869 	}
870 	write_unlock(&journal->j_state_lock);
871 
872 	/*
873 	 * We have now established a barrier against other normal updates, but
874 	 * we also need to barrier against other jbd2_journal_lock_updates() calls
875 	 * to make sure that we serialise special journal-locked operations
876 	 * too.
877 	 */
878 	mutex_lock(&journal->j_barrier);
879 }
880 
881 /**
882  * jbd2_journal_unlock_updates () - release barrier
883  * @journal:  Journal to release the barrier on.
884  *
885  * Release a transaction barrier obtained with jbd2_journal_lock_updates().
886  *
887  * Should be called without the journal lock held.
888  */
jbd2_journal_unlock_updates(journal_t * journal)889 void jbd2_journal_unlock_updates (journal_t *journal)
890 {
891 	J_ASSERT(journal->j_barrier_count != 0);
892 
893 	mutex_unlock(&journal->j_barrier);
894 	write_lock(&journal->j_state_lock);
895 	--journal->j_barrier_count;
896 	write_unlock(&journal->j_state_lock);
897 	wake_up_all(&journal->j_wait_transaction_locked);
898 }
899 
warn_dirty_buffer(struct buffer_head * bh)900 static void warn_dirty_buffer(struct buffer_head *bh)
901 {
902 	printk(KERN_WARNING
903 	       "JBD2: Spotted dirty metadata buffer (dev = %pg, blocknr = %llu). "
904 	       "There's a risk of filesystem corruption in case of system "
905 	       "crash.\n",
906 	       bh->b_bdev, (unsigned long long)bh->b_blocknr);
907 }
908 
909 /* Call t_frozen trigger and copy buffer data into jh->b_frozen_data. */
jbd2_freeze_jh_data(struct journal_head * jh)910 static void jbd2_freeze_jh_data(struct journal_head *jh)
911 {
912 	struct page *page;
913 	int offset;
914 	char *source;
915 	struct buffer_head *bh = jh2bh(jh);
916 
917 	J_EXPECT_JH(jh, buffer_uptodate(bh), "Possible IO failure.\n");
918 	page = bh->b_page;
919 	offset = offset_in_page(bh->b_data);
920 	source = kmap_atomic(page);
921 	/* Fire data frozen trigger just before we copy the data */
922 	jbd2_buffer_frozen_trigger(jh, source + offset, jh->b_triggers);
923 	memcpy(jh->b_frozen_data, source + offset, bh->b_size);
924 	kunmap_atomic(source);
925 
926 	/*
927 	 * Now that the frozen data is saved off, we need to store any matching
928 	 * triggers.
929 	 */
930 	jh->b_frozen_triggers = jh->b_triggers;
931 }
932 
933 /*
934  * If the buffer is already part of the current transaction, then there
935  * is nothing we need to do.  If it is already part of a prior
936  * transaction which we are still committing to disk, then we need to
937  * make sure that we do not overwrite the old copy: we do copy-out to
938  * preserve the copy going to disk.  We also account the buffer against
939  * the handle's metadata buffer credits (unless the buffer is already
940  * part of the transaction, that is).
941  *
942  */
943 static int
do_get_write_access(handle_t * handle,struct journal_head * jh,int force_copy)944 do_get_write_access(handle_t *handle, struct journal_head *jh,
945 			int force_copy)
946 {
947 	struct buffer_head *bh;
948 	transaction_t *transaction = handle->h_transaction;
949 	journal_t *journal;
950 	int error;
951 	char *frozen_buffer = NULL;
952 	unsigned long start_lock, time_lock;
953 
954 	journal = transaction->t_journal;
955 
956 	jbd_debug(5, "journal_head %p, force_copy %d\n", jh, force_copy);
957 
958 	JBUFFER_TRACE(jh, "entry");
959 repeat:
960 	bh = jh2bh(jh);
961 
962 	/* @@@ Need to check for errors here at some point. */
963 
964  	start_lock = jiffies;
965 	lock_buffer(bh);
966 	spin_lock(&jh->b_state_lock);
967 
968 	/* If it takes too long to lock the buffer, trace it */
969 	time_lock = jbd2_time_diff(start_lock, jiffies);
970 	if (time_lock > HZ/10)
971 		trace_jbd2_lock_buffer_stall(bh->b_bdev->bd_dev,
972 			jiffies_to_msecs(time_lock));
973 
974 	/* We now hold the buffer lock so it is safe to query the buffer
975 	 * state.  Is the buffer dirty?
976 	 *
977 	 * If so, there are two possibilities.  The buffer may be
978 	 * non-journaled, and undergoing a quite legitimate writeback.
979 	 * Otherwise, it is journaled, and we don't expect dirty buffers
980 	 * in that state (the buffers should be marked JBD_Dirty
981 	 * instead.)  So either the IO is being done under our own
982 	 * control and this is a bug, or it's a third party IO such as
983 	 * dump(8) (which may leave the buffer scheduled for read ---
984 	 * ie. locked but not dirty) or tune2fs (which may actually have
985 	 * the buffer dirtied, ugh.)  */
986 
987 	if (buffer_dirty(bh)) {
988 		/*
989 		 * First question: is this buffer already part of the current
990 		 * transaction or the existing committing transaction?
991 		 */
992 		if (jh->b_transaction) {
993 			J_ASSERT_JH(jh,
994 				jh->b_transaction == transaction ||
995 				jh->b_transaction ==
996 					journal->j_committing_transaction);
997 			if (jh->b_next_transaction)
998 				J_ASSERT_JH(jh, jh->b_next_transaction ==
999 							transaction);
1000 			warn_dirty_buffer(bh);
1001 		}
1002 		/*
1003 		 * In any case we need to clean the dirty flag and we must
1004 		 * do it under the buffer lock to be sure we don't race
1005 		 * with running write-out.
1006 		 */
1007 		JBUFFER_TRACE(jh, "Journalling dirty buffer");
1008 		clear_buffer_dirty(bh);
1009 		set_buffer_jbddirty(bh);
1010 	}
1011 
1012 	unlock_buffer(bh);
1013 
1014 	error = -EROFS;
1015 	if (is_handle_aborted(handle)) {
1016 		spin_unlock(&jh->b_state_lock);
1017 		goto out;
1018 	}
1019 	error = 0;
1020 
1021 	/*
1022 	 * The buffer is already part of this transaction if b_transaction or
1023 	 * b_next_transaction points to it
1024 	 */
1025 	if (jh->b_transaction == transaction ||
1026 	    jh->b_next_transaction == transaction)
1027 		goto done;
1028 
1029 	/*
1030 	 * this is the first time this transaction is touching this buffer,
1031 	 * reset the modified flag
1032 	 */
1033 	jh->b_modified = 0;
1034 
1035 	/*
1036 	 * If the buffer is not journaled right now, we need to make sure it
1037 	 * doesn't get written to disk before the caller actually commits the
1038 	 * new data
1039 	 */
1040 	if (!jh->b_transaction) {
1041 		JBUFFER_TRACE(jh, "no transaction");
1042 		J_ASSERT_JH(jh, !jh->b_next_transaction);
1043 		JBUFFER_TRACE(jh, "file as BJ_Reserved");
1044 		/*
1045 		 * Make sure all stores to jh (b_modified, b_frozen_data) are
1046 		 * visible before attaching it to the running transaction.
1047 		 * Paired with barrier in jbd2_write_access_granted()
1048 		 */
1049 		smp_wmb();
1050 		spin_lock(&journal->j_list_lock);
1051 		__jbd2_journal_file_buffer(jh, transaction, BJ_Reserved);
1052 		spin_unlock(&journal->j_list_lock);
1053 		goto done;
1054 	}
1055 	/*
1056 	 * If there is already a copy-out version of this buffer, then we don't
1057 	 * need to make another one
1058 	 */
1059 	if (jh->b_frozen_data) {
1060 		JBUFFER_TRACE(jh, "has frozen data");
1061 		J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
1062 		goto attach_next;
1063 	}
1064 
1065 	JBUFFER_TRACE(jh, "owned by older transaction");
1066 	J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
1067 	J_ASSERT_JH(jh, jh->b_transaction == journal->j_committing_transaction);
1068 
1069 	/*
1070 	 * There is one case we have to be very careful about.  If the
1071 	 * committing transaction is currently writing this buffer out to disk
1072 	 * and has NOT made a copy-out, then we cannot modify the buffer
1073 	 * contents at all right now.  The essence of copy-out is that it is
1074 	 * the extra copy, not the primary copy, which gets journaled.  If the
1075 	 * primary copy is already going to disk then we cannot do copy-out
1076 	 * here.
1077 	 */
1078 	if (buffer_shadow(bh)) {
1079 		JBUFFER_TRACE(jh, "on shadow: sleep");
1080 		spin_unlock(&jh->b_state_lock);
1081 		wait_on_bit_io(&bh->b_state, BH_Shadow, TASK_UNINTERRUPTIBLE);
1082 		goto repeat;
1083 	}
1084 
1085 	/*
1086 	 * Only do the copy if the currently-owning transaction still needs it.
1087 	 * If buffer isn't on BJ_Metadata list, the committing transaction is
1088 	 * past that stage (here we use the fact that BH_Shadow is set under
1089 	 * bh_state lock together with refiling to BJ_Shadow list and at this
1090 	 * point we know the buffer doesn't have BH_Shadow set).
1091 	 *
1092 	 * Subtle point, though: if this is a get_undo_access, then we will be
1093 	 * relying on the frozen_data to contain the new value of the
1094 	 * committed_data record after the transaction, so we HAVE to force the
1095 	 * frozen_data copy in that case.
1096 	 */
1097 	if (jh->b_jlist == BJ_Metadata || force_copy) {
1098 		JBUFFER_TRACE(jh, "generate frozen data");
1099 		if (!frozen_buffer) {
1100 			JBUFFER_TRACE(jh, "allocate memory for buffer");
1101 			spin_unlock(&jh->b_state_lock);
1102 			frozen_buffer = jbd2_alloc(jh2bh(jh)->b_size,
1103 						   GFP_NOFS | __GFP_NOFAIL);
1104 			goto repeat;
1105 		}
1106 		jh->b_frozen_data = frozen_buffer;
1107 		frozen_buffer = NULL;
1108 		jbd2_freeze_jh_data(jh);
1109 	}
1110 attach_next:
1111 	/*
1112 	 * Make sure all stores to jh (b_modified, b_frozen_data) are visible
1113 	 * before attaching it to the running transaction. Paired with barrier
1114 	 * in jbd2_write_access_granted()
1115 	 */
1116 	smp_wmb();
1117 	jh->b_next_transaction = transaction;
1118 
1119 done:
1120 	spin_unlock(&jh->b_state_lock);
1121 
1122 	/*
1123 	 * If we are about to journal a buffer, then any revoke pending on it is
1124 	 * no longer valid
1125 	 */
1126 	jbd2_journal_cancel_revoke(handle, jh);
1127 
1128 out:
1129 	if (unlikely(frozen_buffer))	/* It's usually NULL */
1130 		jbd2_free(frozen_buffer, bh->b_size);
1131 
1132 	JBUFFER_TRACE(jh, "exit");
1133 	return error;
1134 }
1135 
1136 /* Fast check whether buffer is already attached to the required transaction */
jbd2_write_access_granted(handle_t * handle,struct buffer_head * bh,bool undo)1137 static bool jbd2_write_access_granted(handle_t *handle, struct buffer_head *bh,
1138 							bool undo)
1139 {
1140 	struct journal_head *jh;
1141 	bool ret = false;
1142 
1143 	/* Dirty buffers require special handling... */
1144 	if (buffer_dirty(bh))
1145 		return false;
1146 
1147 	/*
1148 	 * RCU protects us from dereferencing freed pages. So the checks we do
1149 	 * are guaranteed not to oops. However the jh slab object can get freed
1150 	 * & reallocated while we work with it. So we have to be careful. When
1151 	 * we see jh attached to the running transaction, we know it must stay
1152 	 * so until the transaction is committed. Thus jh won't be freed and
1153 	 * will be attached to the same bh while we run.  However it can
1154 	 * happen jh gets freed, reallocated, and attached to the transaction
1155 	 * just after we get pointer to it from bh. So we have to be careful
1156 	 * and recheck jh still belongs to our bh before we return success.
1157 	 */
1158 	rcu_read_lock();
1159 	if (!buffer_jbd(bh))
1160 		goto out;
1161 	/* This should be bh2jh() but that doesn't work with inline functions */
1162 	jh = READ_ONCE(bh->b_private);
1163 	if (!jh)
1164 		goto out;
1165 	/* For undo access buffer must have data copied */
1166 	if (undo && !jh->b_committed_data)
1167 		goto out;
1168 	if (READ_ONCE(jh->b_transaction) != handle->h_transaction &&
1169 	    READ_ONCE(jh->b_next_transaction) != handle->h_transaction)
1170 		goto out;
1171 	/*
1172 	 * There are two reasons for the barrier here:
1173 	 * 1) Make sure to fetch b_bh after we did previous checks so that we
1174 	 * detect when jh went through free, realloc, attach to transaction
1175 	 * while we were checking. Paired with implicit barrier in that path.
1176 	 * 2) So that access to bh done after jbd2_write_access_granted()
1177 	 * doesn't get reordered and see inconsistent state of concurrent
1178 	 * do_get_write_access().
1179 	 */
1180 	smp_mb();
1181 	if (unlikely(jh->b_bh != bh))
1182 		goto out;
1183 	ret = true;
1184 out:
1185 	rcu_read_unlock();
1186 	return ret;
1187 }
1188 
1189 /**
1190  * jbd2_journal_get_write_access() - notify intent to modify a buffer
1191  *				     for metadata (not data) update.
1192  * @handle: transaction to add buffer modifications to
1193  * @bh:     bh to be used for metadata writes
1194  *
1195  * Returns: error code or 0 on success.
1196  *
1197  * In full data journalling mode the buffer may be of type BJ_AsyncData,
1198  * because we're ``write()ing`` a buffer which is also part of a shared mapping.
1199  */
1200 
jbd2_journal_get_write_access(handle_t * handle,struct buffer_head * bh)1201 int jbd2_journal_get_write_access(handle_t *handle, struct buffer_head *bh)
1202 {
1203 	struct journal_head *jh;
1204 	int rc;
1205 
1206 	if (is_handle_aborted(handle))
1207 		return -EROFS;
1208 
1209 	if (jbd2_write_access_granted(handle, bh, false))
1210 		return 0;
1211 
1212 	jh = jbd2_journal_add_journal_head(bh);
1213 	/* We do not want to get caught playing with fields which the
1214 	 * log thread also manipulates.  Make sure that the buffer
1215 	 * completes any outstanding IO before proceeding. */
1216 	rc = do_get_write_access(handle, jh, 0);
1217 	jbd2_journal_put_journal_head(jh);
1218 	return rc;
1219 }
1220 
1221 
1222 /*
1223  * When the user wants to journal a newly created buffer_head
1224  * (ie. getblk() returned a new buffer and we are going to populate it
1225  * manually rather than reading off disk), then we need to keep the
1226  * buffer_head locked until it has been completely filled with new
1227  * data.  In this case, we should be able to make the assertion that
1228  * the bh is not already part of an existing transaction.
1229  *
1230  * The buffer should already be locked by the caller by this point.
1231  * There is no lock ranking violation: it was a newly created,
1232  * unlocked buffer beforehand. */
1233 
1234 /**
1235  * jbd2_journal_get_create_access () - notify intent to use newly created bh
1236  * @handle: transaction to new buffer to
1237  * @bh: new buffer.
1238  *
1239  * Call this if you create a new bh.
1240  */
jbd2_journal_get_create_access(handle_t * handle,struct buffer_head * bh)1241 int jbd2_journal_get_create_access(handle_t *handle, struct buffer_head *bh)
1242 {
1243 	transaction_t *transaction = handle->h_transaction;
1244 	journal_t *journal;
1245 	struct journal_head *jh = jbd2_journal_add_journal_head(bh);
1246 	int err;
1247 
1248 	jbd_debug(5, "journal_head %p\n", jh);
1249 	err = -EROFS;
1250 	if (is_handle_aborted(handle))
1251 		goto out;
1252 	journal = transaction->t_journal;
1253 	err = 0;
1254 
1255 	JBUFFER_TRACE(jh, "entry");
1256 	/*
1257 	 * The buffer may already belong to this transaction due to pre-zeroing
1258 	 * in the filesystem's new_block code.  It may also be on the previous,
1259 	 * committing transaction's lists, but it HAS to be in Forget state in
1260 	 * that case: the transaction must have deleted the buffer for it to be
1261 	 * reused here.
1262 	 */
1263 	spin_lock(&jh->b_state_lock);
1264 	J_ASSERT_JH(jh, (jh->b_transaction == transaction ||
1265 		jh->b_transaction == NULL ||
1266 		(jh->b_transaction == journal->j_committing_transaction &&
1267 			  jh->b_jlist == BJ_Forget)));
1268 
1269 	J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
1270 	J_ASSERT_JH(jh, buffer_locked(jh2bh(jh)));
1271 
1272 	if (jh->b_transaction == NULL) {
1273 		/*
1274 		 * Previous jbd2_journal_forget() could have left the buffer
1275 		 * with jbddirty bit set because it was being committed. When
1276 		 * the commit finished, we've filed the buffer for
1277 		 * checkpointing and marked it dirty. Now we are reallocating
1278 		 * the buffer so the transaction freeing it must have
1279 		 * committed and so it's safe to clear the dirty bit.
1280 		 */
1281 		clear_buffer_dirty(jh2bh(jh));
1282 		/* first access by this transaction */
1283 		jh->b_modified = 0;
1284 
1285 		JBUFFER_TRACE(jh, "file as BJ_Reserved");
1286 		spin_lock(&journal->j_list_lock);
1287 		__jbd2_journal_file_buffer(jh, transaction, BJ_Reserved);
1288 		spin_unlock(&journal->j_list_lock);
1289 	} else if (jh->b_transaction == journal->j_committing_transaction) {
1290 		/* first access by this transaction */
1291 		jh->b_modified = 0;
1292 
1293 		JBUFFER_TRACE(jh, "set next transaction");
1294 		spin_lock(&journal->j_list_lock);
1295 		jh->b_next_transaction = transaction;
1296 		spin_unlock(&journal->j_list_lock);
1297 	}
1298 	spin_unlock(&jh->b_state_lock);
1299 
1300 	/*
1301 	 * akpm: I added this.  ext3_alloc_branch can pick up new indirect
1302 	 * blocks which contain freed but then revoked metadata.  We need
1303 	 * to cancel the revoke in case we end up freeing it yet again
1304 	 * and the reallocating as data - this would cause a second revoke,
1305 	 * which hits an assertion error.
1306 	 */
1307 	JBUFFER_TRACE(jh, "cancelling revoke");
1308 	jbd2_journal_cancel_revoke(handle, jh);
1309 out:
1310 	jbd2_journal_put_journal_head(jh);
1311 	return err;
1312 }
1313 
1314 /**
1315  * jbd2_journal_get_undo_access() -  Notify intent to modify metadata with
1316  *     non-rewindable consequences
1317  * @handle: transaction
1318  * @bh: buffer to undo
1319  *
1320  * Sometimes there is a need to distinguish between metadata which has
1321  * been committed to disk and that which has not.  The ext3fs code uses
1322  * this for freeing and allocating space, we have to make sure that we
1323  * do not reuse freed space until the deallocation has been committed,
1324  * since if we overwrote that space we would make the delete
1325  * un-rewindable in case of a crash.
1326  *
1327  * To deal with that, jbd2_journal_get_undo_access requests write access to a
1328  * buffer for parts of non-rewindable operations such as delete
1329  * operations on the bitmaps.  The journaling code must keep a copy of
1330  * the buffer's contents prior to the undo_access call until such time
1331  * as we know that the buffer has definitely been committed to disk.
1332  *
1333  * We never need to know which transaction the committed data is part
1334  * of, buffers touched here are guaranteed to be dirtied later and so
1335  * will be committed to a new transaction in due course, at which point
1336  * we can discard the old committed data pointer.
1337  *
1338  * Returns error number or 0 on success.
1339  */
jbd2_journal_get_undo_access(handle_t * handle,struct buffer_head * bh)1340 int jbd2_journal_get_undo_access(handle_t *handle, struct buffer_head *bh)
1341 {
1342 	int err;
1343 	struct journal_head *jh;
1344 	char *committed_data = NULL;
1345 
1346 	if (is_handle_aborted(handle))
1347 		return -EROFS;
1348 
1349 	if (jbd2_write_access_granted(handle, bh, true))
1350 		return 0;
1351 
1352 	jh = jbd2_journal_add_journal_head(bh);
1353 	JBUFFER_TRACE(jh, "entry");
1354 
1355 	/*
1356 	 * Do this first --- it can drop the journal lock, so we want to
1357 	 * make sure that obtaining the committed_data is done
1358 	 * atomically wrt. completion of any outstanding commits.
1359 	 */
1360 	err = do_get_write_access(handle, jh, 1);
1361 	if (err)
1362 		goto out;
1363 
1364 repeat:
1365 	if (!jh->b_committed_data)
1366 		committed_data = jbd2_alloc(jh2bh(jh)->b_size,
1367 					    GFP_NOFS|__GFP_NOFAIL);
1368 
1369 	spin_lock(&jh->b_state_lock);
1370 	if (!jh->b_committed_data) {
1371 		/* Copy out the current buffer contents into the
1372 		 * preserved, committed copy. */
1373 		JBUFFER_TRACE(jh, "generate b_committed data");
1374 		if (!committed_data) {
1375 			spin_unlock(&jh->b_state_lock);
1376 			goto repeat;
1377 		}
1378 
1379 		jh->b_committed_data = committed_data;
1380 		committed_data = NULL;
1381 		memcpy(jh->b_committed_data, bh->b_data, bh->b_size);
1382 	}
1383 	spin_unlock(&jh->b_state_lock);
1384 out:
1385 	jbd2_journal_put_journal_head(jh);
1386 	if (unlikely(committed_data))
1387 		jbd2_free(committed_data, bh->b_size);
1388 	return err;
1389 }
1390 
1391 /**
1392  * jbd2_journal_set_triggers() - Add triggers for commit writeout
1393  * @bh: buffer to trigger on
1394  * @type: struct jbd2_buffer_trigger_type containing the trigger(s).
1395  *
1396  * Set any triggers on this journal_head.  This is always safe, because
1397  * triggers for a committing buffer will be saved off, and triggers for
1398  * a running transaction will match the buffer in that transaction.
1399  *
1400  * Call with NULL to clear the triggers.
1401  */
jbd2_journal_set_triggers(struct buffer_head * bh,struct jbd2_buffer_trigger_type * type)1402 void jbd2_journal_set_triggers(struct buffer_head *bh,
1403 			       struct jbd2_buffer_trigger_type *type)
1404 {
1405 	struct journal_head *jh = jbd2_journal_grab_journal_head(bh);
1406 
1407 	if (WARN_ON(!jh))
1408 		return;
1409 	jh->b_triggers = type;
1410 	jbd2_journal_put_journal_head(jh);
1411 }
1412 
jbd2_buffer_frozen_trigger(struct journal_head * jh,void * mapped_data,struct jbd2_buffer_trigger_type * triggers)1413 void jbd2_buffer_frozen_trigger(struct journal_head *jh, void *mapped_data,
1414 				struct jbd2_buffer_trigger_type *triggers)
1415 {
1416 	struct buffer_head *bh = jh2bh(jh);
1417 
1418 	if (!triggers || !triggers->t_frozen)
1419 		return;
1420 
1421 	triggers->t_frozen(triggers, bh, mapped_data, bh->b_size);
1422 }
1423 
jbd2_buffer_abort_trigger(struct journal_head * jh,struct jbd2_buffer_trigger_type * triggers)1424 void jbd2_buffer_abort_trigger(struct journal_head *jh,
1425 			       struct jbd2_buffer_trigger_type *triggers)
1426 {
1427 	if (!triggers || !triggers->t_abort)
1428 		return;
1429 
1430 	triggers->t_abort(triggers, jh2bh(jh));
1431 }
1432 
1433 /**
1434  * jbd2_journal_dirty_metadata() -  mark a buffer as containing dirty metadata
1435  * @handle: transaction to add buffer to.
1436  * @bh: buffer to mark
1437  *
1438  * mark dirty metadata which needs to be journaled as part of the current
1439  * transaction.
1440  *
1441  * The buffer must have previously had jbd2_journal_get_write_access()
1442  * called so that it has a valid journal_head attached to the buffer
1443  * head.
1444  *
1445  * The buffer is placed on the transaction's metadata list and is marked
1446  * as belonging to the transaction.
1447  *
1448  * Returns error number or 0 on success.
1449  *
1450  * Special care needs to be taken if the buffer already belongs to the
1451  * current committing transaction (in which case we should have frozen
1452  * data present for that commit).  In that case, we don't relink the
1453  * buffer: that only gets done when the old transaction finally
1454  * completes its commit.
1455  */
jbd2_journal_dirty_metadata(handle_t * handle,struct buffer_head * bh)1456 int jbd2_journal_dirty_metadata(handle_t *handle, struct buffer_head *bh)
1457 {
1458 	transaction_t *transaction = handle->h_transaction;
1459 	journal_t *journal;
1460 	struct journal_head *jh;
1461 	int ret = 0;
1462 
1463 	if (!buffer_jbd(bh))
1464 		return -EUCLEAN;
1465 
1466 	/*
1467 	 * We don't grab jh reference here since the buffer must be part
1468 	 * of the running transaction.
1469 	 */
1470 	jh = bh2jh(bh);
1471 	jbd_debug(5, "journal_head %p\n", jh);
1472 	JBUFFER_TRACE(jh, "entry");
1473 
1474 	/*
1475 	 * This and the following assertions are unreliable since we may see jh
1476 	 * in inconsistent state unless we grab bh_state lock. But this is
1477 	 * crucial to catch bugs so let's do a reliable check until the
1478 	 * lockless handling is fully proven.
1479 	 */
1480 	if (data_race(jh->b_transaction != transaction &&
1481 	    jh->b_next_transaction != transaction)) {
1482 		spin_lock(&jh->b_state_lock);
1483 		J_ASSERT_JH(jh, jh->b_transaction == transaction ||
1484 				jh->b_next_transaction == transaction);
1485 		spin_unlock(&jh->b_state_lock);
1486 	}
1487 	if (jh->b_modified == 1) {
1488 		/* If it's in our transaction it must be in BJ_Metadata list. */
1489 		if (data_race(jh->b_transaction == transaction &&
1490 		    jh->b_jlist != BJ_Metadata)) {
1491 			spin_lock(&jh->b_state_lock);
1492 			if (jh->b_transaction == transaction &&
1493 			    jh->b_jlist != BJ_Metadata)
1494 				pr_err("JBD2: assertion failure: h_type=%u "
1495 				       "h_line_no=%u block_no=%llu jlist=%u\n",
1496 				       handle->h_type, handle->h_line_no,
1497 				       (unsigned long long) bh->b_blocknr,
1498 				       jh->b_jlist);
1499 			J_ASSERT_JH(jh, jh->b_transaction != transaction ||
1500 					jh->b_jlist == BJ_Metadata);
1501 			spin_unlock(&jh->b_state_lock);
1502 		}
1503 		goto out;
1504 	}
1505 
1506 	journal = transaction->t_journal;
1507 	spin_lock(&jh->b_state_lock);
1508 
1509 	if (is_handle_aborted(handle)) {
1510 		/*
1511 		 * Check journal aborting with @jh->b_state_lock locked,
1512 		 * since 'jh->b_transaction' could be replaced with
1513 		 * 'jh->b_next_transaction' during old transaction
1514 		 * committing if journal aborted, which may fail
1515 		 * assertion on 'jh->b_frozen_data == NULL'.
1516 		 */
1517 		ret = -EROFS;
1518 		goto out_unlock_bh;
1519 	}
1520 
1521 	if (jh->b_modified == 0) {
1522 		/*
1523 		 * This buffer's got modified and becoming part
1524 		 * of the transaction. This needs to be done
1525 		 * once a transaction -bzzz
1526 		 */
1527 		if (WARN_ON_ONCE(jbd2_handle_buffer_credits(handle) <= 0)) {
1528 			ret = -ENOSPC;
1529 			goto out_unlock_bh;
1530 		}
1531 		jh->b_modified = 1;
1532 		handle->h_total_credits--;
1533 	}
1534 
1535 	/*
1536 	 * fastpath, to avoid expensive locking.  If this buffer is already
1537 	 * on the running transaction's metadata list there is nothing to do.
1538 	 * Nobody can take it off again because there is a handle open.
1539 	 * I _think_ we're OK here with SMP barriers - a mistaken decision will
1540 	 * result in this test being false, so we go in and take the locks.
1541 	 */
1542 	if (jh->b_transaction == transaction && jh->b_jlist == BJ_Metadata) {
1543 		JBUFFER_TRACE(jh, "fastpath");
1544 		if (unlikely(jh->b_transaction !=
1545 			     journal->j_running_transaction)) {
1546 			printk(KERN_ERR "JBD2: %s: "
1547 			       "jh->b_transaction (%llu, %p, %u) != "
1548 			       "journal->j_running_transaction (%p, %u)\n",
1549 			       journal->j_devname,
1550 			       (unsigned long long) bh->b_blocknr,
1551 			       jh->b_transaction,
1552 			       jh->b_transaction ? jh->b_transaction->t_tid : 0,
1553 			       journal->j_running_transaction,
1554 			       journal->j_running_transaction ?
1555 			       journal->j_running_transaction->t_tid : 0);
1556 			ret = -EINVAL;
1557 		}
1558 		goto out_unlock_bh;
1559 	}
1560 
1561 	set_buffer_jbddirty(bh);
1562 
1563 	/*
1564 	 * Metadata already on the current transaction list doesn't
1565 	 * need to be filed.  Metadata on another transaction's list must
1566 	 * be committing, and will be refiled once the commit completes:
1567 	 * leave it alone for now.
1568 	 */
1569 	if (jh->b_transaction != transaction) {
1570 		JBUFFER_TRACE(jh, "already on other transaction");
1571 		if (unlikely(((jh->b_transaction !=
1572 			       journal->j_committing_transaction)) ||
1573 			     (jh->b_next_transaction != transaction))) {
1574 			printk(KERN_ERR "jbd2_journal_dirty_metadata: %s: "
1575 			       "bad jh for block %llu: "
1576 			       "transaction (%p, %u), "
1577 			       "jh->b_transaction (%p, %u), "
1578 			       "jh->b_next_transaction (%p, %u), jlist %u\n",
1579 			       journal->j_devname,
1580 			       (unsigned long long) bh->b_blocknr,
1581 			       transaction, transaction->t_tid,
1582 			       jh->b_transaction,
1583 			       jh->b_transaction ?
1584 			       jh->b_transaction->t_tid : 0,
1585 			       jh->b_next_transaction,
1586 			       jh->b_next_transaction ?
1587 			       jh->b_next_transaction->t_tid : 0,
1588 			       jh->b_jlist);
1589 			WARN_ON(1);
1590 			ret = -EINVAL;
1591 		}
1592 		/* And this case is illegal: we can't reuse another
1593 		 * transaction's data buffer, ever. */
1594 		goto out_unlock_bh;
1595 	}
1596 
1597 	/* That test should have eliminated the following case: */
1598 	J_ASSERT_JH(jh, jh->b_frozen_data == NULL);
1599 
1600 	JBUFFER_TRACE(jh, "file as BJ_Metadata");
1601 	spin_lock(&journal->j_list_lock);
1602 	__jbd2_journal_file_buffer(jh, transaction, BJ_Metadata);
1603 	spin_unlock(&journal->j_list_lock);
1604 out_unlock_bh:
1605 	spin_unlock(&jh->b_state_lock);
1606 out:
1607 	JBUFFER_TRACE(jh, "exit");
1608 	return ret;
1609 }
1610 
1611 /**
1612  * jbd2_journal_forget() - bforget() for potentially-journaled buffers.
1613  * @handle: transaction handle
1614  * @bh:     bh to 'forget'
1615  *
1616  * We can only do the bforget if there are no commits pending against the
1617  * buffer.  If the buffer is dirty in the current running transaction we
1618  * can safely unlink it.
1619  *
1620  * bh may not be a journalled buffer at all - it may be a non-JBD
1621  * buffer which came off the hashtable.  Check for this.
1622  *
1623  * Decrements bh->b_count by one.
1624  *
1625  * Allow this call even if the handle has aborted --- it may be part of
1626  * the caller's cleanup after an abort.
1627  */
jbd2_journal_forget(handle_t * handle,struct buffer_head * bh)1628 int jbd2_journal_forget(handle_t *handle, struct buffer_head *bh)
1629 {
1630 	transaction_t *transaction = handle->h_transaction;
1631 	journal_t *journal;
1632 	struct journal_head *jh;
1633 	int drop_reserve = 0;
1634 	int err = 0;
1635 	int was_modified = 0;
1636 
1637 	if (is_handle_aborted(handle))
1638 		return -EROFS;
1639 	journal = transaction->t_journal;
1640 
1641 	BUFFER_TRACE(bh, "entry");
1642 
1643 	jh = jbd2_journal_grab_journal_head(bh);
1644 	if (!jh) {
1645 		__bforget(bh);
1646 		return 0;
1647 	}
1648 
1649 	spin_lock(&jh->b_state_lock);
1650 
1651 	/* Critical error: attempting to delete a bitmap buffer, maybe?
1652 	 * Don't do any jbd operations, and return an error. */
1653 	if (!J_EXPECT_JH(jh, !jh->b_committed_data,
1654 			 "inconsistent data on disk")) {
1655 		err = -EIO;
1656 		goto drop;
1657 	}
1658 
1659 	/* keep track of whether or not this transaction modified us */
1660 	was_modified = jh->b_modified;
1661 
1662 	/*
1663 	 * The buffer's going from the transaction, we must drop
1664 	 * all references -bzzz
1665 	 */
1666 	jh->b_modified = 0;
1667 
1668 	if (jh->b_transaction == transaction) {
1669 		J_ASSERT_JH(jh, !jh->b_frozen_data);
1670 
1671 		/* If we are forgetting a buffer which is already part
1672 		 * of this transaction, then we can just drop it from
1673 		 * the transaction immediately. */
1674 		clear_buffer_dirty(bh);
1675 		clear_buffer_jbddirty(bh);
1676 
1677 		JBUFFER_TRACE(jh, "belongs to current transaction: unfile");
1678 
1679 		/*
1680 		 * we only want to drop a reference if this transaction
1681 		 * modified the buffer
1682 		 */
1683 		if (was_modified)
1684 			drop_reserve = 1;
1685 
1686 		/*
1687 		 * We are no longer going to journal this buffer.
1688 		 * However, the commit of this transaction is still
1689 		 * important to the buffer: the delete that we are now
1690 		 * processing might obsolete an old log entry, so by
1691 		 * committing, we can satisfy the buffer's checkpoint.
1692 		 *
1693 		 * So, if we have a checkpoint on the buffer, we should
1694 		 * now refile the buffer on our BJ_Forget list so that
1695 		 * we know to remove the checkpoint after we commit.
1696 		 */
1697 
1698 		spin_lock(&journal->j_list_lock);
1699 		if (jh->b_cp_transaction) {
1700 			__jbd2_journal_temp_unlink_buffer(jh);
1701 			__jbd2_journal_file_buffer(jh, transaction, BJ_Forget);
1702 		} else {
1703 			__jbd2_journal_unfile_buffer(jh);
1704 			jbd2_journal_put_journal_head(jh);
1705 		}
1706 		spin_unlock(&journal->j_list_lock);
1707 	} else if (jh->b_transaction) {
1708 		J_ASSERT_JH(jh, (jh->b_transaction ==
1709 				 journal->j_committing_transaction));
1710 		/* However, if the buffer is still owned by a prior
1711 		 * (committing) transaction, we can't drop it yet... */
1712 		JBUFFER_TRACE(jh, "belongs to older transaction");
1713 		/* ... but we CAN drop it from the new transaction through
1714 		 * marking the buffer as freed and set j_next_transaction to
1715 		 * the new transaction, so that not only the commit code
1716 		 * knows it should clear dirty bits when it is done with the
1717 		 * buffer, but also the buffer can be checkpointed only
1718 		 * after the new transaction commits. */
1719 
1720 		set_buffer_freed(bh);
1721 
1722 		if (!jh->b_next_transaction) {
1723 			spin_lock(&journal->j_list_lock);
1724 			jh->b_next_transaction = transaction;
1725 			spin_unlock(&journal->j_list_lock);
1726 		} else {
1727 			J_ASSERT(jh->b_next_transaction == transaction);
1728 
1729 			/*
1730 			 * only drop a reference if this transaction modified
1731 			 * the buffer
1732 			 */
1733 			if (was_modified)
1734 				drop_reserve = 1;
1735 		}
1736 	} else {
1737 		/*
1738 		 * Finally, if the buffer is not belongs to any
1739 		 * transaction, we can just drop it now if it has no
1740 		 * checkpoint.
1741 		 */
1742 		spin_lock(&journal->j_list_lock);
1743 		if (!jh->b_cp_transaction) {
1744 			JBUFFER_TRACE(jh, "belongs to none transaction");
1745 			spin_unlock(&journal->j_list_lock);
1746 			goto drop;
1747 		}
1748 
1749 		/*
1750 		 * Otherwise, if the buffer has been written to disk,
1751 		 * it is safe to remove the checkpoint and drop it.
1752 		 */
1753 		if (!buffer_dirty(bh)) {
1754 			__jbd2_journal_remove_checkpoint(jh);
1755 			spin_unlock(&journal->j_list_lock);
1756 			goto drop;
1757 		}
1758 
1759 		/*
1760 		 * The buffer is still not written to disk, we should
1761 		 * attach this buffer to current transaction so that the
1762 		 * buffer can be checkpointed only after the current
1763 		 * transaction commits.
1764 		 */
1765 		clear_buffer_dirty(bh);
1766 		__jbd2_journal_file_buffer(jh, transaction, BJ_Forget);
1767 		spin_unlock(&journal->j_list_lock);
1768 	}
1769 drop:
1770 	__brelse(bh);
1771 	spin_unlock(&jh->b_state_lock);
1772 	jbd2_journal_put_journal_head(jh);
1773 	if (drop_reserve) {
1774 		/* no need to reserve log space for this block -bzzz */
1775 		handle->h_total_credits++;
1776 	}
1777 	return err;
1778 }
1779 
1780 /**
1781  * jbd2_journal_stop() - complete a transaction
1782  * @handle: transaction to complete.
1783  *
1784  * All done for a particular handle.
1785  *
1786  * There is not much action needed here.  We just return any remaining
1787  * buffer credits to the transaction and remove the handle.  The only
1788  * complication is that we need to start a commit operation if the
1789  * filesystem is marked for synchronous update.
1790  *
1791  * jbd2_journal_stop itself will not usually return an error, but it may
1792  * do so in unusual circumstances.  In particular, expect it to
1793  * return -EIO if a jbd2_journal_abort has been executed since the
1794  * transaction began.
1795  */
jbd2_journal_stop(handle_t * handle)1796 int jbd2_journal_stop(handle_t *handle)
1797 {
1798 	transaction_t *transaction = handle->h_transaction;
1799 	journal_t *journal;
1800 	int err = 0, wait_for_commit = 0;
1801 	tid_t tid;
1802 	pid_t pid;
1803 
1804 	if (--handle->h_ref > 0) {
1805 		jbd_debug(4, "h_ref %d -> %d\n", handle->h_ref + 1,
1806 						 handle->h_ref);
1807 		if (is_handle_aborted(handle))
1808 			return -EIO;
1809 		return 0;
1810 	}
1811 	if (!transaction) {
1812 		/*
1813 		 * Handle is already detached from the transaction so there is
1814 		 * nothing to do other than free the handle.
1815 		 */
1816 		memalloc_nofs_restore(handle->saved_alloc_context);
1817 		goto free_and_exit;
1818 	}
1819 	journal = transaction->t_journal;
1820 	tid = transaction->t_tid;
1821 
1822 	if (is_handle_aborted(handle))
1823 		err = -EIO;
1824 
1825 	jbd_debug(4, "Handle %p going down\n", handle);
1826 	trace_jbd2_handle_stats(journal->j_fs_dev->bd_dev,
1827 				tid, handle->h_type, handle->h_line_no,
1828 				jiffies - handle->h_start_jiffies,
1829 				handle->h_sync, handle->h_requested_credits,
1830 				(handle->h_requested_credits -
1831 				 handle->h_total_credits));
1832 
1833 	/*
1834 	 * Implement synchronous transaction batching.  If the handle
1835 	 * was synchronous, don't force a commit immediately.  Let's
1836 	 * yield and let another thread piggyback onto this
1837 	 * transaction.  Keep doing that while new threads continue to
1838 	 * arrive.  It doesn't cost much - we're about to run a commit
1839 	 * and sleep on IO anyway.  Speeds up many-threaded, many-dir
1840 	 * operations by 30x or more...
1841 	 *
1842 	 * We try and optimize the sleep time against what the
1843 	 * underlying disk can do, instead of having a static sleep
1844 	 * time.  This is useful for the case where our storage is so
1845 	 * fast that it is more optimal to go ahead and force a flush
1846 	 * and wait for the transaction to be committed than it is to
1847 	 * wait for an arbitrary amount of time for new writers to
1848 	 * join the transaction.  We achieve this by measuring how
1849 	 * long it takes to commit a transaction, and compare it with
1850 	 * how long this transaction has been running, and if run time
1851 	 * < commit time then we sleep for the delta and commit.  This
1852 	 * greatly helps super fast disks that would see slowdowns as
1853 	 * more threads started doing fsyncs.
1854 	 *
1855 	 * But don't do this if this process was the most recent one
1856 	 * to perform a synchronous write.  We do this to detect the
1857 	 * case where a single process is doing a stream of sync
1858 	 * writes.  No point in waiting for joiners in that case.
1859 	 *
1860 	 * Setting max_batch_time to 0 disables this completely.
1861 	 */
1862 	pid = current->pid;
1863 	if (handle->h_sync && journal->j_last_sync_writer != pid &&
1864 	    journal->j_max_batch_time) {
1865 		u64 commit_time, trans_time;
1866 
1867 		journal->j_last_sync_writer = pid;
1868 
1869 		read_lock(&journal->j_state_lock);
1870 		commit_time = journal->j_average_commit_time;
1871 		read_unlock(&journal->j_state_lock);
1872 
1873 		trans_time = ktime_to_ns(ktime_sub(ktime_get(),
1874 						   transaction->t_start_time));
1875 
1876 		commit_time = max_t(u64, commit_time,
1877 				    1000*journal->j_min_batch_time);
1878 		commit_time = min_t(u64, commit_time,
1879 				    1000*journal->j_max_batch_time);
1880 
1881 		if (trans_time < commit_time) {
1882 			ktime_t expires = ktime_add_ns(ktime_get(),
1883 						       commit_time);
1884 			set_current_state(TASK_UNINTERRUPTIBLE);
1885 			schedule_hrtimeout(&expires, HRTIMER_MODE_ABS);
1886 		}
1887 	}
1888 
1889 	if (handle->h_sync)
1890 		transaction->t_synchronous_commit = 1;
1891 
1892 	/*
1893 	 * If the handle is marked SYNC, we need to set another commit
1894 	 * going!  We also want to force a commit if the transaction is too
1895 	 * old now.
1896 	 */
1897 	if (handle->h_sync ||
1898 	    time_after_eq(jiffies, transaction->t_expires)) {
1899 		/* Do this even for aborted journals: an abort still
1900 		 * completes the commit thread, it just doesn't write
1901 		 * anything to disk. */
1902 
1903 		jbd_debug(2, "transaction too old, requesting commit for "
1904 					"handle %p\n", handle);
1905 		/* This is non-blocking */
1906 		jbd2_log_start_commit(journal, tid);
1907 
1908 		/*
1909 		 * Special case: JBD2_SYNC synchronous updates require us
1910 		 * to wait for the commit to complete.
1911 		 */
1912 		if (handle->h_sync && !(current->flags & PF_MEMALLOC))
1913 			wait_for_commit = 1;
1914 	}
1915 
1916 	/*
1917 	 * Once stop_this_handle() drops t_updates, the transaction could start
1918 	 * committing on us and eventually disappear.  So we must not
1919 	 * dereference transaction pointer again after calling
1920 	 * stop_this_handle().
1921 	 */
1922 	stop_this_handle(handle);
1923 
1924 	if (wait_for_commit)
1925 		err = jbd2_log_wait_commit(journal, tid);
1926 
1927 free_and_exit:
1928 	if (handle->h_rsv_handle)
1929 		jbd2_free_handle(handle->h_rsv_handle);
1930 	jbd2_free_handle(handle);
1931 	return err;
1932 }
1933 
1934 /*
1935  *
1936  * List management code snippets: various functions for manipulating the
1937  * transaction buffer lists.
1938  *
1939  */
1940 
1941 /*
1942  * Append a buffer to a transaction list, given the transaction's list head
1943  * pointer.
1944  *
1945  * j_list_lock is held.
1946  *
1947  * jh->b_state_lock is held.
1948  */
1949 
1950 static inline void
__blist_add_buffer(struct journal_head ** list,struct journal_head * jh)1951 __blist_add_buffer(struct journal_head **list, struct journal_head *jh)
1952 {
1953 	if (!*list) {
1954 		jh->b_tnext = jh->b_tprev = jh;
1955 		*list = jh;
1956 	} else {
1957 		/* Insert at the tail of the list to preserve order */
1958 		struct journal_head *first = *list, *last = first->b_tprev;
1959 		jh->b_tprev = last;
1960 		jh->b_tnext = first;
1961 		last->b_tnext = first->b_tprev = jh;
1962 	}
1963 }
1964 
1965 /*
1966  * Remove a buffer from a transaction list, given the transaction's list
1967  * head pointer.
1968  *
1969  * Called with j_list_lock held, and the journal may not be locked.
1970  *
1971  * jh->b_state_lock is held.
1972  */
1973 
1974 static inline void
__blist_del_buffer(struct journal_head ** list,struct journal_head * jh)1975 __blist_del_buffer(struct journal_head **list, struct journal_head *jh)
1976 {
1977 	if (*list == jh) {
1978 		*list = jh->b_tnext;
1979 		if (*list == jh)
1980 			*list = NULL;
1981 	}
1982 	jh->b_tprev->b_tnext = jh->b_tnext;
1983 	jh->b_tnext->b_tprev = jh->b_tprev;
1984 }
1985 
1986 /*
1987  * Remove a buffer from the appropriate transaction list.
1988  *
1989  * Note that this function can *change* the value of
1990  * bh->b_transaction->t_buffers, t_forget, t_shadow_list, t_log_list or
1991  * t_reserved_list.  If the caller is holding onto a copy of one of these
1992  * pointers, it could go bad.  Generally the caller needs to re-read the
1993  * pointer from the transaction_t.
1994  *
1995  * Called under j_list_lock.
1996  */
__jbd2_journal_temp_unlink_buffer(struct journal_head * jh)1997 static void __jbd2_journal_temp_unlink_buffer(struct journal_head *jh)
1998 {
1999 	struct journal_head **list = NULL;
2000 	transaction_t *transaction;
2001 	struct buffer_head *bh = jh2bh(jh);
2002 
2003 	lockdep_assert_held(&jh->b_state_lock);
2004 	transaction = jh->b_transaction;
2005 	if (transaction)
2006 		assert_spin_locked(&transaction->t_journal->j_list_lock);
2007 
2008 	J_ASSERT_JH(jh, jh->b_jlist < BJ_Types);
2009 	if (jh->b_jlist != BJ_None)
2010 		J_ASSERT_JH(jh, transaction != NULL);
2011 
2012 	switch (jh->b_jlist) {
2013 	case BJ_None:
2014 		return;
2015 	case BJ_Metadata:
2016 		transaction->t_nr_buffers--;
2017 		J_ASSERT_JH(jh, transaction->t_nr_buffers >= 0);
2018 		list = &transaction->t_buffers;
2019 		break;
2020 	case BJ_Forget:
2021 		list = &transaction->t_forget;
2022 		break;
2023 	case BJ_Shadow:
2024 		list = &transaction->t_shadow_list;
2025 		break;
2026 	case BJ_Reserved:
2027 		list = &transaction->t_reserved_list;
2028 		break;
2029 	}
2030 
2031 	__blist_del_buffer(list, jh);
2032 	jh->b_jlist = BJ_None;
2033 	if (transaction && is_journal_aborted(transaction->t_journal))
2034 		clear_buffer_jbddirty(bh);
2035 	else if (test_clear_buffer_jbddirty(bh))
2036 		mark_buffer_dirty(bh);	/* Expose it to the VM */
2037 }
2038 
2039 /*
2040  * Remove buffer from all transactions. The caller is responsible for dropping
2041  * the jh reference that belonged to the transaction.
2042  *
2043  * Called with bh_state lock and j_list_lock
2044  */
__jbd2_journal_unfile_buffer(struct journal_head * jh)2045 static void __jbd2_journal_unfile_buffer(struct journal_head *jh)
2046 {
2047 	J_ASSERT_JH(jh, jh->b_transaction != NULL);
2048 	J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
2049 
2050 	__jbd2_journal_temp_unlink_buffer(jh);
2051 	jh->b_transaction = NULL;
2052 }
2053 
jbd2_journal_unfile_buffer(journal_t * journal,struct journal_head * jh)2054 void jbd2_journal_unfile_buffer(journal_t *journal, struct journal_head *jh)
2055 {
2056 	struct buffer_head *bh = jh2bh(jh);
2057 
2058 	/* Get reference so that buffer cannot be freed before we unlock it */
2059 	get_bh(bh);
2060 	spin_lock(&jh->b_state_lock);
2061 	spin_lock(&journal->j_list_lock);
2062 	__jbd2_journal_unfile_buffer(jh);
2063 	spin_unlock(&journal->j_list_lock);
2064 	spin_unlock(&jh->b_state_lock);
2065 	jbd2_journal_put_journal_head(jh);
2066 	__brelse(bh);
2067 }
2068 
2069 /*
2070  * Called from jbd2_journal_try_to_free_buffers().
2071  *
2072  * Called under jh->b_state_lock
2073  */
2074 static void
__journal_try_to_free_buffer(journal_t * journal,struct buffer_head * bh)2075 __journal_try_to_free_buffer(journal_t *journal, struct buffer_head *bh)
2076 {
2077 	struct journal_head *jh;
2078 
2079 	jh = bh2jh(bh);
2080 
2081 	if (buffer_locked(bh) || buffer_dirty(bh))
2082 		goto out;
2083 
2084 	if (jh->b_next_transaction != NULL || jh->b_transaction != NULL)
2085 		goto out;
2086 
2087 	spin_lock(&journal->j_list_lock);
2088 	if (jh->b_cp_transaction != NULL) {
2089 		/* written-back checkpointed metadata buffer */
2090 		JBUFFER_TRACE(jh, "remove from checkpoint list");
2091 		__jbd2_journal_remove_checkpoint(jh);
2092 	}
2093 	spin_unlock(&journal->j_list_lock);
2094 out:
2095 	return;
2096 }
2097 
2098 /**
2099  * jbd2_journal_try_to_free_buffers() - try to free page buffers.
2100  * @journal: journal for operation
2101  * @page: to try and free
2102  *
2103  * For all the buffers on this page,
2104  * if they are fully written out ordered data, move them onto BUF_CLEAN
2105  * so try_to_free_buffers() can reap them.
2106  *
2107  * This function returns non-zero if we wish try_to_free_buffers()
2108  * to be called. We do this if the page is releasable by try_to_free_buffers().
2109  * We also do it if the page has locked or dirty buffers and the caller wants
2110  * us to perform sync or async writeout.
2111  *
2112  * This complicates JBD locking somewhat.  We aren't protected by the
2113  * BKL here.  We wish to remove the buffer from its committing or
2114  * running transaction's ->t_datalist via __jbd2_journal_unfile_buffer.
2115  *
2116  * This may *change* the value of transaction_t->t_datalist, so anyone
2117  * who looks at t_datalist needs to lock against this function.
2118  *
2119  * Even worse, someone may be doing a jbd2_journal_dirty_data on this
2120  * buffer.  So we need to lock against that.  jbd2_journal_dirty_data()
2121  * will come out of the lock with the buffer dirty, which makes it
2122  * ineligible for release here.
2123  *
2124  * Who else is affected by this?  hmm...  Really the only contender
2125  * is do_get_write_access() - it could be looking at the buffer while
2126  * journal_try_to_free_buffer() is changing its state.  But that
2127  * cannot happen because we never reallocate freed data as metadata
2128  * while the data is part of a transaction.  Yes?
2129  *
2130  * Return 0 on failure, 1 on success
2131  */
jbd2_journal_try_to_free_buffers(journal_t * journal,struct page * page)2132 int jbd2_journal_try_to_free_buffers(journal_t *journal, struct page *page)
2133 {
2134 	struct buffer_head *head;
2135 	struct buffer_head *bh;
2136 	int ret = 0;
2137 
2138 	J_ASSERT(PageLocked(page));
2139 
2140 	head = page_buffers(page);
2141 	bh = head;
2142 	do {
2143 		struct journal_head *jh;
2144 
2145 		/*
2146 		 * We take our own ref against the journal_head here to avoid
2147 		 * having to add tons of locking around each instance of
2148 		 * jbd2_journal_put_journal_head().
2149 		 */
2150 		jh = jbd2_journal_grab_journal_head(bh);
2151 		if (!jh)
2152 			continue;
2153 
2154 		spin_lock(&jh->b_state_lock);
2155 		__journal_try_to_free_buffer(journal, bh);
2156 		spin_unlock(&jh->b_state_lock);
2157 		jbd2_journal_put_journal_head(jh);
2158 		if (buffer_jbd(bh))
2159 			goto busy;
2160 	} while ((bh = bh->b_this_page) != head);
2161 
2162 	ret = try_to_free_buffers(page);
2163 busy:
2164 	return ret;
2165 }
2166 
2167 /*
2168  * This buffer is no longer needed.  If it is on an older transaction's
2169  * checkpoint list we need to record it on this transaction's forget list
2170  * to pin this buffer (and hence its checkpointing transaction) down until
2171  * this transaction commits.  If the buffer isn't on a checkpoint list, we
2172  * release it.
2173  * Returns non-zero if JBD no longer has an interest in the buffer.
2174  *
2175  * Called under j_list_lock.
2176  *
2177  * Called under jh->b_state_lock.
2178  */
__dispose_buffer(struct journal_head * jh,transaction_t * transaction)2179 static int __dispose_buffer(struct journal_head *jh, transaction_t *transaction)
2180 {
2181 	int may_free = 1;
2182 	struct buffer_head *bh = jh2bh(jh);
2183 
2184 	if (jh->b_cp_transaction) {
2185 		JBUFFER_TRACE(jh, "on running+cp transaction");
2186 		__jbd2_journal_temp_unlink_buffer(jh);
2187 		/*
2188 		 * We don't want to write the buffer anymore, clear the
2189 		 * bit so that we don't confuse checks in
2190 		 * __journal_file_buffer
2191 		 */
2192 		clear_buffer_dirty(bh);
2193 		__jbd2_journal_file_buffer(jh, transaction, BJ_Forget);
2194 		may_free = 0;
2195 	} else {
2196 		JBUFFER_TRACE(jh, "on running transaction");
2197 		__jbd2_journal_unfile_buffer(jh);
2198 		jbd2_journal_put_journal_head(jh);
2199 	}
2200 	return may_free;
2201 }
2202 
2203 /*
2204  * jbd2_journal_invalidatepage
2205  *
2206  * This code is tricky.  It has a number of cases to deal with.
2207  *
2208  * There are two invariants which this code relies on:
2209  *
2210  * i_size must be updated on disk before we start calling invalidatepage on the
2211  * data.
2212  *
2213  *  This is done in ext3 by defining an ext3_setattr method which
2214  *  updates i_size before truncate gets going.  By maintaining this
2215  *  invariant, we can be sure that it is safe to throw away any buffers
2216  *  attached to the current transaction: once the transaction commits,
2217  *  we know that the data will not be needed.
2218  *
2219  *  Note however that we can *not* throw away data belonging to the
2220  *  previous, committing transaction!
2221  *
2222  * Any disk blocks which *are* part of the previous, committing
2223  * transaction (and which therefore cannot be discarded immediately) are
2224  * not going to be reused in the new running transaction
2225  *
2226  *  The bitmap committed_data images guarantee this: any block which is
2227  *  allocated in one transaction and removed in the next will be marked
2228  *  as in-use in the committed_data bitmap, so cannot be reused until
2229  *  the next transaction to delete the block commits.  This means that
2230  *  leaving committing buffers dirty is quite safe: the disk blocks
2231  *  cannot be reallocated to a different file and so buffer aliasing is
2232  *  not possible.
2233  *
2234  *
2235  * The above applies mainly to ordered data mode.  In writeback mode we
2236  * don't make guarantees about the order in which data hits disk --- in
2237  * particular we don't guarantee that new dirty data is flushed before
2238  * transaction commit --- so it is always safe just to discard data
2239  * immediately in that mode.  --sct
2240  */
2241 
2242 /*
2243  * The journal_unmap_buffer helper function returns zero if the buffer
2244  * concerned remains pinned as an anonymous buffer belonging to an older
2245  * transaction.
2246  *
2247  * We're outside-transaction here.  Either or both of j_running_transaction
2248  * and j_committing_transaction may be NULL.
2249  */
journal_unmap_buffer(journal_t * journal,struct buffer_head * bh,int partial_page)2250 static int journal_unmap_buffer(journal_t *journal, struct buffer_head *bh,
2251 				int partial_page)
2252 {
2253 	transaction_t *transaction;
2254 	struct journal_head *jh;
2255 	int may_free = 1;
2256 
2257 	BUFFER_TRACE(bh, "entry");
2258 
2259 	/*
2260 	 * It is safe to proceed here without the j_list_lock because the
2261 	 * buffers cannot be stolen by try_to_free_buffers as long as we are
2262 	 * holding the page lock. --sct
2263 	 */
2264 
2265 	jh = jbd2_journal_grab_journal_head(bh);
2266 	if (!jh)
2267 		goto zap_buffer_unlocked;
2268 
2269 	/* OK, we have data buffer in journaled mode */
2270 	write_lock(&journal->j_state_lock);
2271 	spin_lock(&jh->b_state_lock);
2272 	spin_lock(&journal->j_list_lock);
2273 
2274 	/*
2275 	 * We cannot remove the buffer from checkpoint lists until the
2276 	 * transaction adding inode to orphan list (let's call it T)
2277 	 * is committed.  Otherwise if the transaction changing the
2278 	 * buffer would be cleaned from the journal before T is
2279 	 * committed, a crash will cause that the correct contents of
2280 	 * the buffer will be lost.  On the other hand we have to
2281 	 * clear the buffer dirty bit at latest at the moment when the
2282 	 * transaction marking the buffer as freed in the filesystem
2283 	 * structures is committed because from that moment on the
2284 	 * block can be reallocated and used by a different page.
2285 	 * Since the block hasn't been freed yet but the inode has
2286 	 * already been added to orphan list, it is safe for us to add
2287 	 * the buffer to BJ_Forget list of the newest transaction.
2288 	 *
2289 	 * Also we have to clear buffer_mapped flag of a truncated buffer
2290 	 * because the buffer_head may be attached to the page straddling
2291 	 * i_size (can happen only when blocksize < pagesize) and thus the
2292 	 * buffer_head can be reused when the file is extended again. So we end
2293 	 * up keeping around invalidated buffers attached to transactions'
2294 	 * BJ_Forget list just to stop checkpointing code from cleaning up
2295 	 * the transaction this buffer was modified in.
2296 	 */
2297 	transaction = jh->b_transaction;
2298 	if (transaction == NULL) {
2299 		/* First case: not on any transaction.  If it
2300 		 * has no checkpoint link, then we can zap it:
2301 		 * it's a writeback-mode buffer so we don't care
2302 		 * if it hits disk safely. */
2303 		if (!jh->b_cp_transaction) {
2304 			JBUFFER_TRACE(jh, "not on any transaction: zap");
2305 			goto zap_buffer;
2306 		}
2307 
2308 		if (!buffer_dirty(bh)) {
2309 			/* bdflush has written it.  We can drop it now */
2310 			__jbd2_journal_remove_checkpoint(jh);
2311 			goto zap_buffer;
2312 		}
2313 
2314 		/* OK, it must be in the journal but still not
2315 		 * written fully to disk: it's metadata or
2316 		 * journaled data... */
2317 
2318 		if (journal->j_running_transaction) {
2319 			/* ... and once the current transaction has
2320 			 * committed, the buffer won't be needed any
2321 			 * longer. */
2322 			JBUFFER_TRACE(jh, "checkpointed: add to BJ_Forget");
2323 			may_free = __dispose_buffer(jh,
2324 					journal->j_running_transaction);
2325 			goto zap_buffer;
2326 		} else {
2327 			/* There is no currently-running transaction. So the
2328 			 * orphan record which we wrote for this file must have
2329 			 * passed into commit.  We must attach this buffer to
2330 			 * the committing transaction, if it exists. */
2331 			if (journal->j_committing_transaction) {
2332 				JBUFFER_TRACE(jh, "give to committing trans");
2333 				may_free = __dispose_buffer(jh,
2334 					journal->j_committing_transaction);
2335 				goto zap_buffer;
2336 			} else {
2337 				/* The orphan record's transaction has
2338 				 * committed.  We can cleanse this buffer */
2339 				clear_buffer_jbddirty(bh);
2340 				__jbd2_journal_remove_checkpoint(jh);
2341 				goto zap_buffer;
2342 			}
2343 		}
2344 	} else if (transaction == journal->j_committing_transaction) {
2345 		JBUFFER_TRACE(jh, "on committing transaction");
2346 		/*
2347 		 * The buffer is committing, we simply cannot touch
2348 		 * it. If the page is straddling i_size we have to wait
2349 		 * for commit and try again.
2350 		 */
2351 		if (partial_page) {
2352 			spin_unlock(&journal->j_list_lock);
2353 			spin_unlock(&jh->b_state_lock);
2354 			write_unlock(&journal->j_state_lock);
2355 			jbd2_journal_put_journal_head(jh);
2356 			return -EBUSY;
2357 		}
2358 		/*
2359 		 * OK, buffer won't be reachable after truncate. We just clear
2360 		 * b_modified to not confuse transaction credit accounting, and
2361 		 * set j_next_transaction to the running transaction (if there
2362 		 * is one) and mark buffer as freed so that commit code knows
2363 		 * it should clear dirty bits when it is done with the buffer.
2364 		 */
2365 		set_buffer_freed(bh);
2366 		if (journal->j_running_transaction && buffer_jbddirty(bh))
2367 			jh->b_next_transaction = journal->j_running_transaction;
2368 		jh->b_modified = 0;
2369 		spin_unlock(&journal->j_list_lock);
2370 		spin_unlock(&jh->b_state_lock);
2371 		write_unlock(&journal->j_state_lock);
2372 		jbd2_journal_put_journal_head(jh);
2373 		return 0;
2374 	} else {
2375 		/* Good, the buffer belongs to the running transaction.
2376 		 * We are writing our own transaction's data, not any
2377 		 * previous one's, so it is safe to throw it away
2378 		 * (remember that we expect the filesystem to have set
2379 		 * i_size already for this truncate so recovery will not
2380 		 * expose the disk blocks we are discarding here.) */
2381 		J_ASSERT_JH(jh, transaction == journal->j_running_transaction);
2382 		JBUFFER_TRACE(jh, "on running transaction");
2383 		may_free = __dispose_buffer(jh, transaction);
2384 	}
2385 
2386 zap_buffer:
2387 	/*
2388 	 * This is tricky. Although the buffer is truncated, it may be reused
2389 	 * if blocksize < pagesize and it is attached to the page straddling
2390 	 * EOF. Since the buffer might have been added to BJ_Forget list of the
2391 	 * running transaction, journal_get_write_access() won't clear
2392 	 * b_modified and credit accounting gets confused. So clear b_modified
2393 	 * here.
2394 	 */
2395 	jh->b_modified = 0;
2396 	spin_unlock(&journal->j_list_lock);
2397 	spin_unlock(&jh->b_state_lock);
2398 	write_unlock(&journal->j_state_lock);
2399 	jbd2_journal_put_journal_head(jh);
2400 zap_buffer_unlocked:
2401 	clear_buffer_dirty(bh);
2402 	J_ASSERT_BH(bh, !buffer_jbddirty(bh));
2403 	clear_buffer_mapped(bh);
2404 	clear_buffer_req(bh);
2405 	clear_buffer_new(bh);
2406 	clear_buffer_delay(bh);
2407 	clear_buffer_unwritten(bh);
2408 	bh->b_bdev = NULL;
2409 	return may_free;
2410 }
2411 
2412 /**
2413  * jbd2_journal_invalidatepage()
2414  * @journal: journal to use for flush...
2415  * @page:    page to flush
2416  * @offset:  start of the range to invalidate
2417  * @length:  length of the range to invalidate
2418  *
2419  * Reap page buffers containing data after in the specified range in page.
2420  * Can return -EBUSY if buffers are part of the committing transaction and
2421  * the page is straddling i_size. Caller then has to wait for current commit
2422  * and try again.
2423  */
jbd2_journal_invalidatepage(journal_t * journal,struct page * page,unsigned int offset,unsigned int length)2424 int jbd2_journal_invalidatepage(journal_t *journal,
2425 				struct page *page,
2426 				unsigned int offset,
2427 				unsigned int length)
2428 {
2429 	struct buffer_head *head, *bh, *next;
2430 	unsigned int stop = offset + length;
2431 	unsigned int curr_off = 0;
2432 	int partial_page = (offset || length < PAGE_SIZE);
2433 	int may_free = 1;
2434 	int ret = 0;
2435 
2436 	if (!PageLocked(page))
2437 		BUG();
2438 	if (!page_has_buffers(page))
2439 		return 0;
2440 
2441 	BUG_ON(stop > PAGE_SIZE || stop < length);
2442 
2443 	/* We will potentially be playing with lists other than just the
2444 	 * data lists (especially for journaled data mode), so be
2445 	 * cautious in our locking. */
2446 
2447 	head = bh = page_buffers(page);
2448 	do {
2449 		unsigned int next_off = curr_off + bh->b_size;
2450 		next = bh->b_this_page;
2451 
2452 		if (next_off > stop)
2453 			return 0;
2454 
2455 		if (offset <= curr_off) {
2456 			/* This block is wholly outside the truncation point */
2457 			lock_buffer(bh);
2458 			ret = journal_unmap_buffer(journal, bh, partial_page);
2459 			unlock_buffer(bh);
2460 			if (ret < 0)
2461 				return ret;
2462 			may_free &= ret;
2463 		}
2464 		curr_off = next_off;
2465 		bh = next;
2466 
2467 	} while (bh != head);
2468 
2469 	if (!partial_page) {
2470 		if (may_free && try_to_free_buffers(page))
2471 			J_ASSERT(!page_has_buffers(page));
2472 	}
2473 	return 0;
2474 }
2475 
2476 /*
2477  * File a buffer on the given transaction list.
2478  */
__jbd2_journal_file_buffer(struct journal_head * jh,transaction_t * transaction,int jlist)2479 void __jbd2_journal_file_buffer(struct journal_head *jh,
2480 			transaction_t *transaction, int jlist)
2481 {
2482 	struct journal_head **list = NULL;
2483 	int was_dirty = 0;
2484 	struct buffer_head *bh = jh2bh(jh);
2485 
2486 	lockdep_assert_held(&jh->b_state_lock);
2487 	assert_spin_locked(&transaction->t_journal->j_list_lock);
2488 
2489 	J_ASSERT_JH(jh, jh->b_jlist < BJ_Types);
2490 	J_ASSERT_JH(jh, jh->b_transaction == transaction ||
2491 				jh->b_transaction == NULL);
2492 
2493 	if (jh->b_transaction && jh->b_jlist == jlist)
2494 		return;
2495 
2496 	if (jlist == BJ_Metadata || jlist == BJ_Reserved ||
2497 	    jlist == BJ_Shadow || jlist == BJ_Forget) {
2498 		/*
2499 		 * For metadata buffers, we track dirty bit in buffer_jbddirty
2500 		 * instead of buffer_dirty. We should not see a dirty bit set
2501 		 * here because we clear it in do_get_write_access but e.g.
2502 		 * tune2fs can modify the sb and set the dirty bit at any time
2503 		 * so we try to gracefully handle that.
2504 		 */
2505 		if (buffer_dirty(bh))
2506 			warn_dirty_buffer(bh);
2507 		if (test_clear_buffer_dirty(bh) ||
2508 		    test_clear_buffer_jbddirty(bh))
2509 			was_dirty = 1;
2510 	}
2511 
2512 	if (jh->b_transaction)
2513 		__jbd2_journal_temp_unlink_buffer(jh);
2514 	else
2515 		jbd2_journal_grab_journal_head(bh);
2516 	jh->b_transaction = transaction;
2517 
2518 	switch (jlist) {
2519 	case BJ_None:
2520 		J_ASSERT_JH(jh, !jh->b_committed_data);
2521 		J_ASSERT_JH(jh, !jh->b_frozen_data);
2522 		return;
2523 	case BJ_Metadata:
2524 		transaction->t_nr_buffers++;
2525 		list = &transaction->t_buffers;
2526 		break;
2527 	case BJ_Forget:
2528 		list = &transaction->t_forget;
2529 		break;
2530 	case BJ_Shadow:
2531 		list = &transaction->t_shadow_list;
2532 		break;
2533 	case BJ_Reserved:
2534 		list = &transaction->t_reserved_list;
2535 		break;
2536 	}
2537 
2538 	__blist_add_buffer(list, jh);
2539 	jh->b_jlist = jlist;
2540 
2541 	if (was_dirty)
2542 		set_buffer_jbddirty(bh);
2543 }
2544 
jbd2_journal_file_buffer(struct journal_head * jh,transaction_t * transaction,int jlist)2545 void jbd2_journal_file_buffer(struct journal_head *jh,
2546 				transaction_t *transaction, int jlist)
2547 {
2548 	spin_lock(&jh->b_state_lock);
2549 	spin_lock(&transaction->t_journal->j_list_lock);
2550 	__jbd2_journal_file_buffer(jh, transaction, jlist);
2551 	spin_unlock(&transaction->t_journal->j_list_lock);
2552 	spin_unlock(&jh->b_state_lock);
2553 }
2554 
2555 /*
2556  * Remove a buffer from its current buffer list in preparation for
2557  * dropping it from its current transaction entirely.  If the buffer has
2558  * already started to be used by a subsequent transaction, refile the
2559  * buffer on that transaction's metadata list.
2560  *
2561  * Called under j_list_lock
2562  * Called under jh->b_state_lock
2563  *
2564  * When this function returns true, there's no next transaction to refile to
2565  * and the caller has to drop jh reference through
2566  * jbd2_journal_put_journal_head().
2567  */
__jbd2_journal_refile_buffer(struct journal_head * jh)2568 bool __jbd2_journal_refile_buffer(struct journal_head *jh)
2569 {
2570 	int was_dirty, jlist;
2571 	struct buffer_head *bh = jh2bh(jh);
2572 
2573 	lockdep_assert_held(&jh->b_state_lock);
2574 	if (jh->b_transaction)
2575 		assert_spin_locked(&jh->b_transaction->t_journal->j_list_lock);
2576 
2577 	/* If the buffer is now unused, just drop it. */
2578 	if (jh->b_next_transaction == NULL) {
2579 		__jbd2_journal_unfile_buffer(jh);
2580 		return true;
2581 	}
2582 
2583 	/*
2584 	 * It has been modified by a later transaction: add it to the new
2585 	 * transaction's metadata list.
2586 	 */
2587 
2588 	was_dirty = test_clear_buffer_jbddirty(bh);
2589 	__jbd2_journal_temp_unlink_buffer(jh);
2590 
2591 	/*
2592 	 * b_transaction must be set, otherwise the new b_transaction won't
2593 	 * be holding jh reference
2594 	 */
2595 	J_ASSERT_JH(jh, jh->b_transaction != NULL);
2596 
2597 	/*
2598 	 * We set b_transaction here because b_next_transaction will inherit
2599 	 * our jh reference and thus __jbd2_journal_file_buffer() must not
2600 	 * take a new one.
2601 	 */
2602 	WRITE_ONCE(jh->b_transaction, jh->b_next_transaction);
2603 	WRITE_ONCE(jh->b_next_transaction, NULL);
2604 	if (buffer_freed(bh))
2605 		jlist = BJ_Forget;
2606 	else if (jh->b_modified)
2607 		jlist = BJ_Metadata;
2608 	else
2609 		jlist = BJ_Reserved;
2610 	__jbd2_journal_file_buffer(jh, jh->b_transaction, jlist);
2611 	J_ASSERT_JH(jh, jh->b_transaction->t_state == T_RUNNING);
2612 
2613 	if (was_dirty)
2614 		set_buffer_jbddirty(bh);
2615 	return false;
2616 }
2617 
2618 /*
2619  * __jbd2_journal_refile_buffer() with necessary locking added. We take our
2620  * bh reference so that we can safely unlock bh.
2621  *
2622  * The jh and bh may be freed by this call.
2623  */
jbd2_journal_refile_buffer(journal_t * journal,struct journal_head * jh)2624 void jbd2_journal_refile_buffer(journal_t *journal, struct journal_head *jh)
2625 {
2626 	bool drop;
2627 
2628 	spin_lock(&jh->b_state_lock);
2629 	spin_lock(&journal->j_list_lock);
2630 	drop = __jbd2_journal_refile_buffer(jh);
2631 	spin_unlock(&jh->b_state_lock);
2632 	spin_unlock(&journal->j_list_lock);
2633 	if (drop)
2634 		jbd2_journal_put_journal_head(jh);
2635 }
2636 
2637 /*
2638  * File inode in the inode list of the handle's transaction
2639  */
jbd2_journal_file_inode(handle_t * handle,struct jbd2_inode * jinode,unsigned long flags,loff_t start_byte,loff_t end_byte)2640 static int jbd2_journal_file_inode(handle_t *handle, struct jbd2_inode *jinode,
2641 		unsigned long flags, loff_t start_byte, loff_t end_byte)
2642 {
2643 	transaction_t *transaction = handle->h_transaction;
2644 	journal_t *journal;
2645 
2646 	if (is_handle_aborted(handle))
2647 		return -EROFS;
2648 	journal = transaction->t_journal;
2649 
2650 	jbd_debug(4, "Adding inode %lu, tid:%d\n", jinode->i_vfs_inode->i_ino,
2651 			transaction->t_tid);
2652 
2653 	spin_lock(&journal->j_list_lock);
2654 	jinode->i_flags |= flags;
2655 
2656 	if (jinode->i_dirty_end) {
2657 		jinode->i_dirty_start = min(jinode->i_dirty_start, start_byte);
2658 		jinode->i_dirty_end = max(jinode->i_dirty_end, end_byte);
2659 	} else {
2660 		jinode->i_dirty_start = start_byte;
2661 		jinode->i_dirty_end = end_byte;
2662 	}
2663 
2664 	/* Is inode already attached where we need it? */
2665 	if (jinode->i_transaction == transaction ||
2666 	    jinode->i_next_transaction == transaction)
2667 		goto done;
2668 
2669 	/*
2670 	 * We only ever set this variable to 1 so the test is safe. Since
2671 	 * t_need_data_flush is likely to be set, we do the test to save some
2672 	 * cacheline bouncing
2673 	 */
2674 	if (!transaction->t_need_data_flush)
2675 		transaction->t_need_data_flush = 1;
2676 	/* On some different transaction's list - should be
2677 	 * the committing one */
2678 	if (jinode->i_transaction) {
2679 		J_ASSERT(jinode->i_next_transaction == NULL);
2680 		J_ASSERT(jinode->i_transaction ==
2681 					journal->j_committing_transaction);
2682 		jinode->i_next_transaction = transaction;
2683 		goto done;
2684 	}
2685 	/* Not on any transaction list... */
2686 	J_ASSERT(!jinode->i_next_transaction);
2687 	jinode->i_transaction = transaction;
2688 	list_add(&jinode->i_list, &transaction->t_inode_list);
2689 done:
2690 	spin_unlock(&journal->j_list_lock);
2691 
2692 	return 0;
2693 }
2694 
jbd2_journal_inode_ranged_write(handle_t * handle,struct jbd2_inode * jinode,loff_t start_byte,loff_t length)2695 int jbd2_journal_inode_ranged_write(handle_t *handle,
2696 		struct jbd2_inode *jinode, loff_t start_byte, loff_t length)
2697 {
2698 	return jbd2_journal_file_inode(handle, jinode,
2699 			JI_WRITE_DATA | JI_WAIT_DATA, start_byte,
2700 			start_byte + length - 1);
2701 }
2702 
jbd2_journal_inode_ranged_wait(handle_t * handle,struct jbd2_inode * jinode,loff_t start_byte,loff_t length)2703 int jbd2_journal_inode_ranged_wait(handle_t *handle, struct jbd2_inode *jinode,
2704 		loff_t start_byte, loff_t length)
2705 {
2706 	return jbd2_journal_file_inode(handle, jinode, JI_WAIT_DATA,
2707 			start_byte, start_byte + length - 1);
2708 }
2709 
2710 /*
2711  * File truncate and transaction commit interact with each other in a
2712  * non-trivial way.  If a transaction writing data block A is
2713  * committing, we cannot discard the data by truncate until we have
2714  * written them.  Otherwise if we crashed after the transaction with
2715  * write has committed but before the transaction with truncate has
2716  * committed, we could see stale data in block A.  This function is a
2717  * helper to solve this problem.  It starts writeout of the truncated
2718  * part in case it is in the committing transaction.
2719  *
2720  * Filesystem code must call this function when inode is journaled in
2721  * ordered mode before truncation happens and after the inode has been
2722  * placed on orphan list with the new inode size. The second condition
2723  * avoids the race that someone writes new data and we start
2724  * committing the transaction after this function has been called but
2725  * before a transaction for truncate is started (and furthermore it
2726  * allows us to optimize the case where the addition to orphan list
2727  * happens in the same transaction as write --- we don't have to write
2728  * any data in such case).
2729  */
jbd2_journal_begin_ordered_truncate(journal_t * journal,struct jbd2_inode * jinode,loff_t new_size)2730 int jbd2_journal_begin_ordered_truncate(journal_t *journal,
2731 					struct jbd2_inode *jinode,
2732 					loff_t new_size)
2733 {
2734 	transaction_t *inode_trans, *commit_trans;
2735 	int ret = 0;
2736 
2737 	/* This is a quick check to avoid locking if not necessary */
2738 	if (!jinode->i_transaction)
2739 		goto out;
2740 	/* Locks are here just to force reading of recent values, it is
2741 	 * enough that the transaction was not committing before we started
2742 	 * a transaction adding the inode to orphan list */
2743 	read_lock(&journal->j_state_lock);
2744 	commit_trans = journal->j_committing_transaction;
2745 	read_unlock(&journal->j_state_lock);
2746 	spin_lock(&journal->j_list_lock);
2747 	inode_trans = jinode->i_transaction;
2748 	spin_unlock(&journal->j_list_lock);
2749 	if (inode_trans == commit_trans) {
2750 		ret = filemap_fdatawrite_range(jinode->i_vfs_inode->i_mapping,
2751 			new_size, LLONG_MAX);
2752 		if (ret)
2753 			jbd2_journal_abort(journal, ret);
2754 	}
2755 out:
2756 	return ret;
2757 }
2758