1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3 * linux/fs/jbd2/journal.c
4 *
5 * Written by Stephen C. Tweedie <sct@redhat.com>, 1998
6 *
7 * Copyright 1998 Red Hat corp --- All Rights Reserved
8 *
9 * Generic filesystem journal-writing code; part of the ext2fs
10 * journaling system.
11 *
12 * This file manages journals: areas of disk reserved for logging
13 * transactional updates. This includes the kernel journaling thread
14 * which is responsible for scheduling updates to the log.
15 *
16 * We do not actually manage the physical storage of the journal in this
17 * file: that is left to a per-journal policy function, which allows us
18 * to store the journal within a filesystem-specified area for ext2
19 * journaling (ext2 can use a reserved inode for storing the log).
20 */
21
22 #include <linux/module.h>
23 #include <linux/time.h>
24 #include <linux/fs.h>
25 #include <linux/jbd2.h>
26 #include <linux/errno.h>
27 #include <linux/slab.h>
28 #include <linux/init.h>
29 #include <linux/mm.h>
30 #include <linux/freezer.h>
31 #include <linux/pagemap.h>
32 #include <linux/kthread.h>
33 #include <linux/poison.h>
34 #include <linux/proc_fs.h>
35 #include <linux/seq_file.h>
36 #include <linux/math64.h>
37 #include <linux/hash.h>
38 #include <linux/log2.h>
39 #include <linux/vmalloc.h>
40 #include <linux/backing-dev.h>
41 #include <linux/bitops.h>
42 #include <linux/ratelimit.h>
43 #include <linux/sched/mm.h>
44
45 #define CREATE_TRACE_POINTS
46 #include <trace/events/jbd2.h>
47
48 #include <linux/uaccess.h>
49 #include <asm/page.h>
50
51 #ifdef CONFIG_JBD2_DEBUG
52 ushort jbd2_journal_enable_debug __read_mostly;
53 EXPORT_SYMBOL(jbd2_journal_enable_debug);
54
55 module_param_named(jbd2_debug, jbd2_journal_enable_debug, ushort, 0644);
56 MODULE_PARM_DESC(jbd2_debug, "Debugging level for jbd2");
57 #endif
58
59 EXPORT_SYMBOL(jbd2_journal_extend);
60 EXPORT_SYMBOL(jbd2_journal_stop);
61 EXPORT_SYMBOL(jbd2_journal_lock_updates);
62 EXPORT_SYMBOL(jbd2_journal_unlock_updates);
63 EXPORT_SYMBOL(jbd2_journal_get_write_access);
64 EXPORT_SYMBOL(jbd2_journal_get_create_access);
65 EXPORT_SYMBOL(jbd2_journal_get_undo_access);
66 EXPORT_SYMBOL(jbd2_journal_set_triggers);
67 EXPORT_SYMBOL(jbd2_journal_dirty_metadata);
68 EXPORT_SYMBOL(jbd2_journal_forget);
69 EXPORT_SYMBOL(jbd2_journal_flush);
70 EXPORT_SYMBOL(jbd2_journal_revoke);
71
72 EXPORT_SYMBOL(jbd2_journal_init_dev);
73 EXPORT_SYMBOL(jbd2_journal_init_inode);
74 EXPORT_SYMBOL(jbd2_journal_check_used_features);
75 EXPORT_SYMBOL(jbd2_journal_check_available_features);
76 EXPORT_SYMBOL(jbd2_journal_set_features);
77 EXPORT_SYMBOL(jbd2_journal_load);
78 EXPORT_SYMBOL(jbd2_journal_destroy);
79 EXPORT_SYMBOL(jbd2_journal_abort);
80 EXPORT_SYMBOL(jbd2_journal_errno);
81 EXPORT_SYMBOL(jbd2_journal_ack_err);
82 EXPORT_SYMBOL(jbd2_journal_clear_err);
83 EXPORT_SYMBOL(jbd2_log_wait_commit);
84 EXPORT_SYMBOL(jbd2_log_start_commit);
85 EXPORT_SYMBOL(jbd2_journal_start_commit);
86 EXPORT_SYMBOL(jbd2_journal_force_commit_nested);
87 EXPORT_SYMBOL(jbd2_journal_wipe);
88 EXPORT_SYMBOL(jbd2_journal_blocks_per_page);
89 EXPORT_SYMBOL(jbd2_journal_invalidatepage);
90 EXPORT_SYMBOL(jbd2_journal_try_to_free_buffers);
91 EXPORT_SYMBOL(jbd2_journal_force_commit);
92 EXPORT_SYMBOL(jbd2_journal_inode_ranged_write);
93 EXPORT_SYMBOL(jbd2_journal_inode_ranged_wait);
94 EXPORT_SYMBOL(jbd2_journal_submit_inode_data_buffers);
95 EXPORT_SYMBOL(jbd2_journal_finish_inode_data_buffers);
96 EXPORT_SYMBOL(jbd2_journal_init_jbd_inode);
97 EXPORT_SYMBOL(jbd2_journal_release_jbd_inode);
98 EXPORT_SYMBOL(jbd2_journal_begin_ordered_truncate);
99 EXPORT_SYMBOL(jbd2_inode_cache);
100
101 static int jbd2_journal_create_slab(size_t slab_size);
102
103 #ifdef CONFIG_JBD2_DEBUG
__jbd2_debug(int level,const char * file,const char * func,unsigned int line,const char * fmt,...)104 void __jbd2_debug(int level, const char *file, const char *func,
105 unsigned int line, const char *fmt, ...)
106 {
107 struct va_format vaf;
108 va_list args;
109
110 if (level > jbd2_journal_enable_debug)
111 return;
112 va_start(args, fmt);
113 vaf.fmt = fmt;
114 vaf.va = &args;
115 printk(KERN_DEBUG "%s: (%s, %u): %pV", file, func, line, &vaf);
116 va_end(args);
117 }
118 EXPORT_SYMBOL(__jbd2_debug);
119 #endif
120
121 /* Checksumming functions */
jbd2_verify_csum_type(journal_t * j,journal_superblock_t * sb)122 static int jbd2_verify_csum_type(journal_t *j, journal_superblock_t *sb)
123 {
124 if (!jbd2_journal_has_csum_v2or3_feature(j))
125 return 1;
126
127 return sb->s_checksum_type == JBD2_CRC32C_CHKSUM;
128 }
129
jbd2_superblock_csum(journal_t * j,journal_superblock_t * sb)130 static __be32 jbd2_superblock_csum(journal_t *j, journal_superblock_t *sb)
131 {
132 __u32 csum;
133 __be32 old_csum;
134
135 old_csum = sb->s_checksum;
136 sb->s_checksum = 0;
137 csum = jbd2_chksum(j, ~0, (char *)sb, sizeof(journal_superblock_t));
138 sb->s_checksum = old_csum;
139
140 return cpu_to_be32(csum);
141 }
142
143 /*
144 * Helper function used to manage commit timeouts
145 */
146
commit_timeout(struct timer_list * t)147 static void commit_timeout(struct timer_list *t)
148 {
149 journal_t *journal = from_timer(journal, t, j_commit_timer);
150
151 wake_up_process(journal->j_task);
152 }
153
154 /*
155 * kjournald2: The main thread function used to manage a logging device
156 * journal.
157 *
158 * This kernel thread is responsible for two things:
159 *
160 * 1) COMMIT: Every so often we need to commit the current state of the
161 * filesystem to disk. The journal thread is responsible for writing
162 * all of the metadata buffers to disk. If a fast commit is ongoing
163 * journal thread waits until it's done and then continues from
164 * there on.
165 *
166 * 2) CHECKPOINT: We cannot reuse a used section of the log file until all
167 * of the data in that part of the log has been rewritten elsewhere on
168 * the disk. Flushing these old buffers to reclaim space in the log is
169 * known as checkpointing, and this thread is responsible for that job.
170 */
171
kjournald2(void * arg)172 static int kjournald2(void *arg)
173 {
174 journal_t *journal = arg;
175 transaction_t *transaction;
176
177 /*
178 * Set up an interval timer which can be used to trigger a commit wakeup
179 * after the commit interval expires
180 */
181 timer_setup(&journal->j_commit_timer, commit_timeout, 0);
182
183 set_freezable();
184
185 /* Record that the journal thread is running */
186 journal->j_task = current;
187 wake_up(&journal->j_wait_done_commit);
188
189 /*
190 * Make sure that no allocations from this kernel thread will ever
191 * recurse to the fs layer because we are responsible for the
192 * transaction commit and any fs involvement might get stuck waiting for
193 * the trasn. commit.
194 */
195 memalloc_nofs_save();
196
197 /*
198 * And now, wait forever for commit wakeup events.
199 */
200 write_lock(&journal->j_state_lock);
201
202 loop:
203 if (journal->j_flags & JBD2_UNMOUNT)
204 goto end_loop;
205
206 jbd_debug(1, "commit_sequence=%u, commit_request=%u\n",
207 journal->j_commit_sequence, journal->j_commit_request);
208
209 if (journal->j_commit_sequence != journal->j_commit_request) {
210 jbd_debug(1, "OK, requests differ\n");
211 write_unlock(&journal->j_state_lock);
212 del_timer_sync(&journal->j_commit_timer);
213 jbd2_journal_commit_transaction(journal);
214 write_lock(&journal->j_state_lock);
215 goto loop;
216 }
217
218 wake_up(&journal->j_wait_done_commit);
219 if (freezing(current)) {
220 /*
221 * The simpler the better. Flushing journal isn't a
222 * good idea, because that depends on threads that may
223 * be already stopped.
224 */
225 jbd_debug(1, "Now suspending kjournald2\n");
226 write_unlock(&journal->j_state_lock);
227 try_to_freeze();
228 write_lock(&journal->j_state_lock);
229 } else {
230 /*
231 * We assume on resume that commits are already there,
232 * so we don't sleep
233 */
234 DEFINE_WAIT(wait);
235 int should_sleep = 1;
236
237 prepare_to_wait(&journal->j_wait_commit, &wait,
238 TASK_INTERRUPTIBLE);
239 if (journal->j_commit_sequence != journal->j_commit_request)
240 should_sleep = 0;
241 transaction = journal->j_running_transaction;
242 if (transaction && time_after_eq(jiffies,
243 transaction->t_expires))
244 should_sleep = 0;
245 if (journal->j_flags & JBD2_UNMOUNT)
246 should_sleep = 0;
247 if (should_sleep) {
248 write_unlock(&journal->j_state_lock);
249 schedule();
250 write_lock(&journal->j_state_lock);
251 }
252 finish_wait(&journal->j_wait_commit, &wait);
253 }
254
255 jbd_debug(1, "kjournald2 wakes\n");
256
257 /*
258 * Were we woken up by a commit wakeup event?
259 */
260 transaction = journal->j_running_transaction;
261 if (transaction && time_after_eq(jiffies, transaction->t_expires)) {
262 journal->j_commit_request = transaction->t_tid;
263 jbd_debug(1, "woke because of timeout\n");
264 }
265 goto loop;
266
267 end_loop:
268 del_timer_sync(&journal->j_commit_timer);
269 journal->j_task = NULL;
270 wake_up(&journal->j_wait_done_commit);
271 jbd_debug(1, "Journal thread exiting.\n");
272 write_unlock(&journal->j_state_lock);
273 return 0;
274 }
275
jbd2_journal_start_thread(journal_t * journal)276 static int jbd2_journal_start_thread(journal_t *journal)
277 {
278 struct task_struct *t;
279
280 t = kthread_run(kjournald2, journal, "jbd2/%s",
281 journal->j_devname);
282 if (IS_ERR(t))
283 return PTR_ERR(t);
284
285 wait_event(journal->j_wait_done_commit, journal->j_task != NULL);
286 return 0;
287 }
288
journal_kill_thread(journal_t * journal)289 static void journal_kill_thread(journal_t *journal)
290 {
291 write_lock(&journal->j_state_lock);
292 journal->j_flags |= JBD2_UNMOUNT;
293
294 while (journal->j_task) {
295 write_unlock(&journal->j_state_lock);
296 wake_up(&journal->j_wait_commit);
297 wait_event(journal->j_wait_done_commit, journal->j_task == NULL);
298 write_lock(&journal->j_state_lock);
299 }
300 write_unlock(&journal->j_state_lock);
301 }
302
303 /*
304 * jbd2_journal_write_metadata_buffer: write a metadata buffer to the journal.
305 *
306 * Writes a metadata buffer to a given disk block. The actual IO is not
307 * performed but a new buffer_head is constructed which labels the data
308 * to be written with the correct destination disk block.
309 *
310 * Any magic-number escaping which needs to be done will cause a
311 * copy-out here. If the buffer happens to start with the
312 * JBD2_MAGIC_NUMBER, then we can't write it to the log directly: the
313 * magic number is only written to the log for descripter blocks. In
314 * this case, we copy the data and replace the first word with 0, and we
315 * return a result code which indicates that this buffer needs to be
316 * marked as an escaped buffer in the corresponding log descriptor
317 * block. The missing word can then be restored when the block is read
318 * during recovery.
319 *
320 * If the source buffer has already been modified by a new transaction
321 * since we took the last commit snapshot, we use the frozen copy of
322 * that data for IO. If we end up using the existing buffer_head's data
323 * for the write, then we have to make sure nobody modifies it while the
324 * IO is in progress. do_get_write_access() handles this.
325 *
326 * The function returns a pointer to the buffer_head to be used for IO.
327 *
328 *
329 * Return value:
330 * <0: Error
331 * >=0: Finished OK
332 *
333 * On success:
334 * Bit 0 set == escape performed on the data
335 * Bit 1 set == buffer copy-out performed (kfree the data after IO)
336 */
337
jbd2_journal_write_metadata_buffer(transaction_t * transaction,struct journal_head * jh_in,struct buffer_head ** bh_out,sector_t blocknr)338 int jbd2_journal_write_metadata_buffer(transaction_t *transaction,
339 struct journal_head *jh_in,
340 struct buffer_head **bh_out,
341 sector_t blocknr)
342 {
343 int need_copy_out = 0;
344 int done_copy_out = 0;
345 int do_escape = 0;
346 char *mapped_data;
347 struct buffer_head *new_bh;
348 struct page *new_page;
349 unsigned int new_offset;
350 struct buffer_head *bh_in = jh2bh(jh_in);
351 journal_t *journal = transaction->t_journal;
352
353 /*
354 * The buffer really shouldn't be locked: only the current committing
355 * transaction is allowed to write it, so nobody else is allowed
356 * to do any IO.
357 *
358 * akpm: except if we're journalling data, and write() output is
359 * also part of a shared mapping, and another thread has
360 * decided to launch a writepage() against this buffer.
361 */
362 J_ASSERT_BH(bh_in, buffer_jbddirty(bh_in));
363
364 new_bh = alloc_buffer_head(GFP_NOFS|__GFP_NOFAIL);
365
366 /* keep subsequent assertions sane */
367 atomic_set(&new_bh->b_count, 1);
368
369 spin_lock(&jh_in->b_state_lock);
370 repeat:
371 /*
372 * If a new transaction has already done a buffer copy-out, then
373 * we use that version of the data for the commit.
374 */
375 if (jh_in->b_frozen_data) {
376 done_copy_out = 1;
377 new_page = virt_to_page(jh_in->b_frozen_data);
378 new_offset = offset_in_page(jh_in->b_frozen_data);
379 } else {
380 new_page = jh2bh(jh_in)->b_page;
381 new_offset = offset_in_page(jh2bh(jh_in)->b_data);
382 }
383
384 mapped_data = kmap_atomic(new_page);
385 /*
386 * Fire data frozen trigger if data already wasn't frozen. Do this
387 * before checking for escaping, as the trigger may modify the magic
388 * offset. If a copy-out happens afterwards, it will have the correct
389 * data in the buffer.
390 */
391 if (!done_copy_out)
392 jbd2_buffer_frozen_trigger(jh_in, mapped_data + new_offset,
393 jh_in->b_triggers);
394
395 /*
396 * Check for escaping
397 */
398 if (*((__be32 *)(mapped_data + new_offset)) ==
399 cpu_to_be32(JBD2_MAGIC_NUMBER)) {
400 need_copy_out = 1;
401 do_escape = 1;
402 }
403 kunmap_atomic(mapped_data);
404
405 /*
406 * Do we need to do a data copy?
407 */
408 if (need_copy_out && !done_copy_out) {
409 char *tmp;
410
411 spin_unlock(&jh_in->b_state_lock);
412 tmp = jbd2_alloc(bh_in->b_size, GFP_NOFS);
413 if (!tmp) {
414 brelse(new_bh);
415 return -ENOMEM;
416 }
417 spin_lock(&jh_in->b_state_lock);
418 if (jh_in->b_frozen_data) {
419 jbd2_free(tmp, bh_in->b_size);
420 goto repeat;
421 }
422
423 jh_in->b_frozen_data = tmp;
424 mapped_data = kmap_atomic(new_page);
425 memcpy(tmp, mapped_data + new_offset, bh_in->b_size);
426 kunmap_atomic(mapped_data);
427
428 new_page = virt_to_page(tmp);
429 new_offset = offset_in_page(tmp);
430 done_copy_out = 1;
431
432 /*
433 * This isn't strictly necessary, as we're using frozen
434 * data for the escaping, but it keeps consistency with
435 * b_frozen_data usage.
436 */
437 jh_in->b_frozen_triggers = jh_in->b_triggers;
438 }
439
440 /*
441 * Did we need to do an escaping? Now we've done all the
442 * copying, we can finally do so.
443 */
444 if (do_escape) {
445 mapped_data = kmap_atomic(new_page);
446 *((unsigned int *)(mapped_data + new_offset)) = 0;
447 kunmap_atomic(mapped_data);
448 }
449
450 set_bh_page(new_bh, new_page, new_offset);
451 new_bh->b_size = bh_in->b_size;
452 new_bh->b_bdev = journal->j_dev;
453 new_bh->b_blocknr = blocknr;
454 new_bh->b_private = bh_in;
455 set_buffer_mapped(new_bh);
456 set_buffer_dirty(new_bh);
457
458 *bh_out = new_bh;
459
460 /*
461 * The to-be-written buffer needs to get moved to the io queue,
462 * and the original buffer whose contents we are shadowing or
463 * copying is moved to the transaction's shadow queue.
464 */
465 JBUFFER_TRACE(jh_in, "file as BJ_Shadow");
466 spin_lock(&journal->j_list_lock);
467 __jbd2_journal_file_buffer(jh_in, transaction, BJ_Shadow);
468 spin_unlock(&journal->j_list_lock);
469 set_buffer_shadow(bh_in);
470 spin_unlock(&jh_in->b_state_lock);
471
472 return do_escape | (done_copy_out << 1);
473 }
474
475 /*
476 * Allocation code for the journal file. Manage the space left in the
477 * journal, so that we can begin checkpointing when appropriate.
478 */
479
480 /*
481 * Called with j_state_lock locked for writing.
482 * Returns true if a transaction commit was started.
483 */
__jbd2_log_start_commit(journal_t * journal,tid_t target)484 int __jbd2_log_start_commit(journal_t *journal, tid_t target)
485 {
486 /* Return if the txn has already requested to be committed */
487 if (journal->j_commit_request == target)
488 return 0;
489
490 /*
491 * The only transaction we can possibly wait upon is the
492 * currently running transaction (if it exists). Otherwise,
493 * the target tid must be an old one.
494 */
495 if (journal->j_running_transaction &&
496 journal->j_running_transaction->t_tid == target) {
497 /*
498 * We want a new commit: OK, mark the request and wakeup the
499 * commit thread. We do _not_ do the commit ourselves.
500 */
501
502 journal->j_commit_request = target;
503 jbd_debug(1, "JBD2: requesting commit %u/%u\n",
504 journal->j_commit_request,
505 journal->j_commit_sequence);
506 journal->j_running_transaction->t_requested = jiffies;
507 wake_up(&journal->j_wait_commit);
508 return 1;
509 } else if (!tid_geq(journal->j_commit_request, target))
510 /* This should never happen, but if it does, preserve
511 the evidence before kjournald goes into a loop and
512 increments j_commit_sequence beyond all recognition. */
513 WARN_ONCE(1, "JBD2: bad log_start_commit: %u %u %u %u\n",
514 journal->j_commit_request,
515 journal->j_commit_sequence,
516 target, journal->j_running_transaction ?
517 journal->j_running_transaction->t_tid : 0);
518 return 0;
519 }
520
jbd2_log_start_commit(journal_t * journal,tid_t tid)521 int jbd2_log_start_commit(journal_t *journal, tid_t tid)
522 {
523 int ret;
524
525 write_lock(&journal->j_state_lock);
526 ret = __jbd2_log_start_commit(journal, tid);
527 write_unlock(&journal->j_state_lock);
528 return ret;
529 }
530
531 /*
532 * Force and wait any uncommitted transactions. We can only force the running
533 * transaction if we don't have an active handle, otherwise, we will deadlock.
534 * Returns: <0 in case of error,
535 * 0 if nothing to commit,
536 * 1 if transaction was successfully committed.
537 */
__jbd2_journal_force_commit(journal_t * journal)538 static int __jbd2_journal_force_commit(journal_t *journal)
539 {
540 transaction_t *transaction = NULL;
541 tid_t tid;
542 int need_to_start = 0, ret = 0;
543
544 read_lock(&journal->j_state_lock);
545 if (journal->j_running_transaction && !current->journal_info) {
546 transaction = journal->j_running_transaction;
547 if (!tid_geq(journal->j_commit_request, transaction->t_tid))
548 need_to_start = 1;
549 } else if (journal->j_committing_transaction)
550 transaction = journal->j_committing_transaction;
551
552 if (!transaction) {
553 /* Nothing to commit */
554 read_unlock(&journal->j_state_lock);
555 return 0;
556 }
557 tid = transaction->t_tid;
558 read_unlock(&journal->j_state_lock);
559 if (need_to_start)
560 jbd2_log_start_commit(journal, tid);
561 ret = jbd2_log_wait_commit(journal, tid);
562 if (!ret)
563 ret = 1;
564
565 return ret;
566 }
567
568 /**
569 * jbd2_journal_force_commit_nested - Force and wait upon a commit if the
570 * calling process is not within transaction.
571 *
572 * @journal: journal to force
573 * Returns true if progress was made.
574 *
575 * This is used for forcing out undo-protected data which contains
576 * bitmaps, when the fs is running out of space.
577 */
jbd2_journal_force_commit_nested(journal_t * journal)578 int jbd2_journal_force_commit_nested(journal_t *journal)
579 {
580 int ret;
581
582 ret = __jbd2_journal_force_commit(journal);
583 return ret > 0;
584 }
585
586 /**
587 * jbd2_journal_force_commit() - force any uncommitted transactions
588 * @journal: journal to force
589 *
590 * Caller want unconditional commit. We can only force the running transaction
591 * if we don't have an active handle, otherwise, we will deadlock.
592 */
jbd2_journal_force_commit(journal_t * journal)593 int jbd2_journal_force_commit(journal_t *journal)
594 {
595 int ret;
596
597 J_ASSERT(!current->journal_info);
598 ret = __jbd2_journal_force_commit(journal);
599 if (ret > 0)
600 ret = 0;
601 return ret;
602 }
603
604 /*
605 * Start a commit of the current running transaction (if any). Returns true
606 * if a transaction is going to be committed (or is currently already
607 * committing), and fills its tid in at *ptid
608 */
jbd2_journal_start_commit(journal_t * journal,tid_t * ptid)609 int jbd2_journal_start_commit(journal_t *journal, tid_t *ptid)
610 {
611 int ret = 0;
612
613 write_lock(&journal->j_state_lock);
614 if (journal->j_running_transaction) {
615 tid_t tid = journal->j_running_transaction->t_tid;
616
617 __jbd2_log_start_commit(journal, tid);
618 /* There's a running transaction and we've just made sure
619 * it's commit has been scheduled. */
620 if (ptid)
621 *ptid = tid;
622 ret = 1;
623 } else if (journal->j_committing_transaction) {
624 /*
625 * If commit has been started, then we have to wait for
626 * completion of that transaction.
627 */
628 if (ptid)
629 *ptid = journal->j_committing_transaction->t_tid;
630 ret = 1;
631 }
632 write_unlock(&journal->j_state_lock);
633 return ret;
634 }
635
636 /*
637 * Return 1 if a given transaction has not yet sent barrier request
638 * connected with a transaction commit. If 0 is returned, transaction
639 * may or may not have sent the barrier. Used to avoid sending barrier
640 * twice in common cases.
641 */
jbd2_trans_will_send_data_barrier(journal_t * journal,tid_t tid)642 int jbd2_trans_will_send_data_barrier(journal_t *journal, tid_t tid)
643 {
644 int ret = 0;
645 transaction_t *commit_trans;
646
647 if (!(journal->j_flags & JBD2_BARRIER))
648 return 0;
649 read_lock(&journal->j_state_lock);
650 /* Transaction already committed? */
651 if (tid_geq(journal->j_commit_sequence, tid))
652 goto out;
653 commit_trans = journal->j_committing_transaction;
654 if (!commit_trans || commit_trans->t_tid != tid) {
655 ret = 1;
656 goto out;
657 }
658 /*
659 * Transaction is being committed and we already proceeded to
660 * submitting a flush to fs partition?
661 */
662 if (journal->j_fs_dev != journal->j_dev) {
663 if (!commit_trans->t_need_data_flush ||
664 commit_trans->t_state >= T_COMMIT_DFLUSH)
665 goto out;
666 } else {
667 if (commit_trans->t_state >= T_COMMIT_JFLUSH)
668 goto out;
669 }
670 ret = 1;
671 out:
672 read_unlock(&journal->j_state_lock);
673 return ret;
674 }
675 EXPORT_SYMBOL(jbd2_trans_will_send_data_barrier);
676
677 /*
678 * Wait for a specified commit to complete.
679 * The caller may not hold the journal lock.
680 */
jbd2_log_wait_commit(journal_t * journal,tid_t tid)681 int jbd2_log_wait_commit(journal_t *journal, tid_t tid)
682 {
683 int err = 0;
684
685 read_lock(&journal->j_state_lock);
686 #ifdef CONFIG_PROVE_LOCKING
687 /*
688 * Some callers make sure transaction is already committing and in that
689 * case we cannot block on open handles anymore. So don't warn in that
690 * case.
691 */
692 if (tid_gt(tid, journal->j_commit_sequence) &&
693 (!journal->j_committing_transaction ||
694 journal->j_committing_transaction->t_tid != tid)) {
695 read_unlock(&journal->j_state_lock);
696 jbd2_might_wait_for_commit(journal);
697 read_lock(&journal->j_state_lock);
698 }
699 #endif
700 #ifdef CONFIG_JBD2_DEBUG
701 if (!tid_geq(journal->j_commit_request, tid)) {
702 printk(KERN_ERR
703 "%s: error: j_commit_request=%u, tid=%u\n",
704 __func__, journal->j_commit_request, tid);
705 }
706 #endif
707 while (tid_gt(tid, journal->j_commit_sequence)) {
708 jbd_debug(1, "JBD2: want %u, j_commit_sequence=%u\n",
709 tid, journal->j_commit_sequence);
710 read_unlock(&journal->j_state_lock);
711 wake_up(&journal->j_wait_commit);
712 wait_event(journal->j_wait_done_commit,
713 !tid_gt(tid, journal->j_commit_sequence));
714 read_lock(&journal->j_state_lock);
715 }
716 read_unlock(&journal->j_state_lock);
717
718 if (unlikely(is_journal_aborted(journal)))
719 err = -EIO;
720 return err;
721 }
722
723 /*
724 * Start a fast commit. If there's an ongoing fast or full commit wait for
725 * it to complete. Returns 0 if a new fast commit was started. Returns -EALREADY
726 * if a fast commit is not needed, either because there's an already a commit
727 * going on or this tid has already been committed. Returns -EINVAL if no jbd2
728 * commit has yet been performed.
729 */
jbd2_fc_begin_commit(journal_t * journal,tid_t tid)730 int jbd2_fc_begin_commit(journal_t *journal, tid_t tid)
731 {
732 if (unlikely(is_journal_aborted(journal)))
733 return -EIO;
734 /*
735 * Fast commits only allowed if at least one full commit has
736 * been processed.
737 */
738 if (!journal->j_stats.ts_tid)
739 return -EINVAL;
740
741 write_lock(&journal->j_state_lock);
742 if (tid <= journal->j_commit_sequence) {
743 write_unlock(&journal->j_state_lock);
744 return -EALREADY;
745 }
746
747 if (journal->j_flags & JBD2_FULL_COMMIT_ONGOING ||
748 (journal->j_flags & JBD2_FAST_COMMIT_ONGOING)) {
749 DEFINE_WAIT(wait);
750
751 prepare_to_wait(&journal->j_fc_wait, &wait,
752 TASK_UNINTERRUPTIBLE);
753 write_unlock(&journal->j_state_lock);
754 schedule();
755 finish_wait(&journal->j_fc_wait, &wait);
756 return -EALREADY;
757 }
758 journal->j_flags |= JBD2_FAST_COMMIT_ONGOING;
759 write_unlock(&journal->j_state_lock);
760
761 return 0;
762 }
763 EXPORT_SYMBOL(jbd2_fc_begin_commit);
764
765 /*
766 * Stop a fast commit. If fallback is set, this function starts commit of
767 * TID tid before any other fast commit can start.
768 */
__jbd2_fc_end_commit(journal_t * journal,tid_t tid,bool fallback)769 static int __jbd2_fc_end_commit(journal_t *journal, tid_t tid, bool fallback)
770 {
771 if (journal->j_fc_cleanup_callback)
772 journal->j_fc_cleanup_callback(journal, 0);
773 write_lock(&journal->j_state_lock);
774 journal->j_flags &= ~JBD2_FAST_COMMIT_ONGOING;
775 if (fallback)
776 journal->j_flags |= JBD2_FULL_COMMIT_ONGOING;
777 write_unlock(&journal->j_state_lock);
778 wake_up(&journal->j_fc_wait);
779 if (fallback)
780 return jbd2_complete_transaction(journal, tid);
781 return 0;
782 }
783
jbd2_fc_end_commit(journal_t * journal)784 int jbd2_fc_end_commit(journal_t *journal)
785 {
786 return __jbd2_fc_end_commit(journal, 0, false);
787 }
788 EXPORT_SYMBOL(jbd2_fc_end_commit);
789
jbd2_fc_end_commit_fallback(journal_t * journal)790 int jbd2_fc_end_commit_fallback(journal_t *journal)
791 {
792 tid_t tid;
793
794 read_lock(&journal->j_state_lock);
795 tid = journal->j_running_transaction ?
796 journal->j_running_transaction->t_tid : 0;
797 read_unlock(&journal->j_state_lock);
798 return __jbd2_fc_end_commit(journal, tid, true);
799 }
800 EXPORT_SYMBOL(jbd2_fc_end_commit_fallback);
801
802 /* Return 1 when transaction with given tid has already committed. */
jbd2_transaction_committed(journal_t * journal,tid_t tid)803 int jbd2_transaction_committed(journal_t *journal, tid_t tid)
804 {
805 int ret = 1;
806
807 read_lock(&journal->j_state_lock);
808 if (journal->j_running_transaction &&
809 journal->j_running_transaction->t_tid == tid)
810 ret = 0;
811 if (journal->j_committing_transaction &&
812 journal->j_committing_transaction->t_tid == tid)
813 ret = 0;
814 read_unlock(&journal->j_state_lock);
815 return ret;
816 }
817 EXPORT_SYMBOL(jbd2_transaction_committed);
818
819 /*
820 * When this function returns the transaction corresponding to tid
821 * will be completed. If the transaction has currently running, start
822 * committing that transaction before waiting for it to complete. If
823 * the transaction id is stale, it is by definition already completed,
824 * so just return SUCCESS.
825 */
jbd2_complete_transaction(journal_t * journal,tid_t tid)826 int jbd2_complete_transaction(journal_t *journal, tid_t tid)
827 {
828 int need_to_wait = 1;
829
830 read_lock(&journal->j_state_lock);
831 if (journal->j_running_transaction &&
832 journal->j_running_transaction->t_tid == tid) {
833 if (journal->j_commit_request != tid) {
834 /* transaction not yet started, so request it */
835 read_unlock(&journal->j_state_lock);
836 jbd2_log_start_commit(journal, tid);
837 goto wait_commit;
838 }
839 } else if (!(journal->j_committing_transaction &&
840 journal->j_committing_transaction->t_tid == tid))
841 need_to_wait = 0;
842 read_unlock(&journal->j_state_lock);
843 if (!need_to_wait)
844 return 0;
845 wait_commit:
846 return jbd2_log_wait_commit(journal, tid);
847 }
848 EXPORT_SYMBOL(jbd2_complete_transaction);
849
850 /*
851 * Log buffer allocation routines:
852 */
853
jbd2_journal_next_log_block(journal_t * journal,unsigned long long * retp)854 int jbd2_journal_next_log_block(journal_t *journal, unsigned long long *retp)
855 {
856 unsigned long blocknr;
857
858 write_lock(&journal->j_state_lock);
859 J_ASSERT(journal->j_free > 1);
860
861 blocknr = journal->j_head;
862 journal->j_head++;
863 journal->j_free--;
864 if (journal->j_head == journal->j_last)
865 journal->j_head = journal->j_first;
866 write_unlock(&journal->j_state_lock);
867 return jbd2_journal_bmap(journal, blocknr, retp);
868 }
869
870 /* Map one fast commit buffer for use by the file system */
jbd2_fc_get_buf(journal_t * journal,struct buffer_head ** bh_out)871 int jbd2_fc_get_buf(journal_t *journal, struct buffer_head **bh_out)
872 {
873 unsigned long long pblock;
874 unsigned long blocknr;
875 int ret = 0;
876 struct buffer_head *bh;
877 int fc_off;
878
879 *bh_out = NULL;
880
881 if (journal->j_fc_off + journal->j_fc_first < journal->j_fc_last) {
882 fc_off = journal->j_fc_off;
883 blocknr = journal->j_fc_first + fc_off;
884 journal->j_fc_off++;
885 } else {
886 ret = -EINVAL;
887 }
888
889 if (ret)
890 return ret;
891
892 ret = jbd2_journal_bmap(journal, blocknr, &pblock);
893 if (ret)
894 return ret;
895
896 bh = __getblk(journal->j_dev, pblock, journal->j_blocksize);
897 if (!bh)
898 return -ENOMEM;
899
900
901 journal->j_fc_wbuf[fc_off] = bh;
902
903 *bh_out = bh;
904
905 return 0;
906 }
907 EXPORT_SYMBOL(jbd2_fc_get_buf);
908
909 /*
910 * Wait on fast commit buffers that were allocated by jbd2_fc_get_buf
911 * for completion.
912 */
jbd2_fc_wait_bufs(journal_t * journal,int num_blks)913 int jbd2_fc_wait_bufs(journal_t *journal, int num_blks)
914 {
915 struct buffer_head *bh;
916 int i, j_fc_off;
917
918 j_fc_off = journal->j_fc_off;
919
920 /*
921 * Wait in reverse order to minimize chances of us being woken up before
922 * all IOs have completed
923 */
924 for (i = j_fc_off - 1; i >= j_fc_off - num_blks; i--) {
925 bh = journal->j_fc_wbuf[i];
926 wait_on_buffer(bh);
927 /*
928 * Update j_fc_off so jbd2_fc_release_bufs can release remain
929 * buffer head.
930 */
931 if (unlikely(!buffer_uptodate(bh))) {
932 journal->j_fc_off = i + 1;
933 return -EIO;
934 }
935 put_bh(bh);
936 journal->j_fc_wbuf[i] = NULL;
937 }
938
939 return 0;
940 }
941 EXPORT_SYMBOL(jbd2_fc_wait_bufs);
942
943 /*
944 * Wait on fast commit buffers that were allocated by jbd2_fc_get_buf
945 * for completion.
946 */
jbd2_fc_release_bufs(journal_t * journal)947 int jbd2_fc_release_bufs(journal_t *journal)
948 {
949 struct buffer_head *bh;
950 int i, j_fc_off;
951
952 j_fc_off = journal->j_fc_off;
953
954 /*
955 * Wait in reverse order to minimize chances of us being woken up before
956 * all IOs have completed
957 */
958 for (i = j_fc_off - 1; i >= 0; i--) {
959 bh = journal->j_fc_wbuf[i];
960 if (!bh)
961 break;
962 put_bh(bh);
963 journal->j_fc_wbuf[i] = NULL;
964 }
965
966 return 0;
967 }
968 EXPORT_SYMBOL(jbd2_fc_release_bufs);
969
970 /*
971 * Conversion of logical to physical block numbers for the journal
972 *
973 * On external journals the journal blocks are identity-mapped, so
974 * this is a no-op. If needed, we can use j_blk_offset - everything is
975 * ready.
976 */
jbd2_journal_bmap(journal_t * journal,unsigned long blocknr,unsigned long long * retp)977 int jbd2_journal_bmap(journal_t *journal, unsigned long blocknr,
978 unsigned long long *retp)
979 {
980 int err = 0;
981 unsigned long long ret;
982 sector_t block = 0;
983
984 if (journal->j_inode) {
985 block = blocknr;
986 ret = bmap(journal->j_inode, &block);
987
988 if (ret || !block) {
989 printk(KERN_ALERT "%s: journal block not found "
990 "at offset %lu on %s\n",
991 __func__, blocknr, journal->j_devname);
992 err = -EIO;
993 jbd2_journal_abort(journal, err);
994 } else {
995 *retp = block;
996 }
997
998 } else {
999 *retp = blocknr; /* +journal->j_blk_offset */
1000 }
1001 return err;
1002 }
1003
1004 /*
1005 * We play buffer_head aliasing tricks to write data/metadata blocks to
1006 * the journal without copying their contents, but for journal
1007 * descriptor blocks we do need to generate bona fide buffers.
1008 *
1009 * After the caller of jbd2_journal_get_descriptor_buffer() has finished modifying
1010 * the buffer's contents they really should run flush_dcache_page(bh->b_page).
1011 * But we don't bother doing that, so there will be coherency problems with
1012 * mmaps of blockdevs which hold live JBD-controlled filesystems.
1013 */
1014 struct buffer_head *
jbd2_journal_get_descriptor_buffer(transaction_t * transaction,int type)1015 jbd2_journal_get_descriptor_buffer(transaction_t *transaction, int type)
1016 {
1017 journal_t *journal = transaction->t_journal;
1018 struct buffer_head *bh;
1019 unsigned long long blocknr;
1020 journal_header_t *header;
1021 int err;
1022
1023 err = jbd2_journal_next_log_block(journal, &blocknr);
1024
1025 if (err)
1026 return NULL;
1027
1028 bh = __getblk(journal->j_dev, blocknr, journal->j_blocksize);
1029 if (!bh)
1030 return NULL;
1031 atomic_dec(&transaction->t_outstanding_credits);
1032 lock_buffer(bh);
1033 memset(bh->b_data, 0, journal->j_blocksize);
1034 header = (journal_header_t *)bh->b_data;
1035 header->h_magic = cpu_to_be32(JBD2_MAGIC_NUMBER);
1036 header->h_blocktype = cpu_to_be32(type);
1037 header->h_sequence = cpu_to_be32(transaction->t_tid);
1038 set_buffer_uptodate(bh);
1039 unlock_buffer(bh);
1040 BUFFER_TRACE(bh, "return this buffer");
1041 return bh;
1042 }
1043
jbd2_descriptor_block_csum_set(journal_t * j,struct buffer_head * bh)1044 void jbd2_descriptor_block_csum_set(journal_t *j, struct buffer_head *bh)
1045 {
1046 struct jbd2_journal_block_tail *tail;
1047 __u32 csum;
1048
1049 if (!jbd2_journal_has_csum_v2or3(j))
1050 return;
1051
1052 tail = (struct jbd2_journal_block_tail *)(bh->b_data + j->j_blocksize -
1053 sizeof(struct jbd2_journal_block_tail));
1054 tail->t_checksum = 0;
1055 csum = jbd2_chksum(j, j->j_csum_seed, bh->b_data, j->j_blocksize);
1056 tail->t_checksum = cpu_to_be32(csum);
1057 }
1058
1059 /*
1060 * Return tid of the oldest transaction in the journal and block in the journal
1061 * where the transaction starts.
1062 *
1063 * If the journal is now empty, return which will be the next transaction ID
1064 * we will write and where will that transaction start.
1065 *
1066 * The return value is 0 if journal tail cannot be pushed any further, 1 if
1067 * it can.
1068 */
jbd2_journal_get_log_tail(journal_t * journal,tid_t * tid,unsigned long * block)1069 int jbd2_journal_get_log_tail(journal_t *journal, tid_t *tid,
1070 unsigned long *block)
1071 {
1072 transaction_t *transaction;
1073 int ret;
1074
1075 read_lock(&journal->j_state_lock);
1076 spin_lock(&journal->j_list_lock);
1077 transaction = journal->j_checkpoint_transactions;
1078 if (transaction) {
1079 *tid = transaction->t_tid;
1080 *block = transaction->t_log_start;
1081 } else if ((transaction = journal->j_committing_transaction) != NULL) {
1082 *tid = transaction->t_tid;
1083 *block = transaction->t_log_start;
1084 } else if ((transaction = journal->j_running_transaction) != NULL) {
1085 *tid = transaction->t_tid;
1086 *block = journal->j_head;
1087 } else {
1088 *tid = journal->j_transaction_sequence;
1089 *block = journal->j_head;
1090 }
1091 ret = tid_gt(*tid, journal->j_tail_sequence);
1092 spin_unlock(&journal->j_list_lock);
1093 read_unlock(&journal->j_state_lock);
1094
1095 return ret;
1096 }
1097
1098 /*
1099 * Update information in journal structure and in on disk journal superblock
1100 * about log tail. This function does not check whether information passed in
1101 * really pushes log tail further. It's responsibility of the caller to make
1102 * sure provided log tail information is valid (e.g. by holding
1103 * j_checkpoint_mutex all the time between computing log tail and calling this
1104 * function as is the case with jbd2_cleanup_journal_tail()).
1105 *
1106 * Requires j_checkpoint_mutex
1107 */
__jbd2_update_log_tail(journal_t * journal,tid_t tid,unsigned long block)1108 int __jbd2_update_log_tail(journal_t *journal, tid_t tid, unsigned long block)
1109 {
1110 unsigned long freed;
1111 int ret;
1112
1113 BUG_ON(!mutex_is_locked(&journal->j_checkpoint_mutex));
1114
1115 /*
1116 * We cannot afford for write to remain in drive's caches since as
1117 * soon as we update j_tail, next transaction can start reusing journal
1118 * space and if we lose sb update during power failure we'd replay
1119 * old transaction with possibly newly overwritten data.
1120 */
1121 ret = jbd2_journal_update_sb_log_tail(journal, tid, block,
1122 REQ_SYNC | REQ_FUA);
1123 if (ret)
1124 goto out;
1125
1126 write_lock(&journal->j_state_lock);
1127 freed = block - journal->j_tail;
1128 if (block < journal->j_tail)
1129 freed += journal->j_last - journal->j_first;
1130
1131 trace_jbd2_update_log_tail(journal, tid, block, freed);
1132 jbd_debug(1,
1133 "Cleaning journal tail from %u to %u (offset %lu), "
1134 "freeing %lu\n",
1135 journal->j_tail_sequence, tid, block, freed);
1136
1137 journal->j_free += freed;
1138 journal->j_tail_sequence = tid;
1139 journal->j_tail = block;
1140 write_unlock(&journal->j_state_lock);
1141
1142 out:
1143 return ret;
1144 }
1145
1146 /*
1147 * This is a variation of __jbd2_update_log_tail which checks for validity of
1148 * provided log tail and locks j_checkpoint_mutex. So it is safe against races
1149 * with other threads updating log tail.
1150 */
jbd2_update_log_tail(journal_t * journal,tid_t tid,unsigned long block)1151 void jbd2_update_log_tail(journal_t *journal, tid_t tid, unsigned long block)
1152 {
1153 mutex_lock_io(&journal->j_checkpoint_mutex);
1154 if (tid_gt(tid, journal->j_tail_sequence))
1155 __jbd2_update_log_tail(journal, tid, block);
1156 mutex_unlock(&journal->j_checkpoint_mutex);
1157 }
1158
1159 struct jbd2_stats_proc_session {
1160 journal_t *journal;
1161 struct transaction_stats_s *stats;
1162 int start;
1163 int max;
1164 };
1165
jbd2_seq_info_start(struct seq_file * seq,loff_t * pos)1166 static void *jbd2_seq_info_start(struct seq_file *seq, loff_t *pos)
1167 {
1168 return *pos ? NULL : SEQ_START_TOKEN;
1169 }
1170
jbd2_seq_info_next(struct seq_file * seq,void * v,loff_t * pos)1171 static void *jbd2_seq_info_next(struct seq_file *seq, void *v, loff_t *pos)
1172 {
1173 (*pos)++;
1174 return NULL;
1175 }
1176
jbd2_seq_info_show(struct seq_file * seq,void * v)1177 static int jbd2_seq_info_show(struct seq_file *seq, void *v)
1178 {
1179 struct jbd2_stats_proc_session *s = seq->private;
1180
1181 if (v != SEQ_START_TOKEN)
1182 return 0;
1183 seq_printf(seq, "%lu transactions (%lu requested), "
1184 "each up to %u blocks\n",
1185 s->stats->ts_tid, s->stats->ts_requested,
1186 s->journal->j_max_transaction_buffers);
1187 if (s->stats->ts_tid == 0)
1188 return 0;
1189 seq_printf(seq, "average: \n %ums waiting for transaction\n",
1190 jiffies_to_msecs(s->stats->run.rs_wait / s->stats->ts_tid));
1191 seq_printf(seq, " %ums request delay\n",
1192 (s->stats->ts_requested == 0) ? 0 :
1193 jiffies_to_msecs(s->stats->run.rs_request_delay /
1194 s->stats->ts_requested));
1195 seq_printf(seq, " %ums running transaction\n",
1196 jiffies_to_msecs(s->stats->run.rs_running / s->stats->ts_tid));
1197 seq_printf(seq, " %ums transaction was being locked\n",
1198 jiffies_to_msecs(s->stats->run.rs_locked / s->stats->ts_tid));
1199 seq_printf(seq, " %ums flushing data (in ordered mode)\n",
1200 jiffies_to_msecs(s->stats->run.rs_flushing / s->stats->ts_tid));
1201 seq_printf(seq, " %ums logging transaction\n",
1202 jiffies_to_msecs(s->stats->run.rs_logging / s->stats->ts_tid));
1203 seq_printf(seq, " %lluus average transaction commit time\n",
1204 div_u64(s->journal->j_average_commit_time, 1000));
1205 seq_printf(seq, " %lu handles per transaction\n",
1206 s->stats->run.rs_handle_count / s->stats->ts_tid);
1207 seq_printf(seq, " %lu blocks per transaction\n",
1208 s->stats->run.rs_blocks / s->stats->ts_tid);
1209 seq_printf(seq, " %lu logged blocks per transaction\n",
1210 s->stats->run.rs_blocks_logged / s->stats->ts_tid);
1211 return 0;
1212 }
1213
jbd2_seq_info_stop(struct seq_file * seq,void * v)1214 static void jbd2_seq_info_stop(struct seq_file *seq, void *v)
1215 {
1216 }
1217
1218 static const struct seq_operations jbd2_seq_info_ops = {
1219 .start = jbd2_seq_info_start,
1220 .next = jbd2_seq_info_next,
1221 .stop = jbd2_seq_info_stop,
1222 .show = jbd2_seq_info_show,
1223 };
1224
jbd2_seq_info_open(struct inode * inode,struct file * file)1225 static int jbd2_seq_info_open(struct inode *inode, struct file *file)
1226 {
1227 journal_t *journal = PDE_DATA(inode);
1228 struct jbd2_stats_proc_session *s;
1229 int rc, size;
1230
1231 s = kmalloc(sizeof(*s), GFP_KERNEL);
1232 if (s == NULL)
1233 return -ENOMEM;
1234 size = sizeof(struct transaction_stats_s);
1235 s->stats = kmalloc(size, GFP_KERNEL);
1236 if (s->stats == NULL) {
1237 kfree(s);
1238 return -ENOMEM;
1239 }
1240 spin_lock(&journal->j_history_lock);
1241 memcpy(s->stats, &journal->j_stats, size);
1242 s->journal = journal;
1243 spin_unlock(&journal->j_history_lock);
1244
1245 rc = seq_open(file, &jbd2_seq_info_ops);
1246 if (rc == 0) {
1247 struct seq_file *m = file->private_data;
1248 m->private = s;
1249 } else {
1250 kfree(s->stats);
1251 kfree(s);
1252 }
1253 return rc;
1254
1255 }
1256
jbd2_seq_info_release(struct inode * inode,struct file * file)1257 static int jbd2_seq_info_release(struct inode *inode, struct file *file)
1258 {
1259 struct seq_file *seq = file->private_data;
1260 struct jbd2_stats_proc_session *s = seq->private;
1261 kfree(s->stats);
1262 kfree(s);
1263 return seq_release(inode, file);
1264 }
1265
1266 static const struct proc_ops jbd2_info_proc_ops = {
1267 .proc_open = jbd2_seq_info_open,
1268 .proc_read = seq_read,
1269 .proc_lseek = seq_lseek,
1270 .proc_release = jbd2_seq_info_release,
1271 };
1272
1273 static struct proc_dir_entry *proc_jbd2_stats;
1274
jbd2_stats_proc_init(journal_t * journal)1275 static void jbd2_stats_proc_init(journal_t *journal)
1276 {
1277 journal->j_proc_entry = proc_mkdir(journal->j_devname, proc_jbd2_stats);
1278 if (journal->j_proc_entry) {
1279 proc_create_data("info", S_IRUGO, journal->j_proc_entry,
1280 &jbd2_info_proc_ops, journal);
1281 }
1282 }
1283
jbd2_stats_proc_exit(journal_t * journal)1284 static void jbd2_stats_proc_exit(journal_t *journal)
1285 {
1286 remove_proc_entry("info", journal->j_proc_entry);
1287 remove_proc_entry(journal->j_devname, proc_jbd2_stats);
1288 }
1289
1290 /* Minimum size of descriptor tag */
jbd2_min_tag_size(void)1291 static int jbd2_min_tag_size(void)
1292 {
1293 /*
1294 * Tag with 32-bit block numbers does not use last four bytes of the
1295 * structure
1296 */
1297 return sizeof(journal_block_tag_t) - 4;
1298 }
1299
1300 /**
1301 * jbd2_journal_shrink_scan()
1302 *
1303 * Scan the checkpointed buffer on the checkpoint list and release the
1304 * journal_head.
1305 */
jbd2_journal_shrink_scan(struct shrinker * shrink,struct shrink_control * sc)1306 static unsigned long jbd2_journal_shrink_scan(struct shrinker *shrink,
1307 struct shrink_control *sc)
1308 {
1309 journal_t *journal = container_of(shrink, journal_t, j_shrinker);
1310 unsigned long nr_to_scan = sc->nr_to_scan;
1311 unsigned long nr_shrunk;
1312 unsigned long count;
1313
1314 count = percpu_counter_read_positive(&journal->j_checkpoint_jh_count);
1315 trace_jbd2_shrink_scan_enter(journal, sc->nr_to_scan, count);
1316
1317 nr_shrunk = jbd2_journal_shrink_checkpoint_list(journal, &nr_to_scan);
1318
1319 count = percpu_counter_read_positive(&journal->j_checkpoint_jh_count);
1320 trace_jbd2_shrink_scan_exit(journal, nr_to_scan, nr_shrunk, count);
1321
1322 return nr_shrunk;
1323 }
1324
1325 /**
1326 * jbd2_journal_shrink_count()
1327 *
1328 * Count the number of checkpoint buffers on the checkpoint list.
1329 */
jbd2_journal_shrink_count(struct shrinker * shrink,struct shrink_control * sc)1330 static unsigned long jbd2_journal_shrink_count(struct shrinker *shrink,
1331 struct shrink_control *sc)
1332 {
1333 journal_t *journal = container_of(shrink, journal_t, j_shrinker);
1334 unsigned long count;
1335
1336 count = percpu_counter_read_positive(&journal->j_checkpoint_jh_count);
1337 trace_jbd2_shrink_count(journal, sc->nr_to_scan, count);
1338
1339 return count;
1340 }
1341
1342 /*
1343 * Management for journal control blocks: functions to create and
1344 * destroy journal_t structures, and to initialise and read existing
1345 * journal blocks from disk. */
1346
1347 /* First: create and setup a journal_t object in memory. We initialise
1348 * very few fields yet: that has to wait until we have created the
1349 * journal structures from from scratch, or loaded them from disk. */
1350
journal_init_common(struct block_device * bdev,struct block_device * fs_dev,unsigned long long start,int len,int blocksize)1351 static journal_t *journal_init_common(struct block_device *bdev,
1352 struct block_device *fs_dev,
1353 unsigned long long start, int len, int blocksize)
1354 {
1355 static struct lock_class_key jbd2_trans_commit_key;
1356 journal_t *journal;
1357 int err;
1358 struct buffer_head *bh;
1359 int n;
1360
1361 journal = kzalloc(sizeof(*journal), GFP_KERNEL);
1362 if (!journal)
1363 return NULL;
1364
1365 init_waitqueue_head(&journal->j_wait_transaction_locked);
1366 init_waitqueue_head(&journal->j_wait_done_commit);
1367 init_waitqueue_head(&journal->j_wait_commit);
1368 init_waitqueue_head(&journal->j_wait_updates);
1369 init_waitqueue_head(&journal->j_wait_reserved);
1370 init_waitqueue_head(&journal->j_fc_wait);
1371 mutex_init(&journal->j_abort_mutex);
1372 mutex_init(&journal->j_barrier);
1373 mutex_init(&journal->j_checkpoint_mutex);
1374 spin_lock_init(&journal->j_revoke_lock);
1375 spin_lock_init(&journal->j_list_lock);
1376 rwlock_init(&journal->j_state_lock);
1377
1378 journal->j_commit_interval = (HZ * JBD2_DEFAULT_MAX_COMMIT_AGE);
1379 journal->j_min_batch_time = 0;
1380 journal->j_max_batch_time = 15000; /* 15ms */
1381 atomic_set(&journal->j_reserved_credits, 0);
1382
1383 /* The journal is marked for error until we succeed with recovery! */
1384 journal->j_flags = JBD2_ABORT;
1385
1386 /* Set up a default-sized revoke table for the new mount. */
1387 err = jbd2_journal_init_revoke(journal, JOURNAL_REVOKE_DEFAULT_HASH);
1388 if (err)
1389 goto err_cleanup;
1390
1391 spin_lock_init(&journal->j_history_lock);
1392
1393 lockdep_init_map(&journal->j_trans_commit_map, "jbd2_handle",
1394 &jbd2_trans_commit_key, 0);
1395
1396 /* journal descriptor can store up to n blocks -bzzz */
1397 journal->j_blocksize = blocksize;
1398 journal->j_dev = bdev;
1399 journal->j_fs_dev = fs_dev;
1400 journal->j_blk_offset = start;
1401 journal->j_total_len = len;
1402 /* We need enough buffers to write out full descriptor block. */
1403 n = journal->j_blocksize / jbd2_min_tag_size();
1404 journal->j_wbufsize = n;
1405 journal->j_fc_wbuf = NULL;
1406 journal->j_wbuf = kmalloc_array(n, sizeof(struct buffer_head *),
1407 GFP_KERNEL);
1408 if (!journal->j_wbuf)
1409 goto err_cleanup;
1410
1411 bh = getblk_unmovable(journal->j_dev, start, journal->j_blocksize);
1412 if (!bh) {
1413 pr_err("%s: Cannot get buffer for journal superblock\n",
1414 __func__);
1415 goto err_cleanup;
1416 }
1417 journal->j_sb_buffer = bh;
1418 journal->j_superblock = (journal_superblock_t *)bh->b_data;
1419
1420 journal->j_shrink_transaction = NULL;
1421 journal->j_shrinker.scan_objects = jbd2_journal_shrink_scan;
1422 journal->j_shrinker.count_objects = jbd2_journal_shrink_count;
1423 journal->j_shrinker.seeks = DEFAULT_SEEKS;
1424 journal->j_shrinker.batch = journal->j_max_transaction_buffers;
1425
1426 if (percpu_counter_init(&journal->j_checkpoint_jh_count, 0, GFP_KERNEL))
1427 goto err_cleanup;
1428
1429 if (register_shrinker(&journal->j_shrinker)) {
1430 percpu_counter_destroy(&journal->j_checkpoint_jh_count);
1431 goto err_cleanup;
1432 }
1433 return journal;
1434
1435 err_cleanup:
1436 brelse(journal->j_sb_buffer);
1437 kfree(journal->j_wbuf);
1438 jbd2_journal_destroy_revoke(journal);
1439 kfree(journal);
1440 return NULL;
1441 }
1442
1443 /* jbd2_journal_init_dev and jbd2_journal_init_inode:
1444 *
1445 * Create a journal structure assigned some fixed set of disk blocks to
1446 * the journal. We don't actually touch those disk blocks yet, but we
1447 * need to set up all of the mapping information to tell the journaling
1448 * system where the journal blocks are.
1449 *
1450 */
1451
1452 /**
1453 * journal_t * jbd2_journal_init_dev() - creates and initialises a journal structure
1454 * @bdev: Block device on which to create the journal
1455 * @fs_dev: Device which hold journalled filesystem for this journal.
1456 * @start: Block nr Start of journal.
1457 * @len: Length of the journal in blocks.
1458 * @blocksize: blocksize of journalling device
1459 *
1460 * Returns: a newly created journal_t *
1461 *
1462 * jbd2_journal_init_dev creates a journal which maps a fixed contiguous
1463 * range of blocks on an arbitrary block device.
1464 *
1465 */
jbd2_journal_init_dev(struct block_device * bdev,struct block_device * fs_dev,unsigned long long start,int len,int blocksize)1466 journal_t *jbd2_journal_init_dev(struct block_device *bdev,
1467 struct block_device *fs_dev,
1468 unsigned long long start, int len, int blocksize)
1469 {
1470 journal_t *journal;
1471
1472 journal = journal_init_common(bdev, fs_dev, start, len, blocksize);
1473 if (!journal)
1474 return NULL;
1475
1476 bdevname(journal->j_dev, journal->j_devname);
1477 strreplace(journal->j_devname, '/', '!');
1478 jbd2_stats_proc_init(journal);
1479
1480 return journal;
1481 }
1482
1483 /**
1484 * journal_t * jbd2_journal_init_inode () - creates a journal which maps to a inode.
1485 * @inode: An inode to create the journal in
1486 *
1487 * jbd2_journal_init_inode creates a journal which maps an on-disk inode as
1488 * the journal. The inode must exist already, must support bmap() and
1489 * must have all data blocks preallocated.
1490 */
jbd2_journal_init_inode(struct inode * inode)1491 journal_t *jbd2_journal_init_inode(struct inode *inode)
1492 {
1493 journal_t *journal;
1494 sector_t blocknr;
1495 char *p;
1496 int err = 0;
1497
1498 blocknr = 0;
1499 err = bmap(inode, &blocknr);
1500
1501 if (err || !blocknr) {
1502 pr_err("%s: Cannot locate journal superblock\n",
1503 __func__);
1504 return NULL;
1505 }
1506
1507 jbd_debug(1, "JBD2: inode %s/%ld, size %lld, bits %d, blksize %ld\n",
1508 inode->i_sb->s_id, inode->i_ino, (long long) inode->i_size,
1509 inode->i_sb->s_blocksize_bits, inode->i_sb->s_blocksize);
1510
1511 journal = journal_init_common(inode->i_sb->s_bdev, inode->i_sb->s_bdev,
1512 blocknr, inode->i_size >> inode->i_sb->s_blocksize_bits,
1513 inode->i_sb->s_blocksize);
1514 if (!journal)
1515 return NULL;
1516
1517 journal->j_inode = inode;
1518 bdevname(journal->j_dev, journal->j_devname);
1519 p = strreplace(journal->j_devname, '/', '!');
1520 sprintf(p, "-%lu", journal->j_inode->i_ino);
1521 jbd2_stats_proc_init(journal);
1522
1523 return journal;
1524 }
1525
1526 /*
1527 * If the journal init or create aborts, we need to mark the journal
1528 * superblock as being NULL to prevent the journal destroy from writing
1529 * back a bogus superblock.
1530 */
journal_fail_superblock(journal_t * journal)1531 static void journal_fail_superblock(journal_t *journal)
1532 {
1533 struct buffer_head *bh = journal->j_sb_buffer;
1534 brelse(bh);
1535 journal->j_sb_buffer = NULL;
1536 }
1537
1538 /*
1539 * Given a journal_t structure, initialise the various fields for
1540 * startup of a new journaling session. We use this both when creating
1541 * a journal, and after recovering an old journal to reset it for
1542 * subsequent use.
1543 */
1544
journal_reset(journal_t * journal)1545 static int journal_reset(journal_t *journal)
1546 {
1547 journal_superblock_t *sb = journal->j_superblock;
1548 unsigned long long first, last;
1549
1550 first = be32_to_cpu(sb->s_first);
1551 last = be32_to_cpu(sb->s_maxlen);
1552 if (first + JBD2_MIN_JOURNAL_BLOCKS > last + 1) {
1553 printk(KERN_ERR "JBD2: Journal too short (blocks %llu-%llu).\n",
1554 first, last);
1555 journal_fail_superblock(journal);
1556 return -EINVAL;
1557 }
1558
1559 journal->j_first = first;
1560 journal->j_last = last;
1561
1562 journal->j_head = journal->j_first;
1563 journal->j_tail = journal->j_first;
1564 journal->j_free = journal->j_last - journal->j_first;
1565
1566 journal->j_tail_sequence = journal->j_transaction_sequence;
1567 journal->j_commit_sequence = journal->j_transaction_sequence - 1;
1568 journal->j_commit_request = journal->j_commit_sequence;
1569
1570 journal->j_max_transaction_buffers = jbd2_journal_get_max_txn_bufs(journal);
1571
1572 /*
1573 * Now that journal recovery is done, turn fast commits off here. This
1574 * way, if fast commit was enabled before the crash but if now FS has
1575 * disabled it, we don't enable fast commits.
1576 */
1577 jbd2_clear_feature_fast_commit(journal);
1578
1579 /*
1580 * As a special case, if the on-disk copy is already marked as needing
1581 * no recovery (s_start == 0), then we can safely defer the superblock
1582 * update until the next commit by setting JBD2_FLUSHED. This avoids
1583 * attempting a write to a potential-readonly device.
1584 */
1585 if (sb->s_start == 0) {
1586 jbd_debug(1, "JBD2: Skipping superblock update on recovered sb "
1587 "(start %ld, seq %u, errno %d)\n",
1588 journal->j_tail, journal->j_tail_sequence,
1589 journal->j_errno);
1590 journal->j_flags |= JBD2_FLUSHED;
1591 } else {
1592 /* Lock here to make assertions happy... */
1593 mutex_lock_io(&journal->j_checkpoint_mutex);
1594 /*
1595 * Update log tail information. We use REQ_FUA since new
1596 * transaction will start reusing journal space and so we
1597 * must make sure information about current log tail is on
1598 * disk before that.
1599 */
1600 jbd2_journal_update_sb_log_tail(journal,
1601 journal->j_tail_sequence,
1602 journal->j_tail,
1603 REQ_SYNC | REQ_FUA);
1604 mutex_unlock(&journal->j_checkpoint_mutex);
1605 }
1606 return jbd2_journal_start_thread(journal);
1607 }
1608
1609 /*
1610 * This function expects that the caller will have locked the journal
1611 * buffer head, and will return with it unlocked
1612 */
jbd2_write_superblock(journal_t * journal,int write_flags)1613 static int jbd2_write_superblock(journal_t *journal, int write_flags)
1614 {
1615 struct buffer_head *bh = journal->j_sb_buffer;
1616 journal_superblock_t *sb = journal->j_superblock;
1617 int ret;
1618
1619 /* Buffer got discarded which means block device got invalidated */
1620 if (!buffer_mapped(bh)) {
1621 unlock_buffer(bh);
1622 return -EIO;
1623 }
1624
1625 trace_jbd2_write_superblock(journal, write_flags);
1626 if (!(journal->j_flags & JBD2_BARRIER))
1627 write_flags &= ~(REQ_FUA | REQ_PREFLUSH);
1628 if (buffer_write_io_error(bh)) {
1629 /*
1630 * Oh, dear. A previous attempt to write the journal
1631 * superblock failed. This could happen because the
1632 * USB device was yanked out. Or it could happen to
1633 * be a transient write error and maybe the block will
1634 * be remapped. Nothing we can do but to retry the
1635 * write and hope for the best.
1636 */
1637 printk(KERN_ERR "JBD2: previous I/O error detected "
1638 "for journal superblock update for %s.\n",
1639 journal->j_devname);
1640 clear_buffer_write_io_error(bh);
1641 set_buffer_uptodate(bh);
1642 }
1643 if (jbd2_journal_has_csum_v2or3(journal))
1644 sb->s_checksum = jbd2_superblock_csum(journal, sb);
1645 get_bh(bh);
1646 bh->b_end_io = end_buffer_write_sync;
1647 ret = submit_bh(REQ_OP_WRITE, write_flags, bh);
1648 wait_on_buffer(bh);
1649 if (buffer_write_io_error(bh)) {
1650 clear_buffer_write_io_error(bh);
1651 set_buffer_uptodate(bh);
1652 ret = -EIO;
1653 }
1654 if (ret) {
1655 printk(KERN_ERR "JBD2: Error %d detected when updating "
1656 "journal superblock for %s.\n", ret,
1657 journal->j_devname);
1658 if (!is_journal_aborted(journal))
1659 jbd2_journal_abort(journal, ret);
1660 }
1661
1662 return ret;
1663 }
1664
1665 /**
1666 * jbd2_journal_update_sb_log_tail() - Update log tail in journal sb on disk.
1667 * @journal: The journal to update.
1668 * @tail_tid: TID of the new transaction at the tail of the log
1669 * @tail_block: The first block of the transaction at the tail of the log
1670 * @write_op: With which operation should we write the journal sb
1671 *
1672 * Update a journal's superblock information about log tail and write it to
1673 * disk, waiting for the IO to complete.
1674 */
jbd2_journal_update_sb_log_tail(journal_t * journal,tid_t tail_tid,unsigned long tail_block,int write_op)1675 int jbd2_journal_update_sb_log_tail(journal_t *journal, tid_t tail_tid,
1676 unsigned long tail_block, int write_op)
1677 {
1678 journal_superblock_t *sb = journal->j_superblock;
1679 int ret;
1680
1681 if (is_journal_aborted(journal))
1682 return -EIO;
1683 if (test_bit(JBD2_CHECKPOINT_IO_ERROR, &journal->j_atomic_flags)) {
1684 jbd2_journal_abort(journal, -EIO);
1685 return -EIO;
1686 }
1687
1688 BUG_ON(!mutex_is_locked(&journal->j_checkpoint_mutex));
1689 jbd_debug(1, "JBD2: updating superblock (start %lu, seq %u)\n",
1690 tail_block, tail_tid);
1691
1692 lock_buffer(journal->j_sb_buffer);
1693 sb->s_sequence = cpu_to_be32(tail_tid);
1694 sb->s_start = cpu_to_be32(tail_block);
1695
1696 ret = jbd2_write_superblock(journal, write_op);
1697 if (ret)
1698 goto out;
1699
1700 /* Log is no longer empty */
1701 write_lock(&journal->j_state_lock);
1702 WARN_ON(!sb->s_sequence);
1703 journal->j_flags &= ~JBD2_FLUSHED;
1704 write_unlock(&journal->j_state_lock);
1705
1706 out:
1707 return ret;
1708 }
1709
1710 /**
1711 * jbd2_mark_journal_empty() - Mark on disk journal as empty.
1712 * @journal: The journal to update.
1713 * @write_op: With which operation should we write the journal sb
1714 *
1715 * Update a journal's dynamic superblock fields to show that journal is empty.
1716 * Write updated superblock to disk waiting for IO to complete.
1717 */
jbd2_mark_journal_empty(journal_t * journal,int write_op)1718 static void jbd2_mark_journal_empty(journal_t *journal, int write_op)
1719 {
1720 journal_superblock_t *sb = journal->j_superblock;
1721 bool had_fast_commit = false;
1722
1723 BUG_ON(!mutex_is_locked(&journal->j_checkpoint_mutex));
1724 lock_buffer(journal->j_sb_buffer);
1725 if (sb->s_start == 0) { /* Is it already empty? */
1726 unlock_buffer(journal->j_sb_buffer);
1727 return;
1728 }
1729
1730 jbd_debug(1, "JBD2: Marking journal as empty (seq %u)\n",
1731 journal->j_tail_sequence);
1732
1733 sb->s_sequence = cpu_to_be32(journal->j_tail_sequence);
1734 sb->s_start = cpu_to_be32(0);
1735 if (jbd2_has_feature_fast_commit(journal)) {
1736 /*
1737 * When journal is clean, no need to commit fast commit flag and
1738 * make file system incompatible with older kernels.
1739 */
1740 jbd2_clear_feature_fast_commit(journal);
1741 had_fast_commit = true;
1742 }
1743
1744 jbd2_write_superblock(journal, write_op);
1745
1746 if (had_fast_commit)
1747 jbd2_set_feature_fast_commit(journal);
1748
1749 /* Log is no longer empty */
1750 write_lock(&journal->j_state_lock);
1751 journal->j_flags |= JBD2_FLUSHED;
1752 write_unlock(&journal->j_state_lock);
1753 }
1754
1755
1756 /**
1757 * jbd2_journal_update_sb_errno() - Update error in the journal.
1758 * @journal: The journal to update.
1759 *
1760 * Update a journal's errno. Write updated superblock to disk waiting for IO
1761 * to complete.
1762 */
jbd2_journal_update_sb_errno(journal_t * journal)1763 void jbd2_journal_update_sb_errno(journal_t *journal)
1764 {
1765 journal_superblock_t *sb = journal->j_superblock;
1766 int errcode;
1767
1768 lock_buffer(journal->j_sb_buffer);
1769 errcode = journal->j_errno;
1770 if (errcode == -ESHUTDOWN)
1771 errcode = 0;
1772 jbd_debug(1, "JBD2: updating superblock error (errno %d)\n", errcode);
1773 sb->s_errno = cpu_to_be32(errcode);
1774
1775 jbd2_write_superblock(journal, REQ_SYNC | REQ_FUA);
1776 }
1777 EXPORT_SYMBOL(jbd2_journal_update_sb_errno);
1778
journal_revoke_records_per_block(journal_t * journal)1779 static int journal_revoke_records_per_block(journal_t *journal)
1780 {
1781 int record_size;
1782 int space = journal->j_blocksize - sizeof(jbd2_journal_revoke_header_t);
1783
1784 if (jbd2_has_feature_64bit(journal))
1785 record_size = 8;
1786 else
1787 record_size = 4;
1788
1789 if (jbd2_journal_has_csum_v2or3(journal))
1790 space -= sizeof(struct jbd2_journal_block_tail);
1791 return space / record_size;
1792 }
1793
1794 /*
1795 * Read the superblock for a given journal, performing initial
1796 * validation of the format.
1797 */
journal_get_superblock(journal_t * journal)1798 static int journal_get_superblock(journal_t *journal)
1799 {
1800 struct buffer_head *bh;
1801 journal_superblock_t *sb;
1802 int err = -EIO;
1803
1804 bh = journal->j_sb_buffer;
1805
1806 J_ASSERT(bh != NULL);
1807 if (!buffer_uptodate(bh)) {
1808 ll_rw_block(REQ_OP_READ, 0, 1, &bh);
1809 wait_on_buffer(bh);
1810 if (!buffer_uptodate(bh)) {
1811 printk(KERN_ERR
1812 "JBD2: IO error reading journal superblock\n");
1813 goto out;
1814 }
1815 }
1816
1817 if (buffer_verified(bh))
1818 return 0;
1819
1820 sb = journal->j_superblock;
1821
1822 err = -EINVAL;
1823
1824 if (sb->s_header.h_magic != cpu_to_be32(JBD2_MAGIC_NUMBER) ||
1825 sb->s_blocksize != cpu_to_be32(journal->j_blocksize)) {
1826 printk(KERN_WARNING "JBD2: no valid journal superblock found\n");
1827 goto out;
1828 }
1829
1830 switch(be32_to_cpu(sb->s_header.h_blocktype)) {
1831 case JBD2_SUPERBLOCK_V1:
1832 journal->j_format_version = 1;
1833 break;
1834 case JBD2_SUPERBLOCK_V2:
1835 journal->j_format_version = 2;
1836 break;
1837 default:
1838 printk(KERN_WARNING "JBD2: unrecognised superblock format ID\n");
1839 goto out;
1840 }
1841
1842 if (be32_to_cpu(sb->s_maxlen) < journal->j_total_len)
1843 journal->j_total_len = be32_to_cpu(sb->s_maxlen);
1844 else if (be32_to_cpu(sb->s_maxlen) > journal->j_total_len) {
1845 printk(KERN_WARNING "JBD2: journal file too short\n");
1846 goto out;
1847 }
1848
1849 if (be32_to_cpu(sb->s_first) == 0 ||
1850 be32_to_cpu(sb->s_first) >= journal->j_total_len) {
1851 printk(KERN_WARNING
1852 "JBD2: Invalid start block of journal: %u\n",
1853 be32_to_cpu(sb->s_first));
1854 goto out;
1855 }
1856
1857 if (jbd2_has_feature_csum2(journal) &&
1858 jbd2_has_feature_csum3(journal)) {
1859 /* Can't have checksum v2 and v3 at the same time! */
1860 printk(KERN_ERR "JBD2: Can't enable checksumming v2 and v3 "
1861 "at the same time!\n");
1862 goto out;
1863 }
1864
1865 if (jbd2_journal_has_csum_v2or3_feature(journal) &&
1866 jbd2_has_feature_checksum(journal)) {
1867 /* Can't have checksum v1 and v2 on at the same time! */
1868 printk(KERN_ERR "JBD2: Can't enable checksumming v1 and v2/3 "
1869 "at the same time!\n");
1870 goto out;
1871 }
1872
1873 if (!jbd2_verify_csum_type(journal, sb)) {
1874 printk(KERN_ERR "JBD2: Unknown checksum type\n");
1875 goto out;
1876 }
1877
1878 /* Load the checksum driver */
1879 if (jbd2_journal_has_csum_v2or3_feature(journal)) {
1880 journal->j_chksum_driver = crypto_alloc_shash("crc32c", 0, 0);
1881 if (IS_ERR(journal->j_chksum_driver)) {
1882 printk(KERN_ERR "JBD2: Cannot load crc32c driver.\n");
1883 err = PTR_ERR(journal->j_chksum_driver);
1884 journal->j_chksum_driver = NULL;
1885 goto out;
1886 }
1887 }
1888
1889 if (jbd2_journal_has_csum_v2or3(journal)) {
1890 /* Check superblock checksum */
1891 if (sb->s_checksum != jbd2_superblock_csum(journal, sb)) {
1892 printk(KERN_ERR "JBD2: journal checksum error\n");
1893 err = -EFSBADCRC;
1894 goto out;
1895 }
1896
1897 /* Precompute checksum seed for all metadata */
1898 journal->j_csum_seed = jbd2_chksum(journal, ~0, sb->s_uuid,
1899 sizeof(sb->s_uuid));
1900 }
1901
1902 journal->j_revoke_records_per_block =
1903 journal_revoke_records_per_block(journal);
1904 set_buffer_verified(bh);
1905
1906 return 0;
1907
1908 out:
1909 journal_fail_superblock(journal);
1910 return err;
1911 }
1912
1913 /*
1914 * Load the on-disk journal superblock and read the key fields into the
1915 * journal_t.
1916 */
1917
load_superblock(journal_t * journal)1918 static int load_superblock(journal_t *journal)
1919 {
1920 int err;
1921 journal_superblock_t *sb;
1922 int num_fc_blocks;
1923
1924 err = journal_get_superblock(journal);
1925 if (err)
1926 return err;
1927
1928 sb = journal->j_superblock;
1929
1930 journal->j_tail_sequence = be32_to_cpu(sb->s_sequence);
1931 journal->j_tail = be32_to_cpu(sb->s_start);
1932 journal->j_first = be32_to_cpu(sb->s_first);
1933 journal->j_errno = be32_to_cpu(sb->s_errno);
1934 journal->j_last = be32_to_cpu(sb->s_maxlen);
1935
1936 if (jbd2_has_feature_fast_commit(journal)) {
1937 journal->j_fc_last = be32_to_cpu(sb->s_maxlen);
1938 num_fc_blocks = be32_to_cpu(sb->s_num_fc_blks);
1939 if (!num_fc_blocks)
1940 num_fc_blocks = JBD2_MIN_FC_BLOCKS;
1941 if (journal->j_last - num_fc_blocks >= JBD2_MIN_JOURNAL_BLOCKS)
1942 journal->j_last = journal->j_fc_last - num_fc_blocks;
1943 journal->j_fc_first = journal->j_last + 1;
1944 journal->j_fc_off = 0;
1945 }
1946
1947 return 0;
1948 }
1949
1950
1951 /**
1952 * jbd2_journal_load() - Read journal from disk.
1953 * @journal: Journal to act on.
1954 *
1955 * Given a journal_t structure which tells us which disk blocks contain
1956 * a journal, read the journal from disk to initialise the in-memory
1957 * structures.
1958 */
jbd2_journal_load(journal_t * journal)1959 int jbd2_journal_load(journal_t *journal)
1960 {
1961 int err;
1962 journal_superblock_t *sb;
1963
1964 err = load_superblock(journal);
1965 if (err)
1966 return err;
1967
1968 sb = journal->j_superblock;
1969 /* If this is a V2 superblock, then we have to check the
1970 * features flags on it. */
1971
1972 if (journal->j_format_version >= 2) {
1973 if ((sb->s_feature_ro_compat &
1974 ~cpu_to_be32(JBD2_KNOWN_ROCOMPAT_FEATURES)) ||
1975 (sb->s_feature_incompat &
1976 ~cpu_to_be32(JBD2_KNOWN_INCOMPAT_FEATURES))) {
1977 printk(KERN_WARNING
1978 "JBD2: Unrecognised features on journal\n");
1979 return -EINVAL;
1980 }
1981 }
1982
1983 /*
1984 * Create a slab for this blocksize
1985 */
1986 err = jbd2_journal_create_slab(be32_to_cpu(sb->s_blocksize));
1987 if (err)
1988 return err;
1989
1990 /* Let the recovery code check whether it needs to recover any
1991 * data from the journal. */
1992 if (jbd2_journal_recover(journal))
1993 goto recovery_error;
1994
1995 if (journal->j_failed_commit) {
1996 printk(KERN_ERR "JBD2: journal transaction %u on %s "
1997 "is corrupt.\n", journal->j_failed_commit,
1998 journal->j_devname);
1999 return -EFSCORRUPTED;
2000 }
2001 /*
2002 * clear JBD2_ABORT flag initialized in journal_init_common
2003 * here to update log tail information with the newest seq.
2004 */
2005 journal->j_flags &= ~JBD2_ABORT;
2006
2007 /* OK, we've finished with the dynamic journal bits:
2008 * reinitialise the dynamic contents of the superblock in memory
2009 * and reset them on disk. */
2010 if (journal_reset(journal))
2011 goto recovery_error;
2012
2013 journal->j_flags |= JBD2_LOADED;
2014 return 0;
2015
2016 recovery_error:
2017 printk(KERN_WARNING "JBD2: recovery failed\n");
2018 return -EIO;
2019 }
2020
2021 /**
2022 * jbd2_journal_destroy() - Release a journal_t structure.
2023 * @journal: Journal to act on.
2024 *
2025 * Release a journal_t structure once it is no longer in use by the
2026 * journaled object.
2027 * Return <0 if we couldn't clean up the journal.
2028 */
jbd2_journal_destroy(journal_t * journal)2029 int jbd2_journal_destroy(journal_t *journal)
2030 {
2031 int err = 0;
2032
2033 /* Wait for the commit thread to wake up and die. */
2034 journal_kill_thread(journal);
2035
2036 /* Force a final log commit */
2037 if (journal->j_running_transaction)
2038 jbd2_journal_commit_transaction(journal);
2039
2040 /* Force any old transactions to disk */
2041
2042 /* Totally anal locking here... */
2043 spin_lock(&journal->j_list_lock);
2044 while (journal->j_checkpoint_transactions != NULL) {
2045 spin_unlock(&journal->j_list_lock);
2046 mutex_lock_io(&journal->j_checkpoint_mutex);
2047 err = jbd2_log_do_checkpoint(journal);
2048 mutex_unlock(&journal->j_checkpoint_mutex);
2049 /*
2050 * If checkpointing failed, just free the buffers to avoid
2051 * looping forever
2052 */
2053 if (err) {
2054 jbd2_journal_destroy_checkpoint(journal);
2055 spin_lock(&journal->j_list_lock);
2056 break;
2057 }
2058 spin_lock(&journal->j_list_lock);
2059 }
2060
2061 J_ASSERT(journal->j_running_transaction == NULL);
2062 J_ASSERT(journal->j_committing_transaction == NULL);
2063 J_ASSERT(journal->j_checkpoint_transactions == NULL);
2064 spin_unlock(&journal->j_list_lock);
2065
2066 /*
2067 * OK, all checkpoint transactions have been checked, now check the
2068 * write out io error flag and abort the journal if some buffer failed
2069 * to write back to the original location, otherwise the filesystem
2070 * may become inconsistent.
2071 */
2072 if (!is_journal_aborted(journal) &&
2073 test_bit(JBD2_CHECKPOINT_IO_ERROR, &journal->j_atomic_flags))
2074 jbd2_journal_abort(journal, -EIO);
2075
2076 if (journal->j_sb_buffer) {
2077 if (!is_journal_aborted(journal)) {
2078 mutex_lock_io(&journal->j_checkpoint_mutex);
2079
2080 write_lock(&journal->j_state_lock);
2081 journal->j_tail_sequence =
2082 ++journal->j_transaction_sequence;
2083 write_unlock(&journal->j_state_lock);
2084
2085 jbd2_mark_journal_empty(journal,
2086 REQ_SYNC | REQ_PREFLUSH | REQ_FUA);
2087 mutex_unlock(&journal->j_checkpoint_mutex);
2088 } else
2089 err = -EIO;
2090 brelse(journal->j_sb_buffer);
2091 }
2092
2093 if (journal->j_shrinker.flags & SHRINKER_REGISTERED) {
2094 percpu_counter_destroy(&journal->j_checkpoint_jh_count);
2095 unregister_shrinker(&journal->j_shrinker);
2096 }
2097 if (journal->j_proc_entry)
2098 jbd2_stats_proc_exit(journal);
2099 iput(journal->j_inode);
2100 if (journal->j_revoke)
2101 jbd2_journal_destroy_revoke(journal);
2102 if (journal->j_chksum_driver)
2103 crypto_free_shash(journal->j_chksum_driver);
2104 kfree(journal->j_fc_wbuf);
2105 kfree(journal->j_wbuf);
2106 kfree(journal);
2107
2108 return err;
2109 }
2110
2111
2112 /**
2113 * jbd2_journal_check_used_features() - Check if features specified are used.
2114 * @journal: Journal to check.
2115 * @compat: bitmask of compatible features
2116 * @ro: bitmask of features that force read-only mount
2117 * @incompat: bitmask of incompatible features
2118 *
2119 * Check whether the journal uses all of a given set of
2120 * features. Return true (non-zero) if it does.
2121 **/
2122
jbd2_journal_check_used_features(journal_t * journal,unsigned long compat,unsigned long ro,unsigned long incompat)2123 int jbd2_journal_check_used_features(journal_t *journal, unsigned long compat,
2124 unsigned long ro, unsigned long incompat)
2125 {
2126 journal_superblock_t *sb;
2127
2128 if (!compat && !ro && !incompat)
2129 return 1;
2130 /* Load journal superblock if it is not loaded yet. */
2131 if (journal->j_format_version == 0 &&
2132 journal_get_superblock(journal) != 0)
2133 return 0;
2134 if (journal->j_format_version == 1)
2135 return 0;
2136
2137 sb = journal->j_superblock;
2138
2139 if (((be32_to_cpu(sb->s_feature_compat) & compat) == compat) &&
2140 ((be32_to_cpu(sb->s_feature_ro_compat) & ro) == ro) &&
2141 ((be32_to_cpu(sb->s_feature_incompat) & incompat) == incompat))
2142 return 1;
2143
2144 return 0;
2145 }
2146
2147 /**
2148 * jbd2_journal_check_available_features() - Check feature set in journalling layer
2149 * @journal: Journal to check.
2150 * @compat: bitmask of compatible features
2151 * @ro: bitmask of features that force read-only mount
2152 * @incompat: bitmask of incompatible features
2153 *
2154 * Check whether the journaling code supports the use of
2155 * all of a given set of features on this journal. Return true
2156 * (non-zero) if it can. */
2157
jbd2_journal_check_available_features(journal_t * journal,unsigned long compat,unsigned long ro,unsigned long incompat)2158 int jbd2_journal_check_available_features(journal_t *journal, unsigned long compat,
2159 unsigned long ro, unsigned long incompat)
2160 {
2161 if (!compat && !ro && !incompat)
2162 return 1;
2163
2164 /* We can support any known requested features iff the
2165 * superblock is in version 2. Otherwise we fail to support any
2166 * extended sb features. */
2167
2168 if (journal->j_format_version != 2)
2169 return 0;
2170
2171 if ((compat & JBD2_KNOWN_COMPAT_FEATURES) == compat &&
2172 (ro & JBD2_KNOWN_ROCOMPAT_FEATURES) == ro &&
2173 (incompat & JBD2_KNOWN_INCOMPAT_FEATURES) == incompat)
2174 return 1;
2175
2176 return 0;
2177 }
2178
2179 static int
jbd2_journal_initialize_fast_commit(journal_t * journal)2180 jbd2_journal_initialize_fast_commit(journal_t *journal)
2181 {
2182 journal_superblock_t *sb = journal->j_superblock;
2183 unsigned long long num_fc_blks;
2184
2185 num_fc_blks = be32_to_cpu(sb->s_num_fc_blks);
2186 if (num_fc_blks == 0)
2187 num_fc_blks = JBD2_MIN_FC_BLOCKS;
2188 if (journal->j_last - num_fc_blks < JBD2_MIN_JOURNAL_BLOCKS)
2189 return -ENOSPC;
2190
2191 /* Are we called twice? */
2192 WARN_ON(journal->j_fc_wbuf != NULL);
2193 journal->j_fc_wbuf = kmalloc_array(num_fc_blks,
2194 sizeof(struct buffer_head *), GFP_KERNEL);
2195 if (!journal->j_fc_wbuf)
2196 return -ENOMEM;
2197
2198 journal->j_fc_wbufsize = num_fc_blks;
2199 journal->j_fc_last = journal->j_last;
2200 journal->j_last = journal->j_fc_last - num_fc_blks;
2201 journal->j_fc_first = journal->j_last + 1;
2202 journal->j_fc_off = 0;
2203 journal->j_free = journal->j_last - journal->j_first;
2204 journal->j_max_transaction_buffers =
2205 jbd2_journal_get_max_txn_bufs(journal);
2206
2207 return 0;
2208 }
2209
2210 /**
2211 * jbd2_journal_set_features() - Mark a given journal feature in the superblock
2212 * @journal: Journal to act on.
2213 * @compat: bitmask of compatible features
2214 * @ro: bitmask of features that force read-only mount
2215 * @incompat: bitmask of incompatible features
2216 *
2217 * Mark a given journal feature as present on the
2218 * superblock. Returns true if the requested features could be set.
2219 *
2220 */
2221
jbd2_journal_set_features(journal_t * journal,unsigned long compat,unsigned long ro,unsigned long incompat)2222 int jbd2_journal_set_features(journal_t *journal, unsigned long compat,
2223 unsigned long ro, unsigned long incompat)
2224 {
2225 #define INCOMPAT_FEATURE_ON(f) \
2226 ((incompat & (f)) && !(sb->s_feature_incompat & cpu_to_be32(f)))
2227 #define COMPAT_FEATURE_ON(f) \
2228 ((compat & (f)) && !(sb->s_feature_compat & cpu_to_be32(f)))
2229 journal_superblock_t *sb;
2230
2231 if (jbd2_journal_check_used_features(journal, compat, ro, incompat))
2232 return 1;
2233
2234 if (!jbd2_journal_check_available_features(journal, compat, ro, incompat))
2235 return 0;
2236
2237 /* If enabling v2 checksums, turn on v3 instead */
2238 if (incompat & JBD2_FEATURE_INCOMPAT_CSUM_V2) {
2239 incompat &= ~JBD2_FEATURE_INCOMPAT_CSUM_V2;
2240 incompat |= JBD2_FEATURE_INCOMPAT_CSUM_V3;
2241 }
2242
2243 /* Asking for checksumming v3 and v1? Only give them v3. */
2244 if (incompat & JBD2_FEATURE_INCOMPAT_CSUM_V3 &&
2245 compat & JBD2_FEATURE_COMPAT_CHECKSUM)
2246 compat &= ~JBD2_FEATURE_COMPAT_CHECKSUM;
2247
2248 jbd_debug(1, "Setting new features 0x%lx/0x%lx/0x%lx\n",
2249 compat, ro, incompat);
2250
2251 sb = journal->j_superblock;
2252
2253 if (incompat & JBD2_FEATURE_INCOMPAT_FAST_COMMIT) {
2254 if (jbd2_journal_initialize_fast_commit(journal)) {
2255 pr_err("JBD2: Cannot enable fast commits.\n");
2256 return 0;
2257 }
2258 }
2259
2260 /* Load the checksum driver if necessary */
2261 if ((journal->j_chksum_driver == NULL) &&
2262 INCOMPAT_FEATURE_ON(JBD2_FEATURE_INCOMPAT_CSUM_V3)) {
2263 journal->j_chksum_driver = crypto_alloc_shash("crc32c", 0, 0);
2264 if (IS_ERR(journal->j_chksum_driver)) {
2265 printk(KERN_ERR "JBD2: Cannot load crc32c driver.\n");
2266 journal->j_chksum_driver = NULL;
2267 return 0;
2268 }
2269 /* Precompute checksum seed for all metadata */
2270 journal->j_csum_seed = jbd2_chksum(journal, ~0, sb->s_uuid,
2271 sizeof(sb->s_uuid));
2272 }
2273
2274 lock_buffer(journal->j_sb_buffer);
2275
2276 /* If enabling v3 checksums, update superblock */
2277 if (INCOMPAT_FEATURE_ON(JBD2_FEATURE_INCOMPAT_CSUM_V3)) {
2278 sb->s_checksum_type = JBD2_CRC32C_CHKSUM;
2279 sb->s_feature_compat &=
2280 ~cpu_to_be32(JBD2_FEATURE_COMPAT_CHECKSUM);
2281 }
2282
2283 /* If enabling v1 checksums, downgrade superblock */
2284 if (COMPAT_FEATURE_ON(JBD2_FEATURE_COMPAT_CHECKSUM))
2285 sb->s_feature_incompat &=
2286 ~cpu_to_be32(JBD2_FEATURE_INCOMPAT_CSUM_V2 |
2287 JBD2_FEATURE_INCOMPAT_CSUM_V3);
2288
2289 sb->s_feature_compat |= cpu_to_be32(compat);
2290 sb->s_feature_ro_compat |= cpu_to_be32(ro);
2291 sb->s_feature_incompat |= cpu_to_be32(incompat);
2292 unlock_buffer(journal->j_sb_buffer);
2293 journal->j_revoke_records_per_block =
2294 journal_revoke_records_per_block(journal);
2295
2296 return 1;
2297 #undef COMPAT_FEATURE_ON
2298 #undef INCOMPAT_FEATURE_ON
2299 }
2300
2301 /*
2302 * jbd2_journal_clear_features() - Clear a given journal feature in the
2303 * superblock
2304 * @journal: Journal to act on.
2305 * @compat: bitmask of compatible features
2306 * @ro: bitmask of features that force read-only mount
2307 * @incompat: bitmask of incompatible features
2308 *
2309 * Clear a given journal feature as present on the
2310 * superblock.
2311 */
jbd2_journal_clear_features(journal_t * journal,unsigned long compat,unsigned long ro,unsigned long incompat)2312 void jbd2_journal_clear_features(journal_t *journal, unsigned long compat,
2313 unsigned long ro, unsigned long incompat)
2314 {
2315 journal_superblock_t *sb;
2316
2317 jbd_debug(1, "Clear features 0x%lx/0x%lx/0x%lx\n",
2318 compat, ro, incompat);
2319
2320 sb = journal->j_superblock;
2321
2322 sb->s_feature_compat &= ~cpu_to_be32(compat);
2323 sb->s_feature_ro_compat &= ~cpu_to_be32(ro);
2324 sb->s_feature_incompat &= ~cpu_to_be32(incompat);
2325 journal->j_revoke_records_per_block =
2326 journal_revoke_records_per_block(journal);
2327 }
2328 EXPORT_SYMBOL(jbd2_journal_clear_features);
2329
2330 /**
2331 * jbd2_journal_flush() - Flush journal
2332 * @journal: Journal to act on.
2333 *
2334 * Flush all data for a given journal to disk and empty the journal.
2335 * Filesystems can use this when remounting readonly to ensure that
2336 * recovery does not need to happen on remount.
2337 */
2338
jbd2_journal_flush(journal_t * journal)2339 int jbd2_journal_flush(journal_t *journal)
2340 {
2341 int err = 0;
2342 transaction_t *transaction = NULL;
2343
2344 write_lock(&journal->j_state_lock);
2345
2346 /* Force everything buffered to the log... */
2347 if (journal->j_running_transaction) {
2348 transaction = journal->j_running_transaction;
2349 __jbd2_log_start_commit(journal, transaction->t_tid);
2350 } else if (journal->j_committing_transaction)
2351 transaction = journal->j_committing_transaction;
2352
2353 /* Wait for the log commit to complete... */
2354 if (transaction) {
2355 tid_t tid = transaction->t_tid;
2356
2357 write_unlock(&journal->j_state_lock);
2358 jbd2_log_wait_commit(journal, tid);
2359 } else {
2360 write_unlock(&journal->j_state_lock);
2361 }
2362
2363 /* ...and flush everything in the log out to disk. */
2364 spin_lock(&journal->j_list_lock);
2365 while (!err && journal->j_checkpoint_transactions != NULL) {
2366 spin_unlock(&journal->j_list_lock);
2367 mutex_lock_io(&journal->j_checkpoint_mutex);
2368 err = jbd2_log_do_checkpoint(journal);
2369 mutex_unlock(&journal->j_checkpoint_mutex);
2370 spin_lock(&journal->j_list_lock);
2371 }
2372 spin_unlock(&journal->j_list_lock);
2373
2374 if (is_journal_aborted(journal))
2375 return -EIO;
2376
2377 mutex_lock_io(&journal->j_checkpoint_mutex);
2378 if (!err) {
2379 err = jbd2_cleanup_journal_tail(journal);
2380 if (err < 0) {
2381 mutex_unlock(&journal->j_checkpoint_mutex);
2382 goto out;
2383 }
2384 err = 0;
2385 }
2386
2387 /* Finally, mark the journal as really needing no recovery.
2388 * This sets s_start==0 in the underlying superblock, which is
2389 * the magic code for a fully-recovered superblock. Any future
2390 * commits of data to the journal will restore the current
2391 * s_start value. */
2392 jbd2_mark_journal_empty(journal, REQ_SYNC | REQ_FUA);
2393 mutex_unlock(&journal->j_checkpoint_mutex);
2394 write_lock(&journal->j_state_lock);
2395 J_ASSERT(!journal->j_running_transaction);
2396 J_ASSERT(!journal->j_committing_transaction);
2397 J_ASSERT(!journal->j_checkpoint_transactions);
2398 J_ASSERT(journal->j_head == journal->j_tail);
2399 J_ASSERT(journal->j_tail_sequence == journal->j_transaction_sequence);
2400 write_unlock(&journal->j_state_lock);
2401 out:
2402 return err;
2403 }
2404
2405 /**
2406 * jbd2_journal_wipe() - Wipe journal contents
2407 * @journal: Journal to act on.
2408 * @write: flag (see below)
2409 *
2410 * Wipe out all of the contents of a journal, safely. This will produce
2411 * a warning if the journal contains any valid recovery information.
2412 * Must be called between journal_init_*() and jbd2_journal_load().
2413 *
2414 * If 'write' is non-zero, then we wipe out the journal on disk; otherwise
2415 * we merely suppress recovery.
2416 */
2417
jbd2_journal_wipe(journal_t * journal,int write)2418 int jbd2_journal_wipe(journal_t *journal, int write)
2419 {
2420 int err = 0;
2421
2422 J_ASSERT (!(journal->j_flags & JBD2_LOADED));
2423
2424 err = load_superblock(journal);
2425 if (err)
2426 return err;
2427
2428 if (!journal->j_tail)
2429 goto no_recovery;
2430
2431 printk(KERN_WARNING "JBD2: %s recovery information on journal\n",
2432 write ? "Clearing" : "Ignoring");
2433
2434 err = jbd2_journal_skip_recovery(journal);
2435 if (write) {
2436 /* Lock to make assertions happy... */
2437 mutex_lock_io(&journal->j_checkpoint_mutex);
2438 jbd2_mark_journal_empty(journal, REQ_SYNC | REQ_FUA);
2439 mutex_unlock(&journal->j_checkpoint_mutex);
2440 }
2441
2442 no_recovery:
2443 return err;
2444 }
2445
2446 /**
2447 * jbd2_journal_abort () - Shutdown the journal immediately.
2448 * @journal: the journal to shutdown.
2449 * @errno: an error number to record in the journal indicating
2450 * the reason for the shutdown.
2451 *
2452 * Perform a complete, immediate shutdown of the ENTIRE
2453 * journal (not of a single transaction). This operation cannot be
2454 * undone without closing and reopening the journal.
2455 *
2456 * The jbd2_journal_abort function is intended to support higher level error
2457 * recovery mechanisms such as the ext2/ext3 remount-readonly error
2458 * mode.
2459 *
2460 * Journal abort has very specific semantics. Any existing dirty,
2461 * unjournaled buffers in the main filesystem will still be written to
2462 * disk by bdflush, but the journaling mechanism will be suspended
2463 * immediately and no further transaction commits will be honoured.
2464 *
2465 * Any dirty, journaled buffers will be written back to disk without
2466 * hitting the journal. Atomicity cannot be guaranteed on an aborted
2467 * filesystem, but we _do_ attempt to leave as much data as possible
2468 * behind for fsck to use for cleanup.
2469 *
2470 * Any attempt to get a new transaction handle on a journal which is in
2471 * ABORT state will just result in an -EROFS error return. A
2472 * jbd2_journal_stop on an existing handle will return -EIO if we have
2473 * entered abort state during the update.
2474 *
2475 * Recursive transactions are not disturbed by journal abort until the
2476 * final jbd2_journal_stop, which will receive the -EIO error.
2477 *
2478 * Finally, the jbd2_journal_abort call allows the caller to supply an errno
2479 * which will be recorded (if possible) in the journal superblock. This
2480 * allows a client to record failure conditions in the middle of a
2481 * transaction without having to complete the transaction to record the
2482 * failure to disk. ext3_error, for example, now uses this
2483 * functionality.
2484 *
2485 */
2486
jbd2_journal_abort(journal_t * journal,int errno)2487 void jbd2_journal_abort(journal_t *journal, int errno)
2488 {
2489 transaction_t *transaction;
2490
2491 /*
2492 * Lock the aborting procedure until everything is done, this avoid
2493 * races between filesystem's error handling flow (e.g. ext4_abort()),
2494 * ensure panic after the error info is written into journal's
2495 * superblock.
2496 */
2497 mutex_lock(&journal->j_abort_mutex);
2498 /*
2499 * ESHUTDOWN always takes precedence because a file system check
2500 * caused by any other journal abort error is not required after
2501 * a shutdown triggered.
2502 */
2503 write_lock(&journal->j_state_lock);
2504 if (journal->j_flags & JBD2_ABORT) {
2505 int old_errno = journal->j_errno;
2506
2507 write_unlock(&journal->j_state_lock);
2508 if (old_errno != -ESHUTDOWN && errno == -ESHUTDOWN) {
2509 journal->j_errno = errno;
2510 jbd2_journal_update_sb_errno(journal);
2511 }
2512 mutex_unlock(&journal->j_abort_mutex);
2513 return;
2514 }
2515
2516 /*
2517 * Mark the abort as occurred and start current running transaction
2518 * to release all journaled buffer.
2519 */
2520 pr_err("Aborting journal on device %s.\n", journal->j_devname);
2521
2522 journal->j_flags |= JBD2_ABORT;
2523 journal->j_errno = errno;
2524 transaction = journal->j_running_transaction;
2525 if (transaction)
2526 __jbd2_log_start_commit(journal, transaction->t_tid);
2527 write_unlock(&journal->j_state_lock);
2528
2529 /*
2530 * Record errno to the journal super block, so that fsck and jbd2
2531 * layer could realise that a filesystem check is needed.
2532 */
2533 jbd2_journal_update_sb_errno(journal);
2534 mutex_unlock(&journal->j_abort_mutex);
2535 }
2536
2537 /**
2538 * jbd2_journal_errno() - returns the journal's error state.
2539 * @journal: journal to examine.
2540 *
2541 * This is the errno number set with jbd2_journal_abort(), the last
2542 * time the journal was mounted - if the journal was stopped
2543 * without calling abort this will be 0.
2544 *
2545 * If the journal has been aborted on this mount time -EROFS will
2546 * be returned.
2547 */
jbd2_journal_errno(journal_t * journal)2548 int jbd2_journal_errno(journal_t *journal)
2549 {
2550 int err;
2551
2552 read_lock(&journal->j_state_lock);
2553 if (journal->j_flags & JBD2_ABORT)
2554 err = -EROFS;
2555 else
2556 err = journal->j_errno;
2557 read_unlock(&journal->j_state_lock);
2558 return err;
2559 }
2560
2561 /**
2562 * jbd2_journal_clear_err() - clears the journal's error state
2563 * @journal: journal to act on.
2564 *
2565 * An error must be cleared or acked to take a FS out of readonly
2566 * mode.
2567 */
jbd2_journal_clear_err(journal_t * journal)2568 int jbd2_journal_clear_err(journal_t *journal)
2569 {
2570 int err = 0;
2571
2572 write_lock(&journal->j_state_lock);
2573 if (journal->j_flags & JBD2_ABORT)
2574 err = -EROFS;
2575 else
2576 journal->j_errno = 0;
2577 write_unlock(&journal->j_state_lock);
2578 return err;
2579 }
2580
2581 /**
2582 * jbd2_journal_ack_err() - Ack journal err.
2583 * @journal: journal to act on.
2584 *
2585 * An error must be cleared or acked to take a FS out of readonly
2586 * mode.
2587 */
jbd2_journal_ack_err(journal_t * journal)2588 void jbd2_journal_ack_err(journal_t *journal)
2589 {
2590 write_lock(&journal->j_state_lock);
2591 if (journal->j_errno)
2592 journal->j_flags |= JBD2_ACK_ERR;
2593 write_unlock(&journal->j_state_lock);
2594 }
2595
jbd2_journal_blocks_per_page(struct inode * inode)2596 int jbd2_journal_blocks_per_page(struct inode *inode)
2597 {
2598 return 1 << (PAGE_SHIFT - inode->i_sb->s_blocksize_bits);
2599 }
2600
2601 /*
2602 * helper functions to deal with 32 or 64bit block numbers.
2603 */
journal_tag_bytes(journal_t * journal)2604 size_t journal_tag_bytes(journal_t *journal)
2605 {
2606 size_t sz;
2607
2608 if (jbd2_has_feature_csum3(journal))
2609 return sizeof(journal_block_tag3_t);
2610
2611 sz = sizeof(journal_block_tag_t);
2612
2613 if (jbd2_has_feature_csum2(journal))
2614 sz += sizeof(__u16);
2615
2616 if (jbd2_has_feature_64bit(journal))
2617 return sz;
2618 else
2619 return sz - sizeof(__u32);
2620 }
2621
2622 /*
2623 * JBD memory management
2624 *
2625 * These functions are used to allocate block-sized chunks of memory
2626 * used for making copies of buffer_head data. Very often it will be
2627 * page-sized chunks of data, but sometimes it will be in
2628 * sub-page-size chunks. (For example, 16k pages on Power systems
2629 * with a 4k block file system.) For blocks smaller than a page, we
2630 * use a SLAB allocator. There are slab caches for each block size,
2631 * which are allocated at mount time, if necessary, and we only free
2632 * (all of) the slab caches when/if the jbd2 module is unloaded. For
2633 * this reason we don't need to a mutex to protect access to
2634 * jbd2_slab[] allocating or releasing memory; only in
2635 * jbd2_journal_create_slab().
2636 */
2637 #define JBD2_MAX_SLABS 8
2638 static struct kmem_cache *jbd2_slab[JBD2_MAX_SLABS];
2639
2640 static const char *jbd2_slab_names[JBD2_MAX_SLABS] = {
2641 "jbd2_1k", "jbd2_2k", "jbd2_4k", "jbd2_8k",
2642 "jbd2_16k", "jbd2_32k", "jbd2_64k", "jbd2_128k"
2643 };
2644
2645
jbd2_journal_destroy_slabs(void)2646 static void jbd2_journal_destroy_slabs(void)
2647 {
2648 int i;
2649
2650 for (i = 0; i < JBD2_MAX_SLABS; i++) {
2651 kmem_cache_destroy(jbd2_slab[i]);
2652 jbd2_slab[i] = NULL;
2653 }
2654 }
2655
jbd2_journal_create_slab(size_t size)2656 static int jbd2_journal_create_slab(size_t size)
2657 {
2658 static DEFINE_MUTEX(jbd2_slab_create_mutex);
2659 int i = order_base_2(size) - 10;
2660 size_t slab_size;
2661
2662 if (size == PAGE_SIZE)
2663 return 0;
2664
2665 if (i >= JBD2_MAX_SLABS)
2666 return -EINVAL;
2667
2668 if (unlikely(i < 0))
2669 i = 0;
2670 mutex_lock(&jbd2_slab_create_mutex);
2671 if (jbd2_slab[i]) {
2672 mutex_unlock(&jbd2_slab_create_mutex);
2673 return 0; /* Already created */
2674 }
2675
2676 slab_size = 1 << (i+10);
2677 jbd2_slab[i] = kmem_cache_create(jbd2_slab_names[i], slab_size,
2678 slab_size, 0, NULL);
2679 mutex_unlock(&jbd2_slab_create_mutex);
2680 if (!jbd2_slab[i]) {
2681 printk(KERN_EMERG "JBD2: no memory for jbd2_slab cache\n");
2682 return -ENOMEM;
2683 }
2684 return 0;
2685 }
2686
get_slab(size_t size)2687 static struct kmem_cache *get_slab(size_t size)
2688 {
2689 int i = order_base_2(size) - 10;
2690
2691 BUG_ON(i >= JBD2_MAX_SLABS);
2692 if (unlikely(i < 0))
2693 i = 0;
2694 BUG_ON(jbd2_slab[i] == NULL);
2695 return jbd2_slab[i];
2696 }
2697
jbd2_alloc(size_t size,gfp_t flags)2698 void *jbd2_alloc(size_t size, gfp_t flags)
2699 {
2700 void *ptr;
2701
2702 BUG_ON(size & (size-1)); /* Must be a power of 2 */
2703
2704 if (size < PAGE_SIZE)
2705 ptr = kmem_cache_alloc(get_slab(size), flags);
2706 else
2707 ptr = (void *)__get_free_pages(flags, get_order(size));
2708
2709 /* Check alignment; SLUB has gotten this wrong in the past,
2710 * and this can lead to user data corruption! */
2711 BUG_ON(((unsigned long) ptr) & (size-1));
2712
2713 return ptr;
2714 }
2715
jbd2_free(void * ptr,size_t size)2716 void jbd2_free(void *ptr, size_t size)
2717 {
2718 if (size < PAGE_SIZE)
2719 kmem_cache_free(get_slab(size), ptr);
2720 else
2721 free_pages((unsigned long)ptr, get_order(size));
2722 };
2723
2724 /*
2725 * Journal_head storage management
2726 */
2727 static struct kmem_cache *jbd2_journal_head_cache;
2728 #ifdef CONFIG_JBD2_DEBUG
2729 static atomic_t nr_journal_heads = ATOMIC_INIT(0);
2730 #endif
2731
jbd2_journal_init_journal_head_cache(void)2732 static int __init jbd2_journal_init_journal_head_cache(void)
2733 {
2734 J_ASSERT(!jbd2_journal_head_cache);
2735 jbd2_journal_head_cache = kmem_cache_create("jbd2_journal_head",
2736 sizeof(struct journal_head),
2737 0, /* offset */
2738 SLAB_TEMPORARY | SLAB_TYPESAFE_BY_RCU,
2739 NULL); /* ctor */
2740 if (!jbd2_journal_head_cache) {
2741 printk(KERN_EMERG "JBD2: no memory for journal_head cache\n");
2742 return -ENOMEM;
2743 }
2744 return 0;
2745 }
2746
jbd2_journal_destroy_journal_head_cache(void)2747 static void jbd2_journal_destroy_journal_head_cache(void)
2748 {
2749 kmem_cache_destroy(jbd2_journal_head_cache);
2750 jbd2_journal_head_cache = NULL;
2751 }
2752
2753 /*
2754 * journal_head splicing and dicing
2755 */
journal_alloc_journal_head(void)2756 static struct journal_head *journal_alloc_journal_head(void)
2757 {
2758 struct journal_head *ret;
2759
2760 #ifdef CONFIG_JBD2_DEBUG
2761 atomic_inc(&nr_journal_heads);
2762 #endif
2763 ret = kmem_cache_zalloc(jbd2_journal_head_cache, GFP_NOFS);
2764 if (!ret) {
2765 jbd_debug(1, "out of memory for journal_head\n");
2766 pr_notice_ratelimited("ENOMEM in %s, retrying.\n", __func__);
2767 ret = kmem_cache_zalloc(jbd2_journal_head_cache,
2768 GFP_NOFS | __GFP_NOFAIL);
2769 }
2770 if (ret)
2771 spin_lock_init(&ret->b_state_lock);
2772 return ret;
2773 }
2774
journal_free_journal_head(struct journal_head * jh)2775 static void journal_free_journal_head(struct journal_head *jh)
2776 {
2777 #ifdef CONFIG_JBD2_DEBUG
2778 atomic_dec(&nr_journal_heads);
2779 memset(jh, JBD2_POISON_FREE, sizeof(*jh));
2780 #endif
2781 kmem_cache_free(jbd2_journal_head_cache, jh);
2782 }
2783
2784 /*
2785 * A journal_head is attached to a buffer_head whenever JBD has an
2786 * interest in the buffer.
2787 *
2788 * Whenever a buffer has an attached journal_head, its ->b_state:BH_JBD bit
2789 * is set. This bit is tested in core kernel code where we need to take
2790 * JBD-specific actions. Testing the zeroness of ->b_private is not reliable
2791 * there.
2792 *
2793 * When a buffer has its BH_JBD bit set, its ->b_count is elevated by one.
2794 *
2795 * When a buffer has its BH_JBD bit set it is immune from being released by
2796 * core kernel code, mainly via ->b_count.
2797 *
2798 * A journal_head is detached from its buffer_head when the journal_head's
2799 * b_jcount reaches zero. Running transaction (b_transaction) and checkpoint
2800 * transaction (b_cp_transaction) hold their references to b_jcount.
2801 *
2802 * Various places in the kernel want to attach a journal_head to a buffer_head
2803 * _before_ attaching the journal_head to a transaction. To protect the
2804 * journal_head in this situation, jbd2_journal_add_journal_head elevates the
2805 * journal_head's b_jcount refcount by one. The caller must call
2806 * jbd2_journal_put_journal_head() to undo this.
2807 *
2808 * So the typical usage would be:
2809 *
2810 * (Attach a journal_head if needed. Increments b_jcount)
2811 * struct journal_head *jh = jbd2_journal_add_journal_head(bh);
2812 * ...
2813 * (Get another reference for transaction)
2814 * jbd2_journal_grab_journal_head(bh);
2815 * jh->b_transaction = xxx;
2816 * (Put original reference)
2817 * jbd2_journal_put_journal_head(jh);
2818 */
2819
2820 /*
2821 * Give a buffer_head a journal_head.
2822 *
2823 * May sleep.
2824 */
jbd2_journal_add_journal_head(struct buffer_head * bh)2825 struct journal_head *jbd2_journal_add_journal_head(struct buffer_head *bh)
2826 {
2827 struct journal_head *jh;
2828 struct journal_head *new_jh = NULL;
2829
2830 repeat:
2831 if (!buffer_jbd(bh))
2832 new_jh = journal_alloc_journal_head();
2833
2834 jbd_lock_bh_journal_head(bh);
2835 if (buffer_jbd(bh)) {
2836 jh = bh2jh(bh);
2837 } else {
2838 J_ASSERT_BH(bh,
2839 (atomic_read(&bh->b_count) > 0) ||
2840 (bh->b_page && bh->b_page->mapping));
2841
2842 if (!new_jh) {
2843 jbd_unlock_bh_journal_head(bh);
2844 goto repeat;
2845 }
2846
2847 jh = new_jh;
2848 new_jh = NULL; /* We consumed it */
2849 set_buffer_jbd(bh);
2850 bh->b_private = jh;
2851 jh->b_bh = bh;
2852 get_bh(bh);
2853 BUFFER_TRACE(bh, "added journal_head");
2854 }
2855 jh->b_jcount++;
2856 jbd_unlock_bh_journal_head(bh);
2857 if (new_jh)
2858 journal_free_journal_head(new_jh);
2859 return bh->b_private;
2860 }
2861
2862 /*
2863 * Grab a ref against this buffer_head's journal_head. If it ended up not
2864 * having a journal_head, return NULL
2865 */
jbd2_journal_grab_journal_head(struct buffer_head * bh)2866 struct journal_head *jbd2_journal_grab_journal_head(struct buffer_head *bh)
2867 {
2868 struct journal_head *jh = NULL;
2869
2870 jbd_lock_bh_journal_head(bh);
2871 if (buffer_jbd(bh)) {
2872 jh = bh2jh(bh);
2873 jh->b_jcount++;
2874 }
2875 jbd_unlock_bh_journal_head(bh);
2876 return jh;
2877 }
2878 EXPORT_SYMBOL(jbd2_journal_grab_journal_head);
2879
__journal_remove_journal_head(struct buffer_head * bh)2880 static void __journal_remove_journal_head(struct buffer_head *bh)
2881 {
2882 struct journal_head *jh = bh2jh(bh);
2883
2884 J_ASSERT_JH(jh, jh->b_transaction == NULL);
2885 J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
2886 J_ASSERT_JH(jh, jh->b_cp_transaction == NULL);
2887 J_ASSERT_JH(jh, jh->b_jlist == BJ_None);
2888 J_ASSERT_BH(bh, buffer_jbd(bh));
2889 J_ASSERT_BH(bh, jh2bh(jh) == bh);
2890 BUFFER_TRACE(bh, "remove journal_head");
2891
2892 /* Unlink before dropping the lock */
2893 bh->b_private = NULL;
2894 jh->b_bh = NULL; /* debug, really */
2895 clear_buffer_jbd(bh);
2896 }
2897
journal_release_journal_head(struct journal_head * jh,size_t b_size)2898 static void journal_release_journal_head(struct journal_head *jh, size_t b_size)
2899 {
2900 if (jh->b_frozen_data) {
2901 printk(KERN_WARNING "%s: freeing b_frozen_data\n", __func__);
2902 jbd2_free(jh->b_frozen_data, b_size);
2903 }
2904 if (jh->b_committed_data) {
2905 printk(KERN_WARNING "%s: freeing b_committed_data\n", __func__);
2906 jbd2_free(jh->b_committed_data, b_size);
2907 }
2908 journal_free_journal_head(jh);
2909 }
2910
2911 /*
2912 * Drop a reference on the passed journal_head. If it fell to zero then
2913 * release the journal_head from the buffer_head.
2914 */
jbd2_journal_put_journal_head(struct journal_head * jh)2915 void jbd2_journal_put_journal_head(struct journal_head *jh)
2916 {
2917 struct buffer_head *bh = jh2bh(jh);
2918
2919 jbd_lock_bh_journal_head(bh);
2920 J_ASSERT_JH(jh, jh->b_jcount > 0);
2921 --jh->b_jcount;
2922 if (!jh->b_jcount) {
2923 __journal_remove_journal_head(bh);
2924 jbd_unlock_bh_journal_head(bh);
2925 journal_release_journal_head(jh, bh->b_size);
2926 __brelse(bh);
2927 } else {
2928 jbd_unlock_bh_journal_head(bh);
2929 }
2930 }
2931 EXPORT_SYMBOL(jbd2_journal_put_journal_head);
2932
2933 /*
2934 * Initialize jbd inode head
2935 */
jbd2_journal_init_jbd_inode(struct jbd2_inode * jinode,struct inode * inode)2936 void jbd2_journal_init_jbd_inode(struct jbd2_inode *jinode, struct inode *inode)
2937 {
2938 jinode->i_transaction = NULL;
2939 jinode->i_next_transaction = NULL;
2940 jinode->i_vfs_inode = inode;
2941 jinode->i_flags = 0;
2942 jinode->i_dirty_start = 0;
2943 jinode->i_dirty_end = 0;
2944 INIT_LIST_HEAD(&jinode->i_list);
2945 }
2946
2947 /*
2948 * Function to be called before we start removing inode from memory (i.e.,
2949 * clear_inode() is a fine place to be called from). It removes inode from
2950 * transaction's lists.
2951 */
jbd2_journal_release_jbd_inode(journal_t * journal,struct jbd2_inode * jinode)2952 void jbd2_journal_release_jbd_inode(journal_t *journal,
2953 struct jbd2_inode *jinode)
2954 {
2955 if (!journal)
2956 return;
2957 restart:
2958 spin_lock(&journal->j_list_lock);
2959 /* Is commit writing out inode - we have to wait */
2960 if (jinode->i_flags & JI_COMMIT_RUNNING) {
2961 wait_queue_head_t *wq;
2962 DEFINE_WAIT_BIT(wait, &jinode->i_flags, __JI_COMMIT_RUNNING);
2963 wq = bit_waitqueue(&jinode->i_flags, __JI_COMMIT_RUNNING);
2964 prepare_to_wait(wq, &wait.wq_entry, TASK_UNINTERRUPTIBLE);
2965 spin_unlock(&journal->j_list_lock);
2966 schedule();
2967 finish_wait(wq, &wait.wq_entry);
2968 goto restart;
2969 }
2970
2971 if (jinode->i_transaction) {
2972 list_del(&jinode->i_list);
2973 jinode->i_transaction = NULL;
2974 }
2975 spin_unlock(&journal->j_list_lock);
2976 }
2977
2978
2979 #ifdef CONFIG_PROC_FS
2980
2981 #define JBD2_STATS_PROC_NAME "fs/jbd2"
2982
jbd2_create_jbd_stats_proc_entry(void)2983 static void __init jbd2_create_jbd_stats_proc_entry(void)
2984 {
2985 proc_jbd2_stats = proc_mkdir(JBD2_STATS_PROC_NAME, NULL);
2986 }
2987
jbd2_remove_jbd_stats_proc_entry(void)2988 static void __exit jbd2_remove_jbd_stats_proc_entry(void)
2989 {
2990 if (proc_jbd2_stats)
2991 remove_proc_entry(JBD2_STATS_PROC_NAME, NULL);
2992 }
2993
2994 #else
2995
2996 #define jbd2_create_jbd_stats_proc_entry() do {} while (0)
2997 #define jbd2_remove_jbd_stats_proc_entry() do {} while (0)
2998
2999 #endif
3000
3001 struct kmem_cache *jbd2_handle_cache, *jbd2_inode_cache;
3002
jbd2_journal_init_inode_cache(void)3003 static int __init jbd2_journal_init_inode_cache(void)
3004 {
3005 J_ASSERT(!jbd2_inode_cache);
3006 jbd2_inode_cache = KMEM_CACHE(jbd2_inode, 0);
3007 if (!jbd2_inode_cache) {
3008 pr_emerg("JBD2: failed to create inode cache\n");
3009 return -ENOMEM;
3010 }
3011 return 0;
3012 }
3013
jbd2_journal_init_handle_cache(void)3014 static int __init jbd2_journal_init_handle_cache(void)
3015 {
3016 J_ASSERT(!jbd2_handle_cache);
3017 jbd2_handle_cache = KMEM_CACHE(jbd2_journal_handle, SLAB_TEMPORARY);
3018 if (!jbd2_handle_cache) {
3019 printk(KERN_EMERG "JBD2: failed to create handle cache\n");
3020 return -ENOMEM;
3021 }
3022 return 0;
3023 }
3024
jbd2_journal_destroy_inode_cache(void)3025 static void jbd2_journal_destroy_inode_cache(void)
3026 {
3027 kmem_cache_destroy(jbd2_inode_cache);
3028 jbd2_inode_cache = NULL;
3029 }
3030
jbd2_journal_destroy_handle_cache(void)3031 static void jbd2_journal_destroy_handle_cache(void)
3032 {
3033 kmem_cache_destroy(jbd2_handle_cache);
3034 jbd2_handle_cache = NULL;
3035 }
3036
3037 /*
3038 * Module startup and shutdown
3039 */
3040
journal_init_caches(void)3041 static int __init journal_init_caches(void)
3042 {
3043 int ret;
3044
3045 ret = jbd2_journal_init_revoke_record_cache();
3046 if (ret == 0)
3047 ret = jbd2_journal_init_revoke_table_cache();
3048 if (ret == 0)
3049 ret = jbd2_journal_init_journal_head_cache();
3050 if (ret == 0)
3051 ret = jbd2_journal_init_handle_cache();
3052 if (ret == 0)
3053 ret = jbd2_journal_init_inode_cache();
3054 if (ret == 0)
3055 ret = jbd2_journal_init_transaction_cache();
3056 return ret;
3057 }
3058
jbd2_journal_destroy_caches(void)3059 static void jbd2_journal_destroy_caches(void)
3060 {
3061 jbd2_journal_destroy_revoke_record_cache();
3062 jbd2_journal_destroy_revoke_table_cache();
3063 jbd2_journal_destroy_journal_head_cache();
3064 jbd2_journal_destroy_handle_cache();
3065 jbd2_journal_destroy_inode_cache();
3066 jbd2_journal_destroy_transaction_cache();
3067 jbd2_journal_destroy_slabs();
3068 }
3069
journal_init(void)3070 static int __init journal_init(void)
3071 {
3072 int ret;
3073
3074 BUILD_BUG_ON(sizeof(struct journal_superblock_s) != 1024);
3075
3076 ret = journal_init_caches();
3077 if (ret == 0) {
3078 jbd2_create_jbd_stats_proc_entry();
3079 } else {
3080 jbd2_journal_destroy_caches();
3081 }
3082 return ret;
3083 }
3084
journal_exit(void)3085 static void __exit journal_exit(void)
3086 {
3087 #ifdef CONFIG_JBD2_DEBUG
3088 int n = atomic_read(&nr_journal_heads);
3089 if (n)
3090 printk(KERN_ERR "JBD2: leaked %d journal_heads!\n", n);
3091 #endif
3092 jbd2_remove_jbd_stats_proc_entry();
3093 jbd2_journal_destroy_caches();
3094 }
3095
3096 MODULE_LICENSE("GPL");
3097 module_init(journal_init);
3098 module_exit(journal_exit);
3099
3100