• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * linux/fs/jbd2/journal.c
4  *
5  * Written by Stephen C. Tweedie <sct@redhat.com>, 1998
6  *
7  * Copyright 1998 Red Hat corp --- All Rights Reserved
8  *
9  * Generic filesystem journal-writing code; part of the ext2fs
10  * journaling system.
11  *
12  * This file manages journals: areas of disk reserved for logging
13  * transactional updates.  This includes the kernel journaling thread
14  * which is responsible for scheduling updates to the log.
15  *
16  * We do not actually manage the physical storage of the journal in this
17  * file: that is left to a per-journal policy function, which allows us
18  * to store the journal within a filesystem-specified area for ext2
19  * journaling (ext2 can use a reserved inode for storing the log).
20  */
21 
22 #include <linux/module.h>
23 #include <linux/time.h>
24 #include <linux/fs.h>
25 #include <linux/jbd2.h>
26 #include <linux/errno.h>
27 #include <linux/slab.h>
28 #include <linux/init.h>
29 #include <linux/mm.h>
30 #include <linux/freezer.h>
31 #include <linux/pagemap.h>
32 #include <linux/kthread.h>
33 #include <linux/poison.h>
34 #include <linux/proc_fs.h>
35 #include <linux/seq_file.h>
36 #include <linux/math64.h>
37 #include <linux/hash.h>
38 #include <linux/log2.h>
39 #include <linux/vmalloc.h>
40 #include <linux/backing-dev.h>
41 #include <linux/bitops.h>
42 #include <linux/ratelimit.h>
43 #include <linux/sched/mm.h>
44 
45 #define CREATE_TRACE_POINTS
46 #include <trace/events/jbd2.h>
47 
48 #include <linux/uaccess.h>
49 #include <asm/page.h>
50 
51 #ifdef CONFIG_JBD2_DEBUG
52 ushort jbd2_journal_enable_debug __read_mostly;
53 EXPORT_SYMBOL(jbd2_journal_enable_debug);
54 
55 module_param_named(jbd2_debug, jbd2_journal_enable_debug, ushort, 0644);
56 MODULE_PARM_DESC(jbd2_debug, "Debugging level for jbd2");
57 #endif
58 
59 EXPORT_SYMBOL(jbd2_journal_extend);
60 EXPORT_SYMBOL(jbd2_journal_stop);
61 EXPORT_SYMBOL(jbd2_journal_lock_updates);
62 EXPORT_SYMBOL(jbd2_journal_unlock_updates);
63 EXPORT_SYMBOL(jbd2_journal_get_write_access);
64 EXPORT_SYMBOL(jbd2_journal_get_create_access);
65 EXPORT_SYMBOL(jbd2_journal_get_undo_access);
66 EXPORT_SYMBOL(jbd2_journal_set_triggers);
67 EXPORT_SYMBOL(jbd2_journal_dirty_metadata);
68 EXPORT_SYMBOL(jbd2_journal_forget);
69 EXPORT_SYMBOL(jbd2_journal_flush);
70 EXPORT_SYMBOL(jbd2_journal_revoke);
71 
72 EXPORT_SYMBOL(jbd2_journal_init_dev);
73 EXPORT_SYMBOL(jbd2_journal_init_inode);
74 EXPORT_SYMBOL(jbd2_journal_check_used_features);
75 EXPORT_SYMBOL(jbd2_journal_check_available_features);
76 EXPORT_SYMBOL(jbd2_journal_set_features);
77 EXPORT_SYMBOL(jbd2_journal_load);
78 EXPORT_SYMBOL(jbd2_journal_destroy);
79 EXPORT_SYMBOL(jbd2_journal_abort);
80 EXPORT_SYMBOL(jbd2_journal_errno);
81 EXPORT_SYMBOL(jbd2_journal_ack_err);
82 EXPORT_SYMBOL(jbd2_journal_clear_err);
83 EXPORT_SYMBOL(jbd2_log_wait_commit);
84 EXPORT_SYMBOL(jbd2_log_start_commit);
85 EXPORT_SYMBOL(jbd2_journal_start_commit);
86 EXPORT_SYMBOL(jbd2_journal_force_commit_nested);
87 EXPORT_SYMBOL(jbd2_journal_wipe);
88 EXPORT_SYMBOL(jbd2_journal_blocks_per_page);
89 EXPORT_SYMBOL(jbd2_journal_invalidatepage);
90 EXPORT_SYMBOL(jbd2_journal_try_to_free_buffers);
91 EXPORT_SYMBOL(jbd2_journal_force_commit);
92 EXPORT_SYMBOL(jbd2_journal_inode_ranged_write);
93 EXPORT_SYMBOL(jbd2_journal_inode_ranged_wait);
94 EXPORT_SYMBOL(jbd2_journal_submit_inode_data_buffers);
95 EXPORT_SYMBOL(jbd2_journal_finish_inode_data_buffers);
96 EXPORT_SYMBOL(jbd2_journal_init_jbd_inode);
97 EXPORT_SYMBOL(jbd2_journal_release_jbd_inode);
98 EXPORT_SYMBOL(jbd2_journal_begin_ordered_truncate);
99 EXPORT_SYMBOL(jbd2_inode_cache);
100 
101 static int jbd2_journal_create_slab(size_t slab_size);
102 
103 #ifdef CONFIG_JBD2_DEBUG
__jbd2_debug(int level,const char * file,const char * func,unsigned int line,const char * fmt,...)104 void __jbd2_debug(int level, const char *file, const char *func,
105 		  unsigned int line, const char *fmt, ...)
106 {
107 	struct va_format vaf;
108 	va_list args;
109 
110 	if (level > jbd2_journal_enable_debug)
111 		return;
112 	va_start(args, fmt);
113 	vaf.fmt = fmt;
114 	vaf.va = &args;
115 	printk(KERN_DEBUG "%s: (%s, %u): %pV", file, func, line, &vaf);
116 	va_end(args);
117 }
118 EXPORT_SYMBOL(__jbd2_debug);
119 #endif
120 
121 /* Checksumming functions */
jbd2_verify_csum_type(journal_t * j,journal_superblock_t * sb)122 static int jbd2_verify_csum_type(journal_t *j, journal_superblock_t *sb)
123 {
124 	if (!jbd2_journal_has_csum_v2or3_feature(j))
125 		return 1;
126 
127 	return sb->s_checksum_type == JBD2_CRC32C_CHKSUM;
128 }
129 
jbd2_superblock_csum(journal_t * j,journal_superblock_t * sb)130 static __be32 jbd2_superblock_csum(journal_t *j, journal_superblock_t *sb)
131 {
132 	__u32 csum;
133 	__be32 old_csum;
134 
135 	old_csum = sb->s_checksum;
136 	sb->s_checksum = 0;
137 	csum = jbd2_chksum(j, ~0, (char *)sb, sizeof(journal_superblock_t));
138 	sb->s_checksum = old_csum;
139 
140 	return cpu_to_be32(csum);
141 }
142 
143 /*
144  * Helper function used to manage commit timeouts
145  */
146 
commit_timeout(struct timer_list * t)147 static void commit_timeout(struct timer_list *t)
148 {
149 	journal_t *journal = from_timer(journal, t, j_commit_timer);
150 
151 	wake_up_process(journal->j_task);
152 }
153 
154 /*
155  * kjournald2: The main thread function used to manage a logging device
156  * journal.
157  *
158  * This kernel thread is responsible for two things:
159  *
160  * 1) COMMIT:  Every so often we need to commit the current state of the
161  *    filesystem to disk.  The journal thread is responsible for writing
162  *    all of the metadata buffers to disk. If a fast commit is ongoing
163  *    journal thread waits until it's done and then continues from
164  *    there on.
165  *
166  * 2) CHECKPOINT: We cannot reuse a used section of the log file until all
167  *    of the data in that part of the log has been rewritten elsewhere on
168  *    the disk.  Flushing these old buffers to reclaim space in the log is
169  *    known as checkpointing, and this thread is responsible for that job.
170  */
171 
kjournald2(void * arg)172 static int kjournald2(void *arg)
173 {
174 	journal_t *journal = arg;
175 	transaction_t *transaction;
176 
177 	/*
178 	 * Set up an interval timer which can be used to trigger a commit wakeup
179 	 * after the commit interval expires
180 	 */
181 	timer_setup(&journal->j_commit_timer, commit_timeout, 0);
182 
183 	set_freezable();
184 
185 	/* Record that the journal thread is running */
186 	journal->j_task = current;
187 	wake_up(&journal->j_wait_done_commit);
188 
189 	/*
190 	 * Make sure that no allocations from this kernel thread will ever
191 	 * recurse to the fs layer because we are responsible for the
192 	 * transaction commit and any fs involvement might get stuck waiting for
193 	 * the trasn. commit.
194 	 */
195 	memalloc_nofs_save();
196 
197 	/*
198 	 * And now, wait forever for commit wakeup events.
199 	 */
200 	write_lock(&journal->j_state_lock);
201 
202 loop:
203 	if (journal->j_flags & JBD2_UNMOUNT)
204 		goto end_loop;
205 
206 	jbd_debug(1, "commit_sequence=%u, commit_request=%u\n",
207 		journal->j_commit_sequence, journal->j_commit_request);
208 
209 	if (journal->j_commit_sequence != journal->j_commit_request) {
210 		jbd_debug(1, "OK, requests differ\n");
211 		write_unlock(&journal->j_state_lock);
212 		del_timer_sync(&journal->j_commit_timer);
213 		jbd2_journal_commit_transaction(journal);
214 		write_lock(&journal->j_state_lock);
215 		goto loop;
216 	}
217 
218 	wake_up(&journal->j_wait_done_commit);
219 	if (freezing(current)) {
220 		/*
221 		 * The simpler the better. Flushing journal isn't a
222 		 * good idea, because that depends on threads that may
223 		 * be already stopped.
224 		 */
225 		jbd_debug(1, "Now suspending kjournald2\n");
226 		write_unlock(&journal->j_state_lock);
227 		try_to_freeze();
228 		write_lock(&journal->j_state_lock);
229 	} else {
230 		/*
231 		 * We assume on resume that commits are already there,
232 		 * so we don't sleep
233 		 */
234 		DEFINE_WAIT(wait);
235 		int should_sleep = 1;
236 
237 		prepare_to_wait(&journal->j_wait_commit, &wait,
238 				TASK_INTERRUPTIBLE);
239 		if (journal->j_commit_sequence != journal->j_commit_request)
240 			should_sleep = 0;
241 		transaction = journal->j_running_transaction;
242 		if (transaction && time_after_eq(jiffies,
243 						transaction->t_expires))
244 			should_sleep = 0;
245 		if (journal->j_flags & JBD2_UNMOUNT)
246 			should_sleep = 0;
247 		if (should_sleep) {
248 			write_unlock(&journal->j_state_lock);
249 			schedule();
250 			write_lock(&journal->j_state_lock);
251 		}
252 		finish_wait(&journal->j_wait_commit, &wait);
253 	}
254 
255 	jbd_debug(1, "kjournald2 wakes\n");
256 
257 	/*
258 	 * Were we woken up by a commit wakeup event?
259 	 */
260 	transaction = journal->j_running_transaction;
261 	if (transaction && time_after_eq(jiffies, transaction->t_expires)) {
262 		journal->j_commit_request = transaction->t_tid;
263 		jbd_debug(1, "woke because of timeout\n");
264 	}
265 	goto loop;
266 
267 end_loop:
268 	del_timer_sync(&journal->j_commit_timer);
269 	journal->j_task = NULL;
270 	wake_up(&journal->j_wait_done_commit);
271 	jbd_debug(1, "Journal thread exiting.\n");
272 	write_unlock(&journal->j_state_lock);
273 	return 0;
274 }
275 
jbd2_journal_start_thread(journal_t * journal)276 static int jbd2_journal_start_thread(journal_t *journal)
277 {
278 	struct task_struct *t;
279 
280 	t = kthread_run(kjournald2, journal, "jbd2/%s",
281 			journal->j_devname);
282 	if (IS_ERR(t))
283 		return PTR_ERR(t);
284 
285 	wait_event(journal->j_wait_done_commit, journal->j_task != NULL);
286 	return 0;
287 }
288 
journal_kill_thread(journal_t * journal)289 static void journal_kill_thread(journal_t *journal)
290 {
291 	write_lock(&journal->j_state_lock);
292 	journal->j_flags |= JBD2_UNMOUNT;
293 
294 	while (journal->j_task) {
295 		write_unlock(&journal->j_state_lock);
296 		wake_up(&journal->j_wait_commit);
297 		wait_event(journal->j_wait_done_commit, journal->j_task == NULL);
298 		write_lock(&journal->j_state_lock);
299 	}
300 	write_unlock(&journal->j_state_lock);
301 }
302 
303 /*
304  * jbd2_journal_write_metadata_buffer: write a metadata buffer to the journal.
305  *
306  * Writes a metadata buffer to a given disk block.  The actual IO is not
307  * performed but a new buffer_head is constructed which labels the data
308  * to be written with the correct destination disk block.
309  *
310  * Any magic-number escaping which needs to be done will cause a
311  * copy-out here.  If the buffer happens to start with the
312  * JBD2_MAGIC_NUMBER, then we can't write it to the log directly: the
313  * magic number is only written to the log for descripter blocks.  In
314  * this case, we copy the data and replace the first word with 0, and we
315  * return a result code which indicates that this buffer needs to be
316  * marked as an escaped buffer in the corresponding log descriptor
317  * block.  The missing word can then be restored when the block is read
318  * during recovery.
319  *
320  * If the source buffer has already been modified by a new transaction
321  * since we took the last commit snapshot, we use the frozen copy of
322  * that data for IO. If we end up using the existing buffer_head's data
323  * for the write, then we have to make sure nobody modifies it while the
324  * IO is in progress. do_get_write_access() handles this.
325  *
326  * The function returns a pointer to the buffer_head to be used for IO.
327  *
328  *
329  * Return value:
330  *  <0: Error
331  * >=0: Finished OK
332  *
333  * On success:
334  * Bit 0 set == escape performed on the data
335  * Bit 1 set == buffer copy-out performed (kfree the data after IO)
336  */
337 
jbd2_journal_write_metadata_buffer(transaction_t * transaction,struct journal_head * jh_in,struct buffer_head ** bh_out,sector_t blocknr)338 int jbd2_journal_write_metadata_buffer(transaction_t *transaction,
339 				  struct journal_head  *jh_in,
340 				  struct buffer_head **bh_out,
341 				  sector_t blocknr)
342 {
343 	int need_copy_out = 0;
344 	int done_copy_out = 0;
345 	int do_escape = 0;
346 	char *mapped_data;
347 	struct buffer_head *new_bh;
348 	struct page *new_page;
349 	unsigned int new_offset;
350 	struct buffer_head *bh_in = jh2bh(jh_in);
351 	journal_t *journal = transaction->t_journal;
352 
353 	/*
354 	 * The buffer really shouldn't be locked: only the current committing
355 	 * transaction is allowed to write it, so nobody else is allowed
356 	 * to do any IO.
357 	 *
358 	 * akpm: except if we're journalling data, and write() output is
359 	 * also part of a shared mapping, and another thread has
360 	 * decided to launch a writepage() against this buffer.
361 	 */
362 	J_ASSERT_BH(bh_in, buffer_jbddirty(bh_in));
363 
364 	new_bh = alloc_buffer_head(GFP_NOFS|__GFP_NOFAIL);
365 
366 	/* keep subsequent assertions sane */
367 	atomic_set(&new_bh->b_count, 1);
368 
369 	spin_lock(&jh_in->b_state_lock);
370 repeat:
371 	/*
372 	 * If a new transaction has already done a buffer copy-out, then
373 	 * we use that version of the data for the commit.
374 	 */
375 	if (jh_in->b_frozen_data) {
376 		done_copy_out = 1;
377 		new_page = virt_to_page(jh_in->b_frozen_data);
378 		new_offset = offset_in_page(jh_in->b_frozen_data);
379 	} else {
380 		new_page = jh2bh(jh_in)->b_page;
381 		new_offset = offset_in_page(jh2bh(jh_in)->b_data);
382 	}
383 
384 	mapped_data = kmap_atomic(new_page);
385 	/*
386 	 * Fire data frozen trigger if data already wasn't frozen.  Do this
387 	 * before checking for escaping, as the trigger may modify the magic
388 	 * offset.  If a copy-out happens afterwards, it will have the correct
389 	 * data in the buffer.
390 	 */
391 	if (!done_copy_out)
392 		jbd2_buffer_frozen_trigger(jh_in, mapped_data + new_offset,
393 					   jh_in->b_triggers);
394 
395 	/*
396 	 * Check for escaping
397 	 */
398 	if (*((__be32 *)(mapped_data + new_offset)) ==
399 				cpu_to_be32(JBD2_MAGIC_NUMBER)) {
400 		need_copy_out = 1;
401 		do_escape = 1;
402 	}
403 	kunmap_atomic(mapped_data);
404 
405 	/*
406 	 * Do we need to do a data copy?
407 	 */
408 	if (need_copy_out && !done_copy_out) {
409 		char *tmp;
410 
411 		spin_unlock(&jh_in->b_state_lock);
412 		tmp = jbd2_alloc(bh_in->b_size, GFP_NOFS);
413 		if (!tmp) {
414 			brelse(new_bh);
415 			return -ENOMEM;
416 		}
417 		spin_lock(&jh_in->b_state_lock);
418 		if (jh_in->b_frozen_data) {
419 			jbd2_free(tmp, bh_in->b_size);
420 			goto repeat;
421 		}
422 
423 		jh_in->b_frozen_data = tmp;
424 		mapped_data = kmap_atomic(new_page);
425 		memcpy(tmp, mapped_data + new_offset, bh_in->b_size);
426 		kunmap_atomic(mapped_data);
427 
428 		new_page = virt_to_page(tmp);
429 		new_offset = offset_in_page(tmp);
430 		done_copy_out = 1;
431 
432 		/*
433 		 * This isn't strictly necessary, as we're using frozen
434 		 * data for the escaping, but it keeps consistency with
435 		 * b_frozen_data usage.
436 		 */
437 		jh_in->b_frozen_triggers = jh_in->b_triggers;
438 	}
439 
440 	/*
441 	 * Did we need to do an escaping?  Now we've done all the
442 	 * copying, we can finally do so.
443 	 */
444 	if (do_escape) {
445 		mapped_data = kmap_atomic(new_page);
446 		*((unsigned int *)(mapped_data + new_offset)) = 0;
447 		kunmap_atomic(mapped_data);
448 	}
449 
450 	set_bh_page(new_bh, new_page, new_offset);
451 	new_bh->b_size = bh_in->b_size;
452 	new_bh->b_bdev = journal->j_dev;
453 	new_bh->b_blocknr = blocknr;
454 	new_bh->b_private = bh_in;
455 	set_buffer_mapped(new_bh);
456 	set_buffer_dirty(new_bh);
457 
458 	*bh_out = new_bh;
459 
460 	/*
461 	 * The to-be-written buffer needs to get moved to the io queue,
462 	 * and the original buffer whose contents we are shadowing or
463 	 * copying is moved to the transaction's shadow queue.
464 	 */
465 	JBUFFER_TRACE(jh_in, "file as BJ_Shadow");
466 	spin_lock(&journal->j_list_lock);
467 	__jbd2_journal_file_buffer(jh_in, transaction, BJ_Shadow);
468 	spin_unlock(&journal->j_list_lock);
469 	set_buffer_shadow(bh_in);
470 	spin_unlock(&jh_in->b_state_lock);
471 
472 	return do_escape | (done_copy_out << 1);
473 }
474 
475 /*
476  * Allocation code for the journal file.  Manage the space left in the
477  * journal, so that we can begin checkpointing when appropriate.
478  */
479 
480 /*
481  * Called with j_state_lock locked for writing.
482  * Returns true if a transaction commit was started.
483  */
__jbd2_log_start_commit(journal_t * journal,tid_t target)484 int __jbd2_log_start_commit(journal_t *journal, tid_t target)
485 {
486 	/* Return if the txn has already requested to be committed */
487 	if (journal->j_commit_request == target)
488 		return 0;
489 
490 	/*
491 	 * The only transaction we can possibly wait upon is the
492 	 * currently running transaction (if it exists).  Otherwise,
493 	 * the target tid must be an old one.
494 	 */
495 	if (journal->j_running_transaction &&
496 	    journal->j_running_transaction->t_tid == target) {
497 		/*
498 		 * We want a new commit: OK, mark the request and wakeup the
499 		 * commit thread.  We do _not_ do the commit ourselves.
500 		 */
501 
502 		journal->j_commit_request = target;
503 		jbd_debug(1, "JBD2: requesting commit %u/%u\n",
504 			  journal->j_commit_request,
505 			  journal->j_commit_sequence);
506 		journal->j_running_transaction->t_requested = jiffies;
507 		wake_up(&journal->j_wait_commit);
508 		return 1;
509 	} else if (!tid_geq(journal->j_commit_request, target))
510 		/* This should never happen, but if it does, preserve
511 		   the evidence before kjournald goes into a loop and
512 		   increments j_commit_sequence beyond all recognition. */
513 		WARN_ONCE(1, "JBD2: bad log_start_commit: %u %u %u %u\n",
514 			  journal->j_commit_request,
515 			  journal->j_commit_sequence,
516 			  target, journal->j_running_transaction ?
517 			  journal->j_running_transaction->t_tid : 0);
518 	return 0;
519 }
520 
jbd2_log_start_commit(journal_t * journal,tid_t tid)521 int jbd2_log_start_commit(journal_t *journal, tid_t tid)
522 {
523 	int ret;
524 
525 	write_lock(&journal->j_state_lock);
526 	ret = __jbd2_log_start_commit(journal, tid);
527 	write_unlock(&journal->j_state_lock);
528 	return ret;
529 }
530 
531 /*
532  * Force and wait any uncommitted transactions.  We can only force the running
533  * transaction if we don't have an active handle, otherwise, we will deadlock.
534  * Returns: <0 in case of error,
535  *           0 if nothing to commit,
536  *           1 if transaction was successfully committed.
537  */
__jbd2_journal_force_commit(journal_t * journal)538 static int __jbd2_journal_force_commit(journal_t *journal)
539 {
540 	transaction_t *transaction = NULL;
541 	tid_t tid;
542 	int need_to_start = 0, ret = 0;
543 
544 	read_lock(&journal->j_state_lock);
545 	if (journal->j_running_transaction && !current->journal_info) {
546 		transaction = journal->j_running_transaction;
547 		if (!tid_geq(journal->j_commit_request, transaction->t_tid))
548 			need_to_start = 1;
549 	} else if (journal->j_committing_transaction)
550 		transaction = journal->j_committing_transaction;
551 
552 	if (!transaction) {
553 		/* Nothing to commit */
554 		read_unlock(&journal->j_state_lock);
555 		return 0;
556 	}
557 	tid = transaction->t_tid;
558 	read_unlock(&journal->j_state_lock);
559 	if (need_to_start)
560 		jbd2_log_start_commit(journal, tid);
561 	ret = jbd2_log_wait_commit(journal, tid);
562 	if (!ret)
563 		ret = 1;
564 
565 	return ret;
566 }
567 
568 /**
569  * jbd2_journal_force_commit_nested - Force and wait upon a commit if the
570  * calling process is not within transaction.
571  *
572  * @journal: journal to force
573  * Returns true if progress was made.
574  *
575  * This is used for forcing out undo-protected data which contains
576  * bitmaps, when the fs is running out of space.
577  */
jbd2_journal_force_commit_nested(journal_t * journal)578 int jbd2_journal_force_commit_nested(journal_t *journal)
579 {
580 	int ret;
581 
582 	ret = __jbd2_journal_force_commit(journal);
583 	return ret > 0;
584 }
585 
586 /**
587  * jbd2_journal_force_commit() - force any uncommitted transactions
588  * @journal: journal to force
589  *
590  * Caller want unconditional commit. We can only force the running transaction
591  * if we don't have an active handle, otherwise, we will deadlock.
592  */
jbd2_journal_force_commit(journal_t * journal)593 int jbd2_journal_force_commit(journal_t *journal)
594 {
595 	int ret;
596 
597 	J_ASSERT(!current->journal_info);
598 	ret = __jbd2_journal_force_commit(journal);
599 	if (ret > 0)
600 		ret = 0;
601 	return ret;
602 }
603 
604 /*
605  * Start a commit of the current running transaction (if any).  Returns true
606  * if a transaction is going to be committed (or is currently already
607  * committing), and fills its tid in at *ptid
608  */
jbd2_journal_start_commit(journal_t * journal,tid_t * ptid)609 int jbd2_journal_start_commit(journal_t *journal, tid_t *ptid)
610 {
611 	int ret = 0;
612 
613 	write_lock(&journal->j_state_lock);
614 	if (journal->j_running_transaction) {
615 		tid_t tid = journal->j_running_transaction->t_tid;
616 
617 		__jbd2_log_start_commit(journal, tid);
618 		/* There's a running transaction and we've just made sure
619 		 * it's commit has been scheduled. */
620 		if (ptid)
621 			*ptid = tid;
622 		ret = 1;
623 	} else if (journal->j_committing_transaction) {
624 		/*
625 		 * If commit has been started, then we have to wait for
626 		 * completion of that transaction.
627 		 */
628 		if (ptid)
629 			*ptid = journal->j_committing_transaction->t_tid;
630 		ret = 1;
631 	}
632 	write_unlock(&journal->j_state_lock);
633 	return ret;
634 }
635 
636 /*
637  * Return 1 if a given transaction has not yet sent barrier request
638  * connected with a transaction commit. If 0 is returned, transaction
639  * may or may not have sent the barrier. Used to avoid sending barrier
640  * twice in common cases.
641  */
jbd2_trans_will_send_data_barrier(journal_t * journal,tid_t tid)642 int jbd2_trans_will_send_data_barrier(journal_t *journal, tid_t tid)
643 {
644 	int ret = 0;
645 	transaction_t *commit_trans;
646 
647 	if (!(journal->j_flags & JBD2_BARRIER))
648 		return 0;
649 	read_lock(&journal->j_state_lock);
650 	/* Transaction already committed? */
651 	if (tid_geq(journal->j_commit_sequence, tid))
652 		goto out;
653 	commit_trans = journal->j_committing_transaction;
654 	if (!commit_trans || commit_trans->t_tid != tid) {
655 		ret = 1;
656 		goto out;
657 	}
658 	/*
659 	 * Transaction is being committed and we already proceeded to
660 	 * submitting a flush to fs partition?
661 	 */
662 	if (journal->j_fs_dev != journal->j_dev) {
663 		if (!commit_trans->t_need_data_flush ||
664 		    commit_trans->t_state >= T_COMMIT_DFLUSH)
665 			goto out;
666 	} else {
667 		if (commit_trans->t_state >= T_COMMIT_JFLUSH)
668 			goto out;
669 	}
670 	ret = 1;
671 out:
672 	read_unlock(&journal->j_state_lock);
673 	return ret;
674 }
675 EXPORT_SYMBOL(jbd2_trans_will_send_data_barrier);
676 
677 /*
678  * Wait for a specified commit to complete.
679  * The caller may not hold the journal lock.
680  */
jbd2_log_wait_commit(journal_t * journal,tid_t tid)681 int jbd2_log_wait_commit(journal_t *journal, tid_t tid)
682 {
683 	int err = 0;
684 
685 	read_lock(&journal->j_state_lock);
686 #ifdef CONFIG_PROVE_LOCKING
687 	/*
688 	 * Some callers make sure transaction is already committing and in that
689 	 * case we cannot block on open handles anymore. So don't warn in that
690 	 * case.
691 	 */
692 	if (tid_gt(tid, journal->j_commit_sequence) &&
693 	    (!journal->j_committing_transaction ||
694 	     journal->j_committing_transaction->t_tid != tid)) {
695 		read_unlock(&journal->j_state_lock);
696 		jbd2_might_wait_for_commit(journal);
697 		read_lock(&journal->j_state_lock);
698 	}
699 #endif
700 #ifdef CONFIG_JBD2_DEBUG
701 	if (!tid_geq(journal->j_commit_request, tid)) {
702 		printk(KERN_ERR
703 		       "%s: error: j_commit_request=%u, tid=%u\n",
704 		       __func__, journal->j_commit_request, tid);
705 	}
706 #endif
707 	while (tid_gt(tid, journal->j_commit_sequence)) {
708 		jbd_debug(1, "JBD2: want %u, j_commit_sequence=%u\n",
709 				  tid, journal->j_commit_sequence);
710 		read_unlock(&journal->j_state_lock);
711 		wake_up(&journal->j_wait_commit);
712 		wait_event(journal->j_wait_done_commit,
713 				!tid_gt(tid, journal->j_commit_sequence));
714 		read_lock(&journal->j_state_lock);
715 	}
716 	read_unlock(&journal->j_state_lock);
717 
718 	if (unlikely(is_journal_aborted(journal)))
719 		err = -EIO;
720 	return err;
721 }
722 
723 /*
724  * Start a fast commit. If there's an ongoing fast or full commit wait for
725  * it to complete. Returns 0 if a new fast commit was started. Returns -EALREADY
726  * if a fast commit is not needed, either because there's an already a commit
727  * going on or this tid has already been committed. Returns -EINVAL if no jbd2
728  * commit has yet been performed.
729  */
jbd2_fc_begin_commit(journal_t * journal,tid_t tid)730 int jbd2_fc_begin_commit(journal_t *journal, tid_t tid)
731 {
732 	if (unlikely(is_journal_aborted(journal)))
733 		return -EIO;
734 	/*
735 	 * Fast commits only allowed if at least one full commit has
736 	 * been processed.
737 	 */
738 	if (!journal->j_stats.ts_tid)
739 		return -EINVAL;
740 
741 	write_lock(&journal->j_state_lock);
742 	if (tid <= journal->j_commit_sequence) {
743 		write_unlock(&journal->j_state_lock);
744 		return -EALREADY;
745 	}
746 
747 	if (journal->j_flags & JBD2_FULL_COMMIT_ONGOING ||
748 	    (journal->j_flags & JBD2_FAST_COMMIT_ONGOING)) {
749 		DEFINE_WAIT(wait);
750 
751 		prepare_to_wait(&journal->j_fc_wait, &wait,
752 				TASK_UNINTERRUPTIBLE);
753 		write_unlock(&journal->j_state_lock);
754 		schedule();
755 		finish_wait(&journal->j_fc_wait, &wait);
756 		return -EALREADY;
757 	}
758 	journal->j_flags |= JBD2_FAST_COMMIT_ONGOING;
759 	write_unlock(&journal->j_state_lock);
760 
761 	return 0;
762 }
763 EXPORT_SYMBOL(jbd2_fc_begin_commit);
764 
765 /*
766  * Stop a fast commit. If fallback is set, this function starts commit of
767  * TID tid before any other fast commit can start.
768  */
__jbd2_fc_end_commit(journal_t * journal,tid_t tid,bool fallback)769 static int __jbd2_fc_end_commit(journal_t *journal, tid_t tid, bool fallback)
770 {
771 	if (journal->j_fc_cleanup_callback)
772 		journal->j_fc_cleanup_callback(journal, 0);
773 	write_lock(&journal->j_state_lock);
774 	journal->j_flags &= ~JBD2_FAST_COMMIT_ONGOING;
775 	if (fallback)
776 		journal->j_flags |= JBD2_FULL_COMMIT_ONGOING;
777 	write_unlock(&journal->j_state_lock);
778 	wake_up(&journal->j_fc_wait);
779 	if (fallback)
780 		return jbd2_complete_transaction(journal, tid);
781 	return 0;
782 }
783 
jbd2_fc_end_commit(journal_t * journal)784 int jbd2_fc_end_commit(journal_t *journal)
785 {
786 	return __jbd2_fc_end_commit(journal, 0, false);
787 }
788 EXPORT_SYMBOL(jbd2_fc_end_commit);
789 
jbd2_fc_end_commit_fallback(journal_t * journal)790 int jbd2_fc_end_commit_fallback(journal_t *journal)
791 {
792 	tid_t tid;
793 
794 	read_lock(&journal->j_state_lock);
795 	tid = journal->j_running_transaction ?
796 		journal->j_running_transaction->t_tid : 0;
797 	read_unlock(&journal->j_state_lock);
798 	return __jbd2_fc_end_commit(journal, tid, true);
799 }
800 EXPORT_SYMBOL(jbd2_fc_end_commit_fallback);
801 
802 /* Return 1 when transaction with given tid has already committed. */
jbd2_transaction_committed(journal_t * journal,tid_t tid)803 int jbd2_transaction_committed(journal_t *journal, tid_t tid)
804 {
805 	int ret = 1;
806 
807 	read_lock(&journal->j_state_lock);
808 	if (journal->j_running_transaction &&
809 	    journal->j_running_transaction->t_tid == tid)
810 		ret = 0;
811 	if (journal->j_committing_transaction &&
812 	    journal->j_committing_transaction->t_tid == tid)
813 		ret = 0;
814 	read_unlock(&journal->j_state_lock);
815 	return ret;
816 }
817 EXPORT_SYMBOL(jbd2_transaction_committed);
818 
819 /*
820  * When this function returns the transaction corresponding to tid
821  * will be completed.  If the transaction has currently running, start
822  * committing that transaction before waiting for it to complete.  If
823  * the transaction id is stale, it is by definition already completed,
824  * so just return SUCCESS.
825  */
jbd2_complete_transaction(journal_t * journal,tid_t tid)826 int jbd2_complete_transaction(journal_t *journal, tid_t tid)
827 {
828 	int	need_to_wait = 1;
829 
830 	read_lock(&journal->j_state_lock);
831 	if (journal->j_running_transaction &&
832 	    journal->j_running_transaction->t_tid == tid) {
833 		if (journal->j_commit_request != tid) {
834 			/* transaction not yet started, so request it */
835 			read_unlock(&journal->j_state_lock);
836 			jbd2_log_start_commit(journal, tid);
837 			goto wait_commit;
838 		}
839 	} else if (!(journal->j_committing_transaction &&
840 		     journal->j_committing_transaction->t_tid == tid))
841 		need_to_wait = 0;
842 	read_unlock(&journal->j_state_lock);
843 	if (!need_to_wait)
844 		return 0;
845 wait_commit:
846 	return jbd2_log_wait_commit(journal, tid);
847 }
848 EXPORT_SYMBOL(jbd2_complete_transaction);
849 
850 /*
851  * Log buffer allocation routines:
852  */
853 
jbd2_journal_next_log_block(journal_t * journal,unsigned long long * retp)854 int jbd2_journal_next_log_block(journal_t *journal, unsigned long long *retp)
855 {
856 	unsigned long blocknr;
857 
858 	write_lock(&journal->j_state_lock);
859 	J_ASSERT(journal->j_free > 1);
860 
861 	blocknr = journal->j_head;
862 	journal->j_head++;
863 	journal->j_free--;
864 	if (journal->j_head == journal->j_last)
865 		journal->j_head = journal->j_first;
866 	write_unlock(&journal->j_state_lock);
867 	return jbd2_journal_bmap(journal, blocknr, retp);
868 }
869 
870 /* Map one fast commit buffer for use by the file system */
jbd2_fc_get_buf(journal_t * journal,struct buffer_head ** bh_out)871 int jbd2_fc_get_buf(journal_t *journal, struct buffer_head **bh_out)
872 {
873 	unsigned long long pblock;
874 	unsigned long blocknr;
875 	int ret = 0;
876 	struct buffer_head *bh;
877 	int fc_off;
878 
879 	*bh_out = NULL;
880 
881 	if (journal->j_fc_off + journal->j_fc_first < journal->j_fc_last) {
882 		fc_off = journal->j_fc_off;
883 		blocknr = journal->j_fc_first + fc_off;
884 		journal->j_fc_off++;
885 	} else {
886 		ret = -EINVAL;
887 	}
888 
889 	if (ret)
890 		return ret;
891 
892 	ret = jbd2_journal_bmap(journal, blocknr, &pblock);
893 	if (ret)
894 		return ret;
895 
896 	bh = __getblk(journal->j_dev, pblock, journal->j_blocksize);
897 	if (!bh)
898 		return -ENOMEM;
899 
900 
901 	journal->j_fc_wbuf[fc_off] = bh;
902 
903 	*bh_out = bh;
904 
905 	return 0;
906 }
907 EXPORT_SYMBOL(jbd2_fc_get_buf);
908 
909 /*
910  * Wait on fast commit buffers that were allocated by jbd2_fc_get_buf
911  * for completion.
912  */
jbd2_fc_wait_bufs(journal_t * journal,int num_blks)913 int jbd2_fc_wait_bufs(journal_t *journal, int num_blks)
914 {
915 	struct buffer_head *bh;
916 	int i, j_fc_off;
917 
918 	j_fc_off = journal->j_fc_off;
919 
920 	/*
921 	 * Wait in reverse order to minimize chances of us being woken up before
922 	 * all IOs have completed
923 	 */
924 	for (i = j_fc_off - 1; i >= j_fc_off - num_blks; i--) {
925 		bh = journal->j_fc_wbuf[i];
926 		wait_on_buffer(bh);
927 		/*
928 		 * Update j_fc_off so jbd2_fc_release_bufs can release remain
929 		 * buffer head.
930 		 */
931 		if (unlikely(!buffer_uptodate(bh))) {
932 			journal->j_fc_off = i + 1;
933 			return -EIO;
934 		}
935 		put_bh(bh);
936 		journal->j_fc_wbuf[i] = NULL;
937 	}
938 
939 	return 0;
940 }
941 EXPORT_SYMBOL(jbd2_fc_wait_bufs);
942 
943 /*
944  * Wait on fast commit buffers that were allocated by jbd2_fc_get_buf
945  * for completion.
946  */
jbd2_fc_release_bufs(journal_t * journal)947 int jbd2_fc_release_bufs(journal_t *journal)
948 {
949 	struct buffer_head *bh;
950 	int i, j_fc_off;
951 
952 	j_fc_off = journal->j_fc_off;
953 
954 	/*
955 	 * Wait in reverse order to minimize chances of us being woken up before
956 	 * all IOs have completed
957 	 */
958 	for (i = j_fc_off - 1; i >= 0; i--) {
959 		bh = journal->j_fc_wbuf[i];
960 		if (!bh)
961 			break;
962 		put_bh(bh);
963 		journal->j_fc_wbuf[i] = NULL;
964 	}
965 
966 	return 0;
967 }
968 EXPORT_SYMBOL(jbd2_fc_release_bufs);
969 
970 /*
971  * Conversion of logical to physical block numbers for the journal
972  *
973  * On external journals the journal blocks are identity-mapped, so
974  * this is a no-op.  If needed, we can use j_blk_offset - everything is
975  * ready.
976  */
jbd2_journal_bmap(journal_t * journal,unsigned long blocknr,unsigned long long * retp)977 int jbd2_journal_bmap(journal_t *journal, unsigned long blocknr,
978 		 unsigned long long *retp)
979 {
980 	int err = 0;
981 	unsigned long long ret;
982 	sector_t block = 0;
983 
984 	if (journal->j_inode) {
985 		block = blocknr;
986 		ret = bmap(journal->j_inode, &block);
987 
988 		if (ret || !block) {
989 			printk(KERN_ALERT "%s: journal block not found "
990 					"at offset %lu on %s\n",
991 			       __func__, blocknr, journal->j_devname);
992 			err = -EIO;
993 			jbd2_journal_abort(journal, err);
994 		} else {
995 			*retp = block;
996 		}
997 
998 	} else {
999 		*retp = blocknr; /* +journal->j_blk_offset */
1000 	}
1001 	return err;
1002 }
1003 
1004 /*
1005  * We play buffer_head aliasing tricks to write data/metadata blocks to
1006  * the journal without copying their contents, but for journal
1007  * descriptor blocks we do need to generate bona fide buffers.
1008  *
1009  * After the caller of jbd2_journal_get_descriptor_buffer() has finished modifying
1010  * the buffer's contents they really should run flush_dcache_page(bh->b_page).
1011  * But we don't bother doing that, so there will be coherency problems with
1012  * mmaps of blockdevs which hold live JBD-controlled filesystems.
1013  */
1014 struct buffer_head *
jbd2_journal_get_descriptor_buffer(transaction_t * transaction,int type)1015 jbd2_journal_get_descriptor_buffer(transaction_t *transaction, int type)
1016 {
1017 	journal_t *journal = transaction->t_journal;
1018 	struct buffer_head *bh;
1019 	unsigned long long blocknr;
1020 	journal_header_t *header;
1021 	int err;
1022 
1023 	err = jbd2_journal_next_log_block(journal, &blocknr);
1024 
1025 	if (err)
1026 		return NULL;
1027 
1028 	bh = __getblk(journal->j_dev, blocknr, journal->j_blocksize);
1029 	if (!bh)
1030 		return NULL;
1031 	atomic_dec(&transaction->t_outstanding_credits);
1032 	lock_buffer(bh);
1033 	memset(bh->b_data, 0, journal->j_blocksize);
1034 	header = (journal_header_t *)bh->b_data;
1035 	header->h_magic = cpu_to_be32(JBD2_MAGIC_NUMBER);
1036 	header->h_blocktype = cpu_to_be32(type);
1037 	header->h_sequence = cpu_to_be32(transaction->t_tid);
1038 	set_buffer_uptodate(bh);
1039 	unlock_buffer(bh);
1040 	BUFFER_TRACE(bh, "return this buffer");
1041 	return bh;
1042 }
1043 
jbd2_descriptor_block_csum_set(journal_t * j,struct buffer_head * bh)1044 void jbd2_descriptor_block_csum_set(journal_t *j, struct buffer_head *bh)
1045 {
1046 	struct jbd2_journal_block_tail *tail;
1047 	__u32 csum;
1048 
1049 	if (!jbd2_journal_has_csum_v2or3(j))
1050 		return;
1051 
1052 	tail = (struct jbd2_journal_block_tail *)(bh->b_data + j->j_blocksize -
1053 			sizeof(struct jbd2_journal_block_tail));
1054 	tail->t_checksum = 0;
1055 	csum = jbd2_chksum(j, j->j_csum_seed, bh->b_data, j->j_blocksize);
1056 	tail->t_checksum = cpu_to_be32(csum);
1057 }
1058 
1059 /*
1060  * Return tid of the oldest transaction in the journal and block in the journal
1061  * where the transaction starts.
1062  *
1063  * If the journal is now empty, return which will be the next transaction ID
1064  * we will write and where will that transaction start.
1065  *
1066  * The return value is 0 if journal tail cannot be pushed any further, 1 if
1067  * it can.
1068  */
jbd2_journal_get_log_tail(journal_t * journal,tid_t * tid,unsigned long * block)1069 int jbd2_journal_get_log_tail(journal_t *journal, tid_t *tid,
1070 			      unsigned long *block)
1071 {
1072 	transaction_t *transaction;
1073 	int ret;
1074 
1075 	read_lock(&journal->j_state_lock);
1076 	spin_lock(&journal->j_list_lock);
1077 	transaction = journal->j_checkpoint_transactions;
1078 	if (transaction) {
1079 		*tid = transaction->t_tid;
1080 		*block = transaction->t_log_start;
1081 	} else if ((transaction = journal->j_committing_transaction) != NULL) {
1082 		*tid = transaction->t_tid;
1083 		*block = transaction->t_log_start;
1084 	} else if ((transaction = journal->j_running_transaction) != NULL) {
1085 		*tid = transaction->t_tid;
1086 		*block = journal->j_head;
1087 	} else {
1088 		*tid = journal->j_transaction_sequence;
1089 		*block = journal->j_head;
1090 	}
1091 	ret = tid_gt(*tid, journal->j_tail_sequence);
1092 	spin_unlock(&journal->j_list_lock);
1093 	read_unlock(&journal->j_state_lock);
1094 
1095 	return ret;
1096 }
1097 
1098 /*
1099  * Update information in journal structure and in on disk journal superblock
1100  * about log tail. This function does not check whether information passed in
1101  * really pushes log tail further. It's responsibility of the caller to make
1102  * sure provided log tail information is valid (e.g. by holding
1103  * j_checkpoint_mutex all the time between computing log tail and calling this
1104  * function as is the case with jbd2_cleanup_journal_tail()).
1105  *
1106  * Requires j_checkpoint_mutex
1107  */
__jbd2_update_log_tail(journal_t * journal,tid_t tid,unsigned long block)1108 int __jbd2_update_log_tail(journal_t *journal, tid_t tid, unsigned long block)
1109 {
1110 	unsigned long freed;
1111 	int ret;
1112 
1113 	BUG_ON(!mutex_is_locked(&journal->j_checkpoint_mutex));
1114 
1115 	/*
1116 	 * We cannot afford for write to remain in drive's caches since as
1117 	 * soon as we update j_tail, next transaction can start reusing journal
1118 	 * space and if we lose sb update during power failure we'd replay
1119 	 * old transaction with possibly newly overwritten data.
1120 	 */
1121 	ret = jbd2_journal_update_sb_log_tail(journal, tid, block,
1122 					      REQ_SYNC | REQ_FUA);
1123 	if (ret)
1124 		goto out;
1125 
1126 	write_lock(&journal->j_state_lock);
1127 	freed = block - journal->j_tail;
1128 	if (block < journal->j_tail)
1129 		freed += journal->j_last - journal->j_first;
1130 
1131 	trace_jbd2_update_log_tail(journal, tid, block, freed);
1132 	jbd_debug(1,
1133 		  "Cleaning journal tail from %u to %u (offset %lu), "
1134 		  "freeing %lu\n",
1135 		  journal->j_tail_sequence, tid, block, freed);
1136 
1137 	journal->j_free += freed;
1138 	journal->j_tail_sequence = tid;
1139 	journal->j_tail = block;
1140 	write_unlock(&journal->j_state_lock);
1141 
1142 out:
1143 	return ret;
1144 }
1145 
1146 /*
1147  * This is a variation of __jbd2_update_log_tail which checks for validity of
1148  * provided log tail and locks j_checkpoint_mutex. So it is safe against races
1149  * with other threads updating log tail.
1150  */
jbd2_update_log_tail(journal_t * journal,tid_t tid,unsigned long block)1151 void jbd2_update_log_tail(journal_t *journal, tid_t tid, unsigned long block)
1152 {
1153 	mutex_lock_io(&journal->j_checkpoint_mutex);
1154 	if (tid_gt(tid, journal->j_tail_sequence))
1155 		__jbd2_update_log_tail(journal, tid, block);
1156 	mutex_unlock(&journal->j_checkpoint_mutex);
1157 }
1158 
1159 struct jbd2_stats_proc_session {
1160 	journal_t *journal;
1161 	struct transaction_stats_s *stats;
1162 	int start;
1163 	int max;
1164 };
1165 
jbd2_seq_info_start(struct seq_file * seq,loff_t * pos)1166 static void *jbd2_seq_info_start(struct seq_file *seq, loff_t *pos)
1167 {
1168 	return *pos ? NULL : SEQ_START_TOKEN;
1169 }
1170 
jbd2_seq_info_next(struct seq_file * seq,void * v,loff_t * pos)1171 static void *jbd2_seq_info_next(struct seq_file *seq, void *v, loff_t *pos)
1172 {
1173 	(*pos)++;
1174 	return NULL;
1175 }
1176 
jbd2_seq_info_show(struct seq_file * seq,void * v)1177 static int jbd2_seq_info_show(struct seq_file *seq, void *v)
1178 {
1179 	struct jbd2_stats_proc_session *s = seq->private;
1180 
1181 	if (v != SEQ_START_TOKEN)
1182 		return 0;
1183 	seq_printf(seq, "%lu transactions (%lu requested), "
1184 		   "each up to %u blocks\n",
1185 		   s->stats->ts_tid, s->stats->ts_requested,
1186 		   s->journal->j_max_transaction_buffers);
1187 	if (s->stats->ts_tid == 0)
1188 		return 0;
1189 	seq_printf(seq, "average: \n  %ums waiting for transaction\n",
1190 	    jiffies_to_msecs(s->stats->run.rs_wait / s->stats->ts_tid));
1191 	seq_printf(seq, "  %ums request delay\n",
1192 	    (s->stats->ts_requested == 0) ? 0 :
1193 	    jiffies_to_msecs(s->stats->run.rs_request_delay /
1194 			     s->stats->ts_requested));
1195 	seq_printf(seq, "  %ums running transaction\n",
1196 	    jiffies_to_msecs(s->stats->run.rs_running / s->stats->ts_tid));
1197 	seq_printf(seq, "  %ums transaction was being locked\n",
1198 	    jiffies_to_msecs(s->stats->run.rs_locked / s->stats->ts_tid));
1199 	seq_printf(seq, "  %ums flushing data (in ordered mode)\n",
1200 	    jiffies_to_msecs(s->stats->run.rs_flushing / s->stats->ts_tid));
1201 	seq_printf(seq, "  %ums logging transaction\n",
1202 	    jiffies_to_msecs(s->stats->run.rs_logging / s->stats->ts_tid));
1203 	seq_printf(seq, "  %lluus average transaction commit time\n",
1204 		   div_u64(s->journal->j_average_commit_time, 1000));
1205 	seq_printf(seq, "  %lu handles per transaction\n",
1206 	    s->stats->run.rs_handle_count / s->stats->ts_tid);
1207 	seq_printf(seq, "  %lu blocks per transaction\n",
1208 	    s->stats->run.rs_blocks / s->stats->ts_tid);
1209 	seq_printf(seq, "  %lu logged blocks per transaction\n",
1210 	    s->stats->run.rs_blocks_logged / s->stats->ts_tid);
1211 	return 0;
1212 }
1213 
jbd2_seq_info_stop(struct seq_file * seq,void * v)1214 static void jbd2_seq_info_stop(struct seq_file *seq, void *v)
1215 {
1216 }
1217 
1218 static const struct seq_operations jbd2_seq_info_ops = {
1219 	.start  = jbd2_seq_info_start,
1220 	.next   = jbd2_seq_info_next,
1221 	.stop   = jbd2_seq_info_stop,
1222 	.show   = jbd2_seq_info_show,
1223 };
1224 
jbd2_seq_info_open(struct inode * inode,struct file * file)1225 static int jbd2_seq_info_open(struct inode *inode, struct file *file)
1226 {
1227 	journal_t *journal = PDE_DATA(inode);
1228 	struct jbd2_stats_proc_session *s;
1229 	int rc, size;
1230 
1231 	s = kmalloc(sizeof(*s), GFP_KERNEL);
1232 	if (s == NULL)
1233 		return -ENOMEM;
1234 	size = sizeof(struct transaction_stats_s);
1235 	s->stats = kmalloc(size, GFP_KERNEL);
1236 	if (s->stats == NULL) {
1237 		kfree(s);
1238 		return -ENOMEM;
1239 	}
1240 	spin_lock(&journal->j_history_lock);
1241 	memcpy(s->stats, &journal->j_stats, size);
1242 	s->journal = journal;
1243 	spin_unlock(&journal->j_history_lock);
1244 
1245 	rc = seq_open(file, &jbd2_seq_info_ops);
1246 	if (rc == 0) {
1247 		struct seq_file *m = file->private_data;
1248 		m->private = s;
1249 	} else {
1250 		kfree(s->stats);
1251 		kfree(s);
1252 	}
1253 	return rc;
1254 
1255 }
1256 
jbd2_seq_info_release(struct inode * inode,struct file * file)1257 static int jbd2_seq_info_release(struct inode *inode, struct file *file)
1258 {
1259 	struct seq_file *seq = file->private_data;
1260 	struct jbd2_stats_proc_session *s = seq->private;
1261 	kfree(s->stats);
1262 	kfree(s);
1263 	return seq_release(inode, file);
1264 }
1265 
1266 static const struct proc_ops jbd2_info_proc_ops = {
1267 	.proc_open	= jbd2_seq_info_open,
1268 	.proc_read	= seq_read,
1269 	.proc_lseek	= seq_lseek,
1270 	.proc_release	= jbd2_seq_info_release,
1271 };
1272 
1273 static struct proc_dir_entry *proc_jbd2_stats;
1274 
jbd2_stats_proc_init(journal_t * journal)1275 static void jbd2_stats_proc_init(journal_t *journal)
1276 {
1277 	journal->j_proc_entry = proc_mkdir(journal->j_devname, proc_jbd2_stats);
1278 	if (journal->j_proc_entry) {
1279 		proc_create_data("info", S_IRUGO, journal->j_proc_entry,
1280 				 &jbd2_info_proc_ops, journal);
1281 	}
1282 }
1283 
jbd2_stats_proc_exit(journal_t * journal)1284 static void jbd2_stats_proc_exit(journal_t *journal)
1285 {
1286 	remove_proc_entry("info", journal->j_proc_entry);
1287 	remove_proc_entry(journal->j_devname, proc_jbd2_stats);
1288 }
1289 
1290 /* Minimum size of descriptor tag */
jbd2_min_tag_size(void)1291 static int jbd2_min_tag_size(void)
1292 {
1293 	/*
1294 	 * Tag with 32-bit block numbers does not use last four bytes of the
1295 	 * structure
1296 	 */
1297 	return sizeof(journal_block_tag_t) - 4;
1298 }
1299 
1300 /**
1301  * jbd2_journal_shrink_scan()
1302  *
1303  * Scan the checkpointed buffer on the checkpoint list and release the
1304  * journal_head.
1305  */
jbd2_journal_shrink_scan(struct shrinker * shrink,struct shrink_control * sc)1306 static unsigned long jbd2_journal_shrink_scan(struct shrinker *shrink,
1307 					      struct shrink_control *sc)
1308 {
1309 	journal_t *journal = container_of(shrink, journal_t, j_shrinker);
1310 	unsigned long nr_to_scan = sc->nr_to_scan;
1311 	unsigned long nr_shrunk;
1312 	unsigned long count;
1313 
1314 	count = percpu_counter_read_positive(&journal->j_checkpoint_jh_count);
1315 	trace_jbd2_shrink_scan_enter(journal, sc->nr_to_scan, count);
1316 
1317 	nr_shrunk = jbd2_journal_shrink_checkpoint_list(journal, &nr_to_scan);
1318 
1319 	count = percpu_counter_read_positive(&journal->j_checkpoint_jh_count);
1320 	trace_jbd2_shrink_scan_exit(journal, nr_to_scan, nr_shrunk, count);
1321 
1322 	return nr_shrunk;
1323 }
1324 
1325 /**
1326  * jbd2_journal_shrink_count()
1327  *
1328  * Count the number of checkpoint buffers on the checkpoint list.
1329  */
jbd2_journal_shrink_count(struct shrinker * shrink,struct shrink_control * sc)1330 static unsigned long jbd2_journal_shrink_count(struct shrinker *shrink,
1331 					       struct shrink_control *sc)
1332 {
1333 	journal_t *journal = container_of(shrink, journal_t, j_shrinker);
1334 	unsigned long count;
1335 
1336 	count = percpu_counter_read_positive(&journal->j_checkpoint_jh_count);
1337 	trace_jbd2_shrink_count(journal, sc->nr_to_scan, count);
1338 
1339 	return count;
1340 }
1341 
1342 /*
1343  * Management for journal control blocks: functions to create and
1344  * destroy journal_t structures, and to initialise and read existing
1345  * journal blocks from disk.  */
1346 
1347 /* First: create and setup a journal_t object in memory.  We initialise
1348  * very few fields yet: that has to wait until we have created the
1349  * journal structures from from scratch, or loaded them from disk. */
1350 
journal_init_common(struct block_device * bdev,struct block_device * fs_dev,unsigned long long start,int len,int blocksize)1351 static journal_t *journal_init_common(struct block_device *bdev,
1352 			struct block_device *fs_dev,
1353 			unsigned long long start, int len, int blocksize)
1354 {
1355 	static struct lock_class_key jbd2_trans_commit_key;
1356 	journal_t *journal;
1357 	int err;
1358 	struct buffer_head *bh;
1359 	int n;
1360 
1361 	journal = kzalloc(sizeof(*journal), GFP_KERNEL);
1362 	if (!journal)
1363 		return NULL;
1364 
1365 	init_waitqueue_head(&journal->j_wait_transaction_locked);
1366 	init_waitqueue_head(&journal->j_wait_done_commit);
1367 	init_waitqueue_head(&journal->j_wait_commit);
1368 	init_waitqueue_head(&journal->j_wait_updates);
1369 	init_waitqueue_head(&journal->j_wait_reserved);
1370 	init_waitqueue_head(&journal->j_fc_wait);
1371 	mutex_init(&journal->j_abort_mutex);
1372 	mutex_init(&journal->j_barrier);
1373 	mutex_init(&journal->j_checkpoint_mutex);
1374 	spin_lock_init(&journal->j_revoke_lock);
1375 	spin_lock_init(&journal->j_list_lock);
1376 	rwlock_init(&journal->j_state_lock);
1377 
1378 	journal->j_commit_interval = (HZ * JBD2_DEFAULT_MAX_COMMIT_AGE);
1379 	journal->j_min_batch_time = 0;
1380 	journal->j_max_batch_time = 15000; /* 15ms */
1381 	atomic_set(&journal->j_reserved_credits, 0);
1382 
1383 	/* The journal is marked for error until we succeed with recovery! */
1384 	journal->j_flags = JBD2_ABORT;
1385 
1386 	/* Set up a default-sized revoke table for the new mount. */
1387 	err = jbd2_journal_init_revoke(journal, JOURNAL_REVOKE_DEFAULT_HASH);
1388 	if (err)
1389 		goto err_cleanup;
1390 
1391 	spin_lock_init(&journal->j_history_lock);
1392 
1393 	lockdep_init_map(&journal->j_trans_commit_map, "jbd2_handle",
1394 			 &jbd2_trans_commit_key, 0);
1395 
1396 	/* journal descriptor can store up to n blocks -bzzz */
1397 	journal->j_blocksize = blocksize;
1398 	journal->j_dev = bdev;
1399 	journal->j_fs_dev = fs_dev;
1400 	journal->j_blk_offset = start;
1401 	journal->j_total_len = len;
1402 	/* We need enough buffers to write out full descriptor block. */
1403 	n = journal->j_blocksize / jbd2_min_tag_size();
1404 	journal->j_wbufsize = n;
1405 	journal->j_fc_wbuf = NULL;
1406 	journal->j_wbuf = kmalloc_array(n, sizeof(struct buffer_head *),
1407 					GFP_KERNEL);
1408 	if (!journal->j_wbuf)
1409 		goto err_cleanup;
1410 
1411 	bh = getblk_unmovable(journal->j_dev, start, journal->j_blocksize);
1412 	if (!bh) {
1413 		pr_err("%s: Cannot get buffer for journal superblock\n",
1414 			__func__);
1415 		goto err_cleanup;
1416 	}
1417 	journal->j_sb_buffer = bh;
1418 	journal->j_superblock = (journal_superblock_t *)bh->b_data;
1419 
1420 	journal->j_shrink_transaction = NULL;
1421 	journal->j_shrinker.scan_objects = jbd2_journal_shrink_scan;
1422 	journal->j_shrinker.count_objects = jbd2_journal_shrink_count;
1423 	journal->j_shrinker.seeks = DEFAULT_SEEKS;
1424 	journal->j_shrinker.batch = journal->j_max_transaction_buffers;
1425 
1426 	if (percpu_counter_init(&journal->j_checkpoint_jh_count, 0, GFP_KERNEL))
1427 		goto err_cleanup;
1428 
1429 	if (register_shrinker(&journal->j_shrinker)) {
1430 		percpu_counter_destroy(&journal->j_checkpoint_jh_count);
1431 		goto err_cleanup;
1432 	}
1433 	return journal;
1434 
1435 err_cleanup:
1436 	brelse(journal->j_sb_buffer);
1437 	kfree(journal->j_wbuf);
1438 	jbd2_journal_destroy_revoke(journal);
1439 	kfree(journal);
1440 	return NULL;
1441 }
1442 
1443 /* jbd2_journal_init_dev and jbd2_journal_init_inode:
1444  *
1445  * Create a journal structure assigned some fixed set of disk blocks to
1446  * the journal.  We don't actually touch those disk blocks yet, but we
1447  * need to set up all of the mapping information to tell the journaling
1448  * system where the journal blocks are.
1449  *
1450  */
1451 
1452 /**
1453  *  journal_t * jbd2_journal_init_dev() - creates and initialises a journal structure
1454  *  @bdev: Block device on which to create the journal
1455  *  @fs_dev: Device which hold journalled filesystem for this journal.
1456  *  @start: Block nr Start of journal.
1457  *  @len:  Length of the journal in blocks.
1458  *  @blocksize: blocksize of journalling device
1459  *
1460  *  Returns: a newly created journal_t *
1461  *
1462  *  jbd2_journal_init_dev creates a journal which maps a fixed contiguous
1463  *  range of blocks on an arbitrary block device.
1464  *
1465  */
jbd2_journal_init_dev(struct block_device * bdev,struct block_device * fs_dev,unsigned long long start,int len,int blocksize)1466 journal_t *jbd2_journal_init_dev(struct block_device *bdev,
1467 			struct block_device *fs_dev,
1468 			unsigned long long start, int len, int blocksize)
1469 {
1470 	journal_t *journal;
1471 
1472 	journal = journal_init_common(bdev, fs_dev, start, len, blocksize);
1473 	if (!journal)
1474 		return NULL;
1475 
1476 	bdevname(journal->j_dev, journal->j_devname);
1477 	strreplace(journal->j_devname, '/', '!');
1478 	jbd2_stats_proc_init(journal);
1479 
1480 	return journal;
1481 }
1482 
1483 /**
1484  *  journal_t * jbd2_journal_init_inode () - creates a journal which maps to a inode.
1485  *  @inode: An inode to create the journal in
1486  *
1487  * jbd2_journal_init_inode creates a journal which maps an on-disk inode as
1488  * the journal.  The inode must exist already, must support bmap() and
1489  * must have all data blocks preallocated.
1490  */
jbd2_journal_init_inode(struct inode * inode)1491 journal_t *jbd2_journal_init_inode(struct inode *inode)
1492 {
1493 	journal_t *journal;
1494 	sector_t blocknr;
1495 	char *p;
1496 	int err = 0;
1497 
1498 	blocknr = 0;
1499 	err = bmap(inode, &blocknr);
1500 
1501 	if (err || !blocknr) {
1502 		pr_err("%s: Cannot locate journal superblock\n",
1503 			__func__);
1504 		return NULL;
1505 	}
1506 
1507 	jbd_debug(1, "JBD2: inode %s/%ld, size %lld, bits %d, blksize %ld\n",
1508 		  inode->i_sb->s_id, inode->i_ino, (long long) inode->i_size,
1509 		  inode->i_sb->s_blocksize_bits, inode->i_sb->s_blocksize);
1510 
1511 	journal = journal_init_common(inode->i_sb->s_bdev, inode->i_sb->s_bdev,
1512 			blocknr, inode->i_size >> inode->i_sb->s_blocksize_bits,
1513 			inode->i_sb->s_blocksize);
1514 	if (!journal)
1515 		return NULL;
1516 
1517 	journal->j_inode = inode;
1518 	bdevname(journal->j_dev, journal->j_devname);
1519 	p = strreplace(journal->j_devname, '/', '!');
1520 	sprintf(p, "-%lu", journal->j_inode->i_ino);
1521 	jbd2_stats_proc_init(journal);
1522 
1523 	return journal;
1524 }
1525 
1526 /*
1527  * If the journal init or create aborts, we need to mark the journal
1528  * superblock as being NULL to prevent the journal destroy from writing
1529  * back a bogus superblock.
1530  */
journal_fail_superblock(journal_t * journal)1531 static void journal_fail_superblock(journal_t *journal)
1532 {
1533 	struct buffer_head *bh = journal->j_sb_buffer;
1534 	brelse(bh);
1535 	journal->j_sb_buffer = NULL;
1536 }
1537 
1538 /*
1539  * Given a journal_t structure, initialise the various fields for
1540  * startup of a new journaling session.  We use this both when creating
1541  * a journal, and after recovering an old journal to reset it for
1542  * subsequent use.
1543  */
1544 
journal_reset(journal_t * journal)1545 static int journal_reset(journal_t *journal)
1546 {
1547 	journal_superblock_t *sb = journal->j_superblock;
1548 	unsigned long long first, last;
1549 
1550 	first = be32_to_cpu(sb->s_first);
1551 	last = be32_to_cpu(sb->s_maxlen);
1552 	if (first + JBD2_MIN_JOURNAL_BLOCKS > last + 1) {
1553 		printk(KERN_ERR "JBD2: Journal too short (blocks %llu-%llu).\n",
1554 		       first, last);
1555 		journal_fail_superblock(journal);
1556 		return -EINVAL;
1557 	}
1558 
1559 	journal->j_first = first;
1560 	journal->j_last = last;
1561 
1562 	journal->j_head = journal->j_first;
1563 	journal->j_tail = journal->j_first;
1564 	journal->j_free = journal->j_last - journal->j_first;
1565 
1566 	journal->j_tail_sequence = journal->j_transaction_sequence;
1567 	journal->j_commit_sequence = journal->j_transaction_sequence - 1;
1568 	journal->j_commit_request = journal->j_commit_sequence;
1569 
1570 	journal->j_max_transaction_buffers = jbd2_journal_get_max_txn_bufs(journal);
1571 
1572 	/*
1573 	 * Now that journal recovery is done, turn fast commits off here. This
1574 	 * way, if fast commit was enabled before the crash but if now FS has
1575 	 * disabled it, we don't enable fast commits.
1576 	 */
1577 	jbd2_clear_feature_fast_commit(journal);
1578 
1579 	/*
1580 	 * As a special case, if the on-disk copy is already marked as needing
1581 	 * no recovery (s_start == 0), then we can safely defer the superblock
1582 	 * update until the next commit by setting JBD2_FLUSHED.  This avoids
1583 	 * attempting a write to a potential-readonly device.
1584 	 */
1585 	if (sb->s_start == 0) {
1586 		jbd_debug(1, "JBD2: Skipping superblock update on recovered sb "
1587 			"(start %ld, seq %u, errno %d)\n",
1588 			journal->j_tail, journal->j_tail_sequence,
1589 			journal->j_errno);
1590 		journal->j_flags |= JBD2_FLUSHED;
1591 	} else {
1592 		/* Lock here to make assertions happy... */
1593 		mutex_lock_io(&journal->j_checkpoint_mutex);
1594 		/*
1595 		 * Update log tail information. We use REQ_FUA since new
1596 		 * transaction will start reusing journal space and so we
1597 		 * must make sure information about current log tail is on
1598 		 * disk before that.
1599 		 */
1600 		jbd2_journal_update_sb_log_tail(journal,
1601 						journal->j_tail_sequence,
1602 						journal->j_tail,
1603 						REQ_SYNC | REQ_FUA);
1604 		mutex_unlock(&journal->j_checkpoint_mutex);
1605 	}
1606 	return jbd2_journal_start_thread(journal);
1607 }
1608 
1609 /*
1610  * This function expects that the caller will have locked the journal
1611  * buffer head, and will return with it unlocked
1612  */
jbd2_write_superblock(journal_t * journal,int write_flags)1613 static int jbd2_write_superblock(journal_t *journal, int write_flags)
1614 {
1615 	struct buffer_head *bh = journal->j_sb_buffer;
1616 	journal_superblock_t *sb = journal->j_superblock;
1617 	int ret;
1618 
1619 	/* Buffer got discarded which means block device got invalidated */
1620 	if (!buffer_mapped(bh)) {
1621 		unlock_buffer(bh);
1622 		return -EIO;
1623 	}
1624 
1625 	trace_jbd2_write_superblock(journal, write_flags);
1626 	if (!(journal->j_flags & JBD2_BARRIER))
1627 		write_flags &= ~(REQ_FUA | REQ_PREFLUSH);
1628 	if (buffer_write_io_error(bh)) {
1629 		/*
1630 		 * Oh, dear.  A previous attempt to write the journal
1631 		 * superblock failed.  This could happen because the
1632 		 * USB device was yanked out.  Or it could happen to
1633 		 * be a transient write error and maybe the block will
1634 		 * be remapped.  Nothing we can do but to retry the
1635 		 * write and hope for the best.
1636 		 */
1637 		printk(KERN_ERR "JBD2: previous I/O error detected "
1638 		       "for journal superblock update for %s.\n",
1639 		       journal->j_devname);
1640 		clear_buffer_write_io_error(bh);
1641 		set_buffer_uptodate(bh);
1642 	}
1643 	if (jbd2_journal_has_csum_v2or3(journal))
1644 		sb->s_checksum = jbd2_superblock_csum(journal, sb);
1645 	get_bh(bh);
1646 	bh->b_end_io = end_buffer_write_sync;
1647 	ret = submit_bh(REQ_OP_WRITE, write_flags, bh);
1648 	wait_on_buffer(bh);
1649 	if (buffer_write_io_error(bh)) {
1650 		clear_buffer_write_io_error(bh);
1651 		set_buffer_uptodate(bh);
1652 		ret = -EIO;
1653 	}
1654 	if (ret) {
1655 		printk(KERN_ERR "JBD2: Error %d detected when updating "
1656 		       "journal superblock for %s.\n", ret,
1657 		       journal->j_devname);
1658 		if (!is_journal_aborted(journal))
1659 			jbd2_journal_abort(journal, ret);
1660 	}
1661 
1662 	return ret;
1663 }
1664 
1665 /**
1666  * jbd2_journal_update_sb_log_tail() - Update log tail in journal sb on disk.
1667  * @journal: The journal to update.
1668  * @tail_tid: TID of the new transaction at the tail of the log
1669  * @tail_block: The first block of the transaction at the tail of the log
1670  * @write_op: With which operation should we write the journal sb
1671  *
1672  * Update a journal's superblock information about log tail and write it to
1673  * disk, waiting for the IO to complete.
1674  */
jbd2_journal_update_sb_log_tail(journal_t * journal,tid_t tail_tid,unsigned long tail_block,int write_op)1675 int jbd2_journal_update_sb_log_tail(journal_t *journal, tid_t tail_tid,
1676 				     unsigned long tail_block, int write_op)
1677 {
1678 	journal_superblock_t *sb = journal->j_superblock;
1679 	int ret;
1680 
1681 	if (is_journal_aborted(journal))
1682 		return -EIO;
1683 	if (test_bit(JBD2_CHECKPOINT_IO_ERROR, &journal->j_atomic_flags)) {
1684 		jbd2_journal_abort(journal, -EIO);
1685 		return -EIO;
1686 	}
1687 
1688 	BUG_ON(!mutex_is_locked(&journal->j_checkpoint_mutex));
1689 	jbd_debug(1, "JBD2: updating superblock (start %lu, seq %u)\n",
1690 		  tail_block, tail_tid);
1691 
1692 	lock_buffer(journal->j_sb_buffer);
1693 	sb->s_sequence = cpu_to_be32(tail_tid);
1694 	sb->s_start    = cpu_to_be32(tail_block);
1695 
1696 	ret = jbd2_write_superblock(journal, write_op);
1697 	if (ret)
1698 		goto out;
1699 
1700 	/* Log is no longer empty */
1701 	write_lock(&journal->j_state_lock);
1702 	WARN_ON(!sb->s_sequence);
1703 	journal->j_flags &= ~JBD2_FLUSHED;
1704 	write_unlock(&journal->j_state_lock);
1705 
1706 out:
1707 	return ret;
1708 }
1709 
1710 /**
1711  * jbd2_mark_journal_empty() - Mark on disk journal as empty.
1712  * @journal: The journal to update.
1713  * @write_op: With which operation should we write the journal sb
1714  *
1715  * Update a journal's dynamic superblock fields to show that journal is empty.
1716  * Write updated superblock to disk waiting for IO to complete.
1717  */
jbd2_mark_journal_empty(journal_t * journal,int write_op)1718 static void jbd2_mark_journal_empty(journal_t *journal, int write_op)
1719 {
1720 	journal_superblock_t *sb = journal->j_superblock;
1721 	bool had_fast_commit = false;
1722 
1723 	BUG_ON(!mutex_is_locked(&journal->j_checkpoint_mutex));
1724 	lock_buffer(journal->j_sb_buffer);
1725 	if (sb->s_start == 0) {		/* Is it already empty? */
1726 		unlock_buffer(journal->j_sb_buffer);
1727 		return;
1728 	}
1729 
1730 	jbd_debug(1, "JBD2: Marking journal as empty (seq %u)\n",
1731 		  journal->j_tail_sequence);
1732 
1733 	sb->s_sequence = cpu_to_be32(journal->j_tail_sequence);
1734 	sb->s_start    = cpu_to_be32(0);
1735 	if (jbd2_has_feature_fast_commit(journal)) {
1736 		/*
1737 		 * When journal is clean, no need to commit fast commit flag and
1738 		 * make file system incompatible with older kernels.
1739 		 */
1740 		jbd2_clear_feature_fast_commit(journal);
1741 		had_fast_commit = true;
1742 	}
1743 
1744 	jbd2_write_superblock(journal, write_op);
1745 
1746 	if (had_fast_commit)
1747 		jbd2_set_feature_fast_commit(journal);
1748 
1749 	/* Log is no longer empty */
1750 	write_lock(&journal->j_state_lock);
1751 	journal->j_flags |= JBD2_FLUSHED;
1752 	write_unlock(&journal->j_state_lock);
1753 }
1754 
1755 
1756 /**
1757  * jbd2_journal_update_sb_errno() - Update error in the journal.
1758  * @journal: The journal to update.
1759  *
1760  * Update a journal's errno.  Write updated superblock to disk waiting for IO
1761  * to complete.
1762  */
jbd2_journal_update_sb_errno(journal_t * journal)1763 void jbd2_journal_update_sb_errno(journal_t *journal)
1764 {
1765 	journal_superblock_t *sb = journal->j_superblock;
1766 	int errcode;
1767 
1768 	lock_buffer(journal->j_sb_buffer);
1769 	errcode = journal->j_errno;
1770 	if (errcode == -ESHUTDOWN)
1771 		errcode = 0;
1772 	jbd_debug(1, "JBD2: updating superblock error (errno %d)\n", errcode);
1773 	sb->s_errno    = cpu_to_be32(errcode);
1774 
1775 	jbd2_write_superblock(journal, REQ_SYNC | REQ_FUA);
1776 }
1777 EXPORT_SYMBOL(jbd2_journal_update_sb_errno);
1778 
journal_revoke_records_per_block(journal_t * journal)1779 static int journal_revoke_records_per_block(journal_t *journal)
1780 {
1781 	int record_size;
1782 	int space = journal->j_blocksize - sizeof(jbd2_journal_revoke_header_t);
1783 
1784 	if (jbd2_has_feature_64bit(journal))
1785 		record_size = 8;
1786 	else
1787 		record_size = 4;
1788 
1789 	if (jbd2_journal_has_csum_v2or3(journal))
1790 		space -= sizeof(struct jbd2_journal_block_tail);
1791 	return space / record_size;
1792 }
1793 
1794 /*
1795  * Read the superblock for a given journal, performing initial
1796  * validation of the format.
1797  */
journal_get_superblock(journal_t * journal)1798 static int journal_get_superblock(journal_t *journal)
1799 {
1800 	struct buffer_head *bh;
1801 	journal_superblock_t *sb;
1802 	int err = -EIO;
1803 
1804 	bh = journal->j_sb_buffer;
1805 
1806 	J_ASSERT(bh != NULL);
1807 	if (!buffer_uptodate(bh)) {
1808 		ll_rw_block(REQ_OP_READ, 0, 1, &bh);
1809 		wait_on_buffer(bh);
1810 		if (!buffer_uptodate(bh)) {
1811 			printk(KERN_ERR
1812 				"JBD2: IO error reading journal superblock\n");
1813 			goto out;
1814 		}
1815 	}
1816 
1817 	if (buffer_verified(bh))
1818 		return 0;
1819 
1820 	sb = journal->j_superblock;
1821 
1822 	err = -EINVAL;
1823 
1824 	if (sb->s_header.h_magic != cpu_to_be32(JBD2_MAGIC_NUMBER) ||
1825 	    sb->s_blocksize != cpu_to_be32(journal->j_blocksize)) {
1826 		printk(KERN_WARNING "JBD2: no valid journal superblock found\n");
1827 		goto out;
1828 	}
1829 
1830 	switch(be32_to_cpu(sb->s_header.h_blocktype)) {
1831 	case JBD2_SUPERBLOCK_V1:
1832 		journal->j_format_version = 1;
1833 		break;
1834 	case JBD2_SUPERBLOCK_V2:
1835 		journal->j_format_version = 2;
1836 		break;
1837 	default:
1838 		printk(KERN_WARNING "JBD2: unrecognised superblock format ID\n");
1839 		goto out;
1840 	}
1841 
1842 	if (be32_to_cpu(sb->s_maxlen) < journal->j_total_len)
1843 		journal->j_total_len = be32_to_cpu(sb->s_maxlen);
1844 	else if (be32_to_cpu(sb->s_maxlen) > journal->j_total_len) {
1845 		printk(KERN_WARNING "JBD2: journal file too short\n");
1846 		goto out;
1847 	}
1848 
1849 	if (be32_to_cpu(sb->s_first) == 0 ||
1850 	    be32_to_cpu(sb->s_first) >= journal->j_total_len) {
1851 		printk(KERN_WARNING
1852 			"JBD2: Invalid start block of journal: %u\n",
1853 			be32_to_cpu(sb->s_first));
1854 		goto out;
1855 	}
1856 
1857 	if (jbd2_has_feature_csum2(journal) &&
1858 	    jbd2_has_feature_csum3(journal)) {
1859 		/* Can't have checksum v2 and v3 at the same time! */
1860 		printk(KERN_ERR "JBD2: Can't enable checksumming v2 and v3 "
1861 		       "at the same time!\n");
1862 		goto out;
1863 	}
1864 
1865 	if (jbd2_journal_has_csum_v2or3_feature(journal) &&
1866 	    jbd2_has_feature_checksum(journal)) {
1867 		/* Can't have checksum v1 and v2 on at the same time! */
1868 		printk(KERN_ERR "JBD2: Can't enable checksumming v1 and v2/3 "
1869 		       "at the same time!\n");
1870 		goto out;
1871 	}
1872 
1873 	if (!jbd2_verify_csum_type(journal, sb)) {
1874 		printk(KERN_ERR "JBD2: Unknown checksum type\n");
1875 		goto out;
1876 	}
1877 
1878 	/* Load the checksum driver */
1879 	if (jbd2_journal_has_csum_v2or3_feature(journal)) {
1880 		journal->j_chksum_driver = crypto_alloc_shash("crc32c", 0, 0);
1881 		if (IS_ERR(journal->j_chksum_driver)) {
1882 			printk(KERN_ERR "JBD2: Cannot load crc32c driver.\n");
1883 			err = PTR_ERR(journal->j_chksum_driver);
1884 			journal->j_chksum_driver = NULL;
1885 			goto out;
1886 		}
1887 	}
1888 
1889 	if (jbd2_journal_has_csum_v2or3(journal)) {
1890 		/* Check superblock checksum */
1891 		if (sb->s_checksum != jbd2_superblock_csum(journal, sb)) {
1892 			printk(KERN_ERR "JBD2: journal checksum error\n");
1893 			err = -EFSBADCRC;
1894 			goto out;
1895 		}
1896 
1897 		/* Precompute checksum seed for all metadata */
1898 		journal->j_csum_seed = jbd2_chksum(journal, ~0, sb->s_uuid,
1899 						   sizeof(sb->s_uuid));
1900 	}
1901 
1902 	journal->j_revoke_records_per_block =
1903 				journal_revoke_records_per_block(journal);
1904 	set_buffer_verified(bh);
1905 
1906 	return 0;
1907 
1908 out:
1909 	journal_fail_superblock(journal);
1910 	return err;
1911 }
1912 
1913 /*
1914  * Load the on-disk journal superblock and read the key fields into the
1915  * journal_t.
1916  */
1917 
load_superblock(journal_t * journal)1918 static int load_superblock(journal_t *journal)
1919 {
1920 	int err;
1921 	journal_superblock_t *sb;
1922 	int num_fc_blocks;
1923 
1924 	err = journal_get_superblock(journal);
1925 	if (err)
1926 		return err;
1927 
1928 	sb = journal->j_superblock;
1929 
1930 	journal->j_tail_sequence = be32_to_cpu(sb->s_sequence);
1931 	journal->j_tail = be32_to_cpu(sb->s_start);
1932 	journal->j_first = be32_to_cpu(sb->s_first);
1933 	journal->j_errno = be32_to_cpu(sb->s_errno);
1934 	journal->j_last = be32_to_cpu(sb->s_maxlen);
1935 
1936 	if (jbd2_has_feature_fast_commit(journal)) {
1937 		journal->j_fc_last = be32_to_cpu(sb->s_maxlen);
1938 		num_fc_blocks = be32_to_cpu(sb->s_num_fc_blks);
1939 		if (!num_fc_blocks)
1940 			num_fc_blocks = JBD2_MIN_FC_BLOCKS;
1941 		if (journal->j_last - num_fc_blocks >= JBD2_MIN_JOURNAL_BLOCKS)
1942 			journal->j_last = journal->j_fc_last - num_fc_blocks;
1943 		journal->j_fc_first = journal->j_last + 1;
1944 		journal->j_fc_off = 0;
1945 	}
1946 
1947 	return 0;
1948 }
1949 
1950 
1951 /**
1952  * jbd2_journal_load() - Read journal from disk.
1953  * @journal: Journal to act on.
1954  *
1955  * Given a journal_t structure which tells us which disk blocks contain
1956  * a journal, read the journal from disk to initialise the in-memory
1957  * structures.
1958  */
jbd2_journal_load(journal_t * journal)1959 int jbd2_journal_load(journal_t *journal)
1960 {
1961 	int err;
1962 	journal_superblock_t *sb;
1963 
1964 	err = load_superblock(journal);
1965 	if (err)
1966 		return err;
1967 
1968 	sb = journal->j_superblock;
1969 	/* If this is a V2 superblock, then we have to check the
1970 	 * features flags on it. */
1971 
1972 	if (journal->j_format_version >= 2) {
1973 		if ((sb->s_feature_ro_compat &
1974 		     ~cpu_to_be32(JBD2_KNOWN_ROCOMPAT_FEATURES)) ||
1975 		    (sb->s_feature_incompat &
1976 		     ~cpu_to_be32(JBD2_KNOWN_INCOMPAT_FEATURES))) {
1977 			printk(KERN_WARNING
1978 				"JBD2: Unrecognised features on journal\n");
1979 			return -EINVAL;
1980 		}
1981 	}
1982 
1983 	/*
1984 	 * Create a slab for this blocksize
1985 	 */
1986 	err = jbd2_journal_create_slab(be32_to_cpu(sb->s_blocksize));
1987 	if (err)
1988 		return err;
1989 
1990 	/* Let the recovery code check whether it needs to recover any
1991 	 * data from the journal. */
1992 	if (jbd2_journal_recover(journal))
1993 		goto recovery_error;
1994 
1995 	if (journal->j_failed_commit) {
1996 		printk(KERN_ERR "JBD2: journal transaction %u on %s "
1997 		       "is corrupt.\n", journal->j_failed_commit,
1998 		       journal->j_devname);
1999 		return -EFSCORRUPTED;
2000 	}
2001 	/*
2002 	 * clear JBD2_ABORT flag initialized in journal_init_common
2003 	 * here to update log tail information with the newest seq.
2004 	 */
2005 	journal->j_flags &= ~JBD2_ABORT;
2006 
2007 	/* OK, we've finished with the dynamic journal bits:
2008 	 * reinitialise the dynamic contents of the superblock in memory
2009 	 * and reset them on disk. */
2010 	if (journal_reset(journal))
2011 		goto recovery_error;
2012 
2013 	journal->j_flags |= JBD2_LOADED;
2014 	return 0;
2015 
2016 recovery_error:
2017 	printk(KERN_WARNING "JBD2: recovery failed\n");
2018 	return -EIO;
2019 }
2020 
2021 /**
2022  * jbd2_journal_destroy() - Release a journal_t structure.
2023  * @journal: Journal to act on.
2024  *
2025  * Release a journal_t structure once it is no longer in use by the
2026  * journaled object.
2027  * Return <0 if we couldn't clean up the journal.
2028  */
jbd2_journal_destroy(journal_t * journal)2029 int jbd2_journal_destroy(journal_t *journal)
2030 {
2031 	int err = 0;
2032 
2033 	/* Wait for the commit thread to wake up and die. */
2034 	journal_kill_thread(journal);
2035 
2036 	/* Force a final log commit */
2037 	if (journal->j_running_transaction)
2038 		jbd2_journal_commit_transaction(journal);
2039 
2040 	/* Force any old transactions to disk */
2041 
2042 	/* Totally anal locking here... */
2043 	spin_lock(&journal->j_list_lock);
2044 	while (journal->j_checkpoint_transactions != NULL) {
2045 		spin_unlock(&journal->j_list_lock);
2046 		mutex_lock_io(&journal->j_checkpoint_mutex);
2047 		err = jbd2_log_do_checkpoint(journal);
2048 		mutex_unlock(&journal->j_checkpoint_mutex);
2049 		/*
2050 		 * If checkpointing failed, just free the buffers to avoid
2051 		 * looping forever
2052 		 */
2053 		if (err) {
2054 			jbd2_journal_destroy_checkpoint(journal);
2055 			spin_lock(&journal->j_list_lock);
2056 			break;
2057 		}
2058 		spin_lock(&journal->j_list_lock);
2059 	}
2060 
2061 	J_ASSERT(journal->j_running_transaction == NULL);
2062 	J_ASSERT(journal->j_committing_transaction == NULL);
2063 	J_ASSERT(journal->j_checkpoint_transactions == NULL);
2064 	spin_unlock(&journal->j_list_lock);
2065 
2066 	/*
2067 	 * OK, all checkpoint transactions have been checked, now check the
2068 	 * write out io error flag and abort the journal if some buffer failed
2069 	 * to write back to the original location, otherwise the filesystem
2070 	 * may become inconsistent.
2071 	 */
2072 	if (!is_journal_aborted(journal) &&
2073 	    test_bit(JBD2_CHECKPOINT_IO_ERROR, &journal->j_atomic_flags))
2074 		jbd2_journal_abort(journal, -EIO);
2075 
2076 	if (journal->j_sb_buffer) {
2077 		if (!is_journal_aborted(journal)) {
2078 			mutex_lock_io(&journal->j_checkpoint_mutex);
2079 
2080 			write_lock(&journal->j_state_lock);
2081 			journal->j_tail_sequence =
2082 				++journal->j_transaction_sequence;
2083 			write_unlock(&journal->j_state_lock);
2084 
2085 			jbd2_mark_journal_empty(journal,
2086 					REQ_SYNC | REQ_PREFLUSH | REQ_FUA);
2087 			mutex_unlock(&journal->j_checkpoint_mutex);
2088 		} else
2089 			err = -EIO;
2090 		brelse(journal->j_sb_buffer);
2091 	}
2092 
2093 	if (journal->j_shrinker.flags & SHRINKER_REGISTERED) {
2094 		percpu_counter_destroy(&journal->j_checkpoint_jh_count);
2095 		unregister_shrinker(&journal->j_shrinker);
2096 	}
2097 	if (journal->j_proc_entry)
2098 		jbd2_stats_proc_exit(journal);
2099 	iput(journal->j_inode);
2100 	if (journal->j_revoke)
2101 		jbd2_journal_destroy_revoke(journal);
2102 	if (journal->j_chksum_driver)
2103 		crypto_free_shash(journal->j_chksum_driver);
2104 	kfree(journal->j_fc_wbuf);
2105 	kfree(journal->j_wbuf);
2106 	kfree(journal);
2107 
2108 	return err;
2109 }
2110 
2111 
2112 /**
2113  * jbd2_journal_check_used_features() - Check if features specified are used.
2114  * @journal: Journal to check.
2115  * @compat: bitmask of compatible features
2116  * @ro: bitmask of features that force read-only mount
2117  * @incompat: bitmask of incompatible features
2118  *
2119  * Check whether the journal uses all of a given set of
2120  * features.  Return true (non-zero) if it does.
2121  **/
2122 
jbd2_journal_check_used_features(journal_t * journal,unsigned long compat,unsigned long ro,unsigned long incompat)2123 int jbd2_journal_check_used_features(journal_t *journal, unsigned long compat,
2124 				 unsigned long ro, unsigned long incompat)
2125 {
2126 	journal_superblock_t *sb;
2127 
2128 	if (!compat && !ro && !incompat)
2129 		return 1;
2130 	/* Load journal superblock if it is not loaded yet. */
2131 	if (journal->j_format_version == 0 &&
2132 	    journal_get_superblock(journal) != 0)
2133 		return 0;
2134 	if (journal->j_format_version == 1)
2135 		return 0;
2136 
2137 	sb = journal->j_superblock;
2138 
2139 	if (((be32_to_cpu(sb->s_feature_compat) & compat) == compat) &&
2140 	    ((be32_to_cpu(sb->s_feature_ro_compat) & ro) == ro) &&
2141 	    ((be32_to_cpu(sb->s_feature_incompat) & incompat) == incompat))
2142 		return 1;
2143 
2144 	return 0;
2145 }
2146 
2147 /**
2148  * jbd2_journal_check_available_features() - Check feature set in journalling layer
2149  * @journal: Journal to check.
2150  * @compat: bitmask of compatible features
2151  * @ro: bitmask of features that force read-only mount
2152  * @incompat: bitmask of incompatible features
2153  *
2154  * Check whether the journaling code supports the use of
2155  * all of a given set of features on this journal.  Return true
2156  * (non-zero) if it can. */
2157 
jbd2_journal_check_available_features(journal_t * journal,unsigned long compat,unsigned long ro,unsigned long incompat)2158 int jbd2_journal_check_available_features(journal_t *journal, unsigned long compat,
2159 				      unsigned long ro, unsigned long incompat)
2160 {
2161 	if (!compat && !ro && !incompat)
2162 		return 1;
2163 
2164 	/* We can support any known requested features iff the
2165 	 * superblock is in version 2.  Otherwise we fail to support any
2166 	 * extended sb features. */
2167 
2168 	if (journal->j_format_version != 2)
2169 		return 0;
2170 
2171 	if ((compat   & JBD2_KNOWN_COMPAT_FEATURES) == compat &&
2172 	    (ro       & JBD2_KNOWN_ROCOMPAT_FEATURES) == ro &&
2173 	    (incompat & JBD2_KNOWN_INCOMPAT_FEATURES) == incompat)
2174 		return 1;
2175 
2176 	return 0;
2177 }
2178 
2179 static int
jbd2_journal_initialize_fast_commit(journal_t * journal)2180 jbd2_journal_initialize_fast_commit(journal_t *journal)
2181 {
2182 	journal_superblock_t *sb = journal->j_superblock;
2183 	unsigned long long num_fc_blks;
2184 
2185 	num_fc_blks = be32_to_cpu(sb->s_num_fc_blks);
2186 	if (num_fc_blks == 0)
2187 		num_fc_blks = JBD2_MIN_FC_BLOCKS;
2188 	if (journal->j_last - num_fc_blks < JBD2_MIN_JOURNAL_BLOCKS)
2189 		return -ENOSPC;
2190 
2191 	/* Are we called twice? */
2192 	WARN_ON(journal->j_fc_wbuf != NULL);
2193 	journal->j_fc_wbuf = kmalloc_array(num_fc_blks,
2194 				sizeof(struct buffer_head *), GFP_KERNEL);
2195 	if (!journal->j_fc_wbuf)
2196 		return -ENOMEM;
2197 
2198 	journal->j_fc_wbufsize = num_fc_blks;
2199 	journal->j_fc_last = journal->j_last;
2200 	journal->j_last = journal->j_fc_last - num_fc_blks;
2201 	journal->j_fc_first = journal->j_last + 1;
2202 	journal->j_fc_off = 0;
2203 	journal->j_free = journal->j_last - journal->j_first;
2204 	journal->j_max_transaction_buffers =
2205 		jbd2_journal_get_max_txn_bufs(journal);
2206 
2207 	return 0;
2208 }
2209 
2210 /**
2211  * jbd2_journal_set_features() - Mark a given journal feature in the superblock
2212  * @journal: Journal to act on.
2213  * @compat: bitmask of compatible features
2214  * @ro: bitmask of features that force read-only mount
2215  * @incompat: bitmask of incompatible features
2216  *
2217  * Mark a given journal feature as present on the
2218  * superblock.  Returns true if the requested features could be set.
2219  *
2220  */
2221 
jbd2_journal_set_features(journal_t * journal,unsigned long compat,unsigned long ro,unsigned long incompat)2222 int jbd2_journal_set_features(journal_t *journal, unsigned long compat,
2223 			  unsigned long ro, unsigned long incompat)
2224 {
2225 #define INCOMPAT_FEATURE_ON(f) \
2226 		((incompat & (f)) && !(sb->s_feature_incompat & cpu_to_be32(f)))
2227 #define COMPAT_FEATURE_ON(f) \
2228 		((compat & (f)) && !(sb->s_feature_compat & cpu_to_be32(f)))
2229 	journal_superblock_t *sb;
2230 
2231 	if (jbd2_journal_check_used_features(journal, compat, ro, incompat))
2232 		return 1;
2233 
2234 	if (!jbd2_journal_check_available_features(journal, compat, ro, incompat))
2235 		return 0;
2236 
2237 	/* If enabling v2 checksums, turn on v3 instead */
2238 	if (incompat & JBD2_FEATURE_INCOMPAT_CSUM_V2) {
2239 		incompat &= ~JBD2_FEATURE_INCOMPAT_CSUM_V2;
2240 		incompat |= JBD2_FEATURE_INCOMPAT_CSUM_V3;
2241 	}
2242 
2243 	/* Asking for checksumming v3 and v1?  Only give them v3. */
2244 	if (incompat & JBD2_FEATURE_INCOMPAT_CSUM_V3 &&
2245 	    compat & JBD2_FEATURE_COMPAT_CHECKSUM)
2246 		compat &= ~JBD2_FEATURE_COMPAT_CHECKSUM;
2247 
2248 	jbd_debug(1, "Setting new features 0x%lx/0x%lx/0x%lx\n",
2249 		  compat, ro, incompat);
2250 
2251 	sb = journal->j_superblock;
2252 
2253 	if (incompat & JBD2_FEATURE_INCOMPAT_FAST_COMMIT) {
2254 		if (jbd2_journal_initialize_fast_commit(journal)) {
2255 			pr_err("JBD2: Cannot enable fast commits.\n");
2256 			return 0;
2257 		}
2258 	}
2259 
2260 	/* Load the checksum driver if necessary */
2261 	if ((journal->j_chksum_driver == NULL) &&
2262 	    INCOMPAT_FEATURE_ON(JBD2_FEATURE_INCOMPAT_CSUM_V3)) {
2263 		journal->j_chksum_driver = crypto_alloc_shash("crc32c", 0, 0);
2264 		if (IS_ERR(journal->j_chksum_driver)) {
2265 			printk(KERN_ERR "JBD2: Cannot load crc32c driver.\n");
2266 			journal->j_chksum_driver = NULL;
2267 			return 0;
2268 		}
2269 		/* Precompute checksum seed for all metadata */
2270 		journal->j_csum_seed = jbd2_chksum(journal, ~0, sb->s_uuid,
2271 						   sizeof(sb->s_uuid));
2272 	}
2273 
2274 	lock_buffer(journal->j_sb_buffer);
2275 
2276 	/* If enabling v3 checksums, update superblock */
2277 	if (INCOMPAT_FEATURE_ON(JBD2_FEATURE_INCOMPAT_CSUM_V3)) {
2278 		sb->s_checksum_type = JBD2_CRC32C_CHKSUM;
2279 		sb->s_feature_compat &=
2280 			~cpu_to_be32(JBD2_FEATURE_COMPAT_CHECKSUM);
2281 	}
2282 
2283 	/* If enabling v1 checksums, downgrade superblock */
2284 	if (COMPAT_FEATURE_ON(JBD2_FEATURE_COMPAT_CHECKSUM))
2285 		sb->s_feature_incompat &=
2286 			~cpu_to_be32(JBD2_FEATURE_INCOMPAT_CSUM_V2 |
2287 				     JBD2_FEATURE_INCOMPAT_CSUM_V3);
2288 
2289 	sb->s_feature_compat    |= cpu_to_be32(compat);
2290 	sb->s_feature_ro_compat |= cpu_to_be32(ro);
2291 	sb->s_feature_incompat  |= cpu_to_be32(incompat);
2292 	unlock_buffer(journal->j_sb_buffer);
2293 	journal->j_revoke_records_per_block =
2294 				journal_revoke_records_per_block(journal);
2295 
2296 	return 1;
2297 #undef COMPAT_FEATURE_ON
2298 #undef INCOMPAT_FEATURE_ON
2299 }
2300 
2301 /*
2302  * jbd2_journal_clear_features() - Clear a given journal feature in the
2303  * 				    superblock
2304  * @journal: Journal to act on.
2305  * @compat: bitmask of compatible features
2306  * @ro: bitmask of features that force read-only mount
2307  * @incompat: bitmask of incompatible features
2308  *
2309  * Clear a given journal feature as present on the
2310  * superblock.
2311  */
jbd2_journal_clear_features(journal_t * journal,unsigned long compat,unsigned long ro,unsigned long incompat)2312 void jbd2_journal_clear_features(journal_t *journal, unsigned long compat,
2313 				unsigned long ro, unsigned long incompat)
2314 {
2315 	journal_superblock_t *sb;
2316 
2317 	jbd_debug(1, "Clear features 0x%lx/0x%lx/0x%lx\n",
2318 		  compat, ro, incompat);
2319 
2320 	sb = journal->j_superblock;
2321 
2322 	sb->s_feature_compat    &= ~cpu_to_be32(compat);
2323 	sb->s_feature_ro_compat &= ~cpu_to_be32(ro);
2324 	sb->s_feature_incompat  &= ~cpu_to_be32(incompat);
2325 	journal->j_revoke_records_per_block =
2326 				journal_revoke_records_per_block(journal);
2327 }
2328 EXPORT_SYMBOL(jbd2_journal_clear_features);
2329 
2330 /**
2331  * jbd2_journal_flush() - Flush journal
2332  * @journal: Journal to act on.
2333  *
2334  * Flush all data for a given journal to disk and empty the journal.
2335  * Filesystems can use this when remounting readonly to ensure that
2336  * recovery does not need to happen on remount.
2337  */
2338 
jbd2_journal_flush(journal_t * journal)2339 int jbd2_journal_flush(journal_t *journal)
2340 {
2341 	int err = 0;
2342 	transaction_t *transaction = NULL;
2343 
2344 	write_lock(&journal->j_state_lock);
2345 
2346 	/* Force everything buffered to the log... */
2347 	if (journal->j_running_transaction) {
2348 		transaction = journal->j_running_transaction;
2349 		__jbd2_log_start_commit(journal, transaction->t_tid);
2350 	} else if (journal->j_committing_transaction)
2351 		transaction = journal->j_committing_transaction;
2352 
2353 	/* Wait for the log commit to complete... */
2354 	if (transaction) {
2355 		tid_t tid = transaction->t_tid;
2356 
2357 		write_unlock(&journal->j_state_lock);
2358 		jbd2_log_wait_commit(journal, tid);
2359 	} else {
2360 		write_unlock(&journal->j_state_lock);
2361 	}
2362 
2363 	/* ...and flush everything in the log out to disk. */
2364 	spin_lock(&journal->j_list_lock);
2365 	while (!err && journal->j_checkpoint_transactions != NULL) {
2366 		spin_unlock(&journal->j_list_lock);
2367 		mutex_lock_io(&journal->j_checkpoint_mutex);
2368 		err = jbd2_log_do_checkpoint(journal);
2369 		mutex_unlock(&journal->j_checkpoint_mutex);
2370 		spin_lock(&journal->j_list_lock);
2371 	}
2372 	spin_unlock(&journal->j_list_lock);
2373 
2374 	if (is_journal_aborted(journal))
2375 		return -EIO;
2376 
2377 	mutex_lock_io(&journal->j_checkpoint_mutex);
2378 	if (!err) {
2379 		err = jbd2_cleanup_journal_tail(journal);
2380 		if (err < 0) {
2381 			mutex_unlock(&journal->j_checkpoint_mutex);
2382 			goto out;
2383 		}
2384 		err = 0;
2385 	}
2386 
2387 	/* Finally, mark the journal as really needing no recovery.
2388 	 * This sets s_start==0 in the underlying superblock, which is
2389 	 * the magic code for a fully-recovered superblock.  Any future
2390 	 * commits of data to the journal will restore the current
2391 	 * s_start value. */
2392 	jbd2_mark_journal_empty(journal, REQ_SYNC | REQ_FUA);
2393 	mutex_unlock(&journal->j_checkpoint_mutex);
2394 	write_lock(&journal->j_state_lock);
2395 	J_ASSERT(!journal->j_running_transaction);
2396 	J_ASSERT(!journal->j_committing_transaction);
2397 	J_ASSERT(!journal->j_checkpoint_transactions);
2398 	J_ASSERT(journal->j_head == journal->j_tail);
2399 	J_ASSERT(journal->j_tail_sequence == journal->j_transaction_sequence);
2400 	write_unlock(&journal->j_state_lock);
2401 out:
2402 	return err;
2403 }
2404 
2405 /**
2406  * jbd2_journal_wipe() - Wipe journal contents
2407  * @journal: Journal to act on.
2408  * @write: flag (see below)
2409  *
2410  * Wipe out all of the contents of a journal, safely.  This will produce
2411  * a warning if the journal contains any valid recovery information.
2412  * Must be called between journal_init_*() and jbd2_journal_load().
2413  *
2414  * If 'write' is non-zero, then we wipe out the journal on disk; otherwise
2415  * we merely suppress recovery.
2416  */
2417 
jbd2_journal_wipe(journal_t * journal,int write)2418 int jbd2_journal_wipe(journal_t *journal, int write)
2419 {
2420 	int err = 0;
2421 
2422 	J_ASSERT (!(journal->j_flags & JBD2_LOADED));
2423 
2424 	err = load_superblock(journal);
2425 	if (err)
2426 		return err;
2427 
2428 	if (!journal->j_tail)
2429 		goto no_recovery;
2430 
2431 	printk(KERN_WARNING "JBD2: %s recovery information on journal\n",
2432 		write ? "Clearing" : "Ignoring");
2433 
2434 	err = jbd2_journal_skip_recovery(journal);
2435 	if (write) {
2436 		/* Lock to make assertions happy... */
2437 		mutex_lock_io(&journal->j_checkpoint_mutex);
2438 		jbd2_mark_journal_empty(journal, REQ_SYNC | REQ_FUA);
2439 		mutex_unlock(&journal->j_checkpoint_mutex);
2440 	}
2441 
2442  no_recovery:
2443 	return err;
2444 }
2445 
2446 /**
2447  * jbd2_journal_abort () - Shutdown the journal immediately.
2448  * @journal: the journal to shutdown.
2449  * @errno:   an error number to record in the journal indicating
2450  *           the reason for the shutdown.
2451  *
2452  * Perform a complete, immediate shutdown of the ENTIRE
2453  * journal (not of a single transaction).  This operation cannot be
2454  * undone without closing and reopening the journal.
2455  *
2456  * The jbd2_journal_abort function is intended to support higher level error
2457  * recovery mechanisms such as the ext2/ext3 remount-readonly error
2458  * mode.
2459  *
2460  * Journal abort has very specific semantics.  Any existing dirty,
2461  * unjournaled buffers in the main filesystem will still be written to
2462  * disk by bdflush, but the journaling mechanism will be suspended
2463  * immediately and no further transaction commits will be honoured.
2464  *
2465  * Any dirty, journaled buffers will be written back to disk without
2466  * hitting the journal.  Atomicity cannot be guaranteed on an aborted
2467  * filesystem, but we _do_ attempt to leave as much data as possible
2468  * behind for fsck to use for cleanup.
2469  *
2470  * Any attempt to get a new transaction handle on a journal which is in
2471  * ABORT state will just result in an -EROFS error return.  A
2472  * jbd2_journal_stop on an existing handle will return -EIO if we have
2473  * entered abort state during the update.
2474  *
2475  * Recursive transactions are not disturbed by journal abort until the
2476  * final jbd2_journal_stop, which will receive the -EIO error.
2477  *
2478  * Finally, the jbd2_journal_abort call allows the caller to supply an errno
2479  * which will be recorded (if possible) in the journal superblock.  This
2480  * allows a client to record failure conditions in the middle of a
2481  * transaction without having to complete the transaction to record the
2482  * failure to disk.  ext3_error, for example, now uses this
2483  * functionality.
2484  *
2485  */
2486 
jbd2_journal_abort(journal_t * journal,int errno)2487 void jbd2_journal_abort(journal_t *journal, int errno)
2488 {
2489 	transaction_t *transaction;
2490 
2491 	/*
2492 	 * Lock the aborting procedure until everything is done, this avoid
2493 	 * races between filesystem's error handling flow (e.g. ext4_abort()),
2494 	 * ensure panic after the error info is written into journal's
2495 	 * superblock.
2496 	 */
2497 	mutex_lock(&journal->j_abort_mutex);
2498 	/*
2499 	 * ESHUTDOWN always takes precedence because a file system check
2500 	 * caused by any other journal abort error is not required after
2501 	 * a shutdown triggered.
2502 	 */
2503 	write_lock(&journal->j_state_lock);
2504 	if (journal->j_flags & JBD2_ABORT) {
2505 		int old_errno = journal->j_errno;
2506 
2507 		write_unlock(&journal->j_state_lock);
2508 		if (old_errno != -ESHUTDOWN && errno == -ESHUTDOWN) {
2509 			journal->j_errno = errno;
2510 			jbd2_journal_update_sb_errno(journal);
2511 		}
2512 		mutex_unlock(&journal->j_abort_mutex);
2513 		return;
2514 	}
2515 
2516 	/*
2517 	 * Mark the abort as occurred and start current running transaction
2518 	 * to release all journaled buffer.
2519 	 */
2520 	pr_err("Aborting journal on device %s.\n", journal->j_devname);
2521 
2522 	journal->j_flags |= JBD2_ABORT;
2523 	journal->j_errno = errno;
2524 	transaction = journal->j_running_transaction;
2525 	if (transaction)
2526 		__jbd2_log_start_commit(journal, transaction->t_tid);
2527 	write_unlock(&journal->j_state_lock);
2528 
2529 	/*
2530 	 * Record errno to the journal super block, so that fsck and jbd2
2531 	 * layer could realise that a filesystem check is needed.
2532 	 */
2533 	jbd2_journal_update_sb_errno(journal);
2534 	mutex_unlock(&journal->j_abort_mutex);
2535 }
2536 
2537 /**
2538  * jbd2_journal_errno() - returns the journal's error state.
2539  * @journal: journal to examine.
2540  *
2541  * This is the errno number set with jbd2_journal_abort(), the last
2542  * time the journal was mounted - if the journal was stopped
2543  * without calling abort this will be 0.
2544  *
2545  * If the journal has been aborted on this mount time -EROFS will
2546  * be returned.
2547  */
jbd2_journal_errno(journal_t * journal)2548 int jbd2_journal_errno(journal_t *journal)
2549 {
2550 	int err;
2551 
2552 	read_lock(&journal->j_state_lock);
2553 	if (journal->j_flags & JBD2_ABORT)
2554 		err = -EROFS;
2555 	else
2556 		err = journal->j_errno;
2557 	read_unlock(&journal->j_state_lock);
2558 	return err;
2559 }
2560 
2561 /**
2562  * jbd2_journal_clear_err() - clears the journal's error state
2563  * @journal: journal to act on.
2564  *
2565  * An error must be cleared or acked to take a FS out of readonly
2566  * mode.
2567  */
jbd2_journal_clear_err(journal_t * journal)2568 int jbd2_journal_clear_err(journal_t *journal)
2569 {
2570 	int err = 0;
2571 
2572 	write_lock(&journal->j_state_lock);
2573 	if (journal->j_flags & JBD2_ABORT)
2574 		err = -EROFS;
2575 	else
2576 		journal->j_errno = 0;
2577 	write_unlock(&journal->j_state_lock);
2578 	return err;
2579 }
2580 
2581 /**
2582  * jbd2_journal_ack_err() - Ack journal err.
2583  * @journal: journal to act on.
2584  *
2585  * An error must be cleared or acked to take a FS out of readonly
2586  * mode.
2587  */
jbd2_journal_ack_err(journal_t * journal)2588 void jbd2_journal_ack_err(journal_t *journal)
2589 {
2590 	write_lock(&journal->j_state_lock);
2591 	if (journal->j_errno)
2592 		journal->j_flags |= JBD2_ACK_ERR;
2593 	write_unlock(&journal->j_state_lock);
2594 }
2595 
jbd2_journal_blocks_per_page(struct inode * inode)2596 int jbd2_journal_blocks_per_page(struct inode *inode)
2597 {
2598 	return 1 << (PAGE_SHIFT - inode->i_sb->s_blocksize_bits);
2599 }
2600 
2601 /*
2602  * helper functions to deal with 32 or 64bit block numbers.
2603  */
journal_tag_bytes(journal_t * journal)2604 size_t journal_tag_bytes(journal_t *journal)
2605 {
2606 	size_t sz;
2607 
2608 	if (jbd2_has_feature_csum3(journal))
2609 		return sizeof(journal_block_tag3_t);
2610 
2611 	sz = sizeof(journal_block_tag_t);
2612 
2613 	if (jbd2_has_feature_csum2(journal))
2614 		sz += sizeof(__u16);
2615 
2616 	if (jbd2_has_feature_64bit(journal))
2617 		return sz;
2618 	else
2619 		return sz - sizeof(__u32);
2620 }
2621 
2622 /*
2623  * JBD memory management
2624  *
2625  * These functions are used to allocate block-sized chunks of memory
2626  * used for making copies of buffer_head data.  Very often it will be
2627  * page-sized chunks of data, but sometimes it will be in
2628  * sub-page-size chunks.  (For example, 16k pages on Power systems
2629  * with a 4k block file system.)  For blocks smaller than a page, we
2630  * use a SLAB allocator.  There are slab caches for each block size,
2631  * which are allocated at mount time, if necessary, and we only free
2632  * (all of) the slab caches when/if the jbd2 module is unloaded.  For
2633  * this reason we don't need to a mutex to protect access to
2634  * jbd2_slab[] allocating or releasing memory; only in
2635  * jbd2_journal_create_slab().
2636  */
2637 #define JBD2_MAX_SLABS 8
2638 static struct kmem_cache *jbd2_slab[JBD2_MAX_SLABS];
2639 
2640 static const char *jbd2_slab_names[JBD2_MAX_SLABS] = {
2641 	"jbd2_1k", "jbd2_2k", "jbd2_4k", "jbd2_8k",
2642 	"jbd2_16k", "jbd2_32k", "jbd2_64k", "jbd2_128k"
2643 };
2644 
2645 
jbd2_journal_destroy_slabs(void)2646 static void jbd2_journal_destroy_slabs(void)
2647 {
2648 	int i;
2649 
2650 	for (i = 0; i < JBD2_MAX_SLABS; i++) {
2651 		kmem_cache_destroy(jbd2_slab[i]);
2652 		jbd2_slab[i] = NULL;
2653 	}
2654 }
2655 
jbd2_journal_create_slab(size_t size)2656 static int jbd2_journal_create_slab(size_t size)
2657 {
2658 	static DEFINE_MUTEX(jbd2_slab_create_mutex);
2659 	int i = order_base_2(size) - 10;
2660 	size_t slab_size;
2661 
2662 	if (size == PAGE_SIZE)
2663 		return 0;
2664 
2665 	if (i >= JBD2_MAX_SLABS)
2666 		return -EINVAL;
2667 
2668 	if (unlikely(i < 0))
2669 		i = 0;
2670 	mutex_lock(&jbd2_slab_create_mutex);
2671 	if (jbd2_slab[i]) {
2672 		mutex_unlock(&jbd2_slab_create_mutex);
2673 		return 0;	/* Already created */
2674 	}
2675 
2676 	slab_size = 1 << (i+10);
2677 	jbd2_slab[i] = kmem_cache_create(jbd2_slab_names[i], slab_size,
2678 					 slab_size, 0, NULL);
2679 	mutex_unlock(&jbd2_slab_create_mutex);
2680 	if (!jbd2_slab[i]) {
2681 		printk(KERN_EMERG "JBD2: no memory for jbd2_slab cache\n");
2682 		return -ENOMEM;
2683 	}
2684 	return 0;
2685 }
2686 
get_slab(size_t size)2687 static struct kmem_cache *get_slab(size_t size)
2688 {
2689 	int i = order_base_2(size) - 10;
2690 
2691 	BUG_ON(i >= JBD2_MAX_SLABS);
2692 	if (unlikely(i < 0))
2693 		i = 0;
2694 	BUG_ON(jbd2_slab[i] == NULL);
2695 	return jbd2_slab[i];
2696 }
2697 
jbd2_alloc(size_t size,gfp_t flags)2698 void *jbd2_alloc(size_t size, gfp_t flags)
2699 {
2700 	void *ptr;
2701 
2702 	BUG_ON(size & (size-1)); /* Must be a power of 2 */
2703 
2704 	if (size < PAGE_SIZE)
2705 		ptr = kmem_cache_alloc(get_slab(size), flags);
2706 	else
2707 		ptr = (void *)__get_free_pages(flags, get_order(size));
2708 
2709 	/* Check alignment; SLUB has gotten this wrong in the past,
2710 	 * and this can lead to user data corruption! */
2711 	BUG_ON(((unsigned long) ptr) & (size-1));
2712 
2713 	return ptr;
2714 }
2715 
jbd2_free(void * ptr,size_t size)2716 void jbd2_free(void *ptr, size_t size)
2717 {
2718 	if (size < PAGE_SIZE)
2719 		kmem_cache_free(get_slab(size), ptr);
2720 	else
2721 		free_pages((unsigned long)ptr, get_order(size));
2722 };
2723 
2724 /*
2725  * Journal_head storage management
2726  */
2727 static struct kmem_cache *jbd2_journal_head_cache;
2728 #ifdef CONFIG_JBD2_DEBUG
2729 static atomic_t nr_journal_heads = ATOMIC_INIT(0);
2730 #endif
2731 
jbd2_journal_init_journal_head_cache(void)2732 static int __init jbd2_journal_init_journal_head_cache(void)
2733 {
2734 	J_ASSERT(!jbd2_journal_head_cache);
2735 	jbd2_journal_head_cache = kmem_cache_create("jbd2_journal_head",
2736 				sizeof(struct journal_head),
2737 				0,		/* offset */
2738 				SLAB_TEMPORARY | SLAB_TYPESAFE_BY_RCU,
2739 				NULL);		/* ctor */
2740 	if (!jbd2_journal_head_cache) {
2741 		printk(KERN_EMERG "JBD2: no memory for journal_head cache\n");
2742 		return -ENOMEM;
2743 	}
2744 	return 0;
2745 }
2746 
jbd2_journal_destroy_journal_head_cache(void)2747 static void jbd2_journal_destroy_journal_head_cache(void)
2748 {
2749 	kmem_cache_destroy(jbd2_journal_head_cache);
2750 	jbd2_journal_head_cache = NULL;
2751 }
2752 
2753 /*
2754  * journal_head splicing and dicing
2755  */
journal_alloc_journal_head(void)2756 static struct journal_head *journal_alloc_journal_head(void)
2757 {
2758 	struct journal_head *ret;
2759 
2760 #ifdef CONFIG_JBD2_DEBUG
2761 	atomic_inc(&nr_journal_heads);
2762 #endif
2763 	ret = kmem_cache_zalloc(jbd2_journal_head_cache, GFP_NOFS);
2764 	if (!ret) {
2765 		jbd_debug(1, "out of memory for journal_head\n");
2766 		pr_notice_ratelimited("ENOMEM in %s, retrying.\n", __func__);
2767 		ret = kmem_cache_zalloc(jbd2_journal_head_cache,
2768 				GFP_NOFS | __GFP_NOFAIL);
2769 	}
2770 	if (ret)
2771 		spin_lock_init(&ret->b_state_lock);
2772 	return ret;
2773 }
2774 
journal_free_journal_head(struct journal_head * jh)2775 static void journal_free_journal_head(struct journal_head *jh)
2776 {
2777 #ifdef CONFIG_JBD2_DEBUG
2778 	atomic_dec(&nr_journal_heads);
2779 	memset(jh, JBD2_POISON_FREE, sizeof(*jh));
2780 #endif
2781 	kmem_cache_free(jbd2_journal_head_cache, jh);
2782 }
2783 
2784 /*
2785  * A journal_head is attached to a buffer_head whenever JBD has an
2786  * interest in the buffer.
2787  *
2788  * Whenever a buffer has an attached journal_head, its ->b_state:BH_JBD bit
2789  * is set.  This bit is tested in core kernel code where we need to take
2790  * JBD-specific actions.  Testing the zeroness of ->b_private is not reliable
2791  * there.
2792  *
2793  * When a buffer has its BH_JBD bit set, its ->b_count is elevated by one.
2794  *
2795  * When a buffer has its BH_JBD bit set it is immune from being released by
2796  * core kernel code, mainly via ->b_count.
2797  *
2798  * A journal_head is detached from its buffer_head when the journal_head's
2799  * b_jcount reaches zero. Running transaction (b_transaction) and checkpoint
2800  * transaction (b_cp_transaction) hold their references to b_jcount.
2801  *
2802  * Various places in the kernel want to attach a journal_head to a buffer_head
2803  * _before_ attaching the journal_head to a transaction.  To protect the
2804  * journal_head in this situation, jbd2_journal_add_journal_head elevates the
2805  * journal_head's b_jcount refcount by one.  The caller must call
2806  * jbd2_journal_put_journal_head() to undo this.
2807  *
2808  * So the typical usage would be:
2809  *
2810  *	(Attach a journal_head if needed.  Increments b_jcount)
2811  *	struct journal_head *jh = jbd2_journal_add_journal_head(bh);
2812  *	...
2813  *      (Get another reference for transaction)
2814  *	jbd2_journal_grab_journal_head(bh);
2815  *	jh->b_transaction = xxx;
2816  *	(Put original reference)
2817  *	jbd2_journal_put_journal_head(jh);
2818  */
2819 
2820 /*
2821  * Give a buffer_head a journal_head.
2822  *
2823  * May sleep.
2824  */
jbd2_journal_add_journal_head(struct buffer_head * bh)2825 struct journal_head *jbd2_journal_add_journal_head(struct buffer_head *bh)
2826 {
2827 	struct journal_head *jh;
2828 	struct journal_head *new_jh = NULL;
2829 
2830 repeat:
2831 	if (!buffer_jbd(bh))
2832 		new_jh = journal_alloc_journal_head();
2833 
2834 	jbd_lock_bh_journal_head(bh);
2835 	if (buffer_jbd(bh)) {
2836 		jh = bh2jh(bh);
2837 	} else {
2838 		J_ASSERT_BH(bh,
2839 			(atomic_read(&bh->b_count) > 0) ||
2840 			(bh->b_page && bh->b_page->mapping));
2841 
2842 		if (!new_jh) {
2843 			jbd_unlock_bh_journal_head(bh);
2844 			goto repeat;
2845 		}
2846 
2847 		jh = new_jh;
2848 		new_jh = NULL;		/* We consumed it */
2849 		set_buffer_jbd(bh);
2850 		bh->b_private = jh;
2851 		jh->b_bh = bh;
2852 		get_bh(bh);
2853 		BUFFER_TRACE(bh, "added journal_head");
2854 	}
2855 	jh->b_jcount++;
2856 	jbd_unlock_bh_journal_head(bh);
2857 	if (new_jh)
2858 		journal_free_journal_head(new_jh);
2859 	return bh->b_private;
2860 }
2861 
2862 /*
2863  * Grab a ref against this buffer_head's journal_head.  If it ended up not
2864  * having a journal_head, return NULL
2865  */
jbd2_journal_grab_journal_head(struct buffer_head * bh)2866 struct journal_head *jbd2_journal_grab_journal_head(struct buffer_head *bh)
2867 {
2868 	struct journal_head *jh = NULL;
2869 
2870 	jbd_lock_bh_journal_head(bh);
2871 	if (buffer_jbd(bh)) {
2872 		jh = bh2jh(bh);
2873 		jh->b_jcount++;
2874 	}
2875 	jbd_unlock_bh_journal_head(bh);
2876 	return jh;
2877 }
2878 EXPORT_SYMBOL(jbd2_journal_grab_journal_head);
2879 
__journal_remove_journal_head(struct buffer_head * bh)2880 static void __journal_remove_journal_head(struct buffer_head *bh)
2881 {
2882 	struct journal_head *jh = bh2jh(bh);
2883 
2884 	J_ASSERT_JH(jh, jh->b_transaction == NULL);
2885 	J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
2886 	J_ASSERT_JH(jh, jh->b_cp_transaction == NULL);
2887 	J_ASSERT_JH(jh, jh->b_jlist == BJ_None);
2888 	J_ASSERT_BH(bh, buffer_jbd(bh));
2889 	J_ASSERT_BH(bh, jh2bh(jh) == bh);
2890 	BUFFER_TRACE(bh, "remove journal_head");
2891 
2892 	/* Unlink before dropping the lock */
2893 	bh->b_private = NULL;
2894 	jh->b_bh = NULL;	/* debug, really */
2895 	clear_buffer_jbd(bh);
2896 }
2897 
journal_release_journal_head(struct journal_head * jh,size_t b_size)2898 static void journal_release_journal_head(struct journal_head *jh, size_t b_size)
2899 {
2900 	if (jh->b_frozen_data) {
2901 		printk(KERN_WARNING "%s: freeing b_frozen_data\n", __func__);
2902 		jbd2_free(jh->b_frozen_data, b_size);
2903 	}
2904 	if (jh->b_committed_data) {
2905 		printk(KERN_WARNING "%s: freeing b_committed_data\n", __func__);
2906 		jbd2_free(jh->b_committed_data, b_size);
2907 	}
2908 	journal_free_journal_head(jh);
2909 }
2910 
2911 /*
2912  * Drop a reference on the passed journal_head.  If it fell to zero then
2913  * release the journal_head from the buffer_head.
2914  */
jbd2_journal_put_journal_head(struct journal_head * jh)2915 void jbd2_journal_put_journal_head(struct journal_head *jh)
2916 {
2917 	struct buffer_head *bh = jh2bh(jh);
2918 
2919 	jbd_lock_bh_journal_head(bh);
2920 	J_ASSERT_JH(jh, jh->b_jcount > 0);
2921 	--jh->b_jcount;
2922 	if (!jh->b_jcount) {
2923 		__journal_remove_journal_head(bh);
2924 		jbd_unlock_bh_journal_head(bh);
2925 		journal_release_journal_head(jh, bh->b_size);
2926 		__brelse(bh);
2927 	} else {
2928 		jbd_unlock_bh_journal_head(bh);
2929 	}
2930 }
2931 EXPORT_SYMBOL(jbd2_journal_put_journal_head);
2932 
2933 /*
2934  * Initialize jbd inode head
2935  */
jbd2_journal_init_jbd_inode(struct jbd2_inode * jinode,struct inode * inode)2936 void jbd2_journal_init_jbd_inode(struct jbd2_inode *jinode, struct inode *inode)
2937 {
2938 	jinode->i_transaction = NULL;
2939 	jinode->i_next_transaction = NULL;
2940 	jinode->i_vfs_inode = inode;
2941 	jinode->i_flags = 0;
2942 	jinode->i_dirty_start = 0;
2943 	jinode->i_dirty_end = 0;
2944 	INIT_LIST_HEAD(&jinode->i_list);
2945 }
2946 
2947 /*
2948  * Function to be called before we start removing inode from memory (i.e.,
2949  * clear_inode() is a fine place to be called from). It removes inode from
2950  * transaction's lists.
2951  */
jbd2_journal_release_jbd_inode(journal_t * journal,struct jbd2_inode * jinode)2952 void jbd2_journal_release_jbd_inode(journal_t *journal,
2953 				    struct jbd2_inode *jinode)
2954 {
2955 	if (!journal)
2956 		return;
2957 restart:
2958 	spin_lock(&journal->j_list_lock);
2959 	/* Is commit writing out inode - we have to wait */
2960 	if (jinode->i_flags & JI_COMMIT_RUNNING) {
2961 		wait_queue_head_t *wq;
2962 		DEFINE_WAIT_BIT(wait, &jinode->i_flags, __JI_COMMIT_RUNNING);
2963 		wq = bit_waitqueue(&jinode->i_flags, __JI_COMMIT_RUNNING);
2964 		prepare_to_wait(wq, &wait.wq_entry, TASK_UNINTERRUPTIBLE);
2965 		spin_unlock(&journal->j_list_lock);
2966 		schedule();
2967 		finish_wait(wq, &wait.wq_entry);
2968 		goto restart;
2969 	}
2970 
2971 	if (jinode->i_transaction) {
2972 		list_del(&jinode->i_list);
2973 		jinode->i_transaction = NULL;
2974 	}
2975 	spin_unlock(&journal->j_list_lock);
2976 }
2977 
2978 
2979 #ifdef CONFIG_PROC_FS
2980 
2981 #define JBD2_STATS_PROC_NAME "fs/jbd2"
2982 
jbd2_create_jbd_stats_proc_entry(void)2983 static void __init jbd2_create_jbd_stats_proc_entry(void)
2984 {
2985 	proc_jbd2_stats = proc_mkdir(JBD2_STATS_PROC_NAME, NULL);
2986 }
2987 
jbd2_remove_jbd_stats_proc_entry(void)2988 static void __exit jbd2_remove_jbd_stats_proc_entry(void)
2989 {
2990 	if (proc_jbd2_stats)
2991 		remove_proc_entry(JBD2_STATS_PROC_NAME, NULL);
2992 }
2993 
2994 #else
2995 
2996 #define jbd2_create_jbd_stats_proc_entry() do {} while (0)
2997 #define jbd2_remove_jbd_stats_proc_entry() do {} while (0)
2998 
2999 #endif
3000 
3001 struct kmem_cache *jbd2_handle_cache, *jbd2_inode_cache;
3002 
jbd2_journal_init_inode_cache(void)3003 static int __init jbd2_journal_init_inode_cache(void)
3004 {
3005 	J_ASSERT(!jbd2_inode_cache);
3006 	jbd2_inode_cache = KMEM_CACHE(jbd2_inode, 0);
3007 	if (!jbd2_inode_cache) {
3008 		pr_emerg("JBD2: failed to create inode cache\n");
3009 		return -ENOMEM;
3010 	}
3011 	return 0;
3012 }
3013 
jbd2_journal_init_handle_cache(void)3014 static int __init jbd2_journal_init_handle_cache(void)
3015 {
3016 	J_ASSERT(!jbd2_handle_cache);
3017 	jbd2_handle_cache = KMEM_CACHE(jbd2_journal_handle, SLAB_TEMPORARY);
3018 	if (!jbd2_handle_cache) {
3019 		printk(KERN_EMERG "JBD2: failed to create handle cache\n");
3020 		return -ENOMEM;
3021 	}
3022 	return 0;
3023 }
3024 
jbd2_journal_destroy_inode_cache(void)3025 static void jbd2_journal_destroy_inode_cache(void)
3026 {
3027 	kmem_cache_destroy(jbd2_inode_cache);
3028 	jbd2_inode_cache = NULL;
3029 }
3030 
jbd2_journal_destroy_handle_cache(void)3031 static void jbd2_journal_destroy_handle_cache(void)
3032 {
3033 	kmem_cache_destroy(jbd2_handle_cache);
3034 	jbd2_handle_cache = NULL;
3035 }
3036 
3037 /*
3038  * Module startup and shutdown
3039  */
3040 
journal_init_caches(void)3041 static int __init journal_init_caches(void)
3042 {
3043 	int ret;
3044 
3045 	ret = jbd2_journal_init_revoke_record_cache();
3046 	if (ret == 0)
3047 		ret = jbd2_journal_init_revoke_table_cache();
3048 	if (ret == 0)
3049 		ret = jbd2_journal_init_journal_head_cache();
3050 	if (ret == 0)
3051 		ret = jbd2_journal_init_handle_cache();
3052 	if (ret == 0)
3053 		ret = jbd2_journal_init_inode_cache();
3054 	if (ret == 0)
3055 		ret = jbd2_journal_init_transaction_cache();
3056 	return ret;
3057 }
3058 
jbd2_journal_destroy_caches(void)3059 static void jbd2_journal_destroy_caches(void)
3060 {
3061 	jbd2_journal_destroy_revoke_record_cache();
3062 	jbd2_journal_destroy_revoke_table_cache();
3063 	jbd2_journal_destroy_journal_head_cache();
3064 	jbd2_journal_destroy_handle_cache();
3065 	jbd2_journal_destroy_inode_cache();
3066 	jbd2_journal_destroy_transaction_cache();
3067 	jbd2_journal_destroy_slabs();
3068 }
3069 
journal_init(void)3070 static int __init journal_init(void)
3071 {
3072 	int ret;
3073 
3074 	BUILD_BUG_ON(sizeof(struct journal_superblock_s) != 1024);
3075 
3076 	ret = journal_init_caches();
3077 	if (ret == 0) {
3078 		jbd2_create_jbd_stats_proc_entry();
3079 	} else {
3080 		jbd2_journal_destroy_caches();
3081 	}
3082 	return ret;
3083 }
3084 
journal_exit(void)3085 static void __exit journal_exit(void)
3086 {
3087 #ifdef CONFIG_JBD2_DEBUG
3088 	int n = atomic_read(&nr_journal_heads);
3089 	if (n)
3090 		printk(KERN_ERR "JBD2: leaked %d journal_heads!\n", n);
3091 #endif
3092 	jbd2_remove_jbd_stats_proc_entry();
3093 	jbd2_journal_destroy_caches();
3094 }
3095 
3096 MODULE_LICENSE("GPL");
3097 module_init(journal_init);
3098 module_exit(journal_exit);
3099 
3100