• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /* Basic authentication token and access key management
3  *
4  * Copyright (C) 2004-2008 Red Hat, Inc. All Rights Reserved.
5  * Written by David Howells (dhowells@redhat.com)
6  */
7 
8 #include <linux/export.h>
9 #include <linux/init.h>
10 #include <linux/poison.h>
11 #include <linux/sched.h>
12 #include <linux/slab.h>
13 #include <linux/security.h>
14 #include <linux/workqueue.h>
15 #include <linux/random.h>
16 #include <linux/ima.h>
17 #include <linux/err.h>
18 #include "internal.h"
19 
20 struct kmem_cache *key_jar;
21 struct rb_root		key_serial_tree; /* tree of keys indexed by serial */
22 DEFINE_SPINLOCK(key_serial_lock);
23 
24 struct rb_root	key_user_tree; /* tree of quota records indexed by UID */
25 DEFINE_SPINLOCK(key_user_lock);
26 
27 unsigned int key_quota_root_maxkeys = 1000000;	/* root's key count quota */
28 unsigned int key_quota_root_maxbytes = 25000000; /* root's key space quota */
29 unsigned int key_quota_maxkeys = 200;		/* general key count quota */
30 unsigned int key_quota_maxbytes = 20000;	/* general key space quota */
31 
32 static LIST_HEAD(key_types_list);
33 static DECLARE_RWSEM(key_types_sem);
34 
35 /* We serialise key instantiation and link */
36 DEFINE_MUTEX(key_construction_mutex);
37 
38 #ifdef KEY_DEBUGGING
__key_check(const struct key * key)39 void __key_check(const struct key *key)
40 {
41 	printk("__key_check: key %p {%08x} should be {%08x}\n",
42 	       key, key->magic, KEY_DEBUG_MAGIC);
43 	BUG();
44 }
45 #endif
46 
47 /*
48  * Get the key quota record for a user, allocating a new record if one doesn't
49  * already exist.
50  */
key_user_lookup(kuid_t uid)51 struct key_user *key_user_lookup(kuid_t uid)
52 {
53 	struct key_user *candidate = NULL, *user;
54 	struct rb_node *parent, **p;
55 
56 try_again:
57 	parent = NULL;
58 	p = &key_user_tree.rb_node;
59 	spin_lock(&key_user_lock);
60 
61 	/* search the tree for a user record with a matching UID */
62 	while (*p) {
63 		parent = *p;
64 		user = rb_entry(parent, struct key_user, node);
65 
66 		if (uid_lt(uid, user->uid))
67 			p = &(*p)->rb_left;
68 		else if (uid_gt(uid, user->uid))
69 			p = &(*p)->rb_right;
70 		else
71 			goto found;
72 	}
73 
74 	/* if we get here, we failed to find a match in the tree */
75 	if (!candidate) {
76 		/* allocate a candidate user record if we don't already have
77 		 * one */
78 		spin_unlock(&key_user_lock);
79 
80 		user = NULL;
81 		candidate = kmalloc(sizeof(struct key_user), GFP_KERNEL);
82 		if (unlikely(!candidate))
83 			goto out;
84 
85 		/* the allocation may have scheduled, so we need to repeat the
86 		 * search lest someone else added the record whilst we were
87 		 * asleep */
88 		goto try_again;
89 	}
90 
91 	/* if we get here, then the user record still hadn't appeared on the
92 	 * second pass - so we use the candidate record */
93 	refcount_set(&candidate->usage, 1);
94 	atomic_set(&candidate->nkeys, 0);
95 	atomic_set(&candidate->nikeys, 0);
96 	candidate->uid = uid;
97 	candidate->qnkeys = 0;
98 	candidate->qnbytes = 0;
99 	spin_lock_init(&candidate->lock);
100 	mutex_init(&candidate->cons_lock);
101 
102 	rb_link_node(&candidate->node, parent, p);
103 	rb_insert_color(&candidate->node, &key_user_tree);
104 	spin_unlock(&key_user_lock);
105 	user = candidate;
106 	goto out;
107 
108 	/* okay - we found a user record for this UID */
109 found:
110 	refcount_inc(&user->usage);
111 	spin_unlock(&key_user_lock);
112 	kfree(candidate);
113 out:
114 	return user;
115 }
116 
117 /*
118  * Dispose of a user structure
119  */
key_user_put(struct key_user * user)120 void key_user_put(struct key_user *user)
121 {
122 	if (refcount_dec_and_lock(&user->usage, &key_user_lock)) {
123 		rb_erase(&user->node, &key_user_tree);
124 		spin_unlock(&key_user_lock);
125 
126 		kfree(user);
127 	}
128 }
129 
130 /*
131  * Allocate a serial number for a key.  These are assigned randomly to avoid
132  * security issues through covert channel problems.
133  */
key_alloc_serial(struct key * key)134 static inline void key_alloc_serial(struct key *key)
135 {
136 	struct rb_node *parent, **p;
137 	struct key *xkey;
138 
139 	/* propose a random serial number and look for a hole for it in the
140 	 * serial number tree */
141 	do {
142 		get_random_bytes(&key->serial, sizeof(key->serial));
143 
144 		key->serial >>= 1; /* negative numbers are not permitted */
145 	} while (key->serial < 3);
146 
147 	spin_lock(&key_serial_lock);
148 
149 attempt_insertion:
150 	parent = NULL;
151 	p = &key_serial_tree.rb_node;
152 
153 	while (*p) {
154 		parent = *p;
155 		xkey = rb_entry(parent, struct key, serial_node);
156 
157 		if (key->serial < xkey->serial)
158 			p = &(*p)->rb_left;
159 		else if (key->serial > xkey->serial)
160 			p = &(*p)->rb_right;
161 		else
162 			goto serial_exists;
163 	}
164 
165 	/* we've found a suitable hole - arrange for this key to occupy it */
166 	rb_link_node(&key->serial_node, parent, p);
167 	rb_insert_color(&key->serial_node, &key_serial_tree);
168 
169 	spin_unlock(&key_serial_lock);
170 	return;
171 
172 	/* we found a key with the proposed serial number - walk the tree from
173 	 * that point looking for the next unused serial number */
174 serial_exists:
175 	for (;;) {
176 		key->serial++;
177 		if (key->serial < 3) {
178 			key->serial = 3;
179 			goto attempt_insertion;
180 		}
181 
182 		parent = rb_next(parent);
183 		if (!parent)
184 			goto attempt_insertion;
185 
186 		xkey = rb_entry(parent, struct key, serial_node);
187 		if (key->serial < xkey->serial)
188 			goto attempt_insertion;
189 	}
190 }
191 
192 /**
193  * key_alloc - Allocate a key of the specified type.
194  * @type: The type of key to allocate.
195  * @desc: The key description to allow the key to be searched out.
196  * @uid: The owner of the new key.
197  * @gid: The group ID for the new key's group permissions.
198  * @cred: The credentials specifying UID namespace.
199  * @perm: The permissions mask of the new key.
200  * @flags: Flags specifying quota properties.
201  * @restrict_link: Optional link restriction for new keyrings.
202  *
203  * Allocate a key of the specified type with the attributes given.  The key is
204  * returned in an uninstantiated state and the caller needs to instantiate the
205  * key before returning.
206  *
207  * The restrict_link structure (if not NULL) will be freed when the
208  * keyring is destroyed, so it must be dynamically allocated.
209  *
210  * The user's key count quota is updated to reflect the creation of the key and
211  * the user's key data quota has the default for the key type reserved.  The
212  * instantiation function should amend this as necessary.  If insufficient
213  * quota is available, -EDQUOT will be returned.
214  *
215  * The LSM security modules can prevent a key being created, in which case
216  * -EACCES will be returned.
217  *
218  * Returns a pointer to the new key if successful and an error code otherwise.
219  *
220  * Note that the caller needs to ensure the key type isn't uninstantiated.
221  * Internally this can be done by locking key_types_sem.  Externally, this can
222  * be done by either never unregistering the key type, or making sure
223  * key_alloc() calls don't race with module unloading.
224  */
key_alloc(struct key_type * type,const char * desc,kuid_t uid,kgid_t gid,const struct cred * cred,key_perm_t perm,unsigned long flags,struct key_restriction * restrict_link)225 struct key *key_alloc(struct key_type *type, const char *desc,
226 		      kuid_t uid, kgid_t gid, const struct cred *cred,
227 		      key_perm_t perm, unsigned long flags,
228 		      struct key_restriction *restrict_link)
229 {
230 	struct key_user *user = NULL;
231 	struct key *key;
232 	size_t desclen, quotalen;
233 	int ret;
234 
235 	key = ERR_PTR(-EINVAL);
236 	if (!desc || !*desc)
237 		goto error;
238 
239 	if (type->vet_description) {
240 		ret = type->vet_description(desc);
241 		if (ret < 0) {
242 			key = ERR_PTR(ret);
243 			goto error;
244 		}
245 	}
246 
247 	desclen = strlen(desc);
248 	quotalen = desclen + 1 + type->def_datalen;
249 
250 	/* get hold of the key tracking for this user */
251 	user = key_user_lookup(uid);
252 	if (!user)
253 		goto no_memory_1;
254 
255 	/* check that the user's quota permits allocation of another key and
256 	 * its description */
257 	if (!(flags & KEY_ALLOC_NOT_IN_QUOTA)) {
258 		unsigned maxkeys = uid_eq(uid, GLOBAL_ROOT_UID) ?
259 			key_quota_root_maxkeys : key_quota_maxkeys;
260 		unsigned maxbytes = uid_eq(uid, GLOBAL_ROOT_UID) ?
261 			key_quota_root_maxbytes : key_quota_maxbytes;
262 
263 		spin_lock(&user->lock);
264 		if (!(flags & KEY_ALLOC_QUOTA_OVERRUN)) {
265 			if (user->qnkeys + 1 > maxkeys ||
266 			    user->qnbytes + quotalen > maxbytes ||
267 			    user->qnbytes + quotalen < user->qnbytes)
268 				goto no_quota;
269 		}
270 
271 		user->qnkeys++;
272 		user->qnbytes += quotalen;
273 		spin_unlock(&user->lock);
274 	}
275 
276 	/* allocate and initialise the key and its description */
277 	key = kmem_cache_zalloc(key_jar, GFP_KERNEL);
278 	if (!key)
279 		goto no_memory_2;
280 
281 	key->index_key.desc_len = desclen;
282 	key->index_key.description = kmemdup(desc, desclen + 1, GFP_KERNEL);
283 	if (!key->index_key.description)
284 		goto no_memory_3;
285 	key->index_key.type = type;
286 	key_set_index_key(&key->index_key);
287 
288 	refcount_set(&key->usage, 1);
289 	init_rwsem(&key->sem);
290 	lockdep_set_class(&key->sem, &type->lock_class);
291 	key->user = user;
292 	key->quotalen = quotalen;
293 	key->datalen = type->def_datalen;
294 	key->uid = uid;
295 	key->gid = gid;
296 	key->perm = perm;
297 	key->restrict_link = restrict_link;
298 	key->last_used_at = ktime_get_real_seconds();
299 
300 	if (!(flags & KEY_ALLOC_NOT_IN_QUOTA))
301 		key->flags |= 1 << KEY_FLAG_IN_QUOTA;
302 	if (flags & KEY_ALLOC_BUILT_IN)
303 		key->flags |= 1 << KEY_FLAG_BUILTIN;
304 	if (flags & KEY_ALLOC_UID_KEYRING)
305 		key->flags |= 1 << KEY_FLAG_UID_KEYRING;
306 	if (flags & KEY_ALLOC_SET_KEEP)
307 		key->flags |= 1 << KEY_FLAG_KEEP;
308 
309 #ifdef KEY_DEBUGGING
310 	key->magic = KEY_DEBUG_MAGIC;
311 #endif
312 
313 	/* let the security module know about the key */
314 	ret = security_key_alloc(key, cred, flags);
315 	if (ret < 0)
316 		goto security_error;
317 
318 	/* publish the key by giving it a serial number */
319 	refcount_inc(&key->domain_tag->usage);
320 	atomic_inc(&user->nkeys);
321 	key_alloc_serial(key);
322 
323 error:
324 	return key;
325 
326 security_error:
327 	kfree(key->description);
328 	kmem_cache_free(key_jar, key);
329 	if (!(flags & KEY_ALLOC_NOT_IN_QUOTA)) {
330 		spin_lock(&user->lock);
331 		user->qnkeys--;
332 		user->qnbytes -= quotalen;
333 		spin_unlock(&user->lock);
334 	}
335 	key_user_put(user);
336 	key = ERR_PTR(ret);
337 	goto error;
338 
339 no_memory_3:
340 	kmem_cache_free(key_jar, key);
341 no_memory_2:
342 	if (!(flags & KEY_ALLOC_NOT_IN_QUOTA)) {
343 		spin_lock(&user->lock);
344 		user->qnkeys--;
345 		user->qnbytes -= quotalen;
346 		spin_unlock(&user->lock);
347 	}
348 	key_user_put(user);
349 no_memory_1:
350 	key = ERR_PTR(-ENOMEM);
351 	goto error;
352 
353 no_quota:
354 	spin_unlock(&user->lock);
355 	key_user_put(user);
356 	key = ERR_PTR(-EDQUOT);
357 	goto error;
358 }
359 EXPORT_SYMBOL(key_alloc);
360 
361 /**
362  * key_payload_reserve - Adjust data quota reservation for the key's payload
363  * @key: The key to make the reservation for.
364  * @datalen: The amount of data payload the caller now wants.
365  *
366  * Adjust the amount of the owning user's key data quota that a key reserves.
367  * If the amount is increased, then -EDQUOT may be returned if there isn't
368  * enough free quota available.
369  *
370  * If successful, 0 is returned.
371  */
key_payload_reserve(struct key * key,size_t datalen)372 int key_payload_reserve(struct key *key, size_t datalen)
373 {
374 	int delta = (int)datalen - key->datalen;
375 	int ret = 0;
376 
377 	key_check(key);
378 
379 	/* contemplate the quota adjustment */
380 	if (delta != 0 && test_bit(KEY_FLAG_IN_QUOTA, &key->flags)) {
381 		unsigned maxbytes = uid_eq(key->user->uid, GLOBAL_ROOT_UID) ?
382 			key_quota_root_maxbytes : key_quota_maxbytes;
383 
384 		spin_lock(&key->user->lock);
385 
386 		if (delta > 0 &&
387 		    (key->user->qnbytes + delta > maxbytes ||
388 		     key->user->qnbytes + delta < key->user->qnbytes)) {
389 			ret = -EDQUOT;
390 		}
391 		else {
392 			key->user->qnbytes += delta;
393 			key->quotalen += delta;
394 		}
395 		spin_unlock(&key->user->lock);
396 	}
397 
398 	/* change the recorded data length if that didn't generate an error */
399 	if (ret == 0)
400 		key->datalen = datalen;
401 
402 	return ret;
403 }
404 EXPORT_SYMBOL(key_payload_reserve);
405 
406 /*
407  * Change the key state to being instantiated.
408  */
mark_key_instantiated(struct key * key,int reject_error)409 static void mark_key_instantiated(struct key *key, int reject_error)
410 {
411 	/* Commit the payload before setting the state; barrier versus
412 	 * key_read_state().
413 	 */
414 	smp_store_release(&key->state,
415 			  (reject_error < 0) ? reject_error : KEY_IS_POSITIVE);
416 }
417 
418 /*
419  * Instantiate a key and link it into the target keyring atomically.  Must be
420  * called with the target keyring's semaphore writelocked.  The target key's
421  * semaphore need not be locked as instantiation is serialised by
422  * key_construction_mutex.
423  */
__key_instantiate_and_link(struct key * key,struct key_preparsed_payload * prep,struct key * keyring,struct key * authkey,struct assoc_array_edit ** _edit)424 static int __key_instantiate_and_link(struct key *key,
425 				      struct key_preparsed_payload *prep,
426 				      struct key *keyring,
427 				      struct key *authkey,
428 				      struct assoc_array_edit **_edit)
429 {
430 	int ret, awaken;
431 
432 	key_check(key);
433 	key_check(keyring);
434 
435 	awaken = 0;
436 	ret = -EBUSY;
437 
438 	mutex_lock(&key_construction_mutex);
439 
440 	/* can't instantiate twice */
441 	if (key->state == KEY_IS_UNINSTANTIATED) {
442 		/* instantiate the key */
443 		ret = key->type->instantiate(key, prep);
444 
445 		if (ret == 0) {
446 			/* mark the key as being instantiated */
447 			atomic_inc(&key->user->nikeys);
448 			mark_key_instantiated(key, 0);
449 			notify_key(key, NOTIFY_KEY_INSTANTIATED, 0);
450 
451 			if (test_and_clear_bit(KEY_FLAG_USER_CONSTRUCT, &key->flags))
452 				awaken = 1;
453 
454 			/* and link it into the destination keyring */
455 			if (keyring) {
456 				if (test_bit(KEY_FLAG_KEEP, &keyring->flags))
457 					set_bit(KEY_FLAG_KEEP, &key->flags);
458 
459 				__key_link(keyring, key, _edit);
460 			}
461 
462 			/* disable the authorisation key */
463 			if (authkey)
464 				key_invalidate(authkey);
465 
466 			if (prep->expiry != TIME64_MAX) {
467 				key->expiry = prep->expiry;
468 				key_schedule_gc(prep->expiry + key_gc_delay);
469 			}
470 		}
471 	}
472 
473 	mutex_unlock(&key_construction_mutex);
474 
475 	/* wake up anyone waiting for a key to be constructed */
476 	if (awaken)
477 		wake_up_bit(&key->flags, KEY_FLAG_USER_CONSTRUCT);
478 
479 	return ret;
480 }
481 
482 /**
483  * key_instantiate_and_link - Instantiate a key and link it into the keyring.
484  * @key: The key to instantiate.
485  * @data: The data to use to instantiate the keyring.
486  * @datalen: The length of @data.
487  * @keyring: Keyring to create a link in on success (or NULL).
488  * @authkey: The authorisation token permitting instantiation.
489  *
490  * Instantiate a key that's in the uninstantiated state using the provided data
491  * and, if successful, link it in to the destination keyring if one is
492  * supplied.
493  *
494  * If successful, 0 is returned, the authorisation token is revoked and anyone
495  * waiting for the key is woken up.  If the key was already instantiated,
496  * -EBUSY will be returned.
497  */
key_instantiate_and_link(struct key * key,const void * data,size_t datalen,struct key * keyring,struct key * authkey)498 int key_instantiate_and_link(struct key *key,
499 			     const void *data,
500 			     size_t datalen,
501 			     struct key *keyring,
502 			     struct key *authkey)
503 {
504 	struct key_preparsed_payload prep;
505 	struct assoc_array_edit *edit = NULL;
506 	int ret;
507 
508 	memset(&prep, 0, sizeof(prep));
509 	prep.data = data;
510 	prep.datalen = datalen;
511 	prep.quotalen = key->type->def_datalen;
512 	prep.expiry = TIME64_MAX;
513 	if (key->type->preparse) {
514 		ret = key->type->preparse(&prep);
515 		if (ret < 0)
516 			goto error;
517 	}
518 
519 	if (keyring) {
520 		ret = __key_link_lock(keyring, &key->index_key);
521 		if (ret < 0)
522 			goto error;
523 
524 		ret = __key_link_begin(keyring, &key->index_key, &edit);
525 		if (ret < 0)
526 			goto error_link_end;
527 
528 		if (keyring->restrict_link && keyring->restrict_link->check) {
529 			struct key_restriction *keyres = keyring->restrict_link;
530 
531 			ret = keyres->check(keyring, key->type, &prep.payload,
532 					    keyres->key);
533 			if (ret < 0)
534 				goto error_link_end;
535 		}
536 	}
537 
538 	ret = __key_instantiate_and_link(key, &prep, keyring, authkey, &edit);
539 
540 error_link_end:
541 	if (keyring)
542 		__key_link_end(keyring, &key->index_key, edit);
543 
544 error:
545 	if (key->type->preparse)
546 		key->type->free_preparse(&prep);
547 	return ret;
548 }
549 
550 EXPORT_SYMBOL(key_instantiate_and_link);
551 
552 /**
553  * key_reject_and_link - Negatively instantiate a key and link it into the keyring.
554  * @key: The key to instantiate.
555  * @timeout: The timeout on the negative key.
556  * @error: The error to return when the key is hit.
557  * @keyring: Keyring to create a link in on success (or NULL).
558  * @authkey: The authorisation token permitting instantiation.
559  *
560  * Negatively instantiate a key that's in the uninstantiated state and, if
561  * successful, set its timeout and stored error and link it in to the
562  * destination keyring if one is supplied.  The key and any links to the key
563  * will be automatically garbage collected after the timeout expires.
564  *
565  * Negative keys are used to rate limit repeated request_key() calls by causing
566  * them to return the stored error code (typically ENOKEY) until the negative
567  * key expires.
568  *
569  * If successful, 0 is returned, the authorisation token is revoked and anyone
570  * waiting for the key is woken up.  If the key was already instantiated,
571  * -EBUSY will be returned.
572  */
key_reject_and_link(struct key * key,unsigned timeout,unsigned error,struct key * keyring,struct key * authkey)573 int key_reject_and_link(struct key *key,
574 			unsigned timeout,
575 			unsigned error,
576 			struct key *keyring,
577 			struct key *authkey)
578 {
579 	struct assoc_array_edit *edit = NULL;
580 	int ret, awaken, link_ret = 0;
581 
582 	key_check(key);
583 	key_check(keyring);
584 
585 	awaken = 0;
586 	ret = -EBUSY;
587 
588 	if (keyring) {
589 		if (keyring->restrict_link)
590 			return -EPERM;
591 
592 		link_ret = __key_link_lock(keyring, &key->index_key);
593 		if (link_ret == 0) {
594 			link_ret = __key_link_begin(keyring, &key->index_key, &edit);
595 			if (link_ret < 0)
596 				__key_link_end(keyring, &key->index_key, edit);
597 		}
598 	}
599 
600 	mutex_lock(&key_construction_mutex);
601 
602 	/* can't instantiate twice */
603 	if (key->state == KEY_IS_UNINSTANTIATED) {
604 		/* mark the key as being negatively instantiated */
605 		atomic_inc(&key->user->nikeys);
606 		mark_key_instantiated(key, -error);
607 		notify_key(key, NOTIFY_KEY_INSTANTIATED, -error);
608 		key->expiry = ktime_get_real_seconds() + timeout;
609 		key_schedule_gc(key->expiry + key_gc_delay);
610 
611 		if (test_and_clear_bit(KEY_FLAG_USER_CONSTRUCT, &key->flags))
612 			awaken = 1;
613 
614 		ret = 0;
615 
616 		/* and link it into the destination keyring */
617 		if (keyring && link_ret == 0)
618 			__key_link(keyring, key, &edit);
619 
620 		/* disable the authorisation key */
621 		if (authkey)
622 			key_invalidate(authkey);
623 	}
624 
625 	mutex_unlock(&key_construction_mutex);
626 
627 	if (keyring && link_ret == 0)
628 		__key_link_end(keyring, &key->index_key, edit);
629 
630 	/* wake up anyone waiting for a key to be constructed */
631 	if (awaken)
632 		wake_up_bit(&key->flags, KEY_FLAG_USER_CONSTRUCT);
633 
634 	return ret == 0 ? link_ret : ret;
635 }
636 EXPORT_SYMBOL(key_reject_and_link);
637 
638 /**
639  * key_put - Discard a reference to a key.
640  * @key: The key to discard a reference from.
641  *
642  * Discard a reference to a key, and when all the references are gone, we
643  * schedule the cleanup task to come and pull it out of the tree in process
644  * context at some later time.
645  */
key_put(struct key * key)646 void key_put(struct key *key)
647 {
648 	if (key) {
649 		key_check(key);
650 
651 		if (refcount_dec_and_test(&key->usage))
652 			schedule_work(&key_gc_work);
653 	}
654 }
655 EXPORT_SYMBOL(key_put);
656 
657 /*
658  * Find a key by its serial number.
659  */
key_lookup(key_serial_t id)660 struct key *key_lookup(key_serial_t id)
661 {
662 	struct rb_node *n;
663 	struct key *key;
664 
665 	spin_lock(&key_serial_lock);
666 
667 	/* search the tree for the specified key */
668 	n = key_serial_tree.rb_node;
669 	while (n) {
670 		key = rb_entry(n, struct key, serial_node);
671 
672 		if (id < key->serial)
673 			n = n->rb_left;
674 		else if (id > key->serial)
675 			n = n->rb_right;
676 		else
677 			goto found;
678 	}
679 
680 not_found:
681 	key = ERR_PTR(-ENOKEY);
682 	goto error;
683 
684 found:
685 	/* A key is allowed to be looked up only if someone still owns a
686 	 * reference to it - otherwise it's awaiting the gc.
687 	 */
688 	if (!refcount_inc_not_zero(&key->usage))
689 		goto not_found;
690 
691 error:
692 	spin_unlock(&key_serial_lock);
693 	return key;
694 }
695 
696 /*
697  * Find and lock the specified key type against removal.
698  *
699  * We return with the sem read-locked if successful.  If the type wasn't
700  * available -ENOKEY is returned instead.
701  */
key_type_lookup(const char * type)702 struct key_type *key_type_lookup(const char *type)
703 {
704 	struct key_type *ktype;
705 
706 	down_read(&key_types_sem);
707 
708 	/* look up the key type to see if it's one of the registered kernel
709 	 * types */
710 	list_for_each_entry(ktype, &key_types_list, link) {
711 		if (strcmp(ktype->name, type) == 0)
712 			goto found_kernel_type;
713 	}
714 
715 	up_read(&key_types_sem);
716 	ktype = ERR_PTR(-ENOKEY);
717 
718 found_kernel_type:
719 	return ktype;
720 }
721 
key_set_timeout(struct key * key,unsigned timeout)722 void key_set_timeout(struct key *key, unsigned timeout)
723 {
724 	time64_t expiry = 0;
725 
726 	/* make the changes with the locks held to prevent races */
727 	down_write(&key->sem);
728 
729 	if (timeout > 0)
730 		expiry = ktime_get_real_seconds() + timeout;
731 
732 	key->expiry = expiry;
733 	key_schedule_gc(key->expiry + key_gc_delay);
734 
735 	up_write(&key->sem);
736 }
737 EXPORT_SYMBOL_GPL(key_set_timeout);
738 
739 /*
740  * Unlock a key type locked by key_type_lookup().
741  */
key_type_put(struct key_type * ktype)742 void key_type_put(struct key_type *ktype)
743 {
744 	up_read(&key_types_sem);
745 }
746 
747 /*
748  * Attempt to update an existing key.
749  *
750  * The key is given to us with an incremented refcount that we need to discard
751  * if we get an error.
752  */
__key_update(key_ref_t key_ref,struct key_preparsed_payload * prep)753 static inline key_ref_t __key_update(key_ref_t key_ref,
754 				     struct key_preparsed_payload *prep)
755 {
756 	struct key *key = key_ref_to_ptr(key_ref);
757 	int ret;
758 
759 	/* need write permission on the key to update it */
760 	ret = key_permission(key_ref, KEY_NEED_WRITE);
761 	if (ret < 0)
762 		goto error;
763 
764 	ret = -EEXIST;
765 	if (!key->type->update)
766 		goto error;
767 
768 	down_write(&key->sem);
769 
770 	ret = key->type->update(key, prep);
771 	if (ret == 0) {
772 		/* Updating a negative key positively instantiates it */
773 		mark_key_instantiated(key, 0);
774 		notify_key(key, NOTIFY_KEY_UPDATED, 0);
775 	}
776 
777 	up_write(&key->sem);
778 
779 	if (ret < 0)
780 		goto error;
781 out:
782 	return key_ref;
783 
784 error:
785 	key_put(key);
786 	key_ref = ERR_PTR(ret);
787 	goto out;
788 }
789 
790 /**
791  * key_create_or_update - Update or create and instantiate a key.
792  * @keyring_ref: A pointer to the destination keyring with possession flag.
793  * @type: The type of key.
794  * @description: The searchable description for the key.
795  * @payload: The data to use to instantiate or update the key.
796  * @plen: The length of @payload.
797  * @perm: The permissions mask for a new key.
798  * @flags: The quota flags for a new key.
799  *
800  * Search the destination keyring for a key of the same description and if one
801  * is found, update it, otherwise create and instantiate a new one and create a
802  * link to it from that keyring.
803  *
804  * If perm is KEY_PERM_UNDEF then an appropriate key permissions mask will be
805  * concocted.
806  *
807  * Returns a pointer to the new key if successful, -ENODEV if the key type
808  * wasn't available, -ENOTDIR if the keyring wasn't a keyring, -EACCES if the
809  * caller isn't permitted to modify the keyring or the LSM did not permit
810  * creation of the key.
811  *
812  * On success, the possession flag from the keyring ref will be tacked on to
813  * the key ref before it is returned.
814  */
key_create_or_update(key_ref_t keyring_ref,const char * type,const char * description,const void * payload,size_t plen,key_perm_t perm,unsigned long flags)815 key_ref_t key_create_or_update(key_ref_t keyring_ref,
816 			       const char *type,
817 			       const char *description,
818 			       const void *payload,
819 			       size_t plen,
820 			       key_perm_t perm,
821 			       unsigned long flags)
822 {
823 	struct keyring_index_key index_key = {
824 		.description	= description,
825 	};
826 	struct key_preparsed_payload prep;
827 	struct assoc_array_edit *edit = NULL;
828 	const struct cred *cred = current_cred();
829 	struct key *keyring, *key = NULL;
830 	key_ref_t key_ref;
831 	int ret;
832 	struct key_restriction *restrict_link = NULL;
833 
834 	/* look up the key type to see if it's one of the registered kernel
835 	 * types */
836 	index_key.type = key_type_lookup(type);
837 	if (IS_ERR(index_key.type)) {
838 		key_ref = ERR_PTR(-ENODEV);
839 		goto error;
840 	}
841 
842 	key_ref = ERR_PTR(-EINVAL);
843 	if (!index_key.type->instantiate ||
844 	    (!index_key.description && !index_key.type->preparse))
845 		goto error_put_type;
846 
847 	keyring = key_ref_to_ptr(keyring_ref);
848 
849 	key_check(keyring);
850 
851 	if (!(flags & KEY_ALLOC_BYPASS_RESTRICTION))
852 		restrict_link = keyring->restrict_link;
853 
854 	key_ref = ERR_PTR(-ENOTDIR);
855 	if (keyring->type != &key_type_keyring)
856 		goto error_put_type;
857 
858 	memset(&prep, 0, sizeof(prep));
859 	prep.data = payload;
860 	prep.datalen = plen;
861 	prep.quotalen = index_key.type->def_datalen;
862 	prep.expiry = TIME64_MAX;
863 	if (index_key.type->preparse) {
864 		ret = index_key.type->preparse(&prep);
865 		if (ret < 0) {
866 			key_ref = ERR_PTR(ret);
867 			goto error_free_prep;
868 		}
869 		if (!index_key.description)
870 			index_key.description = prep.description;
871 		key_ref = ERR_PTR(-EINVAL);
872 		if (!index_key.description)
873 			goto error_free_prep;
874 	}
875 	index_key.desc_len = strlen(index_key.description);
876 	key_set_index_key(&index_key);
877 
878 	ret = __key_link_lock(keyring, &index_key);
879 	if (ret < 0) {
880 		key_ref = ERR_PTR(ret);
881 		goto error_free_prep;
882 	}
883 
884 	ret = __key_link_begin(keyring, &index_key, &edit);
885 	if (ret < 0) {
886 		key_ref = ERR_PTR(ret);
887 		goto error_link_end;
888 	}
889 
890 	if (restrict_link && restrict_link->check) {
891 		ret = restrict_link->check(keyring, index_key.type,
892 					   &prep.payload, restrict_link->key);
893 		if (ret < 0) {
894 			key_ref = ERR_PTR(ret);
895 			goto error_link_end;
896 		}
897 	}
898 
899 	/* if we're going to allocate a new key, we're going to have
900 	 * to modify the keyring */
901 	ret = key_permission(keyring_ref, KEY_NEED_WRITE);
902 	if (ret < 0) {
903 		key_ref = ERR_PTR(ret);
904 		goto error_link_end;
905 	}
906 
907 	/* if it's possible to update this type of key, search for an existing
908 	 * key of the same type and description in the destination keyring and
909 	 * update that instead if possible
910 	 */
911 	if (index_key.type->update) {
912 		key_ref = find_key_to_update(keyring_ref, &index_key);
913 		if (key_ref)
914 			goto found_matching_key;
915 	}
916 
917 	/* if the client doesn't provide, decide on the permissions we want */
918 	if (perm == KEY_PERM_UNDEF) {
919 		perm = KEY_POS_VIEW | KEY_POS_SEARCH | KEY_POS_LINK | KEY_POS_SETATTR;
920 		perm |= KEY_USR_VIEW;
921 
922 		if (index_key.type->read)
923 			perm |= KEY_POS_READ;
924 
925 		if (index_key.type == &key_type_keyring ||
926 		    index_key.type->update)
927 			perm |= KEY_POS_WRITE;
928 	}
929 
930 	/* allocate a new key */
931 	key = key_alloc(index_key.type, index_key.description,
932 			cred->fsuid, cred->fsgid, cred, perm, flags, NULL);
933 	if (IS_ERR(key)) {
934 		key_ref = ERR_CAST(key);
935 		goto error_link_end;
936 	}
937 
938 	/* instantiate it and link it into the target keyring */
939 	ret = __key_instantiate_and_link(key, &prep, keyring, NULL, &edit);
940 	if (ret < 0) {
941 		key_put(key);
942 		key_ref = ERR_PTR(ret);
943 		goto error_link_end;
944 	}
945 
946 	ima_post_key_create_or_update(keyring, key, payload, plen,
947 				      flags, true);
948 
949 	key_ref = make_key_ref(key, is_key_possessed(keyring_ref));
950 
951 error_link_end:
952 	__key_link_end(keyring, &index_key, edit);
953 error_free_prep:
954 	if (index_key.type->preparse)
955 		index_key.type->free_preparse(&prep);
956 error_put_type:
957 	key_type_put(index_key.type);
958 error:
959 	return key_ref;
960 
961  found_matching_key:
962 	/* we found a matching key, so we're going to try to update it
963 	 * - we can drop the locks first as we have the key pinned
964 	 */
965 	__key_link_end(keyring, &index_key, edit);
966 
967 	key = key_ref_to_ptr(key_ref);
968 	if (test_bit(KEY_FLAG_USER_CONSTRUCT, &key->flags)) {
969 		ret = wait_for_key_construction(key, true);
970 		if (ret < 0) {
971 			key_ref_put(key_ref);
972 			key_ref = ERR_PTR(ret);
973 			goto error_free_prep;
974 		}
975 	}
976 
977 	key_ref = __key_update(key_ref, &prep);
978 
979 	if (!IS_ERR(key_ref))
980 		ima_post_key_create_or_update(keyring, key,
981 					      payload, plen,
982 					      flags, false);
983 
984 	goto error_free_prep;
985 }
986 EXPORT_SYMBOL(key_create_or_update);
987 
988 /**
989  * key_update - Update a key's contents.
990  * @key_ref: The pointer (plus possession flag) to the key.
991  * @payload: The data to be used to update the key.
992  * @plen: The length of @payload.
993  *
994  * Attempt to update the contents of a key with the given payload data.  The
995  * caller must be granted Write permission on the key.  Negative keys can be
996  * instantiated by this method.
997  *
998  * Returns 0 on success, -EACCES if not permitted and -EOPNOTSUPP if the key
999  * type does not support updating.  The key type may return other errors.
1000  */
key_update(key_ref_t key_ref,const void * payload,size_t plen)1001 int key_update(key_ref_t key_ref, const void *payload, size_t plen)
1002 {
1003 	struct key_preparsed_payload prep;
1004 	struct key *key = key_ref_to_ptr(key_ref);
1005 	int ret;
1006 
1007 	key_check(key);
1008 
1009 	/* the key must be writable */
1010 	ret = key_permission(key_ref, KEY_NEED_WRITE);
1011 	if (ret < 0)
1012 		return ret;
1013 
1014 	/* attempt to update it if supported */
1015 	if (!key->type->update)
1016 		return -EOPNOTSUPP;
1017 
1018 	memset(&prep, 0, sizeof(prep));
1019 	prep.data = payload;
1020 	prep.datalen = plen;
1021 	prep.quotalen = key->type->def_datalen;
1022 	prep.expiry = TIME64_MAX;
1023 	if (key->type->preparse) {
1024 		ret = key->type->preparse(&prep);
1025 		if (ret < 0)
1026 			goto error;
1027 	}
1028 
1029 	down_write(&key->sem);
1030 
1031 	ret = key->type->update(key, &prep);
1032 	if (ret == 0) {
1033 		/* Updating a negative key positively instantiates it */
1034 		mark_key_instantiated(key, 0);
1035 		notify_key(key, NOTIFY_KEY_UPDATED, 0);
1036 	}
1037 
1038 	up_write(&key->sem);
1039 
1040 error:
1041 	if (key->type->preparse)
1042 		key->type->free_preparse(&prep);
1043 	return ret;
1044 }
1045 EXPORT_SYMBOL(key_update);
1046 
1047 /**
1048  * key_revoke - Revoke a key.
1049  * @key: The key to be revoked.
1050  *
1051  * Mark a key as being revoked and ask the type to free up its resources.  The
1052  * revocation timeout is set and the key and all its links will be
1053  * automatically garbage collected after key_gc_delay amount of time if they
1054  * are not manually dealt with first.
1055  */
key_revoke(struct key * key)1056 void key_revoke(struct key *key)
1057 {
1058 	time64_t time;
1059 
1060 	key_check(key);
1061 
1062 	/* make sure no one's trying to change or use the key when we mark it
1063 	 * - we tell lockdep that we might nest because we might be revoking an
1064 	 *   authorisation key whilst holding the sem on a key we've just
1065 	 *   instantiated
1066 	 */
1067 	down_write_nested(&key->sem, 1);
1068 	if (!test_and_set_bit(KEY_FLAG_REVOKED, &key->flags)) {
1069 		notify_key(key, NOTIFY_KEY_REVOKED, 0);
1070 		if (key->type->revoke)
1071 			key->type->revoke(key);
1072 
1073 		/* set the death time to no more than the expiry time */
1074 		time = ktime_get_real_seconds();
1075 		if (key->revoked_at == 0 || key->revoked_at > time) {
1076 			key->revoked_at = time;
1077 			key_schedule_gc(key->revoked_at + key_gc_delay);
1078 		}
1079 	}
1080 
1081 	up_write(&key->sem);
1082 }
1083 EXPORT_SYMBOL(key_revoke);
1084 
1085 /**
1086  * key_invalidate - Invalidate a key.
1087  * @key: The key to be invalidated.
1088  *
1089  * Mark a key as being invalidated and have it cleaned up immediately.  The key
1090  * is ignored by all searches and other operations from this point.
1091  */
key_invalidate(struct key * key)1092 void key_invalidate(struct key *key)
1093 {
1094 	kenter("%d", key_serial(key));
1095 
1096 	key_check(key);
1097 
1098 	if (!test_bit(KEY_FLAG_INVALIDATED, &key->flags)) {
1099 		down_write_nested(&key->sem, 1);
1100 		if (!test_and_set_bit(KEY_FLAG_INVALIDATED, &key->flags)) {
1101 			notify_key(key, NOTIFY_KEY_INVALIDATED, 0);
1102 			key_schedule_gc_links();
1103 		}
1104 		up_write(&key->sem);
1105 	}
1106 }
1107 EXPORT_SYMBOL(key_invalidate);
1108 
1109 /**
1110  * generic_key_instantiate - Simple instantiation of a key from preparsed data
1111  * @key: The key to be instantiated
1112  * @prep: The preparsed data to load.
1113  *
1114  * Instantiate a key from preparsed data.  We assume we can just copy the data
1115  * in directly and clear the old pointers.
1116  *
1117  * This can be pointed to directly by the key type instantiate op pointer.
1118  */
generic_key_instantiate(struct key * key,struct key_preparsed_payload * prep)1119 int generic_key_instantiate(struct key *key, struct key_preparsed_payload *prep)
1120 {
1121 	int ret;
1122 
1123 	pr_devel("==>%s()\n", __func__);
1124 
1125 	ret = key_payload_reserve(key, prep->quotalen);
1126 	if (ret == 0) {
1127 		rcu_assign_keypointer(key, prep->payload.data[0]);
1128 		key->payload.data[1] = prep->payload.data[1];
1129 		key->payload.data[2] = prep->payload.data[2];
1130 		key->payload.data[3] = prep->payload.data[3];
1131 		prep->payload.data[0] = NULL;
1132 		prep->payload.data[1] = NULL;
1133 		prep->payload.data[2] = NULL;
1134 		prep->payload.data[3] = NULL;
1135 	}
1136 	pr_devel("<==%s() = %d\n", __func__, ret);
1137 	return ret;
1138 }
1139 EXPORT_SYMBOL(generic_key_instantiate);
1140 
1141 /**
1142  * register_key_type - Register a type of key.
1143  * @ktype: The new key type.
1144  *
1145  * Register a new key type.
1146  *
1147  * Returns 0 on success or -EEXIST if a type of this name already exists.
1148  */
register_key_type(struct key_type * ktype)1149 int register_key_type(struct key_type *ktype)
1150 {
1151 	struct key_type *p;
1152 	int ret;
1153 
1154 	memset(&ktype->lock_class, 0, sizeof(ktype->lock_class));
1155 
1156 	ret = -EEXIST;
1157 	down_write(&key_types_sem);
1158 
1159 	/* disallow key types with the same name */
1160 	list_for_each_entry(p, &key_types_list, link) {
1161 		if (strcmp(p->name, ktype->name) == 0)
1162 			goto out;
1163 	}
1164 
1165 	/* store the type */
1166 	list_add(&ktype->link, &key_types_list);
1167 
1168 	pr_notice("Key type %s registered\n", ktype->name);
1169 	ret = 0;
1170 
1171 out:
1172 	up_write(&key_types_sem);
1173 	return ret;
1174 }
1175 EXPORT_SYMBOL(register_key_type);
1176 
1177 /**
1178  * unregister_key_type - Unregister a type of key.
1179  * @ktype: The key type.
1180  *
1181  * Unregister a key type and mark all the extant keys of this type as dead.
1182  * Those keys of this type are then destroyed to get rid of their payloads and
1183  * they and their links will be garbage collected as soon as possible.
1184  */
unregister_key_type(struct key_type * ktype)1185 void unregister_key_type(struct key_type *ktype)
1186 {
1187 	down_write(&key_types_sem);
1188 	list_del_init(&ktype->link);
1189 	downgrade_write(&key_types_sem);
1190 	key_gc_keytype(ktype);
1191 	pr_notice("Key type %s unregistered\n", ktype->name);
1192 	up_read(&key_types_sem);
1193 }
1194 EXPORT_SYMBOL(unregister_key_type);
1195 
1196 /*
1197  * Initialise the key management state.
1198  */
key_init(void)1199 void __init key_init(void)
1200 {
1201 	/* allocate a slab in which we can store keys */
1202 	key_jar = kmem_cache_create("key_jar", sizeof(struct key),
1203 			0, SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
1204 
1205 	/* add the special key types */
1206 	list_add_tail(&key_type_keyring.link, &key_types_list);
1207 	list_add_tail(&key_type_dead.link, &key_types_list);
1208 	list_add_tail(&key_type_user.link, &key_types_list);
1209 	list_add_tail(&key_type_logon.link, &key_types_list);
1210 
1211 	/* record the root user tracking */
1212 	rb_link_node(&root_key_user.node,
1213 		     NULL,
1214 		     &key_user_tree.rb_node);
1215 
1216 	rb_insert_color(&root_key_user.node,
1217 			&key_user_tree);
1218 }
1219