1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /* Basic authentication token and access key management
3 *
4 * Copyright (C) 2004-2008 Red Hat, Inc. All Rights Reserved.
5 * Written by David Howells (dhowells@redhat.com)
6 */
7
8 #include <linux/export.h>
9 #include <linux/init.h>
10 #include <linux/poison.h>
11 #include <linux/sched.h>
12 #include <linux/slab.h>
13 #include <linux/security.h>
14 #include <linux/workqueue.h>
15 #include <linux/random.h>
16 #include <linux/ima.h>
17 #include <linux/err.h>
18 #include "internal.h"
19
20 struct kmem_cache *key_jar;
21 struct rb_root key_serial_tree; /* tree of keys indexed by serial */
22 DEFINE_SPINLOCK(key_serial_lock);
23
24 struct rb_root key_user_tree; /* tree of quota records indexed by UID */
25 DEFINE_SPINLOCK(key_user_lock);
26
27 unsigned int key_quota_root_maxkeys = 1000000; /* root's key count quota */
28 unsigned int key_quota_root_maxbytes = 25000000; /* root's key space quota */
29 unsigned int key_quota_maxkeys = 200; /* general key count quota */
30 unsigned int key_quota_maxbytes = 20000; /* general key space quota */
31
32 static LIST_HEAD(key_types_list);
33 static DECLARE_RWSEM(key_types_sem);
34
35 /* We serialise key instantiation and link */
36 DEFINE_MUTEX(key_construction_mutex);
37
38 #ifdef KEY_DEBUGGING
__key_check(const struct key * key)39 void __key_check(const struct key *key)
40 {
41 printk("__key_check: key %p {%08x} should be {%08x}\n",
42 key, key->magic, KEY_DEBUG_MAGIC);
43 BUG();
44 }
45 #endif
46
47 /*
48 * Get the key quota record for a user, allocating a new record if one doesn't
49 * already exist.
50 */
key_user_lookup(kuid_t uid)51 struct key_user *key_user_lookup(kuid_t uid)
52 {
53 struct key_user *candidate = NULL, *user;
54 struct rb_node *parent, **p;
55
56 try_again:
57 parent = NULL;
58 p = &key_user_tree.rb_node;
59 spin_lock(&key_user_lock);
60
61 /* search the tree for a user record with a matching UID */
62 while (*p) {
63 parent = *p;
64 user = rb_entry(parent, struct key_user, node);
65
66 if (uid_lt(uid, user->uid))
67 p = &(*p)->rb_left;
68 else if (uid_gt(uid, user->uid))
69 p = &(*p)->rb_right;
70 else
71 goto found;
72 }
73
74 /* if we get here, we failed to find a match in the tree */
75 if (!candidate) {
76 /* allocate a candidate user record if we don't already have
77 * one */
78 spin_unlock(&key_user_lock);
79
80 user = NULL;
81 candidate = kmalloc(sizeof(struct key_user), GFP_KERNEL);
82 if (unlikely(!candidate))
83 goto out;
84
85 /* the allocation may have scheduled, so we need to repeat the
86 * search lest someone else added the record whilst we were
87 * asleep */
88 goto try_again;
89 }
90
91 /* if we get here, then the user record still hadn't appeared on the
92 * second pass - so we use the candidate record */
93 refcount_set(&candidate->usage, 1);
94 atomic_set(&candidate->nkeys, 0);
95 atomic_set(&candidate->nikeys, 0);
96 candidate->uid = uid;
97 candidate->qnkeys = 0;
98 candidate->qnbytes = 0;
99 spin_lock_init(&candidate->lock);
100 mutex_init(&candidate->cons_lock);
101
102 rb_link_node(&candidate->node, parent, p);
103 rb_insert_color(&candidate->node, &key_user_tree);
104 spin_unlock(&key_user_lock);
105 user = candidate;
106 goto out;
107
108 /* okay - we found a user record for this UID */
109 found:
110 refcount_inc(&user->usage);
111 spin_unlock(&key_user_lock);
112 kfree(candidate);
113 out:
114 return user;
115 }
116
117 /*
118 * Dispose of a user structure
119 */
key_user_put(struct key_user * user)120 void key_user_put(struct key_user *user)
121 {
122 if (refcount_dec_and_lock(&user->usage, &key_user_lock)) {
123 rb_erase(&user->node, &key_user_tree);
124 spin_unlock(&key_user_lock);
125
126 kfree(user);
127 }
128 }
129
130 /*
131 * Allocate a serial number for a key. These are assigned randomly to avoid
132 * security issues through covert channel problems.
133 */
key_alloc_serial(struct key * key)134 static inline void key_alloc_serial(struct key *key)
135 {
136 struct rb_node *parent, **p;
137 struct key *xkey;
138
139 /* propose a random serial number and look for a hole for it in the
140 * serial number tree */
141 do {
142 get_random_bytes(&key->serial, sizeof(key->serial));
143
144 key->serial >>= 1; /* negative numbers are not permitted */
145 } while (key->serial < 3);
146
147 spin_lock(&key_serial_lock);
148
149 attempt_insertion:
150 parent = NULL;
151 p = &key_serial_tree.rb_node;
152
153 while (*p) {
154 parent = *p;
155 xkey = rb_entry(parent, struct key, serial_node);
156
157 if (key->serial < xkey->serial)
158 p = &(*p)->rb_left;
159 else if (key->serial > xkey->serial)
160 p = &(*p)->rb_right;
161 else
162 goto serial_exists;
163 }
164
165 /* we've found a suitable hole - arrange for this key to occupy it */
166 rb_link_node(&key->serial_node, parent, p);
167 rb_insert_color(&key->serial_node, &key_serial_tree);
168
169 spin_unlock(&key_serial_lock);
170 return;
171
172 /* we found a key with the proposed serial number - walk the tree from
173 * that point looking for the next unused serial number */
174 serial_exists:
175 for (;;) {
176 key->serial++;
177 if (key->serial < 3) {
178 key->serial = 3;
179 goto attempt_insertion;
180 }
181
182 parent = rb_next(parent);
183 if (!parent)
184 goto attempt_insertion;
185
186 xkey = rb_entry(parent, struct key, serial_node);
187 if (key->serial < xkey->serial)
188 goto attempt_insertion;
189 }
190 }
191
192 /**
193 * key_alloc - Allocate a key of the specified type.
194 * @type: The type of key to allocate.
195 * @desc: The key description to allow the key to be searched out.
196 * @uid: The owner of the new key.
197 * @gid: The group ID for the new key's group permissions.
198 * @cred: The credentials specifying UID namespace.
199 * @perm: The permissions mask of the new key.
200 * @flags: Flags specifying quota properties.
201 * @restrict_link: Optional link restriction for new keyrings.
202 *
203 * Allocate a key of the specified type with the attributes given. The key is
204 * returned in an uninstantiated state and the caller needs to instantiate the
205 * key before returning.
206 *
207 * The restrict_link structure (if not NULL) will be freed when the
208 * keyring is destroyed, so it must be dynamically allocated.
209 *
210 * The user's key count quota is updated to reflect the creation of the key and
211 * the user's key data quota has the default for the key type reserved. The
212 * instantiation function should amend this as necessary. If insufficient
213 * quota is available, -EDQUOT will be returned.
214 *
215 * The LSM security modules can prevent a key being created, in which case
216 * -EACCES will be returned.
217 *
218 * Returns a pointer to the new key if successful and an error code otherwise.
219 *
220 * Note that the caller needs to ensure the key type isn't uninstantiated.
221 * Internally this can be done by locking key_types_sem. Externally, this can
222 * be done by either never unregistering the key type, or making sure
223 * key_alloc() calls don't race with module unloading.
224 */
key_alloc(struct key_type * type,const char * desc,kuid_t uid,kgid_t gid,const struct cred * cred,key_perm_t perm,unsigned long flags,struct key_restriction * restrict_link)225 struct key *key_alloc(struct key_type *type, const char *desc,
226 kuid_t uid, kgid_t gid, const struct cred *cred,
227 key_perm_t perm, unsigned long flags,
228 struct key_restriction *restrict_link)
229 {
230 struct key_user *user = NULL;
231 struct key *key;
232 size_t desclen, quotalen;
233 int ret;
234
235 key = ERR_PTR(-EINVAL);
236 if (!desc || !*desc)
237 goto error;
238
239 if (type->vet_description) {
240 ret = type->vet_description(desc);
241 if (ret < 0) {
242 key = ERR_PTR(ret);
243 goto error;
244 }
245 }
246
247 desclen = strlen(desc);
248 quotalen = desclen + 1 + type->def_datalen;
249
250 /* get hold of the key tracking for this user */
251 user = key_user_lookup(uid);
252 if (!user)
253 goto no_memory_1;
254
255 /* check that the user's quota permits allocation of another key and
256 * its description */
257 if (!(flags & KEY_ALLOC_NOT_IN_QUOTA)) {
258 unsigned maxkeys = uid_eq(uid, GLOBAL_ROOT_UID) ?
259 key_quota_root_maxkeys : key_quota_maxkeys;
260 unsigned maxbytes = uid_eq(uid, GLOBAL_ROOT_UID) ?
261 key_quota_root_maxbytes : key_quota_maxbytes;
262
263 spin_lock(&user->lock);
264 if (!(flags & KEY_ALLOC_QUOTA_OVERRUN)) {
265 if (user->qnkeys + 1 > maxkeys ||
266 user->qnbytes + quotalen > maxbytes ||
267 user->qnbytes + quotalen < user->qnbytes)
268 goto no_quota;
269 }
270
271 user->qnkeys++;
272 user->qnbytes += quotalen;
273 spin_unlock(&user->lock);
274 }
275
276 /* allocate and initialise the key and its description */
277 key = kmem_cache_zalloc(key_jar, GFP_KERNEL);
278 if (!key)
279 goto no_memory_2;
280
281 key->index_key.desc_len = desclen;
282 key->index_key.description = kmemdup(desc, desclen + 1, GFP_KERNEL);
283 if (!key->index_key.description)
284 goto no_memory_3;
285 key->index_key.type = type;
286 key_set_index_key(&key->index_key);
287
288 refcount_set(&key->usage, 1);
289 init_rwsem(&key->sem);
290 lockdep_set_class(&key->sem, &type->lock_class);
291 key->user = user;
292 key->quotalen = quotalen;
293 key->datalen = type->def_datalen;
294 key->uid = uid;
295 key->gid = gid;
296 key->perm = perm;
297 key->restrict_link = restrict_link;
298 key->last_used_at = ktime_get_real_seconds();
299
300 if (!(flags & KEY_ALLOC_NOT_IN_QUOTA))
301 key->flags |= 1 << KEY_FLAG_IN_QUOTA;
302 if (flags & KEY_ALLOC_BUILT_IN)
303 key->flags |= 1 << KEY_FLAG_BUILTIN;
304 if (flags & KEY_ALLOC_UID_KEYRING)
305 key->flags |= 1 << KEY_FLAG_UID_KEYRING;
306 if (flags & KEY_ALLOC_SET_KEEP)
307 key->flags |= 1 << KEY_FLAG_KEEP;
308
309 #ifdef KEY_DEBUGGING
310 key->magic = KEY_DEBUG_MAGIC;
311 #endif
312
313 /* let the security module know about the key */
314 ret = security_key_alloc(key, cred, flags);
315 if (ret < 0)
316 goto security_error;
317
318 /* publish the key by giving it a serial number */
319 refcount_inc(&key->domain_tag->usage);
320 atomic_inc(&user->nkeys);
321 key_alloc_serial(key);
322
323 error:
324 return key;
325
326 security_error:
327 kfree(key->description);
328 kmem_cache_free(key_jar, key);
329 if (!(flags & KEY_ALLOC_NOT_IN_QUOTA)) {
330 spin_lock(&user->lock);
331 user->qnkeys--;
332 user->qnbytes -= quotalen;
333 spin_unlock(&user->lock);
334 }
335 key_user_put(user);
336 key = ERR_PTR(ret);
337 goto error;
338
339 no_memory_3:
340 kmem_cache_free(key_jar, key);
341 no_memory_2:
342 if (!(flags & KEY_ALLOC_NOT_IN_QUOTA)) {
343 spin_lock(&user->lock);
344 user->qnkeys--;
345 user->qnbytes -= quotalen;
346 spin_unlock(&user->lock);
347 }
348 key_user_put(user);
349 no_memory_1:
350 key = ERR_PTR(-ENOMEM);
351 goto error;
352
353 no_quota:
354 spin_unlock(&user->lock);
355 key_user_put(user);
356 key = ERR_PTR(-EDQUOT);
357 goto error;
358 }
359 EXPORT_SYMBOL(key_alloc);
360
361 /**
362 * key_payload_reserve - Adjust data quota reservation for the key's payload
363 * @key: The key to make the reservation for.
364 * @datalen: The amount of data payload the caller now wants.
365 *
366 * Adjust the amount of the owning user's key data quota that a key reserves.
367 * If the amount is increased, then -EDQUOT may be returned if there isn't
368 * enough free quota available.
369 *
370 * If successful, 0 is returned.
371 */
key_payload_reserve(struct key * key,size_t datalen)372 int key_payload_reserve(struct key *key, size_t datalen)
373 {
374 int delta = (int)datalen - key->datalen;
375 int ret = 0;
376
377 key_check(key);
378
379 /* contemplate the quota adjustment */
380 if (delta != 0 && test_bit(KEY_FLAG_IN_QUOTA, &key->flags)) {
381 unsigned maxbytes = uid_eq(key->user->uid, GLOBAL_ROOT_UID) ?
382 key_quota_root_maxbytes : key_quota_maxbytes;
383
384 spin_lock(&key->user->lock);
385
386 if (delta > 0 &&
387 (key->user->qnbytes + delta > maxbytes ||
388 key->user->qnbytes + delta < key->user->qnbytes)) {
389 ret = -EDQUOT;
390 }
391 else {
392 key->user->qnbytes += delta;
393 key->quotalen += delta;
394 }
395 spin_unlock(&key->user->lock);
396 }
397
398 /* change the recorded data length if that didn't generate an error */
399 if (ret == 0)
400 key->datalen = datalen;
401
402 return ret;
403 }
404 EXPORT_SYMBOL(key_payload_reserve);
405
406 /*
407 * Change the key state to being instantiated.
408 */
mark_key_instantiated(struct key * key,int reject_error)409 static void mark_key_instantiated(struct key *key, int reject_error)
410 {
411 /* Commit the payload before setting the state; barrier versus
412 * key_read_state().
413 */
414 smp_store_release(&key->state,
415 (reject_error < 0) ? reject_error : KEY_IS_POSITIVE);
416 }
417
418 /*
419 * Instantiate a key and link it into the target keyring atomically. Must be
420 * called with the target keyring's semaphore writelocked. The target key's
421 * semaphore need not be locked as instantiation is serialised by
422 * key_construction_mutex.
423 */
__key_instantiate_and_link(struct key * key,struct key_preparsed_payload * prep,struct key * keyring,struct key * authkey,struct assoc_array_edit ** _edit)424 static int __key_instantiate_and_link(struct key *key,
425 struct key_preparsed_payload *prep,
426 struct key *keyring,
427 struct key *authkey,
428 struct assoc_array_edit **_edit)
429 {
430 int ret, awaken;
431
432 key_check(key);
433 key_check(keyring);
434
435 awaken = 0;
436 ret = -EBUSY;
437
438 mutex_lock(&key_construction_mutex);
439
440 /* can't instantiate twice */
441 if (key->state == KEY_IS_UNINSTANTIATED) {
442 /* instantiate the key */
443 ret = key->type->instantiate(key, prep);
444
445 if (ret == 0) {
446 /* mark the key as being instantiated */
447 atomic_inc(&key->user->nikeys);
448 mark_key_instantiated(key, 0);
449 notify_key(key, NOTIFY_KEY_INSTANTIATED, 0);
450
451 if (test_and_clear_bit(KEY_FLAG_USER_CONSTRUCT, &key->flags))
452 awaken = 1;
453
454 /* and link it into the destination keyring */
455 if (keyring) {
456 if (test_bit(KEY_FLAG_KEEP, &keyring->flags))
457 set_bit(KEY_FLAG_KEEP, &key->flags);
458
459 __key_link(keyring, key, _edit);
460 }
461
462 /* disable the authorisation key */
463 if (authkey)
464 key_invalidate(authkey);
465
466 if (prep->expiry != TIME64_MAX) {
467 key->expiry = prep->expiry;
468 key_schedule_gc(prep->expiry + key_gc_delay);
469 }
470 }
471 }
472
473 mutex_unlock(&key_construction_mutex);
474
475 /* wake up anyone waiting for a key to be constructed */
476 if (awaken)
477 wake_up_bit(&key->flags, KEY_FLAG_USER_CONSTRUCT);
478
479 return ret;
480 }
481
482 /**
483 * key_instantiate_and_link - Instantiate a key and link it into the keyring.
484 * @key: The key to instantiate.
485 * @data: The data to use to instantiate the keyring.
486 * @datalen: The length of @data.
487 * @keyring: Keyring to create a link in on success (or NULL).
488 * @authkey: The authorisation token permitting instantiation.
489 *
490 * Instantiate a key that's in the uninstantiated state using the provided data
491 * and, if successful, link it in to the destination keyring if one is
492 * supplied.
493 *
494 * If successful, 0 is returned, the authorisation token is revoked and anyone
495 * waiting for the key is woken up. If the key was already instantiated,
496 * -EBUSY will be returned.
497 */
key_instantiate_and_link(struct key * key,const void * data,size_t datalen,struct key * keyring,struct key * authkey)498 int key_instantiate_and_link(struct key *key,
499 const void *data,
500 size_t datalen,
501 struct key *keyring,
502 struct key *authkey)
503 {
504 struct key_preparsed_payload prep;
505 struct assoc_array_edit *edit = NULL;
506 int ret;
507
508 memset(&prep, 0, sizeof(prep));
509 prep.data = data;
510 prep.datalen = datalen;
511 prep.quotalen = key->type->def_datalen;
512 prep.expiry = TIME64_MAX;
513 if (key->type->preparse) {
514 ret = key->type->preparse(&prep);
515 if (ret < 0)
516 goto error;
517 }
518
519 if (keyring) {
520 ret = __key_link_lock(keyring, &key->index_key);
521 if (ret < 0)
522 goto error;
523
524 ret = __key_link_begin(keyring, &key->index_key, &edit);
525 if (ret < 0)
526 goto error_link_end;
527
528 if (keyring->restrict_link && keyring->restrict_link->check) {
529 struct key_restriction *keyres = keyring->restrict_link;
530
531 ret = keyres->check(keyring, key->type, &prep.payload,
532 keyres->key);
533 if (ret < 0)
534 goto error_link_end;
535 }
536 }
537
538 ret = __key_instantiate_and_link(key, &prep, keyring, authkey, &edit);
539
540 error_link_end:
541 if (keyring)
542 __key_link_end(keyring, &key->index_key, edit);
543
544 error:
545 if (key->type->preparse)
546 key->type->free_preparse(&prep);
547 return ret;
548 }
549
550 EXPORT_SYMBOL(key_instantiate_and_link);
551
552 /**
553 * key_reject_and_link - Negatively instantiate a key and link it into the keyring.
554 * @key: The key to instantiate.
555 * @timeout: The timeout on the negative key.
556 * @error: The error to return when the key is hit.
557 * @keyring: Keyring to create a link in on success (or NULL).
558 * @authkey: The authorisation token permitting instantiation.
559 *
560 * Negatively instantiate a key that's in the uninstantiated state and, if
561 * successful, set its timeout and stored error and link it in to the
562 * destination keyring if one is supplied. The key and any links to the key
563 * will be automatically garbage collected after the timeout expires.
564 *
565 * Negative keys are used to rate limit repeated request_key() calls by causing
566 * them to return the stored error code (typically ENOKEY) until the negative
567 * key expires.
568 *
569 * If successful, 0 is returned, the authorisation token is revoked and anyone
570 * waiting for the key is woken up. If the key was already instantiated,
571 * -EBUSY will be returned.
572 */
key_reject_and_link(struct key * key,unsigned timeout,unsigned error,struct key * keyring,struct key * authkey)573 int key_reject_and_link(struct key *key,
574 unsigned timeout,
575 unsigned error,
576 struct key *keyring,
577 struct key *authkey)
578 {
579 struct assoc_array_edit *edit = NULL;
580 int ret, awaken, link_ret = 0;
581
582 key_check(key);
583 key_check(keyring);
584
585 awaken = 0;
586 ret = -EBUSY;
587
588 if (keyring) {
589 if (keyring->restrict_link)
590 return -EPERM;
591
592 link_ret = __key_link_lock(keyring, &key->index_key);
593 if (link_ret == 0) {
594 link_ret = __key_link_begin(keyring, &key->index_key, &edit);
595 if (link_ret < 0)
596 __key_link_end(keyring, &key->index_key, edit);
597 }
598 }
599
600 mutex_lock(&key_construction_mutex);
601
602 /* can't instantiate twice */
603 if (key->state == KEY_IS_UNINSTANTIATED) {
604 /* mark the key as being negatively instantiated */
605 atomic_inc(&key->user->nikeys);
606 mark_key_instantiated(key, -error);
607 notify_key(key, NOTIFY_KEY_INSTANTIATED, -error);
608 key->expiry = ktime_get_real_seconds() + timeout;
609 key_schedule_gc(key->expiry + key_gc_delay);
610
611 if (test_and_clear_bit(KEY_FLAG_USER_CONSTRUCT, &key->flags))
612 awaken = 1;
613
614 ret = 0;
615
616 /* and link it into the destination keyring */
617 if (keyring && link_ret == 0)
618 __key_link(keyring, key, &edit);
619
620 /* disable the authorisation key */
621 if (authkey)
622 key_invalidate(authkey);
623 }
624
625 mutex_unlock(&key_construction_mutex);
626
627 if (keyring && link_ret == 0)
628 __key_link_end(keyring, &key->index_key, edit);
629
630 /* wake up anyone waiting for a key to be constructed */
631 if (awaken)
632 wake_up_bit(&key->flags, KEY_FLAG_USER_CONSTRUCT);
633
634 return ret == 0 ? link_ret : ret;
635 }
636 EXPORT_SYMBOL(key_reject_and_link);
637
638 /**
639 * key_put - Discard a reference to a key.
640 * @key: The key to discard a reference from.
641 *
642 * Discard a reference to a key, and when all the references are gone, we
643 * schedule the cleanup task to come and pull it out of the tree in process
644 * context at some later time.
645 */
key_put(struct key * key)646 void key_put(struct key *key)
647 {
648 if (key) {
649 key_check(key);
650
651 if (refcount_dec_and_test(&key->usage))
652 schedule_work(&key_gc_work);
653 }
654 }
655 EXPORT_SYMBOL(key_put);
656
657 /*
658 * Find a key by its serial number.
659 */
key_lookup(key_serial_t id)660 struct key *key_lookup(key_serial_t id)
661 {
662 struct rb_node *n;
663 struct key *key;
664
665 spin_lock(&key_serial_lock);
666
667 /* search the tree for the specified key */
668 n = key_serial_tree.rb_node;
669 while (n) {
670 key = rb_entry(n, struct key, serial_node);
671
672 if (id < key->serial)
673 n = n->rb_left;
674 else if (id > key->serial)
675 n = n->rb_right;
676 else
677 goto found;
678 }
679
680 not_found:
681 key = ERR_PTR(-ENOKEY);
682 goto error;
683
684 found:
685 /* A key is allowed to be looked up only if someone still owns a
686 * reference to it - otherwise it's awaiting the gc.
687 */
688 if (!refcount_inc_not_zero(&key->usage))
689 goto not_found;
690
691 error:
692 spin_unlock(&key_serial_lock);
693 return key;
694 }
695
696 /*
697 * Find and lock the specified key type against removal.
698 *
699 * We return with the sem read-locked if successful. If the type wasn't
700 * available -ENOKEY is returned instead.
701 */
key_type_lookup(const char * type)702 struct key_type *key_type_lookup(const char *type)
703 {
704 struct key_type *ktype;
705
706 down_read(&key_types_sem);
707
708 /* look up the key type to see if it's one of the registered kernel
709 * types */
710 list_for_each_entry(ktype, &key_types_list, link) {
711 if (strcmp(ktype->name, type) == 0)
712 goto found_kernel_type;
713 }
714
715 up_read(&key_types_sem);
716 ktype = ERR_PTR(-ENOKEY);
717
718 found_kernel_type:
719 return ktype;
720 }
721
key_set_timeout(struct key * key,unsigned timeout)722 void key_set_timeout(struct key *key, unsigned timeout)
723 {
724 time64_t expiry = 0;
725
726 /* make the changes with the locks held to prevent races */
727 down_write(&key->sem);
728
729 if (timeout > 0)
730 expiry = ktime_get_real_seconds() + timeout;
731
732 key->expiry = expiry;
733 key_schedule_gc(key->expiry + key_gc_delay);
734
735 up_write(&key->sem);
736 }
737 EXPORT_SYMBOL_GPL(key_set_timeout);
738
739 /*
740 * Unlock a key type locked by key_type_lookup().
741 */
key_type_put(struct key_type * ktype)742 void key_type_put(struct key_type *ktype)
743 {
744 up_read(&key_types_sem);
745 }
746
747 /*
748 * Attempt to update an existing key.
749 *
750 * The key is given to us with an incremented refcount that we need to discard
751 * if we get an error.
752 */
__key_update(key_ref_t key_ref,struct key_preparsed_payload * prep)753 static inline key_ref_t __key_update(key_ref_t key_ref,
754 struct key_preparsed_payload *prep)
755 {
756 struct key *key = key_ref_to_ptr(key_ref);
757 int ret;
758
759 /* need write permission on the key to update it */
760 ret = key_permission(key_ref, KEY_NEED_WRITE);
761 if (ret < 0)
762 goto error;
763
764 ret = -EEXIST;
765 if (!key->type->update)
766 goto error;
767
768 down_write(&key->sem);
769
770 ret = key->type->update(key, prep);
771 if (ret == 0) {
772 /* Updating a negative key positively instantiates it */
773 mark_key_instantiated(key, 0);
774 notify_key(key, NOTIFY_KEY_UPDATED, 0);
775 }
776
777 up_write(&key->sem);
778
779 if (ret < 0)
780 goto error;
781 out:
782 return key_ref;
783
784 error:
785 key_put(key);
786 key_ref = ERR_PTR(ret);
787 goto out;
788 }
789
790 /**
791 * key_create_or_update - Update or create and instantiate a key.
792 * @keyring_ref: A pointer to the destination keyring with possession flag.
793 * @type: The type of key.
794 * @description: The searchable description for the key.
795 * @payload: The data to use to instantiate or update the key.
796 * @plen: The length of @payload.
797 * @perm: The permissions mask for a new key.
798 * @flags: The quota flags for a new key.
799 *
800 * Search the destination keyring for a key of the same description and if one
801 * is found, update it, otherwise create and instantiate a new one and create a
802 * link to it from that keyring.
803 *
804 * If perm is KEY_PERM_UNDEF then an appropriate key permissions mask will be
805 * concocted.
806 *
807 * Returns a pointer to the new key if successful, -ENODEV if the key type
808 * wasn't available, -ENOTDIR if the keyring wasn't a keyring, -EACCES if the
809 * caller isn't permitted to modify the keyring or the LSM did not permit
810 * creation of the key.
811 *
812 * On success, the possession flag from the keyring ref will be tacked on to
813 * the key ref before it is returned.
814 */
key_create_or_update(key_ref_t keyring_ref,const char * type,const char * description,const void * payload,size_t plen,key_perm_t perm,unsigned long flags)815 key_ref_t key_create_or_update(key_ref_t keyring_ref,
816 const char *type,
817 const char *description,
818 const void *payload,
819 size_t plen,
820 key_perm_t perm,
821 unsigned long flags)
822 {
823 struct keyring_index_key index_key = {
824 .description = description,
825 };
826 struct key_preparsed_payload prep;
827 struct assoc_array_edit *edit = NULL;
828 const struct cred *cred = current_cred();
829 struct key *keyring, *key = NULL;
830 key_ref_t key_ref;
831 int ret;
832 struct key_restriction *restrict_link = NULL;
833
834 /* look up the key type to see if it's one of the registered kernel
835 * types */
836 index_key.type = key_type_lookup(type);
837 if (IS_ERR(index_key.type)) {
838 key_ref = ERR_PTR(-ENODEV);
839 goto error;
840 }
841
842 key_ref = ERR_PTR(-EINVAL);
843 if (!index_key.type->instantiate ||
844 (!index_key.description && !index_key.type->preparse))
845 goto error_put_type;
846
847 keyring = key_ref_to_ptr(keyring_ref);
848
849 key_check(keyring);
850
851 if (!(flags & KEY_ALLOC_BYPASS_RESTRICTION))
852 restrict_link = keyring->restrict_link;
853
854 key_ref = ERR_PTR(-ENOTDIR);
855 if (keyring->type != &key_type_keyring)
856 goto error_put_type;
857
858 memset(&prep, 0, sizeof(prep));
859 prep.data = payload;
860 prep.datalen = plen;
861 prep.quotalen = index_key.type->def_datalen;
862 prep.expiry = TIME64_MAX;
863 if (index_key.type->preparse) {
864 ret = index_key.type->preparse(&prep);
865 if (ret < 0) {
866 key_ref = ERR_PTR(ret);
867 goto error_free_prep;
868 }
869 if (!index_key.description)
870 index_key.description = prep.description;
871 key_ref = ERR_PTR(-EINVAL);
872 if (!index_key.description)
873 goto error_free_prep;
874 }
875 index_key.desc_len = strlen(index_key.description);
876 key_set_index_key(&index_key);
877
878 ret = __key_link_lock(keyring, &index_key);
879 if (ret < 0) {
880 key_ref = ERR_PTR(ret);
881 goto error_free_prep;
882 }
883
884 ret = __key_link_begin(keyring, &index_key, &edit);
885 if (ret < 0) {
886 key_ref = ERR_PTR(ret);
887 goto error_link_end;
888 }
889
890 if (restrict_link && restrict_link->check) {
891 ret = restrict_link->check(keyring, index_key.type,
892 &prep.payload, restrict_link->key);
893 if (ret < 0) {
894 key_ref = ERR_PTR(ret);
895 goto error_link_end;
896 }
897 }
898
899 /* if we're going to allocate a new key, we're going to have
900 * to modify the keyring */
901 ret = key_permission(keyring_ref, KEY_NEED_WRITE);
902 if (ret < 0) {
903 key_ref = ERR_PTR(ret);
904 goto error_link_end;
905 }
906
907 /* if it's possible to update this type of key, search for an existing
908 * key of the same type and description in the destination keyring and
909 * update that instead if possible
910 */
911 if (index_key.type->update) {
912 key_ref = find_key_to_update(keyring_ref, &index_key);
913 if (key_ref)
914 goto found_matching_key;
915 }
916
917 /* if the client doesn't provide, decide on the permissions we want */
918 if (perm == KEY_PERM_UNDEF) {
919 perm = KEY_POS_VIEW | KEY_POS_SEARCH | KEY_POS_LINK | KEY_POS_SETATTR;
920 perm |= KEY_USR_VIEW;
921
922 if (index_key.type->read)
923 perm |= KEY_POS_READ;
924
925 if (index_key.type == &key_type_keyring ||
926 index_key.type->update)
927 perm |= KEY_POS_WRITE;
928 }
929
930 /* allocate a new key */
931 key = key_alloc(index_key.type, index_key.description,
932 cred->fsuid, cred->fsgid, cred, perm, flags, NULL);
933 if (IS_ERR(key)) {
934 key_ref = ERR_CAST(key);
935 goto error_link_end;
936 }
937
938 /* instantiate it and link it into the target keyring */
939 ret = __key_instantiate_and_link(key, &prep, keyring, NULL, &edit);
940 if (ret < 0) {
941 key_put(key);
942 key_ref = ERR_PTR(ret);
943 goto error_link_end;
944 }
945
946 ima_post_key_create_or_update(keyring, key, payload, plen,
947 flags, true);
948
949 key_ref = make_key_ref(key, is_key_possessed(keyring_ref));
950
951 error_link_end:
952 __key_link_end(keyring, &index_key, edit);
953 error_free_prep:
954 if (index_key.type->preparse)
955 index_key.type->free_preparse(&prep);
956 error_put_type:
957 key_type_put(index_key.type);
958 error:
959 return key_ref;
960
961 found_matching_key:
962 /* we found a matching key, so we're going to try to update it
963 * - we can drop the locks first as we have the key pinned
964 */
965 __key_link_end(keyring, &index_key, edit);
966
967 key = key_ref_to_ptr(key_ref);
968 if (test_bit(KEY_FLAG_USER_CONSTRUCT, &key->flags)) {
969 ret = wait_for_key_construction(key, true);
970 if (ret < 0) {
971 key_ref_put(key_ref);
972 key_ref = ERR_PTR(ret);
973 goto error_free_prep;
974 }
975 }
976
977 key_ref = __key_update(key_ref, &prep);
978
979 if (!IS_ERR(key_ref))
980 ima_post_key_create_or_update(keyring, key,
981 payload, plen,
982 flags, false);
983
984 goto error_free_prep;
985 }
986 EXPORT_SYMBOL(key_create_or_update);
987
988 /**
989 * key_update - Update a key's contents.
990 * @key_ref: The pointer (plus possession flag) to the key.
991 * @payload: The data to be used to update the key.
992 * @plen: The length of @payload.
993 *
994 * Attempt to update the contents of a key with the given payload data. The
995 * caller must be granted Write permission on the key. Negative keys can be
996 * instantiated by this method.
997 *
998 * Returns 0 on success, -EACCES if not permitted and -EOPNOTSUPP if the key
999 * type does not support updating. The key type may return other errors.
1000 */
key_update(key_ref_t key_ref,const void * payload,size_t plen)1001 int key_update(key_ref_t key_ref, const void *payload, size_t plen)
1002 {
1003 struct key_preparsed_payload prep;
1004 struct key *key = key_ref_to_ptr(key_ref);
1005 int ret;
1006
1007 key_check(key);
1008
1009 /* the key must be writable */
1010 ret = key_permission(key_ref, KEY_NEED_WRITE);
1011 if (ret < 0)
1012 return ret;
1013
1014 /* attempt to update it if supported */
1015 if (!key->type->update)
1016 return -EOPNOTSUPP;
1017
1018 memset(&prep, 0, sizeof(prep));
1019 prep.data = payload;
1020 prep.datalen = plen;
1021 prep.quotalen = key->type->def_datalen;
1022 prep.expiry = TIME64_MAX;
1023 if (key->type->preparse) {
1024 ret = key->type->preparse(&prep);
1025 if (ret < 0)
1026 goto error;
1027 }
1028
1029 down_write(&key->sem);
1030
1031 ret = key->type->update(key, &prep);
1032 if (ret == 0) {
1033 /* Updating a negative key positively instantiates it */
1034 mark_key_instantiated(key, 0);
1035 notify_key(key, NOTIFY_KEY_UPDATED, 0);
1036 }
1037
1038 up_write(&key->sem);
1039
1040 error:
1041 if (key->type->preparse)
1042 key->type->free_preparse(&prep);
1043 return ret;
1044 }
1045 EXPORT_SYMBOL(key_update);
1046
1047 /**
1048 * key_revoke - Revoke a key.
1049 * @key: The key to be revoked.
1050 *
1051 * Mark a key as being revoked and ask the type to free up its resources. The
1052 * revocation timeout is set and the key and all its links will be
1053 * automatically garbage collected after key_gc_delay amount of time if they
1054 * are not manually dealt with first.
1055 */
key_revoke(struct key * key)1056 void key_revoke(struct key *key)
1057 {
1058 time64_t time;
1059
1060 key_check(key);
1061
1062 /* make sure no one's trying to change or use the key when we mark it
1063 * - we tell lockdep that we might nest because we might be revoking an
1064 * authorisation key whilst holding the sem on a key we've just
1065 * instantiated
1066 */
1067 down_write_nested(&key->sem, 1);
1068 if (!test_and_set_bit(KEY_FLAG_REVOKED, &key->flags)) {
1069 notify_key(key, NOTIFY_KEY_REVOKED, 0);
1070 if (key->type->revoke)
1071 key->type->revoke(key);
1072
1073 /* set the death time to no more than the expiry time */
1074 time = ktime_get_real_seconds();
1075 if (key->revoked_at == 0 || key->revoked_at > time) {
1076 key->revoked_at = time;
1077 key_schedule_gc(key->revoked_at + key_gc_delay);
1078 }
1079 }
1080
1081 up_write(&key->sem);
1082 }
1083 EXPORT_SYMBOL(key_revoke);
1084
1085 /**
1086 * key_invalidate - Invalidate a key.
1087 * @key: The key to be invalidated.
1088 *
1089 * Mark a key as being invalidated and have it cleaned up immediately. The key
1090 * is ignored by all searches and other operations from this point.
1091 */
key_invalidate(struct key * key)1092 void key_invalidate(struct key *key)
1093 {
1094 kenter("%d", key_serial(key));
1095
1096 key_check(key);
1097
1098 if (!test_bit(KEY_FLAG_INVALIDATED, &key->flags)) {
1099 down_write_nested(&key->sem, 1);
1100 if (!test_and_set_bit(KEY_FLAG_INVALIDATED, &key->flags)) {
1101 notify_key(key, NOTIFY_KEY_INVALIDATED, 0);
1102 key_schedule_gc_links();
1103 }
1104 up_write(&key->sem);
1105 }
1106 }
1107 EXPORT_SYMBOL(key_invalidate);
1108
1109 /**
1110 * generic_key_instantiate - Simple instantiation of a key from preparsed data
1111 * @key: The key to be instantiated
1112 * @prep: The preparsed data to load.
1113 *
1114 * Instantiate a key from preparsed data. We assume we can just copy the data
1115 * in directly and clear the old pointers.
1116 *
1117 * This can be pointed to directly by the key type instantiate op pointer.
1118 */
generic_key_instantiate(struct key * key,struct key_preparsed_payload * prep)1119 int generic_key_instantiate(struct key *key, struct key_preparsed_payload *prep)
1120 {
1121 int ret;
1122
1123 pr_devel("==>%s()\n", __func__);
1124
1125 ret = key_payload_reserve(key, prep->quotalen);
1126 if (ret == 0) {
1127 rcu_assign_keypointer(key, prep->payload.data[0]);
1128 key->payload.data[1] = prep->payload.data[1];
1129 key->payload.data[2] = prep->payload.data[2];
1130 key->payload.data[3] = prep->payload.data[3];
1131 prep->payload.data[0] = NULL;
1132 prep->payload.data[1] = NULL;
1133 prep->payload.data[2] = NULL;
1134 prep->payload.data[3] = NULL;
1135 }
1136 pr_devel("<==%s() = %d\n", __func__, ret);
1137 return ret;
1138 }
1139 EXPORT_SYMBOL(generic_key_instantiate);
1140
1141 /**
1142 * register_key_type - Register a type of key.
1143 * @ktype: The new key type.
1144 *
1145 * Register a new key type.
1146 *
1147 * Returns 0 on success or -EEXIST if a type of this name already exists.
1148 */
register_key_type(struct key_type * ktype)1149 int register_key_type(struct key_type *ktype)
1150 {
1151 struct key_type *p;
1152 int ret;
1153
1154 memset(&ktype->lock_class, 0, sizeof(ktype->lock_class));
1155
1156 ret = -EEXIST;
1157 down_write(&key_types_sem);
1158
1159 /* disallow key types with the same name */
1160 list_for_each_entry(p, &key_types_list, link) {
1161 if (strcmp(p->name, ktype->name) == 0)
1162 goto out;
1163 }
1164
1165 /* store the type */
1166 list_add(&ktype->link, &key_types_list);
1167
1168 pr_notice("Key type %s registered\n", ktype->name);
1169 ret = 0;
1170
1171 out:
1172 up_write(&key_types_sem);
1173 return ret;
1174 }
1175 EXPORT_SYMBOL(register_key_type);
1176
1177 /**
1178 * unregister_key_type - Unregister a type of key.
1179 * @ktype: The key type.
1180 *
1181 * Unregister a key type and mark all the extant keys of this type as dead.
1182 * Those keys of this type are then destroyed to get rid of their payloads and
1183 * they and their links will be garbage collected as soon as possible.
1184 */
unregister_key_type(struct key_type * ktype)1185 void unregister_key_type(struct key_type *ktype)
1186 {
1187 down_write(&key_types_sem);
1188 list_del_init(&ktype->link);
1189 downgrade_write(&key_types_sem);
1190 key_gc_keytype(ktype);
1191 pr_notice("Key type %s unregistered\n", ktype->name);
1192 up_read(&key_types_sem);
1193 }
1194 EXPORT_SYMBOL(unregister_key_type);
1195
1196 /*
1197 * Initialise the key management state.
1198 */
key_init(void)1199 void __init key_init(void)
1200 {
1201 /* allocate a slab in which we can store keys */
1202 key_jar = kmem_cache_create("key_jar", sizeof(struct key),
1203 0, SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
1204
1205 /* add the special key types */
1206 list_add_tail(&key_type_keyring.link, &key_types_list);
1207 list_add_tail(&key_type_dead.link, &key_types_list);
1208 list_add_tail(&key_type_user.link, &key_types_list);
1209 list_add_tail(&key_type_logon.link, &key_types_list);
1210
1211 /* record the root user tracking */
1212 rb_link_node(&root_key_user.node,
1213 NULL,
1214 &key_user_tree.rb_node);
1215
1216 rb_insert_color(&root_key_user.node,
1217 &key_user_tree);
1218 }
1219