• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Slab allocator functions that are independent of the allocator strategy
4  *
5  * (C) 2012 Christoph Lameter <cl@linux.com>
6  */
7 #include <linux/slab.h>
8 
9 #include <linux/mm.h>
10 #include <linux/poison.h>
11 #include <linux/interrupt.h>
12 #include <linux/memory.h>
13 #include <linux/cache.h>
14 #include <linux/compiler.h>
15 #include <linux/module.h>
16 #include <linux/cpu.h>
17 #include <linux/uaccess.h>
18 #include <linux/seq_file.h>
19 #include <linux/proc_fs.h>
20 #include <linux/debugfs.h>
21 #include <asm/cacheflush.h>
22 #include <asm/tlbflush.h>
23 #include <asm/page.h>
24 #include <linux/memcontrol.h>
25 
26 #define CREATE_TRACE_POINTS
27 #include <trace/events/kmem.h>
28 
29 #include "internal.h"
30 
31 #include "slab.h"
32 
33 enum slab_state slab_state;
34 LIST_HEAD(slab_caches);
35 DEFINE_MUTEX(slab_mutex);
36 struct kmem_cache *kmem_cache;
37 
38 #ifdef CONFIG_HARDENED_USERCOPY
39 bool usercopy_fallback __ro_after_init =
40 		IS_ENABLED(CONFIG_HARDENED_USERCOPY_FALLBACK);
41 module_param(usercopy_fallback, bool, 0400);
42 MODULE_PARM_DESC(usercopy_fallback,
43 		"WARN instead of reject usercopy whitelist violations");
44 #endif
45 
46 static LIST_HEAD(slab_caches_to_rcu_destroy);
47 static void slab_caches_to_rcu_destroy_workfn(struct work_struct *work);
48 static DECLARE_WORK(slab_caches_to_rcu_destroy_work,
49 		    slab_caches_to_rcu_destroy_workfn);
50 
51 /*
52  * Set of flags that will prevent slab merging
53  */
54 #define SLAB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
55 		SLAB_TRACE | SLAB_TYPESAFE_BY_RCU | SLAB_NOLEAKTRACE | \
56 		SLAB_FAILSLAB | SLAB_KASAN)
57 
58 #define SLAB_MERGE_SAME (SLAB_RECLAIM_ACCOUNT | SLAB_CACHE_DMA | \
59 			 SLAB_CACHE_DMA32 | SLAB_ACCOUNT)
60 
61 /*
62  * Merge control. If this is set then no merging of slab caches will occur.
63  */
64 static bool slab_nomerge = !IS_ENABLED(CONFIG_SLAB_MERGE_DEFAULT);
65 
setup_slab_nomerge(char * str)66 static int __init setup_slab_nomerge(char *str)
67 {
68 	slab_nomerge = true;
69 	return 1;
70 }
71 
72 #ifdef CONFIG_SLUB
73 __setup_param("slub_nomerge", slub_nomerge, setup_slab_nomerge, 0);
74 #endif
75 
76 __setup("slab_nomerge", setup_slab_nomerge);
77 
78 /*
79  * Determine the size of a slab object
80  */
kmem_cache_size(struct kmem_cache * s)81 unsigned int kmem_cache_size(struct kmem_cache *s)
82 {
83 	return s->object_size;
84 }
85 EXPORT_SYMBOL(kmem_cache_size);
86 
87 #ifdef CONFIG_DEBUG_VM
kmem_cache_sanity_check(const char * name,unsigned int size)88 static int kmem_cache_sanity_check(const char *name, unsigned int size)
89 {
90 	if (!name || in_interrupt() || size > KMALLOC_MAX_SIZE) {
91 		pr_err("kmem_cache_create(%s) integrity check failed\n", name);
92 		return -EINVAL;
93 	}
94 
95 	WARN_ON(strchr(name, ' '));	/* It confuses parsers */
96 	return 0;
97 }
98 #else
kmem_cache_sanity_check(const char * name,unsigned int size)99 static inline int kmem_cache_sanity_check(const char *name, unsigned int size)
100 {
101 	return 0;
102 }
103 #endif
104 
__kmem_cache_free_bulk(struct kmem_cache * s,size_t nr,void ** p)105 void __kmem_cache_free_bulk(struct kmem_cache *s, size_t nr, void **p)
106 {
107 	size_t i;
108 
109 	for (i = 0; i < nr; i++) {
110 		if (s)
111 			kmem_cache_free(s, p[i]);
112 		else
113 			kfree(p[i]);
114 	}
115 }
116 
__kmem_cache_alloc_bulk(struct kmem_cache * s,gfp_t flags,size_t nr,void ** p)117 int __kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t nr,
118 								void **p)
119 {
120 	size_t i;
121 
122 	for (i = 0; i < nr; i++) {
123 		void *x = p[i] = kmem_cache_alloc(s, flags);
124 		if (!x) {
125 			__kmem_cache_free_bulk(s, i, p);
126 			return 0;
127 		}
128 	}
129 	return i;
130 }
131 
132 /*
133  * Figure out what the alignment of the objects will be given a set of
134  * flags, a user specified alignment and the size of the objects.
135  */
calculate_alignment(slab_flags_t flags,unsigned int align,unsigned int size)136 static unsigned int calculate_alignment(slab_flags_t flags,
137 		unsigned int align, unsigned int size)
138 {
139 	/*
140 	 * If the user wants hardware cache aligned objects then follow that
141 	 * suggestion if the object is sufficiently large.
142 	 *
143 	 * The hardware cache alignment cannot override the specified
144 	 * alignment though. If that is greater then use it.
145 	 */
146 	if (flags & SLAB_HWCACHE_ALIGN) {
147 		unsigned int ralign;
148 
149 		ralign = cache_line_size();
150 		while (size <= ralign / 2)
151 			ralign /= 2;
152 		align = max(align, ralign);
153 	}
154 
155 	if (align < ARCH_SLAB_MINALIGN)
156 		align = ARCH_SLAB_MINALIGN;
157 
158 	return ALIGN(align, sizeof(void *));
159 }
160 
161 /*
162  * Find a mergeable slab cache
163  */
slab_unmergeable(struct kmem_cache * s)164 int slab_unmergeable(struct kmem_cache *s)
165 {
166 	if (slab_nomerge || (s->flags & SLAB_NEVER_MERGE))
167 		return 1;
168 
169 	if (s->ctor)
170 		return 1;
171 
172 	if (s->usersize)
173 		return 1;
174 
175 	/*
176 	 * We may have set a slab to be unmergeable during bootstrap.
177 	 */
178 	if (s->refcount < 0)
179 		return 1;
180 
181 	return 0;
182 }
183 
find_mergeable(unsigned int size,unsigned int align,slab_flags_t flags,const char * name,void (* ctor)(void *))184 struct kmem_cache *find_mergeable(unsigned int size, unsigned int align,
185 		slab_flags_t flags, const char *name, void (*ctor)(void *))
186 {
187 	struct kmem_cache *s;
188 
189 	if (slab_nomerge)
190 		return NULL;
191 
192 	if (ctor)
193 		return NULL;
194 
195 	size = ALIGN(size, sizeof(void *));
196 	align = calculate_alignment(flags, align, size);
197 	size = ALIGN(size, align);
198 	flags = kmem_cache_flags(size, flags, name);
199 
200 	if (flags & SLAB_NEVER_MERGE)
201 		return NULL;
202 
203 	list_for_each_entry_reverse(s, &slab_caches, list) {
204 		if (slab_unmergeable(s))
205 			continue;
206 
207 		if (size > s->size)
208 			continue;
209 
210 		if ((flags & SLAB_MERGE_SAME) != (s->flags & SLAB_MERGE_SAME))
211 			continue;
212 		/*
213 		 * Check if alignment is compatible.
214 		 * Courtesy of Adrian Drzewiecki
215 		 */
216 		if ((s->size & ~(align - 1)) != s->size)
217 			continue;
218 
219 		if (s->size - size >= sizeof(void *))
220 			continue;
221 
222 		if (IS_ENABLED(CONFIG_SLAB) && align &&
223 			(align > s->align || s->align % align))
224 			continue;
225 
226 		return s;
227 	}
228 	return NULL;
229 }
230 
create_cache(const char * name,unsigned int object_size,unsigned int align,slab_flags_t flags,unsigned int useroffset,unsigned int usersize,void (* ctor)(void *),struct kmem_cache * root_cache)231 static struct kmem_cache *create_cache(const char *name,
232 		unsigned int object_size, unsigned int align,
233 		slab_flags_t flags, unsigned int useroffset,
234 		unsigned int usersize, void (*ctor)(void *),
235 		struct kmem_cache *root_cache)
236 {
237 	struct kmem_cache *s;
238 	int err;
239 
240 	if (WARN_ON(useroffset + usersize > object_size))
241 		useroffset = usersize = 0;
242 
243 	err = -ENOMEM;
244 	s = kmem_cache_zalloc(kmem_cache, GFP_KERNEL);
245 	if (!s)
246 		goto out;
247 
248 	s->name = name;
249 	s->size = s->object_size = object_size;
250 	s->align = align;
251 	s->ctor = ctor;
252 	s->useroffset = useroffset;
253 	s->usersize = usersize;
254 
255 	err = __kmem_cache_create(s, flags);
256 	if (err)
257 		goto out_free_cache;
258 
259 	s->refcount = 1;
260 	list_add(&s->list, &slab_caches);
261 out:
262 	if (err)
263 		return ERR_PTR(err);
264 	return s;
265 
266 out_free_cache:
267 	kmem_cache_free(kmem_cache, s);
268 	goto out;
269 }
270 
271 /**
272  * kmem_cache_create_usercopy - Create a cache with a region suitable
273  * for copying to userspace
274  * @name: A string which is used in /proc/slabinfo to identify this cache.
275  * @size: The size of objects to be created in this cache.
276  * @align: The required alignment for the objects.
277  * @flags: SLAB flags
278  * @useroffset: Usercopy region offset
279  * @usersize: Usercopy region size
280  * @ctor: A constructor for the objects.
281  *
282  * Cannot be called within a interrupt, but can be interrupted.
283  * The @ctor is run when new pages are allocated by the cache.
284  *
285  * The flags are
286  *
287  * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
288  * to catch references to uninitialised memory.
289  *
290  * %SLAB_RED_ZONE - Insert `Red` zones around the allocated memory to check
291  * for buffer overruns.
292  *
293  * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
294  * cacheline.  This can be beneficial if you're counting cycles as closely
295  * as davem.
296  *
297  * Return: a pointer to the cache on success, NULL on failure.
298  */
299 struct kmem_cache *
kmem_cache_create_usercopy(const char * name,unsigned int size,unsigned int align,slab_flags_t flags,unsigned int useroffset,unsigned int usersize,void (* ctor)(void *))300 kmem_cache_create_usercopy(const char *name,
301 		  unsigned int size, unsigned int align,
302 		  slab_flags_t flags,
303 		  unsigned int useroffset, unsigned int usersize,
304 		  void (*ctor)(void *))
305 {
306 	struct kmem_cache *s = NULL;
307 	const char *cache_name;
308 	int err;
309 
310 	get_online_cpus();
311 	get_online_mems();
312 
313 	mutex_lock(&slab_mutex);
314 
315 	err = kmem_cache_sanity_check(name, size);
316 	if (err) {
317 		goto out_unlock;
318 	}
319 
320 	/* Refuse requests with allocator specific flags */
321 	if (flags & ~SLAB_FLAGS_PERMITTED) {
322 		err = -EINVAL;
323 		goto out_unlock;
324 	}
325 
326 	/*
327 	 * Some allocators will constraint the set of valid flags to a subset
328 	 * of all flags. We expect them to define CACHE_CREATE_MASK in this
329 	 * case, and we'll just provide them with a sanitized version of the
330 	 * passed flags.
331 	 */
332 	flags &= CACHE_CREATE_MASK;
333 
334 	/* Fail closed on bad usersize of useroffset values. */
335 	if (WARN_ON(!usersize && useroffset) ||
336 	    WARN_ON(size < usersize || size - usersize < useroffset))
337 		usersize = useroffset = 0;
338 
339 	if (!usersize)
340 		s = __kmem_cache_alias(name, size, align, flags, ctor);
341 	if (s)
342 		goto out_unlock;
343 
344 	cache_name = kstrdup_const(name, GFP_KERNEL);
345 	if (!cache_name) {
346 		err = -ENOMEM;
347 		goto out_unlock;
348 	}
349 
350 	s = create_cache(cache_name, size,
351 			 calculate_alignment(flags, align, size),
352 			 flags, useroffset, usersize, ctor, NULL);
353 	if (IS_ERR(s)) {
354 		err = PTR_ERR(s);
355 		kfree_const(cache_name);
356 	}
357 
358 out_unlock:
359 	mutex_unlock(&slab_mutex);
360 
361 	put_online_mems();
362 	put_online_cpus();
363 
364 	if (err) {
365 		if (flags & SLAB_PANIC)
366 			panic("kmem_cache_create: Failed to create slab '%s'. Error %d\n",
367 				name, err);
368 		else {
369 			pr_warn("kmem_cache_create(%s) failed with error %d\n",
370 				name, err);
371 			dump_stack();
372 		}
373 		return NULL;
374 	}
375 	return s;
376 }
377 EXPORT_SYMBOL(kmem_cache_create_usercopy);
378 
379 /**
380  * kmem_cache_create - Create a cache.
381  * @name: A string which is used in /proc/slabinfo to identify this cache.
382  * @size: The size of objects to be created in this cache.
383  * @align: The required alignment for the objects.
384  * @flags: SLAB flags
385  * @ctor: A constructor for the objects.
386  *
387  * Cannot be called within a interrupt, but can be interrupted.
388  * The @ctor is run when new pages are allocated by the cache.
389  *
390  * The flags are
391  *
392  * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
393  * to catch references to uninitialised memory.
394  *
395  * %SLAB_RED_ZONE - Insert `Red` zones around the allocated memory to check
396  * for buffer overruns.
397  *
398  * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
399  * cacheline.  This can be beneficial if you're counting cycles as closely
400  * as davem.
401  *
402  * Return: a pointer to the cache on success, NULL on failure.
403  */
404 struct kmem_cache *
kmem_cache_create(const char * name,unsigned int size,unsigned int align,slab_flags_t flags,void (* ctor)(void *))405 kmem_cache_create(const char *name, unsigned int size, unsigned int align,
406 		slab_flags_t flags, void (*ctor)(void *))
407 {
408 	return kmem_cache_create_usercopy(name, size, align, flags, 0, 0,
409 					  ctor);
410 }
411 EXPORT_SYMBOL(kmem_cache_create);
412 
slab_caches_to_rcu_destroy_workfn(struct work_struct * work)413 static void slab_caches_to_rcu_destroy_workfn(struct work_struct *work)
414 {
415 	LIST_HEAD(to_destroy);
416 	struct kmem_cache *s, *s2;
417 
418 	/*
419 	 * On destruction, SLAB_TYPESAFE_BY_RCU kmem_caches are put on the
420 	 * @slab_caches_to_rcu_destroy list.  The slab pages are freed
421 	 * through RCU and the associated kmem_cache are dereferenced
422 	 * while freeing the pages, so the kmem_caches should be freed only
423 	 * after the pending RCU operations are finished.  As rcu_barrier()
424 	 * is a pretty slow operation, we batch all pending destructions
425 	 * asynchronously.
426 	 */
427 	mutex_lock(&slab_mutex);
428 	list_splice_init(&slab_caches_to_rcu_destroy, &to_destroy);
429 	mutex_unlock(&slab_mutex);
430 
431 	if (list_empty(&to_destroy))
432 		return;
433 
434 	rcu_barrier();
435 
436 	list_for_each_entry_safe(s, s2, &to_destroy, list) {
437 #ifdef SLAB_SUPPORTS_SYSFS
438 		sysfs_slab_release(s);
439 #else
440 		slab_kmem_cache_release(s);
441 #endif
442 	}
443 }
444 
shutdown_cache(struct kmem_cache * s)445 static int shutdown_cache(struct kmem_cache *s)
446 {
447 	/* free asan quarantined objects */
448 	kasan_cache_shutdown(s);
449 
450 	if (__kmem_cache_shutdown(s) != 0)
451 		return -EBUSY;
452 
453 	list_del(&s->list);
454 
455 	if (s->flags & SLAB_TYPESAFE_BY_RCU) {
456 #ifdef SLAB_SUPPORTS_SYSFS
457 		sysfs_slab_unlink(s);
458 #endif
459 		list_add_tail(&s->list, &slab_caches_to_rcu_destroy);
460 		schedule_work(&slab_caches_to_rcu_destroy_work);
461 	} else {
462 #ifdef SLAB_SUPPORTS_SYSFS
463 		sysfs_slab_unlink(s);
464 		sysfs_slab_release(s);
465 #else
466 		slab_kmem_cache_release(s);
467 #endif
468 	}
469 
470 	return 0;
471 }
472 
slab_kmem_cache_release(struct kmem_cache * s)473 void slab_kmem_cache_release(struct kmem_cache *s)
474 {
475 	__kmem_cache_release(s);
476 	kfree_const(s->name);
477 	kmem_cache_free(kmem_cache, s);
478 }
479 
kmem_cache_destroy(struct kmem_cache * s)480 void kmem_cache_destroy(struct kmem_cache *s)
481 {
482 	int err;
483 
484 	if (unlikely(!s))
485 		return;
486 
487 	get_online_cpus();
488 	get_online_mems();
489 
490 	mutex_lock(&slab_mutex);
491 
492 	s->refcount--;
493 	if (s->refcount)
494 		goto out_unlock;
495 
496 	err = shutdown_cache(s);
497 	if (err) {
498 		pr_err("kmem_cache_destroy %s: Slab cache still has objects\n",
499 		       s->name);
500 		dump_stack();
501 	}
502 out_unlock:
503 	mutex_unlock(&slab_mutex);
504 
505 	put_online_mems();
506 	put_online_cpus();
507 }
508 EXPORT_SYMBOL(kmem_cache_destroy);
509 
510 /**
511  * kmem_cache_shrink - Shrink a cache.
512  * @cachep: The cache to shrink.
513  *
514  * Releases as many slabs as possible for a cache.
515  * To help debugging, a zero exit status indicates all slabs were released.
516  *
517  * Return: %0 if all slabs were released, non-zero otherwise
518  */
kmem_cache_shrink(struct kmem_cache * cachep)519 int kmem_cache_shrink(struct kmem_cache *cachep)
520 {
521 	int ret;
522 
523 	get_online_cpus();
524 	get_online_mems();
525 	kasan_cache_shrink(cachep);
526 	ret = __kmem_cache_shrink(cachep);
527 	put_online_mems();
528 	put_online_cpus();
529 	return ret;
530 }
531 EXPORT_SYMBOL(kmem_cache_shrink);
532 
slab_is_available(void)533 bool slab_is_available(void)
534 {
535 	return slab_state >= UP;
536 }
537 
538 #ifndef CONFIG_SLOB
539 /* Create a cache during boot when no slab services are available yet */
create_boot_cache(struct kmem_cache * s,const char * name,unsigned int size,slab_flags_t flags,unsigned int useroffset,unsigned int usersize)540 void __init create_boot_cache(struct kmem_cache *s, const char *name,
541 		unsigned int size, slab_flags_t flags,
542 		unsigned int useroffset, unsigned int usersize)
543 {
544 	int err;
545 	unsigned int align = ARCH_KMALLOC_MINALIGN;
546 
547 	s->name = name;
548 	s->size = s->object_size = size;
549 
550 	/*
551 	 * For power of two sizes, guarantee natural alignment for kmalloc
552 	 * caches, regardless of SL*B debugging options.
553 	 */
554 	if (is_power_of_2(size))
555 		align = max(align, size);
556 	s->align = calculate_alignment(flags, align, size);
557 
558 	s->useroffset = useroffset;
559 	s->usersize = usersize;
560 
561 	err = __kmem_cache_create(s, flags);
562 
563 	if (err)
564 		panic("Creation of kmalloc slab %s size=%u failed. Reason %d\n",
565 					name, size, err);
566 
567 	s->refcount = -1;	/* Exempt from merging for now */
568 }
569 
create_kmalloc_cache(const char * name,unsigned int size,slab_flags_t flags,unsigned int useroffset,unsigned int usersize)570 struct kmem_cache *__init create_kmalloc_cache(const char *name,
571 		unsigned int size, slab_flags_t flags,
572 		unsigned int useroffset, unsigned int usersize)
573 {
574 	struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
575 
576 	if (!s)
577 		panic("Out of memory when creating slab %s\n", name);
578 
579 	create_boot_cache(s, name, size, flags, useroffset, usersize);
580 	list_add(&s->list, &slab_caches);
581 	s->refcount = 1;
582 	return s;
583 }
584 
585 struct kmem_cache *
586 kmalloc_caches[NR_KMALLOC_TYPES][KMALLOC_SHIFT_HIGH + 1] __ro_after_init =
587 { /* initialization for https://bugs.llvm.org/show_bug.cgi?id=42570 */ };
588 EXPORT_SYMBOL(kmalloc_caches);
589 
590 /*
591  * Conversion table for small slabs sizes / 8 to the index in the
592  * kmalloc array. This is necessary for slabs < 192 since we have non power
593  * of two cache sizes there. The size of larger slabs can be determined using
594  * fls.
595  */
596 static u8 size_index[24] __ro_after_init = {
597 	3,	/* 8 */
598 	4,	/* 16 */
599 	5,	/* 24 */
600 	5,	/* 32 */
601 	6,	/* 40 */
602 	6,	/* 48 */
603 	6,	/* 56 */
604 	6,	/* 64 */
605 	1,	/* 72 */
606 	1,	/* 80 */
607 	1,	/* 88 */
608 	1,	/* 96 */
609 	7,	/* 104 */
610 	7,	/* 112 */
611 	7,	/* 120 */
612 	7,	/* 128 */
613 	2,	/* 136 */
614 	2,	/* 144 */
615 	2,	/* 152 */
616 	2,	/* 160 */
617 	2,	/* 168 */
618 	2,	/* 176 */
619 	2,	/* 184 */
620 	2	/* 192 */
621 };
622 
size_index_elem(unsigned int bytes)623 static inline unsigned int size_index_elem(unsigned int bytes)
624 {
625 	return (bytes - 1) / 8;
626 }
627 
628 /*
629  * Find the kmem_cache structure that serves a given size of
630  * allocation
631  */
kmalloc_slab(size_t size,gfp_t flags)632 struct kmem_cache *kmalloc_slab(size_t size, gfp_t flags)
633 {
634 	unsigned int index;
635 
636 	if (size <= 192) {
637 		if (!size)
638 			return ZERO_SIZE_PTR;
639 
640 		index = size_index[size_index_elem(size)];
641 	} else {
642 		if (WARN_ON_ONCE(size > KMALLOC_MAX_CACHE_SIZE))
643 			return NULL;
644 		index = fls(size - 1);
645 	}
646 
647 	return kmalloc_caches[kmalloc_type(flags)][index];
648 }
649 
650 #ifdef CONFIG_ZONE_DMA
651 #define INIT_KMALLOC_INFO(__size, __short_size)			\
652 {								\
653 	.name[KMALLOC_NORMAL]  = "kmalloc-" #__short_size,	\
654 	.name[KMALLOC_RECLAIM] = "kmalloc-rcl-" #__short_size,	\
655 	.name[KMALLOC_DMA]     = "dma-kmalloc-" #__short_size,	\
656 	.size = __size,						\
657 }
658 #else
659 #define INIT_KMALLOC_INFO(__size, __short_size)			\
660 {								\
661 	.name[KMALLOC_NORMAL]  = "kmalloc-" #__short_size,	\
662 	.name[KMALLOC_RECLAIM] = "kmalloc-rcl-" #__short_size,	\
663 	.size = __size,						\
664 }
665 #endif
666 
667 /*
668  * kmalloc_info[] is to make slub_debug=,kmalloc-xx option work at boot time.
669  * kmalloc_index() supports up to 2^26=64MB, so the final entry of the table is
670  * kmalloc-67108864.
671  */
672 const struct kmalloc_info_struct kmalloc_info[] __initconst = {
673 	INIT_KMALLOC_INFO(0, 0),
674 	INIT_KMALLOC_INFO(96, 96),
675 	INIT_KMALLOC_INFO(192, 192),
676 	INIT_KMALLOC_INFO(8, 8),
677 	INIT_KMALLOC_INFO(16, 16),
678 	INIT_KMALLOC_INFO(32, 32),
679 	INIT_KMALLOC_INFO(64, 64),
680 	INIT_KMALLOC_INFO(128, 128),
681 	INIT_KMALLOC_INFO(256, 256),
682 	INIT_KMALLOC_INFO(512, 512),
683 	INIT_KMALLOC_INFO(1024, 1k),
684 	INIT_KMALLOC_INFO(2048, 2k),
685 	INIT_KMALLOC_INFO(4096, 4k),
686 	INIT_KMALLOC_INFO(8192, 8k),
687 	INIT_KMALLOC_INFO(16384, 16k),
688 	INIT_KMALLOC_INFO(32768, 32k),
689 	INIT_KMALLOC_INFO(65536, 64k),
690 	INIT_KMALLOC_INFO(131072, 128k),
691 	INIT_KMALLOC_INFO(262144, 256k),
692 	INIT_KMALLOC_INFO(524288, 512k),
693 	INIT_KMALLOC_INFO(1048576, 1M),
694 	INIT_KMALLOC_INFO(2097152, 2M),
695 	INIT_KMALLOC_INFO(4194304, 4M),
696 	INIT_KMALLOC_INFO(8388608, 8M),
697 	INIT_KMALLOC_INFO(16777216, 16M),
698 	INIT_KMALLOC_INFO(33554432, 32M),
699 	INIT_KMALLOC_INFO(67108864, 64M)
700 };
701 
702 /*
703  * Patch up the size_index table if we have strange large alignment
704  * requirements for the kmalloc array. This is only the case for
705  * MIPS it seems. The standard arches will not generate any code here.
706  *
707  * Largest permitted alignment is 256 bytes due to the way we
708  * handle the index determination for the smaller caches.
709  *
710  * Make sure that nothing crazy happens if someone starts tinkering
711  * around with ARCH_KMALLOC_MINALIGN
712  */
setup_kmalloc_cache_index_table(void)713 void __init setup_kmalloc_cache_index_table(void)
714 {
715 	unsigned int i;
716 
717 	BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 ||
718 		(KMALLOC_MIN_SIZE & (KMALLOC_MIN_SIZE - 1)));
719 
720 	for (i = 8; i < KMALLOC_MIN_SIZE; i += 8) {
721 		unsigned int elem = size_index_elem(i);
722 
723 		if (elem >= ARRAY_SIZE(size_index))
724 			break;
725 		size_index[elem] = KMALLOC_SHIFT_LOW;
726 	}
727 
728 	if (KMALLOC_MIN_SIZE >= 64) {
729 		/*
730 		 * The 96 byte size cache is not used if the alignment
731 		 * is 64 byte.
732 		 */
733 		for (i = 64 + 8; i <= 96; i += 8)
734 			size_index[size_index_elem(i)] = 7;
735 
736 	}
737 
738 	if (KMALLOC_MIN_SIZE >= 128) {
739 		/*
740 		 * The 192 byte sized cache is not used if the alignment
741 		 * is 128 byte. Redirect kmalloc to use the 256 byte cache
742 		 * instead.
743 		 */
744 		for (i = 128 + 8; i <= 192; i += 8)
745 			size_index[size_index_elem(i)] = 8;
746 	}
747 }
748 
749 static void __init
new_kmalloc_cache(int idx,enum kmalloc_cache_type type,slab_flags_t flags)750 new_kmalloc_cache(int idx, enum kmalloc_cache_type type, slab_flags_t flags)
751 {
752 	if (type == KMALLOC_RECLAIM)
753 		flags |= SLAB_RECLAIM_ACCOUNT;
754 
755 	kmalloc_caches[type][idx] = create_kmalloc_cache(
756 					kmalloc_info[idx].name[type],
757 					kmalloc_info[idx].size, flags, 0,
758 					kmalloc_info[idx].size);
759 }
760 
761 /*
762  * Create the kmalloc array. Some of the regular kmalloc arrays
763  * may already have been created because they were needed to
764  * enable allocations for slab creation.
765  */
create_kmalloc_caches(slab_flags_t flags)766 void __init create_kmalloc_caches(slab_flags_t flags)
767 {
768 	int i;
769 	enum kmalloc_cache_type type;
770 
771 	for (type = KMALLOC_NORMAL; type <= KMALLOC_RECLAIM; type++) {
772 		for (i = KMALLOC_SHIFT_LOW; i <= KMALLOC_SHIFT_HIGH; i++) {
773 			if (!kmalloc_caches[type][i])
774 				new_kmalloc_cache(i, type, flags);
775 
776 			/*
777 			 * Caches that are not of the two-to-the-power-of size.
778 			 * These have to be created immediately after the
779 			 * earlier power of two caches
780 			 */
781 			if (KMALLOC_MIN_SIZE <= 32 && i == 6 &&
782 					!kmalloc_caches[type][1])
783 				new_kmalloc_cache(1, type, flags);
784 			if (KMALLOC_MIN_SIZE <= 64 && i == 7 &&
785 					!kmalloc_caches[type][2])
786 				new_kmalloc_cache(2, type, flags);
787 		}
788 	}
789 
790 	/* Kmalloc array is now usable */
791 	slab_state = UP;
792 
793 #ifdef CONFIG_ZONE_DMA
794 	for (i = 0; i <= KMALLOC_SHIFT_HIGH; i++) {
795 		struct kmem_cache *s = kmalloc_caches[KMALLOC_NORMAL][i];
796 
797 		if (s) {
798 			kmalloc_caches[KMALLOC_DMA][i] = create_kmalloc_cache(
799 				kmalloc_info[i].name[KMALLOC_DMA],
800 				kmalloc_info[i].size,
801 				SLAB_CACHE_DMA | flags, 0,
802 				kmalloc_info[i].size);
803 		}
804 	}
805 #endif
806 }
807 #endif /* !CONFIG_SLOB */
808 
kmalloc_fix_flags(gfp_t flags)809 gfp_t kmalloc_fix_flags(gfp_t flags)
810 {
811 	gfp_t invalid_mask = flags & GFP_SLAB_BUG_MASK;
812 
813 	flags &= ~GFP_SLAB_BUG_MASK;
814 	pr_warn("Unexpected gfp: %#x (%pGg). Fixing up to gfp: %#x (%pGg). Fix your code!\n",
815 			invalid_mask, &invalid_mask, flags, &flags);
816 	dump_stack();
817 
818 	return flags;
819 }
820 
821 /*
822  * To avoid unnecessary overhead, we pass through large allocation requests
823  * directly to the page allocator. We use __GFP_COMP, because we will need to
824  * know the allocation order to free the pages properly in kfree.
825  */
kmalloc_order(size_t size,gfp_t flags,unsigned int order)826 void *kmalloc_order(size_t size, gfp_t flags, unsigned int order)
827 {
828 	void *ret = NULL;
829 	struct page *page;
830 
831 	if (unlikely(flags & GFP_SLAB_BUG_MASK))
832 		flags = kmalloc_fix_flags(flags);
833 
834 	flags |= __GFP_COMP;
835 	page = alloc_pages(flags, order);
836 	if (likely(page)) {
837 		ret = page_address(page);
838 		mod_lruvec_page_state(page, NR_SLAB_UNRECLAIMABLE_B,
839 				      PAGE_SIZE << order);
840 	}
841 	ret = kasan_kmalloc_large(ret, size, flags);
842 	/* As ret might get tagged, call kmemleak hook after KASAN. */
843 	kmemleak_alloc(ret, size, 1, flags);
844 	return ret;
845 }
846 EXPORT_SYMBOL(kmalloc_order);
847 
848 #ifdef CONFIG_TRACING
kmalloc_order_trace(size_t size,gfp_t flags,unsigned int order)849 void *kmalloc_order_trace(size_t size, gfp_t flags, unsigned int order)
850 {
851 	void *ret = kmalloc_order(size, flags, order);
852 	trace_kmalloc(_RET_IP_, ret, size, PAGE_SIZE << order, flags);
853 	return ret;
854 }
855 EXPORT_SYMBOL(kmalloc_order_trace);
856 #endif
857 
858 #ifdef CONFIG_SLAB_FREELIST_RANDOM
859 /* Randomize a generic freelist */
freelist_randomize(struct rnd_state * state,unsigned int * list,unsigned int count)860 static void freelist_randomize(struct rnd_state *state, unsigned int *list,
861 			       unsigned int count)
862 {
863 	unsigned int rand;
864 	unsigned int i;
865 
866 	for (i = 0; i < count; i++)
867 		list[i] = i;
868 
869 	/* Fisher-Yates shuffle */
870 	for (i = count - 1; i > 0; i--) {
871 		rand = prandom_u32_state(state);
872 		rand %= (i + 1);
873 		swap(list[i], list[rand]);
874 	}
875 }
876 
877 /* Create a random sequence per cache */
cache_random_seq_create(struct kmem_cache * cachep,unsigned int count,gfp_t gfp)878 int cache_random_seq_create(struct kmem_cache *cachep, unsigned int count,
879 				    gfp_t gfp)
880 {
881 	struct rnd_state state;
882 
883 	if (count < 2 || cachep->random_seq)
884 		return 0;
885 
886 	cachep->random_seq = kcalloc(count, sizeof(unsigned int), gfp);
887 	if (!cachep->random_seq)
888 		return -ENOMEM;
889 
890 	/* Get best entropy at this stage of boot */
891 	prandom_seed_state(&state, get_random_long());
892 
893 	freelist_randomize(&state, cachep->random_seq, count);
894 	return 0;
895 }
896 
897 /* Destroy the per-cache random freelist sequence */
cache_random_seq_destroy(struct kmem_cache * cachep)898 void cache_random_seq_destroy(struct kmem_cache *cachep)
899 {
900 	kfree(cachep->random_seq);
901 	cachep->random_seq = NULL;
902 }
903 #endif /* CONFIG_SLAB_FREELIST_RANDOM */
904 
905 #if defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG)
906 #ifdef CONFIG_SLAB
907 #define SLABINFO_RIGHTS (0600)
908 #else
909 #define SLABINFO_RIGHTS (0400)
910 #endif
911 
print_slabinfo_header(struct seq_file * m)912 static void print_slabinfo_header(struct seq_file *m)
913 {
914 	/*
915 	 * Output format version, so at least we can change it
916 	 * without _too_ many complaints.
917 	 */
918 #ifdef CONFIG_DEBUG_SLAB
919 	seq_puts(m, "slabinfo - version: 2.1 (statistics)\n");
920 #else
921 	seq_puts(m, "slabinfo - version: 2.1\n");
922 #endif
923 	seq_puts(m, "# name            <active_objs> <num_objs> <objsize> <objperslab> <pagesperslab>");
924 	seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
925 	seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
926 #ifdef CONFIG_DEBUG_SLAB
927 	seq_puts(m, " : globalstat <listallocs> <maxobjs> <grown> <reaped> <error> <maxfreeable> <nodeallocs> <remotefrees> <alienoverflow>");
928 	seq_puts(m, " : cpustat <allochit> <allocmiss> <freehit> <freemiss>");
929 #endif
930 	seq_putc(m, '\n');
931 }
932 
slab_start(struct seq_file * m,loff_t * pos)933 void *slab_start(struct seq_file *m, loff_t *pos)
934 {
935 	mutex_lock(&slab_mutex);
936 	return seq_list_start(&slab_caches, *pos);
937 }
938 
slab_next(struct seq_file * m,void * p,loff_t * pos)939 void *slab_next(struct seq_file *m, void *p, loff_t *pos)
940 {
941 	return seq_list_next(p, &slab_caches, pos);
942 }
943 
slab_stop(struct seq_file * m,void * p)944 void slab_stop(struct seq_file *m, void *p)
945 {
946 	mutex_unlock(&slab_mutex);
947 }
948 
cache_show(struct kmem_cache * s,struct seq_file * m)949 static void cache_show(struct kmem_cache *s, struct seq_file *m)
950 {
951 	struct slabinfo sinfo;
952 
953 	memset(&sinfo, 0, sizeof(sinfo));
954 	get_slabinfo(s, &sinfo);
955 
956 	seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d",
957 		   s->name, sinfo.active_objs, sinfo.num_objs, s->size,
958 		   sinfo.objects_per_slab, (1 << sinfo.cache_order));
959 
960 	seq_printf(m, " : tunables %4u %4u %4u",
961 		   sinfo.limit, sinfo.batchcount, sinfo.shared);
962 	seq_printf(m, " : slabdata %6lu %6lu %6lu",
963 		   sinfo.active_slabs, sinfo.num_slabs, sinfo.shared_avail);
964 	slabinfo_show_stats(m, s);
965 	seq_putc(m, '\n');
966 }
967 
slab_show(struct seq_file * m,void * p)968 static int slab_show(struct seq_file *m, void *p)
969 {
970 	struct kmem_cache *s = list_entry(p, struct kmem_cache, list);
971 
972 	if (p == slab_caches.next)
973 		print_slabinfo_header(m);
974 	cache_show(s, m);
975 	return 0;
976 }
977 
dump_unreclaimable_slab(void)978 void dump_unreclaimable_slab(void)
979 {
980 	struct kmem_cache *s, *s2;
981 	struct slabinfo sinfo;
982 
983 	/*
984 	 * Here acquiring slab_mutex is risky since we don't prefer to get
985 	 * sleep in oom path. But, without mutex hold, it may introduce a
986 	 * risk of crash.
987 	 * Use mutex_trylock to protect the list traverse, dump nothing
988 	 * without acquiring the mutex.
989 	 */
990 	if (!mutex_trylock(&slab_mutex)) {
991 		pr_warn("excessive unreclaimable slab but cannot dump stats\n");
992 		return;
993 	}
994 
995 	pr_info("Unreclaimable slab info:\n");
996 	pr_info("Name                      Used          Total\n");
997 
998 	list_for_each_entry_safe(s, s2, &slab_caches, list) {
999 		if (s->flags & SLAB_RECLAIM_ACCOUNT)
1000 			continue;
1001 
1002 		get_slabinfo(s, &sinfo);
1003 
1004 		if (sinfo.num_objs > 0)
1005 			pr_info("%-17s %10luKB %10luKB\n", s->name,
1006 				(sinfo.active_objs * s->size) / 1024,
1007 				(sinfo.num_objs * s->size) / 1024);
1008 	}
1009 	mutex_unlock(&slab_mutex);
1010 }
1011 
1012 #if defined(CONFIG_MEMCG_KMEM)
memcg_slab_show(struct seq_file * m,void * p)1013 int memcg_slab_show(struct seq_file *m, void *p)
1014 {
1015 	/*
1016 	 * Deprecated.
1017 	 * Please, take a look at tools/cgroup/slabinfo.py .
1018 	 */
1019 	return 0;
1020 }
1021 #endif
1022 
1023 /*
1024  * slabinfo_op - iterator that generates /proc/slabinfo
1025  *
1026  * Output layout:
1027  * cache-name
1028  * num-active-objs
1029  * total-objs
1030  * object size
1031  * num-active-slabs
1032  * total-slabs
1033  * num-pages-per-slab
1034  * + further values on SMP and with statistics enabled
1035  */
1036 static const struct seq_operations slabinfo_op = {
1037 	.start = slab_start,
1038 	.next = slab_next,
1039 	.stop = slab_stop,
1040 	.show = slab_show,
1041 };
1042 
slabinfo_open(struct inode * inode,struct file * file)1043 static int slabinfo_open(struct inode *inode, struct file *file)
1044 {
1045 	return seq_open(file, &slabinfo_op);
1046 }
1047 
1048 static const struct proc_ops slabinfo_proc_ops = {
1049 	.proc_flags	= PROC_ENTRY_PERMANENT,
1050 	.proc_open	= slabinfo_open,
1051 	.proc_read	= seq_read,
1052 	.proc_write	= slabinfo_write,
1053 	.proc_lseek	= seq_lseek,
1054 	.proc_release	= seq_release,
1055 };
1056 
slab_proc_init(void)1057 static int __init slab_proc_init(void)
1058 {
1059 	proc_create("slabinfo", SLABINFO_RIGHTS, NULL, &slabinfo_proc_ops);
1060 	return 0;
1061 }
1062 module_init(slab_proc_init);
1063 
1064 #endif /* CONFIG_SLAB || CONFIG_SLUB_DEBUG */
1065 
__do_krealloc(const void * p,size_t new_size,gfp_t flags)1066 static __always_inline void *__do_krealloc(const void *p, size_t new_size,
1067 					   gfp_t flags)
1068 {
1069 	void *ret;
1070 	size_t ks;
1071 
1072 	ks = ksize(p);
1073 
1074 	if (ks >= new_size) {
1075 		p = kasan_krealloc((void *)p, new_size, flags);
1076 		return (void *)p;
1077 	}
1078 
1079 	ret = kmalloc_track_caller(new_size, flags);
1080 	if (ret && p)
1081 		memcpy(ret, p, ks);
1082 
1083 	return ret;
1084 }
1085 
1086 /**
1087  * krealloc - reallocate memory. The contents will remain unchanged.
1088  * @p: object to reallocate memory for.
1089  * @new_size: how many bytes of memory are required.
1090  * @flags: the type of memory to allocate.
1091  *
1092  * The contents of the object pointed to are preserved up to the
1093  * lesser of the new and old sizes.  If @p is %NULL, krealloc()
1094  * behaves exactly like kmalloc().  If @new_size is 0 and @p is not a
1095  * %NULL pointer, the object pointed to is freed.
1096  *
1097  * Return: pointer to the allocated memory or %NULL in case of error
1098  */
krealloc(const void * p,size_t new_size,gfp_t flags)1099 void *krealloc(const void *p, size_t new_size, gfp_t flags)
1100 {
1101 	void *ret;
1102 
1103 	if (unlikely(!new_size)) {
1104 		kfree(p);
1105 		return ZERO_SIZE_PTR;
1106 	}
1107 
1108 	ret = __do_krealloc(p, new_size, flags);
1109 	if (ret && kasan_reset_tag(p) != kasan_reset_tag(ret))
1110 		kfree(p);
1111 
1112 	return ret;
1113 }
1114 EXPORT_SYMBOL(krealloc);
1115 
1116 /**
1117  * kfree_sensitive - Clear sensitive information in memory before freeing
1118  * @p: object to free memory of
1119  *
1120  * The memory of the object @p points to is zeroed before freed.
1121  * If @p is %NULL, kfree_sensitive() does nothing.
1122  *
1123  * Note: this function zeroes the whole allocated buffer which can be a good
1124  * deal bigger than the requested buffer size passed to kmalloc(). So be
1125  * careful when using this function in performance sensitive code.
1126  */
kfree_sensitive(const void * p)1127 void kfree_sensitive(const void *p)
1128 {
1129 	size_t ks;
1130 	void *mem = (void *)p;
1131 
1132 	ks = ksize(mem);
1133 	if (ks)
1134 		memzero_explicit(mem, ks);
1135 	kfree(mem);
1136 }
1137 EXPORT_SYMBOL(kfree_sensitive);
1138 
1139 /**
1140  * ksize - get the actual amount of memory allocated for a given object
1141  * @objp: Pointer to the object
1142  *
1143  * kmalloc may internally round up allocations and return more memory
1144  * than requested. ksize() can be used to determine the actual amount of
1145  * memory allocated. The caller may use this additional memory, even though
1146  * a smaller amount of memory was initially specified with the kmalloc call.
1147  * The caller must guarantee that objp points to a valid object previously
1148  * allocated with either kmalloc() or kmem_cache_alloc(). The object
1149  * must not be freed during the duration of the call.
1150  *
1151  * Return: size of the actual memory used by @objp in bytes
1152  */
ksize(const void * objp)1153 size_t ksize(const void *objp)
1154 {
1155 	size_t size;
1156 
1157 	/*
1158 	 * We need to check that the pointed to object is valid, and only then
1159 	 * unpoison the shadow memory below. We use __kasan_check_read(), to
1160 	 * generate a more useful report at the time ksize() is called (rather
1161 	 * than later where behaviour is undefined due to potential
1162 	 * use-after-free or double-free).
1163 	 *
1164 	 * If the pointed to memory is invalid we return 0, to avoid users of
1165 	 * ksize() writing to and potentially corrupting the memory region.
1166 	 *
1167 	 * We want to perform the check before __ksize(), to avoid potentially
1168 	 * crashing in __ksize() due to accessing invalid metadata.
1169 	 */
1170 	if (unlikely(ZERO_OR_NULL_PTR(objp)) || !__kasan_check_read(objp, 1))
1171 		return 0;
1172 
1173 	size = __ksize(objp);
1174 	/*
1175 	 * We assume that ksize callers could use whole allocated area,
1176 	 * so we need to unpoison this area.
1177 	 */
1178 	kasan_unpoison_shadow(objp, size);
1179 	return size;
1180 }
1181 EXPORT_SYMBOL(ksize);
1182 
1183 /* Tracepoints definitions. */
1184 EXPORT_TRACEPOINT_SYMBOL(kmalloc);
1185 EXPORT_TRACEPOINT_SYMBOL(kmem_cache_alloc);
1186 EXPORT_TRACEPOINT_SYMBOL(kmalloc_node);
1187 EXPORT_TRACEPOINT_SYMBOL(kmem_cache_alloc_node);
1188 EXPORT_TRACEPOINT_SYMBOL(kfree);
1189 EXPORT_TRACEPOINT_SYMBOL(kmem_cache_free);
1190 
should_failslab(struct kmem_cache * s,gfp_t gfpflags)1191 int should_failslab(struct kmem_cache *s, gfp_t gfpflags)
1192 {
1193 	if (__should_failslab(s, gfpflags))
1194 		return -ENOMEM;
1195 	return 0;
1196 }
1197 ALLOW_ERROR_INJECTION(should_failslab, ERRNO);
1198