1 // SPDX-License-Identifier: GPL-2.0-only
2 #include <linux/mm.h>
3 #include <linux/slab.h>
4 #include <linux/string.h>
5 #include <linux/compiler.h>
6 #include <linux/export.h>
7 #include <linux/err.h>
8 #include <linux/sched.h>
9 #include <linux/sched/mm.h>
10 #include <linux/sched/signal.h>
11 #include <linux/sched/task_stack.h>
12 #include <linux/security.h>
13 #include <linux/swap.h>
14 #include <linux/swapops.h>
15 #include <linux/mman.h>
16 #include <linux/hugetlb.h>
17 #include <linux/vmalloc.h>
18 #include <linux/userfaultfd_k.h>
19 #include <linux/elf.h>
20 #include <linux/elf-randomize.h>
21 #include <linux/personality.h>
22 #include <linux/random.h>
23 #include <linux/processor.h>
24 #include <linux/sizes.h>
25 #include <linux/compat.h>
26
27 #include <linux/uaccess.h>
28
29 #include "internal.h"
30
31 /**
32 * kfree_const - conditionally free memory
33 * @x: pointer to the memory
34 *
35 * Function calls kfree only if @x is not in .rodata section.
36 */
kfree_const(const void * x)37 void kfree_const(const void *x)
38 {
39 if (!is_kernel_rodata((unsigned long)x))
40 kfree(x);
41 }
42 EXPORT_SYMBOL(kfree_const);
43
44 /**
45 * kstrdup - allocate space for and copy an existing string
46 * @s: the string to duplicate
47 * @gfp: the GFP mask used in the kmalloc() call when allocating memory
48 *
49 * Return: newly allocated copy of @s or %NULL in case of error
50 */
kstrdup(const char * s,gfp_t gfp)51 char *kstrdup(const char *s, gfp_t gfp)
52 {
53 size_t len;
54 char *buf;
55
56 if (!s)
57 return NULL;
58
59 len = strlen(s) + 1;
60 buf = kmalloc_track_caller(len, gfp);
61 if (buf)
62 memcpy(buf, s, len);
63 return buf;
64 }
65 EXPORT_SYMBOL(kstrdup);
66
67 /**
68 * kstrdup_const - conditionally duplicate an existing const string
69 * @s: the string to duplicate
70 * @gfp: the GFP mask used in the kmalloc() call when allocating memory
71 *
72 * Note: Strings allocated by kstrdup_const should be freed by kfree_const and
73 * must not be passed to krealloc().
74 *
75 * Return: source string if it is in .rodata section otherwise
76 * fallback to kstrdup.
77 */
kstrdup_const(const char * s,gfp_t gfp)78 const char *kstrdup_const(const char *s, gfp_t gfp)
79 {
80 if (is_kernel_rodata((unsigned long)s))
81 return s;
82
83 return kstrdup(s, gfp);
84 }
85 EXPORT_SYMBOL(kstrdup_const);
86
87 /**
88 * kstrndup - allocate space for and copy an existing string
89 * @s: the string to duplicate
90 * @max: read at most @max chars from @s
91 * @gfp: the GFP mask used in the kmalloc() call when allocating memory
92 *
93 * Note: Use kmemdup_nul() instead if the size is known exactly.
94 *
95 * Return: newly allocated copy of @s or %NULL in case of error
96 */
kstrndup(const char * s,size_t max,gfp_t gfp)97 char *kstrndup(const char *s, size_t max, gfp_t gfp)
98 {
99 size_t len;
100 char *buf;
101
102 if (!s)
103 return NULL;
104
105 len = strnlen(s, max);
106 buf = kmalloc_track_caller(len+1, gfp);
107 if (buf) {
108 memcpy(buf, s, len);
109 buf[len] = '\0';
110 }
111 return buf;
112 }
113 EXPORT_SYMBOL(kstrndup);
114
115 /**
116 * kmemdup - duplicate region of memory
117 *
118 * @src: memory region to duplicate
119 * @len: memory region length
120 * @gfp: GFP mask to use
121 *
122 * Return: newly allocated copy of @src or %NULL in case of error
123 */
kmemdup(const void * src,size_t len,gfp_t gfp)124 void *kmemdup(const void *src, size_t len, gfp_t gfp)
125 {
126 void *p;
127
128 p = kmalloc_track_caller(len, gfp);
129 if (p)
130 memcpy(p, src, len);
131 return p;
132 }
133 EXPORT_SYMBOL(kmemdup);
134
135 /**
136 * kmemdup_nul - Create a NUL-terminated string from unterminated data
137 * @s: The data to stringify
138 * @len: The size of the data
139 * @gfp: the GFP mask used in the kmalloc() call when allocating memory
140 *
141 * Return: newly allocated copy of @s with NUL-termination or %NULL in
142 * case of error
143 */
kmemdup_nul(const char * s,size_t len,gfp_t gfp)144 char *kmemdup_nul(const char *s, size_t len, gfp_t gfp)
145 {
146 char *buf;
147
148 if (!s)
149 return NULL;
150
151 buf = kmalloc_track_caller(len + 1, gfp);
152 if (buf) {
153 memcpy(buf, s, len);
154 buf[len] = '\0';
155 }
156 return buf;
157 }
158 EXPORT_SYMBOL(kmemdup_nul);
159
160 /**
161 * memdup_user - duplicate memory region from user space
162 *
163 * @src: source address in user space
164 * @len: number of bytes to copy
165 *
166 * Return: an ERR_PTR() on failure. Result is physically
167 * contiguous, to be freed by kfree().
168 */
memdup_user(const void __user * src,size_t len)169 void *memdup_user(const void __user *src, size_t len)
170 {
171 void *p;
172
173 p = kmalloc_track_caller(len, GFP_USER | __GFP_NOWARN);
174 if (!p)
175 return ERR_PTR(-ENOMEM);
176
177 if (copy_from_user(p, src, len)) {
178 kfree(p);
179 return ERR_PTR(-EFAULT);
180 }
181
182 return p;
183 }
184 EXPORT_SYMBOL(memdup_user);
185
186 /**
187 * vmemdup_user - duplicate memory region from user space
188 *
189 * @src: source address in user space
190 * @len: number of bytes to copy
191 *
192 * Return: an ERR_PTR() on failure. Result may be not
193 * physically contiguous. Use kvfree() to free.
194 */
vmemdup_user(const void __user * src,size_t len)195 void *vmemdup_user(const void __user *src, size_t len)
196 {
197 void *p;
198
199 p = kvmalloc(len, GFP_USER);
200 if (!p)
201 return ERR_PTR(-ENOMEM);
202
203 if (copy_from_user(p, src, len)) {
204 kvfree(p);
205 return ERR_PTR(-EFAULT);
206 }
207
208 return p;
209 }
210 EXPORT_SYMBOL(vmemdup_user);
211
212 /**
213 * strndup_user - duplicate an existing string from user space
214 * @s: The string to duplicate
215 * @n: Maximum number of bytes to copy, including the trailing NUL.
216 *
217 * Return: newly allocated copy of @s or an ERR_PTR() in case of error
218 */
strndup_user(const char __user * s,long n)219 char *strndup_user(const char __user *s, long n)
220 {
221 char *p;
222 long length;
223
224 length = strnlen_user(s, n);
225
226 if (!length)
227 return ERR_PTR(-EFAULT);
228
229 if (length > n)
230 return ERR_PTR(-EINVAL);
231
232 p = memdup_user(s, length);
233
234 if (IS_ERR(p))
235 return p;
236
237 p[length - 1] = '\0';
238
239 return p;
240 }
241 EXPORT_SYMBOL(strndup_user);
242
243 /**
244 * memdup_user_nul - duplicate memory region from user space and NUL-terminate
245 *
246 * @src: source address in user space
247 * @len: number of bytes to copy
248 *
249 * Return: an ERR_PTR() on failure.
250 */
memdup_user_nul(const void __user * src,size_t len)251 void *memdup_user_nul(const void __user *src, size_t len)
252 {
253 char *p;
254
255 /*
256 * Always use GFP_KERNEL, since copy_from_user() can sleep and
257 * cause pagefault, which makes it pointless to use GFP_NOFS
258 * or GFP_ATOMIC.
259 */
260 p = kmalloc_track_caller(len + 1, GFP_KERNEL);
261 if (!p)
262 return ERR_PTR(-ENOMEM);
263
264 if (copy_from_user(p, src, len)) {
265 kfree(p);
266 return ERR_PTR(-EFAULT);
267 }
268 p[len] = '\0';
269
270 return p;
271 }
272 EXPORT_SYMBOL(memdup_user_nul);
273
__vma_link_list(struct mm_struct * mm,struct vm_area_struct * vma,struct vm_area_struct * prev)274 void __vma_link_list(struct mm_struct *mm, struct vm_area_struct *vma,
275 struct vm_area_struct *prev)
276 {
277 struct vm_area_struct *next;
278
279 vma->vm_prev = prev;
280 if (prev) {
281 next = prev->vm_next;
282 prev->vm_next = vma;
283 } else {
284 next = mm->mmap;
285 mm->mmap = vma;
286 }
287 vma->vm_next = next;
288 if (next)
289 next->vm_prev = vma;
290 }
291
__vma_unlink_list(struct mm_struct * mm,struct vm_area_struct * vma)292 void __vma_unlink_list(struct mm_struct *mm, struct vm_area_struct *vma)
293 {
294 struct vm_area_struct *prev, *next;
295
296 next = vma->vm_next;
297 prev = vma->vm_prev;
298 if (prev)
299 prev->vm_next = next;
300 else
301 mm->mmap = next;
302 if (next)
303 next->vm_prev = prev;
304 }
305
306 /* Check if the vma is being used as a stack by this task */
vma_is_stack_for_current(struct vm_area_struct * vma)307 int vma_is_stack_for_current(struct vm_area_struct *vma)
308 {
309 struct task_struct * __maybe_unused t = current;
310
311 return (vma->vm_start <= KSTK_ESP(t) && vma->vm_end >= KSTK_ESP(t));
312 }
313
314 #ifndef STACK_RND_MASK
315 #define STACK_RND_MASK (0x7ff >> (PAGE_SHIFT - 12)) /* 8MB of VA */
316 #endif
317
randomize_stack_top(unsigned long stack_top)318 unsigned long randomize_stack_top(unsigned long stack_top)
319 {
320 unsigned long random_variable = 0;
321
322 if (current->flags & PF_RANDOMIZE) {
323 random_variable = get_random_long();
324 random_variable &= STACK_RND_MASK;
325 random_variable <<= PAGE_SHIFT;
326 }
327 #ifdef CONFIG_STACK_GROWSUP
328 return PAGE_ALIGN(stack_top) + random_variable;
329 #else
330 return PAGE_ALIGN(stack_top) - random_variable;
331 #endif
332 }
333
334 /**
335 * randomize_page - Generate a random, page aligned address
336 * @start: The smallest acceptable address the caller will take.
337 * @range: The size of the area, starting at @start, within which the
338 * random address must fall.
339 *
340 * If @start + @range would overflow, @range is capped.
341 *
342 * NOTE: Historical use of randomize_range, which this replaces, presumed that
343 * @start was already page aligned. We now align it regardless.
344 *
345 * Return: A page aligned address within [start, start + range). On error,
346 * @start is returned.
347 */
randomize_page(unsigned long start,unsigned long range)348 unsigned long randomize_page(unsigned long start, unsigned long range)
349 {
350 if (!PAGE_ALIGNED(start)) {
351 range -= PAGE_ALIGN(start) - start;
352 start = PAGE_ALIGN(start);
353 }
354
355 if (start > ULONG_MAX - range)
356 range = ULONG_MAX - start;
357
358 range >>= PAGE_SHIFT;
359
360 if (range == 0)
361 return start;
362
363 return start + (get_random_long() % range << PAGE_SHIFT);
364 }
365
366 #ifdef CONFIG_ARCH_WANT_DEFAULT_TOPDOWN_MMAP_LAYOUT
arch_randomize_brk(struct mm_struct * mm)367 unsigned long arch_randomize_brk(struct mm_struct *mm)
368 {
369 /* Is the current task 32bit ? */
370 if (!IS_ENABLED(CONFIG_64BIT) || is_compat_task())
371 return randomize_page(mm->brk, SZ_32M);
372
373 return randomize_page(mm->brk, SZ_1G);
374 }
375
arch_mmap_rnd(void)376 unsigned long arch_mmap_rnd(void)
377 {
378 unsigned long rnd;
379
380 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
381 if (is_compat_task())
382 rnd = get_random_long() & ((1UL << mmap_rnd_compat_bits) - 1);
383 else
384 #endif /* CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS */
385 rnd = get_random_long() & ((1UL << mmap_rnd_bits) - 1);
386
387 return rnd << PAGE_SHIFT;
388 }
389
mmap_is_legacy(struct rlimit * rlim_stack)390 static int mmap_is_legacy(struct rlimit *rlim_stack)
391 {
392 if (current->personality & ADDR_COMPAT_LAYOUT)
393 return 1;
394
395 if (rlim_stack->rlim_cur == RLIM_INFINITY)
396 return 1;
397
398 return sysctl_legacy_va_layout;
399 }
400
401 /*
402 * Leave enough space between the mmap area and the stack to honour ulimit in
403 * the face of randomisation.
404 */
405 #define MIN_GAP (SZ_128M)
406 #define MAX_GAP (STACK_TOP / 6 * 5)
407
mmap_base(unsigned long rnd,struct rlimit * rlim_stack)408 static unsigned long mmap_base(unsigned long rnd, struct rlimit *rlim_stack)
409 {
410 unsigned long gap = rlim_stack->rlim_cur;
411 unsigned long pad = stack_guard_gap;
412
413 /* Account for stack randomization if necessary */
414 if (current->flags & PF_RANDOMIZE)
415 pad += (STACK_RND_MASK << PAGE_SHIFT);
416
417 /* Values close to RLIM_INFINITY can overflow. */
418 if (gap + pad > gap)
419 gap += pad;
420
421 if (gap < MIN_GAP)
422 gap = MIN_GAP;
423 else if (gap > MAX_GAP)
424 gap = MAX_GAP;
425
426 return PAGE_ALIGN(STACK_TOP - gap - rnd);
427 }
428
arch_pick_mmap_layout(struct mm_struct * mm,struct rlimit * rlim_stack)429 void arch_pick_mmap_layout(struct mm_struct *mm, struct rlimit *rlim_stack)
430 {
431 unsigned long random_factor = 0UL;
432
433 if (current->flags & PF_RANDOMIZE)
434 random_factor = arch_mmap_rnd();
435
436 if (mmap_is_legacy(rlim_stack)) {
437 mm->mmap_base = TASK_UNMAPPED_BASE + random_factor;
438 mm->get_unmapped_area = arch_get_unmapped_area;
439 } else {
440 mm->mmap_base = mmap_base(random_factor, rlim_stack);
441 mm->get_unmapped_area = arch_get_unmapped_area_topdown;
442 }
443 }
444 #elif defined(CONFIG_MMU) && !defined(HAVE_ARCH_PICK_MMAP_LAYOUT)
arch_pick_mmap_layout(struct mm_struct * mm,struct rlimit * rlim_stack)445 void arch_pick_mmap_layout(struct mm_struct *mm, struct rlimit *rlim_stack)
446 {
447 mm->mmap_base = TASK_UNMAPPED_BASE;
448 mm->get_unmapped_area = arch_get_unmapped_area;
449 }
450 #endif
451
452 /**
453 * __account_locked_vm - account locked pages to an mm's locked_vm
454 * @mm: mm to account against
455 * @pages: number of pages to account
456 * @inc: %true if @pages should be considered positive, %false if not
457 * @task: task used to check RLIMIT_MEMLOCK
458 * @bypass_rlim: %true if checking RLIMIT_MEMLOCK should be skipped
459 *
460 * Assumes @task and @mm are valid (i.e. at least one reference on each), and
461 * that mmap_lock is held as writer.
462 *
463 * Return:
464 * * 0 on success
465 * * -ENOMEM if RLIMIT_MEMLOCK would be exceeded.
466 */
__account_locked_vm(struct mm_struct * mm,unsigned long pages,bool inc,struct task_struct * task,bool bypass_rlim)467 int __account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc,
468 struct task_struct *task, bool bypass_rlim)
469 {
470 unsigned long locked_vm, limit;
471 int ret = 0;
472
473 mmap_assert_write_locked(mm);
474
475 locked_vm = mm->locked_vm;
476 if (inc) {
477 if (!bypass_rlim) {
478 limit = task_rlimit(task, RLIMIT_MEMLOCK) >> PAGE_SHIFT;
479 if (locked_vm + pages > limit)
480 ret = -ENOMEM;
481 }
482 if (!ret)
483 mm->locked_vm = locked_vm + pages;
484 } else {
485 WARN_ON_ONCE(pages > locked_vm);
486 mm->locked_vm = locked_vm - pages;
487 }
488
489 pr_debug("%s: [%d] caller %ps %c%lu %lu/%lu%s\n", __func__, task->pid,
490 (void *)_RET_IP_, (inc) ? '+' : '-', pages << PAGE_SHIFT,
491 locked_vm << PAGE_SHIFT, task_rlimit(task, RLIMIT_MEMLOCK),
492 ret ? " - exceeded" : "");
493
494 return ret;
495 }
496 EXPORT_SYMBOL_GPL(__account_locked_vm);
497
498 /**
499 * account_locked_vm - account locked pages to an mm's locked_vm
500 * @mm: mm to account against, may be NULL
501 * @pages: number of pages to account
502 * @inc: %true if @pages should be considered positive, %false if not
503 *
504 * Assumes a non-NULL @mm is valid (i.e. at least one reference on it).
505 *
506 * Return:
507 * * 0 on success, or if mm is NULL
508 * * -ENOMEM if RLIMIT_MEMLOCK would be exceeded.
509 */
account_locked_vm(struct mm_struct * mm,unsigned long pages,bool inc)510 int account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc)
511 {
512 int ret;
513
514 if (pages == 0 || !mm)
515 return 0;
516
517 mmap_write_lock(mm);
518 ret = __account_locked_vm(mm, pages, inc, current,
519 capable(CAP_IPC_LOCK));
520 mmap_write_unlock(mm);
521
522 return ret;
523 }
524 EXPORT_SYMBOL_GPL(account_locked_vm);
525
vm_mmap_pgoff(struct file * file,unsigned long addr,unsigned long len,unsigned long prot,unsigned long flag,unsigned long pgoff)526 unsigned long vm_mmap_pgoff(struct file *file, unsigned long addr,
527 unsigned long len, unsigned long prot,
528 unsigned long flag, unsigned long pgoff)
529 {
530 unsigned long ret;
531 struct mm_struct *mm = current->mm;
532 unsigned long populate;
533 LIST_HEAD(uf);
534
535 ret = security_mmap_file(file, prot, flag);
536 if (!ret) {
537 if (mmap_write_lock_killable(mm))
538 return -EINTR;
539 ret = do_mmap(file, addr, len, prot, flag, pgoff, &populate,
540 &uf);
541 mmap_write_unlock(mm);
542 userfaultfd_unmap_complete(mm, &uf);
543 if (populate)
544 mm_populate(ret, populate);
545 }
546 return ret;
547 }
548
vm_mmap(struct file * file,unsigned long addr,unsigned long len,unsigned long prot,unsigned long flag,unsigned long offset)549 unsigned long vm_mmap(struct file *file, unsigned long addr,
550 unsigned long len, unsigned long prot,
551 unsigned long flag, unsigned long offset)
552 {
553 if (unlikely(offset + PAGE_ALIGN(len) < offset))
554 return -EINVAL;
555 if (unlikely(offset_in_page(offset)))
556 return -EINVAL;
557
558 return vm_mmap_pgoff(file, addr, len, prot, flag, offset >> PAGE_SHIFT);
559 }
560 EXPORT_SYMBOL(vm_mmap);
561
562 /**
563 * kvmalloc_node - attempt to allocate physically contiguous memory, but upon
564 * failure, fall back to non-contiguous (vmalloc) allocation.
565 * @size: size of the request.
566 * @flags: gfp mask for the allocation - must be compatible (superset) with GFP_KERNEL.
567 * @node: numa node to allocate from
568 *
569 * Uses kmalloc to get the memory but if the allocation fails then falls back
570 * to the vmalloc allocator. Use kvfree for freeing the memory.
571 *
572 * Reclaim modifiers - __GFP_NORETRY and __GFP_NOFAIL are not supported.
573 * __GFP_RETRY_MAYFAIL is supported, and it should be used only if kmalloc is
574 * preferable to the vmalloc fallback, due to visible performance drawbacks.
575 *
576 * Please note that any use of gfp flags outside of GFP_KERNEL is careful to not
577 * fall back to vmalloc.
578 *
579 * Return: pointer to the allocated memory of %NULL in case of failure
580 */
kvmalloc_node(size_t size,gfp_t flags,int node)581 void *kvmalloc_node(size_t size, gfp_t flags, int node)
582 {
583 gfp_t kmalloc_flags = flags;
584 void *ret;
585
586 /*
587 * vmalloc uses GFP_KERNEL for some internal allocations (e.g page tables)
588 * so the given set of flags has to be compatible.
589 */
590 if ((flags & GFP_KERNEL) != GFP_KERNEL)
591 return kmalloc_node(size, flags, node);
592
593 /*
594 * We want to attempt a large physically contiguous block first because
595 * it is less likely to fragment multiple larger blocks and therefore
596 * contribute to a long term fragmentation less than vmalloc fallback.
597 * However make sure that larger requests are not too disruptive - no
598 * OOM killer and no allocation failure warnings as we have a fallback.
599 */
600 if (size > PAGE_SIZE) {
601 kmalloc_flags |= __GFP_NOWARN;
602
603 if (!(kmalloc_flags & __GFP_RETRY_MAYFAIL))
604 kmalloc_flags |= __GFP_NORETRY;
605 }
606
607 ret = kmalloc_node(size, kmalloc_flags, node);
608
609 /*
610 * It doesn't really make sense to fallback to vmalloc for sub page
611 * requests
612 */
613 if (ret || size <= PAGE_SIZE)
614 return ret;
615
616 /* Don't even allow crazy sizes */
617 if (unlikely(size > INT_MAX)) {
618 WARN_ON_ONCE(!(flags & __GFP_NOWARN));
619 return NULL;
620 }
621
622 return __vmalloc_node(size, 1, flags, node,
623 __builtin_return_address(0));
624 }
625 EXPORT_SYMBOL(kvmalloc_node);
626
627 /**
628 * kvfree() - Free memory.
629 * @addr: Pointer to allocated memory.
630 *
631 * kvfree frees memory allocated by any of vmalloc(), kmalloc() or kvmalloc().
632 * It is slightly more efficient to use kfree() or vfree() if you are certain
633 * that you know which one to use.
634 *
635 * Context: Either preemptible task context or not-NMI interrupt.
636 */
kvfree(const void * addr)637 void kvfree(const void *addr)
638 {
639 if (is_vmalloc_addr(addr))
640 vfree(addr);
641 else
642 kfree(addr);
643 }
644 EXPORT_SYMBOL(kvfree);
645
646 /**
647 * kvfree_sensitive - Free a data object containing sensitive information.
648 * @addr: address of the data object to be freed.
649 * @len: length of the data object.
650 *
651 * Use the special memzero_explicit() function to clear the content of a
652 * kvmalloc'ed object containing sensitive data to make sure that the
653 * compiler won't optimize out the data clearing.
654 */
kvfree_sensitive(const void * addr,size_t len)655 void kvfree_sensitive(const void *addr, size_t len)
656 {
657 if (likely(!ZERO_OR_NULL_PTR(addr))) {
658 memzero_explicit((void *)addr, len);
659 kvfree(addr);
660 }
661 }
662 EXPORT_SYMBOL(kvfree_sensitive);
663
kvrealloc(const void * p,size_t oldsize,size_t newsize,gfp_t flags)664 void *kvrealloc(const void *p, size_t oldsize, size_t newsize, gfp_t flags)
665 {
666 void *newp;
667
668 if (oldsize >= newsize)
669 return (void *)p;
670 newp = kvmalloc(newsize, flags);
671 if (!newp)
672 return NULL;
673 memcpy(newp, p, oldsize);
674 kvfree(p);
675 return newp;
676 }
677 EXPORT_SYMBOL(kvrealloc);
678
__page_rmapping(struct page * page)679 static inline void *__page_rmapping(struct page *page)
680 {
681 unsigned long mapping;
682
683 mapping = (unsigned long)page->mapping;
684 mapping &= ~PAGE_MAPPING_FLAGS;
685
686 return (void *)mapping;
687 }
688
689 /* Neutral page->mapping pointer to address_space or anon_vma or other */
page_rmapping(struct page * page)690 void *page_rmapping(struct page *page)
691 {
692 page = compound_head(page);
693 return __page_rmapping(page);
694 }
695
696 /*
697 * Return true if this page is mapped into pagetables.
698 * For compound page it returns true if any subpage of compound page is mapped.
699 */
page_mapped(struct page * page)700 bool page_mapped(struct page *page)
701 {
702 int i;
703
704 if (likely(!PageCompound(page)))
705 return atomic_read(&page->_mapcount) >= 0;
706 page = compound_head(page);
707 if (atomic_read(compound_mapcount_ptr(page)) >= 0)
708 return true;
709 if (PageHuge(page))
710 return false;
711 for (i = 0; i < compound_nr(page); i++) {
712 if (atomic_read(&page[i]._mapcount) >= 0)
713 return true;
714 }
715 return false;
716 }
717 EXPORT_SYMBOL(page_mapped);
718
page_anon_vma(struct page * page)719 struct anon_vma *page_anon_vma(struct page *page)
720 {
721 unsigned long mapping;
722
723 page = compound_head(page);
724 mapping = (unsigned long)page->mapping;
725 if ((mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
726 return NULL;
727 return __page_rmapping(page);
728 }
729
page_mapping(struct page * page)730 struct address_space *page_mapping(struct page *page)
731 {
732 struct address_space *mapping;
733
734 page = compound_head(page);
735
736 /* This happens if someone calls flush_dcache_page on slab page */
737 if (unlikely(PageSlab(page)))
738 return NULL;
739
740 if (unlikely(PageSwapCache(page))) {
741 swp_entry_t entry;
742
743 entry.val = page_private(page);
744 return swap_address_space(entry);
745 }
746
747 mapping = page->mapping;
748 if ((unsigned long)mapping & PAGE_MAPPING_ANON)
749 return NULL;
750
751 return (void *)((unsigned long)mapping & ~PAGE_MAPPING_FLAGS);
752 }
753 EXPORT_SYMBOL(page_mapping);
754
755 /*
756 * For file cache pages, return the address_space, otherwise return NULL
757 */
page_mapping_file(struct page * page)758 struct address_space *page_mapping_file(struct page *page)
759 {
760 if (unlikely(PageSwapCache(page)))
761 return NULL;
762 return page_mapping(page);
763 }
764
765 /* Slow path of page_mapcount() for compound pages */
__page_mapcount(struct page * page)766 int __page_mapcount(struct page *page)
767 {
768 int ret;
769
770 ret = atomic_read(&page->_mapcount) + 1;
771 /*
772 * For file THP page->_mapcount contains total number of mapping
773 * of the page: no need to look into compound_mapcount.
774 */
775 if (!PageAnon(page) && !PageHuge(page))
776 return ret;
777 page = compound_head(page);
778 ret += atomic_read(compound_mapcount_ptr(page)) + 1;
779 if (PageDoubleMap(page))
780 ret--;
781 return ret;
782 }
783 EXPORT_SYMBOL_GPL(__page_mapcount);
784
785 int sysctl_overcommit_memory __read_mostly = OVERCOMMIT_GUESS;
786 int sysctl_overcommit_ratio __read_mostly = 50;
787 unsigned long sysctl_overcommit_kbytes __read_mostly;
788 int sysctl_max_map_count __read_mostly = DEFAULT_MAX_MAP_COUNT;
789 unsigned long sysctl_user_reserve_kbytes __read_mostly = 1UL << 17; /* 128MB */
790 unsigned long sysctl_admin_reserve_kbytes __read_mostly = 1UL << 13; /* 8MB */
791
overcommit_ratio_handler(struct ctl_table * table,int write,void * buffer,size_t * lenp,loff_t * ppos)792 int overcommit_ratio_handler(struct ctl_table *table, int write, void *buffer,
793 size_t *lenp, loff_t *ppos)
794 {
795 int ret;
796
797 ret = proc_dointvec(table, write, buffer, lenp, ppos);
798 if (ret == 0 && write)
799 sysctl_overcommit_kbytes = 0;
800 return ret;
801 }
802
sync_overcommit_as(struct work_struct * dummy)803 static void sync_overcommit_as(struct work_struct *dummy)
804 {
805 percpu_counter_sync(&vm_committed_as);
806 }
807
overcommit_policy_handler(struct ctl_table * table,int write,void * buffer,size_t * lenp,loff_t * ppos)808 int overcommit_policy_handler(struct ctl_table *table, int write, void *buffer,
809 size_t *lenp, loff_t *ppos)
810 {
811 struct ctl_table t;
812 int new_policy = -1;
813 int ret;
814
815 /*
816 * The deviation of sync_overcommit_as could be big with loose policy
817 * like OVERCOMMIT_ALWAYS/OVERCOMMIT_GUESS. When changing policy to
818 * strict OVERCOMMIT_NEVER, we need to reduce the deviation to comply
819 * with the strict "NEVER", and to avoid possible race condtion (even
820 * though user usually won't too frequently do the switching to policy
821 * OVERCOMMIT_NEVER), the switch is done in the following order:
822 * 1. changing the batch
823 * 2. sync percpu count on each CPU
824 * 3. switch the policy
825 */
826 if (write) {
827 t = *table;
828 t.data = &new_policy;
829 ret = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
830 if (ret || new_policy == -1)
831 return ret;
832
833 mm_compute_batch(new_policy);
834 if (new_policy == OVERCOMMIT_NEVER)
835 schedule_on_each_cpu(sync_overcommit_as);
836 sysctl_overcommit_memory = new_policy;
837 } else {
838 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
839 }
840
841 return ret;
842 }
843
overcommit_kbytes_handler(struct ctl_table * table,int write,void * buffer,size_t * lenp,loff_t * ppos)844 int overcommit_kbytes_handler(struct ctl_table *table, int write, void *buffer,
845 size_t *lenp, loff_t *ppos)
846 {
847 int ret;
848
849 ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
850 if (ret == 0 && write)
851 sysctl_overcommit_ratio = 0;
852 return ret;
853 }
854
855 /*
856 * Committed memory limit enforced when OVERCOMMIT_NEVER policy is used
857 */
vm_commit_limit(void)858 unsigned long vm_commit_limit(void)
859 {
860 unsigned long allowed;
861
862 if (sysctl_overcommit_kbytes)
863 allowed = sysctl_overcommit_kbytes >> (PAGE_SHIFT - 10);
864 else
865 allowed = ((totalram_pages() - hugetlb_total_pages())
866 * sysctl_overcommit_ratio / 100);
867 allowed += total_swap_pages;
868
869 return allowed;
870 }
871
872 /*
873 * Make sure vm_committed_as in one cacheline and not cacheline shared with
874 * other variables. It can be updated by several CPUs frequently.
875 */
876 struct percpu_counter vm_committed_as ____cacheline_aligned_in_smp;
877
878 /*
879 * The global memory commitment made in the system can be a metric
880 * that can be used to drive ballooning decisions when Linux is hosted
881 * as a guest. On Hyper-V, the host implements a policy engine for dynamically
882 * balancing memory across competing virtual machines that are hosted.
883 * Several metrics drive this policy engine including the guest reported
884 * memory commitment.
885 *
886 * The time cost of this is very low for small platforms, and for big
887 * platform like a 2S/36C/72T Skylake server, in worst case where
888 * vm_committed_as's spinlock is under severe contention, the time cost
889 * could be about 30~40 microseconds.
890 */
vm_memory_committed(void)891 unsigned long vm_memory_committed(void)
892 {
893 return percpu_counter_sum_positive(&vm_committed_as);
894 }
895 EXPORT_SYMBOL_GPL(vm_memory_committed);
896
897 /*
898 * Check that a process has enough memory to allocate a new virtual
899 * mapping. 0 means there is enough memory for the allocation to
900 * succeed and -ENOMEM implies there is not.
901 *
902 * We currently support three overcommit policies, which are set via the
903 * vm.overcommit_memory sysctl. See Documentation/vm/overcommit-accounting.rst
904 *
905 * Strict overcommit modes added 2002 Feb 26 by Alan Cox.
906 * Additional code 2002 Jul 20 by Robert Love.
907 *
908 * cap_sys_admin is 1 if the process has admin privileges, 0 otherwise.
909 *
910 * Note this is a helper function intended to be used by LSMs which
911 * wish to use this logic.
912 */
__vm_enough_memory(struct mm_struct * mm,long pages,int cap_sys_admin)913 int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin)
914 {
915 long allowed;
916
917 vm_acct_memory(pages);
918
919 /*
920 * Sometimes we want to use more memory than we have
921 */
922 if (sysctl_overcommit_memory == OVERCOMMIT_ALWAYS)
923 return 0;
924
925 if (sysctl_overcommit_memory == OVERCOMMIT_GUESS) {
926 if (pages > totalram_pages() + total_swap_pages)
927 goto error;
928 return 0;
929 }
930
931 allowed = vm_commit_limit();
932 /*
933 * Reserve some for root
934 */
935 if (!cap_sys_admin)
936 allowed -= sysctl_admin_reserve_kbytes >> (PAGE_SHIFT - 10);
937
938 /*
939 * Don't let a single process grow so big a user can't recover
940 */
941 if (mm) {
942 long reserve = sysctl_user_reserve_kbytes >> (PAGE_SHIFT - 10);
943
944 allowed -= min_t(long, mm->total_vm / 32, reserve);
945 }
946
947 if (percpu_counter_read_positive(&vm_committed_as) < allowed)
948 return 0;
949 error:
950 vm_unacct_memory(pages);
951
952 return -ENOMEM;
953 }
954
955 /**
956 * get_cmdline() - copy the cmdline value to a buffer.
957 * @task: the task whose cmdline value to copy.
958 * @buffer: the buffer to copy to.
959 * @buflen: the length of the buffer. Larger cmdline values are truncated
960 * to this length.
961 *
962 * Return: the size of the cmdline field copied. Note that the copy does
963 * not guarantee an ending NULL byte.
964 */
get_cmdline(struct task_struct * task,char * buffer,int buflen)965 int get_cmdline(struct task_struct *task, char *buffer, int buflen)
966 {
967 int res = 0;
968 unsigned int len;
969 struct mm_struct *mm = get_task_mm(task);
970 unsigned long arg_start, arg_end, env_start, env_end;
971 if (!mm)
972 goto out;
973 if (!mm->arg_end)
974 goto out_mm; /* Shh! No looking before we're done */
975
976 spin_lock(&mm->arg_lock);
977 arg_start = mm->arg_start;
978 arg_end = mm->arg_end;
979 env_start = mm->env_start;
980 env_end = mm->env_end;
981 spin_unlock(&mm->arg_lock);
982
983 len = arg_end - arg_start;
984
985 if (len > buflen)
986 len = buflen;
987
988 res = access_process_vm(task, arg_start, buffer, len, FOLL_FORCE);
989
990 /*
991 * If the nul at the end of args has been overwritten, then
992 * assume application is using setproctitle(3).
993 */
994 if (res > 0 && buffer[res-1] != '\0' && len < buflen) {
995 len = strnlen(buffer, res);
996 if (len < res) {
997 res = len;
998 } else {
999 len = env_end - env_start;
1000 if (len > buflen - res)
1001 len = buflen - res;
1002 res += access_process_vm(task, env_start,
1003 buffer+res, len,
1004 FOLL_FORCE);
1005 res = strnlen(buffer, res);
1006 }
1007 }
1008 out_mm:
1009 mmput(mm);
1010 out:
1011 return res;
1012 }
1013
memcmp_pages(struct page * page1,struct page * page2)1014 int __weak memcmp_pages(struct page *page1, struct page *page2)
1015 {
1016 char *addr1, *addr2;
1017 int ret;
1018
1019 addr1 = kmap_atomic(page1);
1020 addr2 = kmap_atomic(page2);
1021 ret = memcmp(addr1, addr2, PAGE_SIZE);
1022 kunmap_atomic(addr2);
1023 kunmap_atomic(addr1);
1024 return ret;
1025 }
1026