• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-only
2 #include <linux/mm.h>
3 #include <linux/slab.h>
4 #include <linux/string.h>
5 #include <linux/compiler.h>
6 #include <linux/export.h>
7 #include <linux/err.h>
8 #include <linux/sched.h>
9 #include <linux/sched/mm.h>
10 #include <linux/sched/signal.h>
11 #include <linux/sched/task_stack.h>
12 #include <linux/security.h>
13 #include <linux/swap.h>
14 #include <linux/swapops.h>
15 #include <linux/mman.h>
16 #include <linux/hugetlb.h>
17 #include <linux/vmalloc.h>
18 #include <linux/userfaultfd_k.h>
19 #include <linux/elf.h>
20 #include <linux/elf-randomize.h>
21 #include <linux/personality.h>
22 #include <linux/random.h>
23 #include <linux/processor.h>
24 #include <linux/sizes.h>
25 #include <linux/compat.h>
26 
27 #include <linux/uaccess.h>
28 
29 #include "internal.h"
30 
31 /**
32  * kfree_const - conditionally free memory
33  * @x: pointer to the memory
34  *
35  * Function calls kfree only if @x is not in .rodata section.
36  */
kfree_const(const void * x)37 void kfree_const(const void *x)
38 {
39 	if (!is_kernel_rodata((unsigned long)x))
40 		kfree(x);
41 }
42 EXPORT_SYMBOL(kfree_const);
43 
44 /**
45  * kstrdup - allocate space for and copy an existing string
46  * @s: the string to duplicate
47  * @gfp: the GFP mask used in the kmalloc() call when allocating memory
48  *
49  * Return: newly allocated copy of @s or %NULL in case of error
50  */
kstrdup(const char * s,gfp_t gfp)51 char *kstrdup(const char *s, gfp_t gfp)
52 {
53 	size_t len;
54 	char *buf;
55 
56 	if (!s)
57 		return NULL;
58 
59 	len = strlen(s) + 1;
60 	buf = kmalloc_track_caller(len, gfp);
61 	if (buf)
62 		memcpy(buf, s, len);
63 	return buf;
64 }
65 EXPORT_SYMBOL(kstrdup);
66 
67 /**
68  * kstrdup_const - conditionally duplicate an existing const string
69  * @s: the string to duplicate
70  * @gfp: the GFP mask used in the kmalloc() call when allocating memory
71  *
72  * Note: Strings allocated by kstrdup_const should be freed by kfree_const and
73  * must not be passed to krealloc().
74  *
75  * Return: source string if it is in .rodata section otherwise
76  * fallback to kstrdup.
77  */
kstrdup_const(const char * s,gfp_t gfp)78 const char *kstrdup_const(const char *s, gfp_t gfp)
79 {
80 	if (is_kernel_rodata((unsigned long)s))
81 		return s;
82 
83 	return kstrdup(s, gfp);
84 }
85 EXPORT_SYMBOL(kstrdup_const);
86 
87 /**
88  * kstrndup - allocate space for and copy an existing string
89  * @s: the string to duplicate
90  * @max: read at most @max chars from @s
91  * @gfp: the GFP mask used in the kmalloc() call when allocating memory
92  *
93  * Note: Use kmemdup_nul() instead if the size is known exactly.
94  *
95  * Return: newly allocated copy of @s or %NULL in case of error
96  */
kstrndup(const char * s,size_t max,gfp_t gfp)97 char *kstrndup(const char *s, size_t max, gfp_t gfp)
98 {
99 	size_t len;
100 	char *buf;
101 
102 	if (!s)
103 		return NULL;
104 
105 	len = strnlen(s, max);
106 	buf = kmalloc_track_caller(len+1, gfp);
107 	if (buf) {
108 		memcpy(buf, s, len);
109 		buf[len] = '\0';
110 	}
111 	return buf;
112 }
113 EXPORT_SYMBOL(kstrndup);
114 
115 /**
116  * kmemdup - duplicate region of memory
117  *
118  * @src: memory region to duplicate
119  * @len: memory region length
120  * @gfp: GFP mask to use
121  *
122  * Return: newly allocated copy of @src or %NULL in case of error
123  */
kmemdup(const void * src,size_t len,gfp_t gfp)124 void *kmemdup(const void *src, size_t len, gfp_t gfp)
125 {
126 	void *p;
127 
128 	p = kmalloc_track_caller(len, gfp);
129 	if (p)
130 		memcpy(p, src, len);
131 	return p;
132 }
133 EXPORT_SYMBOL(kmemdup);
134 
135 /**
136  * kmemdup_nul - Create a NUL-terminated string from unterminated data
137  * @s: The data to stringify
138  * @len: The size of the data
139  * @gfp: the GFP mask used in the kmalloc() call when allocating memory
140  *
141  * Return: newly allocated copy of @s with NUL-termination or %NULL in
142  * case of error
143  */
kmemdup_nul(const char * s,size_t len,gfp_t gfp)144 char *kmemdup_nul(const char *s, size_t len, gfp_t gfp)
145 {
146 	char *buf;
147 
148 	if (!s)
149 		return NULL;
150 
151 	buf = kmalloc_track_caller(len + 1, gfp);
152 	if (buf) {
153 		memcpy(buf, s, len);
154 		buf[len] = '\0';
155 	}
156 	return buf;
157 }
158 EXPORT_SYMBOL(kmemdup_nul);
159 
160 /**
161  * memdup_user - duplicate memory region from user space
162  *
163  * @src: source address in user space
164  * @len: number of bytes to copy
165  *
166  * Return: an ERR_PTR() on failure.  Result is physically
167  * contiguous, to be freed by kfree().
168  */
memdup_user(const void __user * src,size_t len)169 void *memdup_user(const void __user *src, size_t len)
170 {
171 	void *p;
172 
173 	p = kmalloc_track_caller(len, GFP_USER | __GFP_NOWARN);
174 	if (!p)
175 		return ERR_PTR(-ENOMEM);
176 
177 	if (copy_from_user(p, src, len)) {
178 		kfree(p);
179 		return ERR_PTR(-EFAULT);
180 	}
181 
182 	return p;
183 }
184 EXPORT_SYMBOL(memdup_user);
185 
186 /**
187  * vmemdup_user - duplicate memory region from user space
188  *
189  * @src: source address in user space
190  * @len: number of bytes to copy
191  *
192  * Return: an ERR_PTR() on failure.  Result may be not
193  * physically contiguous.  Use kvfree() to free.
194  */
vmemdup_user(const void __user * src,size_t len)195 void *vmemdup_user(const void __user *src, size_t len)
196 {
197 	void *p;
198 
199 	p = kvmalloc(len, GFP_USER);
200 	if (!p)
201 		return ERR_PTR(-ENOMEM);
202 
203 	if (copy_from_user(p, src, len)) {
204 		kvfree(p);
205 		return ERR_PTR(-EFAULT);
206 	}
207 
208 	return p;
209 }
210 EXPORT_SYMBOL(vmemdup_user);
211 
212 /**
213  * strndup_user - duplicate an existing string from user space
214  * @s: The string to duplicate
215  * @n: Maximum number of bytes to copy, including the trailing NUL.
216  *
217  * Return: newly allocated copy of @s or an ERR_PTR() in case of error
218  */
strndup_user(const char __user * s,long n)219 char *strndup_user(const char __user *s, long n)
220 {
221 	char *p;
222 	long length;
223 
224 	length = strnlen_user(s, n);
225 
226 	if (!length)
227 		return ERR_PTR(-EFAULT);
228 
229 	if (length > n)
230 		return ERR_PTR(-EINVAL);
231 
232 	p = memdup_user(s, length);
233 
234 	if (IS_ERR(p))
235 		return p;
236 
237 	p[length - 1] = '\0';
238 
239 	return p;
240 }
241 EXPORT_SYMBOL(strndup_user);
242 
243 /**
244  * memdup_user_nul - duplicate memory region from user space and NUL-terminate
245  *
246  * @src: source address in user space
247  * @len: number of bytes to copy
248  *
249  * Return: an ERR_PTR() on failure.
250  */
memdup_user_nul(const void __user * src,size_t len)251 void *memdup_user_nul(const void __user *src, size_t len)
252 {
253 	char *p;
254 
255 	/*
256 	 * Always use GFP_KERNEL, since copy_from_user() can sleep and
257 	 * cause pagefault, which makes it pointless to use GFP_NOFS
258 	 * or GFP_ATOMIC.
259 	 */
260 	p = kmalloc_track_caller(len + 1, GFP_KERNEL);
261 	if (!p)
262 		return ERR_PTR(-ENOMEM);
263 
264 	if (copy_from_user(p, src, len)) {
265 		kfree(p);
266 		return ERR_PTR(-EFAULT);
267 	}
268 	p[len] = '\0';
269 
270 	return p;
271 }
272 EXPORT_SYMBOL(memdup_user_nul);
273 
__vma_link_list(struct mm_struct * mm,struct vm_area_struct * vma,struct vm_area_struct * prev)274 void __vma_link_list(struct mm_struct *mm, struct vm_area_struct *vma,
275 		struct vm_area_struct *prev)
276 {
277 	struct vm_area_struct *next;
278 
279 	vma->vm_prev = prev;
280 	if (prev) {
281 		next = prev->vm_next;
282 		prev->vm_next = vma;
283 	} else {
284 		next = mm->mmap;
285 		mm->mmap = vma;
286 	}
287 	vma->vm_next = next;
288 	if (next)
289 		next->vm_prev = vma;
290 }
291 
__vma_unlink_list(struct mm_struct * mm,struct vm_area_struct * vma)292 void __vma_unlink_list(struct mm_struct *mm, struct vm_area_struct *vma)
293 {
294 	struct vm_area_struct *prev, *next;
295 
296 	next = vma->vm_next;
297 	prev = vma->vm_prev;
298 	if (prev)
299 		prev->vm_next = next;
300 	else
301 		mm->mmap = next;
302 	if (next)
303 		next->vm_prev = prev;
304 }
305 
306 /* Check if the vma is being used as a stack by this task */
vma_is_stack_for_current(struct vm_area_struct * vma)307 int vma_is_stack_for_current(struct vm_area_struct *vma)
308 {
309 	struct task_struct * __maybe_unused t = current;
310 
311 	return (vma->vm_start <= KSTK_ESP(t) && vma->vm_end >= KSTK_ESP(t));
312 }
313 
314 #ifndef STACK_RND_MASK
315 #define STACK_RND_MASK (0x7ff >> (PAGE_SHIFT - 12))     /* 8MB of VA */
316 #endif
317 
randomize_stack_top(unsigned long stack_top)318 unsigned long randomize_stack_top(unsigned long stack_top)
319 {
320 	unsigned long random_variable = 0;
321 
322 	if (current->flags & PF_RANDOMIZE) {
323 		random_variable = get_random_long();
324 		random_variable &= STACK_RND_MASK;
325 		random_variable <<= PAGE_SHIFT;
326 	}
327 #ifdef CONFIG_STACK_GROWSUP
328 	return PAGE_ALIGN(stack_top) + random_variable;
329 #else
330 	return PAGE_ALIGN(stack_top) - random_variable;
331 #endif
332 }
333 
334 /**
335  * randomize_page - Generate a random, page aligned address
336  * @start:	The smallest acceptable address the caller will take.
337  * @range:	The size of the area, starting at @start, within which the
338  *		random address must fall.
339  *
340  * If @start + @range would overflow, @range is capped.
341  *
342  * NOTE: Historical use of randomize_range, which this replaces, presumed that
343  * @start was already page aligned.  We now align it regardless.
344  *
345  * Return: A page aligned address within [start, start + range).  On error,
346  * @start is returned.
347  */
randomize_page(unsigned long start,unsigned long range)348 unsigned long randomize_page(unsigned long start, unsigned long range)
349 {
350 	if (!PAGE_ALIGNED(start)) {
351 		range -= PAGE_ALIGN(start) - start;
352 		start = PAGE_ALIGN(start);
353 	}
354 
355 	if (start > ULONG_MAX - range)
356 		range = ULONG_MAX - start;
357 
358 	range >>= PAGE_SHIFT;
359 
360 	if (range == 0)
361 		return start;
362 
363 	return start + (get_random_long() % range << PAGE_SHIFT);
364 }
365 
366 #ifdef CONFIG_ARCH_WANT_DEFAULT_TOPDOWN_MMAP_LAYOUT
arch_randomize_brk(struct mm_struct * mm)367 unsigned long arch_randomize_brk(struct mm_struct *mm)
368 {
369 	/* Is the current task 32bit ? */
370 	if (!IS_ENABLED(CONFIG_64BIT) || is_compat_task())
371 		return randomize_page(mm->brk, SZ_32M);
372 
373 	return randomize_page(mm->brk, SZ_1G);
374 }
375 
arch_mmap_rnd(void)376 unsigned long arch_mmap_rnd(void)
377 {
378 	unsigned long rnd;
379 
380 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
381 	if (is_compat_task())
382 		rnd = get_random_long() & ((1UL << mmap_rnd_compat_bits) - 1);
383 	else
384 #endif /* CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS */
385 		rnd = get_random_long() & ((1UL << mmap_rnd_bits) - 1);
386 
387 	return rnd << PAGE_SHIFT;
388 }
389 
mmap_is_legacy(struct rlimit * rlim_stack)390 static int mmap_is_legacy(struct rlimit *rlim_stack)
391 {
392 	if (current->personality & ADDR_COMPAT_LAYOUT)
393 		return 1;
394 
395 	if (rlim_stack->rlim_cur == RLIM_INFINITY)
396 		return 1;
397 
398 	return sysctl_legacy_va_layout;
399 }
400 
401 /*
402  * Leave enough space between the mmap area and the stack to honour ulimit in
403  * the face of randomisation.
404  */
405 #define MIN_GAP		(SZ_128M)
406 #define MAX_GAP		(STACK_TOP / 6 * 5)
407 
mmap_base(unsigned long rnd,struct rlimit * rlim_stack)408 static unsigned long mmap_base(unsigned long rnd, struct rlimit *rlim_stack)
409 {
410 	unsigned long gap = rlim_stack->rlim_cur;
411 	unsigned long pad = stack_guard_gap;
412 
413 	/* Account for stack randomization if necessary */
414 	if (current->flags & PF_RANDOMIZE)
415 		pad += (STACK_RND_MASK << PAGE_SHIFT);
416 
417 	/* Values close to RLIM_INFINITY can overflow. */
418 	if (gap + pad > gap)
419 		gap += pad;
420 
421 	if (gap < MIN_GAP)
422 		gap = MIN_GAP;
423 	else if (gap > MAX_GAP)
424 		gap = MAX_GAP;
425 
426 	return PAGE_ALIGN(STACK_TOP - gap - rnd);
427 }
428 
arch_pick_mmap_layout(struct mm_struct * mm,struct rlimit * rlim_stack)429 void arch_pick_mmap_layout(struct mm_struct *mm, struct rlimit *rlim_stack)
430 {
431 	unsigned long random_factor = 0UL;
432 
433 	if (current->flags & PF_RANDOMIZE)
434 		random_factor = arch_mmap_rnd();
435 
436 	if (mmap_is_legacy(rlim_stack)) {
437 		mm->mmap_base = TASK_UNMAPPED_BASE + random_factor;
438 		mm->get_unmapped_area = arch_get_unmapped_area;
439 	} else {
440 		mm->mmap_base = mmap_base(random_factor, rlim_stack);
441 		mm->get_unmapped_area = arch_get_unmapped_area_topdown;
442 	}
443 }
444 #elif defined(CONFIG_MMU) && !defined(HAVE_ARCH_PICK_MMAP_LAYOUT)
arch_pick_mmap_layout(struct mm_struct * mm,struct rlimit * rlim_stack)445 void arch_pick_mmap_layout(struct mm_struct *mm, struct rlimit *rlim_stack)
446 {
447 	mm->mmap_base = TASK_UNMAPPED_BASE;
448 	mm->get_unmapped_area = arch_get_unmapped_area;
449 }
450 #endif
451 
452 /**
453  * __account_locked_vm - account locked pages to an mm's locked_vm
454  * @mm:          mm to account against
455  * @pages:       number of pages to account
456  * @inc:         %true if @pages should be considered positive, %false if not
457  * @task:        task used to check RLIMIT_MEMLOCK
458  * @bypass_rlim: %true if checking RLIMIT_MEMLOCK should be skipped
459  *
460  * Assumes @task and @mm are valid (i.e. at least one reference on each), and
461  * that mmap_lock is held as writer.
462  *
463  * Return:
464  * * 0       on success
465  * * -ENOMEM if RLIMIT_MEMLOCK would be exceeded.
466  */
__account_locked_vm(struct mm_struct * mm,unsigned long pages,bool inc,struct task_struct * task,bool bypass_rlim)467 int __account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc,
468 			struct task_struct *task, bool bypass_rlim)
469 {
470 	unsigned long locked_vm, limit;
471 	int ret = 0;
472 
473 	mmap_assert_write_locked(mm);
474 
475 	locked_vm = mm->locked_vm;
476 	if (inc) {
477 		if (!bypass_rlim) {
478 			limit = task_rlimit(task, RLIMIT_MEMLOCK) >> PAGE_SHIFT;
479 			if (locked_vm + pages > limit)
480 				ret = -ENOMEM;
481 		}
482 		if (!ret)
483 			mm->locked_vm = locked_vm + pages;
484 	} else {
485 		WARN_ON_ONCE(pages > locked_vm);
486 		mm->locked_vm = locked_vm - pages;
487 	}
488 
489 	pr_debug("%s: [%d] caller %ps %c%lu %lu/%lu%s\n", __func__, task->pid,
490 		 (void *)_RET_IP_, (inc) ? '+' : '-', pages << PAGE_SHIFT,
491 		 locked_vm << PAGE_SHIFT, task_rlimit(task, RLIMIT_MEMLOCK),
492 		 ret ? " - exceeded" : "");
493 
494 	return ret;
495 }
496 EXPORT_SYMBOL_GPL(__account_locked_vm);
497 
498 /**
499  * account_locked_vm - account locked pages to an mm's locked_vm
500  * @mm:          mm to account against, may be NULL
501  * @pages:       number of pages to account
502  * @inc:         %true if @pages should be considered positive, %false if not
503  *
504  * Assumes a non-NULL @mm is valid (i.e. at least one reference on it).
505  *
506  * Return:
507  * * 0       on success, or if mm is NULL
508  * * -ENOMEM if RLIMIT_MEMLOCK would be exceeded.
509  */
account_locked_vm(struct mm_struct * mm,unsigned long pages,bool inc)510 int account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc)
511 {
512 	int ret;
513 
514 	if (pages == 0 || !mm)
515 		return 0;
516 
517 	mmap_write_lock(mm);
518 	ret = __account_locked_vm(mm, pages, inc, current,
519 				  capable(CAP_IPC_LOCK));
520 	mmap_write_unlock(mm);
521 
522 	return ret;
523 }
524 EXPORT_SYMBOL_GPL(account_locked_vm);
525 
vm_mmap_pgoff(struct file * file,unsigned long addr,unsigned long len,unsigned long prot,unsigned long flag,unsigned long pgoff)526 unsigned long vm_mmap_pgoff(struct file *file, unsigned long addr,
527 	unsigned long len, unsigned long prot,
528 	unsigned long flag, unsigned long pgoff)
529 {
530 	unsigned long ret;
531 	struct mm_struct *mm = current->mm;
532 	unsigned long populate;
533 	LIST_HEAD(uf);
534 
535 	ret = security_mmap_file(file, prot, flag);
536 	if (!ret) {
537 		if (mmap_write_lock_killable(mm))
538 			return -EINTR;
539 		ret = do_mmap(file, addr, len, prot, flag, pgoff, &populate,
540 			      &uf);
541 		mmap_write_unlock(mm);
542 		userfaultfd_unmap_complete(mm, &uf);
543 		if (populate)
544 			mm_populate(ret, populate);
545 	}
546 	return ret;
547 }
548 
vm_mmap(struct file * file,unsigned long addr,unsigned long len,unsigned long prot,unsigned long flag,unsigned long offset)549 unsigned long vm_mmap(struct file *file, unsigned long addr,
550 	unsigned long len, unsigned long prot,
551 	unsigned long flag, unsigned long offset)
552 {
553 	if (unlikely(offset + PAGE_ALIGN(len) < offset))
554 		return -EINVAL;
555 	if (unlikely(offset_in_page(offset)))
556 		return -EINVAL;
557 
558 	return vm_mmap_pgoff(file, addr, len, prot, flag, offset >> PAGE_SHIFT);
559 }
560 EXPORT_SYMBOL(vm_mmap);
561 
562 /**
563  * kvmalloc_node - attempt to allocate physically contiguous memory, but upon
564  * failure, fall back to non-contiguous (vmalloc) allocation.
565  * @size: size of the request.
566  * @flags: gfp mask for the allocation - must be compatible (superset) with GFP_KERNEL.
567  * @node: numa node to allocate from
568  *
569  * Uses kmalloc to get the memory but if the allocation fails then falls back
570  * to the vmalloc allocator. Use kvfree for freeing the memory.
571  *
572  * Reclaim modifiers - __GFP_NORETRY and __GFP_NOFAIL are not supported.
573  * __GFP_RETRY_MAYFAIL is supported, and it should be used only if kmalloc is
574  * preferable to the vmalloc fallback, due to visible performance drawbacks.
575  *
576  * Please note that any use of gfp flags outside of GFP_KERNEL is careful to not
577  * fall back to vmalloc.
578  *
579  * Return: pointer to the allocated memory of %NULL in case of failure
580  */
kvmalloc_node(size_t size,gfp_t flags,int node)581 void *kvmalloc_node(size_t size, gfp_t flags, int node)
582 {
583 	gfp_t kmalloc_flags = flags;
584 	void *ret;
585 
586 	/*
587 	 * vmalloc uses GFP_KERNEL for some internal allocations (e.g page tables)
588 	 * so the given set of flags has to be compatible.
589 	 */
590 	if ((flags & GFP_KERNEL) != GFP_KERNEL)
591 		return kmalloc_node(size, flags, node);
592 
593 	/*
594 	 * We want to attempt a large physically contiguous block first because
595 	 * it is less likely to fragment multiple larger blocks and therefore
596 	 * contribute to a long term fragmentation less than vmalloc fallback.
597 	 * However make sure that larger requests are not too disruptive - no
598 	 * OOM killer and no allocation failure warnings as we have a fallback.
599 	 */
600 	if (size > PAGE_SIZE) {
601 		kmalloc_flags |= __GFP_NOWARN;
602 
603 		if (!(kmalloc_flags & __GFP_RETRY_MAYFAIL))
604 			kmalloc_flags |= __GFP_NORETRY;
605 	}
606 
607 	ret = kmalloc_node(size, kmalloc_flags, node);
608 
609 	/*
610 	 * It doesn't really make sense to fallback to vmalloc for sub page
611 	 * requests
612 	 */
613 	if (ret || size <= PAGE_SIZE)
614 		return ret;
615 
616 	/* Don't even allow crazy sizes */
617 	if (unlikely(size > INT_MAX)) {
618 		WARN_ON_ONCE(!(flags & __GFP_NOWARN));
619 		return NULL;
620 	}
621 
622 	return __vmalloc_node(size, 1, flags, node,
623 			__builtin_return_address(0));
624 }
625 EXPORT_SYMBOL(kvmalloc_node);
626 
627 /**
628  * kvfree() - Free memory.
629  * @addr: Pointer to allocated memory.
630  *
631  * kvfree frees memory allocated by any of vmalloc(), kmalloc() or kvmalloc().
632  * It is slightly more efficient to use kfree() or vfree() if you are certain
633  * that you know which one to use.
634  *
635  * Context: Either preemptible task context or not-NMI interrupt.
636  */
kvfree(const void * addr)637 void kvfree(const void *addr)
638 {
639 	if (is_vmalloc_addr(addr))
640 		vfree(addr);
641 	else
642 		kfree(addr);
643 }
644 EXPORT_SYMBOL(kvfree);
645 
646 /**
647  * kvfree_sensitive - Free a data object containing sensitive information.
648  * @addr: address of the data object to be freed.
649  * @len: length of the data object.
650  *
651  * Use the special memzero_explicit() function to clear the content of a
652  * kvmalloc'ed object containing sensitive data to make sure that the
653  * compiler won't optimize out the data clearing.
654  */
kvfree_sensitive(const void * addr,size_t len)655 void kvfree_sensitive(const void *addr, size_t len)
656 {
657 	if (likely(!ZERO_OR_NULL_PTR(addr))) {
658 		memzero_explicit((void *)addr, len);
659 		kvfree(addr);
660 	}
661 }
662 EXPORT_SYMBOL(kvfree_sensitive);
663 
kvrealloc(const void * p,size_t oldsize,size_t newsize,gfp_t flags)664 void *kvrealloc(const void *p, size_t oldsize, size_t newsize, gfp_t flags)
665 {
666 	void *newp;
667 
668 	if (oldsize >= newsize)
669 		return (void *)p;
670 	newp = kvmalloc(newsize, flags);
671 	if (!newp)
672 		return NULL;
673 	memcpy(newp, p, oldsize);
674 	kvfree(p);
675 	return newp;
676 }
677 EXPORT_SYMBOL(kvrealloc);
678 
__page_rmapping(struct page * page)679 static inline void *__page_rmapping(struct page *page)
680 {
681 	unsigned long mapping;
682 
683 	mapping = (unsigned long)page->mapping;
684 	mapping &= ~PAGE_MAPPING_FLAGS;
685 
686 	return (void *)mapping;
687 }
688 
689 /* Neutral page->mapping pointer to address_space or anon_vma or other */
page_rmapping(struct page * page)690 void *page_rmapping(struct page *page)
691 {
692 	page = compound_head(page);
693 	return __page_rmapping(page);
694 }
695 
696 /*
697  * Return true if this page is mapped into pagetables.
698  * For compound page it returns true if any subpage of compound page is mapped.
699  */
page_mapped(struct page * page)700 bool page_mapped(struct page *page)
701 {
702 	int i;
703 
704 	if (likely(!PageCompound(page)))
705 		return atomic_read(&page->_mapcount) >= 0;
706 	page = compound_head(page);
707 	if (atomic_read(compound_mapcount_ptr(page)) >= 0)
708 		return true;
709 	if (PageHuge(page))
710 		return false;
711 	for (i = 0; i < compound_nr(page); i++) {
712 		if (atomic_read(&page[i]._mapcount) >= 0)
713 			return true;
714 	}
715 	return false;
716 }
717 EXPORT_SYMBOL(page_mapped);
718 
page_anon_vma(struct page * page)719 struct anon_vma *page_anon_vma(struct page *page)
720 {
721 	unsigned long mapping;
722 
723 	page = compound_head(page);
724 	mapping = (unsigned long)page->mapping;
725 	if ((mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
726 		return NULL;
727 	return __page_rmapping(page);
728 }
729 
page_mapping(struct page * page)730 struct address_space *page_mapping(struct page *page)
731 {
732 	struct address_space *mapping;
733 
734 	page = compound_head(page);
735 
736 	/* This happens if someone calls flush_dcache_page on slab page */
737 	if (unlikely(PageSlab(page)))
738 		return NULL;
739 
740 	if (unlikely(PageSwapCache(page))) {
741 		swp_entry_t entry;
742 
743 		entry.val = page_private(page);
744 		return swap_address_space(entry);
745 	}
746 
747 	mapping = page->mapping;
748 	if ((unsigned long)mapping & PAGE_MAPPING_ANON)
749 		return NULL;
750 
751 	return (void *)((unsigned long)mapping & ~PAGE_MAPPING_FLAGS);
752 }
753 EXPORT_SYMBOL(page_mapping);
754 
755 /*
756  * For file cache pages, return the address_space, otherwise return NULL
757  */
page_mapping_file(struct page * page)758 struct address_space *page_mapping_file(struct page *page)
759 {
760 	if (unlikely(PageSwapCache(page)))
761 		return NULL;
762 	return page_mapping(page);
763 }
764 
765 /* Slow path of page_mapcount() for compound pages */
__page_mapcount(struct page * page)766 int __page_mapcount(struct page *page)
767 {
768 	int ret;
769 
770 	ret = atomic_read(&page->_mapcount) + 1;
771 	/*
772 	 * For file THP page->_mapcount contains total number of mapping
773 	 * of the page: no need to look into compound_mapcount.
774 	 */
775 	if (!PageAnon(page) && !PageHuge(page))
776 		return ret;
777 	page = compound_head(page);
778 	ret += atomic_read(compound_mapcount_ptr(page)) + 1;
779 	if (PageDoubleMap(page))
780 		ret--;
781 	return ret;
782 }
783 EXPORT_SYMBOL_GPL(__page_mapcount);
784 
785 int sysctl_overcommit_memory __read_mostly = OVERCOMMIT_GUESS;
786 int sysctl_overcommit_ratio __read_mostly = 50;
787 unsigned long sysctl_overcommit_kbytes __read_mostly;
788 int sysctl_max_map_count __read_mostly = DEFAULT_MAX_MAP_COUNT;
789 unsigned long sysctl_user_reserve_kbytes __read_mostly = 1UL << 17; /* 128MB */
790 unsigned long sysctl_admin_reserve_kbytes __read_mostly = 1UL << 13; /* 8MB */
791 
overcommit_ratio_handler(struct ctl_table * table,int write,void * buffer,size_t * lenp,loff_t * ppos)792 int overcommit_ratio_handler(struct ctl_table *table, int write, void *buffer,
793 		size_t *lenp, loff_t *ppos)
794 {
795 	int ret;
796 
797 	ret = proc_dointvec(table, write, buffer, lenp, ppos);
798 	if (ret == 0 && write)
799 		sysctl_overcommit_kbytes = 0;
800 	return ret;
801 }
802 
sync_overcommit_as(struct work_struct * dummy)803 static void sync_overcommit_as(struct work_struct *dummy)
804 {
805 	percpu_counter_sync(&vm_committed_as);
806 }
807 
overcommit_policy_handler(struct ctl_table * table,int write,void * buffer,size_t * lenp,loff_t * ppos)808 int overcommit_policy_handler(struct ctl_table *table, int write, void *buffer,
809 		size_t *lenp, loff_t *ppos)
810 {
811 	struct ctl_table t;
812 	int new_policy = -1;
813 	int ret;
814 
815 	/*
816 	 * The deviation of sync_overcommit_as could be big with loose policy
817 	 * like OVERCOMMIT_ALWAYS/OVERCOMMIT_GUESS. When changing policy to
818 	 * strict OVERCOMMIT_NEVER, we need to reduce the deviation to comply
819 	 * with the strict "NEVER", and to avoid possible race condtion (even
820 	 * though user usually won't too frequently do the switching to policy
821 	 * OVERCOMMIT_NEVER), the switch is done in the following order:
822 	 *	1. changing the batch
823 	 *	2. sync percpu count on each CPU
824 	 *	3. switch the policy
825 	 */
826 	if (write) {
827 		t = *table;
828 		t.data = &new_policy;
829 		ret = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
830 		if (ret || new_policy == -1)
831 			return ret;
832 
833 		mm_compute_batch(new_policy);
834 		if (new_policy == OVERCOMMIT_NEVER)
835 			schedule_on_each_cpu(sync_overcommit_as);
836 		sysctl_overcommit_memory = new_policy;
837 	} else {
838 		ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
839 	}
840 
841 	return ret;
842 }
843 
overcommit_kbytes_handler(struct ctl_table * table,int write,void * buffer,size_t * lenp,loff_t * ppos)844 int overcommit_kbytes_handler(struct ctl_table *table, int write, void *buffer,
845 		size_t *lenp, loff_t *ppos)
846 {
847 	int ret;
848 
849 	ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
850 	if (ret == 0 && write)
851 		sysctl_overcommit_ratio = 0;
852 	return ret;
853 }
854 
855 /*
856  * Committed memory limit enforced when OVERCOMMIT_NEVER policy is used
857  */
vm_commit_limit(void)858 unsigned long vm_commit_limit(void)
859 {
860 	unsigned long allowed;
861 
862 	if (sysctl_overcommit_kbytes)
863 		allowed = sysctl_overcommit_kbytes >> (PAGE_SHIFT - 10);
864 	else
865 		allowed = ((totalram_pages() - hugetlb_total_pages())
866 			   * sysctl_overcommit_ratio / 100);
867 	allowed += total_swap_pages;
868 
869 	return allowed;
870 }
871 
872 /*
873  * Make sure vm_committed_as in one cacheline and not cacheline shared with
874  * other variables. It can be updated by several CPUs frequently.
875  */
876 struct percpu_counter vm_committed_as ____cacheline_aligned_in_smp;
877 
878 /*
879  * The global memory commitment made in the system can be a metric
880  * that can be used to drive ballooning decisions when Linux is hosted
881  * as a guest. On Hyper-V, the host implements a policy engine for dynamically
882  * balancing memory across competing virtual machines that are hosted.
883  * Several metrics drive this policy engine including the guest reported
884  * memory commitment.
885  *
886  * The time cost of this is very low for small platforms, and for big
887  * platform like a 2S/36C/72T Skylake server, in worst case where
888  * vm_committed_as's spinlock is under severe contention, the time cost
889  * could be about 30~40 microseconds.
890  */
vm_memory_committed(void)891 unsigned long vm_memory_committed(void)
892 {
893 	return percpu_counter_sum_positive(&vm_committed_as);
894 }
895 EXPORT_SYMBOL_GPL(vm_memory_committed);
896 
897 /*
898  * Check that a process has enough memory to allocate a new virtual
899  * mapping. 0 means there is enough memory for the allocation to
900  * succeed and -ENOMEM implies there is not.
901  *
902  * We currently support three overcommit policies, which are set via the
903  * vm.overcommit_memory sysctl.  See Documentation/vm/overcommit-accounting.rst
904  *
905  * Strict overcommit modes added 2002 Feb 26 by Alan Cox.
906  * Additional code 2002 Jul 20 by Robert Love.
907  *
908  * cap_sys_admin is 1 if the process has admin privileges, 0 otherwise.
909  *
910  * Note this is a helper function intended to be used by LSMs which
911  * wish to use this logic.
912  */
__vm_enough_memory(struct mm_struct * mm,long pages,int cap_sys_admin)913 int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin)
914 {
915 	long allowed;
916 
917 	vm_acct_memory(pages);
918 
919 	/*
920 	 * Sometimes we want to use more memory than we have
921 	 */
922 	if (sysctl_overcommit_memory == OVERCOMMIT_ALWAYS)
923 		return 0;
924 
925 	if (sysctl_overcommit_memory == OVERCOMMIT_GUESS) {
926 		if (pages > totalram_pages() + total_swap_pages)
927 			goto error;
928 		return 0;
929 	}
930 
931 	allowed = vm_commit_limit();
932 	/*
933 	 * Reserve some for root
934 	 */
935 	if (!cap_sys_admin)
936 		allowed -= sysctl_admin_reserve_kbytes >> (PAGE_SHIFT - 10);
937 
938 	/*
939 	 * Don't let a single process grow so big a user can't recover
940 	 */
941 	if (mm) {
942 		long reserve = sysctl_user_reserve_kbytes >> (PAGE_SHIFT - 10);
943 
944 		allowed -= min_t(long, mm->total_vm / 32, reserve);
945 	}
946 
947 	if (percpu_counter_read_positive(&vm_committed_as) < allowed)
948 		return 0;
949 error:
950 	vm_unacct_memory(pages);
951 
952 	return -ENOMEM;
953 }
954 
955 /**
956  * get_cmdline() - copy the cmdline value to a buffer.
957  * @task:     the task whose cmdline value to copy.
958  * @buffer:   the buffer to copy to.
959  * @buflen:   the length of the buffer. Larger cmdline values are truncated
960  *            to this length.
961  *
962  * Return: the size of the cmdline field copied. Note that the copy does
963  * not guarantee an ending NULL byte.
964  */
get_cmdline(struct task_struct * task,char * buffer,int buflen)965 int get_cmdline(struct task_struct *task, char *buffer, int buflen)
966 {
967 	int res = 0;
968 	unsigned int len;
969 	struct mm_struct *mm = get_task_mm(task);
970 	unsigned long arg_start, arg_end, env_start, env_end;
971 	if (!mm)
972 		goto out;
973 	if (!mm->arg_end)
974 		goto out_mm;	/* Shh! No looking before we're done */
975 
976 	spin_lock(&mm->arg_lock);
977 	arg_start = mm->arg_start;
978 	arg_end = mm->arg_end;
979 	env_start = mm->env_start;
980 	env_end = mm->env_end;
981 	spin_unlock(&mm->arg_lock);
982 
983 	len = arg_end - arg_start;
984 
985 	if (len > buflen)
986 		len = buflen;
987 
988 	res = access_process_vm(task, arg_start, buffer, len, FOLL_FORCE);
989 
990 	/*
991 	 * If the nul at the end of args has been overwritten, then
992 	 * assume application is using setproctitle(3).
993 	 */
994 	if (res > 0 && buffer[res-1] != '\0' && len < buflen) {
995 		len = strnlen(buffer, res);
996 		if (len < res) {
997 			res = len;
998 		} else {
999 			len = env_end - env_start;
1000 			if (len > buflen - res)
1001 				len = buflen - res;
1002 			res += access_process_vm(task, env_start,
1003 						 buffer+res, len,
1004 						 FOLL_FORCE);
1005 			res = strnlen(buffer, res);
1006 		}
1007 	}
1008 out_mm:
1009 	mmput(mm);
1010 out:
1011 	return res;
1012 }
1013 
memcmp_pages(struct page * page1,struct page * page2)1014 int __weak memcmp_pages(struct page *page1, struct page *page2)
1015 {
1016 	char *addr1, *addr2;
1017 	int ret;
1018 
1019 	addr1 = kmap_atomic(page1);
1020 	addr2 = kmap_atomic(page2);
1021 	ret = memcmp(addr1, addr2, PAGE_SIZE);
1022 	kunmap_atomic(addr2);
1023 	kunmap_atomic(addr1);
1024 	return ret;
1025 }
1026