• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * KVM Microsoft Hyper-V emulation
4  *
5  * derived from arch/x86/kvm/x86.c
6  *
7  * Copyright (C) 2006 Qumranet, Inc.
8  * Copyright (C) 2008 Qumranet, Inc.
9  * Copyright IBM Corporation, 2008
10  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
11  * Copyright (C) 2015 Andrey Smetanin <asmetanin@virtuozzo.com>
12  *
13  * Authors:
14  *   Avi Kivity   <avi@qumranet.com>
15  *   Yaniv Kamay  <yaniv@qumranet.com>
16  *   Amit Shah    <amit.shah@qumranet.com>
17  *   Ben-Ami Yassour <benami@il.ibm.com>
18  *   Andrey Smetanin <asmetanin@virtuozzo.com>
19  */
20 
21 #include "x86.h"
22 #include "lapic.h"
23 #include "ioapic.h"
24 #include "cpuid.h"
25 #include "hyperv.h"
26 
27 #include <linux/cpu.h>
28 #include <linux/kvm_host.h>
29 #include <linux/highmem.h>
30 #include <linux/sched/cputime.h>
31 #include <linux/eventfd.h>
32 
33 #include <asm/apicdef.h>
34 #include <trace/events/kvm.h>
35 
36 #include "trace.h"
37 #include "irq.h"
38 
39 #define KVM_HV_MAX_SPARSE_VCPU_SET_BITS DIV_ROUND_UP(KVM_MAX_VCPUS, 64)
40 
41 static void stimer_mark_pending(struct kvm_vcpu_hv_stimer *stimer,
42 				bool vcpu_kick);
43 
synic_read_sint(struct kvm_vcpu_hv_synic * synic,int sint)44 static inline u64 synic_read_sint(struct kvm_vcpu_hv_synic *synic, int sint)
45 {
46 	return atomic64_read(&synic->sint[sint]);
47 }
48 
synic_get_sint_vector(u64 sint_value)49 static inline int synic_get_sint_vector(u64 sint_value)
50 {
51 	if (sint_value & HV_SYNIC_SINT_MASKED)
52 		return -1;
53 	return sint_value & HV_SYNIC_SINT_VECTOR_MASK;
54 }
55 
synic_has_vector_connected(struct kvm_vcpu_hv_synic * synic,int vector)56 static bool synic_has_vector_connected(struct kvm_vcpu_hv_synic *synic,
57 				      int vector)
58 {
59 	int i;
60 
61 	for (i = 0; i < ARRAY_SIZE(synic->sint); i++) {
62 		if (synic_get_sint_vector(synic_read_sint(synic, i)) == vector)
63 			return true;
64 	}
65 	return false;
66 }
67 
synic_has_vector_auto_eoi(struct kvm_vcpu_hv_synic * synic,int vector)68 static bool synic_has_vector_auto_eoi(struct kvm_vcpu_hv_synic *synic,
69 				     int vector)
70 {
71 	int i;
72 	u64 sint_value;
73 
74 	for (i = 0; i < ARRAY_SIZE(synic->sint); i++) {
75 		sint_value = synic_read_sint(synic, i);
76 		if (synic_get_sint_vector(sint_value) == vector &&
77 		    sint_value & HV_SYNIC_SINT_AUTO_EOI)
78 			return true;
79 	}
80 	return false;
81 }
82 
synic_update_vector(struct kvm_vcpu_hv_synic * synic,int vector)83 static void synic_update_vector(struct kvm_vcpu_hv_synic *synic,
84 				int vector)
85 {
86 	if (vector < HV_SYNIC_FIRST_VALID_VECTOR)
87 		return;
88 
89 	if (synic_has_vector_connected(synic, vector))
90 		__set_bit(vector, synic->vec_bitmap);
91 	else
92 		__clear_bit(vector, synic->vec_bitmap);
93 
94 	if (synic_has_vector_auto_eoi(synic, vector))
95 		__set_bit(vector, synic->auto_eoi_bitmap);
96 	else
97 		__clear_bit(vector, synic->auto_eoi_bitmap);
98 }
99 
synic_set_sint(struct kvm_vcpu_hv_synic * synic,int sint,u64 data,bool host)100 static int synic_set_sint(struct kvm_vcpu_hv_synic *synic, int sint,
101 			  u64 data, bool host)
102 {
103 	int vector, old_vector;
104 	bool masked;
105 
106 	vector = data & HV_SYNIC_SINT_VECTOR_MASK;
107 	masked = data & HV_SYNIC_SINT_MASKED;
108 
109 	/*
110 	 * Valid vectors are 16-255, however, nested Hyper-V attempts to write
111 	 * default '0x10000' value on boot and this should not #GP. We need to
112 	 * allow zero-initing the register from host as well.
113 	 */
114 	if (vector < HV_SYNIC_FIRST_VALID_VECTOR && !host && !masked)
115 		return 1;
116 	/*
117 	 * Guest may configure multiple SINTs to use the same vector, so
118 	 * we maintain a bitmap of vectors handled by synic, and a
119 	 * bitmap of vectors with auto-eoi behavior.  The bitmaps are
120 	 * updated here, and atomically queried on fast paths.
121 	 */
122 	old_vector = synic_read_sint(synic, sint) & HV_SYNIC_SINT_VECTOR_MASK;
123 
124 	atomic64_set(&synic->sint[sint], data);
125 
126 	synic_update_vector(synic, old_vector);
127 
128 	synic_update_vector(synic, vector);
129 
130 	/* Load SynIC vectors into EOI exit bitmap */
131 	kvm_make_request(KVM_REQ_SCAN_IOAPIC, synic_to_vcpu(synic));
132 	return 0;
133 }
134 
get_vcpu_by_vpidx(struct kvm * kvm,u32 vpidx)135 static struct kvm_vcpu *get_vcpu_by_vpidx(struct kvm *kvm, u32 vpidx)
136 {
137 	struct kvm_vcpu *vcpu = NULL;
138 	int i;
139 
140 	if (vpidx >= KVM_MAX_VCPUS)
141 		return NULL;
142 
143 	vcpu = kvm_get_vcpu(kvm, vpidx);
144 	if (vcpu && vcpu_to_hv_vcpu(vcpu)->vp_index == vpidx)
145 		return vcpu;
146 	kvm_for_each_vcpu(i, vcpu, kvm)
147 		if (vcpu_to_hv_vcpu(vcpu)->vp_index == vpidx)
148 			return vcpu;
149 	return NULL;
150 }
151 
synic_get(struct kvm * kvm,u32 vpidx)152 static struct kvm_vcpu_hv_synic *synic_get(struct kvm *kvm, u32 vpidx)
153 {
154 	struct kvm_vcpu *vcpu;
155 	struct kvm_vcpu_hv_synic *synic;
156 
157 	vcpu = get_vcpu_by_vpidx(kvm, vpidx);
158 	if (!vcpu)
159 		return NULL;
160 	synic = vcpu_to_synic(vcpu);
161 	return (synic->active) ? synic : NULL;
162 }
163 
kvm_hv_notify_acked_sint(struct kvm_vcpu * vcpu,u32 sint)164 static void kvm_hv_notify_acked_sint(struct kvm_vcpu *vcpu, u32 sint)
165 {
166 	struct kvm *kvm = vcpu->kvm;
167 	struct kvm_vcpu_hv_synic *synic = vcpu_to_synic(vcpu);
168 	struct kvm_vcpu_hv *hv_vcpu = vcpu_to_hv_vcpu(vcpu);
169 	struct kvm_vcpu_hv_stimer *stimer;
170 	int gsi, idx;
171 
172 	trace_kvm_hv_notify_acked_sint(vcpu->vcpu_id, sint);
173 
174 	/* Try to deliver pending Hyper-V SynIC timers messages */
175 	for (idx = 0; idx < ARRAY_SIZE(hv_vcpu->stimer); idx++) {
176 		stimer = &hv_vcpu->stimer[idx];
177 		if (stimer->msg_pending && stimer->config.enable &&
178 		    !stimer->config.direct_mode &&
179 		    stimer->config.sintx == sint)
180 			stimer_mark_pending(stimer, false);
181 	}
182 
183 	idx = srcu_read_lock(&kvm->irq_srcu);
184 	gsi = atomic_read(&synic->sint_to_gsi[sint]);
185 	if (gsi != -1)
186 		kvm_notify_acked_gsi(kvm, gsi);
187 	srcu_read_unlock(&kvm->irq_srcu, idx);
188 }
189 
synic_exit(struct kvm_vcpu_hv_synic * synic,u32 msr)190 static void synic_exit(struct kvm_vcpu_hv_synic *synic, u32 msr)
191 {
192 	struct kvm_vcpu *vcpu = synic_to_vcpu(synic);
193 	struct kvm_vcpu_hv *hv_vcpu = &vcpu->arch.hyperv;
194 
195 	hv_vcpu->exit.type = KVM_EXIT_HYPERV_SYNIC;
196 	hv_vcpu->exit.u.synic.msr = msr;
197 	hv_vcpu->exit.u.synic.control = synic->control;
198 	hv_vcpu->exit.u.synic.evt_page = synic->evt_page;
199 	hv_vcpu->exit.u.synic.msg_page = synic->msg_page;
200 
201 	kvm_make_request(KVM_REQ_HV_EXIT, vcpu);
202 }
203 
synic_set_msr(struct kvm_vcpu_hv_synic * synic,u32 msr,u64 data,bool host)204 static int synic_set_msr(struct kvm_vcpu_hv_synic *synic,
205 			 u32 msr, u64 data, bool host)
206 {
207 	struct kvm_vcpu *vcpu = synic_to_vcpu(synic);
208 	int ret;
209 
210 	if (!synic->active && (!host || data))
211 		return 1;
212 
213 	trace_kvm_hv_synic_set_msr(vcpu->vcpu_id, msr, data, host);
214 
215 	ret = 0;
216 	switch (msr) {
217 	case HV_X64_MSR_SCONTROL:
218 		synic->control = data;
219 		if (!host)
220 			synic_exit(synic, msr);
221 		break;
222 	case HV_X64_MSR_SVERSION:
223 		if (!host) {
224 			ret = 1;
225 			break;
226 		}
227 		synic->version = data;
228 		break;
229 	case HV_X64_MSR_SIEFP:
230 		if ((data & HV_SYNIC_SIEFP_ENABLE) && !host &&
231 		    !synic->dont_zero_synic_pages)
232 			if (kvm_clear_guest(vcpu->kvm,
233 					    data & PAGE_MASK, PAGE_SIZE)) {
234 				ret = 1;
235 				break;
236 			}
237 		synic->evt_page = data;
238 		if (!host)
239 			synic_exit(synic, msr);
240 		break;
241 	case HV_X64_MSR_SIMP:
242 		if ((data & HV_SYNIC_SIMP_ENABLE) && !host &&
243 		    !synic->dont_zero_synic_pages)
244 			if (kvm_clear_guest(vcpu->kvm,
245 					    data & PAGE_MASK, PAGE_SIZE)) {
246 				ret = 1;
247 				break;
248 			}
249 		synic->msg_page = data;
250 		if (!host)
251 			synic_exit(synic, msr);
252 		break;
253 	case HV_X64_MSR_EOM: {
254 		int i;
255 
256 		if (!synic->active)
257 			break;
258 
259 		for (i = 0; i < ARRAY_SIZE(synic->sint); i++)
260 			kvm_hv_notify_acked_sint(vcpu, i);
261 		break;
262 	}
263 	case HV_X64_MSR_SINT0 ... HV_X64_MSR_SINT15:
264 		ret = synic_set_sint(synic, msr - HV_X64_MSR_SINT0, data, host);
265 		break;
266 	default:
267 		ret = 1;
268 		break;
269 	}
270 	return ret;
271 }
272 
kvm_hv_is_syndbg_enabled(struct kvm_vcpu * vcpu)273 static bool kvm_hv_is_syndbg_enabled(struct kvm_vcpu *vcpu)
274 {
275 	struct kvm_cpuid_entry2 *entry;
276 
277 	entry = kvm_find_cpuid_entry(vcpu,
278 				     HYPERV_CPUID_SYNDBG_PLATFORM_CAPABILITIES,
279 				     0);
280 	if (!entry)
281 		return false;
282 
283 	return entry->eax & HV_X64_SYNDBG_CAP_ALLOW_KERNEL_DEBUGGING;
284 }
285 
kvm_hv_syndbg_complete_userspace(struct kvm_vcpu * vcpu)286 static int kvm_hv_syndbg_complete_userspace(struct kvm_vcpu *vcpu)
287 {
288 	struct kvm *kvm = vcpu->kvm;
289 	struct kvm_hv *hv = &kvm->arch.hyperv;
290 
291 	if (vcpu->run->hyperv.u.syndbg.msr == HV_X64_MSR_SYNDBG_CONTROL)
292 		hv->hv_syndbg.control.status =
293 			vcpu->run->hyperv.u.syndbg.status;
294 	return 1;
295 }
296 
syndbg_exit(struct kvm_vcpu * vcpu,u32 msr)297 static void syndbg_exit(struct kvm_vcpu *vcpu, u32 msr)
298 {
299 	struct kvm_hv_syndbg *syndbg = vcpu_to_hv_syndbg(vcpu);
300 	struct kvm_vcpu_hv *hv_vcpu = &vcpu->arch.hyperv;
301 
302 	hv_vcpu->exit.type = KVM_EXIT_HYPERV_SYNDBG;
303 	hv_vcpu->exit.u.syndbg.msr = msr;
304 	hv_vcpu->exit.u.syndbg.control = syndbg->control.control;
305 	hv_vcpu->exit.u.syndbg.send_page = syndbg->control.send_page;
306 	hv_vcpu->exit.u.syndbg.recv_page = syndbg->control.recv_page;
307 	hv_vcpu->exit.u.syndbg.pending_page = syndbg->control.pending_page;
308 	vcpu->arch.complete_userspace_io =
309 			kvm_hv_syndbg_complete_userspace;
310 
311 	kvm_make_request(KVM_REQ_HV_EXIT, vcpu);
312 }
313 
syndbg_set_msr(struct kvm_vcpu * vcpu,u32 msr,u64 data,bool host)314 static int syndbg_set_msr(struct kvm_vcpu *vcpu, u32 msr, u64 data, bool host)
315 {
316 	struct kvm_hv_syndbg *syndbg = vcpu_to_hv_syndbg(vcpu);
317 
318 	if (!kvm_hv_is_syndbg_enabled(vcpu) && !host)
319 		return 1;
320 
321 	trace_kvm_hv_syndbg_set_msr(vcpu->vcpu_id,
322 				    vcpu_to_hv_vcpu(vcpu)->vp_index, msr, data);
323 	switch (msr) {
324 	case HV_X64_MSR_SYNDBG_CONTROL:
325 		syndbg->control.control = data;
326 		if (!host)
327 			syndbg_exit(vcpu, msr);
328 		break;
329 	case HV_X64_MSR_SYNDBG_STATUS:
330 		syndbg->control.status = data;
331 		break;
332 	case HV_X64_MSR_SYNDBG_SEND_BUFFER:
333 		syndbg->control.send_page = data;
334 		break;
335 	case HV_X64_MSR_SYNDBG_RECV_BUFFER:
336 		syndbg->control.recv_page = data;
337 		break;
338 	case HV_X64_MSR_SYNDBG_PENDING_BUFFER:
339 		syndbg->control.pending_page = data;
340 		if (!host)
341 			syndbg_exit(vcpu, msr);
342 		break;
343 	case HV_X64_MSR_SYNDBG_OPTIONS:
344 		syndbg->options = data;
345 		break;
346 	default:
347 		break;
348 	}
349 
350 	return 0;
351 }
352 
syndbg_get_msr(struct kvm_vcpu * vcpu,u32 msr,u64 * pdata,bool host)353 static int syndbg_get_msr(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata, bool host)
354 {
355 	struct kvm_hv_syndbg *syndbg = vcpu_to_hv_syndbg(vcpu);
356 
357 	if (!kvm_hv_is_syndbg_enabled(vcpu) && !host)
358 		return 1;
359 
360 	switch (msr) {
361 	case HV_X64_MSR_SYNDBG_CONTROL:
362 		*pdata = syndbg->control.control;
363 		break;
364 	case HV_X64_MSR_SYNDBG_STATUS:
365 		*pdata = syndbg->control.status;
366 		break;
367 	case HV_X64_MSR_SYNDBG_SEND_BUFFER:
368 		*pdata = syndbg->control.send_page;
369 		break;
370 	case HV_X64_MSR_SYNDBG_RECV_BUFFER:
371 		*pdata = syndbg->control.recv_page;
372 		break;
373 	case HV_X64_MSR_SYNDBG_PENDING_BUFFER:
374 		*pdata = syndbg->control.pending_page;
375 		break;
376 	case HV_X64_MSR_SYNDBG_OPTIONS:
377 		*pdata = syndbg->options;
378 		break;
379 	default:
380 		break;
381 	}
382 
383 	trace_kvm_hv_syndbg_get_msr(vcpu->vcpu_id,
384 				    vcpu_to_hv_vcpu(vcpu)->vp_index, msr,
385 				    *pdata);
386 
387 	return 0;
388 }
389 
synic_get_msr(struct kvm_vcpu_hv_synic * synic,u32 msr,u64 * pdata,bool host)390 static int synic_get_msr(struct kvm_vcpu_hv_synic *synic, u32 msr, u64 *pdata,
391 			 bool host)
392 {
393 	int ret;
394 
395 	if (!synic->active && !host)
396 		return 1;
397 
398 	ret = 0;
399 	switch (msr) {
400 	case HV_X64_MSR_SCONTROL:
401 		*pdata = synic->control;
402 		break;
403 	case HV_X64_MSR_SVERSION:
404 		*pdata = synic->version;
405 		break;
406 	case HV_X64_MSR_SIEFP:
407 		*pdata = synic->evt_page;
408 		break;
409 	case HV_X64_MSR_SIMP:
410 		*pdata = synic->msg_page;
411 		break;
412 	case HV_X64_MSR_EOM:
413 		*pdata = 0;
414 		break;
415 	case HV_X64_MSR_SINT0 ... HV_X64_MSR_SINT15:
416 		*pdata = atomic64_read(&synic->sint[msr - HV_X64_MSR_SINT0]);
417 		break;
418 	default:
419 		ret = 1;
420 		break;
421 	}
422 	return ret;
423 }
424 
synic_set_irq(struct kvm_vcpu_hv_synic * synic,u32 sint)425 static int synic_set_irq(struct kvm_vcpu_hv_synic *synic, u32 sint)
426 {
427 	struct kvm_vcpu *vcpu = synic_to_vcpu(synic);
428 	struct kvm_lapic_irq irq;
429 	int ret, vector;
430 
431 	if (KVM_BUG_ON(!lapic_in_kernel(vcpu), vcpu->kvm))
432 		return -EINVAL;
433 
434 	if (sint >= ARRAY_SIZE(synic->sint))
435 		return -EINVAL;
436 
437 	vector = synic_get_sint_vector(synic_read_sint(synic, sint));
438 	if (vector < 0)
439 		return -ENOENT;
440 
441 	memset(&irq, 0, sizeof(irq));
442 	irq.shorthand = APIC_DEST_SELF;
443 	irq.dest_mode = APIC_DEST_PHYSICAL;
444 	irq.delivery_mode = APIC_DM_FIXED;
445 	irq.vector = vector;
446 	irq.level = 1;
447 
448 	ret = kvm_irq_delivery_to_apic(vcpu->kvm, vcpu->arch.apic, &irq, NULL);
449 	trace_kvm_hv_synic_set_irq(vcpu->vcpu_id, sint, irq.vector, ret);
450 	return ret;
451 }
452 
kvm_hv_synic_set_irq(struct kvm * kvm,u32 vpidx,u32 sint)453 int kvm_hv_synic_set_irq(struct kvm *kvm, u32 vpidx, u32 sint)
454 {
455 	struct kvm_vcpu_hv_synic *synic;
456 
457 	synic = synic_get(kvm, vpidx);
458 	if (!synic)
459 		return -EINVAL;
460 
461 	return synic_set_irq(synic, sint);
462 }
463 
kvm_hv_synic_send_eoi(struct kvm_vcpu * vcpu,int vector)464 void kvm_hv_synic_send_eoi(struct kvm_vcpu *vcpu, int vector)
465 {
466 	struct kvm_vcpu_hv_synic *synic = vcpu_to_synic(vcpu);
467 	int i;
468 
469 	trace_kvm_hv_synic_send_eoi(vcpu->vcpu_id, vector);
470 
471 	for (i = 0; i < ARRAY_SIZE(synic->sint); i++)
472 		if (synic_get_sint_vector(synic_read_sint(synic, i)) == vector)
473 			kvm_hv_notify_acked_sint(vcpu, i);
474 }
475 
kvm_hv_set_sint_gsi(struct kvm * kvm,u32 vpidx,u32 sint,int gsi)476 static int kvm_hv_set_sint_gsi(struct kvm *kvm, u32 vpidx, u32 sint, int gsi)
477 {
478 	struct kvm_vcpu_hv_synic *synic;
479 
480 	synic = synic_get(kvm, vpidx);
481 	if (!synic)
482 		return -EINVAL;
483 
484 	if (sint >= ARRAY_SIZE(synic->sint_to_gsi))
485 		return -EINVAL;
486 
487 	atomic_set(&synic->sint_to_gsi[sint], gsi);
488 	return 0;
489 }
490 
kvm_hv_irq_routing_update(struct kvm * kvm)491 void kvm_hv_irq_routing_update(struct kvm *kvm)
492 {
493 	struct kvm_irq_routing_table *irq_rt;
494 	struct kvm_kernel_irq_routing_entry *e;
495 	u32 gsi;
496 
497 	irq_rt = srcu_dereference_check(kvm->irq_routing, &kvm->irq_srcu,
498 					lockdep_is_held(&kvm->irq_lock));
499 
500 	for (gsi = 0; gsi < irq_rt->nr_rt_entries; gsi++) {
501 		hlist_for_each_entry(e, &irq_rt->map[gsi], link) {
502 			if (e->type == KVM_IRQ_ROUTING_HV_SINT)
503 				kvm_hv_set_sint_gsi(kvm, e->hv_sint.vcpu,
504 						    e->hv_sint.sint, gsi);
505 		}
506 	}
507 }
508 
synic_init(struct kvm_vcpu_hv_synic * synic)509 static void synic_init(struct kvm_vcpu_hv_synic *synic)
510 {
511 	int i;
512 
513 	memset(synic, 0, sizeof(*synic));
514 	synic->version = HV_SYNIC_VERSION_1;
515 	for (i = 0; i < ARRAY_SIZE(synic->sint); i++) {
516 		atomic64_set(&synic->sint[i], HV_SYNIC_SINT_MASKED);
517 		atomic_set(&synic->sint_to_gsi[i], -1);
518 	}
519 }
520 
get_time_ref_counter(struct kvm * kvm)521 static u64 get_time_ref_counter(struct kvm *kvm)
522 {
523 	struct kvm_hv *hv = &kvm->arch.hyperv;
524 	struct kvm_vcpu *vcpu;
525 	u64 tsc;
526 
527 	/*
528 	 * The guest has not set up the TSC page or the clock isn't
529 	 * stable, fall back to get_kvmclock_ns.
530 	 */
531 	if (!hv->tsc_ref.tsc_sequence)
532 		return div_u64(get_kvmclock_ns(kvm), 100);
533 
534 	vcpu = kvm_get_vcpu(kvm, 0);
535 	tsc = kvm_read_l1_tsc(vcpu, rdtsc());
536 	return mul_u64_u64_shr(tsc, hv->tsc_ref.tsc_scale, 64)
537 		+ hv->tsc_ref.tsc_offset;
538 }
539 
stimer_mark_pending(struct kvm_vcpu_hv_stimer * stimer,bool vcpu_kick)540 static void stimer_mark_pending(struct kvm_vcpu_hv_stimer *stimer,
541 				bool vcpu_kick)
542 {
543 	struct kvm_vcpu *vcpu = stimer_to_vcpu(stimer);
544 
545 	set_bit(stimer->index,
546 		vcpu_to_hv_vcpu(vcpu)->stimer_pending_bitmap);
547 	kvm_make_request(KVM_REQ_HV_STIMER, vcpu);
548 	if (vcpu_kick)
549 		kvm_vcpu_kick(vcpu);
550 }
551 
stimer_cleanup(struct kvm_vcpu_hv_stimer * stimer)552 static void stimer_cleanup(struct kvm_vcpu_hv_stimer *stimer)
553 {
554 	struct kvm_vcpu *vcpu = stimer_to_vcpu(stimer);
555 
556 	trace_kvm_hv_stimer_cleanup(stimer_to_vcpu(stimer)->vcpu_id,
557 				    stimer->index);
558 
559 	hrtimer_cancel(&stimer->timer);
560 	clear_bit(stimer->index,
561 		  vcpu_to_hv_vcpu(vcpu)->stimer_pending_bitmap);
562 	stimer->msg_pending = false;
563 	stimer->exp_time = 0;
564 }
565 
stimer_timer_callback(struct hrtimer * timer)566 static enum hrtimer_restart stimer_timer_callback(struct hrtimer *timer)
567 {
568 	struct kvm_vcpu_hv_stimer *stimer;
569 
570 	stimer = container_of(timer, struct kvm_vcpu_hv_stimer, timer);
571 	trace_kvm_hv_stimer_callback(stimer_to_vcpu(stimer)->vcpu_id,
572 				     stimer->index);
573 	stimer_mark_pending(stimer, true);
574 
575 	return HRTIMER_NORESTART;
576 }
577 
578 /*
579  * stimer_start() assumptions:
580  * a) stimer->count is not equal to 0
581  * b) stimer->config has HV_STIMER_ENABLE flag
582  */
stimer_start(struct kvm_vcpu_hv_stimer * stimer)583 static int stimer_start(struct kvm_vcpu_hv_stimer *stimer)
584 {
585 	u64 time_now;
586 	ktime_t ktime_now;
587 
588 	time_now = get_time_ref_counter(stimer_to_vcpu(stimer)->kvm);
589 	ktime_now = ktime_get();
590 
591 	if (stimer->config.periodic) {
592 		if (stimer->exp_time) {
593 			if (time_now >= stimer->exp_time) {
594 				u64 remainder;
595 
596 				div64_u64_rem(time_now - stimer->exp_time,
597 					      stimer->count, &remainder);
598 				stimer->exp_time =
599 					time_now + (stimer->count - remainder);
600 			}
601 		} else
602 			stimer->exp_time = time_now + stimer->count;
603 
604 		trace_kvm_hv_stimer_start_periodic(
605 					stimer_to_vcpu(stimer)->vcpu_id,
606 					stimer->index,
607 					time_now, stimer->exp_time);
608 
609 		hrtimer_start(&stimer->timer,
610 			      ktime_add_ns(ktime_now,
611 					   100 * (stimer->exp_time - time_now)),
612 			      HRTIMER_MODE_ABS);
613 		return 0;
614 	}
615 	stimer->exp_time = stimer->count;
616 	if (time_now >= stimer->count) {
617 		/*
618 		 * Expire timer according to Hypervisor Top-Level Functional
619 		 * specification v4(15.3.1):
620 		 * "If a one shot is enabled and the specified count is in
621 		 * the past, it will expire immediately."
622 		 */
623 		stimer_mark_pending(stimer, false);
624 		return 0;
625 	}
626 
627 	trace_kvm_hv_stimer_start_one_shot(stimer_to_vcpu(stimer)->vcpu_id,
628 					   stimer->index,
629 					   time_now, stimer->count);
630 
631 	hrtimer_start(&stimer->timer,
632 		      ktime_add_ns(ktime_now, 100 * (stimer->count - time_now)),
633 		      HRTIMER_MODE_ABS);
634 	return 0;
635 }
636 
stimer_set_config(struct kvm_vcpu_hv_stimer * stimer,u64 config,bool host)637 static int stimer_set_config(struct kvm_vcpu_hv_stimer *stimer, u64 config,
638 			     bool host)
639 {
640 	union hv_stimer_config new_config = {.as_uint64 = config},
641 		old_config = {.as_uint64 = stimer->config.as_uint64};
642 	struct kvm_vcpu *vcpu = stimer_to_vcpu(stimer);
643 	struct kvm_vcpu_hv_synic *synic = vcpu_to_synic(vcpu);
644 
645 	if (!synic->active && (!host || config))
646 		return 1;
647 
648 	trace_kvm_hv_stimer_set_config(stimer_to_vcpu(stimer)->vcpu_id,
649 				       stimer->index, config, host);
650 
651 	stimer_cleanup(stimer);
652 	if (old_config.enable &&
653 	    !new_config.direct_mode && new_config.sintx == 0)
654 		new_config.enable = 0;
655 	stimer->config.as_uint64 = new_config.as_uint64;
656 
657 	if (stimer->config.enable)
658 		stimer_mark_pending(stimer, false);
659 
660 	return 0;
661 }
662 
stimer_set_count(struct kvm_vcpu_hv_stimer * stimer,u64 count,bool host)663 static int stimer_set_count(struct kvm_vcpu_hv_stimer *stimer, u64 count,
664 			    bool host)
665 {
666 	struct kvm_vcpu *vcpu = stimer_to_vcpu(stimer);
667 	struct kvm_vcpu_hv_synic *synic = vcpu_to_synic(vcpu);
668 
669 	if (!synic->active && (!host || count))
670 		return 1;
671 
672 	trace_kvm_hv_stimer_set_count(stimer_to_vcpu(stimer)->vcpu_id,
673 				      stimer->index, count, host);
674 
675 	stimer_cleanup(stimer);
676 	stimer->count = count;
677 	if (stimer->count == 0)
678 		stimer->config.enable = 0;
679 	else if (stimer->config.auto_enable)
680 		stimer->config.enable = 1;
681 
682 	if (stimer->config.enable)
683 		stimer_mark_pending(stimer, false);
684 
685 	return 0;
686 }
687 
stimer_get_config(struct kvm_vcpu_hv_stimer * stimer,u64 * pconfig)688 static int stimer_get_config(struct kvm_vcpu_hv_stimer *stimer, u64 *pconfig)
689 {
690 	*pconfig = stimer->config.as_uint64;
691 	return 0;
692 }
693 
stimer_get_count(struct kvm_vcpu_hv_stimer * stimer,u64 * pcount)694 static int stimer_get_count(struct kvm_vcpu_hv_stimer *stimer, u64 *pcount)
695 {
696 	*pcount = stimer->count;
697 	return 0;
698 }
699 
synic_deliver_msg(struct kvm_vcpu_hv_synic * synic,u32 sint,struct hv_message * src_msg,bool no_retry)700 static int synic_deliver_msg(struct kvm_vcpu_hv_synic *synic, u32 sint,
701 			     struct hv_message *src_msg, bool no_retry)
702 {
703 	struct kvm_vcpu *vcpu = synic_to_vcpu(synic);
704 	int msg_off = offsetof(struct hv_message_page, sint_message[sint]);
705 	gfn_t msg_page_gfn;
706 	struct hv_message_header hv_hdr;
707 	int r;
708 
709 	if (!(synic->msg_page & HV_SYNIC_SIMP_ENABLE))
710 		return -ENOENT;
711 
712 	msg_page_gfn = synic->msg_page >> PAGE_SHIFT;
713 
714 	/*
715 	 * Strictly following the spec-mandated ordering would assume setting
716 	 * .msg_pending before checking .message_type.  However, this function
717 	 * is only called in vcpu context so the entire update is atomic from
718 	 * guest POV and thus the exact order here doesn't matter.
719 	 */
720 	r = kvm_vcpu_read_guest_page(vcpu, msg_page_gfn, &hv_hdr.message_type,
721 				     msg_off + offsetof(struct hv_message,
722 							header.message_type),
723 				     sizeof(hv_hdr.message_type));
724 	if (r < 0)
725 		return r;
726 
727 	if (hv_hdr.message_type != HVMSG_NONE) {
728 		if (no_retry)
729 			return 0;
730 
731 		hv_hdr.message_flags.msg_pending = 1;
732 		r = kvm_vcpu_write_guest_page(vcpu, msg_page_gfn,
733 					      &hv_hdr.message_flags,
734 					      msg_off +
735 					      offsetof(struct hv_message,
736 						       header.message_flags),
737 					      sizeof(hv_hdr.message_flags));
738 		if (r < 0)
739 			return r;
740 		return -EAGAIN;
741 	}
742 
743 	r = kvm_vcpu_write_guest_page(vcpu, msg_page_gfn, src_msg, msg_off,
744 				      sizeof(src_msg->header) +
745 				      src_msg->header.payload_size);
746 	if (r < 0)
747 		return r;
748 
749 	r = synic_set_irq(synic, sint);
750 	if (r < 0)
751 		return r;
752 	if (r == 0)
753 		return -EFAULT;
754 	return 0;
755 }
756 
stimer_send_msg(struct kvm_vcpu_hv_stimer * stimer)757 static int stimer_send_msg(struct kvm_vcpu_hv_stimer *stimer)
758 {
759 	struct kvm_vcpu *vcpu = stimer_to_vcpu(stimer);
760 	struct hv_message *msg = &stimer->msg;
761 	struct hv_timer_message_payload *payload =
762 			(struct hv_timer_message_payload *)&msg->u.payload;
763 
764 	/*
765 	 * To avoid piling up periodic ticks, don't retry message
766 	 * delivery for them (within "lazy" lost ticks policy).
767 	 */
768 	bool no_retry = stimer->config.periodic;
769 
770 	payload->expiration_time = stimer->exp_time;
771 	payload->delivery_time = get_time_ref_counter(vcpu->kvm);
772 	return synic_deliver_msg(vcpu_to_synic(vcpu),
773 				 stimer->config.sintx, msg,
774 				 no_retry);
775 }
776 
stimer_notify_direct(struct kvm_vcpu_hv_stimer * stimer)777 static int stimer_notify_direct(struct kvm_vcpu_hv_stimer *stimer)
778 {
779 	struct kvm_vcpu *vcpu = stimer_to_vcpu(stimer);
780 	struct kvm_lapic_irq irq = {
781 		.delivery_mode = APIC_DM_FIXED,
782 		.vector = stimer->config.apic_vector
783 	};
784 
785 	if (lapic_in_kernel(vcpu))
786 		return !kvm_apic_set_irq(vcpu, &irq, NULL);
787 	return 0;
788 }
789 
stimer_expiration(struct kvm_vcpu_hv_stimer * stimer)790 static void stimer_expiration(struct kvm_vcpu_hv_stimer *stimer)
791 {
792 	int r, direct = stimer->config.direct_mode;
793 
794 	stimer->msg_pending = true;
795 	if (!direct)
796 		r = stimer_send_msg(stimer);
797 	else
798 		r = stimer_notify_direct(stimer);
799 	trace_kvm_hv_stimer_expiration(stimer_to_vcpu(stimer)->vcpu_id,
800 				       stimer->index, direct, r);
801 	if (!r) {
802 		stimer->msg_pending = false;
803 		if (!(stimer->config.periodic))
804 			stimer->config.enable = 0;
805 	}
806 }
807 
kvm_hv_process_stimers(struct kvm_vcpu * vcpu)808 void kvm_hv_process_stimers(struct kvm_vcpu *vcpu)
809 {
810 	struct kvm_vcpu_hv *hv_vcpu = vcpu_to_hv_vcpu(vcpu);
811 	struct kvm_vcpu_hv_stimer *stimer;
812 	u64 time_now, exp_time;
813 	int i;
814 
815 	for (i = 0; i < ARRAY_SIZE(hv_vcpu->stimer); i++)
816 		if (test_and_clear_bit(i, hv_vcpu->stimer_pending_bitmap)) {
817 			stimer = &hv_vcpu->stimer[i];
818 			if (stimer->config.enable) {
819 				exp_time = stimer->exp_time;
820 
821 				if (exp_time) {
822 					time_now =
823 						get_time_ref_counter(vcpu->kvm);
824 					if (time_now >= exp_time)
825 						stimer_expiration(stimer);
826 				}
827 
828 				if ((stimer->config.enable) &&
829 				    stimer->count) {
830 					if (!stimer->msg_pending)
831 						stimer_start(stimer);
832 				} else
833 					stimer_cleanup(stimer);
834 			}
835 		}
836 }
837 
kvm_hv_vcpu_uninit(struct kvm_vcpu * vcpu)838 void kvm_hv_vcpu_uninit(struct kvm_vcpu *vcpu)
839 {
840 	struct kvm_vcpu_hv *hv_vcpu = vcpu_to_hv_vcpu(vcpu);
841 	int i;
842 
843 	for (i = 0; i < ARRAY_SIZE(hv_vcpu->stimer); i++)
844 		stimer_cleanup(&hv_vcpu->stimer[i]);
845 }
846 
kvm_hv_assist_page_enabled(struct kvm_vcpu * vcpu)847 bool kvm_hv_assist_page_enabled(struct kvm_vcpu *vcpu)
848 {
849 	if (!(vcpu->arch.hyperv.hv_vapic & HV_X64_MSR_VP_ASSIST_PAGE_ENABLE))
850 		return false;
851 	return vcpu->arch.pv_eoi.msr_val & KVM_MSR_ENABLED;
852 }
853 EXPORT_SYMBOL_GPL(kvm_hv_assist_page_enabled);
854 
kvm_hv_get_assist_page(struct kvm_vcpu * vcpu,struct hv_vp_assist_page * assist_page)855 bool kvm_hv_get_assist_page(struct kvm_vcpu *vcpu,
856 			    struct hv_vp_assist_page *assist_page)
857 {
858 	if (!kvm_hv_assist_page_enabled(vcpu))
859 		return false;
860 	return !kvm_read_guest_cached(vcpu->kvm, &vcpu->arch.pv_eoi.data,
861 				      assist_page, sizeof(*assist_page));
862 }
863 EXPORT_SYMBOL_GPL(kvm_hv_get_assist_page);
864 
stimer_prepare_msg(struct kvm_vcpu_hv_stimer * stimer)865 static void stimer_prepare_msg(struct kvm_vcpu_hv_stimer *stimer)
866 {
867 	struct hv_message *msg = &stimer->msg;
868 	struct hv_timer_message_payload *payload =
869 			(struct hv_timer_message_payload *)&msg->u.payload;
870 
871 	memset(&msg->header, 0, sizeof(msg->header));
872 	msg->header.message_type = HVMSG_TIMER_EXPIRED;
873 	msg->header.payload_size = sizeof(*payload);
874 
875 	payload->timer_index = stimer->index;
876 	payload->expiration_time = 0;
877 	payload->delivery_time = 0;
878 }
879 
stimer_init(struct kvm_vcpu_hv_stimer * stimer,int timer_index)880 static void stimer_init(struct kvm_vcpu_hv_stimer *stimer, int timer_index)
881 {
882 	memset(stimer, 0, sizeof(*stimer));
883 	stimer->index = timer_index;
884 	hrtimer_init(&stimer->timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
885 	stimer->timer.function = stimer_timer_callback;
886 	stimer_prepare_msg(stimer);
887 }
888 
kvm_hv_vcpu_init(struct kvm_vcpu * vcpu)889 void kvm_hv_vcpu_init(struct kvm_vcpu *vcpu)
890 {
891 	struct kvm_vcpu_hv *hv_vcpu = vcpu_to_hv_vcpu(vcpu);
892 	int i;
893 
894 	synic_init(&hv_vcpu->synic);
895 
896 	bitmap_zero(hv_vcpu->stimer_pending_bitmap, HV_SYNIC_STIMER_COUNT);
897 	for (i = 0; i < ARRAY_SIZE(hv_vcpu->stimer); i++)
898 		stimer_init(&hv_vcpu->stimer[i], i);
899 }
900 
kvm_hv_vcpu_postcreate(struct kvm_vcpu * vcpu)901 void kvm_hv_vcpu_postcreate(struct kvm_vcpu *vcpu)
902 {
903 	struct kvm_vcpu_hv *hv_vcpu = vcpu_to_hv_vcpu(vcpu);
904 
905 	hv_vcpu->vp_index = kvm_vcpu_get_idx(vcpu);
906 }
907 
kvm_hv_activate_synic(struct kvm_vcpu * vcpu,bool dont_zero_synic_pages)908 int kvm_hv_activate_synic(struct kvm_vcpu *vcpu, bool dont_zero_synic_pages)
909 {
910 	struct kvm_vcpu_hv_synic *synic = vcpu_to_synic(vcpu);
911 
912 	/*
913 	 * Hyper-V SynIC auto EOI SINT's are
914 	 * not compatible with APICV, so request
915 	 * to deactivate APICV permanently.
916 	 */
917 	kvm_request_apicv_update(vcpu->kvm, false, APICV_INHIBIT_REASON_HYPERV);
918 	synic->active = true;
919 	synic->dont_zero_synic_pages = dont_zero_synic_pages;
920 	synic->control = HV_SYNIC_CONTROL_ENABLE;
921 	return 0;
922 }
923 
kvm_hv_msr_partition_wide(u32 msr)924 static bool kvm_hv_msr_partition_wide(u32 msr)
925 {
926 	bool r = false;
927 
928 	switch (msr) {
929 	case HV_X64_MSR_GUEST_OS_ID:
930 	case HV_X64_MSR_HYPERCALL:
931 	case HV_X64_MSR_REFERENCE_TSC:
932 	case HV_X64_MSR_TIME_REF_COUNT:
933 	case HV_X64_MSR_CRASH_CTL:
934 	case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
935 	case HV_X64_MSR_RESET:
936 	case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
937 	case HV_X64_MSR_TSC_EMULATION_CONTROL:
938 	case HV_X64_MSR_TSC_EMULATION_STATUS:
939 	case HV_X64_MSR_SYNDBG_OPTIONS:
940 	case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER:
941 		r = true;
942 		break;
943 	}
944 
945 	return r;
946 }
947 
kvm_hv_msr_get_crash_data(struct kvm_vcpu * vcpu,u32 index,u64 * pdata)948 static int kvm_hv_msr_get_crash_data(struct kvm_vcpu *vcpu,
949 				     u32 index, u64 *pdata)
950 {
951 	struct kvm_hv *hv = &vcpu->kvm->arch.hyperv;
952 	size_t size = ARRAY_SIZE(hv->hv_crash_param);
953 
954 	if (WARN_ON_ONCE(index >= size))
955 		return -EINVAL;
956 
957 	*pdata = hv->hv_crash_param[array_index_nospec(index, size)];
958 	return 0;
959 }
960 
kvm_hv_msr_get_crash_ctl(struct kvm_vcpu * vcpu,u64 * pdata)961 static int kvm_hv_msr_get_crash_ctl(struct kvm_vcpu *vcpu, u64 *pdata)
962 {
963 	struct kvm_hv *hv = &vcpu->kvm->arch.hyperv;
964 
965 	*pdata = hv->hv_crash_ctl;
966 	return 0;
967 }
968 
kvm_hv_msr_set_crash_ctl(struct kvm_vcpu * vcpu,u64 data,bool host)969 static int kvm_hv_msr_set_crash_ctl(struct kvm_vcpu *vcpu, u64 data, bool host)
970 {
971 	struct kvm_hv *hv = &vcpu->kvm->arch.hyperv;
972 
973 	if (host)
974 		hv->hv_crash_ctl = data & HV_CRASH_CTL_CRASH_NOTIFY;
975 
976 	if (!host && (data & HV_CRASH_CTL_CRASH_NOTIFY)) {
977 
978 		vcpu_debug(vcpu, "hv crash (0x%llx 0x%llx 0x%llx 0x%llx 0x%llx)\n",
979 			  hv->hv_crash_param[0],
980 			  hv->hv_crash_param[1],
981 			  hv->hv_crash_param[2],
982 			  hv->hv_crash_param[3],
983 			  hv->hv_crash_param[4]);
984 
985 		/* Send notification about crash to user space */
986 		kvm_make_request(KVM_REQ_HV_CRASH, vcpu);
987 	}
988 
989 	return 0;
990 }
991 
kvm_hv_msr_set_crash_data(struct kvm_vcpu * vcpu,u32 index,u64 data)992 static int kvm_hv_msr_set_crash_data(struct kvm_vcpu *vcpu,
993 				     u32 index, u64 data)
994 {
995 	struct kvm_hv *hv = &vcpu->kvm->arch.hyperv;
996 	size_t size = ARRAY_SIZE(hv->hv_crash_param);
997 
998 	if (WARN_ON_ONCE(index >= size))
999 		return -EINVAL;
1000 
1001 	hv->hv_crash_param[array_index_nospec(index, size)] = data;
1002 	return 0;
1003 }
1004 
1005 /*
1006  * The kvmclock and Hyper-V TSC page use similar formulas, and converting
1007  * between them is possible:
1008  *
1009  * kvmclock formula:
1010  *    nsec = (ticks - tsc_timestamp) * tsc_to_system_mul * 2^(tsc_shift-32)
1011  *           + system_time
1012  *
1013  * Hyper-V formula:
1014  *    nsec/100 = ticks * scale / 2^64 + offset
1015  *
1016  * When tsc_timestamp = system_time = 0, offset is zero in the Hyper-V formula.
1017  * By dividing the kvmclock formula by 100 and equating what's left we get:
1018  *    ticks * scale / 2^64 = ticks * tsc_to_system_mul * 2^(tsc_shift-32) / 100
1019  *            scale / 2^64 =         tsc_to_system_mul * 2^(tsc_shift-32) / 100
1020  *            scale        =         tsc_to_system_mul * 2^(32+tsc_shift) / 100
1021  *
1022  * Now expand the kvmclock formula and divide by 100:
1023  *    nsec = ticks * tsc_to_system_mul * 2^(tsc_shift-32)
1024  *           - tsc_timestamp * tsc_to_system_mul * 2^(tsc_shift-32)
1025  *           + system_time
1026  *    nsec/100 = ticks * tsc_to_system_mul * 2^(tsc_shift-32) / 100
1027  *               - tsc_timestamp * tsc_to_system_mul * 2^(tsc_shift-32) / 100
1028  *               + system_time / 100
1029  *
1030  * Replace tsc_to_system_mul * 2^(tsc_shift-32) / 100 by scale / 2^64:
1031  *    nsec/100 = ticks * scale / 2^64
1032  *               - tsc_timestamp * scale / 2^64
1033  *               + system_time / 100
1034  *
1035  * Equate with the Hyper-V formula so that ticks * scale / 2^64 cancels out:
1036  *    offset = system_time / 100 - tsc_timestamp * scale / 2^64
1037  *
1038  * These two equivalencies are implemented in this function.
1039  */
compute_tsc_page_parameters(struct pvclock_vcpu_time_info * hv_clock,struct ms_hyperv_tsc_page * tsc_ref)1040 static bool compute_tsc_page_parameters(struct pvclock_vcpu_time_info *hv_clock,
1041 					struct ms_hyperv_tsc_page *tsc_ref)
1042 {
1043 	u64 max_mul;
1044 
1045 	if (!(hv_clock->flags & PVCLOCK_TSC_STABLE_BIT))
1046 		return false;
1047 
1048 	/*
1049 	 * check if scale would overflow, if so we use the time ref counter
1050 	 *    tsc_to_system_mul * 2^(tsc_shift+32) / 100 >= 2^64
1051 	 *    tsc_to_system_mul / 100 >= 2^(32-tsc_shift)
1052 	 *    tsc_to_system_mul >= 100 * 2^(32-tsc_shift)
1053 	 */
1054 	max_mul = 100ull << (32 - hv_clock->tsc_shift);
1055 	if (hv_clock->tsc_to_system_mul >= max_mul)
1056 		return false;
1057 
1058 	/*
1059 	 * Otherwise compute the scale and offset according to the formulas
1060 	 * derived above.
1061 	 */
1062 	tsc_ref->tsc_scale =
1063 		mul_u64_u32_div(1ULL << (32 + hv_clock->tsc_shift),
1064 				hv_clock->tsc_to_system_mul,
1065 				100);
1066 
1067 	tsc_ref->tsc_offset = hv_clock->system_time;
1068 	do_div(tsc_ref->tsc_offset, 100);
1069 	tsc_ref->tsc_offset -=
1070 		mul_u64_u64_shr(hv_clock->tsc_timestamp, tsc_ref->tsc_scale, 64);
1071 	return true;
1072 }
1073 
kvm_hv_setup_tsc_page(struct kvm * kvm,struct pvclock_vcpu_time_info * hv_clock)1074 void kvm_hv_setup_tsc_page(struct kvm *kvm,
1075 			   struct pvclock_vcpu_time_info *hv_clock)
1076 {
1077 	struct kvm_hv *hv = &kvm->arch.hyperv;
1078 	u32 tsc_seq;
1079 	u64 gfn;
1080 
1081 	BUILD_BUG_ON(sizeof(tsc_seq) != sizeof(hv->tsc_ref.tsc_sequence));
1082 	BUILD_BUG_ON(offsetof(struct ms_hyperv_tsc_page, tsc_sequence) != 0);
1083 
1084 	if (!(hv->hv_tsc_page & HV_X64_MSR_TSC_REFERENCE_ENABLE))
1085 		return;
1086 
1087 	mutex_lock(&kvm->arch.hyperv.hv_lock);
1088 	if (!(hv->hv_tsc_page & HV_X64_MSR_TSC_REFERENCE_ENABLE))
1089 		goto out_unlock;
1090 
1091 	gfn = hv->hv_tsc_page >> HV_X64_MSR_TSC_REFERENCE_ADDRESS_SHIFT;
1092 	/*
1093 	 * Because the TSC parameters only vary when there is a
1094 	 * change in the master clock, do not bother with caching.
1095 	 */
1096 	if (unlikely(kvm_read_guest(kvm, gfn_to_gpa(gfn),
1097 				    &tsc_seq, sizeof(tsc_seq))))
1098 		goto out_unlock;
1099 
1100 	/*
1101 	 * While we're computing and writing the parameters, force the
1102 	 * guest to use the time reference count MSR.
1103 	 */
1104 	hv->tsc_ref.tsc_sequence = 0;
1105 	if (kvm_write_guest(kvm, gfn_to_gpa(gfn),
1106 			    &hv->tsc_ref, sizeof(hv->tsc_ref.tsc_sequence)))
1107 		goto out_unlock;
1108 
1109 	if (!compute_tsc_page_parameters(hv_clock, &hv->tsc_ref))
1110 		goto out_unlock;
1111 
1112 	/* Ensure sequence is zero before writing the rest of the struct.  */
1113 	smp_wmb();
1114 	if (kvm_write_guest(kvm, gfn_to_gpa(gfn), &hv->tsc_ref, sizeof(hv->tsc_ref)))
1115 		goto out_unlock;
1116 
1117 	/*
1118 	 * Now switch to the TSC page mechanism by writing the sequence.
1119 	 */
1120 	tsc_seq++;
1121 	if (tsc_seq == 0xFFFFFFFF || tsc_seq == 0)
1122 		tsc_seq = 1;
1123 
1124 	/* Write the struct entirely before the non-zero sequence.  */
1125 	smp_wmb();
1126 
1127 	hv->tsc_ref.tsc_sequence = tsc_seq;
1128 	kvm_write_guest(kvm, gfn_to_gpa(gfn),
1129 			&hv->tsc_ref, sizeof(hv->tsc_ref.tsc_sequence));
1130 out_unlock:
1131 	mutex_unlock(&kvm->arch.hyperv.hv_lock);
1132 }
1133 
kvm_hv_set_msr_pw(struct kvm_vcpu * vcpu,u32 msr,u64 data,bool host)1134 static int kvm_hv_set_msr_pw(struct kvm_vcpu *vcpu, u32 msr, u64 data,
1135 			     bool host)
1136 {
1137 	struct kvm *kvm = vcpu->kvm;
1138 	struct kvm_hv *hv = &kvm->arch.hyperv;
1139 
1140 	switch (msr) {
1141 	case HV_X64_MSR_GUEST_OS_ID:
1142 		hv->hv_guest_os_id = data;
1143 		/* setting guest os id to zero disables hypercall page */
1144 		if (!hv->hv_guest_os_id)
1145 			hv->hv_hypercall &= ~HV_X64_MSR_HYPERCALL_ENABLE;
1146 		break;
1147 	case HV_X64_MSR_HYPERCALL: {
1148 		u64 gfn;
1149 		unsigned long addr;
1150 		u8 instructions[4];
1151 
1152 		/* if guest os id is not set hypercall should remain disabled */
1153 		if (!hv->hv_guest_os_id)
1154 			break;
1155 		if (!(data & HV_X64_MSR_HYPERCALL_ENABLE)) {
1156 			hv->hv_hypercall = data;
1157 			break;
1158 		}
1159 		gfn = data >> HV_X64_MSR_HYPERCALL_PAGE_ADDRESS_SHIFT;
1160 		addr = gfn_to_hva(kvm, gfn);
1161 		if (kvm_is_error_hva(addr))
1162 			return 1;
1163 		kvm_x86_ops.patch_hypercall(vcpu, instructions);
1164 		((unsigned char *)instructions)[3] = 0xc3; /* ret */
1165 		if (__copy_to_user((void __user *)addr, instructions, 4))
1166 			return 1;
1167 		hv->hv_hypercall = data;
1168 		mark_page_dirty(kvm, gfn);
1169 		break;
1170 	}
1171 	case HV_X64_MSR_REFERENCE_TSC:
1172 		hv->hv_tsc_page = data;
1173 		if (hv->hv_tsc_page & HV_X64_MSR_TSC_REFERENCE_ENABLE)
1174 			kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
1175 		break;
1176 	case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
1177 		return kvm_hv_msr_set_crash_data(vcpu,
1178 						 msr - HV_X64_MSR_CRASH_P0,
1179 						 data);
1180 	case HV_X64_MSR_CRASH_CTL:
1181 		return kvm_hv_msr_set_crash_ctl(vcpu, data, host);
1182 	case HV_X64_MSR_RESET:
1183 		if (data == 1) {
1184 			vcpu_debug(vcpu, "hyper-v reset requested\n");
1185 			kvm_make_request(KVM_REQ_HV_RESET, vcpu);
1186 		}
1187 		break;
1188 	case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
1189 		hv->hv_reenlightenment_control = data;
1190 		break;
1191 	case HV_X64_MSR_TSC_EMULATION_CONTROL:
1192 		hv->hv_tsc_emulation_control = data;
1193 		break;
1194 	case HV_X64_MSR_TSC_EMULATION_STATUS:
1195 		hv->hv_tsc_emulation_status = data;
1196 		break;
1197 	case HV_X64_MSR_TIME_REF_COUNT:
1198 		/* read-only, but still ignore it if host-initiated */
1199 		if (!host)
1200 			return 1;
1201 		break;
1202 	case HV_X64_MSR_SYNDBG_OPTIONS:
1203 	case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER:
1204 		return syndbg_set_msr(vcpu, msr, data, host);
1205 	default:
1206 		vcpu_unimpl(vcpu, "Hyper-V unhandled wrmsr: 0x%x data 0x%llx\n",
1207 			    msr, data);
1208 		return 1;
1209 	}
1210 	return 0;
1211 }
1212 
1213 /* Calculate cpu time spent by current task in 100ns units */
current_task_runtime_100ns(void)1214 static u64 current_task_runtime_100ns(void)
1215 {
1216 	u64 utime, stime;
1217 
1218 	task_cputime_adjusted(current, &utime, &stime);
1219 
1220 	return div_u64(utime + stime, 100);
1221 }
1222 
kvm_hv_set_msr(struct kvm_vcpu * vcpu,u32 msr,u64 data,bool host)1223 static int kvm_hv_set_msr(struct kvm_vcpu *vcpu, u32 msr, u64 data, bool host)
1224 {
1225 	struct kvm_vcpu_hv *hv_vcpu = &vcpu->arch.hyperv;
1226 
1227 	switch (msr) {
1228 	case HV_X64_MSR_VP_INDEX: {
1229 		struct kvm_hv *hv = &vcpu->kvm->arch.hyperv;
1230 		int vcpu_idx = kvm_vcpu_get_idx(vcpu);
1231 		u32 new_vp_index = (u32)data;
1232 
1233 		if (!host || new_vp_index >= KVM_MAX_VCPUS)
1234 			return 1;
1235 
1236 		if (new_vp_index == hv_vcpu->vp_index)
1237 			return 0;
1238 
1239 		/*
1240 		 * The VP index is initialized to vcpu_index by
1241 		 * kvm_hv_vcpu_postcreate so they initially match.  Now the
1242 		 * VP index is changing, adjust num_mismatched_vp_indexes if
1243 		 * it now matches or no longer matches vcpu_idx.
1244 		 */
1245 		if (hv_vcpu->vp_index == vcpu_idx)
1246 			atomic_inc(&hv->num_mismatched_vp_indexes);
1247 		else if (new_vp_index == vcpu_idx)
1248 			atomic_dec(&hv->num_mismatched_vp_indexes);
1249 
1250 		hv_vcpu->vp_index = new_vp_index;
1251 		break;
1252 	}
1253 	case HV_X64_MSR_VP_ASSIST_PAGE: {
1254 		u64 gfn;
1255 		unsigned long addr;
1256 
1257 		if (!(data & HV_X64_MSR_VP_ASSIST_PAGE_ENABLE)) {
1258 			hv_vcpu->hv_vapic = data;
1259 			if (kvm_lapic_enable_pv_eoi(vcpu, 0, 0))
1260 				return 1;
1261 			break;
1262 		}
1263 		gfn = data >> HV_X64_MSR_VP_ASSIST_PAGE_ADDRESS_SHIFT;
1264 		addr = kvm_vcpu_gfn_to_hva(vcpu, gfn);
1265 		if (kvm_is_error_hva(addr))
1266 			return 1;
1267 
1268 		/*
1269 		 * Clear apic_assist portion of struct hv_vp_assist_page
1270 		 * only, there can be valuable data in the rest which needs
1271 		 * to be preserved e.g. on migration.
1272 		 */
1273 		if (__put_user(0, (u32 __user *)addr))
1274 			return 1;
1275 		hv_vcpu->hv_vapic = data;
1276 		kvm_vcpu_mark_page_dirty(vcpu, gfn);
1277 		if (kvm_lapic_enable_pv_eoi(vcpu,
1278 					    gfn_to_gpa(gfn) | KVM_MSR_ENABLED,
1279 					    sizeof(struct hv_vp_assist_page)))
1280 			return 1;
1281 		break;
1282 	}
1283 	case HV_X64_MSR_EOI:
1284 		return kvm_hv_vapic_msr_write(vcpu, APIC_EOI, data);
1285 	case HV_X64_MSR_ICR:
1286 		return kvm_hv_vapic_msr_write(vcpu, APIC_ICR, data);
1287 	case HV_X64_MSR_TPR:
1288 		return kvm_hv_vapic_msr_write(vcpu, APIC_TASKPRI, data);
1289 	case HV_X64_MSR_VP_RUNTIME:
1290 		if (!host)
1291 			return 1;
1292 		hv_vcpu->runtime_offset = data - current_task_runtime_100ns();
1293 		break;
1294 	case HV_X64_MSR_SCONTROL:
1295 	case HV_X64_MSR_SVERSION:
1296 	case HV_X64_MSR_SIEFP:
1297 	case HV_X64_MSR_SIMP:
1298 	case HV_X64_MSR_EOM:
1299 	case HV_X64_MSR_SINT0 ... HV_X64_MSR_SINT15:
1300 		return synic_set_msr(vcpu_to_synic(vcpu), msr, data, host);
1301 	case HV_X64_MSR_STIMER0_CONFIG:
1302 	case HV_X64_MSR_STIMER1_CONFIG:
1303 	case HV_X64_MSR_STIMER2_CONFIG:
1304 	case HV_X64_MSR_STIMER3_CONFIG: {
1305 		int timer_index = (msr - HV_X64_MSR_STIMER0_CONFIG)/2;
1306 
1307 		return stimer_set_config(vcpu_to_stimer(vcpu, timer_index),
1308 					 data, host);
1309 	}
1310 	case HV_X64_MSR_STIMER0_COUNT:
1311 	case HV_X64_MSR_STIMER1_COUNT:
1312 	case HV_X64_MSR_STIMER2_COUNT:
1313 	case HV_X64_MSR_STIMER3_COUNT: {
1314 		int timer_index = (msr - HV_X64_MSR_STIMER0_COUNT)/2;
1315 
1316 		return stimer_set_count(vcpu_to_stimer(vcpu, timer_index),
1317 					data, host);
1318 	}
1319 	case HV_X64_MSR_TSC_FREQUENCY:
1320 	case HV_X64_MSR_APIC_FREQUENCY:
1321 		/* read-only, but still ignore it if host-initiated */
1322 		if (!host)
1323 			return 1;
1324 		break;
1325 	default:
1326 		vcpu_unimpl(vcpu, "Hyper-V unhandled wrmsr: 0x%x data 0x%llx\n",
1327 			    msr, data);
1328 		return 1;
1329 	}
1330 
1331 	return 0;
1332 }
1333 
kvm_hv_get_msr_pw(struct kvm_vcpu * vcpu,u32 msr,u64 * pdata,bool host)1334 static int kvm_hv_get_msr_pw(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata,
1335 			     bool host)
1336 {
1337 	u64 data = 0;
1338 	struct kvm *kvm = vcpu->kvm;
1339 	struct kvm_hv *hv = &kvm->arch.hyperv;
1340 
1341 	switch (msr) {
1342 	case HV_X64_MSR_GUEST_OS_ID:
1343 		data = hv->hv_guest_os_id;
1344 		break;
1345 	case HV_X64_MSR_HYPERCALL:
1346 		data = hv->hv_hypercall;
1347 		break;
1348 	case HV_X64_MSR_TIME_REF_COUNT:
1349 		data = get_time_ref_counter(kvm);
1350 		break;
1351 	case HV_X64_MSR_REFERENCE_TSC:
1352 		data = hv->hv_tsc_page;
1353 		break;
1354 	case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
1355 		return kvm_hv_msr_get_crash_data(vcpu,
1356 						 msr - HV_X64_MSR_CRASH_P0,
1357 						 pdata);
1358 	case HV_X64_MSR_CRASH_CTL:
1359 		return kvm_hv_msr_get_crash_ctl(vcpu, pdata);
1360 	case HV_X64_MSR_RESET:
1361 		data = 0;
1362 		break;
1363 	case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
1364 		data = hv->hv_reenlightenment_control;
1365 		break;
1366 	case HV_X64_MSR_TSC_EMULATION_CONTROL:
1367 		data = hv->hv_tsc_emulation_control;
1368 		break;
1369 	case HV_X64_MSR_TSC_EMULATION_STATUS:
1370 		data = hv->hv_tsc_emulation_status;
1371 		break;
1372 	case HV_X64_MSR_SYNDBG_OPTIONS:
1373 	case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER:
1374 		return syndbg_get_msr(vcpu, msr, pdata, host);
1375 	default:
1376 		vcpu_unimpl(vcpu, "Hyper-V unhandled rdmsr: 0x%x\n", msr);
1377 		return 1;
1378 	}
1379 
1380 	*pdata = data;
1381 	return 0;
1382 }
1383 
kvm_hv_get_msr(struct kvm_vcpu * vcpu,u32 msr,u64 * pdata,bool host)1384 static int kvm_hv_get_msr(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata,
1385 			  bool host)
1386 {
1387 	u64 data = 0;
1388 	struct kvm_vcpu_hv *hv_vcpu = &vcpu->arch.hyperv;
1389 
1390 	switch (msr) {
1391 	case HV_X64_MSR_VP_INDEX:
1392 		data = hv_vcpu->vp_index;
1393 		break;
1394 	case HV_X64_MSR_EOI:
1395 		return kvm_hv_vapic_msr_read(vcpu, APIC_EOI, pdata);
1396 	case HV_X64_MSR_ICR:
1397 		return kvm_hv_vapic_msr_read(vcpu, APIC_ICR, pdata);
1398 	case HV_X64_MSR_TPR:
1399 		return kvm_hv_vapic_msr_read(vcpu, APIC_TASKPRI, pdata);
1400 	case HV_X64_MSR_VP_ASSIST_PAGE:
1401 		data = hv_vcpu->hv_vapic;
1402 		break;
1403 	case HV_X64_MSR_VP_RUNTIME:
1404 		data = current_task_runtime_100ns() + hv_vcpu->runtime_offset;
1405 		break;
1406 	case HV_X64_MSR_SCONTROL:
1407 	case HV_X64_MSR_SVERSION:
1408 	case HV_X64_MSR_SIEFP:
1409 	case HV_X64_MSR_SIMP:
1410 	case HV_X64_MSR_EOM:
1411 	case HV_X64_MSR_SINT0 ... HV_X64_MSR_SINT15:
1412 		return synic_get_msr(vcpu_to_synic(vcpu), msr, pdata, host);
1413 	case HV_X64_MSR_STIMER0_CONFIG:
1414 	case HV_X64_MSR_STIMER1_CONFIG:
1415 	case HV_X64_MSR_STIMER2_CONFIG:
1416 	case HV_X64_MSR_STIMER3_CONFIG: {
1417 		int timer_index = (msr - HV_X64_MSR_STIMER0_CONFIG)/2;
1418 
1419 		return stimer_get_config(vcpu_to_stimer(vcpu, timer_index),
1420 					 pdata);
1421 	}
1422 	case HV_X64_MSR_STIMER0_COUNT:
1423 	case HV_X64_MSR_STIMER1_COUNT:
1424 	case HV_X64_MSR_STIMER2_COUNT:
1425 	case HV_X64_MSR_STIMER3_COUNT: {
1426 		int timer_index = (msr - HV_X64_MSR_STIMER0_COUNT)/2;
1427 
1428 		return stimer_get_count(vcpu_to_stimer(vcpu, timer_index),
1429 					pdata);
1430 	}
1431 	case HV_X64_MSR_TSC_FREQUENCY:
1432 		data = (u64)vcpu->arch.virtual_tsc_khz * 1000;
1433 		break;
1434 	case HV_X64_MSR_APIC_FREQUENCY:
1435 		data = APIC_BUS_FREQUENCY;
1436 		break;
1437 	default:
1438 		vcpu_unimpl(vcpu, "Hyper-V unhandled rdmsr: 0x%x\n", msr);
1439 		return 1;
1440 	}
1441 	*pdata = data;
1442 	return 0;
1443 }
1444 
kvm_hv_set_msr_common(struct kvm_vcpu * vcpu,u32 msr,u64 data,bool host)1445 int kvm_hv_set_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 data, bool host)
1446 {
1447 	if (kvm_hv_msr_partition_wide(msr)) {
1448 		int r;
1449 
1450 		mutex_lock(&vcpu->kvm->arch.hyperv.hv_lock);
1451 		r = kvm_hv_set_msr_pw(vcpu, msr, data, host);
1452 		mutex_unlock(&vcpu->kvm->arch.hyperv.hv_lock);
1453 		return r;
1454 	} else
1455 		return kvm_hv_set_msr(vcpu, msr, data, host);
1456 }
1457 
kvm_hv_get_msr_common(struct kvm_vcpu * vcpu,u32 msr,u64 * pdata,bool host)1458 int kvm_hv_get_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata, bool host)
1459 {
1460 	if (kvm_hv_msr_partition_wide(msr)) {
1461 		int r;
1462 
1463 		mutex_lock(&vcpu->kvm->arch.hyperv.hv_lock);
1464 		r = kvm_hv_get_msr_pw(vcpu, msr, pdata, host);
1465 		mutex_unlock(&vcpu->kvm->arch.hyperv.hv_lock);
1466 		return r;
1467 	} else
1468 		return kvm_hv_get_msr(vcpu, msr, pdata, host);
1469 }
1470 
sparse_set_to_vcpu_mask(struct kvm * kvm,u64 * sparse_banks,u64 valid_bank_mask,u64 * vp_bitmap,unsigned long * vcpu_bitmap)1471 static __always_inline unsigned long *sparse_set_to_vcpu_mask(
1472 	struct kvm *kvm, u64 *sparse_banks, u64 valid_bank_mask,
1473 	u64 *vp_bitmap, unsigned long *vcpu_bitmap)
1474 {
1475 	struct kvm_hv *hv = &kvm->arch.hyperv;
1476 	struct kvm_vcpu *vcpu;
1477 	int i, bank, sbank = 0;
1478 
1479 	memset(vp_bitmap, 0,
1480 	       KVM_HV_MAX_SPARSE_VCPU_SET_BITS * sizeof(*vp_bitmap));
1481 	for_each_set_bit(bank, (unsigned long *)&valid_bank_mask,
1482 			 KVM_HV_MAX_SPARSE_VCPU_SET_BITS)
1483 		vp_bitmap[bank] = sparse_banks[sbank++];
1484 
1485 	if (likely(!atomic_read(&hv->num_mismatched_vp_indexes))) {
1486 		/* for all vcpus vp_index == vcpu_idx */
1487 		return (unsigned long *)vp_bitmap;
1488 	}
1489 
1490 	bitmap_zero(vcpu_bitmap, KVM_MAX_VCPUS);
1491 	kvm_for_each_vcpu(i, vcpu, kvm) {
1492 		if (test_bit(vcpu_to_hv_vcpu(vcpu)->vp_index,
1493 			     (unsigned long *)vp_bitmap))
1494 			__set_bit(i, vcpu_bitmap);
1495 	}
1496 	return vcpu_bitmap;
1497 }
1498 
kvm_hv_flush_tlb(struct kvm_vcpu * current_vcpu,u64 ingpa,u16 rep_cnt,bool ex)1499 static u64 kvm_hv_flush_tlb(struct kvm_vcpu *current_vcpu, u64 ingpa,
1500 			    u16 rep_cnt, bool ex)
1501 {
1502 	struct kvm *kvm = current_vcpu->kvm;
1503 	struct kvm_vcpu_hv *hv_vcpu = &current_vcpu->arch.hyperv;
1504 	struct hv_tlb_flush_ex flush_ex;
1505 	struct hv_tlb_flush flush;
1506 	u64 vp_bitmap[KVM_HV_MAX_SPARSE_VCPU_SET_BITS];
1507 	DECLARE_BITMAP(vcpu_bitmap, KVM_MAX_VCPUS);
1508 	unsigned long *vcpu_mask;
1509 	u64 valid_bank_mask;
1510 	u64 sparse_banks[64];
1511 	int sparse_banks_len;
1512 	bool all_cpus;
1513 
1514 	if (!ex) {
1515 		if (unlikely(kvm_read_guest(kvm, ingpa, &flush, sizeof(flush))))
1516 			return HV_STATUS_INVALID_HYPERCALL_INPUT;
1517 
1518 		trace_kvm_hv_flush_tlb(flush.processor_mask,
1519 				       flush.address_space, flush.flags);
1520 
1521 		valid_bank_mask = BIT_ULL(0);
1522 		sparse_banks[0] = flush.processor_mask;
1523 
1524 		/*
1525 		 * Work around possible WS2012 bug: it sends hypercalls
1526 		 * with processor_mask = 0x0 and HV_FLUSH_ALL_PROCESSORS clear,
1527 		 * while also expecting us to flush something and crashing if
1528 		 * we don't. Let's treat processor_mask == 0 same as
1529 		 * HV_FLUSH_ALL_PROCESSORS.
1530 		 */
1531 		all_cpus = (flush.flags & HV_FLUSH_ALL_PROCESSORS) ||
1532 			flush.processor_mask == 0;
1533 	} else {
1534 		if (unlikely(kvm_read_guest(kvm, ingpa, &flush_ex,
1535 					    sizeof(flush_ex))))
1536 			return HV_STATUS_INVALID_HYPERCALL_INPUT;
1537 
1538 		trace_kvm_hv_flush_tlb_ex(flush_ex.hv_vp_set.valid_bank_mask,
1539 					  flush_ex.hv_vp_set.format,
1540 					  flush_ex.address_space,
1541 					  flush_ex.flags);
1542 
1543 		valid_bank_mask = flush_ex.hv_vp_set.valid_bank_mask;
1544 		all_cpus = flush_ex.hv_vp_set.format !=
1545 			HV_GENERIC_SET_SPARSE_4K;
1546 
1547 		sparse_banks_len =
1548 			bitmap_weight((unsigned long *)&valid_bank_mask, 64) *
1549 			sizeof(sparse_banks[0]);
1550 
1551 		if (!sparse_banks_len && !all_cpus)
1552 			goto ret_success;
1553 
1554 		if (!all_cpus &&
1555 		    kvm_read_guest(kvm,
1556 				   ingpa + offsetof(struct hv_tlb_flush_ex,
1557 						    hv_vp_set.bank_contents),
1558 				   sparse_banks,
1559 				   sparse_banks_len))
1560 			return HV_STATUS_INVALID_HYPERCALL_INPUT;
1561 	}
1562 
1563 	cpumask_clear(&hv_vcpu->tlb_flush);
1564 
1565 	vcpu_mask = all_cpus ? NULL :
1566 		sparse_set_to_vcpu_mask(kvm, sparse_banks, valid_bank_mask,
1567 					vp_bitmap, vcpu_bitmap);
1568 
1569 	/*
1570 	 * vcpu->arch.cr3 may not be up-to-date for running vCPUs so we can't
1571 	 * analyze it here, flush TLB regardless of the specified address space.
1572 	 */
1573 	kvm_make_vcpus_request_mask(kvm, KVM_REQ_TLB_FLUSH_GUEST,
1574 				    NULL, vcpu_mask, &hv_vcpu->tlb_flush);
1575 
1576 ret_success:
1577 	/* We always do full TLB flush, set rep_done = rep_cnt. */
1578 	return (u64)HV_STATUS_SUCCESS |
1579 		((u64)rep_cnt << HV_HYPERCALL_REP_COMP_OFFSET);
1580 }
1581 
kvm_send_ipi_to_many(struct kvm * kvm,u32 vector,unsigned long * vcpu_bitmap)1582 static void kvm_send_ipi_to_many(struct kvm *kvm, u32 vector,
1583 				 unsigned long *vcpu_bitmap)
1584 {
1585 	struct kvm_lapic_irq irq = {
1586 		.delivery_mode = APIC_DM_FIXED,
1587 		.vector = vector
1588 	};
1589 	struct kvm_vcpu *vcpu;
1590 	int i;
1591 
1592 	kvm_for_each_vcpu(i, vcpu, kvm) {
1593 		if (vcpu_bitmap && !test_bit(i, vcpu_bitmap))
1594 			continue;
1595 
1596 		/* We fail only when APIC is disabled */
1597 		kvm_apic_set_irq(vcpu, &irq, NULL);
1598 	}
1599 }
1600 
kvm_hv_send_ipi(struct kvm_vcpu * current_vcpu,u64 ingpa,u64 outgpa,bool ex,bool fast)1601 static u64 kvm_hv_send_ipi(struct kvm_vcpu *current_vcpu, u64 ingpa, u64 outgpa,
1602 			   bool ex, bool fast)
1603 {
1604 	struct kvm *kvm = current_vcpu->kvm;
1605 	struct hv_send_ipi_ex send_ipi_ex;
1606 	struct hv_send_ipi send_ipi;
1607 	u64 vp_bitmap[KVM_HV_MAX_SPARSE_VCPU_SET_BITS];
1608 	DECLARE_BITMAP(vcpu_bitmap, KVM_MAX_VCPUS);
1609 	unsigned long *vcpu_mask;
1610 	unsigned long valid_bank_mask;
1611 	u64 sparse_banks[64];
1612 	int sparse_banks_len;
1613 	u32 vector;
1614 	bool all_cpus;
1615 
1616 	if (!ex) {
1617 		if (!fast) {
1618 			if (unlikely(kvm_read_guest(kvm, ingpa, &send_ipi,
1619 						    sizeof(send_ipi))))
1620 				return HV_STATUS_INVALID_HYPERCALL_INPUT;
1621 			sparse_banks[0] = send_ipi.cpu_mask;
1622 			vector = send_ipi.vector;
1623 		} else {
1624 			/* 'reserved' part of hv_send_ipi should be 0 */
1625 			if (unlikely(ingpa >> 32 != 0))
1626 				return HV_STATUS_INVALID_HYPERCALL_INPUT;
1627 			sparse_banks[0] = outgpa;
1628 			vector = (u32)ingpa;
1629 		}
1630 		all_cpus = false;
1631 		valid_bank_mask = BIT_ULL(0);
1632 
1633 		trace_kvm_hv_send_ipi(vector, sparse_banks[0]);
1634 	} else {
1635 		if (unlikely(kvm_read_guest(kvm, ingpa, &send_ipi_ex,
1636 					    sizeof(send_ipi_ex))))
1637 			return HV_STATUS_INVALID_HYPERCALL_INPUT;
1638 
1639 		trace_kvm_hv_send_ipi_ex(send_ipi_ex.vector,
1640 					 send_ipi_ex.vp_set.format,
1641 					 send_ipi_ex.vp_set.valid_bank_mask);
1642 
1643 		vector = send_ipi_ex.vector;
1644 		valid_bank_mask = send_ipi_ex.vp_set.valid_bank_mask;
1645 		sparse_banks_len = bitmap_weight(&valid_bank_mask, 64) *
1646 			sizeof(sparse_banks[0]);
1647 
1648 		all_cpus = send_ipi_ex.vp_set.format == HV_GENERIC_SET_ALL;
1649 
1650 		if (all_cpus)
1651 			goto check_and_send_ipi;
1652 
1653 		if (!sparse_banks_len)
1654 			goto ret_success;
1655 
1656 		if (kvm_read_guest(kvm,
1657 				   ingpa + offsetof(struct hv_send_ipi_ex,
1658 						    vp_set.bank_contents),
1659 				   sparse_banks,
1660 				   sparse_banks_len))
1661 			return HV_STATUS_INVALID_HYPERCALL_INPUT;
1662 	}
1663 
1664 check_and_send_ipi:
1665 	if ((vector < HV_IPI_LOW_VECTOR) || (vector > HV_IPI_HIGH_VECTOR))
1666 		return HV_STATUS_INVALID_HYPERCALL_INPUT;
1667 
1668 	vcpu_mask = all_cpus ? NULL :
1669 		sparse_set_to_vcpu_mask(kvm, sparse_banks, valid_bank_mask,
1670 					vp_bitmap, vcpu_bitmap);
1671 
1672 	kvm_send_ipi_to_many(kvm, vector, vcpu_mask);
1673 
1674 ret_success:
1675 	return HV_STATUS_SUCCESS;
1676 }
1677 
kvm_hv_hypercall_enabled(struct kvm * kvm)1678 bool kvm_hv_hypercall_enabled(struct kvm *kvm)
1679 {
1680 	return READ_ONCE(kvm->arch.hyperv.hv_guest_os_id) != 0;
1681 }
1682 
kvm_hv_hypercall_set_result(struct kvm_vcpu * vcpu,u64 result)1683 static void kvm_hv_hypercall_set_result(struct kvm_vcpu *vcpu, u64 result)
1684 {
1685 	bool longmode;
1686 
1687 	longmode = is_64_bit_mode(vcpu);
1688 	if (longmode)
1689 		kvm_rax_write(vcpu, result);
1690 	else {
1691 		kvm_rdx_write(vcpu, result >> 32);
1692 		kvm_rax_write(vcpu, result & 0xffffffff);
1693 	}
1694 }
1695 
kvm_hv_hypercall_complete(struct kvm_vcpu * vcpu,u64 result)1696 static int kvm_hv_hypercall_complete(struct kvm_vcpu *vcpu, u64 result)
1697 {
1698 	kvm_hv_hypercall_set_result(vcpu, result);
1699 	++vcpu->stat.hypercalls;
1700 	return kvm_skip_emulated_instruction(vcpu);
1701 }
1702 
kvm_hv_hypercall_complete_userspace(struct kvm_vcpu * vcpu)1703 static int kvm_hv_hypercall_complete_userspace(struct kvm_vcpu *vcpu)
1704 {
1705 	return kvm_hv_hypercall_complete(vcpu, vcpu->run->hyperv.u.hcall.result);
1706 }
1707 
kvm_hvcall_signal_event(struct kvm_vcpu * vcpu,bool fast,u64 param)1708 static u16 kvm_hvcall_signal_event(struct kvm_vcpu *vcpu, bool fast, u64 param)
1709 {
1710 	struct eventfd_ctx *eventfd;
1711 
1712 	if (unlikely(!fast)) {
1713 		int ret;
1714 		gpa_t gpa = param;
1715 
1716 		if ((gpa & (__alignof__(param) - 1)) ||
1717 		    offset_in_page(gpa) + sizeof(param) > PAGE_SIZE)
1718 			return HV_STATUS_INVALID_ALIGNMENT;
1719 
1720 		ret = kvm_vcpu_read_guest(vcpu, gpa, &param, sizeof(param));
1721 		if (ret < 0)
1722 			return HV_STATUS_INVALID_ALIGNMENT;
1723 	}
1724 
1725 	/*
1726 	 * Per spec, bits 32-47 contain the extra "flag number".  However, we
1727 	 * have no use for it, and in all known usecases it is zero, so just
1728 	 * report lookup failure if it isn't.
1729 	 */
1730 	if (param & 0xffff00000000ULL)
1731 		return HV_STATUS_INVALID_PORT_ID;
1732 	/* remaining bits are reserved-zero */
1733 	if (param & ~KVM_HYPERV_CONN_ID_MASK)
1734 		return HV_STATUS_INVALID_HYPERCALL_INPUT;
1735 
1736 	/* the eventfd is protected by vcpu->kvm->srcu, but conn_to_evt isn't */
1737 	rcu_read_lock();
1738 	eventfd = idr_find(&vcpu->kvm->arch.hyperv.conn_to_evt, param);
1739 	rcu_read_unlock();
1740 	if (!eventfd)
1741 		return HV_STATUS_INVALID_PORT_ID;
1742 
1743 	eventfd_signal(eventfd, 1);
1744 	return HV_STATUS_SUCCESS;
1745 }
1746 
kvm_hv_hypercall(struct kvm_vcpu * vcpu)1747 int kvm_hv_hypercall(struct kvm_vcpu *vcpu)
1748 {
1749 	u64 param, ingpa, outgpa, ret = HV_STATUS_SUCCESS;
1750 	uint16_t code, rep_idx, rep_cnt;
1751 	bool fast, rep;
1752 
1753 	/*
1754 	 * hypercall generates UD from non zero cpl and real mode
1755 	 * per HYPER-V spec
1756 	 */
1757 	if (kvm_x86_ops.get_cpl(vcpu) != 0 || !is_protmode(vcpu)) {
1758 		kvm_queue_exception(vcpu, UD_VECTOR);
1759 		return 1;
1760 	}
1761 
1762 #ifdef CONFIG_X86_64
1763 	if (is_64_bit_mode(vcpu)) {
1764 		param = kvm_rcx_read(vcpu);
1765 		ingpa = kvm_rdx_read(vcpu);
1766 		outgpa = kvm_r8_read(vcpu);
1767 	} else
1768 #endif
1769 	{
1770 		param = ((u64)kvm_rdx_read(vcpu) << 32) |
1771 			(kvm_rax_read(vcpu) & 0xffffffff);
1772 		ingpa = ((u64)kvm_rbx_read(vcpu) << 32) |
1773 			(kvm_rcx_read(vcpu) & 0xffffffff);
1774 		outgpa = ((u64)kvm_rdi_read(vcpu) << 32) |
1775 			(kvm_rsi_read(vcpu) & 0xffffffff);
1776 	}
1777 
1778 	code = param & 0xffff;
1779 	fast = !!(param & HV_HYPERCALL_FAST_BIT);
1780 	rep_cnt = (param >> HV_HYPERCALL_REP_COMP_OFFSET) & 0xfff;
1781 	rep_idx = (param >> HV_HYPERCALL_REP_START_OFFSET) & 0xfff;
1782 	rep = !!(rep_cnt || rep_idx);
1783 
1784 	trace_kvm_hv_hypercall(code, fast, rep_cnt, rep_idx, ingpa, outgpa);
1785 
1786 	switch (code) {
1787 	case HVCALL_NOTIFY_LONG_SPIN_WAIT:
1788 		if (unlikely(rep)) {
1789 			ret = HV_STATUS_INVALID_HYPERCALL_INPUT;
1790 			break;
1791 		}
1792 		kvm_vcpu_on_spin(vcpu, true);
1793 		break;
1794 	case HVCALL_SIGNAL_EVENT:
1795 		if (unlikely(rep)) {
1796 			ret = HV_STATUS_INVALID_HYPERCALL_INPUT;
1797 			break;
1798 		}
1799 		ret = kvm_hvcall_signal_event(vcpu, fast, ingpa);
1800 		if (ret != HV_STATUS_INVALID_PORT_ID)
1801 			break;
1802 		fallthrough;	/* maybe userspace knows this conn_id */
1803 	case HVCALL_POST_MESSAGE:
1804 		/* don't bother userspace if it has no way to handle it */
1805 		if (unlikely(rep || !vcpu_to_synic(vcpu)->active)) {
1806 			ret = HV_STATUS_INVALID_HYPERCALL_INPUT;
1807 			break;
1808 		}
1809 		vcpu->run->exit_reason = KVM_EXIT_HYPERV;
1810 		vcpu->run->hyperv.type = KVM_EXIT_HYPERV_HCALL;
1811 		vcpu->run->hyperv.u.hcall.input = param;
1812 		vcpu->run->hyperv.u.hcall.params[0] = ingpa;
1813 		vcpu->run->hyperv.u.hcall.params[1] = outgpa;
1814 		vcpu->arch.complete_userspace_io =
1815 				kvm_hv_hypercall_complete_userspace;
1816 		return 0;
1817 	case HVCALL_FLUSH_VIRTUAL_ADDRESS_LIST:
1818 		if (unlikely(fast || !rep_cnt || rep_idx)) {
1819 			ret = HV_STATUS_INVALID_HYPERCALL_INPUT;
1820 			break;
1821 		}
1822 		ret = kvm_hv_flush_tlb(vcpu, ingpa, rep_cnt, false);
1823 		break;
1824 	case HVCALL_FLUSH_VIRTUAL_ADDRESS_SPACE:
1825 		if (unlikely(fast || rep)) {
1826 			ret = HV_STATUS_INVALID_HYPERCALL_INPUT;
1827 			break;
1828 		}
1829 		ret = kvm_hv_flush_tlb(vcpu, ingpa, rep_cnt, false);
1830 		break;
1831 	case HVCALL_FLUSH_VIRTUAL_ADDRESS_LIST_EX:
1832 		if (unlikely(fast || !rep_cnt || rep_idx)) {
1833 			ret = HV_STATUS_INVALID_HYPERCALL_INPUT;
1834 			break;
1835 		}
1836 		ret = kvm_hv_flush_tlb(vcpu, ingpa, rep_cnt, true);
1837 		break;
1838 	case HVCALL_FLUSH_VIRTUAL_ADDRESS_SPACE_EX:
1839 		if (unlikely(fast || rep)) {
1840 			ret = HV_STATUS_INVALID_HYPERCALL_INPUT;
1841 			break;
1842 		}
1843 		ret = kvm_hv_flush_tlb(vcpu, ingpa, rep_cnt, true);
1844 		break;
1845 	case HVCALL_SEND_IPI:
1846 		if (unlikely(rep)) {
1847 			ret = HV_STATUS_INVALID_HYPERCALL_INPUT;
1848 			break;
1849 		}
1850 		ret = kvm_hv_send_ipi(vcpu, ingpa, outgpa, false, fast);
1851 		break;
1852 	case HVCALL_SEND_IPI_EX:
1853 		if (unlikely(fast || rep)) {
1854 			ret = HV_STATUS_INVALID_HYPERCALL_INPUT;
1855 			break;
1856 		}
1857 		ret = kvm_hv_send_ipi(vcpu, ingpa, outgpa, true, false);
1858 		break;
1859 	case HVCALL_POST_DEBUG_DATA:
1860 	case HVCALL_RETRIEVE_DEBUG_DATA:
1861 		if (unlikely(fast)) {
1862 			ret = HV_STATUS_INVALID_PARAMETER;
1863 			break;
1864 		}
1865 		fallthrough;
1866 	case HVCALL_RESET_DEBUG_SESSION: {
1867 		struct kvm_hv_syndbg *syndbg = vcpu_to_hv_syndbg(vcpu);
1868 
1869 		if (!kvm_hv_is_syndbg_enabled(vcpu)) {
1870 			ret = HV_STATUS_INVALID_HYPERCALL_CODE;
1871 			break;
1872 		}
1873 
1874 		if (!(syndbg->options & HV_X64_SYNDBG_OPTION_USE_HCALLS)) {
1875 			ret = HV_STATUS_OPERATION_DENIED;
1876 			break;
1877 		}
1878 		vcpu->run->exit_reason = KVM_EXIT_HYPERV;
1879 		vcpu->run->hyperv.type = KVM_EXIT_HYPERV_HCALL;
1880 		vcpu->run->hyperv.u.hcall.input = param;
1881 		vcpu->run->hyperv.u.hcall.params[0] = ingpa;
1882 		vcpu->run->hyperv.u.hcall.params[1] = outgpa;
1883 		vcpu->arch.complete_userspace_io =
1884 				kvm_hv_hypercall_complete_userspace;
1885 		return 0;
1886 	}
1887 	default:
1888 		ret = HV_STATUS_INVALID_HYPERCALL_CODE;
1889 		break;
1890 	}
1891 
1892 	return kvm_hv_hypercall_complete(vcpu, ret);
1893 }
1894 
kvm_hv_init_vm(struct kvm * kvm)1895 void kvm_hv_init_vm(struct kvm *kvm)
1896 {
1897 	mutex_init(&kvm->arch.hyperv.hv_lock);
1898 	idr_init(&kvm->arch.hyperv.conn_to_evt);
1899 }
1900 
kvm_hv_destroy_vm(struct kvm * kvm)1901 void kvm_hv_destroy_vm(struct kvm *kvm)
1902 {
1903 	struct eventfd_ctx *eventfd;
1904 	int i;
1905 
1906 	idr_for_each_entry(&kvm->arch.hyperv.conn_to_evt, eventfd, i)
1907 		eventfd_ctx_put(eventfd);
1908 	idr_destroy(&kvm->arch.hyperv.conn_to_evt);
1909 }
1910 
kvm_hv_eventfd_assign(struct kvm * kvm,u32 conn_id,int fd)1911 static int kvm_hv_eventfd_assign(struct kvm *kvm, u32 conn_id, int fd)
1912 {
1913 	struct kvm_hv *hv = &kvm->arch.hyperv;
1914 	struct eventfd_ctx *eventfd;
1915 	int ret;
1916 
1917 	eventfd = eventfd_ctx_fdget(fd);
1918 	if (IS_ERR(eventfd))
1919 		return PTR_ERR(eventfd);
1920 
1921 	mutex_lock(&hv->hv_lock);
1922 	ret = idr_alloc(&hv->conn_to_evt, eventfd, conn_id, conn_id + 1,
1923 			GFP_KERNEL_ACCOUNT);
1924 	mutex_unlock(&hv->hv_lock);
1925 
1926 	if (ret >= 0)
1927 		return 0;
1928 
1929 	if (ret == -ENOSPC)
1930 		ret = -EEXIST;
1931 	eventfd_ctx_put(eventfd);
1932 	return ret;
1933 }
1934 
kvm_hv_eventfd_deassign(struct kvm * kvm,u32 conn_id)1935 static int kvm_hv_eventfd_deassign(struct kvm *kvm, u32 conn_id)
1936 {
1937 	struct kvm_hv *hv = &kvm->arch.hyperv;
1938 	struct eventfd_ctx *eventfd;
1939 
1940 	mutex_lock(&hv->hv_lock);
1941 	eventfd = idr_remove(&hv->conn_to_evt, conn_id);
1942 	mutex_unlock(&hv->hv_lock);
1943 
1944 	if (!eventfd)
1945 		return -ENOENT;
1946 
1947 	synchronize_srcu(&kvm->srcu);
1948 	eventfd_ctx_put(eventfd);
1949 	return 0;
1950 }
1951 
kvm_vm_ioctl_hv_eventfd(struct kvm * kvm,struct kvm_hyperv_eventfd * args)1952 int kvm_vm_ioctl_hv_eventfd(struct kvm *kvm, struct kvm_hyperv_eventfd *args)
1953 {
1954 	if ((args->flags & ~KVM_HYPERV_EVENTFD_DEASSIGN) ||
1955 	    (args->conn_id & ~KVM_HYPERV_CONN_ID_MASK))
1956 		return -EINVAL;
1957 
1958 	if (args->flags == KVM_HYPERV_EVENTFD_DEASSIGN)
1959 		return kvm_hv_eventfd_deassign(kvm, args->conn_id);
1960 	return kvm_hv_eventfd_assign(kvm, args->conn_id, args->fd);
1961 }
1962 
kvm_vcpu_ioctl_get_hv_cpuid(struct kvm_vcpu * vcpu,struct kvm_cpuid2 * cpuid,struct kvm_cpuid_entry2 __user * entries)1963 int kvm_vcpu_ioctl_get_hv_cpuid(struct kvm_vcpu *vcpu, struct kvm_cpuid2 *cpuid,
1964 				struct kvm_cpuid_entry2 __user *entries)
1965 {
1966 	uint16_t evmcs_ver = 0;
1967 	struct kvm_cpuid_entry2 cpuid_entries[] = {
1968 		{ .function = HYPERV_CPUID_VENDOR_AND_MAX_FUNCTIONS },
1969 		{ .function = HYPERV_CPUID_INTERFACE },
1970 		{ .function = HYPERV_CPUID_VERSION },
1971 		{ .function = HYPERV_CPUID_FEATURES },
1972 		{ .function = HYPERV_CPUID_ENLIGHTMENT_INFO },
1973 		{ .function = HYPERV_CPUID_IMPLEMENT_LIMITS },
1974 		{ .function = HYPERV_CPUID_SYNDBG_VENDOR_AND_MAX_FUNCTIONS },
1975 		{ .function = HYPERV_CPUID_SYNDBG_INTERFACE },
1976 		{ .function = HYPERV_CPUID_SYNDBG_PLATFORM_CAPABILITIES	},
1977 		{ .function = HYPERV_CPUID_NESTED_FEATURES },
1978 	};
1979 	int i, nent = ARRAY_SIZE(cpuid_entries);
1980 
1981 	if (kvm_x86_ops.nested_ops->get_evmcs_version)
1982 		evmcs_ver = kvm_x86_ops.nested_ops->get_evmcs_version(vcpu);
1983 
1984 	/* Skip NESTED_FEATURES if eVMCS is not supported */
1985 	if (!evmcs_ver)
1986 		--nent;
1987 
1988 	if (cpuid->nent < nent)
1989 		return -E2BIG;
1990 
1991 	if (cpuid->nent > nent)
1992 		cpuid->nent = nent;
1993 
1994 	for (i = 0; i < nent; i++) {
1995 		struct kvm_cpuid_entry2 *ent = &cpuid_entries[i];
1996 		u32 signature[3];
1997 
1998 		switch (ent->function) {
1999 		case HYPERV_CPUID_VENDOR_AND_MAX_FUNCTIONS:
2000 			memcpy(signature, "Linux KVM Hv", 12);
2001 
2002 			ent->eax = HYPERV_CPUID_SYNDBG_PLATFORM_CAPABILITIES;
2003 			ent->ebx = signature[0];
2004 			ent->ecx = signature[1];
2005 			ent->edx = signature[2];
2006 			break;
2007 
2008 		case HYPERV_CPUID_INTERFACE:
2009 			memcpy(signature, "Hv#1\0\0\0\0\0\0\0\0", 12);
2010 			ent->eax = signature[0];
2011 			break;
2012 
2013 		case HYPERV_CPUID_VERSION:
2014 			/*
2015 			 * We implement some Hyper-V 2016 functions so let's use
2016 			 * this version.
2017 			 */
2018 			ent->eax = 0x00003839;
2019 			ent->ebx = 0x000A0000;
2020 			break;
2021 
2022 		case HYPERV_CPUID_FEATURES:
2023 			ent->eax |= HV_MSR_VP_RUNTIME_AVAILABLE;
2024 			ent->eax |= HV_MSR_TIME_REF_COUNT_AVAILABLE;
2025 			ent->eax |= HV_MSR_SYNIC_AVAILABLE;
2026 			ent->eax |= HV_MSR_SYNTIMER_AVAILABLE;
2027 			ent->eax |= HV_MSR_APIC_ACCESS_AVAILABLE;
2028 			ent->eax |= HV_MSR_HYPERCALL_AVAILABLE;
2029 			ent->eax |= HV_MSR_VP_INDEX_AVAILABLE;
2030 			ent->eax |= HV_MSR_RESET_AVAILABLE;
2031 			ent->eax |= HV_MSR_REFERENCE_TSC_AVAILABLE;
2032 			ent->eax |= HV_ACCESS_FREQUENCY_MSRS;
2033 			ent->eax |= HV_ACCESS_REENLIGHTENMENT;
2034 
2035 			ent->ebx |= HV_POST_MESSAGES;
2036 			ent->ebx |= HV_SIGNAL_EVENTS;
2037 
2038 			ent->edx |= HV_FEATURE_FREQUENCY_MSRS_AVAILABLE;
2039 			ent->edx |= HV_FEATURE_GUEST_CRASH_MSR_AVAILABLE;
2040 
2041 			ent->ebx |= HV_DEBUGGING;
2042 			ent->edx |= HV_X64_GUEST_DEBUGGING_AVAILABLE;
2043 			ent->edx |= HV_FEATURE_DEBUG_MSRS_AVAILABLE;
2044 
2045 			/*
2046 			 * Direct Synthetic timers only make sense with in-kernel
2047 			 * LAPIC
2048 			 */
2049 			if (lapic_in_kernel(vcpu))
2050 				ent->edx |= HV_STIMER_DIRECT_MODE_AVAILABLE;
2051 
2052 			break;
2053 
2054 		case HYPERV_CPUID_ENLIGHTMENT_INFO:
2055 			ent->eax |= HV_X64_REMOTE_TLB_FLUSH_RECOMMENDED;
2056 			ent->eax |= HV_X64_APIC_ACCESS_RECOMMENDED;
2057 			ent->eax |= HV_X64_RELAXED_TIMING_RECOMMENDED;
2058 			ent->eax |= HV_X64_CLUSTER_IPI_RECOMMENDED;
2059 			ent->eax |= HV_X64_EX_PROCESSOR_MASKS_RECOMMENDED;
2060 			if (evmcs_ver)
2061 				ent->eax |= HV_X64_ENLIGHTENED_VMCS_RECOMMENDED;
2062 			if (!cpu_smt_possible())
2063 				ent->eax |= HV_X64_NO_NONARCH_CORESHARING;
2064 			/*
2065 			 * Default number of spinlock retry attempts, matches
2066 			 * HyperV 2016.
2067 			 */
2068 			ent->ebx = 0x00000FFF;
2069 
2070 			break;
2071 
2072 		case HYPERV_CPUID_IMPLEMENT_LIMITS:
2073 			/* Maximum number of virtual processors */
2074 			ent->eax = KVM_MAX_VCPUS;
2075 			/*
2076 			 * Maximum number of logical processors, matches
2077 			 * HyperV 2016.
2078 			 */
2079 			ent->ebx = 64;
2080 
2081 			break;
2082 
2083 		case HYPERV_CPUID_NESTED_FEATURES:
2084 			ent->eax = evmcs_ver;
2085 
2086 			break;
2087 
2088 		case HYPERV_CPUID_SYNDBG_VENDOR_AND_MAX_FUNCTIONS:
2089 			memcpy(signature, "Linux KVM Hv", 12);
2090 
2091 			ent->eax = 0;
2092 			ent->ebx = signature[0];
2093 			ent->ecx = signature[1];
2094 			ent->edx = signature[2];
2095 			break;
2096 
2097 		case HYPERV_CPUID_SYNDBG_INTERFACE:
2098 			memcpy(signature, "VS#1\0\0\0\0\0\0\0\0", 12);
2099 			ent->eax = signature[0];
2100 			break;
2101 
2102 		case HYPERV_CPUID_SYNDBG_PLATFORM_CAPABILITIES:
2103 			ent->eax |= HV_X64_SYNDBG_CAP_ALLOW_KERNEL_DEBUGGING;
2104 			break;
2105 
2106 		default:
2107 			break;
2108 		}
2109 	}
2110 
2111 	if (copy_to_user(entries, cpuid_entries,
2112 			 nent * sizeof(struct kvm_cpuid_entry2)))
2113 		return -EFAULT;
2114 
2115 	return 0;
2116 }
2117