• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Kernel-based Virtual Machine driver for Linux
4  *
5  * derived from drivers/kvm/kvm_main.c
6  *
7  * Copyright (C) 2006 Qumranet, Inc.
8  * Copyright (C) 2008 Qumranet, Inc.
9  * Copyright IBM Corporation, 2008
10  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
11  *
12  * Authors:
13  *   Avi Kivity   <avi@qumranet.com>
14  *   Yaniv Kamay  <yaniv@qumranet.com>
15  *   Amit Shah    <amit.shah@qumranet.com>
16  *   Ben-Ami Yassour <benami@il.ibm.com>
17  */
18 
19 #include <linux/kvm_host.h>
20 #include "irq.h"
21 #include "ioapic.h"
22 #include "mmu.h"
23 #include "i8254.h"
24 #include "tss.h"
25 #include "kvm_cache_regs.h"
26 #include "kvm_emulate.h"
27 #include "x86.h"
28 #include "cpuid.h"
29 #include "pmu.h"
30 #include "hyperv.h"
31 #include "lapic.h"
32 
33 #include <linux/clocksource.h>
34 #include <linux/interrupt.h>
35 #include <linux/kvm.h>
36 #include <linux/fs.h>
37 #include <linux/vmalloc.h>
38 #include <linux/export.h>
39 #include <linux/moduleparam.h>
40 #include <linux/mman.h>
41 #include <linux/highmem.h>
42 #include <linux/iommu.h>
43 #include <linux/intel-iommu.h>
44 #include <linux/cpufreq.h>
45 #include <linux/user-return-notifier.h>
46 #include <linux/srcu.h>
47 #include <linux/slab.h>
48 #include <linux/perf_event.h>
49 #include <linux/uaccess.h>
50 #include <linux/hash.h>
51 #include <linux/pci.h>
52 #include <linux/timekeeper_internal.h>
53 #include <linux/pvclock_gtod.h>
54 #include <linux/kvm_irqfd.h>
55 #include <linux/irqbypass.h>
56 #include <linux/sched/stat.h>
57 #include <linux/sched/isolation.h>
58 #include <linux/mem_encrypt.h>
59 #include <linux/entry-kvm.h>
60 
61 #include <trace/events/kvm.h>
62 
63 #include <asm/debugreg.h>
64 #include <asm/msr.h>
65 #include <asm/desc.h>
66 #include <asm/mce.h>
67 #include <linux/kernel_stat.h>
68 #include <asm/fpu/internal.h> /* Ugh! */
69 #include <asm/pvclock.h>
70 #include <asm/div64.h>
71 #include <asm/irq_remapping.h>
72 #include <asm/mshyperv.h>
73 #include <asm/hypervisor.h>
74 #include <asm/tlbflush.h>
75 #include <asm/intel_pt.h>
76 #include <asm/emulate_prefix.h>
77 #include <clocksource/hyperv_timer.h>
78 
79 #define CREATE_TRACE_POINTS
80 #include "trace.h"
81 
82 #define MAX_IO_MSRS 256
83 #define KVM_MAX_MCE_BANKS 32
84 u64 __read_mostly kvm_mce_cap_supported = MCG_CTL_P | MCG_SER_P;
85 EXPORT_SYMBOL_GPL(kvm_mce_cap_supported);
86 
87 #define emul_to_vcpu(ctxt) \
88 	((struct kvm_vcpu *)(ctxt)->vcpu)
89 
90 /* EFER defaults:
91  * - enable syscall per default because its emulated by KVM
92  * - enable LME and LMA per default on 64 bit KVM
93  */
94 #ifdef CONFIG_X86_64
95 static
96 u64 __read_mostly efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA));
97 #else
98 static u64 __read_mostly efer_reserved_bits = ~((u64)EFER_SCE);
99 #endif
100 
101 static u64 __read_mostly cr4_reserved_bits = CR4_RESERVED_BITS;
102 
103 #define KVM_X2APIC_API_VALID_FLAGS (KVM_X2APIC_API_USE_32BIT_IDS | \
104                                     KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
105 
106 static void update_cr8_intercept(struct kvm_vcpu *vcpu);
107 static void process_nmi(struct kvm_vcpu *vcpu);
108 static void process_smi(struct kvm_vcpu *vcpu);
109 static void enter_smm(struct kvm_vcpu *vcpu);
110 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags);
111 static void store_regs(struct kvm_vcpu *vcpu);
112 static int sync_regs(struct kvm_vcpu *vcpu);
113 
114 struct kvm_x86_ops kvm_x86_ops __read_mostly;
115 EXPORT_SYMBOL_GPL(kvm_x86_ops);
116 
117 static bool __read_mostly ignore_msrs = 0;
118 module_param(ignore_msrs, bool, S_IRUGO | S_IWUSR);
119 
120 static bool __read_mostly report_ignored_msrs = true;
121 module_param(report_ignored_msrs, bool, S_IRUGO | S_IWUSR);
122 
123 unsigned int min_timer_period_us = 200;
124 module_param(min_timer_period_us, uint, S_IRUGO | S_IWUSR);
125 
126 static bool __read_mostly kvmclock_periodic_sync = true;
127 module_param(kvmclock_periodic_sync, bool, S_IRUGO);
128 
129 bool __read_mostly kvm_has_tsc_control;
130 EXPORT_SYMBOL_GPL(kvm_has_tsc_control);
131 u32  __read_mostly kvm_max_guest_tsc_khz;
132 EXPORT_SYMBOL_GPL(kvm_max_guest_tsc_khz);
133 u8   __read_mostly kvm_tsc_scaling_ratio_frac_bits;
134 EXPORT_SYMBOL_GPL(kvm_tsc_scaling_ratio_frac_bits);
135 u64  __read_mostly kvm_max_tsc_scaling_ratio;
136 EXPORT_SYMBOL_GPL(kvm_max_tsc_scaling_ratio);
137 u64 __read_mostly kvm_default_tsc_scaling_ratio;
138 EXPORT_SYMBOL_GPL(kvm_default_tsc_scaling_ratio);
139 
140 /* tsc tolerance in parts per million - default to 1/2 of the NTP threshold */
141 static u32 __read_mostly tsc_tolerance_ppm = 250;
142 module_param(tsc_tolerance_ppm, uint, S_IRUGO | S_IWUSR);
143 
144 /*
145  * lapic timer advance (tscdeadline mode only) in nanoseconds.  '-1' enables
146  * adaptive tuning starting from default advancment of 1000ns.  '0' disables
147  * advancement entirely.  Any other value is used as-is and disables adaptive
148  * tuning, i.e. allows priveleged userspace to set an exact advancement time.
149  */
150 static int __read_mostly lapic_timer_advance_ns = -1;
151 module_param(lapic_timer_advance_ns, int, S_IRUGO | S_IWUSR);
152 
153 static bool __read_mostly vector_hashing = true;
154 module_param(vector_hashing, bool, S_IRUGO);
155 
156 bool __read_mostly enable_vmware_backdoor = false;
157 module_param(enable_vmware_backdoor, bool, S_IRUGO);
158 EXPORT_SYMBOL_GPL(enable_vmware_backdoor);
159 
160 static bool __read_mostly force_emulation_prefix = false;
161 module_param(force_emulation_prefix, bool, S_IRUGO);
162 
163 int __read_mostly pi_inject_timer = -1;
164 module_param(pi_inject_timer, bint, S_IRUGO | S_IWUSR);
165 
166 /*
167  * Restoring the host value for MSRs that are only consumed when running in
168  * usermode, e.g. SYSCALL MSRs and TSC_AUX, can be deferred until the CPU
169  * returns to userspace, i.e. the kernel can run with the guest's value.
170  */
171 #define KVM_MAX_NR_USER_RETURN_MSRS 16
172 
173 struct kvm_user_return_msrs_global {
174 	int nr;
175 	u32 msrs[KVM_MAX_NR_USER_RETURN_MSRS];
176 };
177 
178 struct kvm_user_return_msrs {
179 	struct user_return_notifier urn;
180 	bool registered;
181 	struct kvm_user_return_msr_values {
182 		u64 host;
183 		u64 curr;
184 	} values[KVM_MAX_NR_USER_RETURN_MSRS];
185 };
186 
187 static struct kvm_user_return_msrs_global __read_mostly user_return_msrs_global;
188 static struct kvm_user_return_msrs __percpu *user_return_msrs;
189 
190 #define KVM_SUPPORTED_XCR0     (XFEATURE_MASK_FP | XFEATURE_MASK_SSE \
191 				| XFEATURE_MASK_YMM | XFEATURE_MASK_BNDREGS \
192 				| XFEATURE_MASK_BNDCSR | XFEATURE_MASK_AVX512 \
193 				| XFEATURE_MASK_PKRU)
194 
195 u64 __read_mostly host_efer;
196 EXPORT_SYMBOL_GPL(host_efer);
197 
198 bool __read_mostly allow_smaller_maxphyaddr = 0;
199 EXPORT_SYMBOL_GPL(allow_smaller_maxphyaddr);
200 
201 static u64 __read_mostly host_xss;
202 u64 __read_mostly supported_xss;
203 EXPORT_SYMBOL_GPL(supported_xss);
204 
205 struct kvm_stats_debugfs_item debugfs_entries[] = {
206 	VCPU_STAT("pf_fixed", pf_fixed),
207 	VCPU_STAT("pf_guest", pf_guest),
208 	VCPU_STAT("tlb_flush", tlb_flush),
209 	VCPU_STAT("invlpg", invlpg),
210 	VCPU_STAT("exits", exits),
211 	VCPU_STAT("io_exits", io_exits),
212 	VCPU_STAT("mmio_exits", mmio_exits),
213 	VCPU_STAT("signal_exits", signal_exits),
214 	VCPU_STAT("irq_window", irq_window_exits),
215 	VCPU_STAT("nmi_window", nmi_window_exits),
216 	VCPU_STAT("halt_exits", halt_exits),
217 	VCPU_STAT("halt_successful_poll", halt_successful_poll),
218 	VCPU_STAT("halt_attempted_poll", halt_attempted_poll),
219 	VCPU_STAT("halt_poll_invalid", halt_poll_invalid),
220 	VCPU_STAT("halt_wakeup", halt_wakeup),
221 	VCPU_STAT("hypercalls", hypercalls),
222 	VCPU_STAT("request_irq", request_irq_exits),
223 	VCPU_STAT("irq_exits", irq_exits),
224 	VCPU_STAT("host_state_reload", host_state_reload),
225 	VCPU_STAT("fpu_reload", fpu_reload),
226 	VCPU_STAT("insn_emulation", insn_emulation),
227 	VCPU_STAT("insn_emulation_fail", insn_emulation_fail),
228 	VCPU_STAT("irq_injections", irq_injections),
229 	VCPU_STAT("nmi_injections", nmi_injections),
230 	VCPU_STAT("req_event", req_event),
231 	VCPU_STAT("l1d_flush", l1d_flush),
232 	VCPU_STAT("halt_poll_success_ns", halt_poll_success_ns),
233 	VCPU_STAT("halt_poll_fail_ns", halt_poll_fail_ns),
234 	VCPU_STAT("preemption_reported", preemption_reported),
235 	VCPU_STAT("preemption_other", preemption_other),
236 	VM_STAT("mmu_shadow_zapped", mmu_shadow_zapped),
237 	VM_STAT("mmu_pte_write", mmu_pte_write),
238 	VM_STAT("mmu_pde_zapped", mmu_pde_zapped),
239 	VM_STAT("mmu_flooded", mmu_flooded),
240 	VM_STAT("mmu_recycled", mmu_recycled),
241 	VM_STAT("mmu_cache_miss", mmu_cache_miss),
242 	VM_STAT("mmu_unsync", mmu_unsync),
243 	VM_STAT("remote_tlb_flush", remote_tlb_flush),
244 	VM_STAT("largepages", lpages, .mode = 0444),
245 	VM_STAT("nx_largepages_splitted", nx_lpage_splits, .mode = 0444),
246 	VM_STAT("max_mmu_page_hash_collisions", max_mmu_page_hash_collisions),
247 	{ NULL }
248 };
249 
250 u64 __read_mostly host_xcr0;
251 u64 __read_mostly supported_xcr0;
252 EXPORT_SYMBOL_GPL(supported_xcr0);
253 
254 static struct kmem_cache *x86_fpu_cache;
255 
256 static struct kmem_cache *x86_emulator_cache;
257 
258 /*
259  * When called, it means the previous get/set msr reached an invalid msr.
260  * Return true if we want to ignore/silent this failed msr access.
261  */
kvm_msr_ignored_check(struct kvm_vcpu * vcpu,u32 msr,u64 data,bool write)262 static bool kvm_msr_ignored_check(struct kvm_vcpu *vcpu, u32 msr,
263 				  u64 data, bool write)
264 {
265 	const char *op = write ? "wrmsr" : "rdmsr";
266 
267 	if (ignore_msrs) {
268 		if (report_ignored_msrs)
269 			kvm_pr_unimpl("ignored %s: 0x%x data 0x%llx\n",
270 				      op, msr, data);
271 		/* Mask the error */
272 		return true;
273 	} else {
274 		kvm_debug_ratelimited("unhandled %s: 0x%x data 0x%llx\n",
275 				      op, msr, data);
276 		return false;
277 	}
278 }
279 
kvm_alloc_emulator_cache(void)280 static struct kmem_cache *kvm_alloc_emulator_cache(void)
281 {
282 	unsigned int useroffset = offsetof(struct x86_emulate_ctxt, src);
283 	unsigned int size = sizeof(struct x86_emulate_ctxt);
284 
285 	return kmem_cache_create_usercopy("x86_emulator", size,
286 					  __alignof__(struct x86_emulate_ctxt),
287 					  SLAB_ACCOUNT, useroffset,
288 					  size - useroffset, NULL);
289 }
290 
291 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt);
292 
kvm_async_pf_hash_reset(struct kvm_vcpu * vcpu)293 static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu)
294 {
295 	int i;
296 	for (i = 0; i < ASYNC_PF_PER_VCPU; i++)
297 		vcpu->arch.apf.gfns[i] = ~0;
298 }
299 
kvm_on_user_return(struct user_return_notifier * urn)300 static void kvm_on_user_return(struct user_return_notifier *urn)
301 {
302 	unsigned slot;
303 	struct kvm_user_return_msrs *msrs
304 		= container_of(urn, struct kvm_user_return_msrs, urn);
305 	struct kvm_user_return_msr_values *values;
306 	unsigned long flags;
307 
308 	/*
309 	 * Disabling irqs at this point since the following code could be
310 	 * interrupted and executed through kvm_arch_hardware_disable()
311 	 */
312 	local_irq_save(flags);
313 	if (msrs->registered) {
314 		msrs->registered = false;
315 		user_return_notifier_unregister(urn);
316 	}
317 	local_irq_restore(flags);
318 	for (slot = 0; slot < user_return_msrs_global.nr; ++slot) {
319 		values = &msrs->values[slot];
320 		if (values->host != values->curr) {
321 			wrmsrl(user_return_msrs_global.msrs[slot], values->host);
322 			values->curr = values->host;
323 		}
324 	}
325 }
326 
kvm_probe_user_return_msr(u32 msr)327 int kvm_probe_user_return_msr(u32 msr)
328 {
329 	u64 val;
330 	int ret;
331 
332 	preempt_disable();
333 	ret = rdmsrl_safe(msr, &val);
334 	if (ret)
335 		goto out;
336 	ret = wrmsrl_safe(msr, val);
337 out:
338 	preempt_enable();
339 	return ret;
340 }
341 EXPORT_SYMBOL_GPL(kvm_probe_user_return_msr);
342 
kvm_define_user_return_msr(unsigned slot,u32 msr)343 void kvm_define_user_return_msr(unsigned slot, u32 msr)
344 {
345 	BUG_ON(slot >= KVM_MAX_NR_USER_RETURN_MSRS);
346 	user_return_msrs_global.msrs[slot] = msr;
347 	if (slot >= user_return_msrs_global.nr)
348 		user_return_msrs_global.nr = slot + 1;
349 }
350 EXPORT_SYMBOL_GPL(kvm_define_user_return_msr);
351 
kvm_user_return_msr_cpu_online(void)352 static void kvm_user_return_msr_cpu_online(void)
353 {
354 	unsigned int cpu = smp_processor_id();
355 	struct kvm_user_return_msrs *msrs = per_cpu_ptr(user_return_msrs, cpu);
356 	u64 value;
357 	int i;
358 
359 	for (i = 0; i < user_return_msrs_global.nr; ++i) {
360 		rdmsrl_safe(user_return_msrs_global.msrs[i], &value);
361 		msrs->values[i].host = value;
362 		msrs->values[i].curr = value;
363 	}
364 }
365 
kvm_set_user_return_msr(unsigned slot,u64 value,u64 mask)366 int kvm_set_user_return_msr(unsigned slot, u64 value, u64 mask)
367 {
368 	unsigned int cpu = smp_processor_id();
369 	struct kvm_user_return_msrs *msrs = per_cpu_ptr(user_return_msrs, cpu);
370 	int err;
371 
372 	value = (value & mask) | (msrs->values[slot].host & ~mask);
373 	if (value == msrs->values[slot].curr)
374 		return 0;
375 	err = wrmsrl_safe(user_return_msrs_global.msrs[slot], value);
376 	if (err)
377 		return 1;
378 
379 	msrs->values[slot].curr = value;
380 	if (!msrs->registered) {
381 		msrs->urn.on_user_return = kvm_on_user_return;
382 		user_return_notifier_register(&msrs->urn);
383 		msrs->registered = true;
384 	}
385 	return 0;
386 }
387 EXPORT_SYMBOL_GPL(kvm_set_user_return_msr);
388 
drop_user_return_notifiers(void)389 static void drop_user_return_notifiers(void)
390 {
391 	unsigned int cpu = smp_processor_id();
392 	struct kvm_user_return_msrs *msrs = per_cpu_ptr(user_return_msrs, cpu);
393 
394 	if (msrs->registered)
395 		kvm_on_user_return(&msrs->urn);
396 }
397 
kvm_get_apic_base(struct kvm_vcpu * vcpu)398 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
399 {
400 	return vcpu->arch.apic_base;
401 }
402 EXPORT_SYMBOL_GPL(kvm_get_apic_base);
403 
kvm_get_apic_mode(struct kvm_vcpu * vcpu)404 enum lapic_mode kvm_get_apic_mode(struct kvm_vcpu *vcpu)
405 {
406 	return kvm_apic_mode(kvm_get_apic_base(vcpu));
407 }
408 EXPORT_SYMBOL_GPL(kvm_get_apic_mode);
409 
kvm_set_apic_base(struct kvm_vcpu * vcpu,struct msr_data * msr_info)410 int kvm_set_apic_base(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
411 {
412 	enum lapic_mode old_mode = kvm_get_apic_mode(vcpu);
413 	enum lapic_mode new_mode = kvm_apic_mode(msr_info->data);
414 	u64 reserved_bits = ((~0ULL) << cpuid_maxphyaddr(vcpu)) | 0x2ff |
415 		(guest_cpuid_has(vcpu, X86_FEATURE_X2APIC) ? 0 : X2APIC_ENABLE);
416 
417 	if ((msr_info->data & reserved_bits) != 0 || new_mode == LAPIC_MODE_INVALID)
418 		return 1;
419 	if (!msr_info->host_initiated) {
420 		if (old_mode == LAPIC_MODE_X2APIC && new_mode == LAPIC_MODE_XAPIC)
421 			return 1;
422 		if (old_mode == LAPIC_MODE_DISABLED && new_mode == LAPIC_MODE_X2APIC)
423 			return 1;
424 	}
425 
426 	kvm_lapic_set_base(vcpu, msr_info->data);
427 	kvm_recalculate_apic_map(vcpu->kvm);
428 	return 0;
429 }
430 EXPORT_SYMBOL_GPL(kvm_set_apic_base);
431 
kvm_spurious_fault(void)432 asmlinkage __visible noinstr void kvm_spurious_fault(void)
433 {
434 	/* Fault while not rebooting.  We want the trace. */
435 	BUG_ON(!kvm_rebooting);
436 }
437 EXPORT_SYMBOL_GPL(kvm_spurious_fault);
438 
439 #define EXCPT_BENIGN		0
440 #define EXCPT_CONTRIBUTORY	1
441 #define EXCPT_PF		2
442 
exception_class(int vector)443 static int exception_class(int vector)
444 {
445 	switch (vector) {
446 	case PF_VECTOR:
447 		return EXCPT_PF;
448 	case DE_VECTOR:
449 	case TS_VECTOR:
450 	case NP_VECTOR:
451 	case SS_VECTOR:
452 	case GP_VECTOR:
453 		return EXCPT_CONTRIBUTORY;
454 	default:
455 		break;
456 	}
457 	return EXCPT_BENIGN;
458 }
459 
460 #define EXCPT_FAULT		0
461 #define EXCPT_TRAP		1
462 #define EXCPT_ABORT		2
463 #define EXCPT_INTERRUPT		3
464 #define EXCPT_DB		4
465 
exception_type(int vector)466 static int exception_type(int vector)
467 {
468 	unsigned int mask;
469 
470 	if (WARN_ON(vector > 31 || vector == NMI_VECTOR))
471 		return EXCPT_INTERRUPT;
472 
473 	mask = 1 << vector;
474 
475 	/*
476 	 * #DBs can be trap-like or fault-like, the caller must check other CPU
477 	 * state, e.g. DR6, to determine whether a #DB is a trap or fault.
478 	 */
479 	if (mask & (1 << DB_VECTOR))
480 		return EXCPT_DB;
481 
482 	if (mask & ((1 << BP_VECTOR) | (1 << OF_VECTOR)))
483 		return EXCPT_TRAP;
484 
485 	if (mask & ((1 << DF_VECTOR) | (1 << MC_VECTOR)))
486 		return EXCPT_ABORT;
487 
488 	/* Reserved exceptions will result in fault */
489 	return EXCPT_FAULT;
490 }
491 
kvm_deliver_exception_payload(struct kvm_vcpu * vcpu)492 void kvm_deliver_exception_payload(struct kvm_vcpu *vcpu)
493 {
494 	unsigned nr = vcpu->arch.exception.nr;
495 	bool has_payload = vcpu->arch.exception.has_payload;
496 	unsigned long payload = vcpu->arch.exception.payload;
497 
498 	if (!has_payload)
499 		return;
500 
501 	switch (nr) {
502 	case DB_VECTOR:
503 		/*
504 		 * "Certain debug exceptions may clear bit 0-3.  The
505 		 * remaining contents of the DR6 register are never
506 		 * cleared by the processor".
507 		 */
508 		vcpu->arch.dr6 &= ~DR_TRAP_BITS;
509 		/*
510 		 * DR6.RTM is set by all #DB exceptions that don't clear it.
511 		 */
512 		vcpu->arch.dr6 |= DR6_RTM;
513 		vcpu->arch.dr6 |= payload;
514 		/*
515 		 * Bit 16 should be set in the payload whenever the #DB
516 		 * exception should clear DR6.RTM. This makes the payload
517 		 * compatible with the pending debug exceptions under VMX.
518 		 * Though not currently documented in the SDM, this also
519 		 * makes the payload compatible with the exit qualification
520 		 * for #DB exceptions under VMX.
521 		 */
522 		vcpu->arch.dr6 ^= payload & DR6_RTM;
523 
524 		/*
525 		 * The #DB payload is defined as compatible with the 'pending
526 		 * debug exceptions' field under VMX, not DR6. While bit 12 is
527 		 * defined in the 'pending debug exceptions' field (enabled
528 		 * breakpoint), it is reserved and must be zero in DR6.
529 		 */
530 		vcpu->arch.dr6 &= ~BIT(12);
531 		break;
532 	case PF_VECTOR:
533 		vcpu->arch.cr2 = payload;
534 		break;
535 	}
536 
537 	vcpu->arch.exception.has_payload = false;
538 	vcpu->arch.exception.payload = 0;
539 }
540 EXPORT_SYMBOL_GPL(kvm_deliver_exception_payload);
541 
kvm_multiple_exception(struct kvm_vcpu * vcpu,unsigned nr,bool has_error,u32 error_code,bool has_payload,unsigned long payload,bool reinject)542 static void kvm_multiple_exception(struct kvm_vcpu *vcpu,
543 		unsigned nr, bool has_error, u32 error_code,
544 	        bool has_payload, unsigned long payload, bool reinject)
545 {
546 	u32 prev_nr;
547 	int class1, class2;
548 
549 	kvm_make_request(KVM_REQ_EVENT, vcpu);
550 
551 	if (!vcpu->arch.exception.pending && !vcpu->arch.exception.injected) {
552 	queue:
553 		if (reinject) {
554 			/*
555 			 * On vmentry, vcpu->arch.exception.pending is only
556 			 * true if an event injection was blocked by
557 			 * nested_run_pending.  In that case, however,
558 			 * vcpu_enter_guest requests an immediate exit,
559 			 * and the guest shouldn't proceed far enough to
560 			 * need reinjection.
561 			 */
562 			WARN_ON_ONCE(vcpu->arch.exception.pending);
563 			vcpu->arch.exception.injected = true;
564 			if (WARN_ON_ONCE(has_payload)) {
565 				/*
566 				 * A reinjected event has already
567 				 * delivered its payload.
568 				 */
569 				has_payload = false;
570 				payload = 0;
571 			}
572 		} else {
573 			vcpu->arch.exception.pending = true;
574 			vcpu->arch.exception.injected = false;
575 		}
576 		vcpu->arch.exception.has_error_code = has_error;
577 		vcpu->arch.exception.nr = nr;
578 		vcpu->arch.exception.error_code = error_code;
579 		vcpu->arch.exception.has_payload = has_payload;
580 		vcpu->arch.exception.payload = payload;
581 		if (!is_guest_mode(vcpu))
582 			kvm_deliver_exception_payload(vcpu);
583 		return;
584 	}
585 
586 	/* to check exception */
587 	prev_nr = vcpu->arch.exception.nr;
588 	if (prev_nr == DF_VECTOR) {
589 		/* triple fault -> shutdown */
590 		kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
591 		return;
592 	}
593 	class1 = exception_class(prev_nr);
594 	class2 = exception_class(nr);
595 	if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY)
596 		|| (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) {
597 		/*
598 		 * Generate double fault per SDM Table 5-5.  Set
599 		 * exception.pending = true so that the double fault
600 		 * can trigger a nested vmexit.
601 		 */
602 		vcpu->arch.exception.pending = true;
603 		vcpu->arch.exception.injected = false;
604 		vcpu->arch.exception.has_error_code = true;
605 		vcpu->arch.exception.nr = DF_VECTOR;
606 		vcpu->arch.exception.error_code = 0;
607 		vcpu->arch.exception.has_payload = false;
608 		vcpu->arch.exception.payload = 0;
609 	} else
610 		/* replace previous exception with a new one in a hope
611 		   that instruction re-execution will regenerate lost
612 		   exception */
613 		goto queue;
614 }
615 
kvm_queue_exception(struct kvm_vcpu * vcpu,unsigned nr)616 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
617 {
618 	kvm_multiple_exception(vcpu, nr, false, 0, false, 0, false);
619 }
620 EXPORT_SYMBOL_GPL(kvm_queue_exception);
621 
kvm_requeue_exception(struct kvm_vcpu * vcpu,unsigned nr)622 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr)
623 {
624 	kvm_multiple_exception(vcpu, nr, false, 0, false, 0, true);
625 }
626 EXPORT_SYMBOL_GPL(kvm_requeue_exception);
627 
kvm_queue_exception_p(struct kvm_vcpu * vcpu,unsigned nr,unsigned long payload)628 void kvm_queue_exception_p(struct kvm_vcpu *vcpu, unsigned nr,
629 			   unsigned long payload)
630 {
631 	kvm_multiple_exception(vcpu, nr, false, 0, true, payload, false);
632 }
633 EXPORT_SYMBOL_GPL(kvm_queue_exception_p);
634 
kvm_queue_exception_e_p(struct kvm_vcpu * vcpu,unsigned nr,u32 error_code,unsigned long payload)635 static void kvm_queue_exception_e_p(struct kvm_vcpu *vcpu, unsigned nr,
636 				    u32 error_code, unsigned long payload)
637 {
638 	kvm_multiple_exception(vcpu, nr, true, error_code,
639 			       true, payload, false);
640 }
641 
kvm_complete_insn_gp(struct kvm_vcpu * vcpu,int err)642 int kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err)
643 {
644 	if (err)
645 		kvm_inject_gp(vcpu, 0);
646 	else
647 		return kvm_skip_emulated_instruction(vcpu);
648 
649 	return 1;
650 }
651 EXPORT_SYMBOL_GPL(kvm_complete_insn_gp);
652 
kvm_inject_page_fault(struct kvm_vcpu * vcpu,struct x86_exception * fault)653 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
654 {
655 	++vcpu->stat.pf_guest;
656 	vcpu->arch.exception.nested_apf =
657 		is_guest_mode(vcpu) && fault->async_page_fault;
658 	if (vcpu->arch.exception.nested_apf) {
659 		vcpu->arch.apf.nested_apf_token = fault->address;
660 		kvm_queue_exception_e(vcpu, PF_VECTOR, fault->error_code);
661 	} else {
662 		kvm_queue_exception_e_p(vcpu, PF_VECTOR, fault->error_code,
663 					fault->address);
664 	}
665 }
666 EXPORT_SYMBOL_GPL(kvm_inject_page_fault);
667 
kvm_inject_emulated_page_fault(struct kvm_vcpu * vcpu,struct x86_exception * fault)668 bool kvm_inject_emulated_page_fault(struct kvm_vcpu *vcpu,
669 				    struct x86_exception *fault)
670 {
671 	struct kvm_mmu *fault_mmu;
672 	WARN_ON_ONCE(fault->vector != PF_VECTOR);
673 
674 	fault_mmu = fault->nested_page_fault ? vcpu->arch.mmu :
675 					       vcpu->arch.walk_mmu;
676 
677 	/*
678 	 * Invalidate the TLB entry for the faulting address, if it exists,
679 	 * else the access will fault indefinitely (and to emulate hardware).
680 	 */
681 	if ((fault->error_code & PFERR_PRESENT_MASK) &&
682 	    !(fault->error_code & PFERR_RSVD_MASK))
683 		kvm_mmu_invalidate_gva(vcpu, fault_mmu, fault->address,
684 				       fault_mmu->root_hpa);
685 
686 	fault_mmu->inject_page_fault(vcpu, fault);
687 	return fault->nested_page_fault;
688 }
689 EXPORT_SYMBOL_GPL(kvm_inject_emulated_page_fault);
690 
kvm_inject_nmi(struct kvm_vcpu * vcpu)691 void kvm_inject_nmi(struct kvm_vcpu *vcpu)
692 {
693 	atomic_inc(&vcpu->arch.nmi_queued);
694 	kvm_make_request(KVM_REQ_NMI, vcpu);
695 }
696 EXPORT_SYMBOL_GPL(kvm_inject_nmi);
697 
kvm_queue_exception_e(struct kvm_vcpu * vcpu,unsigned nr,u32 error_code)698 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
699 {
700 	kvm_multiple_exception(vcpu, nr, true, error_code, false, 0, false);
701 }
702 EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
703 
kvm_requeue_exception_e(struct kvm_vcpu * vcpu,unsigned nr,u32 error_code)704 void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
705 {
706 	kvm_multiple_exception(vcpu, nr, true, error_code, false, 0, true);
707 }
708 EXPORT_SYMBOL_GPL(kvm_requeue_exception_e);
709 
710 /*
711  * Checks if cpl <= required_cpl; if true, return true.  Otherwise queue
712  * a #GP and return false.
713  */
kvm_require_cpl(struct kvm_vcpu * vcpu,int required_cpl)714 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl)
715 {
716 	if (kvm_x86_ops.get_cpl(vcpu) <= required_cpl)
717 		return true;
718 	kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
719 	return false;
720 }
721 EXPORT_SYMBOL_GPL(kvm_require_cpl);
722 
kvm_require_dr(struct kvm_vcpu * vcpu,int dr)723 bool kvm_require_dr(struct kvm_vcpu *vcpu, int dr)
724 {
725 	if ((dr != 4 && dr != 5) || !kvm_read_cr4_bits(vcpu, X86_CR4_DE))
726 		return true;
727 
728 	kvm_queue_exception(vcpu, UD_VECTOR);
729 	return false;
730 }
731 EXPORT_SYMBOL_GPL(kvm_require_dr);
732 
733 /*
734  * This function will be used to read from the physical memory of the currently
735  * running guest. The difference to kvm_vcpu_read_guest_page is that this function
736  * can read from guest physical or from the guest's guest physical memory.
737  */
kvm_read_guest_page_mmu(struct kvm_vcpu * vcpu,struct kvm_mmu * mmu,gfn_t ngfn,void * data,int offset,int len,u32 access)738 int kvm_read_guest_page_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
739 			    gfn_t ngfn, void *data, int offset, int len,
740 			    u32 access)
741 {
742 	struct x86_exception exception;
743 	gfn_t real_gfn;
744 	gpa_t ngpa;
745 
746 	ngpa     = gfn_to_gpa(ngfn);
747 	real_gfn = mmu->translate_gpa(vcpu, ngpa, access, &exception);
748 	if (real_gfn == UNMAPPED_GVA)
749 		return -EFAULT;
750 
751 	real_gfn = gpa_to_gfn(real_gfn);
752 
753 	return kvm_vcpu_read_guest_page(vcpu, real_gfn, data, offset, len);
754 }
755 EXPORT_SYMBOL_GPL(kvm_read_guest_page_mmu);
756 
kvm_read_nested_guest_page(struct kvm_vcpu * vcpu,gfn_t gfn,void * data,int offset,int len,u32 access)757 static int kvm_read_nested_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
758 			       void *data, int offset, int len, u32 access)
759 {
760 	return kvm_read_guest_page_mmu(vcpu, vcpu->arch.walk_mmu, gfn,
761 				       data, offset, len, access);
762 }
763 
pdptr_rsvd_bits(struct kvm_vcpu * vcpu)764 static inline u64 pdptr_rsvd_bits(struct kvm_vcpu *vcpu)
765 {
766 	return rsvd_bits(cpuid_maxphyaddr(vcpu), 63) | rsvd_bits(5, 8) |
767 	       rsvd_bits(1, 2);
768 }
769 
770 /*
771  * Load the pae pdptrs.  Return 1 if they are all valid, 0 otherwise.
772  */
load_pdptrs(struct kvm_vcpu * vcpu,struct kvm_mmu * mmu,unsigned long cr3)773 int load_pdptrs(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, unsigned long cr3)
774 {
775 	gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
776 	unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
777 	int i;
778 	int ret;
779 	u64 pdpte[ARRAY_SIZE(mmu->pdptrs)];
780 
781 	ret = kvm_read_guest_page_mmu(vcpu, mmu, pdpt_gfn, pdpte,
782 				      offset * sizeof(u64), sizeof(pdpte),
783 				      PFERR_USER_MASK|PFERR_WRITE_MASK);
784 	if (ret < 0) {
785 		ret = 0;
786 		goto out;
787 	}
788 	for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
789 		if ((pdpte[i] & PT_PRESENT_MASK) &&
790 		    (pdpte[i] & pdptr_rsvd_bits(vcpu))) {
791 			ret = 0;
792 			goto out;
793 		}
794 	}
795 	ret = 1;
796 
797 	memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs));
798 	kvm_register_mark_dirty(vcpu, VCPU_EXREG_PDPTR);
799 
800 out:
801 
802 	return ret;
803 }
804 EXPORT_SYMBOL_GPL(load_pdptrs);
805 
pdptrs_changed(struct kvm_vcpu * vcpu)806 bool pdptrs_changed(struct kvm_vcpu *vcpu)
807 {
808 	u64 pdpte[ARRAY_SIZE(vcpu->arch.walk_mmu->pdptrs)];
809 	int offset;
810 	gfn_t gfn;
811 	int r;
812 
813 	if (!is_pae_paging(vcpu))
814 		return false;
815 
816 	if (!kvm_register_is_available(vcpu, VCPU_EXREG_PDPTR))
817 		return true;
818 
819 	gfn = (kvm_read_cr3(vcpu) & 0xffffffe0ul) >> PAGE_SHIFT;
820 	offset = (kvm_read_cr3(vcpu) & 0xffffffe0ul) & (PAGE_SIZE - 1);
821 	r = kvm_read_nested_guest_page(vcpu, gfn, pdpte, offset, sizeof(pdpte),
822 				       PFERR_USER_MASK | PFERR_WRITE_MASK);
823 	if (r < 0)
824 		return true;
825 
826 	return memcmp(pdpte, vcpu->arch.walk_mmu->pdptrs, sizeof(pdpte)) != 0;
827 }
828 EXPORT_SYMBOL_GPL(pdptrs_changed);
829 
kvm_set_cr0(struct kvm_vcpu * vcpu,unsigned long cr0)830 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
831 {
832 	unsigned long old_cr0 = kvm_read_cr0(vcpu);
833 	unsigned long pdptr_bits = X86_CR0_CD | X86_CR0_NW | X86_CR0_PG;
834 	unsigned long update_bits = X86_CR0_PG | X86_CR0_WP;
835 
836 	cr0 |= X86_CR0_ET;
837 
838 #ifdef CONFIG_X86_64
839 	if (cr0 & 0xffffffff00000000UL)
840 		return 1;
841 #endif
842 
843 	cr0 &= ~CR0_RESERVED_BITS;
844 
845 	if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD))
846 		return 1;
847 
848 	if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE))
849 		return 1;
850 
851 #ifdef CONFIG_X86_64
852 	if ((vcpu->arch.efer & EFER_LME) && !is_paging(vcpu) &&
853 	    (cr0 & X86_CR0_PG)) {
854 		int cs_db, cs_l;
855 
856 		if (!is_pae(vcpu))
857 			return 1;
858 		kvm_x86_ops.get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
859 		if (cs_l)
860 			return 1;
861 	}
862 #endif
863 	if (!(vcpu->arch.efer & EFER_LME) && (cr0 & X86_CR0_PG) &&
864 	    is_pae(vcpu) && ((cr0 ^ old_cr0) & pdptr_bits) &&
865 	    !load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu)))
866 		return 1;
867 
868 	if (!(cr0 & X86_CR0_PG) && kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE))
869 		return 1;
870 
871 	kvm_x86_ops.set_cr0(vcpu, cr0);
872 
873 	if ((cr0 ^ old_cr0) & X86_CR0_PG) {
874 		kvm_clear_async_pf_completion_queue(vcpu);
875 		kvm_async_pf_hash_reset(vcpu);
876 	}
877 
878 	if ((cr0 ^ old_cr0) & update_bits)
879 		kvm_mmu_reset_context(vcpu);
880 
881 	if (((cr0 ^ old_cr0) & X86_CR0_CD) &&
882 	    kvm_arch_has_noncoherent_dma(vcpu->kvm) &&
883 	    !kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
884 		kvm_zap_gfn_range(vcpu->kvm, 0, ~0ULL);
885 
886 	return 0;
887 }
888 EXPORT_SYMBOL_GPL(kvm_set_cr0);
889 
kvm_lmsw(struct kvm_vcpu * vcpu,unsigned long msw)890 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
891 {
892 	(void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f));
893 }
894 EXPORT_SYMBOL_GPL(kvm_lmsw);
895 
kvm_load_guest_xsave_state(struct kvm_vcpu * vcpu)896 void kvm_load_guest_xsave_state(struct kvm_vcpu *vcpu)
897 {
898 	if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE)) {
899 
900 		if (vcpu->arch.xcr0 != host_xcr0)
901 			xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0);
902 
903 		if (vcpu->arch.xsaves_enabled &&
904 		    vcpu->arch.ia32_xss != host_xss)
905 			wrmsrl(MSR_IA32_XSS, vcpu->arch.ia32_xss);
906 	}
907 
908 	if (static_cpu_has(X86_FEATURE_PKU) &&
909 	    (kvm_read_cr4_bits(vcpu, X86_CR4_PKE) ||
910 	     (vcpu->arch.xcr0 & XFEATURE_MASK_PKRU)) &&
911 	    vcpu->arch.pkru != vcpu->arch.host_pkru)
912 		__write_pkru(vcpu->arch.pkru);
913 }
914 EXPORT_SYMBOL_GPL(kvm_load_guest_xsave_state);
915 
kvm_load_host_xsave_state(struct kvm_vcpu * vcpu)916 void kvm_load_host_xsave_state(struct kvm_vcpu *vcpu)
917 {
918 	if (static_cpu_has(X86_FEATURE_PKU) &&
919 	    (kvm_read_cr4_bits(vcpu, X86_CR4_PKE) ||
920 	     (vcpu->arch.xcr0 & XFEATURE_MASK_PKRU))) {
921 		vcpu->arch.pkru = rdpkru();
922 		if (vcpu->arch.pkru != vcpu->arch.host_pkru)
923 			__write_pkru(vcpu->arch.host_pkru);
924 	}
925 
926 	if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE)) {
927 
928 		if (vcpu->arch.xcr0 != host_xcr0)
929 			xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0);
930 
931 		if (vcpu->arch.xsaves_enabled &&
932 		    vcpu->arch.ia32_xss != host_xss)
933 			wrmsrl(MSR_IA32_XSS, host_xss);
934 	}
935 
936 }
937 EXPORT_SYMBOL_GPL(kvm_load_host_xsave_state);
938 
__kvm_set_xcr(struct kvm_vcpu * vcpu,u32 index,u64 xcr)939 static int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
940 {
941 	u64 xcr0 = xcr;
942 	u64 old_xcr0 = vcpu->arch.xcr0;
943 	u64 valid_bits;
944 
945 	/* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now  */
946 	if (index != XCR_XFEATURE_ENABLED_MASK)
947 		return 1;
948 	if (!(xcr0 & XFEATURE_MASK_FP))
949 		return 1;
950 	if ((xcr0 & XFEATURE_MASK_YMM) && !(xcr0 & XFEATURE_MASK_SSE))
951 		return 1;
952 
953 	/*
954 	 * Do not allow the guest to set bits that we do not support
955 	 * saving.  However, xcr0 bit 0 is always set, even if the
956 	 * emulated CPU does not support XSAVE (see fx_init).
957 	 */
958 	valid_bits = vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FP;
959 	if (xcr0 & ~valid_bits)
960 		return 1;
961 
962 	if ((!(xcr0 & XFEATURE_MASK_BNDREGS)) !=
963 	    (!(xcr0 & XFEATURE_MASK_BNDCSR)))
964 		return 1;
965 
966 	if (xcr0 & XFEATURE_MASK_AVX512) {
967 		if (!(xcr0 & XFEATURE_MASK_YMM))
968 			return 1;
969 		if ((xcr0 & XFEATURE_MASK_AVX512) != XFEATURE_MASK_AVX512)
970 			return 1;
971 	}
972 	vcpu->arch.xcr0 = xcr0;
973 
974 	if ((xcr0 ^ old_xcr0) & XFEATURE_MASK_EXTEND)
975 		kvm_update_cpuid_runtime(vcpu);
976 	return 0;
977 }
978 
kvm_set_xcr(struct kvm_vcpu * vcpu,u32 index,u64 xcr)979 int kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
980 {
981 	if (kvm_x86_ops.get_cpl(vcpu) != 0 ||
982 	    __kvm_set_xcr(vcpu, index, xcr)) {
983 		kvm_inject_gp(vcpu, 0);
984 		return 1;
985 	}
986 	return 0;
987 }
988 EXPORT_SYMBOL_GPL(kvm_set_xcr);
989 
kvm_valid_cr4(struct kvm_vcpu * vcpu,unsigned long cr4)990 int kvm_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
991 {
992 	if (cr4 & cr4_reserved_bits)
993 		return -EINVAL;
994 
995 	if (cr4 & vcpu->arch.cr4_guest_rsvd_bits)
996 		return -EINVAL;
997 
998 	if (!kvm_x86_ops.is_valid_cr4(vcpu, cr4))
999 		return -EINVAL;
1000 
1001 	return 0;
1002 }
1003 EXPORT_SYMBOL_GPL(kvm_valid_cr4);
1004 
kvm_set_cr4(struct kvm_vcpu * vcpu,unsigned long cr4)1005 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1006 {
1007 	unsigned long old_cr4 = kvm_read_cr4(vcpu);
1008 	unsigned long pdptr_bits = X86_CR4_PGE | X86_CR4_PSE | X86_CR4_PAE |
1009 				   X86_CR4_SMEP;
1010 	unsigned long mmu_role_bits = pdptr_bits | X86_CR4_SMAP | X86_CR4_PKE;
1011 
1012 	if (kvm_valid_cr4(vcpu, cr4))
1013 		return 1;
1014 
1015 	if (is_long_mode(vcpu)) {
1016 		if (!(cr4 & X86_CR4_PAE))
1017 			return 1;
1018 		if ((cr4 ^ old_cr4) & X86_CR4_LA57)
1019 			return 1;
1020 	} else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
1021 		   && ((cr4 ^ old_cr4) & pdptr_bits)
1022 		   && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
1023 				   kvm_read_cr3(vcpu)))
1024 		return 1;
1025 
1026 	if ((cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) {
1027 		if (!guest_cpuid_has(vcpu, X86_FEATURE_PCID))
1028 			return 1;
1029 
1030 		/* PCID can not be enabled when cr3[11:0]!=000H or EFER.LMA=0 */
1031 		if ((kvm_read_cr3(vcpu) & X86_CR3_PCID_MASK) || !is_long_mode(vcpu))
1032 			return 1;
1033 	}
1034 
1035 	kvm_x86_ops.set_cr4(vcpu, cr4);
1036 
1037 	if (((cr4 ^ old_cr4) & mmu_role_bits) ||
1038 	    (!(cr4 & X86_CR4_PCIDE) && (old_cr4 & X86_CR4_PCIDE)))
1039 		kvm_mmu_reset_context(vcpu);
1040 
1041 	if ((cr4 ^ old_cr4) & (X86_CR4_OSXSAVE | X86_CR4_PKE))
1042 		kvm_update_cpuid_runtime(vcpu);
1043 
1044 	return 0;
1045 }
1046 EXPORT_SYMBOL_GPL(kvm_set_cr4);
1047 
kvm_set_cr3(struct kvm_vcpu * vcpu,unsigned long cr3)1048 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
1049 {
1050 	bool skip_tlb_flush = false;
1051 #ifdef CONFIG_X86_64
1052 	bool pcid_enabled = kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE);
1053 
1054 	if (pcid_enabled) {
1055 		skip_tlb_flush = cr3 & X86_CR3_PCID_NOFLUSH;
1056 		cr3 &= ~X86_CR3_PCID_NOFLUSH;
1057 	}
1058 #endif
1059 
1060 	if (cr3 == kvm_read_cr3(vcpu) && !pdptrs_changed(vcpu)) {
1061 		if (!skip_tlb_flush) {
1062 			kvm_mmu_sync_roots(vcpu);
1063 			kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
1064 		}
1065 		return 0;
1066 	}
1067 
1068 	if (is_long_mode(vcpu) &&
1069 	    (cr3 & vcpu->arch.cr3_lm_rsvd_bits))
1070 		return 1;
1071 	else if (is_pae_paging(vcpu) &&
1072 		 !load_pdptrs(vcpu, vcpu->arch.walk_mmu, cr3))
1073 		return 1;
1074 
1075 	kvm_mmu_new_pgd(vcpu, cr3, skip_tlb_flush, skip_tlb_flush);
1076 	vcpu->arch.cr3 = cr3;
1077 	kvm_register_mark_available(vcpu, VCPU_EXREG_CR3);
1078 
1079 	return 0;
1080 }
1081 EXPORT_SYMBOL_GPL(kvm_set_cr3);
1082 
kvm_set_cr8(struct kvm_vcpu * vcpu,unsigned long cr8)1083 int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
1084 {
1085 	if (cr8 & CR8_RESERVED_BITS)
1086 		return 1;
1087 	if (lapic_in_kernel(vcpu))
1088 		kvm_lapic_set_tpr(vcpu, cr8);
1089 	else
1090 		vcpu->arch.cr8 = cr8;
1091 	return 0;
1092 }
1093 EXPORT_SYMBOL_GPL(kvm_set_cr8);
1094 
kvm_get_cr8(struct kvm_vcpu * vcpu)1095 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
1096 {
1097 	if (lapic_in_kernel(vcpu))
1098 		return kvm_lapic_get_cr8(vcpu);
1099 	else
1100 		return vcpu->arch.cr8;
1101 }
1102 EXPORT_SYMBOL_GPL(kvm_get_cr8);
1103 
kvm_update_dr0123(struct kvm_vcpu * vcpu)1104 static void kvm_update_dr0123(struct kvm_vcpu *vcpu)
1105 {
1106 	int i;
1107 
1108 	if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) {
1109 		for (i = 0; i < KVM_NR_DB_REGS; i++)
1110 			vcpu->arch.eff_db[i] = vcpu->arch.db[i];
1111 		vcpu->arch.switch_db_regs |= KVM_DEBUGREG_RELOAD;
1112 	}
1113 }
1114 
kvm_update_dr7(struct kvm_vcpu * vcpu)1115 void kvm_update_dr7(struct kvm_vcpu *vcpu)
1116 {
1117 	unsigned long dr7;
1118 
1119 	if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
1120 		dr7 = vcpu->arch.guest_debug_dr7;
1121 	else
1122 		dr7 = vcpu->arch.dr7;
1123 	kvm_x86_ops.set_dr7(vcpu, dr7);
1124 	vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_BP_ENABLED;
1125 	if (dr7 & DR7_BP_EN_MASK)
1126 		vcpu->arch.switch_db_regs |= KVM_DEBUGREG_BP_ENABLED;
1127 }
1128 EXPORT_SYMBOL_GPL(kvm_update_dr7);
1129 
kvm_dr6_fixed(struct kvm_vcpu * vcpu)1130 static u64 kvm_dr6_fixed(struct kvm_vcpu *vcpu)
1131 {
1132 	u64 fixed = DR6_FIXED_1;
1133 
1134 	if (!guest_cpuid_has(vcpu, X86_FEATURE_RTM))
1135 		fixed |= DR6_RTM;
1136 	return fixed;
1137 }
1138 
__kvm_set_dr(struct kvm_vcpu * vcpu,int dr,unsigned long val)1139 static int __kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
1140 {
1141 	size_t size = ARRAY_SIZE(vcpu->arch.db);
1142 
1143 	switch (dr) {
1144 	case 0 ... 3:
1145 		vcpu->arch.db[array_index_nospec(dr, size)] = val;
1146 		if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
1147 			vcpu->arch.eff_db[dr] = val;
1148 		break;
1149 	case 4:
1150 	case 6:
1151 		if (!kvm_dr6_valid(val))
1152 			return -1; /* #GP */
1153 		vcpu->arch.dr6 = (val & DR6_VOLATILE) | kvm_dr6_fixed(vcpu);
1154 		break;
1155 	case 5:
1156 	default: /* 7 */
1157 		if (!kvm_dr7_valid(val))
1158 			return -1; /* #GP */
1159 		vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1;
1160 		kvm_update_dr7(vcpu);
1161 		break;
1162 	}
1163 
1164 	return 0;
1165 }
1166 
kvm_set_dr(struct kvm_vcpu * vcpu,int dr,unsigned long val)1167 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
1168 {
1169 	if (__kvm_set_dr(vcpu, dr, val)) {
1170 		kvm_inject_gp(vcpu, 0);
1171 		return 1;
1172 	}
1173 	return 0;
1174 }
1175 EXPORT_SYMBOL_GPL(kvm_set_dr);
1176 
kvm_get_dr(struct kvm_vcpu * vcpu,int dr,unsigned long * val)1177 int kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
1178 {
1179 	size_t size = ARRAY_SIZE(vcpu->arch.db);
1180 
1181 	switch (dr) {
1182 	case 0 ... 3:
1183 		*val = vcpu->arch.db[array_index_nospec(dr, size)];
1184 		break;
1185 	case 4:
1186 	case 6:
1187 		*val = vcpu->arch.dr6;
1188 		break;
1189 	case 5:
1190 	default: /* 7 */
1191 		*val = vcpu->arch.dr7;
1192 		break;
1193 	}
1194 	return 0;
1195 }
1196 EXPORT_SYMBOL_GPL(kvm_get_dr);
1197 
kvm_rdpmc(struct kvm_vcpu * vcpu)1198 bool kvm_rdpmc(struct kvm_vcpu *vcpu)
1199 {
1200 	u32 ecx = kvm_rcx_read(vcpu);
1201 	u64 data;
1202 	int err;
1203 
1204 	err = kvm_pmu_rdpmc(vcpu, ecx, &data);
1205 	if (err)
1206 		return err;
1207 	kvm_rax_write(vcpu, (u32)data);
1208 	kvm_rdx_write(vcpu, data >> 32);
1209 	return err;
1210 }
1211 EXPORT_SYMBOL_GPL(kvm_rdpmc);
1212 
1213 /*
1214  * List of msr numbers which we expose to userspace through KVM_GET_MSRS
1215  * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
1216  *
1217  * The three MSR lists(msrs_to_save, emulated_msrs, msr_based_features)
1218  * extract the supported MSRs from the related const lists.
1219  * msrs_to_save is selected from the msrs_to_save_all to reflect the
1220  * capabilities of the host cpu. This capabilities test skips MSRs that are
1221  * kvm-specific. Those are put in emulated_msrs_all; filtering of emulated_msrs
1222  * may depend on host virtualization features rather than host cpu features.
1223  */
1224 
1225 static const u32 msrs_to_save_all[] = {
1226 	MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
1227 	MSR_STAR,
1228 #ifdef CONFIG_X86_64
1229 	MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
1230 #endif
1231 	MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA,
1232 	MSR_IA32_FEAT_CTL, MSR_IA32_BNDCFGS, MSR_TSC_AUX,
1233 	MSR_IA32_SPEC_CTRL,
1234 	MSR_IA32_RTIT_CTL, MSR_IA32_RTIT_STATUS, MSR_IA32_RTIT_CR3_MATCH,
1235 	MSR_IA32_RTIT_OUTPUT_BASE, MSR_IA32_RTIT_OUTPUT_MASK,
1236 	MSR_IA32_RTIT_ADDR0_A, MSR_IA32_RTIT_ADDR0_B,
1237 	MSR_IA32_RTIT_ADDR1_A, MSR_IA32_RTIT_ADDR1_B,
1238 	MSR_IA32_RTIT_ADDR2_A, MSR_IA32_RTIT_ADDR2_B,
1239 	MSR_IA32_RTIT_ADDR3_A, MSR_IA32_RTIT_ADDR3_B,
1240 	MSR_IA32_UMWAIT_CONTROL,
1241 
1242 	MSR_ARCH_PERFMON_FIXED_CTR0, MSR_ARCH_PERFMON_FIXED_CTR1,
1243 	MSR_ARCH_PERFMON_FIXED_CTR0 + 2,
1244 	MSR_CORE_PERF_FIXED_CTR_CTRL, MSR_CORE_PERF_GLOBAL_STATUS,
1245 	MSR_CORE_PERF_GLOBAL_CTRL, MSR_CORE_PERF_GLOBAL_OVF_CTRL,
1246 	MSR_ARCH_PERFMON_PERFCTR0, MSR_ARCH_PERFMON_PERFCTR1,
1247 	MSR_ARCH_PERFMON_PERFCTR0 + 2, MSR_ARCH_PERFMON_PERFCTR0 + 3,
1248 	MSR_ARCH_PERFMON_PERFCTR0 + 4, MSR_ARCH_PERFMON_PERFCTR0 + 5,
1249 	MSR_ARCH_PERFMON_PERFCTR0 + 6, MSR_ARCH_PERFMON_PERFCTR0 + 7,
1250 	MSR_ARCH_PERFMON_PERFCTR0 + 8, MSR_ARCH_PERFMON_PERFCTR0 + 9,
1251 	MSR_ARCH_PERFMON_PERFCTR0 + 10, MSR_ARCH_PERFMON_PERFCTR0 + 11,
1252 	MSR_ARCH_PERFMON_PERFCTR0 + 12, MSR_ARCH_PERFMON_PERFCTR0 + 13,
1253 	MSR_ARCH_PERFMON_PERFCTR0 + 14, MSR_ARCH_PERFMON_PERFCTR0 + 15,
1254 	MSR_ARCH_PERFMON_PERFCTR0 + 16, MSR_ARCH_PERFMON_PERFCTR0 + 17,
1255 	MSR_ARCH_PERFMON_EVENTSEL0, MSR_ARCH_PERFMON_EVENTSEL1,
1256 	MSR_ARCH_PERFMON_EVENTSEL0 + 2, MSR_ARCH_PERFMON_EVENTSEL0 + 3,
1257 	MSR_ARCH_PERFMON_EVENTSEL0 + 4, MSR_ARCH_PERFMON_EVENTSEL0 + 5,
1258 	MSR_ARCH_PERFMON_EVENTSEL0 + 6, MSR_ARCH_PERFMON_EVENTSEL0 + 7,
1259 	MSR_ARCH_PERFMON_EVENTSEL0 + 8, MSR_ARCH_PERFMON_EVENTSEL0 + 9,
1260 	MSR_ARCH_PERFMON_EVENTSEL0 + 10, MSR_ARCH_PERFMON_EVENTSEL0 + 11,
1261 	MSR_ARCH_PERFMON_EVENTSEL0 + 12, MSR_ARCH_PERFMON_EVENTSEL0 + 13,
1262 	MSR_ARCH_PERFMON_EVENTSEL0 + 14, MSR_ARCH_PERFMON_EVENTSEL0 + 15,
1263 	MSR_ARCH_PERFMON_EVENTSEL0 + 16, MSR_ARCH_PERFMON_EVENTSEL0 + 17,
1264 
1265 	MSR_K7_EVNTSEL0, MSR_K7_EVNTSEL1, MSR_K7_EVNTSEL2, MSR_K7_EVNTSEL3,
1266 	MSR_K7_PERFCTR0, MSR_K7_PERFCTR1, MSR_K7_PERFCTR2, MSR_K7_PERFCTR3,
1267 	MSR_F15H_PERF_CTL0, MSR_F15H_PERF_CTL1, MSR_F15H_PERF_CTL2,
1268 	MSR_F15H_PERF_CTL3, MSR_F15H_PERF_CTL4, MSR_F15H_PERF_CTL5,
1269 	MSR_F15H_PERF_CTR0, MSR_F15H_PERF_CTR1, MSR_F15H_PERF_CTR2,
1270 	MSR_F15H_PERF_CTR3, MSR_F15H_PERF_CTR4, MSR_F15H_PERF_CTR5,
1271 };
1272 
1273 static u32 msrs_to_save[ARRAY_SIZE(msrs_to_save_all)];
1274 static unsigned num_msrs_to_save;
1275 
1276 static const u32 emulated_msrs_all[] = {
1277 	MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
1278 	MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW,
1279 	HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL,
1280 	HV_X64_MSR_TIME_REF_COUNT, HV_X64_MSR_REFERENCE_TSC,
1281 	HV_X64_MSR_TSC_FREQUENCY, HV_X64_MSR_APIC_FREQUENCY,
1282 	HV_X64_MSR_CRASH_P0, HV_X64_MSR_CRASH_P1, HV_X64_MSR_CRASH_P2,
1283 	HV_X64_MSR_CRASH_P3, HV_X64_MSR_CRASH_P4, HV_X64_MSR_CRASH_CTL,
1284 	HV_X64_MSR_RESET,
1285 	HV_X64_MSR_VP_INDEX,
1286 	HV_X64_MSR_VP_RUNTIME,
1287 	HV_X64_MSR_SCONTROL,
1288 	HV_X64_MSR_STIMER0_CONFIG,
1289 	HV_X64_MSR_VP_ASSIST_PAGE,
1290 	HV_X64_MSR_REENLIGHTENMENT_CONTROL, HV_X64_MSR_TSC_EMULATION_CONTROL,
1291 	HV_X64_MSR_TSC_EMULATION_STATUS,
1292 	HV_X64_MSR_SYNDBG_OPTIONS,
1293 	HV_X64_MSR_SYNDBG_CONTROL, HV_X64_MSR_SYNDBG_STATUS,
1294 	HV_X64_MSR_SYNDBG_SEND_BUFFER, HV_X64_MSR_SYNDBG_RECV_BUFFER,
1295 	HV_X64_MSR_SYNDBG_PENDING_BUFFER,
1296 
1297 	MSR_KVM_ASYNC_PF_EN, MSR_KVM_STEAL_TIME,
1298 	MSR_KVM_PV_EOI_EN, MSR_KVM_ASYNC_PF_INT, MSR_KVM_ASYNC_PF_ACK,
1299 
1300 	MSR_IA32_TSC_ADJUST,
1301 	MSR_IA32_TSCDEADLINE,
1302 	MSR_IA32_ARCH_CAPABILITIES,
1303 	MSR_IA32_PERF_CAPABILITIES,
1304 	MSR_IA32_MISC_ENABLE,
1305 	MSR_IA32_MCG_STATUS,
1306 	MSR_IA32_MCG_CTL,
1307 	MSR_IA32_MCG_EXT_CTL,
1308 	MSR_IA32_SMBASE,
1309 	MSR_SMI_COUNT,
1310 	MSR_PLATFORM_INFO,
1311 	MSR_MISC_FEATURES_ENABLES,
1312 	MSR_AMD64_VIRT_SPEC_CTRL,
1313 	MSR_IA32_POWER_CTL,
1314 	MSR_IA32_UCODE_REV,
1315 
1316 	/*
1317 	 * The following list leaves out MSRs whose values are determined
1318 	 * by arch/x86/kvm/vmx/nested.c based on CPUID or other MSRs.
1319 	 * We always support the "true" VMX control MSRs, even if the host
1320 	 * processor does not, so I am putting these registers here rather
1321 	 * than in msrs_to_save_all.
1322 	 */
1323 	MSR_IA32_VMX_BASIC,
1324 	MSR_IA32_VMX_TRUE_PINBASED_CTLS,
1325 	MSR_IA32_VMX_TRUE_PROCBASED_CTLS,
1326 	MSR_IA32_VMX_TRUE_EXIT_CTLS,
1327 	MSR_IA32_VMX_TRUE_ENTRY_CTLS,
1328 	MSR_IA32_VMX_MISC,
1329 	MSR_IA32_VMX_CR0_FIXED0,
1330 	MSR_IA32_VMX_CR4_FIXED0,
1331 	MSR_IA32_VMX_VMCS_ENUM,
1332 	MSR_IA32_VMX_PROCBASED_CTLS2,
1333 	MSR_IA32_VMX_EPT_VPID_CAP,
1334 	MSR_IA32_VMX_VMFUNC,
1335 
1336 	MSR_K7_HWCR,
1337 	MSR_KVM_POLL_CONTROL,
1338 };
1339 
1340 static u32 emulated_msrs[ARRAY_SIZE(emulated_msrs_all)];
1341 static unsigned num_emulated_msrs;
1342 
1343 /*
1344  * List of msr numbers which are used to expose MSR-based features that
1345  * can be used by a hypervisor to validate requested CPU features.
1346  */
1347 static const u32 msr_based_features_all[] = {
1348 	MSR_IA32_VMX_BASIC,
1349 	MSR_IA32_VMX_TRUE_PINBASED_CTLS,
1350 	MSR_IA32_VMX_PINBASED_CTLS,
1351 	MSR_IA32_VMX_TRUE_PROCBASED_CTLS,
1352 	MSR_IA32_VMX_PROCBASED_CTLS,
1353 	MSR_IA32_VMX_TRUE_EXIT_CTLS,
1354 	MSR_IA32_VMX_EXIT_CTLS,
1355 	MSR_IA32_VMX_TRUE_ENTRY_CTLS,
1356 	MSR_IA32_VMX_ENTRY_CTLS,
1357 	MSR_IA32_VMX_MISC,
1358 	MSR_IA32_VMX_CR0_FIXED0,
1359 	MSR_IA32_VMX_CR0_FIXED1,
1360 	MSR_IA32_VMX_CR4_FIXED0,
1361 	MSR_IA32_VMX_CR4_FIXED1,
1362 	MSR_IA32_VMX_VMCS_ENUM,
1363 	MSR_IA32_VMX_PROCBASED_CTLS2,
1364 	MSR_IA32_VMX_EPT_VPID_CAP,
1365 	MSR_IA32_VMX_VMFUNC,
1366 
1367 	MSR_AMD64_DE_CFG,
1368 	MSR_IA32_UCODE_REV,
1369 	MSR_IA32_ARCH_CAPABILITIES,
1370 	MSR_IA32_PERF_CAPABILITIES,
1371 };
1372 
1373 static u32 msr_based_features[ARRAY_SIZE(msr_based_features_all)];
1374 static unsigned int num_msr_based_features;
1375 
1376 /*
1377  * Some IA32_ARCH_CAPABILITIES bits have dependencies on MSRs that KVM
1378  * does not yet virtualize. These include:
1379  *   10 - MISC_PACKAGE_CTRLS
1380  *   11 - ENERGY_FILTERING_CTL
1381  *   12 - DOITM
1382  *   18 - FB_CLEAR_CTRL
1383  *   21 - XAPIC_DISABLE_STATUS
1384  *   23 - OVERCLOCKING_STATUS
1385  */
1386 
1387 #define KVM_SUPPORTED_ARCH_CAP \
1388 	(ARCH_CAP_RDCL_NO | ARCH_CAP_IBRS_ALL | ARCH_CAP_RSBA | \
1389 	 ARCH_CAP_SKIP_VMENTRY_L1DFLUSH | ARCH_CAP_SSB_NO | ARCH_CAP_MDS_NO | \
1390 	 ARCH_CAP_PSCHANGE_MC_NO | ARCH_CAP_TSX_CTRL_MSR | ARCH_CAP_TAA_NO | \
1391 	 ARCH_CAP_SBDR_SSDP_NO | ARCH_CAP_FBSDP_NO | ARCH_CAP_PSDP_NO | \
1392 	 ARCH_CAP_FB_CLEAR | ARCH_CAP_RRSBA | ARCH_CAP_PBRSB_NO)
1393 
kvm_get_arch_capabilities(void)1394 static u64 kvm_get_arch_capabilities(void)
1395 {
1396 	u64 data = 0;
1397 
1398 	if (boot_cpu_has(X86_FEATURE_ARCH_CAPABILITIES)) {
1399 		rdmsrl(MSR_IA32_ARCH_CAPABILITIES, data);
1400 		data &= KVM_SUPPORTED_ARCH_CAP;
1401 	}
1402 
1403 	/*
1404 	 * If nx_huge_pages is enabled, KVM's shadow paging will ensure that
1405 	 * the nested hypervisor runs with NX huge pages.  If it is not,
1406 	 * L1 is anyway vulnerable to ITLB_MULTIHIT explots from other
1407 	 * L1 guests, so it need not worry about its own (L2) guests.
1408 	 */
1409 	data |= ARCH_CAP_PSCHANGE_MC_NO;
1410 
1411 	/*
1412 	 * If we're doing cache flushes (either "always" or "cond")
1413 	 * we will do one whenever the guest does a vmlaunch/vmresume.
1414 	 * If an outer hypervisor is doing the cache flush for us
1415 	 * (VMENTER_L1D_FLUSH_NESTED_VM), we can safely pass that
1416 	 * capability to the guest too, and if EPT is disabled we're not
1417 	 * vulnerable.  Overall, only VMENTER_L1D_FLUSH_NEVER will
1418 	 * require a nested hypervisor to do a flush of its own.
1419 	 */
1420 	if (l1tf_vmx_mitigation != VMENTER_L1D_FLUSH_NEVER)
1421 		data |= ARCH_CAP_SKIP_VMENTRY_L1DFLUSH;
1422 
1423 	if (!boot_cpu_has_bug(X86_BUG_CPU_MELTDOWN))
1424 		data |= ARCH_CAP_RDCL_NO;
1425 	if (!boot_cpu_has_bug(X86_BUG_SPEC_STORE_BYPASS))
1426 		data |= ARCH_CAP_SSB_NO;
1427 	if (!boot_cpu_has_bug(X86_BUG_MDS))
1428 		data |= ARCH_CAP_MDS_NO;
1429 
1430 	if (!boot_cpu_has(X86_FEATURE_RTM)) {
1431 		/*
1432 		 * If RTM=0 because the kernel has disabled TSX, the host might
1433 		 * have TAA_NO or TSX_CTRL.  Clear TAA_NO (the guest sees RTM=0
1434 		 * and therefore knows that there cannot be TAA) but keep
1435 		 * TSX_CTRL: some buggy userspaces leave it set on tsx=on hosts,
1436 		 * and we want to allow migrating those guests to tsx=off hosts.
1437 		 */
1438 		data &= ~ARCH_CAP_TAA_NO;
1439 	} else if (!boot_cpu_has_bug(X86_BUG_TAA)) {
1440 		data |= ARCH_CAP_TAA_NO;
1441 	} else {
1442 		/*
1443 		 * Nothing to do here; we emulate TSX_CTRL if present on the
1444 		 * host so the guest can choose between disabling TSX or
1445 		 * using VERW to clear CPU buffers.
1446 		 */
1447 	}
1448 
1449 	return data;
1450 }
1451 
kvm_get_msr_feature(struct kvm_msr_entry * msr)1452 static int kvm_get_msr_feature(struct kvm_msr_entry *msr)
1453 {
1454 	switch (msr->index) {
1455 	case MSR_IA32_ARCH_CAPABILITIES:
1456 		msr->data = kvm_get_arch_capabilities();
1457 		break;
1458 	case MSR_IA32_UCODE_REV:
1459 		rdmsrl_safe(msr->index, &msr->data);
1460 		break;
1461 	default:
1462 		return kvm_x86_ops.get_msr_feature(msr);
1463 	}
1464 	return 0;
1465 }
1466 
do_get_msr_feature(struct kvm_vcpu * vcpu,unsigned index,u64 * data)1467 static int do_get_msr_feature(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1468 {
1469 	struct kvm_msr_entry msr;
1470 	int r;
1471 
1472 	msr.index = index;
1473 	r = kvm_get_msr_feature(&msr);
1474 
1475 	if (r == KVM_MSR_RET_INVALID) {
1476 		/* Unconditionally clear the output for simplicity */
1477 		*data = 0;
1478 		if (kvm_msr_ignored_check(vcpu, index, 0, false))
1479 			r = 0;
1480 	}
1481 
1482 	if (r)
1483 		return r;
1484 
1485 	*data = msr.data;
1486 
1487 	return 0;
1488 }
1489 
__kvm_valid_efer(struct kvm_vcpu * vcpu,u64 efer)1490 static bool __kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
1491 {
1492 	if (efer & EFER_FFXSR && !guest_cpuid_has(vcpu, X86_FEATURE_FXSR_OPT))
1493 		return false;
1494 
1495 	if (efer & EFER_SVME && !guest_cpuid_has(vcpu, X86_FEATURE_SVM))
1496 		return false;
1497 
1498 	if (efer & (EFER_LME | EFER_LMA) &&
1499 	    !guest_cpuid_has(vcpu, X86_FEATURE_LM))
1500 		return false;
1501 
1502 	if (efer & EFER_NX && !guest_cpuid_has(vcpu, X86_FEATURE_NX))
1503 		return false;
1504 
1505 	return true;
1506 
1507 }
kvm_valid_efer(struct kvm_vcpu * vcpu,u64 efer)1508 bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
1509 {
1510 	if (efer & efer_reserved_bits)
1511 		return false;
1512 
1513 	return __kvm_valid_efer(vcpu, efer);
1514 }
1515 EXPORT_SYMBOL_GPL(kvm_valid_efer);
1516 
set_efer(struct kvm_vcpu * vcpu,struct msr_data * msr_info)1517 static int set_efer(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
1518 {
1519 	u64 old_efer = vcpu->arch.efer;
1520 	u64 efer = msr_info->data;
1521 	int r;
1522 
1523 	if (efer & efer_reserved_bits)
1524 		return 1;
1525 
1526 	if (!msr_info->host_initiated) {
1527 		if (!__kvm_valid_efer(vcpu, efer))
1528 			return 1;
1529 
1530 		if (is_paging(vcpu) &&
1531 		    (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME))
1532 			return 1;
1533 	}
1534 
1535 	efer &= ~EFER_LMA;
1536 	efer |= vcpu->arch.efer & EFER_LMA;
1537 
1538 	r = kvm_x86_ops.set_efer(vcpu, efer);
1539 	if (r) {
1540 		WARN_ON(r > 0);
1541 		return r;
1542 	}
1543 
1544 	/* Update reserved bits */
1545 	if ((efer ^ old_efer) & EFER_NX)
1546 		kvm_mmu_reset_context(vcpu);
1547 
1548 	return 0;
1549 }
1550 
kvm_enable_efer_bits(u64 mask)1551 void kvm_enable_efer_bits(u64 mask)
1552 {
1553        efer_reserved_bits &= ~mask;
1554 }
1555 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
1556 
kvm_msr_allowed(struct kvm_vcpu * vcpu,u32 index,u32 type)1557 bool kvm_msr_allowed(struct kvm_vcpu *vcpu, u32 index, u32 type)
1558 {
1559 	struct kvm_x86_msr_filter *msr_filter;
1560 	struct msr_bitmap_range *ranges;
1561 	struct kvm *kvm = vcpu->kvm;
1562 	bool allowed;
1563 	int idx;
1564 	u32 i;
1565 
1566 	/* x2APIC MSRs do not support filtering. */
1567 	if (index >= 0x800 && index <= 0x8ff)
1568 		return true;
1569 
1570 	idx = srcu_read_lock(&kvm->srcu);
1571 
1572 	msr_filter = srcu_dereference(kvm->arch.msr_filter, &kvm->srcu);
1573 	if (!msr_filter) {
1574 		allowed = true;
1575 		goto out;
1576 	}
1577 
1578 	allowed = msr_filter->default_allow;
1579 	ranges = msr_filter->ranges;
1580 
1581 	for (i = 0; i < msr_filter->count; i++) {
1582 		u32 start = ranges[i].base;
1583 		u32 end = start + ranges[i].nmsrs;
1584 		u32 flags = ranges[i].flags;
1585 		unsigned long *bitmap = ranges[i].bitmap;
1586 
1587 		if ((index >= start) && (index < end) && (flags & type)) {
1588 			allowed = !!test_bit(index - start, bitmap);
1589 			break;
1590 		}
1591 	}
1592 
1593 out:
1594 	srcu_read_unlock(&kvm->srcu, idx);
1595 
1596 	return allowed;
1597 }
1598 EXPORT_SYMBOL_GPL(kvm_msr_allowed);
1599 
1600 /*
1601  * Write @data into the MSR specified by @index.  Select MSR specific fault
1602  * checks are bypassed if @host_initiated is %true.
1603  * Returns 0 on success, non-0 otherwise.
1604  * Assumes vcpu_load() was already called.
1605  */
__kvm_set_msr(struct kvm_vcpu * vcpu,u32 index,u64 data,bool host_initiated)1606 static int __kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data,
1607 			 bool host_initiated)
1608 {
1609 	struct msr_data msr;
1610 
1611 	if (!host_initiated && !kvm_msr_allowed(vcpu, index, KVM_MSR_FILTER_WRITE))
1612 		return KVM_MSR_RET_FILTERED;
1613 
1614 	switch (index) {
1615 	case MSR_FS_BASE:
1616 	case MSR_GS_BASE:
1617 	case MSR_KERNEL_GS_BASE:
1618 	case MSR_CSTAR:
1619 	case MSR_LSTAR:
1620 		if (is_noncanonical_address(data, vcpu))
1621 			return 1;
1622 		break;
1623 	case MSR_IA32_SYSENTER_EIP:
1624 	case MSR_IA32_SYSENTER_ESP:
1625 		/*
1626 		 * IA32_SYSENTER_ESP and IA32_SYSENTER_EIP cause #GP if
1627 		 * non-canonical address is written on Intel but not on
1628 		 * AMD (which ignores the top 32-bits, because it does
1629 		 * not implement 64-bit SYSENTER).
1630 		 *
1631 		 * 64-bit code should hence be able to write a non-canonical
1632 		 * value on AMD.  Making the address canonical ensures that
1633 		 * vmentry does not fail on Intel after writing a non-canonical
1634 		 * value, and that something deterministic happens if the guest
1635 		 * invokes 64-bit SYSENTER.
1636 		 */
1637 		data = get_canonical(data, vcpu_virt_addr_bits(vcpu));
1638 	}
1639 
1640 	msr.data = data;
1641 	msr.index = index;
1642 	msr.host_initiated = host_initiated;
1643 
1644 	return kvm_x86_ops.set_msr(vcpu, &msr);
1645 }
1646 
kvm_set_msr_ignored_check(struct kvm_vcpu * vcpu,u32 index,u64 data,bool host_initiated)1647 static int kvm_set_msr_ignored_check(struct kvm_vcpu *vcpu,
1648 				     u32 index, u64 data, bool host_initiated)
1649 {
1650 	int ret = __kvm_set_msr(vcpu, index, data, host_initiated);
1651 
1652 	if (ret == KVM_MSR_RET_INVALID)
1653 		if (kvm_msr_ignored_check(vcpu, index, data, true))
1654 			ret = 0;
1655 
1656 	return ret;
1657 }
1658 
1659 /*
1660  * Read the MSR specified by @index into @data.  Select MSR specific fault
1661  * checks are bypassed if @host_initiated is %true.
1662  * Returns 0 on success, non-0 otherwise.
1663  * Assumes vcpu_load() was already called.
1664  */
__kvm_get_msr(struct kvm_vcpu * vcpu,u32 index,u64 * data,bool host_initiated)1665 int __kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data,
1666 		  bool host_initiated)
1667 {
1668 	struct msr_data msr;
1669 	int ret;
1670 
1671 	if (!host_initiated && !kvm_msr_allowed(vcpu, index, KVM_MSR_FILTER_READ))
1672 		return KVM_MSR_RET_FILTERED;
1673 
1674 	msr.index = index;
1675 	msr.host_initiated = host_initiated;
1676 
1677 	ret = kvm_x86_ops.get_msr(vcpu, &msr);
1678 	if (!ret)
1679 		*data = msr.data;
1680 	return ret;
1681 }
1682 
kvm_get_msr_ignored_check(struct kvm_vcpu * vcpu,u32 index,u64 * data,bool host_initiated)1683 static int kvm_get_msr_ignored_check(struct kvm_vcpu *vcpu,
1684 				     u32 index, u64 *data, bool host_initiated)
1685 {
1686 	int ret = __kvm_get_msr(vcpu, index, data, host_initiated);
1687 
1688 	if (ret == KVM_MSR_RET_INVALID) {
1689 		/* Unconditionally clear *data for simplicity */
1690 		*data = 0;
1691 		if (kvm_msr_ignored_check(vcpu, index, 0, false))
1692 			ret = 0;
1693 	}
1694 
1695 	return ret;
1696 }
1697 
kvm_get_msr(struct kvm_vcpu * vcpu,u32 index,u64 * data)1698 int kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data)
1699 {
1700 	return kvm_get_msr_ignored_check(vcpu, index, data, false);
1701 }
1702 EXPORT_SYMBOL_GPL(kvm_get_msr);
1703 
kvm_set_msr(struct kvm_vcpu * vcpu,u32 index,u64 data)1704 int kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data)
1705 {
1706 	return kvm_set_msr_ignored_check(vcpu, index, data, false);
1707 }
1708 EXPORT_SYMBOL_GPL(kvm_set_msr);
1709 
complete_emulated_msr(struct kvm_vcpu * vcpu,bool is_read)1710 static int complete_emulated_msr(struct kvm_vcpu *vcpu, bool is_read)
1711 {
1712 	if (vcpu->run->msr.error) {
1713 		kvm_inject_gp(vcpu, 0);
1714 		return 1;
1715 	} else if (is_read) {
1716 		kvm_rax_write(vcpu, (u32)vcpu->run->msr.data);
1717 		kvm_rdx_write(vcpu, vcpu->run->msr.data >> 32);
1718 	}
1719 
1720 	return kvm_skip_emulated_instruction(vcpu);
1721 }
1722 
complete_emulated_rdmsr(struct kvm_vcpu * vcpu)1723 static int complete_emulated_rdmsr(struct kvm_vcpu *vcpu)
1724 {
1725 	return complete_emulated_msr(vcpu, true);
1726 }
1727 
complete_emulated_wrmsr(struct kvm_vcpu * vcpu)1728 static int complete_emulated_wrmsr(struct kvm_vcpu *vcpu)
1729 {
1730 	return complete_emulated_msr(vcpu, false);
1731 }
1732 
kvm_msr_reason(int r)1733 static u64 kvm_msr_reason(int r)
1734 {
1735 	switch (r) {
1736 	case KVM_MSR_RET_INVALID:
1737 		return KVM_MSR_EXIT_REASON_UNKNOWN;
1738 	case KVM_MSR_RET_FILTERED:
1739 		return KVM_MSR_EXIT_REASON_FILTER;
1740 	default:
1741 		return KVM_MSR_EXIT_REASON_INVAL;
1742 	}
1743 }
1744 
kvm_msr_user_space(struct kvm_vcpu * vcpu,u32 index,u32 exit_reason,u64 data,int (* completion)(struct kvm_vcpu * vcpu),int r)1745 static int kvm_msr_user_space(struct kvm_vcpu *vcpu, u32 index,
1746 			      u32 exit_reason, u64 data,
1747 			      int (*completion)(struct kvm_vcpu *vcpu),
1748 			      int r)
1749 {
1750 	u64 msr_reason = kvm_msr_reason(r);
1751 
1752 	/* Check if the user wanted to know about this MSR fault */
1753 	if (!(vcpu->kvm->arch.user_space_msr_mask & msr_reason))
1754 		return 0;
1755 
1756 	vcpu->run->exit_reason = exit_reason;
1757 	vcpu->run->msr.error = 0;
1758 	memset(vcpu->run->msr.pad, 0, sizeof(vcpu->run->msr.pad));
1759 	vcpu->run->msr.reason = msr_reason;
1760 	vcpu->run->msr.index = index;
1761 	vcpu->run->msr.data = data;
1762 	vcpu->arch.complete_userspace_io = completion;
1763 
1764 	return 1;
1765 }
1766 
kvm_get_msr_user_space(struct kvm_vcpu * vcpu,u32 index,int r)1767 static int kvm_get_msr_user_space(struct kvm_vcpu *vcpu, u32 index, int r)
1768 {
1769 	return kvm_msr_user_space(vcpu, index, KVM_EXIT_X86_RDMSR, 0,
1770 				   complete_emulated_rdmsr, r);
1771 }
1772 
kvm_set_msr_user_space(struct kvm_vcpu * vcpu,u32 index,u64 data,int r)1773 static int kvm_set_msr_user_space(struct kvm_vcpu *vcpu, u32 index, u64 data, int r)
1774 {
1775 	return kvm_msr_user_space(vcpu, index, KVM_EXIT_X86_WRMSR, data,
1776 				   complete_emulated_wrmsr, r);
1777 }
1778 
kvm_emulate_rdmsr(struct kvm_vcpu * vcpu)1779 int kvm_emulate_rdmsr(struct kvm_vcpu *vcpu)
1780 {
1781 	u32 ecx = kvm_rcx_read(vcpu);
1782 	u64 data;
1783 	int r;
1784 
1785 	r = kvm_get_msr(vcpu, ecx, &data);
1786 
1787 	/* MSR read failed? See if we should ask user space */
1788 	if (r && kvm_get_msr_user_space(vcpu, ecx, r)) {
1789 		/* Bounce to user space */
1790 		return 0;
1791 	}
1792 
1793 	/* MSR read failed? Inject a #GP */
1794 	if (r) {
1795 		trace_kvm_msr_read_ex(ecx);
1796 		kvm_inject_gp(vcpu, 0);
1797 		return 1;
1798 	}
1799 
1800 	trace_kvm_msr_read(ecx, data);
1801 
1802 	kvm_rax_write(vcpu, data & -1u);
1803 	kvm_rdx_write(vcpu, (data >> 32) & -1u);
1804 	return kvm_skip_emulated_instruction(vcpu);
1805 }
1806 EXPORT_SYMBOL_GPL(kvm_emulate_rdmsr);
1807 
kvm_emulate_wrmsr(struct kvm_vcpu * vcpu)1808 int kvm_emulate_wrmsr(struct kvm_vcpu *vcpu)
1809 {
1810 	u32 ecx = kvm_rcx_read(vcpu);
1811 	u64 data = kvm_read_edx_eax(vcpu);
1812 	int r;
1813 
1814 	r = kvm_set_msr(vcpu, ecx, data);
1815 
1816 	/* MSR write failed? See if we should ask user space */
1817 	if (r && kvm_set_msr_user_space(vcpu, ecx, data, r))
1818 		/* Bounce to user space */
1819 		return 0;
1820 
1821 	/* Signal all other negative errors to userspace */
1822 	if (r < 0)
1823 		return r;
1824 
1825 	/* MSR write failed? Inject a #GP */
1826 	if (r > 0) {
1827 		trace_kvm_msr_write_ex(ecx, data);
1828 		kvm_inject_gp(vcpu, 0);
1829 		return 1;
1830 	}
1831 
1832 	trace_kvm_msr_write(ecx, data);
1833 	return kvm_skip_emulated_instruction(vcpu);
1834 }
1835 EXPORT_SYMBOL_GPL(kvm_emulate_wrmsr);
1836 
kvm_vcpu_exit_request(struct kvm_vcpu * vcpu)1837 bool kvm_vcpu_exit_request(struct kvm_vcpu *vcpu)
1838 {
1839 	return vcpu->mode == EXITING_GUEST_MODE || kvm_request_pending(vcpu) ||
1840 		xfer_to_guest_mode_work_pending();
1841 }
1842 EXPORT_SYMBOL_GPL(kvm_vcpu_exit_request);
1843 
1844 /*
1845  * The fast path for frequent and performance sensitive wrmsr emulation,
1846  * i.e. the sending of IPI, sending IPI early in the VM-Exit flow reduces
1847  * the latency of virtual IPI by avoiding the expensive bits of transitioning
1848  * from guest to host, e.g. reacquiring KVM's SRCU lock. In contrast to the
1849  * other cases which must be called after interrupts are enabled on the host.
1850  */
handle_fastpath_set_x2apic_icr_irqoff(struct kvm_vcpu * vcpu,u64 data)1851 static int handle_fastpath_set_x2apic_icr_irqoff(struct kvm_vcpu *vcpu, u64 data)
1852 {
1853 	if (!lapic_in_kernel(vcpu) || !apic_x2apic_mode(vcpu->arch.apic))
1854 		return 1;
1855 
1856 	if (((data & APIC_SHORT_MASK) == APIC_DEST_NOSHORT) &&
1857 		((data & APIC_DEST_MASK) == APIC_DEST_PHYSICAL) &&
1858 		((data & APIC_MODE_MASK) == APIC_DM_FIXED) &&
1859 		((u32)(data >> 32) != X2APIC_BROADCAST)) {
1860 
1861 		data &= ~(1 << 12);
1862 		kvm_apic_send_ipi(vcpu->arch.apic, (u32)data, (u32)(data >> 32));
1863 		kvm_lapic_set_reg(vcpu->arch.apic, APIC_ICR2, (u32)(data >> 32));
1864 		kvm_lapic_set_reg(vcpu->arch.apic, APIC_ICR, (u32)data);
1865 		trace_kvm_apic_write(APIC_ICR, (u32)data);
1866 		return 0;
1867 	}
1868 
1869 	return 1;
1870 }
1871 
handle_fastpath_set_tscdeadline(struct kvm_vcpu * vcpu,u64 data)1872 static int handle_fastpath_set_tscdeadline(struct kvm_vcpu *vcpu, u64 data)
1873 {
1874 	if (!kvm_can_use_hv_timer(vcpu))
1875 		return 1;
1876 
1877 	kvm_set_lapic_tscdeadline_msr(vcpu, data);
1878 	return 0;
1879 }
1880 
handle_fastpath_set_msr_irqoff(struct kvm_vcpu * vcpu)1881 fastpath_t handle_fastpath_set_msr_irqoff(struct kvm_vcpu *vcpu)
1882 {
1883 	u32 msr = kvm_rcx_read(vcpu);
1884 	u64 data;
1885 	fastpath_t ret = EXIT_FASTPATH_NONE;
1886 
1887 	switch (msr) {
1888 	case APIC_BASE_MSR + (APIC_ICR >> 4):
1889 		data = kvm_read_edx_eax(vcpu);
1890 		if (!handle_fastpath_set_x2apic_icr_irqoff(vcpu, data)) {
1891 			kvm_skip_emulated_instruction(vcpu);
1892 			ret = EXIT_FASTPATH_EXIT_HANDLED;
1893 		}
1894 		break;
1895 	case MSR_IA32_TSCDEADLINE:
1896 		data = kvm_read_edx_eax(vcpu);
1897 		if (!handle_fastpath_set_tscdeadline(vcpu, data)) {
1898 			kvm_skip_emulated_instruction(vcpu);
1899 			ret = EXIT_FASTPATH_REENTER_GUEST;
1900 		}
1901 		break;
1902 	default:
1903 		break;
1904 	}
1905 
1906 	if (ret != EXIT_FASTPATH_NONE)
1907 		trace_kvm_msr_write(msr, data);
1908 
1909 	return ret;
1910 }
1911 EXPORT_SYMBOL_GPL(handle_fastpath_set_msr_irqoff);
1912 
1913 /*
1914  * Adapt set_msr() to msr_io()'s calling convention
1915  */
do_get_msr(struct kvm_vcpu * vcpu,unsigned index,u64 * data)1916 static int do_get_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1917 {
1918 	return kvm_get_msr_ignored_check(vcpu, index, data, true);
1919 }
1920 
do_set_msr(struct kvm_vcpu * vcpu,unsigned index,u64 * data)1921 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1922 {
1923 	return kvm_set_msr_ignored_check(vcpu, index, *data, true);
1924 }
1925 
1926 #ifdef CONFIG_X86_64
1927 struct pvclock_clock {
1928 	int vclock_mode;
1929 	u64 cycle_last;
1930 	u64 mask;
1931 	u32 mult;
1932 	u32 shift;
1933 	u64 base_cycles;
1934 	u64 offset;
1935 };
1936 
1937 struct pvclock_gtod_data {
1938 	seqcount_t	seq;
1939 
1940 	struct pvclock_clock clock; /* extract of a clocksource struct */
1941 	struct pvclock_clock raw_clock; /* extract of a clocksource struct */
1942 
1943 	ktime_t		offs_boot;
1944 	u64		wall_time_sec;
1945 };
1946 
1947 static struct pvclock_gtod_data pvclock_gtod_data;
1948 
update_pvclock_gtod(struct timekeeper * tk)1949 static void update_pvclock_gtod(struct timekeeper *tk)
1950 {
1951 	struct pvclock_gtod_data *vdata = &pvclock_gtod_data;
1952 
1953 	write_seqcount_begin(&vdata->seq);
1954 
1955 	/* copy pvclock gtod data */
1956 	vdata->clock.vclock_mode	= tk->tkr_mono.clock->vdso_clock_mode;
1957 	vdata->clock.cycle_last		= tk->tkr_mono.cycle_last;
1958 	vdata->clock.mask		= tk->tkr_mono.mask;
1959 	vdata->clock.mult		= tk->tkr_mono.mult;
1960 	vdata->clock.shift		= tk->tkr_mono.shift;
1961 	vdata->clock.base_cycles	= tk->tkr_mono.xtime_nsec;
1962 	vdata->clock.offset		= tk->tkr_mono.base;
1963 
1964 	vdata->raw_clock.vclock_mode	= tk->tkr_raw.clock->vdso_clock_mode;
1965 	vdata->raw_clock.cycle_last	= tk->tkr_raw.cycle_last;
1966 	vdata->raw_clock.mask		= tk->tkr_raw.mask;
1967 	vdata->raw_clock.mult		= tk->tkr_raw.mult;
1968 	vdata->raw_clock.shift		= tk->tkr_raw.shift;
1969 	vdata->raw_clock.base_cycles	= tk->tkr_raw.xtime_nsec;
1970 	vdata->raw_clock.offset		= tk->tkr_raw.base;
1971 
1972 	vdata->wall_time_sec            = tk->xtime_sec;
1973 
1974 	vdata->offs_boot		= tk->offs_boot;
1975 
1976 	write_seqcount_end(&vdata->seq);
1977 }
1978 
get_kvmclock_base_ns(void)1979 static s64 get_kvmclock_base_ns(void)
1980 {
1981 	/* Count up from boot time, but with the frequency of the raw clock.  */
1982 	return ktime_to_ns(ktime_add(ktime_get_raw(), pvclock_gtod_data.offs_boot));
1983 }
1984 #else
get_kvmclock_base_ns(void)1985 static s64 get_kvmclock_base_ns(void)
1986 {
1987 	/* Master clock not used, so we can just use CLOCK_BOOTTIME.  */
1988 	return ktime_get_boottime_ns();
1989 }
1990 #endif
1991 
kvm_write_wall_clock(struct kvm * kvm,gpa_t wall_clock)1992 static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock)
1993 {
1994 	int version;
1995 	int r;
1996 	struct pvclock_wall_clock wc;
1997 	u64 wall_nsec;
1998 
1999 	kvm->arch.wall_clock = wall_clock;
2000 
2001 	if (!wall_clock)
2002 		return;
2003 
2004 	r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version));
2005 	if (r)
2006 		return;
2007 
2008 	if (version & 1)
2009 		++version;  /* first time write, random junk */
2010 
2011 	++version;
2012 
2013 	if (kvm_write_guest(kvm, wall_clock, &version, sizeof(version)))
2014 		return;
2015 
2016 	/*
2017 	 * The guest calculates current wall clock time by adding
2018 	 * system time (updated by kvm_guest_time_update below) to the
2019 	 * wall clock specified here.  We do the reverse here.
2020 	 */
2021 	wall_nsec = ktime_get_real_ns() - get_kvmclock_ns(kvm);
2022 
2023 	wc.nsec = do_div(wall_nsec, 1000000000);
2024 	wc.sec = (u32)wall_nsec; /* overflow in 2106 guest time */
2025 	wc.version = version;
2026 
2027 	kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
2028 
2029 	version++;
2030 	kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
2031 }
2032 
kvm_write_system_time(struct kvm_vcpu * vcpu,gpa_t system_time,bool old_msr,bool host_initiated)2033 static void kvm_write_system_time(struct kvm_vcpu *vcpu, gpa_t system_time,
2034 				  bool old_msr, bool host_initiated)
2035 {
2036 	struct kvm_arch *ka = &vcpu->kvm->arch;
2037 
2038 	if (vcpu->vcpu_id == 0 && !host_initiated) {
2039 		if (ka->boot_vcpu_runs_old_kvmclock != old_msr)
2040 			kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
2041 
2042 		ka->boot_vcpu_runs_old_kvmclock = old_msr;
2043 	}
2044 
2045 	vcpu->arch.time = system_time;
2046 	kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
2047 
2048 	/* we verify if the enable bit is set... */
2049 	vcpu->arch.pv_time_enabled = false;
2050 	if (!(system_time & 1))
2051 		return;
2052 
2053 	if (!kvm_gfn_to_hva_cache_init(vcpu->kvm,
2054 				       &vcpu->arch.pv_time, system_time & ~1ULL,
2055 				       sizeof(struct pvclock_vcpu_time_info)))
2056 		vcpu->arch.pv_time_enabled = true;
2057 
2058 	return;
2059 }
2060 
div_frac(uint32_t dividend,uint32_t divisor)2061 static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
2062 {
2063 	do_shl32_div32(dividend, divisor);
2064 	return dividend;
2065 }
2066 
kvm_get_time_scale(uint64_t scaled_hz,uint64_t base_hz,s8 * pshift,u32 * pmultiplier)2067 static void kvm_get_time_scale(uint64_t scaled_hz, uint64_t base_hz,
2068 			       s8 *pshift, u32 *pmultiplier)
2069 {
2070 	uint64_t scaled64;
2071 	int32_t  shift = 0;
2072 	uint64_t tps64;
2073 	uint32_t tps32;
2074 
2075 	tps64 = base_hz;
2076 	scaled64 = scaled_hz;
2077 	while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) {
2078 		tps64 >>= 1;
2079 		shift--;
2080 	}
2081 
2082 	tps32 = (uint32_t)tps64;
2083 	while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) {
2084 		if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000)
2085 			scaled64 >>= 1;
2086 		else
2087 			tps32 <<= 1;
2088 		shift++;
2089 	}
2090 
2091 	*pshift = shift;
2092 	*pmultiplier = div_frac(scaled64, tps32);
2093 }
2094 
2095 #ifdef CONFIG_X86_64
2096 static atomic_t kvm_guest_has_master_clock = ATOMIC_INIT(0);
2097 #endif
2098 
2099 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
2100 static unsigned long max_tsc_khz;
2101 
adjust_tsc_khz(u32 khz,s32 ppm)2102 static u32 adjust_tsc_khz(u32 khz, s32 ppm)
2103 {
2104 	u64 v = (u64)khz * (1000000 + ppm);
2105 	do_div(v, 1000000);
2106 	return v;
2107 }
2108 
set_tsc_khz(struct kvm_vcpu * vcpu,u32 user_tsc_khz,bool scale)2109 static int set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz, bool scale)
2110 {
2111 	u64 ratio;
2112 
2113 	/* Guest TSC same frequency as host TSC? */
2114 	if (!scale) {
2115 		vcpu->arch.tsc_scaling_ratio = kvm_default_tsc_scaling_ratio;
2116 		return 0;
2117 	}
2118 
2119 	/* TSC scaling supported? */
2120 	if (!kvm_has_tsc_control) {
2121 		if (user_tsc_khz > tsc_khz) {
2122 			vcpu->arch.tsc_catchup = 1;
2123 			vcpu->arch.tsc_always_catchup = 1;
2124 			return 0;
2125 		} else {
2126 			pr_warn_ratelimited("user requested TSC rate below hardware speed\n");
2127 			return -1;
2128 		}
2129 	}
2130 
2131 	/* TSC scaling required  - calculate ratio */
2132 	ratio = mul_u64_u32_div(1ULL << kvm_tsc_scaling_ratio_frac_bits,
2133 				user_tsc_khz, tsc_khz);
2134 
2135 	if (ratio == 0 || ratio >= kvm_max_tsc_scaling_ratio) {
2136 		pr_warn_ratelimited("Invalid TSC scaling ratio - virtual-tsc-khz=%u\n",
2137 			            user_tsc_khz);
2138 		return -1;
2139 	}
2140 
2141 	vcpu->arch.tsc_scaling_ratio = ratio;
2142 	return 0;
2143 }
2144 
kvm_set_tsc_khz(struct kvm_vcpu * vcpu,u32 user_tsc_khz)2145 static int kvm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz)
2146 {
2147 	u32 thresh_lo, thresh_hi;
2148 	int use_scaling = 0;
2149 
2150 	/* tsc_khz can be zero if TSC calibration fails */
2151 	if (user_tsc_khz == 0) {
2152 		/* set tsc_scaling_ratio to a safe value */
2153 		vcpu->arch.tsc_scaling_ratio = kvm_default_tsc_scaling_ratio;
2154 		return -1;
2155 	}
2156 
2157 	/* Compute a scale to convert nanoseconds in TSC cycles */
2158 	kvm_get_time_scale(user_tsc_khz * 1000LL, NSEC_PER_SEC,
2159 			   &vcpu->arch.virtual_tsc_shift,
2160 			   &vcpu->arch.virtual_tsc_mult);
2161 	vcpu->arch.virtual_tsc_khz = user_tsc_khz;
2162 
2163 	/*
2164 	 * Compute the variation in TSC rate which is acceptable
2165 	 * within the range of tolerance and decide if the
2166 	 * rate being applied is within that bounds of the hardware
2167 	 * rate.  If so, no scaling or compensation need be done.
2168 	 */
2169 	thresh_lo = adjust_tsc_khz(tsc_khz, -tsc_tolerance_ppm);
2170 	thresh_hi = adjust_tsc_khz(tsc_khz, tsc_tolerance_ppm);
2171 	if (user_tsc_khz < thresh_lo || user_tsc_khz > thresh_hi) {
2172 		pr_debug("kvm: requested TSC rate %u falls outside tolerance [%u,%u]\n", user_tsc_khz, thresh_lo, thresh_hi);
2173 		use_scaling = 1;
2174 	}
2175 	return set_tsc_khz(vcpu, user_tsc_khz, use_scaling);
2176 }
2177 
compute_guest_tsc(struct kvm_vcpu * vcpu,s64 kernel_ns)2178 static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns)
2179 {
2180 	u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.this_tsc_nsec,
2181 				      vcpu->arch.virtual_tsc_mult,
2182 				      vcpu->arch.virtual_tsc_shift);
2183 	tsc += vcpu->arch.this_tsc_write;
2184 	return tsc;
2185 }
2186 
gtod_is_based_on_tsc(int mode)2187 static inline int gtod_is_based_on_tsc(int mode)
2188 {
2189 	return mode == VDSO_CLOCKMODE_TSC || mode == VDSO_CLOCKMODE_HVCLOCK;
2190 }
2191 
kvm_track_tsc_matching(struct kvm_vcpu * vcpu)2192 static void kvm_track_tsc_matching(struct kvm_vcpu *vcpu)
2193 {
2194 #ifdef CONFIG_X86_64
2195 	bool vcpus_matched;
2196 	struct kvm_arch *ka = &vcpu->kvm->arch;
2197 	struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
2198 
2199 	vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
2200 			 atomic_read(&vcpu->kvm->online_vcpus));
2201 
2202 	/*
2203 	 * Once the masterclock is enabled, always perform request in
2204 	 * order to update it.
2205 	 *
2206 	 * In order to enable masterclock, the host clocksource must be TSC
2207 	 * and the vcpus need to have matched TSCs.  When that happens,
2208 	 * perform request to enable masterclock.
2209 	 */
2210 	if (ka->use_master_clock ||
2211 	    (gtod_is_based_on_tsc(gtod->clock.vclock_mode) && vcpus_matched))
2212 		kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
2213 
2214 	trace_kvm_track_tsc(vcpu->vcpu_id, ka->nr_vcpus_matched_tsc,
2215 			    atomic_read(&vcpu->kvm->online_vcpus),
2216 		            ka->use_master_clock, gtod->clock.vclock_mode);
2217 #endif
2218 }
2219 
2220 /*
2221  * Multiply tsc by a fixed point number represented by ratio.
2222  *
2223  * The most significant 64-N bits (mult) of ratio represent the
2224  * integral part of the fixed point number; the remaining N bits
2225  * (frac) represent the fractional part, ie. ratio represents a fixed
2226  * point number (mult + frac * 2^(-N)).
2227  *
2228  * N equals to kvm_tsc_scaling_ratio_frac_bits.
2229  */
__scale_tsc(u64 ratio,u64 tsc)2230 static inline u64 __scale_tsc(u64 ratio, u64 tsc)
2231 {
2232 	return mul_u64_u64_shr(tsc, ratio, kvm_tsc_scaling_ratio_frac_bits);
2233 }
2234 
kvm_scale_tsc(struct kvm_vcpu * vcpu,u64 tsc)2235 u64 kvm_scale_tsc(struct kvm_vcpu *vcpu, u64 tsc)
2236 {
2237 	u64 _tsc = tsc;
2238 	u64 ratio = vcpu->arch.tsc_scaling_ratio;
2239 
2240 	if (ratio != kvm_default_tsc_scaling_ratio)
2241 		_tsc = __scale_tsc(ratio, tsc);
2242 
2243 	return _tsc;
2244 }
2245 EXPORT_SYMBOL_GPL(kvm_scale_tsc);
2246 
kvm_compute_tsc_offset(struct kvm_vcpu * vcpu,u64 target_tsc)2247 static u64 kvm_compute_tsc_offset(struct kvm_vcpu *vcpu, u64 target_tsc)
2248 {
2249 	u64 tsc;
2250 
2251 	tsc = kvm_scale_tsc(vcpu, rdtsc());
2252 
2253 	return target_tsc - tsc;
2254 }
2255 
kvm_read_l1_tsc(struct kvm_vcpu * vcpu,u64 host_tsc)2256 u64 kvm_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc)
2257 {
2258 	return vcpu->arch.l1_tsc_offset + kvm_scale_tsc(vcpu, host_tsc);
2259 }
2260 EXPORT_SYMBOL_GPL(kvm_read_l1_tsc);
2261 
kvm_vcpu_write_tsc_offset(struct kvm_vcpu * vcpu,u64 offset)2262 static void kvm_vcpu_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
2263 {
2264 	vcpu->arch.l1_tsc_offset = offset;
2265 	vcpu->arch.tsc_offset = kvm_x86_ops.write_l1_tsc_offset(vcpu, offset);
2266 }
2267 
kvm_check_tsc_unstable(void)2268 static inline bool kvm_check_tsc_unstable(void)
2269 {
2270 #ifdef CONFIG_X86_64
2271 	/*
2272 	 * TSC is marked unstable when we're running on Hyper-V,
2273 	 * 'TSC page' clocksource is good.
2274 	 */
2275 	if (pvclock_gtod_data.clock.vclock_mode == VDSO_CLOCKMODE_HVCLOCK)
2276 		return false;
2277 #endif
2278 	return check_tsc_unstable();
2279 }
2280 
kvm_synchronize_tsc(struct kvm_vcpu * vcpu,u64 data)2281 static void kvm_synchronize_tsc(struct kvm_vcpu *vcpu, u64 data)
2282 {
2283 	struct kvm *kvm = vcpu->kvm;
2284 	u64 offset, ns, elapsed;
2285 	unsigned long flags;
2286 	bool matched;
2287 	bool already_matched;
2288 	bool synchronizing = false;
2289 
2290 	raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
2291 	offset = kvm_compute_tsc_offset(vcpu, data);
2292 	ns = get_kvmclock_base_ns();
2293 	elapsed = ns - kvm->arch.last_tsc_nsec;
2294 
2295 	if (vcpu->arch.virtual_tsc_khz) {
2296 		if (data == 0) {
2297 			/*
2298 			 * detection of vcpu initialization -- need to sync
2299 			 * with other vCPUs. This particularly helps to keep
2300 			 * kvm_clock stable after CPU hotplug
2301 			 */
2302 			synchronizing = true;
2303 		} else {
2304 			u64 tsc_exp = kvm->arch.last_tsc_write +
2305 						nsec_to_cycles(vcpu, elapsed);
2306 			u64 tsc_hz = vcpu->arch.virtual_tsc_khz * 1000LL;
2307 			/*
2308 			 * Special case: TSC write with a small delta (1 second)
2309 			 * of virtual cycle time against real time is
2310 			 * interpreted as an attempt to synchronize the CPU.
2311 			 */
2312 			synchronizing = data < tsc_exp + tsc_hz &&
2313 					data + tsc_hz > tsc_exp;
2314 		}
2315 	}
2316 
2317 	/*
2318 	 * For a reliable TSC, we can match TSC offsets, and for an unstable
2319 	 * TSC, we add elapsed time in this computation.  We could let the
2320 	 * compensation code attempt to catch up if we fall behind, but
2321 	 * it's better to try to match offsets from the beginning.
2322          */
2323 	if (synchronizing &&
2324 	    vcpu->arch.virtual_tsc_khz == kvm->arch.last_tsc_khz) {
2325 		if (!kvm_check_tsc_unstable()) {
2326 			offset = kvm->arch.cur_tsc_offset;
2327 		} else {
2328 			u64 delta = nsec_to_cycles(vcpu, elapsed);
2329 			data += delta;
2330 			offset = kvm_compute_tsc_offset(vcpu, data);
2331 		}
2332 		matched = true;
2333 		already_matched = (vcpu->arch.this_tsc_generation == kvm->arch.cur_tsc_generation);
2334 	} else {
2335 		/*
2336 		 * We split periods of matched TSC writes into generations.
2337 		 * For each generation, we track the original measured
2338 		 * nanosecond time, offset, and write, so if TSCs are in
2339 		 * sync, we can match exact offset, and if not, we can match
2340 		 * exact software computation in compute_guest_tsc()
2341 		 *
2342 		 * These values are tracked in kvm->arch.cur_xxx variables.
2343 		 */
2344 		kvm->arch.cur_tsc_generation++;
2345 		kvm->arch.cur_tsc_nsec = ns;
2346 		kvm->arch.cur_tsc_write = data;
2347 		kvm->arch.cur_tsc_offset = offset;
2348 		matched = false;
2349 	}
2350 
2351 	/*
2352 	 * We also track th most recent recorded KHZ, write and time to
2353 	 * allow the matching interval to be extended at each write.
2354 	 */
2355 	kvm->arch.last_tsc_nsec = ns;
2356 	kvm->arch.last_tsc_write = data;
2357 	kvm->arch.last_tsc_khz = vcpu->arch.virtual_tsc_khz;
2358 
2359 	vcpu->arch.last_guest_tsc = data;
2360 
2361 	/* Keep track of which generation this VCPU has synchronized to */
2362 	vcpu->arch.this_tsc_generation = kvm->arch.cur_tsc_generation;
2363 	vcpu->arch.this_tsc_nsec = kvm->arch.cur_tsc_nsec;
2364 	vcpu->arch.this_tsc_write = kvm->arch.cur_tsc_write;
2365 
2366 	kvm_vcpu_write_tsc_offset(vcpu, offset);
2367 	raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
2368 
2369 	spin_lock(&kvm->arch.pvclock_gtod_sync_lock);
2370 	if (!matched) {
2371 		kvm->arch.nr_vcpus_matched_tsc = 0;
2372 	} else if (!already_matched) {
2373 		kvm->arch.nr_vcpus_matched_tsc++;
2374 	}
2375 
2376 	kvm_track_tsc_matching(vcpu);
2377 	spin_unlock(&kvm->arch.pvclock_gtod_sync_lock);
2378 }
2379 
adjust_tsc_offset_guest(struct kvm_vcpu * vcpu,s64 adjustment)2380 static inline void adjust_tsc_offset_guest(struct kvm_vcpu *vcpu,
2381 					   s64 adjustment)
2382 {
2383 	u64 tsc_offset = vcpu->arch.l1_tsc_offset;
2384 	kvm_vcpu_write_tsc_offset(vcpu, tsc_offset + adjustment);
2385 }
2386 
adjust_tsc_offset_host(struct kvm_vcpu * vcpu,s64 adjustment)2387 static inline void adjust_tsc_offset_host(struct kvm_vcpu *vcpu, s64 adjustment)
2388 {
2389 	if (vcpu->arch.tsc_scaling_ratio != kvm_default_tsc_scaling_ratio)
2390 		WARN_ON(adjustment < 0);
2391 	adjustment = kvm_scale_tsc(vcpu, (u64) adjustment);
2392 	adjust_tsc_offset_guest(vcpu, adjustment);
2393 }
2394 
2395 #ifdef CONFIG_X86_64
2396 
read_tsc(void)2397 static u64 read_tsc(void)
2398 {
2399 	u64 ret = (u64)rdtsc_ordered();
2400 	u64 last = pvclock_gtod_data.clock.cycle_last;
2401 
2402 	if (likely(ret >= last))
2403 		return ret;
2404 
2405 	/*
2406 	 * GCC likes to generate cmov here, but this branch is extremely
2407 	 * predictable (it's just a function of time and the likely is
2408 	 * very likely) and there's a data dependence, so force GCC
2409 	 * to generate a branch instead.  I don't barrier() because
2410 	 * we don't actually need a barrier, and if this function
2411 	 * ever gets inlined it will generate worse code.
2412 	 */
2413 	asm volatile ("");
2414 	return last;
2415 }
2416 
vgettsc(struct pvclock_clock * clock,u64 * tsc_timestamp,int * mode)2417 static inline u64 vgettsc(struct pvclock_clock *clock, u64 *tsc_timestamp,
2418 			  int *mode)
2419 {
2420 	long v;
2421 	u64 tsc_pg_val;
2422 
2423 	switch (clock->vclock_mode) {
2424 	case VDSO_CLOCKMODE_HVCLOCK:
2425 		tsc_pg_val = hv_read_tsc_page_tsc(hv_get_tsc_page(),
2426 						  tsc_timestamp);
2427 		if (tsc_pg_val != U64_MAX) {
2428 			/* TSC page valid */
2429 			*mode = VDSO_CLOCKMODE_HVCLOCK;
2430 			v = (tsc_pg_val - clock->cycle_last) &
2431 				clock->mask;
2432 		} else {
2433 			/* TSC page invalid */
2434 			*mode = VDSO_CLOCKMODE_NONE;
2435 		}
2436 		break;
2437 	case VDSO_CLOCKMODE_TSC:
2438 		*mode = VDSO_CLOCKMODE_TSC;
2439 		*tsc_timestamp = read_tsc();
2440 		v = (*tsc_timestamp - clock->cycle_last) &
2441 			clock->mask;
2442 		break;
2443 	default:
2444 		*mode = VDSO_CLOCKMODE_NONE;
2445 	}
2446 
2447 	if (*mode == VDSO_CLOCKMODE_NONE)
2448 		*tsc_timestamp = v = 0;
2449 
2450 	return v * clock->mult;
2451 }
2452 
do_monotonic_raw(s64 * t,u64 * tsc_timestamp)2453 static int do_monotonic_raw(s64 *t, u64 *tsc_timestamp)
2454 {
2455 	struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
2456 	unsigned long seq;
2457 	int mode;
2458 	u64 ns;
2459 
2460 	do {
2461 		seq = read_seqcount_begin(&gtod->seq);
2462 		ns = gtod->raw_clock.base_cycles;
2463 		ns += vgettsc(&gtod->raw_clock, tsc_timestamp, &mode);
2464 		ns >>= gtod->raw_clock.shift;
2465 		ns += ktime_to_ns(ktime_add(gtod->raw_clock.offset, gtod->offs_boot));
2466 	} while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
2467 	*t = ns;
2468 
2469 	return mode;
2470 }
2471 
do_realtime(struct timespec64 * ts,u64 * tsc_timestamp)2472 static int do_realtime(struct timespec64 *ts, u64 *tsc_timestamp)
2473 {
2474 	struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
2475 	unsigned long seq;
2476 	int mode;
2477 	u64 ns;
2478 
2479 	do {
2480 		seq = read_seqcount_begin(&gtod->seq);
2481 		ts->tv_sec = gtod->wall_time_sec;
2482 		ns = gtod->clock.base_cycles;
2483 		ns += vgettsc(&gtod->clock, tsc_timestamp, &mode);
2484 		ns >>= gtod->clock.shift;
2485 	} while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
2486 
2487 	ts->tv_sec += __iter_div_u64_rem(ns, NSEC_PER_SEC, &ns);
2488 	ts->tv_nsec = ns;
2489 
2490 	return mode;
2491 }
2492 
2493 /* returns true if host is using TSC based clocksource */
kvm_get_time_and_clockread(s64 * kernel_ns,u64 * tsc_timestamp)2494 static bool kvm_get_time_and_clockread(s64 *kernel_ns, u64 *tsc_timestamp)
2495 {
2496 	/* checked again under seqlock below */
2497 	if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode))
2498 		return false;
2499 
2500 	return gtod_is_based_on_tsc(do_monotonic_raw(kernel_ns,
2501 						      tsc_timestamp));
2502 }
2503 
2504 /* returns true if host is using TSC based clocksource */
kvm_get_walltime_and_clockread(struct timespec64 * ts,u64 * tsc_timestamp)2505 static bool kvm_get_walltime_and_clockread(struct timespec64 *ts,
2506 					   u64 *tsc_timestamp)
2507 {
2508 	/* checked again under seqlock below */
2509 	if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode))
2510 		return false;
2511 
2512 	return gtod_is_based_on_tsc(do_realtime(ts, tsc_timestamp));
2513 }
2514 #endif
2515 
2516 /*
2517  *
2518  * Assuming a stable TSC across physical CPUS, and a stable TSC
2519  * across virtual CPUs, the following condition is possible.
2520  * Each numbered line represents an event visible to both
2521  * CPUs at the next numbered event.
2522  *
2523  * "timespecX" represents host monotonic time. "tscX" represents
2524  * RDTSC value.
2525  *
2526  * 		VCPU0 on CPU0		|	VCPU1 on CPU1
2527  *
2528  * 1.  read timespec0,tsc0
2529  * 2.					| timespec1 = timespec0 + N
2530  * 					| tsc1 = tsc0 + M
2531  * 3. transition to guest		| transition to guest
2532  * 4. ret0 = timespec0 + (rdtsc - tsc0) |
2533  * 5.				        | ret1 = timespec1 + (rdtsc - tsc1)
2534  * 				        | ret1 = timespec0 + N + (rdtsc - (tsc0 + M))
2535  *
2536  * Since ret0 update is visible to VCPU1 at time 5, to obey monotonicity:
2537  *
2538  * 	- ret0 < ret1
2539  *	- timespec0 + (rdtsc - tsc0) < timespec0 + N + (rdtsc - (tsc0 + M))
2540  *		...
2541  *	- 0 < N - M => M < N
2542  *
2543  * That is, when timespec0 != timespec1, M < N. Unfortunately that is not
2544  * always the case (the difference between two distinct xtime instances
2545  * might be smaller then the difference between corresponding TSC reads,
2546  * when updating guest vcpus pvclock areas).
2547  *
2548  * To avoid that problem, do not allow visibility of distinct
2549  * system_timestamp/tsc_timestamp values simultaneously: use a master
2550  * copy of host monotonic time values. Update that master copy
2551  * in lockstep.
2552  *
2553  * Rely on synchronization of host TSCs and guest TSCs for monotonicity.
2554  *
2555  */
2556 
pvclock_update_vm_gtod_copy(struct kvm * kvm)2557 static void pvclock_update_vm_gtod_copy(struct kvm *kvm)
2558 {
2559 #ifdef CONFIG_X86_64
2560 	struct kvm_arch *ka = &kvm->arch;
2561 	int vclock_mode;
2562 	bool host_tsc_clocksource, vcpus_matched;
2563 
2564 	vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
2565 			atomic_read(&kvm->online_vcpus));
2566 
2567 	/*
2568 	 * If the host uses TSC clock, then passthrough TSC as stable
2569 	 * to the guest.
2570 	 */
2571 	host_tsc_clocksource = kvm_get_time_and_clockread(
2572 					&ka->master_kernel_ns,
2573 					&ka->master_cycle_now);
2574 
2575 	ka->use_master_clock = host_tsc_clocksource && vcpus_matched
2576 				&& !ka->backwards_tsc_observed
2577 				&& !ka->boot_vcpu_runs_old_kvmclock;
2578 
2579 	if (ka->use_master_clock)
2580 		atomic_set(&kvm_guest_has_master_clock, 1);
2581 
2582 	vclock_mode = pvclock_gtod_data.clock.vclock_mode;
2583 	trace_kvm_update_master_clock(ka->use_master_clock, vclock_mode,
2584 					vcpus_matched);
2585 #endif
2586 }
2587 
kvm_make_mclock_inprogress_request(struct kvm * kvm)2588 void kvm_make_mclock_inprogress_request(struct kvm *kvm)
2589 {
2590 	kvm_make_all_cpus_request(kvm, KVM_REQ_MCLOCK_INPROGRESS);
2591 }
2592 
kvm_gen_update_masterclock(struct kvm * kvm)2593 static void kvm_gen_update_masterclock(struct kvm *kvm)
2594 {
2595 #ifdef CONFIG_X86_64
2596 	int i;
2597 	struct kvm_vcpu *vcpu;
2598 	struct kvm_arch *ka = &kvm->arch;
2599 
2600 	spin_lock(&ka->pvclock_gtod_sync_lock);
2601 	kvm_make_mclock_inprogress_request(kvm);
2602 	/* no guest entries from this point */
2603 	pvclock_update_vm_gtod_copy(kvm);
2604 
2605 	kvm_for_each_vcpu(i, vcpu, kvm)
2606 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
2607 
2608 	/* guest entries allowed */
2609 	kvm_for_each_vcpu(i, vcpu, kvm)
2610 		kvm_clear_request(KVM_REQ_MCLOCK_INPROGRESS, vcpu);
2611 
2612 	spin_unlock(&ka->pvclock_gtod_sync_lock);
2613 #endif
2614 }
2615 
get_kvmclock_ns(struct kvm * kvm)2616 u64 get_kvmclock_ns(struct kvm *kvm)
2617 {
2618 	struct kvm_arch *ka = &kvm->arch;
2619 	struct pvclock_vcpu_time_info hv_clock;
2620 	u64 ret;
2621 
2622 	spin_lock(&ka->pvclock_gtod_sync_lock);
2623 	if (!ka->use_master_clock) {
2624 		spin_unlock(&ka->pvclock_gtod_sync_lock);
2625 		return get_kvmclock_base_ns() + ka->kvmclock_offset;
2626 	}
2627 
2628 	hv_clock.tsc_timestamp = ka->master_cycle_now;
2629 	hv_clock.system_time = ka->master_kernel_ns + ka->kvmclock_offset;
2630 	spin_unlock(&ka->pvclock_gtod_sync_lock);
2631 
2632 	/* both __this_cpu_read() and rdtsc() should be on the same cpu */
2633 	get_cpu();
2634 
2635 	if (__this_cpu_read(cpu_tsc_khz)) {
2636 		kvm_get_time_scale(NSEC_PER_SEC, __this_cpu_read(cpu_tsc_khz) * 1000LL,
2637 				   &hv_clock.tsc_shift,
2638 				   &hv_clock.tsc_to_system_mul);
2639 		ret = __pvclock_read_cycles(&hv_clock, rdtsc());
2640 	} else
2641 		ret = get_kvmclock_base_ns() + ka->kvmclock_offset;
2642 
2643 	put_cpu();
2644 
2645 	return ret;
2646 }
2647 
kvm_setup_pvclock_page(struct kvm_vcpu * v)2648 static void kvm_setup_pvclock_page(struct kvm_vcpu *v)
2649 {
2650 	struct kvm_vcpu_arch *vcpu = &v->arch;
2651 	struct pvclock_vcpu_time_info guest_hv_clock;
2652 
2653 	if (unlikely(kvm_read_guest_cached(v->kvm, &vcpu->pv_time,
2654 		&guest_hv_clock, sizeof(guest_hv_clock))))
2655 		return;
2656 
2657 	/* This VCPU is paused, but it's legal for a guest to read another
2658 	 * VCPU's kvmclock, so we really have to follow the specification where
2659 	 * it says that version is odd if data is being modified, and even after
2660 	 * it is consistent.
2661 	 *
2662 	 * Version field updates must be kept separate.  This is because
2663 	 * kvm_write_guest_cached might use a "rep movs" instruction, and
2664 	 * writes within a string instruction are weakly ordered.  So there
2665 	 * are three writes overall.
2666 	 *
2667 	 * As a small optimization, only write the version field in the first
2668 	 * and third write.  The vcpu->pv_time cache is still valid, because the
2669 	 * version field is the first in the struct.
2670 	 */
2671 	BUILD_BUG_ON(offsetof(struct pvclock_vcpu_time_info, version) != 0);
2672 
2673 	if (guest_hv_clock.version & 1)
2674 		++guest_hv_clock.version;  /* first time write, random junk */
2675 
2676 	vcpu->hv_clock.version = guest_hv_clock.version + 1;
2677 	kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
2678 				&vcpu->hv_clock,
2679 				sizeof(vcpu->hv_clock.version));
2680 
2681 	smp_wmb();
2682 
2683 	/* retain PVCLOCK_GUEST_STOPPED if set in guest copy */
2684 	vcpu->hv_clock.flags |= (guest_hv_clock.flags & PVCLOCK_GUEST_STOPPED);
2685 
2686 	if (vcpu->pvclock_set_guest_stopped_request) {
2687 		vcpu->hv_clock.flags |= PVCLOCK_GUEST_STOPPED;
2688 		vcpu->pvclock_set_guest_stopped_request = false;
2689 	}
2690 
2691 	trace_kvm_pvclock_update(v->vcpu_id, &vcpu->hv_clock);
2692 
2693 	kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
2694 				&vcpu->hv_clock,
2695 				sizeof(vcpu->hv_clock));
2696 
2697 	smp_wmb();
2698 
2699 	vcpu->hv_clock.version++;
2700 	kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
2701 				&vcpu->hv_clock,
2702 				sizeof(vcpu->hv_clock.version));
2703 }
2704 
kvm_guest_time_update(struct kvm_vcpu * v)2705 static int kvm_guest_time_update(struct kvm_vcpu *v)
2706 {
2707 	unsigned long flags, tgt_tsc_khz;
2708 	struct kvm_vcpu_arch *vcpu = &v->arch;
2709 	struct kvm_arch *ka = &v->kvm->arch;
2710 	s64 kernel_ns;
2711 	u64 tsc_timestamp, host_tsc;
2712 	u8 pvclock_flags;
2713 	bool use_master_clock;
2714 
2715 	kernel_ns = 0;
2716 	host_tsc = 0;
2717 
2718 	/*
2719 	 * If the host uses TSC clock, then passthrough TSC as stable
2720 	 * to the guest.
2721 	 */
2722 	spin_lock(&ka->pvclock_gtod_sync_lock);
2723 	use_master_clock = ka->use_master_clock;
2724 	if (use_master_clock) {
2725 		host_tsc = ka->master_cycle_now;
2726 		kernel_ns = ka->master_kernel_ns;
2727 	}
2728 	spin_unlock(&ka->pvclock_gtod_sync_lock);
2729 
2730 	/* Keep irq disabled to prevent changes to the clock */
2731 	local_irq_save(flags);
2732 	tgt_tsc_khz = __this_cpu_read(cpu_tsc_khz);
2733 	if (unlikely(tgt_tsc_khz == 0)) {
2734 		local_irq_restore(flags);
2735 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
2736 		return 1;
2737 	}
2738 	if (!use_master_clock) {
2739 		host_tsc = rdtsc();
2740 		kernel_ns = get_kvmclock_base_ns();
2741 	}
2742 
2743 	tsc_timestamp = kvm_read_l1_tsc(v, host_tsc);
2744 
2745 	/*
2746 	 * We may have to catch up the TSC to match elapsed wall clock
2747 	 * time for two reasons, even if kvmclock is used.
2748 	 *   1) CPU could have been running below the maximum TSC rate
2749 	 *   2) Broken TSC compensation resets the base at each VCPU
2750 	 *      entry to avoid unknown leaps of TSC even when running
2751 	 *      again on the same CPU.  This may cause apparent elapsed
2752 	 *      time to disappear, and the guest to stand still or run
2753 	 *	very slowly.
2754 	 */
2755 	if (vcpu->tsc_catchup) {
2756 		u64 tsc = compute_guest_tsc(v, kernel_ns);
2757 		if (tsc > tsc_timestamp) {
2758 			adjust_tsc_offset_guest(v, tsc - tsc_timestamp);
2759 			tsc_timestamp = tsc;
2760 		}
2761 	}
2762 
2763 	local_irq_restore(flags);
2764 
2765 	/* With all the info we got, fill in the values */
2766 
2767 	if (kvm_has_tsc_control)
2768 		tgt_tsc_khz = kvm_scale_tsc(v, tgt_tsc_khz);
2769 
2770 	if (unlikely(vcpu->hw_tsc_khz != tgt_tsc_khz)) {
2771 		kvm_get_time_scale(NSEC_PER_SEC, tgt_tsc_khz * 1000LL,
2772 				   &vcpu->hv_clock.tsc_shift,
2773 				   &vcpu->hv_clock.tsc_to_system_mul);
2774 		vcpu->hw_tsc_khz = tgt_tsc_khz;
2775 	}
2776 
2777 	vcpu->hv_clock.tsc_timestamp = tsc_timestamp;
2778 	vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset;
2779 	vcpu->last_guest_tsc = tsc_timestamp;
2780 
2781 	/* If the host uses TSC clocksource, then it is stable */
2782 	pvclock_flags = 0;
2783 	if (use_master_clock)
2784 		pvclock_flags |= PVCLOCK_TSC_STABLE_BIT;
2785 
2786 	vcpu->hv_clock.flags = pvclock_flags;
2787 
2788 	if (vcpu->pv_time_enabled)
2789 		kvm_setup_pvclock_page(v);
2790 	if (v == kvm_get_vcpu(v->kvm, 0))
2791 		kvm_hv_setup_tsc_page(v->kvm, &vcpu->hv_clock);
2792 	return 0;
2793 }
2794 
2795 /*
2796  * kvmclock updates which are isolated to a given vcpu, such as
2797  * vcpu->cpu migration, should not allow system_timestamp from
2798  * the rest of the vcpus to remain static. Otherwise ntp frequency
2799  * correction applies to one vcpu's system_timestamp but not
2800  * the others.
2801  *
2802  * So in those cases, request a kvmclock update for all vcpus.
2803  * We need to rate-limit these requests though, as they can
2804  * considerably slow guests that have a large number of vcpus.
2805  * The time for a remote vcpu to update its kvmclock is bound
2806  * by the delay we use to rate-limit the updates.
2807  */
2808 
2809 #define KVMCLOCK_UPDATE_DELAY msecs_to_jiffies(100)
2810 
kvmclock_update_fn(struct work_struct * work)2811 static void kvmclock_update_fn(struct work_struct *work)
2812 {
2813 	int i;
2814 	struct delayed_work *dwork = to_delayed_work(work);
2815 	struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
2816 					   kvmclock_update_work);
2817 	struct kvm *kvm = container_of(ka, struct kvm, arch);
2818 	struct kvm_vcpu *vcpu;
2819 
2820 	kvm_for_each_vcpu(i, vcpu, kvm) {
2821 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
2822 		kvm_vcpu_kick(vcpu);
2823 	}
2824 }
2825 
kvm_gen_kvmclock_update(struct kvm_vcpu * v)2826 static void kvm_gen_kvmclock_update(struct kvm_vcpu *v)
2827 {
2828 	struct kvm *kvm = v->kvm;
2829 
2830 	kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
2831 	schedule_delayed_work(&kvm->arch.kvmclock_update_work,
2832 					KVMCLOCK_UPDATE_DELAY);
2833 }
2834 
2835 #define KVMCLOCK_SYNC_PERIOD (300 * HZ)
2836 
kvmclock_sync_fn(struct work_struct * work)2837 static void kvmclock_sync_fn(struct work_struct *work)
2838 {
2839 	struct delayed_work *dwork = to_delayed_work(work);
2840 	struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
2841 					   kvmclock_sync_work);
2842 	struct kvm *kvm = container_of(ka, struct kvm, arch);
2843 
2844 	if (!kvmclock_periodic_sync)
2845 		return;
2846 
2847 	schedule_delayed_work(&kvm->arch.kvmclock_update_work, 0);
2848 	schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
2849 					KVMCLOCK_SYNC_PERIOD);
2850 }
2851 
2852 /*
2853  * On AMD, HWCR[McStatusWrEn] controls whether setting MCi_STATUS results in #GP.
2854  */
can_set_mci_status(struct kvm_vcpu * vcpu)2855 static bool can_set_mci_status(struct kvm_vcpu *vcpu)
2856 {
2857 	/* McStatusWrEn enabled? */
2858 	if (guest_cpuid_is_amd_or_hygon(vcpu))
2859 		return !!(vcpu->arch.msr_hwcr & BIT_ULL(18));
2860 
2861 	return false;
2862 }
2863 
set_msr_mce(struct kvm_vcpu * vcpu,struct msr_data * msr_info)2864 static int set_msr_mce(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2865 {
2866 	u64 mcg_cap = vcpu->arch.mcg_cap;
2867 	unsigned bank_num = mcg_cap & 0xff;
2868 	u32 msr = msr_info->index;
2869 	u64 data = msr_info->data;
2870 
2871 	switch (msr) {
2872 	case MSR_IA32_MCG_STATUS:
2873 		vcpu->arch.mcg_status = data;
2874 		break;
2875 	case MSR_IA32_MCG_CTL:
2876 		if (!(mcg_cap & MCG_CTL_P) &&
2877 		    (data || !msr_info->host_initiated))
2878 			return 1;
2879 		if (data != 0 && data != ~(u64)0)
2880 			return 1;
2881 		vcpu->arch.mcg_ctl = data;
2882 		break;
2883 	default:
2884 		if (msr >= MSR_IA32_MC0_CTL &&
2885 		    msr < MSR_IA32_MCx_CTL(bank_num)) {
2886 			u32 offset = array_index_nospec(
2887 				msr - MSR_IA32_MC0_CTL,
2888 				MSR_IA32_MCx_CTL(bank_num) - MSR_IA32_MC0_CTL);
2889 
2890 			/* only 0 or all 1s can be written to IA32_MCi_CTL
2891 			 * some Linux kernels though clear bit 10 in bank 4 to
2892 			 * workaround a BIOS/GART TBL issue on AMD K8s, ignore
2893 			 * this to avoid an uncatched #GP in the guest.
2894 			 *
2895 			 * UNIXWARE clears bit 0 of MC1_CTL to ignore
2896 			 * correctable, single-bit ECC data errors.
2897 			 */
2898 			if ((offset & 0x3) == 0 &&
2899 			    data != 0 && (data | (1 << 10) | 1) != ~(u64)0)
2900 				return 1;
2901 
2902 			/* MCi_STATUS */
2903 			if (!msr_info->host_initiated &&
2904 			    (offset & 0x3) == 1 && data != 0) {
2905 				if (!can_set_mci_status(vcpu))
2906 					return 1;
2907 			}
2908 
2909 			vcpu->arch.mce_banks[offset] = data;
2910 			break;
2911 		}
2912 		return 1;
2913 	}
2914 	return 0;
2915 }
2916 
xen_hvm_config(struct kvm_vcpu * vcpu,u64 data)2917 static int xen_hvm_config(struct kvm_vcpu *vcpu, u64 data)
2918 {
2919 	struct kvm *kvm = vcpu->kvm;
2920 	int lm = is_long_mode(vcpu);
2921 	u8 *blob_addr = lm ? (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_64
2922 		: (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_32;
2923 	u8 blob_size = lm ? kvm->arch.xen_hvm_config.blob_size_64
2924 		: kvm->arch.xen_hvm_config.blob_size_32;
2925 	u32 page_num = data & ~PAGE_MASK;
2926 	u64 page_addr = data & PAGE_MASK;
2927 	u8 *page;
2928 
2929 	if (page_num >= blob_size)
2930 		return 1;
2931 
2932 	page = memdup_user(blob_addr + (page_num * PAGE_SIZE), PAGE_SIZE);
2933 	if (IS_ERR(page))
2934 		return PTR_ERR(page);
2935 
2936 	if (kvm_vcpu_write_guest(vcpu, page_addr, page, PAGE_SIZE)) {
2937 		kfree(page);
2938 		return 1;
2939 	}
2940 	return 0;
2941 }
2942 
kvm_pv_async_pf_enabled(struct kvm_vcpu * vcpu)2943 static inline bool kvm_pv_async_pf_enabled(struct kvm_vcpu *vcpu)
2944 {
2945 	u64 mask = KVM_ASYNC_PF_ENABLED | KVM_ASYNC_PF_DELIVERY_AS_INT;
2946 
2947 	return (vcpu->arch.apf.msr_en_val & mask) == mask;
2948 }
2949 
kvm_pv_enable_async_pf(struct kvm_vcpu * vcpu,u64 data)2950 static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data)
2951 {
2952 	gpa_t gpa = data & ~0x3f;
2953 
2954 	/* Bits 4:5 are reserved, Should be zero */
2955 	if (data & 0x30)
2956 		return 1;
2957 
2958 	if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_VMEXIT) &&
2959 	    (data & KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT))
2960 		return 1;
2961 
2962 	if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT) &&
2963 	    (data & KVM_ASYNC_PF_DELIVERY_AS_INT))
2964 		return 1;
2965 
2966 	if (!lapic_in_kernel(vcpu))
2967 		return data ? 1 : 0;
2968 
2969 	vcpu->arch.apf.msr_en_val = data;
2970 
2971 	if (!kvm_pv_async_pf_enabled(vcpu)) {
2972 		kvm_clear_async_pf_completion_queue(vcpu);
2973 		kvm_async_pf_hash_reset(vcpu);
2974 		return 0;
2975 	}
2976 
2977 	if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa,
2978 					sizeof(u64)))
2979 		return 1;
2980 
2981 	vcpu->arch.apf.send_user_only = !(data & KVM_ASYNC_PF_SEND_ALWAYS);
2982 	vcpu->arch.apf.delivery_as_pf_vmexit = data & KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT;
2983 
2984 	kvm_async_pf_wakeup_all(vcpu);
2985 
2986 	return 0;
2987 }
2988 
kvm_pv_enable_async_pf_int(struct kvm_vcpu * vcpu,u64 data)2989 static int kvm_pv_enable_async_pf_int(struct kvm_vcpu *vcpu, u64 data)
2990 {
2991 	/* Bits 8-63 are reserved */
2992 	if (data >> 8)
2993 		return 1;
2994 
2995 	if (!lapic_in_kernel(vcpu))
2996 		return 1;
2997 
2998 	vcpu->arch.apf.msr_int_val = data;
2999 
3000 	vcpu->arch.apf.vec = data & KVM_ASYNC_PF_VEC_MASK;
3001 
3002 	return 0;
3003 }
3004 
kvmclock_reset(struct kvm_vcpu * vcpu)3005 static void kvmclock_reset(struct kvm_vcpu *vcpu)
3006 {
3007 	vcpu->arch.pv_time_enabled = false;
3008 	vcpu->arch.time = 0;
3009 }
3010 
kvm_vcpu_flush_tlb_all(struct kvm_vcpu * vcpu)3011 static void kvm_vcpu_flush_tlb_all(struct kvm_vcpu *vcpu)
3012 {
3013 	++vcpu->stat.tlb_flush;
3014 	kvm_x86_ops.tlb_flush_all(vcpu);
3015 }
3016 
kvm_vcpu_flush_tlb_guest(struct kvm_vcpu * vcpu)3017 static void kvm_vcpu_flush_tlb_guest(struct kvm_vcpu *vcpu)
3018 {
3019 	++vcpu->stat.tlb_flush;
3020 	kvm_x86_ops.tlb_flush_guest(vcpu);
3021 }
3022 
record_steal_time(struct kvm_vcpu * vcpu)3023 static void record_steal_time(struct kvm_vcpu *vcpu)
3024 {
3025 	struct kvm_host_map map;
3026 	struct kvm_steal_time *st;
3027 
3028 	if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
3029 		return;
3030 
3031 	/* -EAGAIN is returned in atomic context so we can just return. */
3032 	if (kvm_map_gfn(vcpu, vcpu->arch.st.msr_val >> PAGE_SHIFT,
3033 			&map, &vcpu->arch.st.cache, false))
3034 		return;
3035 
3036 	st = map.hva +
3037 		offset_in_page(vcpu->arch.st.msr_val & KVM_STEAL_VALID_BITS);
3038 
3039 	/*
3040 	 * Doing a TLB flush here, on the guest's behalf, can avoid
3041 	 * expensive IPIs.
3042 	 */
3043 	if (guest_pv_has(vcpu, KVM_FEATURE_PV_TLB_FLUSH)) {
3044 		trace_kvm_pv_tlb_flush(vcpu->vcpu_id,
3045 				       st->preempted & KVM_VCPU_FLUSH_TLB);
3046 		if (xchg(&st->preempted, 0) & KVM_VCPU_FLUSH_TLB)
3047 			kvm_vcpu_flush_tlb_guest(vcpu);
3048 	} else {
3049 		st->preempted = 0;
3050 	}
3051 
3052 	vcpu->arch.st.preempted = 0;
3053 
3054 	if (st->version & 1)
3055 		st->version += 1;  /* first time write, random junk */
3056 
3057 	st->version += 1;
3058 
3059 	smp_wmb();
3060 
3061 	st->steal += current->sched_info.run_delay -
3062 		vcpu->arch.st.last_steal;
3063 	vcpu->arch.st.last_steal = current->sched_info.run_delay;
3064 
3065 	smp_wmb();
3066 
3067 	st->version += 1;
3068 
3069 	kvm_unmap_gfn(vcpu, &map, &vcpu->arch.st.cache, true, false);
3070 }
3071 
kvm_set_msr_common(struct kvm_vcpu * vcpu,struct msr_data * msr_info)3072 int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
3073 {
3074 	bool pr = false;
3075 	u32 msr = msr_info->index;
3076 	u64 data = msr_info->data;
3077 
3078 	switch (msr) {
3079 	case MSR_AMD64_NB_CFG:
3080 	case MSR_IA32_UCODE_WRITE:
3081 	case MSR_VM_HSAVE_PA:
3082 	case MSR_AMD64_PATCH_LOADER:
3083 	case MSR_AMD64_BU_CFG2:
3084 	case MSR_AMD64_DC_CFG:
3085 	case MSR_F15H_EX_CFG:
3086 		break;
3087 
3088 	case MSR_IA32_UCODE_REV:
3089 		if (msr_info->host_initiated)
3090 			vcpu->arch.microcode_version = data;
3091 		break;
3092 	case MSR_IA32_ARCH_CAPABILITIES:
3093 		if (!msr_info->host_initiated)
3094 			return 1;
3095 		vcpu->arch.arch_capabilities = data;
3096 		break;
3097 	case MSR_IA32_PERF_CAPABILITIES: {
3098 		struct kvm_msr_entry msr_ent = {.index = msr, .data = 0};
3099 
3100 		if (!msr_info->host_initiated)
3101 			return 1;
3102 		if (kvm_get_msr_feature(&msr_ent))
3103 			return 1;
3104 		if (data & ~msr_ent.data)
3105 			return 1;
3106 
3107 		vcpu->arch.perf_capabilities = data;
3108 
3109 		return 0;
3110 		}
3111 	case MSR_EFER:
3112 		return set_efer(vcpu, msr_info);
3113 	case MSR_K7_HWCR:
3114 		data &= ~(u64)0x40;	/* ignore flush filter disable */
3115 		data &= ~(u64)0x100;	/* ignore ignne emulation enable */
3116 		data &= ~(u64)0x8;	/* ignore TLB cache disable */
3117 
3118 		/* Handle McStatusWrEn */
3119 		if (data == BIT_ULL(18)) {
3120 			vcpu->arch.msr_hwcr = data;
3121 		} else if (data != 0) {
3122 			vcpu_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n",
3123 				    data);
3124 			return 1;
3125 		}
3126 		break;
3127 	case MSR_FAM10H_MMIO_CONF_BASE:
3128 		if (data != 0) {
3129 			vcpu_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: "
3130 				    "0x%llx\n", data);
3131 			return 1;
3132 		}
3133 		break;
3134 	case MSR_IA32_DEBUGCTLMSR:
3135 		if (!data) {
3136 			/* We support the non-activated case already */
3137 			break;
3138 		} else if (data & ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_BTF)) {
3139 			/* Values other than LBR and BTF are vendor-specific,
3140 			   thus reserved and should throw a #GP */
3141 			return 1;
3142 		} else if (report_ignored_msrs)
3143 			vcpu_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n",
3144 				    __func__, data);
3145 		break;
3146 	case 0x200 ... 0x2ff:
3147 		return kvm_mtrr_set_msr(vcpu, msr, data);
3148 	case MSR_IA32_APICBASE:
3149 		return kvm_set_apic_base(vcpu, msr_info);
3150 	case APIC_BASE_MSR ... APIC_BASE_MSR + 0xff:
3151 		return kvm_x2apic_msr_write(vcpu, msr, data);
3152 	case MSR_IA32_TSCDEADLINE:
3153 		kvm_set_lapic_tscdeadline_msr(vcpu, data);
3154 		break;
3155 	case MSR_IA32_TSC_ADJUST:
3156 		if (guest_cpuid_has(vcpu, X86_FEATURE_TSC_ADJUST)) {
3157 			if (!msr_info->host_initiated) {
3158 				s64 adj = data - vcpu->arch.ia32_tsc_adjust_msr;
3159 				adjust_tsc_offset_guest(vcpu, adj);
3160 				/* Before back to guest, tsc_timestamp must be adjusted
3161 				 * as well, otherwise guest's percpu pvclock time could jump.
3162 				 */
3163 				kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3164 			}
3165 			vcpu->arch.ia32_tsc_adjust_msr = data;
3166 		}
3167 		break;
3168 	case MSR_IA32_MISC_ENABLE:
3169 		if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_MISC_ENABLE_NO_MWAIT) &&
3170 		    ((vcpu->arch.ia32_misc_enable_msr ^ data) & MSR_IA32_MISC_ENABLE_MWAIT)) {
3171 			if (!guest_cpuid_has(vcpu, X86_FEATURE_XMM3))
3172 				return 1;
3173 			vcpu->arch.ia32_misc_enable_msr = data;
3174 			kvm_update_cpuid_runtime(vcpu);
3175 		} else {
3176 			vcpu->arch.ia32_misc_enable_msr = data;
3177 		}
3178 		break;
3179 	case MSR_IA32_SMBASE:
3180 		if (!msr_info->host_initiated)
3181 			return 1;
3182 		vcpu->arch.smbase = data;
3183 		break;
3184 	case MSR_IA32_POWER_CTL:
3185 		vcpu->arch.msr_ia32_power_ctl = data;
3186 		break;
3187 	case MSR_IA32_TSC:
3188 		if (msr_info->host_initiated) {
3189 			kvm_synchronize_tsc(vcpu, data);
3190 		} else {
3191 			u64 adj = kvm_compute_tsc_offset(vcpu, data) - vcpu->arch.l1_tsc_offset;
3192 			adjust_tsc_offset_guest(vcpu, adj);
3193 			vcpu->arch.ia32_tsc_adjust_msr += adj;
3194 		}
3195 		break;
3196 	case MSR_IA32_XSS:
3197 		if (!msr_info->host_initiated &&
3198 		    !guest_cpuid_has(vcpu, X86_FEATURE_XSAVES))
3199 			return 1;
3200 		/*
3201 		 * KVM supports exposing PT to the guest, but does not support
3202 		 * IA32_XSS[bit 8]. Guests have to use RDMSR/WRMSR rather than
3203 		 * XSAVES/XRSTORS to save/restore PT MSRs.
3204 		 */
3205 		if (data & ~supported_xss)
3206 			return 1;
3207 		vcpu->arch.ia32_xss = data;
3208 		kvm_update_cpuid_runtime(vcpu);
3209 		break;
3210 	case MSR_SMI_COUNT:
3211 		if (!msr_info->host_initiated)
3212 			return 1;
3213 		vcpu->arch.smi_count = data;
3214 		break;
3215 	case MSR_KVM_WALL_CLOCK_NEW:
3216 		if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
3217 			return 1;
3218 
3219 		kvm_write_wall_clock(vcpu->kvm, data);
3220 		break;
3221 	case MSR_KVM_WALL_CLOCK:
3222 		if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
3223 			return 1;
3224 
3225 		kvm_write_wall_clock(vcpu->kvm, data);
3226 		break;
3227 	case MSR_KVM_SYSTEM_TIME_NEW:
3228 		if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
3229 			return 1;
3230 
3231 		kvm_write_system_time(vcpu, data, false, msr_info->host_initiated);
3232 		break;
3233 	case MSR_KVM_SYSTEM_TIME:
3234 		if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
3235 			return 1;
3236 
3237 		kvm_write_system_time(vcpu, data, true,  msr_info->host_initiated);
3238 		break;
3239 	case MSR_KVM_ASYNC_PF_EN:
3240 		if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF))
3241 			return 1;
3242 
3243 		if (kvm_pv_enable_async_pf(vcpu, data))
3244 			return 1;
3245 		break;
3246 	case MSR_KVM_ASYNC_PF_INT:
3247 		if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
3248 			return 1;
3249 
3250 		if (kvm_pv_enable_async_pf_int(vcpu, data))
3251 			return 1;
3252 		break;
3253 	case MSR_KVM_ASYNC_PF_ACK:
3254 		if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
3255 			return 1;
3256 		if (data & 0x1) {
3257 			vcpu->arch.apf.pageready_pending = false;
3258 			kvm_check_async_pf_completion(vcpu);
3259 		}
3260 		break;
3261 	case MSR_KVM_STEAL_TIME:
3262 		if (!guest_pv_has(vcpu, KVM_FEATURE_STEAL_TIME))
3263 			return 1;
3264 
3265 		if (unlikely(!sched_info_on()))
3266 			return 1;
3267 
3268 		if (data & KVM_STEAL_RESERVED_MASK)
3269 			return 1;
3270 
3271 		vcpu->arch.st.msr_val = data;
3272 
3273 		if (!(data & KVM_MSR_ENABLED))
3274 			break;
3275 
3276 		kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
3277 
3278 		break;
3279 	case MSR_KVM_PV_EOI_EN:
3280 		if (!guest_pv_has(vcpu, KVM_FEATURE_PV_EOI))
3281 			return 1;
3282 
3283 		if (kvm_lapic_enable_pv_eoi(vcpu, data, sizeof(u8)))
3284 			return 1;
3285 		break;
3286 
3287 	case MSR_KVM_POLL_CONTROL:
3288 		if (!guest_pv_has(vcpu, KVM_FEATURE_POLL_CONTROL))
3289 			return 1;
3290 
3291 		/* only enable bit supported */
3292 		if (data & (-1ULL << 1))
3293 			return 1;
3294 
3295 		vcpu->arch.msr_kvm_poll_control = data;
3296 		break;
3297 
3298 	case MSR_IA32_MCG_CTL:
3299 	case MSR_IA32_MCG_STATUS:
3300 	case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
3301 		return set_msr_mce(vcpu, msr_info);
3302 
3303 	case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
3304 	case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
3305 		pr = true;
3306 		fallthrough;
3307 	case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
3308 	case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
3309 		if (kvm_pmu_is_valid_msr(vcpu, msr))
3310 			return kvm_pmu_set_msr(vcpu, msr_info);
3311 
3312 		if (pr || data != 0)
3313 			vcpu_unimpl(vcpu, "disabled perfctr wrmsr: "
3314 				    "0x%x data 0x%llx\n", msr, data);
3315 		break;
3316 	case MSR_K7_CLK_CTL:
3317 		/*
3318 		 * Ignore all writes to this no longer documented MSR.
3319 		 * Writes are only relevant for old K7 processors,
3320 		 * all pre-dating SVM, but a recommended workaround from
3321 		 * AMD for these chips. It is possible to specify the
3322 		 * affected processor models on the command line, hence
3323 		 * the need to ignore the workaround.
3324 		 */
3325 		break;
3326 	case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
3327 	case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER:
3328 	case HV_X64_MSR_SYNDBG_OPTIONS:
3329 	case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
3330 	case HV_X64_MSR_CRASH_CTL:
3331 	case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
3332 	case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
3333 	case HV_X64_MSR_TSC_EMULATION_CONTROL:
3334 	case HV_X64_MSR_TSC_EMULATION_STATUS:
3335 		return kvm_hv_set_msr_common(vcpu, msr, data,
3336 					     msr_info->host_initiated);
3337 	case MSR_IA32_BBL_CR_CTL3:
3338 		/* Drop writes to this legacy MSR -- see rdmsr
3339 		 * counterpart for further detail.
3340 		 */
3341 		if (report_ignored_msrs)
3342 			vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data 0x%llx\n",
3343 				msr, data);
3344 		break;
3345 	case MSR_AMD64_OSVW_ID_LENGTH:
3346 		if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
3347 			return 1;
3348 		vcpu->arch.osvw.length = data;
3349 		break;
3350 	case MSR_AMD64_OSVW_STATUS:
3351 		if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
3352 			return 1;
3353 		vcpu->arch.osvw.status = data;
3354 		break;
3355 	case MSR_PLATFORM_INFO:
3356 		if (!msr_info->host_initiated ||
3357 		    (!(data & MSR_PLATFORM_INFO_CPUID_FAULT) &&
3358 		     cpuid_fault_enabled(vcpu)))
3359 			return 1;
3360 		vcpu->arch.msr_platform_info = data;
3361 		break;
3362 	case MSR_MISC_FEATURES_ENABLES:
3363 		if (data & ~MSR_MISC_FEATURES_ENABLES_CPUID_FAULT ||
3364 		    (data & MSR_MISC_FEATURES_ENABLES_CPUID_FAULT &&
3365 		     !supports_cpuid_fault(vcpu)))
3366 			return 1;
3367 		vcpu->arch.msr_misc_features_enables = data;
3368 		break;
3369 	default:
3370 		if (msr && (msr == vcpu->kvm->arch.xen_hvm_config.msr))
3371 			return xen_hvm_config(vcpu, data);
3372 		if (kvm_pmu_is_valid_msr(vcpu, msr))
3373 			return kvm_pmu_set_msr(vcpu, msr_info);
3374 		return KVM_MSR_RET_INVALID;
3375 	}
3376 	return 0;
3377 }
3378 EXPORT_SYMBOL_GPL(kvm_set_msr_common);
3379 
get_msr_mce(struct kvm_vcpu * vcpu,u32 msr,u64 * pdata,bool host)3380 static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata, bool host)
3381 {
3382 	u64 data;
3383 	u64 mcg_cap = vcpu->arch.mcg_cap;
3384 	unsigned bank_num = mcg_cap & 0xff;
3385 
3386 	switch (msr) {
3387 	case MSR_IA32_P5_MC_ADDR:
3388 	case MSR_IA32_P5_MC_TYPE:
3389 		data = 0;
3390 		break;
3391 	case MSR_IA32_MCG_CAP:
3392 		data = vcpu->arch.mcg_cap;
3393 		break;
3394 	case MSR_IA32_MCG_CTL:
3395 		if (!(mcg_cap & MCG_CTL_P) && !host)
3396 			return 1;
3397 		data = vcpu->arch.mcg_ctl;
3398 		break;
3399 	case MSR_IA32_MCG_STATUS:
3400 		data = vcpu->arch.mcg_status;
3401 		break;
3402 	default:
3403 		if (msr >= MSR_IA32_MC0_CTL &&
3404 		    msr < MSR_IA32_MCx_CTL(bank_num)) {
3405 			u32 offset = array_index_nospec(
3406 				msr - MSR_IA32_MC0_CTL,
3407 				MSR_IA32_MCx_CTL(bank_num) - MSR_IA32_MC0_CTL);
3408 
3409 			data = vcpu->arch.mce_banks[offset];
3410 			break;
3411 		}
3412 		return 1;
3413 	}
3414 	*pdata = data;
3415 	return 0;
3416 }
3417 
kvm_get_msr_common(struct kvm_vcpu * vcpu,struct msr_data * msr_info)3418 int kvm_get_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
3419 {
3420 	switch (msr_info->index) {
3421 	case MSR_IA32_PLATFORM_ID:
3422 	case MSR_IA32_EBL_CR_POWERON:
3423 	case MSR_IA32_DEBUGCTLMSR:
3424 	case MSR_IA32_LASTBRANCHFROMIP:
3425 	case MSR_IA32_LASTBRANCHTOIP:
3426 	case MSR_IA32_LASTINTFROMIP:
3427 	case MSR_IA32_LASTINTTOIP:
3428 	case MSR_K8_SYSCFG:
3429 	case MSR_K8_TSEG_ADDR:
3430 	case MSR_K8_TSEG_MASK:
3431 	case MSR_VM_HSAVE_PA:
3432 	case MSR_K8_INT_PENDING_MSG:
3433 	case MSR_AMD64_NB_CFG:
3434 	case MSR_FAM10H_MMIO_CONF_BASE:
3435 	case MSR_AMD64_BU_CFG2:
3436 	case MSR_IA32_PERF_CTL:
3437 	case MSR_AMD64_DC_CFG:
3438 	case MSR_F15H_EX_CFG:
3439 	/*
3440 	 * Intel Sandy Bridge CPUs must support the RAPL (running average power
3441 	 * limit) MSRs. Just return 0, as we do not want to expose the host
3442 	 * data here. Do not conditionalize this on CPUID, as KVM does not do
3443 	 * so for existing CPU-specific MSRs.
3444 	 */
3445 	case MSR_RAPL_POWER_UNIT:
3446 	case MSR_PP0_ENERGY_STATUS:	/* Power plane 0 (core) */
3447 	case MSR_PP1_ENERGY_STATUS:	/* Power plane 1 (graphics uncore) */
3448 	case MSR_PKG_ENERGY_STATUS:	/* Total package */
3449 	case MSR_DRAM_ENERGY_STATUS:	/* DRAM controller */
3450 		msr_info->data = 0;
3451 		break;
3452 	case MSR_F15H_PERF_CTL0 ... MSR_F15H_PERF_CTR5:
3453 	case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
3454 	case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
3455 	case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
3456 	case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
3457 		if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
3458 			return kvm_pmu_get_msr(vcpu, msr_info);
3459 		msr_info->data = 0;
3460 		break;
3461 	case MSR_IA32_UCODE_REV:
3462 		msr_info->data = vcpu->arch.microcode_version;
3463 		break;
3464 	case MSR_IA32_ARCH_CAPABILITIES:
3465 		if (!msr_info->host_initiated &&
3466 		    !guest_cpuid_has(vcpu, X86_FEATURE_ARCH_CAPABILITIES))
3467 			return 1;
3468 		msr_info->data = vcpu->arch.arch_capabilities;
3469 		break;
3470 	case MSR_IA32_PERF_CAPABILITIES:
3471 		if (!msr_info->host_initiated &&
3472 		    !guest_cpuid_has(vcpu, X86_FEATURE_PDCM))
3473 			return 1;
3474 		msr_info->data = vcpu->arch.perf_capabilities;
3475 		break;
3476 	case MSR_IA32_POWER_CTL:
3477 		msr_info->data = vcpu->arch.msr_ia32_power_ctl;
3478 		break;
3479 	case MSR_IA32_TSC: {
3480 		/*
3481 		 * Intel SDM states that MSR_IA32_TSC read adds the TSC offset
3482 		 * even when not intercepted. AMD manual doesn't explicitly
3483 		 * state this but appears to behave the same.
3484 		 *
3485 		 * On userspace reads and writes, however, we unconditionally
3486 		 * return L1's TSC value to ensure backwards-compatible
3487 		 * behavior for migration.
3488 		 */
3489 		u64 tsc_offset = msr_info->host_initiated ? vcpu->arch.l1_tsc_offset :
3490 							    vcpu->arch.tsc_offset;
3491 
3492 		msr_info->data = kvm_scale_tsc(vcpu, rdtsc()) + tsc_offset;
3493 		break;
3494 	}
3495 	case MSR_MTRRcap:
3496 	case 0x200 ... 0x2ff:
3497 		return kvm_mtrr_get_msr(vcpu, msr_info->index, &msr_info->data);
3498 	case 0xcd: /* fsb frequency */
3499 		msr_info->data = 3;
3500 		break;
3501 		/*
3502 		 * MSR_EBC_FREQUENCY_ID
3503 		 * Conservative value valid for even the basic CPU models.
3504 		 * Models 0,1: 000 in bits 23:21 indicating a bus speed of
3505 		 * 100MHz, model 2 000 in bits 18:16 indicating 100MHz,
3506 		 * and 266MHz for model 3, or 4. Set Core Clock
3507 		 * Frequency to System Bus Frequency Ratio to 1 (bits
3508 		 * 31:24) even though these are only valid for CPU
3509 		 * models > 2, however guests may end up dividing or
3510 		 * multiplying by zero otherwise.
3511 		 */
3512 	case MSR_EBC_FREQUENCY_ID:
3513 		msr_info->data = 1 << 24;
3514 		break;
3515 	case MSR_IA32_APICBASE:
3516 		msr_info->data = kvm_get_apic_base(vcpu);
3517 		break;
3518 	case APIC_BASE_MSR ... APIC_BASE_MSR + 0xff:
3519 		return kvm_x2apic_msr_read(vcpu, msr_info->index, &msr_info->data);
3520 	case MSR_IA32_TSCDEADLINE:
3521 		msr_info->data = kvm_get_lapic_tscdeadline_msr(vcpu);
3522 		break;
3523 	case MSR_IA32_TSC_ADJUST:
3524 		msr_info->data = (u64)vcpu->arch.ia32_tsc_adjust_msr;
3525 		break;
3526 	case MSR_IA32_MISC_ENABLE:
3527 		msr_info->data = vcpu->arch.ia32_misc_enable_msr;
3528 		break;
3529 	case MSR_IA32_SMBASE:
3530 		if (!msr_info->host_initiated)
3531 			return 1;
3532 		msr_info->data = vcpu->arch.smbase;
3533 		break;
3534 	case MSR_SMI_COUNT:
3535 		msr_info->data = vcpu->arch.smi_count;
3536 		break;
3537 	case MSR_IA32_PERF_STATUS:
3538 		/* TSC increment by tick */
3539 		msr_info->data = 1000ULL;
3540 		/* CPU multiplier */
3541 		msr_info->data |= (((uint64_t)4ULL) << 40);
3542 		break;
3543 	case MSR_EFER:
3544 		msr_info->data = vcpu->arch.efer;
3545 		break;
3546 	case MSR_KVM_WALL_CLOCK:
3547 		if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
3548 			return 1;
3549 
3550 		msr_info->data = vcpu->kvm->arch.wall_clock;
3551 		break;
3552 	case MSR_KVM_WALL_CLOCK_NEW:
3553 		if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
3554 			return 1;
3555 
3556 		msr_info->data = vcpu->kvm->arch.wall_clock;
3557 		break;
3558 	case MSR_KVM_SYSTEM_TIME:
3559 		if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
3560 			return 1;
3561 
3562 		msr_info->data = vcpu->arch.time;
3563 		break;
3564 	case MSR_KVM_SYSTEM_TIME_NEW:
3565 		if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
3566 			return 1;
3567 
3568 		msr_info->data = vcpu->arch.time;
3569 		break;
3570 	case MSR_KVM_ASYNC_PF_EN:
3571 		if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF))
3572 			return 1;
3573 
3574 		msr_info->data = vcpu->arch.apf.msr_en_val;
3575 		break;
3576 	case MSR_KVM_ASYNC_PF_INT:
3577 		if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
3578 			return 1;
3579 
3580 		msr_info->data = vcpu->arch.apf.msr_int_val;
3581 		break;
3582 	case MSR_KVM_ASYNC_PF_ACK:
3583 		if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
3584 			return 1;
3585 
3586 		msr_info->data = 0;
3587 		break;
3588 	case MSR_KVM_STEAL_TIME:
3589 		if (!guest_pv_has(vcpu, KVM_FEATURE_STEAL_TIME))
3590 			return 1;
3591 
3592 		msr_info->data = vcpu->arch.st.msr_val;
3593 		break;
3594 	case MSR_KVM_PV_EOI_EN:
3595 		if (!guest_pv_has(vcpu, KVM_FEATURE_PV_EOI))
3596 			return 1;
3597 
3598 		msr_info->data = vcpu->arch.pv_eoi.msr_val;
3599 		break;
3600 	case MSR_KVM_POLL_CONTROL:
3601 		if (!guest_pv_has(vcpu, KVM_FEATURE_POLL_CONTROL))
3602 			return 1;
3603 
3604 		msr_info->data = vcpu->arch.msr_kvm_poll_control;
3605 		break;
3606 	case MSR_IA32_P5_MC_ADDR:
3607 	case MSR_IA32_P5_MC_TYPE:
3608 	case MSR_IA32_MCG_CAP:
3609 	case MSR_IA32_MCG_CTL:
3610 	case MSR_IA32_MCG_STATUS:
3611 	case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
3612 		return get_msr_mce(vcpu, msr_info->index, &msr_info->data,
3613 				   msr_info->host_initiated);
3614 	case MSR_IA32_XSS:
3615 		if (!msr_info->host_initiated &&
3616 		    !guest_cpuid_has(vcpu, X86_FEATURE_XSAVES))
3617 			return 1;
3618 		msr_info->data = vcpu->arch.ia32_xss;
3619 		break;
3620 	case MSR_K7_CLK_CTL:
3621 		/*
3622 		 * Provide expected ramp-up count for K7. All other
3623 		 * are set to zero, indicating minimum divisors for
3624 		 * every field.
3625 		 *
3626 		 * This prevents guest kernels on AMD host with CPU
3627 		 * type 6, model 8 and higher from exploding due to
3628 		 * the rdmsr failing.
3629 		 */
3630 		msr_info->data = 0x20000000;
3631 		break;
3632 	case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
3633 	case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER:
3634 	case HV_X64_MSR_SYNDBG_OPTIONS:
3635 	case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
3636 	case HV_X64_MSR_CRASH_CTL:
3637 	case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
3638 	case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
3639 	case HV_X64_MSR_TSC_EMULATION_CONTROL:
3640 	case HV_X64_MSR_TSC_EMULATION_STATUS:
3641 		return kvm_hv_get_msr_common(vcpu,
3642 					     msr_info->index, &msr_info->data,
3643 					     msr_info->host_initiated);
3644 	case MSR_IA32_BBL_CR_CTL3:
3645 		/* This legacy MSR exists but isn't fully documented in current
3646 		 * silicon.  It is however accessed by winxp in very narrow
3647 		 * scenarios where it sets bit #19, itself documented as
3648 		 * a "reserved" bit.  Best effort attempt to source coherent
3649 		 * read data here should the balance of the register be
3650 		 * interpreted by the guest:
3651 		 *
3652 		 * L2 cache control register 3: 64GB range, 256KB size,
3653 		 * enabled, latency 0x1, configured
3654 		 */
3655 		msr_info->data = 0xbe702111;
3656 		break;
3657 	case MSR_AMD64_OSVW_ID_LENGTH:
3658 		if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
3659 			return 1;
3660 		msr_info->data = vcpu->arch.osvw.length;
3661 		break;
3662 	case MSR_AMD64_OSVW_STATUS:
3663 		if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
3664 			return 1;
3665 		msr_info->data = vcpu->arch.osvw.status;
3666 		break;
3667 	case MSR_PLATFORM_INFO:
3668 		if (!msr_info->host_initiated &&
3669 		    !vcpu->kvm->arch.guest_can_read_msr_platform_info)
3670 			return 1;
3671 		msr_info->data = vcpu->arch.msr_platform_info;
3672 		break;
3673 	case MSR_MISC_FEATURES_ENABLES:
3674 		msr_info->data = vcpu->arch.msr_misc_features_enables;
3675 		break;
3676 	case MSR_K7_HWCR:
3677 		msr_info->data = vcpu->arch.msr_hwcr;
3678 		break;
3679 	default:
3680 		if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
3681 			return kvm_pmu_get_msr(vcpu, msr_info);
3682 		return KVM_MSR_RET_INVALID;
3683 	}
3684 	return 0;
3685 }
3686 EXPORT_SYMBOL_GPL(kvm_get_msr_common);
3687 
3688 /*
3689  * Read or write a bunch of msrs. All parameters are kernel addresses.
3690  *
3691  * @return number of msrs set successfully.
3692  */
__msr_io(struct kvm_vcpu * vcpu,struct kvm_msrs * msrs,struct kvm_msr_entry * entries,int (* do_msr)(struct kvm_vcpu * vcpu,unsigned index,u64 * data))3693 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
3694 		    struct kvm_msr_entry *entries,
3695 		    int (*do_msr)(struct kvm_vcpu *vcpu,
3696 				  unsigned index, u64 *data))
3697 {
3698 	int i;
3699 
3700 	for (i = 0; i < msrs->nmsrs; ++i)
3701 		if (do_msr(vcpu, entries[i].index, &entries[i].data))
3702 			break;
3703 
3704 	return i;
3705 }
3706 
3707 /*
3708  * Read or write a bunch of msrs. Parameters are user addresses.
3709  *
3710  * @return number of msrs set successfully.
3711  */
msr_io(struct kvm_vcpu * vcpu,struct kvm_msrs __user * user_msrs,int (* do_msr)(struct kvm_vcpu * vcpu,unsigned index,u64 * data),int writeback)3712 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
3713 		  int (*do_msr)(struct kvm_vcpu *vcpu,
3714 				unsigned index, u64 *data),
3715 		  int writeback)
3716 {
3717 	struct kvm_msrs msrs;
3718 	struct kvm_msr_entry *entries;
3719 	int r, n;
3720 	unsigned size;
3721 
3722 	r = -EFAULT;
3723 	if (copy_from_user(&msrs, user_msrs, sizeof(msrs)))
3724 		goto out;
3725 
3726 	r = -E2BIG;
3727 	if (msrs.nmsrs >= MAX_IO_MSRS)
3728 		goto out;
3729 
3730 	size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
3731 	entries = memdup_user(user_msrs->entries, size);
3732 	if (IS_ERR(entries)) {
3733 		r = PTR_ERR(entries);
3734 		goto out;
3735 	}
3736 
3737 	r = n = __msr_io(vcpu, &msrs, entries, do_msr);
3738 	if (r < 0)
3739 		goto out_free;
3740 
3741 	r = -EFAULT;
3742 	if (writeback && copy_to_user(user_msrs->entries, entries, size))
3743 		goto out_free;
3744 
3745 	r = n;
3746 
3747 out_free:
3748 	kfree(entries);
3749 out:
3750 	return r;
3751 }
3752 
kvm_can_mwait_in_guest(void)3753 static inline bool kvm_can_mwait_in_guest(void)
3754 {
3755 	return boot_cpu_has(X86_FEATURE_MWAIT) &&
3756 		!boot_cpu_has_bug(X86_BUG_MONITOR) &&
3757 		boot_cpu_has(X86_FEATURE_ARAT);
3758 }
3759 
kvm_vm_ioctl_check_extension(struct kvm * kvm,long ext)3760 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
3761 {
3762 	int r = 0;
3763 
3764 	switch (ext) {
3765 	case KVM_CAP_IRQCHIP:
3766 	case KVM_CAP_HLT:
3767 	case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
3768 	case KVM_CAP_SET_TSS_ADDR:
3769 	case KVM_CAP_EXT_CPUID:
3770 	case KVM_CAP_EXT_EMUL_CPUID:
3771 	case KVM_CAP_CLOCKSOURCE:
3772 	case KVM_CAP_PIT:
3773 	case KVM_CAP_NOP_IO_DELAY:
3774 	case KVM_CAP_MP_STATE:
3775 	case KVM_CAP_SYNC_MMU:
3776 	case KVM_CAP_USER_NMI:
3777 	case KVM_CAP_REINJECT_CONTROL:
3778 	case KVM_CAP_IRQ_INJECT_STATUS:
3779 	case KVM_CAP_IOEVENTFD:
3780 	case KVM_CAP_IOEVENTFD_NO_LENGTH:
3781 	case KVM_CAP_PIT2:
3782 	case KVM_CAP_PIT_STATE2:
3783 	case KVM_CAP_SET_IDENTITY_MAP_ADDR:
3784 	case KVM_CAP_XEN_HVM:
3785 	case KVM_CAP_VCPU_EVENTS:
3786 	case KVM_CAP_HYPERV:
3787 	case KVM_CAP_HYPERV_VAPIC:
3788 	case KVM_CAP_HYPERV_SPIN:
3789 	case KVM_CAP_HYPERV_SYNIC:
3790 	case KVM_CAP_HYPERV_SYNIC2:
3791 	case KVM_CAP_HYPERV_VP_INDEX:
3792 	case KVM_CAP_HYPERV_EVENTFD:
3793 	case KVM_CAP_HYPERV_TLBFLUSH:
3794 	case KVM_CAP_HYPERV_SEND_IPI:
3795 	case KVM_CAP_HYPERV_CPUID:
3796 	case KVM_CAP_PCI_SEGMENT:
3797 	case KVM_CAP_DEBUGREGS:
3798 	case KVM_CAP_X86_ROBUST_SINGLESTEP:
3799 	case KVM_CAP_XSAVE:
3800 	case KVM_CAP_ASYNC_PF:
3801 	case KVM_CAP_ASYNC_PF_INT:
3802 	case KVM_CAP_GET_TSC_KHZ:
3803 	case KVM_CAP_KVMCLOCK_CTRL:
3804 	case KVM_CAP_READONLY_MEM:
3805 	case KVM_CAP_HYPERV_TIME:
3806 	case KVM_CAP_IOAPIC_POLARITY_IGNORED:
3807 	case KVM_CAP_TSC_DEADLINE_TIMER:
3808 	case KVM_CAP_DISABLE_QUIRKS:
3809 	case KVM_CAP_SET_BOOT_CPU_ID:
3810  	case KVM_CAP_SPLIT_IRQCHIP:
3811 	case KVM_CAP_IMMEDIATE_EXIT:
3812 	case KVM_CAP_PMU_EVENT_FILTER:
3813 	case KVM_CAP_GET_MSR_FEATURES:
3814 	case KVM_CAP_MSR_PLATFORM_INFO:
3815 	case KVM_CAP_EXCEPTION_PAYLOAD:
3816 	case KVM_CAP_SET_GUEST_DEBUG:
3817 	case KVM_CAP_LAST_CPU:
3818 	case KVM_CAP_X86_USER_SPACE_MSR:
3819 	case KVM_CAP_X86_MSR_FILTER:
3820 	case KVM_CAP_ENFORCE_PV_FEATURE_CPUID:
3821 		r = 1;
3822 		break;
3823 	case KVM_CAP_SYNC_REGS:
3824 		r = KVM_SYNC_X86_VALID_FIELDS;
3825 		break;
3826 	case KVM_CAP_ADJUST_CLOCK:
3827 		r = KVM_CLOCK_TSC_STABLE;
3828 		break;
3829 	case KVM_CAP_X86_DISABLE_EXITS:
3830 		r |=  KVM_X86_DISABLE_EXITS_HLT | KVM_X86_DISABLE_EXITS_PAUSE |
3831 		      KVM_X86_DISABLE_EXITS_CSTATE;
3832 		if(kvm_can_mwait_in_guest())
3833 			r |= KVM_X86_DISABLE_EXITS_MWAIT;
3834 		break;
3835 	case KVM_CAP_X86_SMM:
3836 		/* SMBASE is usually relocated above 1M on modern chipsets,
3837 		 * and SMM handlers might indeed rely on 4G segment limits,
3838 		 * so do not report SMM to be available if real mode is
3839 		 * emulated via vm86 mode.  Still, do not go to great lengths
3840 		 * to avoid userspace's usage of the feature, because it is a
3841 		 * fringe case that is not enabled except via specific settings
3842 		 * of the module parameters.
3843 		 */
3844 		r = kvm_x86_ops.has_emulated_msr(MSR_IA32_SMBASE);
3845 		break;
3846 	case KVM_CAP_VAPIC:
3847 		r = !kvm_x86_ops.cpu_has_accelerated_tpr();
3848 		break;
3849 	case KVM_CAP_NR_VCPUS:
3850 		r = KVM_SOFT_MAX_VCPUS;
3851 		break;
3852 	case KVM_CAP_MAX_VCPUS:
3853 		r = KVM_MAX_VCPUS;
3854 		break;
3855 	case KVM_CAP_MAX_VCPU_ID:
3856 		r = KVM_MAX_VCPU_ID;
3857 		break;
3858 	case KVM_CAP_PV_MMU:	/* obsolete */
3859 		r = 0;
3860 		break;
3861 	case KVM_CAP_MCE:
3862 		r = KVM_MAX_MCE_BANKS;
3863 		break;
3864 	case KVM_CAP_XCRS:
3865 		r = boot_cpu_has(X86_FEATURE_XSAVE);
3866 		break;
3867 	case KVM_CAP_TSC_CONTROL:
3868 		r = kvm_has_tsc_control;
3869 		break;
3870 	case KVM_CAP_X2APIC_API:
3871 		r = KVM_X2APIC_API_VALID_FLAGS;
3872 		break;
3873 	case KVM_CAP_NESTED_STATE:
3874 		r = kvm_x86_ops.nested_ops->get_state ?
3875 			kvm_x86_ops.nested_ops->get_state(NULL, NULL, 0) : 0;
3876 		break;
3877 	case KVM_CAP_HYPERV_DIRECT_TLBFLUSH:
3878 		r = kvm_x86_ops.enable_direct_tlbflush != NULL;
3879 		break;
3880 	case KVM_CAP_HYPERV_ENLIGHTENED_VMCS:
3881 		r = kvm_x86_ops.nested_ops->enable_evmcs != NULL;
3882 		break;
3883 	case KVM_CAP_SMALLER_MAXPHYADDR:
3884 		r = (int) allow_smaller_maxphyaddr;
3885 		break;
3886 	case KVM_CAP_STEAL_TIME:
3887 		r = sched_info_on();
3888 		break;
3889 	default:
3890 		break;
3891 	}
3892 	return r;
3893 
3894 }
3895 
kvm_arch_dev_ioctl(struct file * filp,unsigned int ioctl,unsigned long arg)3896 long kvm_arch_dev_ioctl(struct file *filp,
3897 			unsigned int ioctl, unsigned long arg)
3898 {
3899 	void __user *argp = (void __user *)arg;
3900 	long r;
3901 
3902 	switch (ioctl) {
3903 	case KVM_GET_MSR_INDEX_LIST: {
3904 		struct kvm_msr_list __user *user_msr_list = argp;
3905 		struct kvm_msr_list msr_list;
3906 		unsigned n;
3907 
3908 		r = -EFAULT;
3909 		if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list)))
3910 			goto out;
3911 		n = msr_list.nmsrs;
3912 		msr_list.nmsrs = num_msrs_to_save + num_emulated_msrs;
3913 		if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list)))
3914 			goto out;
3915 		r = -E2BIG;
3916 		if (n < msr_list.nmsrs)
3917 			goto out;
3918 		r = -EFAULT;
3919 		if (copy_to_user(user_msr_list->indices, &msrs_to_save,
3920 				 num_msrs_to_save * sizeof(u32)))
3921 			goto out;
3922 		if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
3923 				 &emulated_msrs,
3924 				 num_emulated_msrs * sizeof(u32)))
3925 			goto out;
3926 		r = 0;
3927 		break;
3928 	}
3929 	case KVM_GET_SUPPORTED_CPUID:
3930 	case KVM_GET_EMULATED_CPUID: {
3931 		struct kvm_cpuid2 __user *cpuid_arg = argp;
3932 		struct kvm_cpuid2 cpuid;
3933 
3934 		r = -EFAULT;
3935 		if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
3936 			goto out;
3937 
3938 		r = kvm_dev_ioctl_get_cpuid(&cpuid, cpuid_arg->entries,
3939 					    ioctl);
3940 		if (r)
3941 			goto out;
3942 
3943 		r = -EFAULT;
3944 		if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
3945 			goto out;
3946 		r = 0;
3947 		break;
3948 	}
3949 	case KVM_X86_GET_MCE_CAP_SUPPORTED:
3950 		r = -EFAULT;
3951 		if (copy_to_user(argp, &kvm_mce_cap_supported,
3952 				 sizeof(kvm_mce_cap_supported)))
3953 			goto out;
3954 		r = 0;
3955 		break;
3956 	case KVM_GET_MSR_FEATURE_INDEX_LIST: {
3957 		struct kvm_msr_list __user *user_msr_list = argp;
3958 		struct kvm_msr_list msr_list;
3959 		unsigned int n;
3960 
3961 		r = -EFAULT;
3962 		if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list)))
3963 			goto out;
3964 		n = msr_list.nmsrs;
3965 		msr_list.nmsrs = num_msr_based_features;
3966 		if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list)))
3967 			goto out;
3968 		r = -E2BIG;
3969 		if (n < msr_list.nmsrs)
3970 			goto out;
3971 		r = -EFAULT;
3972 		if (copy_to_user(user_msr_list->indices, &msr_based_features,
3973 				 num_msr_based_features * sizeof(u32)))
3974 			goto out;
3975 		r = 0;
3976 		break;
3977 	}
3978 	case KVM_GET_MSRS:
3979 		r = msr_io(NULL, argp, do_get_msr_feature, 1);
3980 		break;
3981 	default:
3982 		r = -EINVAL;
3983 		break;
3984 	}
3985 out:
3986 	return r;
3987 }
3988 
wbinvd_ipi(void * garbage)3989 static void wbinvd_ipi(void *garbage)
3990 {
3991 	wbinvd();
3992 }
3993 
need_emulate_wbinvd(struct kvm_vcpu * vcpu)3994 static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu)
3995 {
3996 	return kvm_arch_has_noncoherent_dma(vcpu->kvm);
3997 }
3998 
kvm_arch_vcpu_load(struct kvm_vcpu * vcpu,int cpu)3999 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
4000 {
4001 	/* Address WBINVD may be executed by guest */
4002 	if (need_emulate_wbinvd(vcpu)) {
4003 		if (kvm_x86_ops.has_wbinvd_exit())
4004 			cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
4005 		else if (vcpu->cpu != -1 && vcpu->cpu != cpu)
4006 			smp_call_function_single(vcpu->cpu,
4007 					wbinvd_ipi, NULL, 1);
4008 	}
4009 
4010 	kvm_x86_ops.vcpu_load(vcpu, cpu);
4011 
4012 	/* Save host pkru register if supported */
4013 	vcpu->arch.host_pkru = read_pkru();
4014 
4015 	/* Apply any externally detected TSC adjustments (due to suspend) */
4016 	if (unlikely(vcpu->arch.tsc_offset_adjustment)) {
4017 		adjust_tsc_offset_host(vcpu, vcpu->arch.tsc_offset_adjustment);
4018 		vcpu->arch.tsc_offset_adjustment = 0;
4019 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
4020 	}
4021 
4022 	if (unlikely(vcpu->cpu != cpu) || kvm_check_tsc_unstable()) {
4023 		s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 :
4024 				rdtsc() - vcpu->arch.last_host_tsc;
4025 		if (tsc_delta < 0)
4026 			mark_tsc_unstable("KVM discovered backwards TSC");
4027 
4028 		if (kvm_check_tsc_unstable()) {
4029 			u64 offset = kvm_compute_tsc_offset(vcpu,
4030 						vcpu->arch.last_guest_tsc);
4031 			kvm_vcpu_write_tsc_offset(vcpu, offset);
4032 			vcpu->arch.tsc_catchup = 1;
4033 		}
4034 
4035 		if (kvm_lapic_hv_timer_in_use(vcpu))
4036 			kvm_lapic_restart_hv_timer(vcpu);
4037 
4038 		/*
4039 		 * On a host with synchronized TSC, there is no need to update
4040 		 * kvmclock on vcpu->cpu migration
4041 		 */
4042 		if (!vcpu->kvm->arch.use_master_clock || vcpu->cpu == -1)
4043 			kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
4044 		if (vcpu->cpu != cpu)
4045 			kvm_make_request(KVM_REQ_MIGRATE_TIMER, vcpu);
4046 		vcpu->cpu = cpu;
4047 	}
4048 
4049 	kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
4050 }
4051 
kvm_steal_time_set_preempted(struct kvm_vcpu * vcpu)4052 static void kvm_steal_time_set_preempted(struct kvm_vcpu *vcpu)
4053 {
4054 	struct kvm_host_map map;
4055 	struct kvm_steal_time *st;
4056 
4057 	/*
4058 	 * The vCPU can be marked preempted if and only if the VM-Exit was on
4059 	 * an instruction boundary and will not trigger guest emulation of any
4060 	 * kind (see vcpu_run).  Vendor specific code controls (conservatively)
4061 	 * when this is true, for example allowing the vCPU to be marked
4062 	 * preempted if and only if the VM-Exit was due to a host interrupt.
4063 	 */
4064 	if (!vcpu->arch.at_instruction_boundary) {
4065 		vcpu->stat.preemption_other++;
4066 		return;
4067 	}
4068 
4069 	vcpu->stat.preemption_reported++;
4070 	if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
4071 		return;
4072 
4073 	if (vcpu->arch.st.preempted)
4074 		return;
4075 
4076 	if (kvm_map_gfn(vcpu, vcpu->arch.st.msr_val >> PAGE_SHIFT, &map,
4077 			&vcpu->arch.st.cache, true))
4078 		return;
4079 
4080 	st = map.hva +
4081 		offset_in_page(vcpu->arch.st.msr_val & KVM_STEAL_VALID_BITS);
4082 
4083 	st->preempted = vcpu->arch.st.preempted = KVM_VCPU_PREEMPTED;
4084 
4085 	kvm_unmap_gfn(vcpu, &map, &vcpu->arch.st.cache, true, true);
4086 }
4087 
kvm_arch_vcpu_put(struct kvm_vcpu * vcpu)4088 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
4089 {
4090 	int idx;
4091 
4092 	if (vcpu->preempted)
4093 		vcpu->arch.preempted_in_kernel = !kvm_x86_ops.get_cpl(vcpu);
4094 
4095 	/*
4096 	 * Disable page faults because we're in atomic context here.
4097 	 * kvm_write_guest_offset_cached() would call might_fault()
4098 	 * that relies on pagefault_disable() to tell if there's a
4099 	 * bug. NOTE: the write to guest memory may not go through if
4100 	 * during postcopy live migration or if there's heavy guest
4101 	 * paging.
4102 	 */
4103 	pagefault_disable();
4104 	/*
4105 	 * kvm_memslots() will be called by
4106 	 * kvm_write_guest_offset_cached() so take the srcu lock.
4107 	 */
4108 	idx = srcu_read_lock(&vcpu->kvm->srcu);
4109 	kvm_steal_time_set_preempted(vcpu);
4110 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
4111 	pagefault_enable();
4112 	kvm_x86_ops.vcpu_put(vcpu);
4113 	vcpu->arch.last_host_tsc = rdtsc();
4114 	/*
4115 	 * If userspace has set any breakpoints or watchpoints, dr6 is restored
4116 	 * on every vmexit, but if not, we might have a stale dr6 from the
4117 	 * guest. do_debug expects dr6 to be cleared after it runs, do the same.
4118 	 */
4119 	set_debugreg(0, 6);
4120 }
4121 
kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu * vcpu,struct kvm_lapic_state * s)4122 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
4123 				    struct kvm_lapic_state *s)
4124 {
4125 	if (vcpu->arch.apicv_active)
4126 		kvm_x86_ops.sync_pir_to_irr(vcpu);
4127 
4128 	return kvm_apic_get_state(vcpu, s);
4129 }
4130 
kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu * vcpu,struct kvm_lapic_state * s)4131 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
4132 				    struct kvm_lapic_state *s)
4133 {
4134 	int r;
4135 
4136 	r = kvm_apic_set_state(vcpu, s);
4137 	if (r)
4138 		return r;
4139 	update_cr8_intercept(vcpu);
4140 
4141 	return 0;
4142 }
4143 
kvm_cpu_accept_dm_intr(struct kvm_vcpu * vcpu)4144 static int kvm_cpu_accept_dm_intr(struct kvm_vcpu *vcpu)
4145 {
4146 	/*
4147 	 * We can accept userspace's request for interrupt injection
4148 	 * as long as we have a place to store the interrupt number.
4149 	 * The actual injection will happen when the CPU is able to
4150 	 * deliver the interrupt.
4151 	 */
4152 	if (kvm_cpu_has_extint(vcpu))
4153 		return false;
4154 
4155 	/* Acknowledging ExtINT does not happen if LINT0 is masked.  */
4156 	return (!lapic_in_kernel(vcpu) ||
4157 		kvm_apic_accept_pic_intr(vcpu));
4158 }
4159 
kvm_vcpu_ready_for_interrupt_injection(struct kvm_vcpu * vcpu)4160 static int kvm_vcpu_ready_for_interrupt_injection(struct kvm_vcpu *vcpu)
4161 {
4162 	/*
4163 	 * Do not cause an interrupt window exit if an exception
4164 	 * is pending or an event needs reinjection; userspace
4165 	 * might want to inject the interrupt manually using KVM_SET_REGS
4166 	 * or KVM_SET_SREGS.  For that to work, we must be at an
4167 	 * instruction boundary and with no events half-injected.
4168 	 */
4169 	return (kvm_arch_interrupt_allowed(vcpu) &&
4170 		kvm_cpu_accept_dm_intr(vcpu) &&
4171 		!kvm_event_needs_reinjection(vcpu) &&
4172 		!vcpu->arch.exception.pending);
4173 }
4174 
kvm_vcpu_ioctl_interrupt(struct kvm_vcpu * vcpu,struct kvm_interrupt * irq)4175 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
4176 				    struct kvm_interrupt *irq)
4177 {
4178 	if (irq->irq >= KVM_NR_INTERRUPTS)
4179 		return -EINVAL;
4180 
4181 	if (!irqchip_in_kernel(vcpu->kvm)) {
4182 		kvm_queue_interrupt(vcpu, irq->irq, false);
4183 		kvm_make_request(KVM_REQ_EVENT, vcpu);
4184 		return 0;
4185 	}
4186 
4187 	/*
4188 	 * With in-kernel LAPIC, we only use this to inject EXTINT, so
4189 	 * fail for in-kernel 8259.
4190 	 */
4191 	if (pic_in_kernel(vcpu->kvm))
4192 		return -ENXIO;
4193 
4194 	if (vcpu->arch.pending_external_vector != -1)
4195 		return -EEXIST;
4196 
4197 	vcpu->arch.pending_external_vector = irq->irq;
4198 	kvm_make_request(KVM_REQ_EVENT, vcpu);
4199 	return 0;
4200 }
4201 
kvm_vcpu_ioctl_nmi(struct kvm_vcpu * vcpu)4202 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
4203 {
4204 	kvm_inject_nmi(vcpu);
4205 
4206 	return 0;
4207 }
4208 
kvm_vcpu_ioctl_smi(struct kvm_vcpu * vcpu)4209 static int kvm_vcpu_ioctl_smi(struct kvm_vcpu *vcpu)
4210 {
4211 	kvm_make_request(KVM_REQ_SMI, vcpu);
4212 
4213 	return 0;
4214 }
4215 
vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu * vcpu,struct kvm_tpr_access_ctl * tac)4216 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
4217 					   struct kvm_tpr_access_ctl *tac)
4218 {
4219 	if (tac->flags)
4220 		return -EINVAL;
4221 	vcpu->arch.tpr_access_reporting = !!tac->enabled;
4222 	return 0;
4223 }
4224 
kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu * vcpu,u64 mcg_cap)4225 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu,
4226 					u64 mcg_cap)
4227 {
4228 	int r;
4229 	unsigned bank_num = mcg_cap & 0xff, bank;
4230 
4231 	r = -EINVAL;
4232 	if (!bank_num || bank_num > KVM_MAX_MCE_BANKS)
4233 		goto out;
4234 	if (mcg_cap & ~(kvm_mce_cap_supported | 0xff | 0xff0000))
4235 		goto out;
4236 	r = 0;
4237 	vcpu->arch.mcg_cap = mcg_cap;
4238 	/* Init IA32_MCG_CTL to all 1s */
4239 	if (mcg_cap & MCG_CTL_P)
4240 		vcpu->arch.mcg_ctl = ~(u64)0;
4241 	/* Init IA32_MCi_CTL to all 1s */
4242 	for (bank = 0; bank < bank_num; bank++)
4243 		vcpu->arch.mce_banks[bank*4] = ~(u64)0;
4244 
4245 	kvm_x86_ops.setup_mce(vcpu);
4246 out:
4247 	return r;
4248 }
4249 
kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu * vcpu,struct kvm_x86_mce * mce)4250 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
4251 				      struct kvm_x86_mce *mce)
4252 {
4253 	u64 mcg_cap = vcpu->arch.mcg_cap;
4254 	unsigned bank_num = mcg_cap & 0xff;
4255 	u64 *banks = vcpu->arch.mce_banks;
4256 
4257 	if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL))
4258 		return -EINVAL;
4259 	/*
4260 	 * if IA32_MCG_CTL is not all 1s, the uncorrected error
4261 	 * reporting is disabled
4262 	 */
4263 	if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
4264 	    vcpu->arch.mcg_ctl != ~(u64)0)
4265 		return 0;
4266 	banks += 4 * mce->bank;
4267 	/*
4268 	 * if IA32_MCi_CTL is not all 1s, the uncorrected error
4269 	 * reporting is disabled for the bank
4270 	 */
4271 	if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0)
4272 		return 0;
4273 	if (mce->status & MCI_STATUS_UC) {
4274 		if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) ||
4275 		    !kvm_read_cr4_bits(vcpu, X86_CR4_MCE)) {
4276 			kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
4277 			return 0;
4278 		}
4279 		if (banks[1] & MCI_STATUS_VAL)
4280 			mce->status |= MCI_STATUS_OVER;
4281 		banks[2] = mce->addr;
4282 		banks[3] = mce->misc;
4283 		vcpu->arch.mcg_status = mce->mcg_status;
4284 		banks[1] = mce->status;
4285 		kvm_queue_exception(vcpu, MC_VECTOR);
4286 	} else if (!(banks[1] & MCI_STATUS_VAL)
4287 		   || !(banks[1] & MCI_STATUS_UC)) {
4288 		if (banks[1] & MCI_STATUS_VAL)
4289 			mce->status |= MCI_STATUS_OVER;
4290 		banks[2] = mce->addr;
4291 		banks[3] = mce->misc;
4292 		banks[1] = mce->status;
4293 	} else
4294 		banks[1] |= MCI_STATUS_OVER;
4295 	return 0;
4296 }
4297 
kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu * vcpu,struct kvm_vcpu_events * events)4298 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu,
4299 					       struct kvm_vcpu_events *events)
4300 {
4301 	process_nmi(vcpu);
4302 
4303 	if (kvm_check_request(KVM_REQ_SMI, vcpu))
4304 		process_smi(vcpu);
4305 
4306 	/*
4307 	 * In guest mode, payload delivery should be deferred,
4308 	 * so that the L1 hypervisor can intercept #PF before
4309 	 * CR2 is modified (or intercept #DB before DR6 is
4310 	 * modified under nVMX). Unless the per-VM capability,
4311 	 * KVM_CAP_EXCEPTION_PAYLOAD, is set, we may not defer the delivery of
4312 	 * an exception payload and handle after a KVM_GET_VCPU_EVENTS. Since we
4313 	 * opportunistically defer the exception payload, deliver it if the
4314 	 * capability hasn't been requested before processing a
4315 	 * KVM_GET_VCPU_EVENTS.
4316 	 */
4317 	if (!vcpu->kvm->arch.exception_payload_enabled &&
4318 	    vcpu->arch.exception.pending && vcpu->arch.exception.has_payload)
4319 		kvm_deliver_exception_payload(vcpu);
4320 
4321 	/*
4322 	 * The API doesn't provide the instruction length for software
4323 	 * exceptions, so don't report them. As long as the guest RIP
4324 	 * isn't advanced, we should expect to encounter the exception
4325 	 * again.
4326 	 */
4327 	if (kvm_exception_is_soft(vcpu->arch.exception.nr)) {
4328 		events->exception.injected = 0;
4329 		events->exception.pending = 0;
4330 	} else {
4331 		events->exception.injected = vcpu->arch.exception.injected;
4332 		events->exception.pending = vcpu->arch.exception.pending;
4333 		/*
4334 		 * For ABI compatibility, deliberately conflate
4335 		 * pending and injected exceptions when
4336 		 * KVM_CAP_EXCEPTION_PAYLOAD isn't enabled.
4337 		 */
4338 		if (!vcpu->kvm->arch.exception_payload_enabled)
4339 			events->exception.injected |=
4340 				vcpu->arch.exception.pending;
4341 	}
4342 	events->exception.nr = vcpu->arch.exception.nr;
4343 	events->exception.has_error_code = vcpu->arch.exception.has_error_code;
4344 	events->exception.error_code = vcpu->arch.exception.error_code;
4345 	events->exception_has_payload = vcpu->arch.exception.has_payload;
4346 	events->exception_payload = vcpu->arch.exception.payload;
4347 
4348 	events->interrupt.injected =
4349 		vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft;
4350 	events->interrupt.nr = vcpu->arch.interrupt.nr;
4351 	events->interrupt.soft = 0;
4352 	events->interrupt.shadow = kvm_x86_ops.get_interrupt_shadow(vcpu);
4353 
4354 	events->nmi.injected = vcpu->arch.nmi_injected;
4355 	events->nmi.pending = vcpu->arch.nmi_pending != 0;
4356 	events->nmi.masked = kvm_x86_ops.get_nmi_mask(vcpu);
4357 	events->nmi.pad = 0;
4358 
4359 	events->sipi_vector = 0; /* never valid when reporting to user space */
4360 
4361 	events->smi.smm = is_smm(vcpu);
4362 	events->smi.pending = vcpu->arch.smi_pending;
4363 	events->smi.smm_inside_nmi =
4364 		!!(vcpu->arch.hflags & HF_SMM_INSIDE_NMI_MASK);
4365 	events->smi.latched_init = kvm_lapic_latched_init(vcpu);
4366 
4367 	events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING
4368 			 | KVM_VCPUEVENT_VALID_SHADOW
4369 			 | KVM_VCPUEVENT_VALID_SMM);
4370 	if (vcpu->kvm->arch.exception_payload_enabled)
4371 		events->flags |= KVM_VCPUEVENT_VALID_PAYLOAD;
4372 
4373 	memset(&events->reserved, 0, sizeof(events->reserved));
4374 }
4375 
4376 static void kvm_smm_changed(struct kvm_vcpu *vcpu);
4377 
kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu * vcpu,struct kvm_vcpu_events * events)4378 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu,
4379 					      struct kvm_vcpu_events *events)
4380 {
4381 	if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING
4382 			      | KVM_VCPUEVENT_VALID_SIPI_VECTOR
4383 			      | KVM_VCPUEVENT_VALID_SHADOW
4384 			      | KVM_VCPUEVENT_VALID_SMM
4385 			      | KVM_VCPUEVENT_VALID_PAYLOAD))
4386 		return -EINVAL;
4387 
4388 	if (events->flags & KVM_VCPUEVENT_VALID_PAYLOAD) {
4389 		if (!vcpu->kvm->arch.exception_payload_enabled)
4390 			return -EINVAL;
4391 		if (events->exception.pending)
4392 			events->exception.injected = 0;
4393 		else
4394 			events->exception_has_payload = 0;
4395 	} else {
4396 		events->exception.pending = 0;
4397 		events->exception_has_payload = 0;
4398 	}
4399 
4400 	if ((events->exception.injected || events->exception.pending) &&
4401 	    (events->exception.nr > 31 || events->exception.nr == NMI_VECTOR))
4402 		return -EINVAL;
4403 
4404 	/* INITs are latched while in SMM */
4405 	if (events->flags & KVM_VCPUEVENT_VALID_SMM &&
4406 	    (events->smi.smm || events->smi.pending) &&
4407 	    vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED)
4408 		return -EINVAL;
4409 
4410 	process_nmi(vcpu);
4411 	vcpu->arch.exception.injected = events->exception.injected;
4412 	vcpu->arch.exception.pending = events->exception.pending;
4413 	vcpu->arch.exception.nr = events->exception.nr;
4414 	vcpu->arch.exception.has_error_code = events->exception.has_error_code;
4415 	vcpu->arch.exception.error_code = events->exception.error_code;
4416 	vcpu->arch.exception.has_payload = events->exception_has_payload;
4417 	vcpu->arch.exception.payload = events->exception_payload;
4418 
4419 	vcpu->arch.interrupt.injected = events->interrupt.injected;
4420 	vcpu->arch.interrupt.nr = events->interrupt.nr;
4421 	vcpu->arch.interrupt.soft = events->interrupt.soft;
4422 	if (events->flags & KVM_VCPUEVENT_VALID_SHADOW)
4423 		kvm_x86_ops.set_interrupt_shadow(vcpu,
4424 						  events->interrupt.shadow);
4425 
4426 	vcpu->arch.nmi_injected = events->nmi.injected;
4427 	if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING)
4428 		vcpu->arch.nmi_pending = events->nmi.pending;
4429 	kvm_x86_ops.set_nmi_mask(vcpu, events->nmi.masked);
4430 
4431 	if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR &&
4432 	    lapic_in_kernel(vcpu))
4433 		vcpu->arch.apic->sipi_vector = events->sipi_vector;
4434 
4435 	if (events->flags & KVM_VCPUEVENT_VALID_SMM) {
4436 		if (!!(vcpu->arch.hflags & HF_SMM_MASK) != events->smi.smm) {
4437 			if (events->smi.smm)
4438 				vcpu->arch.hflags |= HF_SMM_MASK;
4439 			else
4440 				vcpu->arch.hflags &= ~HF_SMM_MASK;
4441 
4442 			kvm_x86_ops.nested_ops->leave_nested(vcpu);
4443 			kvm_smm_changed(vcpu);
4444 		}
4445 
4446 		vcpu->arch.smi_pending = events->smi.pending;
4447 
4448 		if (events->smi.smm) {
4449 			if (events->smi.smm_inside_nmi)
4450 				vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
4451 			else
4452 				vcpu->arch.hflags &= ~HF_SMM_INSIDE_NMI_MASK;
4453 		}
4454 
4455 		if (lapic_in_kernel(vcpu)) {
4456 			if (events->smi.latched_init)
4457 				set_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
4458 			else
4459 				clear_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
4460 		}
4461 	}
4462 
4463 	kvm_make_request(KVM_REQ_EVENT, vcpu);
4464 
4465 	return 0;
4466 }
4467 
kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu * vcpu,struct kvm_debugregs * dbgregs)4468 static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu,
4469 					     struct kvm_debugregs *dbgregs)
4470 {
4471 	unsigned long val;
4472 
4473 	memset(dbgregs, 0, sizeof(*dbgregs));
4474 	memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db));
4475 	kvm_get_dr(vcpu, 6, &val);
4476 	dbgregs->dr6 = val;
4477 	dbgregs->dr7 = vcpu->arch.dr7;
4478 }
4479 
kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu * vcpu,struct kvm_debugregs * dbgregs)4480 static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu,
4481 					    struct kvm_debugregs *dbgregs)
4482 {
4483 	if (dbgregs->flags)
4484 		return -EINVAL;
4485 
4486 	if (dbgregs->dr6 & ~0xffffffffull)
4487 		return -EINVAL;
4488 	if (dbgregs->dr7 & ~0xffffffffull)
4489 		return -EINVAL;
4490 
4491 	memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db));
4492 	kvm_update_dr0123(vcpu);
4493 	vcpu->arch.dr6 = dbgregs->dr6;
4494 	vcpu->arch.dr7 = dbgregs->dr7;
4495 	kvm_update_dr7(vcpu);
4496 
4497 	return 0;
4498 }
4499 
4500 #define XSTATE_COMPACTION_ENABLED (1ULL << 63)
4501 
fill_xsave(u8 * dest,struct kvm_vcpu * vcpu)4502 static void fill_xsave(u8 *dest, struct kvm_vcpu *vcpu)
4503 {
4504 	struct xregs_state *xsave = &vcpu->arch.guest_fpu->state.xsave;
4505 	u64 xstate_bv = xsave->header.xfeatures;
4506 	u64 valid;
4507 
4508 	/*
4509 	 * Copy legacy XSAVE area, to avoid complications with CPUID
4510 	 * leaves 0 and 1 in the loop below.
4511 	 */
4512 	memcpy(dest, xsave, XSAVE_HDR_OFFSET);
4513 
4514 	/* Set XSTATE_BV */
4515 	xstate_bv &= vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FPSSE;
4516 	*(u64 *)(dest + XSAVE_HDR_OFFSET) = xstate_bv;
4517 
4518 	/*
4519 	 * Copy each region from the possibly compacted offset to the
4520 	 * non-compacted offset.
4521 	 */
4522 	valid = xstate_bv & ~XFEATURE_MASK_FPSSE;
4523 	while (valid) {
4524 		u64 xfeature_mask = valid & -valid;
4525 		int xfeature_nr = fls64(xfeature_mask) - 1;
4526 		void *src = get_xsave_addr(xsave, xfeature_nr);
4527 
4528 		if (src) {
4529 			u32 size, offset, ecx, edx;
4530 			cpuid_count(XSTATE_CPUID, xfeature_nr,
4531 				    &size, &offset, &ecx, &edx);
4532 			if (xfeature_nr == XFEATURE_PKRU)
4533 				memcpy(dest + offset, &vcpu->arch.pkru,
4534 				       sizeof(vcpu->arch.pkru));
4535 			else
4536 				memcpy(dest + offset, src, size);
4537 
4538 		}
4539 
4540 		valid -= xfeature_mask;
4541 	}
4542 }
4543 
load_xsave(struct kvm_vcpu * vcpu,u8 * src)4544 static void load_xsave(struct kvm_vcpu *vcpu, u8 *src)
4545 {
4546 	struct xregs_state *xsave = &vcpu->arch.guest_fpu->state.xsave;
4547 	u64 xstate_bv = *(u64 *)(src + XSAVE_HDR_OFFSET);
4548 	u64 valid;
4549 
4550 	/*
4551 	 * Copy legacy XSAVE area, to avoid complications with CPUID
4552 	 * leaves 0 and 1 in the loop below.
4553 	 */
4554 	memcpy(xsave, src, XSAVE_HDR_OFFSET);
4555 
4556 	/* Set XSTATE_BV and possibly XCOMP_BV.  */
4557 	xsave->header.xfeatures = xstate_bv;
4558 	if (boot_cpu_has(X86_FEATURE_XSAVES))
4559 		xsave->header.xcomp_bv = host_xcr0 | XSTATE_COMPACTION_ENABLED;
4560 
4561 	/*
4562 	 * Copy each region from the non-compacted offset to the
4563 	 * possibly compacted offset.
4564 	 */
4565 	valid = xstate_bv & ~XFEATURE_MASK_FPSSE;
4566 	while (valid) {
4567 		u64 xfeature_mask = valid & -valid;
4568 		int xfeature_nr = fls64(xfeature_mask) - 1;
4569 		void *dest = get_xsave_addr(xsave, xfeature_nr);
4570 
4571 		if (dest) {
4572 			u32 size, offset, ecx, edx;
4573 			cpuid_count(XSTATE_CPUID, xfeature_nr,
4574 				    &size, &offset, &ecx, &edx);
4575 			if (xfeature_nr == XFEATURE_PKRU)
4576 				memcpy(&vcpu->arch.pkru, src + offset,
4577 				       sizeof(vcpu->arch.pkru));
4578 			else
4579 				memcpy(dest, src + offset, size);
4580 		}
4581 
4582 		valid -= xfeature_mask;
4583 	}
4584 }
4585 
kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu * vcpu,struct kvm_xsave * guest_xsave)4586 static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu,
4587 					 struct kvm_xsave *guest_xsave)
4588 {
4589 	if (boot_cpu_has(X86_FEATURE_XSAVE)) {
4590 		memset(guest_xsave, 0, sizeof(struct kvm_xsave));
4591 		fill_xsave((u8 *) guest_xsave->region, vcpu);
4592 	} else {
4593 		memcpy(guest_xsave->region,
4594 			&vcpu->arch.guest_fpu->state.fxsave,
4595 			sizeof(struct fxregs_state));
4596 		*(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)] =
4597 			XFEATURE_MASK_FPSSE;
4598 	}
4599 }
4600 
4601 #define XSAVE_MXCSR_OFFSET 24
4602 
kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu * vcpu,struct kvm_xsave * guest_xsave)4603 static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu,
4604 					struct kvm_xsave *guest_xsave)
4605 {
4606 	u64 xstate_bv =
4607 		*(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)];
4608 	u32 mxcsr = *(u32 *)&guest_xsave->region[XSAVE_MXCSR_OFFSET / sizeof(u32)];
4609 
4610 	if (boot_cpu_has(X86_FEATURE_XSAVE)) {
4611 		/*
4612 		 * Here we allow setting states that are not present in
4613 		 * CPUID leaf 0xD, index 0, EDX:EAX.  This is for compatibility
4614 		 * with old userspace.
4615 		 */
4616 		if (xstate_bv & ~supported_xcr0 || mxcsr & ~mxcsr_feature_mask)
4617 			return -EINVAL;
4618 		load_xsave(vcpu, (u8 *)guest_xsave->region);
4619 	} else {
4620 		if (xstate_bv & ~XFEATURE_MASK_FPSSE ||
4621 			mxcsr & ~mxcsr_feature_mask)
4622 			return -EINVAL;
4623 		memcpy(&vcpu->arch.guest_fpu->state.fxsave,
4624 			guest_xsave->region, sizeof(struct fxregs_state));
4625 	}
4626 	return 0;
4627 }
4628 
kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu * vcpu,struct kvm_xcrs * guest_xcrs)4629 static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu,
4630 					struct kvm_xcrs *guest_xcrs)
4631 {
4632 	if (!boot_cpu_has(X86_FEATURE_XSAVE)) {
4633 		guest_xcrs->nr_xcrs = 0;
4634 		return;
4635 	}
4636 
4637 	guest_xcrs->nr_xcrs = 1;
4638 	guest_xcrs->flags = 0;
4639 	guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK;
4640 	guest_xcrs->xcrs[0].value = vcpu->arch.xcr0;
4641 }
4642 
kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu * vcpu,struct kvm_xcrs * guest_xcrs)4643 static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu,
4644 				       struct kvm_xcrs *guest_xcrs)
4645 {
4646 	int i, r = 0;
4647 
4648 	if (!boot_cpu_has(X86_FEATURE_XSAVE))
4649 		return -EINVAL;
4650 
4651 	if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags)
4652 		return -EINVAL;
4653 
4654 	for (i = 0; i < guest_xcrs->nr_xcrs; i++)
4655 		/* Only support XCR0 currently */
4656 		if (guest_xcrs->xcrs[i].xcr == XCR_XFEATURE_ENABLED_MASK) {
4657 			r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK,
4658 				guest_xcrs->xcrs[i].value);
4659 			break;
4660 		}
4661 	if (r)
4662 		r = -EINVAL;
4663 	return r;
4664 }
4665 
4666 /*
4667  * kvm_set_guest_paused() indicates to the guest kernel that it has been
4668  * stopped by the hypervisor.  This function will be called from the host only.
4669  * EINVAL is returned when the host attempts to set the flag for a guest that
4670  * does not support pv clocks.
4671  */
kvm_set_guest_paused(struct kvm_vcpu * vcpu)4672 static int kvm_set_guest_paused(struct kvm_vcpu *vcpu)
4673 {
4674 	if (!vcpu->arch.pv_time_enabled)
4675 		return -EINVAL;
4676 	vcpu->arch.pvclock_set_guest_stopped_request = true;
4677 	kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
4678 	return 0;
4679 }
4680 
kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu * vcpu,struct kvm_enable_cap * cap)4681 static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu,
4682 				     struct kvm_enable_cap *cap)
4683 {
4684 	int r;
4685 	uint16_t vmcs_version;
4686 	void __user *user_ptr;
4687 
4688 	if (cap->flags)
4689 		return -EINVAL;
4690 
4691 	switch (cap->cap) {
4692 	case KVM_CAP_HYPERV_SYNIC2:
4693 		if (cap->args[0])
4694 			return -EINVAL;
4695 		fallthrough;
4696 
4697 	case KVM_CAP_HYPERV_SYNIC:
4698 		if (!irqchip_in_kernel(vcpu->kvm))
4699 			return -EINVAL;
4700 		return kvm_hv_activate_synic(vcpu, cap->cap ==
4701 					     KVM_CAP_HYPERV_SYNIC2);
4702 	case KVM_CAP_HYPERV_ENLIGHTENED_VMCS:
4703 		if (!kvm_x86_ops.nested_ops->enable_evmcs)
4704 			return -ENOTTY;
4705 		r = kvm_x86_ops.nested_ops->enable_evmcs(vcpu, &vmcs_version);
4706 		if (!r) {
4707 			user_ptr = (void __user *)(uintptr_t)cap->args[0];
4708 			if (copy_to_user(user_ptr, &vmcs_version,
4709 					 sizeof(vmcs_version)))
4710 				r = -EFAULT;
4711 		}
4712 		return r;
4713 	case KVM_CAP_HYPERV_DIRECT_TLBFLUSH:
4714 		if (!kvm_x86_ops.enable_direct_tlbflush)
4715 			return -ENOTTY;
4716 
4717 		return kvm_x86_ops.enable_direct_tlbflush(vcpu);
4718 
4719 	case KVM_CAP_ENFORCE_PV_FEATURE_CPUID:
4720 		vcpu->arch.pv_cpuid.enforce = cap->args[0];
4721 		if (vcpu->arch.pv_cpuid.enforce)
4722 			kvm_update_pv_runtime(vcpu);
4723 
4724 		return 0;
4725 
4726 	default:
4727 		return -EINVAL;
4728 	}
4729 }
4730 
kvm_arch_vcpu_ioctl(struct file * filp,unsigned int ioctl,unsigned long arg)4731 long kvm_arch_vcpu_ioctl(struct file *filp,
4732 			 unsigned int ioctl, unsigned long arg)
4733 {
4734 	struct kvm_vcpu *vcpu = filp->private_data;
4735 	void __user *argp = (void __user *)arg;
4736 	int r;
4737 	union {
4738 		struct kvm_lapic_state *lapic;
4739 		struct kvm_xsave *xsave;
4740 		struct kvm_xcrs *xcrs;
4741 		void *buffer;
4742 	} u;
4743 
4744 	vcpu_load(vcpu);
4745 
4746 	u.buffer = NULL;
4747 	switch (ioctl) {
4748 	case KVM_GET_LAPIC: {
4749 		r = -EINVAL;
4750 		if (!lapic_in_kernel(vcpu))
4751 			goto out;
4752 		u.lapic = kzalloc(sizeof(struct kvm_lapic_state),
4753 				GFP_KERNEL_ACCOUNT);
4754 
4755 		r = -ENOMEM;
4756 		if (!u.lapic)
4757 			goto out;
4758 		r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic);
4759 		if (r)
4760 			goto out;
4761 		r = -EFAULT;
4762 		if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state)))
4763 			goto out;
4764 		r = 0;
4765 		break;
4766 	}
4767 	case KVM_SET_LAPIC: {
4768 		r = -EINVAL;
4769 		if (!lapic_in_kernel(vcpu))
4770 			goto out;
4771 		u.lapic = memdup_user(argp, sizeof(*u.lapic));
4772 		if (IS_ERR(u.lapic)) {
4773 			r = PTR_ERR(u.lapic);
4774 			goto out_nofree;
4775 		}
4776 
4777 		r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic);
4778 		break;
4779 	}
4780 	case KVM_INTERRUPT: {
4781 		struct kvm_interrupt irq;
4782 
4783 		r = -EFAULT;
4784 		if (copy_from_user(&irq, argp, sizeof(irq)))
4785 			goto out;
4786 		r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
4787 		break;
4788 	}
4789 	case KVM_NMI: {
4790 		r = kvm_vcpu_ioctl_nmi(vcpu);
4791 		break;
4792 	}
4793 	case KVM_SMI: {
4794 		r = kvm_vcpu_ioctl_smi(vcpu);
4795 		break;
4796 	}
4797 	case KVM_SET_CPUID: {
4798 		struct kvm_cpuid __user *cpuid_arg = argp;
4799 		struct kvm_cpuid cpuid;
4800 
4801 		r = -EFAULT;
4802 		if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
4803 			goto out;
4804 		r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
4805 		break;
4806 	}
4807 	case KVM_SET_CPUID2: {
4808 		struct kvm_cpuid2 __user *cpuid_arg = argp;
4809 		struct kvm_cpuid2 cpuid;
4810 
4811 		r = -EFAULT;
4812 		if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
4813 			goto out;
4814 		r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
4815 					      cpuid_arg->entries);
4816 		break;
4817 	}
4818 	case KVM_GET_CPUID2: {
4819 		struct kvm_cpuid2 __user *cpuid_arg = argp;
4820 		struct kvm_cpuid2 cpuid;
4821 
4822 		r = -EFAULT;
4823 		if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
4824 			goto out;
4825 		r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
4826 					      cpuid_arg->entries);
4827 		if (r)
4828 			goto out;
4829 		r = -EFAULT;
4830 		if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
4831 			goto out;
4832 		r = 0;
4833 		break;
4834 	}
4835 	case KVM_GET_MSRS: {
4836 		int idx = srcu_read_lock(&vcpu->kvm->srcu);
4837 		r = msr_io(vcpu, argp, do_get_msr, 1);
4838 		srcu_read_unlock(&vcpu->kvm->srcu, idx);
4839 		break;
4840 	}
4841 	case KVM_SET_MSRS: {
4842 		int idx = srcu_read_lock(&vcpu->kvm->srcu);
4843 		r = msr_io(vcpu, argp, do_set_msr, 0);
4844 		srcu_read_unlock(&vcpu->kvm->srcu, idx);
4845 		break;
4846 	}
4847 	case KVM_TPR_ACCESS_REPORTING: {
4848 		struct kvm_tpr_access_ctl tac;
4849 
4850 		r = -EFAULT;
4851 		if (copy_from_user(&tac, argp, sizeof(tac)))
4852 			goto out;
4853 		r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
4854 		if (r)
4855 			goto out;
4856 		r = -EFAULT;
4857 		if (copy_to_user(argp, &tac, sizeof(tac)))
4858 			goto out;
4859 		r = 0;
4860 		break;
4861 	};
4862 	case KVM_SET_VAPIC_ADDR: {
4863 		struct kvm_vapic_addr va;
4864 		int idx;
4865 
4866 		r = -EINVAL;
4867 		if (!lapic_in_kernel(vcpu))
4868 			goto out;
4869 		r = -EFAULT;
4870 		if (copy_from_user(&va, argp, sizeof(va)))
4871 			goto out;
4872 		idx = srcu_read_lock(&vcpu->kvm->srcu);
4873 		r = kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
4874 		srcu_read_unlock(&vcpu->kvm->srcu, idx);
4875 		break;
4876 	}
4877 	case KVM_X86_SETUP_MCE: {
4878 		u64 mcg_cap;
4879 
4880 		r = -EFAULT;
4881 		if (copy_from_user(&mcg_cap, argp, sizeof(mcg_cap)))
4882 			goto out;
4883 		r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap);
4884 		break;
4885 	}
4886 	case KVM_X86_SET_MCE: {
4887 		struct kvm_x86_mce mce;
4888 
4889 		r = -EFAULT;
4890 		if (copy_from_user(&mce, argp, sizeof(mce)))
4891 			goto out;
4892 		r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce);
4893 		break;
4894 	}
4895 	case KVM_GET_VCPU_EVENTS: {
4896 		struct kvm_vcpu_events events;
4897 
4898 		kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events);
4899 
4900 		r = -EFAULT;
4901 		if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events)))
4902 			break;
4903 		r = 0;
4904 		break;
4905 	}
4906 	case KVM_SET_VCPU_EVENTS: {
4907 		struct kvm_vcpu_events events;
4908 
4909 		r = -EFAULT;
4910 		if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events)))
4911 			break;
4912 
4913 		r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events);
4914 		break;
4915 	}
4916 	case KVM_GET_DEBUGREGS: {
4917 		struct kvm_debugregs dbgregs;
4918 
4919 		kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs);
4920 
4921 		r = -EFAULT;
4922 		if (copy_to_user(argp, &dbgregs,
4923 				 sizeof(struct kvm_debugregs)))
4924 			break;
4925 		r = 0;
4926 		break;
4927 	}
4928 	case KVM_SET_DEBUGREGS: {
4929 		struct kvm_debugregs dbgregs;
4930 
4931 		r = -EFAULT;
4932 		if (copy_from_user(&dbgregs, argp,
4933 				   sizeof(struct kvm_debugregs)))
4934 			break;
4935 
4936 		r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs);
4937 		break;
4938 	}
4939 	case KVM_GET_XSAVE: {
4940 		u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL_ACCOUNT);
4941 		r = -ENOMEM;
4942 		if (!u.xsave)
4943 			break;
4944 
4945 		kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave);
4946 
4947 		r = -EFAULT;
4948 		if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave)))
4949 			break;
4950 		r = 0;
4951 		break;
4952 	}
4953 	case KVM_SET_XSAVE: {
4954 		u.xsave = memdup_user(argp, sizeof(*u.xsave));
4955 		if (IS_ERR(u.xsave)) {
4956 			r = PTR_ERR(u.xsave);
4957 			goto out_nofree;
4958 		}
4959 
4960 		r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave);
4961 		break;
4962 	}
4963 	case KVM_GET_XCRS: {
4964 		u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL_ACCOUNT);
4965 		r = -ENOMEM;
4966 		if (!u.xcrs)
4967 			break;
4968 
4969 		kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs);
4970 
4971 		r = -EFAULT;
4972 		if (copy_to_user(argp, u.xcrs,
4973 				 sizeof(struct kvm_xcrs)))
4974 			break;
4975 		r = 0;
4976 		break;
4977 	}
4978 	case KVM_SET_XCRS: {
4979 		u.xcrs = memdup_user(argp, sizeof(*u.xcrs));
4980 		if (IS_ERR(u.xcrs)) {
4981 			r = PTR_ERR(u.xcrs);
4982 			goto out_nofree;
4983 		}
4984 
4985 		r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs);
4986 		break;
4987 	}
4988 	case KVM_SET_TSC_KHZ: {
4989 		u32 user_tsc_khz;
4990 
4991 		r = -EINVAL;
4992 		user_tsc_khz = (u32)arg;
4993 
4994 		if (kvm_has_tsc_control &&
4995 		    user_tsc_khz >= kvm_max_guest_tsc_khz)
4996 			goto out;
4997 
4998 		if (user_tsc_khz == 0)
4999 			user_tsc_khz = tsc_khz;
5000 
5001 		if (!kvm_set_tsc_khz(vcpu, user_tsc_khz))
5002 			r = 0;
5003 
5004 		goto out;
5005 	}
5006 	case KVM_GET_TSC_KHZ: {
5007 		r = vcpu->arch.virtual_tsc_khz;
5008 		goto out;
5009 	}
5010 	case KVM_KVMCLOCK_CTRL: {
5011 		r = kvm_set_guest_paused(vcpu);
5012 		goto out;
5013 	}
5014 	case KVM_ENABLE_CAP: {
5015 		struct kvm_enable_cap cap;
5016 
5017 		r = -EFAULT;
5018 		if (copy_from_user(&cap, argp, sizeof(cap)))
5019 			goto out;
5020 		r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap);
5021 		break;
5022 	}
5023 	case KVM_GET_NESTED_STATE: {
5024 		struct kvm_nested_state __user *user_kvm_nested_state = argp;
5025 		u32 user_data_size;
5026 
5027 		r = -EINVAL;
5028 		if (!kvm_x86_ops.nested_ops->get_state)
5029 			break;
5030 
5031 		BUILD_BUG_ON(sizeof(user_data_size) != sizeof(user_kvm_nested_state->size));
5032 		r = -EFAULT;
5033 		if (get_user(user_data_size, &user_kvm_nested_state->size))
5034 			break;
5035 
5036 		r = kvm_x86_ops.nested_ops->get_state(vcpu, user_kvm_nested_state,
5037 						     user_data_size);
5038 		if (r < 0)
5039 			break;
5040 
5041 		if (r > user_data_size) {
5042 			if (put_user(r, &user_kvm_nested_state->size))
5043 				r = -EFAULT;
5044 			else
5045 				r = -E2BIG;
5046 			break;
5047 		}
5048 
5049 		r = 0;
5050 		break;
5051 	}
5052 	case KVM_SET_NESTED_STATE: {
5053 		struct kvm_nested_state __user *user_kvm_nested_state = argp;
5054 		struct kvm_nested_state kvm_state;
5055 		int idx;
5056 
5057 		r = -EINVAL;
5058 		if (!kvm_x86_ops.nested_ops->set_state)
5059 			break;
5060 
5061 		r = -EFAULT;
5062 		if (copy_from_user(&kvm_state, user_kvm_nested_state, sizeof(kvm_state)))
5063 			break;
5064 
5065 		r = -EINVAL;
5066 		if (kvm_state.size < sizeof(kvm_state))
5067 			break;
5068 
5069 		if (kvm_state.flags &
5070 		    ~(KVM_STATE_NESTED_RUN_PENDING | KVM_STATE_NESTED_GUEST_MODE
5071 		      | KVM_STATE_NESTED_EVMCS | KVM_STATE_NESTED_MTF_PENDING
5072 		      | KVM_STATE_NESTED_GIF_SET))
5073 			break;
5074 
5075 		/* nested_run_pending implies guest_mode.  */
5076 		if ((kvm_state.flags & KVM_STATE_NESTED_RUN_PENDING)
5077 		    && !(kvm_state.flags & KVM_STATE_NESTED_GUEST_MODE))
5078 			break;
5079 
5080 		idx = srcu_read_lock(&vcpu->kvm->srcu);
5081 		r = kvm_x86_ops.nested_ops->set_state(vcpu, user_kvm_nested_state, &kvm_state);
5082 		srcu_read_unlock(&vcpu->kvm->srcu, idx);
5083 		break;
5084 	}
5085 	case KVM_GET_SUPPORTED_HV_CPUID: {
5086 		struct kvm_cpuid2 __user *cpuid_arg = argp;
5087 		struct kvm_cpuid2 cpuid;
5088 
5089 		r = -EFAULT;
5090 		if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
5091 			goto out;
5092 
5093 		r = kvm_vcpu_ioctl_get_hv_cpuid(vcpu, &cpuid,
5094 						cpuid_arg->entries);
5095 		if (r)
5096 			goto out;
5097 
5098 		r = -EFAULT;
5099 		if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
5100 			goto out;
5101 		r = 0;
5102 		break;
5103 	}
5104 	default:
5105 		r = -EINVAL;
5106 	}
5107 out:
5108 	kfree(u.buffer);
5109 out_nofree:
5110 	vcpu_put(vcpu);
5111 	return r;
5112 }
5113 
kvm_arch_vcpu_fault(struct kvm_vcpu * vcpu,struct vm_fault * vmf)5114 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
5115 {
5116 	return VM_FAULT_SIGBUS;
5117 }
5118 
kvm_vm_ioctl_set_tss_addr(struct kvm * kvm,unsigned long addr)5119 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
5120 {
5121 	int ret;
5122 
5123 	if (addr > (unsigned int)(-3 * PAGE_SIZE))
5124 		return -EINVAL;
5125 	ret = kvm_x86_ops.set_tss_addr(kvm, addr);
5126 	return ret;
5127 }
5128 
kvm_vm_ioctl_set_identity_map_addr(struct kvm * kvm,u64 ident_addr)5129 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm,
5130 					      u64 ident_addr)
5131 {
5132 	return kvm_x86_ops.set_identity_map_addr(kvm, ident_addr);
5133 }
5134 
kvm_vm_ioctl_set_nr_mmu_pages(struct kvm * kvm,unsigned long kvm_nr_mmu_pages)5135 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
5136 					 unsigned long kvm_nr_mmu_pages)
5137 {
5138 	if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
5139 		return -EINVAL;
5140 
5141 	mutex_lock(&kvm->slots_lock);
5142 
5143 	kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
5144 	kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
5145 
5146 	mutex_unlock(&kvm->slots_lock);
5147 	return 0;
5148 }
5149 
kvm_vm_ioctl_get_nr_mmu_pages(struct kvm * kvm)5150 static unsigned long kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
5151 {
5152 	return kvm->arch.n_max_mmu_pages;
5153 }
5154 
kvm_vm_ioctl_get_irqchip(struct kvm * kvm,struct kvm_irqchip * chip)5155 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
5156 {
5157 	struct kvm_pic *pic = kvm->arch.vpic;
5158 	int r;
5159 
5160 	r = 0;
5161 	switch (chip->chip_id) {
5162 	case KVM_IRQCHIP_PIC_MASTER:
5163 		memcpy(&chip->chip.pic, &pic->pics[0],
5164 			sizeof(struct kvm_pic_state));
5165 		break;
5166 	case KVM_IRQCHIP_PIC_SLAVE:
5167 		memcpy(&chip->chip.pic, &pic->pics[1],
5168 			sizeof(struct kvm_pic_state));
5169 		break;
5170 	case KVM_IRQCHIP_IOAPIC:
5171 		kvm_get_ioapic(kvm, &chip->chip.ioapic);
5172 		break;
5173 	default:
5174 		r = -EINVAL;
5175 		break;
5176 	}
5177 	return r;
5178 }
5179 
kvm_vm_ioctl_set_irqchip(struct kvm * kvm,struct kvm_irqchip * chip)5180 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
5181 {
5182 	struct kvm_pic *pic = kvm->arch.vpic;
5183 	int r;
5184 
5185 	r = 0;
5186 	switch (chip->chip_id) {
5187 	case KVM_IRQCHIP_PIC_MASTER:
5188 		spin_lock(&pic->lock);
5189 		memcpy(&pic->pics[0], &chip->chip.pic,
5190 			sizeof(struct kvm_pic_state));
5191 		spin_unlock(&pic->lock);
5192 		break;
5193 	case KVM_IRQCHIP_PIC_SLAVE:
5194 		spin_lock(&pic->lock);
5195 		memcpy(&pic->pics[1], &chip->chip.pic,
5196 			sizeof(struct kvm_pic_state));
5197 		spin_unlock(&pic->lock);
5198 		break;
5199 	case KVM_IRQCHIP_IOAPIC:
5200 		kvm_set_ioapic(kvm, &chip->chip.ioapic);
5201 		break;
5202 	default:
5203 		r = -EINVAL;
5204 		break;
5205 	}
5206 	kvm_pic_update_irq(pic);
5207 	return r;
5208 }
5209 
kvm_vm_ioctl_get_pit(struct kvm * kvm,struct kvm_pit_state * ps)5210 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
5211 {
5212 	struct kvm_kpit_state *kps = &kvm->arch.vpit->pit_state;
5213 
5214 	BUILD_BUG_ON(sizeof(*ps) != sizeof(kps->channels));
5215 
5216 	mutex_lock(&kps->lock);
5217 	memcpy(ps, &kps->channels, sizeof(*ps));
5218 	mutex_unlock(&kps->lock);
5219 	return 0;
5220 }
5221 
kvm_vm_ioctl_set_pit(struct kvm * kvm,struct kvm_pit_state * ps)5222 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
5223 {
5224 	int i;
5225 	struct kvm_pit *pit = kvm->arch.vpit;
5226 
5227 	mutex_lock(&pit->pit_state.lock);
5228 	memcpy(&pit->pit_state.channels, ps, sizeof(*ps));
5229 	for (i = 0; i < 3; i++)
5230 		kvm_pit_load_count(pit, i, ps->channels[i].count, 0);
5231 	mutex_unlock(&pit->pit_state.lock);
5232 	return 0;
5233 }
5234 
kvm_vm_ioctl_get_pit2(struct kvm * kvm,struct kvm_pit_state2 * ps)5235 static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
5236 {
5237 	mutex_lock(&kvm->arch.vpit->pit_state.lock);
5238 	memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels,
5239 		sizeof(ps->channels));
5240 	ps->flags = kvm->arch.vpit->pit_state.flags;
5241 	mutex_unlock(&kvm->arch.vpit->pit_state.lock);
5242 	memset(&ps->reserved, 0, sizeof(ps->reserved));
5243 	return 0;
5244 }
5245 
kvm_vm_ioctl_set_pit2(struct kvm * kvm,struct kvm_pit_state2 * ps)5246 static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
5247 {
5248 	int start = 0;
5249 	int i;
5250 	u32 prev_legacy, cur_legacy;
5251 	struct kvm_pit *pit = kvm->arch.vpit;
5252 
5253 	mutex_lock(&pit->pit_state.lock);
5254 	prev_legacy = pit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY;
5255 	cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY;
5256 	if (!prev_legacy && cur_legacy)
5257 		start = 1;
5258 	memcpy(&pit->pit_state.channels, &ps->channels,
5259 	       sizeof(pit->pit_state.channels));
5260 	pit->pit_state.flags = ps->flags;
5261 	for (i = 0; i < 3; i++)
5262 		kvm_pit_load_count(pit, i, pit->pit_state.channels[i].count,
5263 				   start && i == 0);
5264 	mutex_unlock(&pit->pit_state.lock);
5265 	return 0;
5266 }
5267 
kvm_vm_ioctl_reinject(struct kvm * kvm,struct kvm_reinject_control * control)5268 static int kvm_vm_ioctl_reinject(struct kvm *kvm,
5269 				 struct kvm_reinject_control *control)
5270 {
5271 	struct kvm_pit *pit = kvm->arch.vpit;
5272 
5273 	/* pit->pit_state.lock was overloaded to prevent userspace from getting
5274 	 * an inconsistent state after running multiple KVM_REINJECT_CONTROL
5275 	 * ioctls in parallel.  Use a separate lock if that ioctl isn't rare.
5276 	 */
5277 	mutex_lock(&pit->pit_state.lock);
5278 	kvm_pit_set_reinject(pit, control->pit_reinject);
5279 	mutex_unlock(&pit->pit_state.lock);
5280 
5281 	return 0;
5282 }
5283 
kvm_arch_sync_dirty_log(struct kvm * kvm,struct kvm_memory_slot * memslot)5284 void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot)
5285 {
5286 	/*
5287 	 * Flush potentially hardware-cached dirty pages to dirty_bitmap.
5288 	 */
5289 	if (kvm_x86_ops.flush_log_dirty)
5290 		kvm_x86_ops.flush_log_dirty(kvm);
5291 }
5292 
kvm_vm_ioctl_irq_line(struct kvm * kvm,struct kvm_irq_level * irq_event,bool line_status)5293 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event,
5294 			bool line_status)
5295 {
5296 	if (!irqchip_in_kernel(kvm))
5297 		return -ENXIO;
5298 
5299 	irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
5300 					irq_event->irq, irq_event->level,
5301 					line_status);
5302 	return 0;
5303 }
5304 
kvm_vm_ioctl_enable_cap(struct kvm * kvm,struct kvm_enable_cap * cap)5305 int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
5306 			    struct kvm_enable_cap *cap)
5307 {
5308 	int r;
5309 
5310 	if (cap->flags)
5311 		return -EINVAL;
5312 
5313 	switch (cap->cap) {
5314 	case KVM_CAP_DISABLE_QUIRKS:
5315 		kvm->arch.disabled_quirks = cap->args[0];
5316 		r = 0;
5317 		break;
5318 	case KVM_CAP_SPLIT_IRQCHIP: {
5319 		mutex_lock(&kvm->lock);
5320 		r = -EINVAL;
5321 		if (cap->args[0] > MAX_NR_RESERVED_IOAPIC_PINS)
5322 			goto split_irqchip_unlock;
5323 		r = -EEXIST;
5324 		if (irqchip_in_kernel(kvm))
5325 			goto split_irqchip_unlock;
5326 		if (kvm->created_vcpus)
5327 			goto split_irqchip_unlock;
5328 		r = kvm_setup_empty_irq_routing(kvm);
5329 		if (r)
5330 			goto split_irqchip_unlock;
5331 		/* Pairs with irqchip_in_kernel. */
5332 		smp_wmb();
5333 		kvm->arch.irqchip_mode = KVM_IRQCHIP_SPLIT;
5334 		kvm->arch.nr_reserved_ioapic_pins = cap->args[0];
5335 		r = 0;
5336 split_irqchip_unlock:
5337 		mutex_unlock(&kvm->lock);
5338 		break;
5339 	}
5340 	case KVM_CAP_X2APIC_API:
5341 		r = -EINVAL;
5342 		if (cap->args[0] & ~KVM_X2APIC_API_VALID_FLAGS)
5343 			break;
5344 
5345 		if (cap->args[0] & KVM_X2APIC_API_USE_32BIT_IDS)
5346 			kvm->arch.x2apic_format = true;
5347 		if (cap->args[0] & KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
5348 			kvm->arch.x2apic_broadcast_quirk_disabled = true;
5349 
5350 		r = 0;
5351 		break;
5352 	case KVM_CAP_X86_DISABLE_EXITS:
5353 		r = -EINVAL;
5354 		if (cap->args[0] & ~KVM_X86_DISABLE_VALID_EXITS)
5355 			break;
5356 
5357 		if ((cap->args[0] & KVM_X86_DISABLE_EXITS_MWAIT) &&
5358 			kvm_can_mwait_in_guest())
5359 			kvm->arch.mwait_in_guest = true;
5360 		if (cap->args[0] & KVM_X86_DISABLE_EXITS_HLT)
5361 			kvm->arch.hlt_in_guest = true;
5362 		if (cap->args[0] & KVM_X86_DISABLE_EXITS_PAUSE)
5363 			kvm->arch.pause_in_guest = true;
5364 		if (cap->args[0] & KVM_X86_DISABLE_EXITS_CSTATE)
5365 			kvm->arch.cstate_in_guest = true;
5366 		r = 0;
5367 		break;
5368 	case KVM_CAP_MSR_PLATFORM_INFO:
5369 		kvm->arch.guest_can_read_msr_platform_info = cap->args[0];
5370 		r = 0;
5371 		break;
5372 	case KVM_CAP_EXCEPTION_PAYLOAD:
5373 		kvm->arch.exception_payload_enabled = cap->args[0];
5374 		r = 0;
5375 		break;
5376 	case KVM_CAP_X86_USER_SPACE_MSR:
5377 		r = -EINVAL;
5378 		if (cap->args[0] & ~(KVM_MSR_EXIT_REASON_INVAL |
5379 				     KVM_MSR_EXIT_REASON_UNKNOWN |
5380 				     KVM_MSR_EXIT_REASON_FILTER))
5381 			break;
5382 		kvm->arch.user_space_msr_mask = cap->args[0];
5383 		r = 0;
5384 		break;
5385 	default:
5386 		r = -EINVAL;
5387 		break;
5388 	}
5389 	return r;
5390 }
5391 
kvm_alloc_msr_filter(bool default_allow)5392 static struct kvm_x86_msr_filter *kvm_alloc_msr_filter(bool default_allow)
5393 {
5394 	struct kvm_x86_msr_filter *msr_filter;
5395 
5396 	msr_filter = kzalloc(sizeof(*msr_filter), GFP_KERNEL_ACCOUNT);
5397 	if (!msr_filter)
5398 		return NULL;
5399 
5400 	msr_filter->default_allow = default_allow;
5401 	return msr_filter;
5402 }
5403 
kvm_free_msr_filter(struct kvm_x86_msr_filter * msr_filter)5404 static void kvm_free_msr_filter(struct kvm_x86_msr_filter *msr_filter)
5405 {
5406 	u32 i;
5407 
5408 	if (!msr_filter)
5409 		return;
5410 
5411 	for (i = 0; i < msr_filter->count; i++)
5412 		kfree(msr_filter->ranges[i].bitmap);
5413 
5414 	kfree(msr_filter);
5415 }
5416 
kvm_add_msr_filter(struct kvm_x86_msr_filter * msr_filter,struct kvm_msr_filter_range * user_range)5417 static int kvm_add_msr_filter(struct kvm_x86_msr_filter *msr_filter,
5418 			      struct kvm_msr_filter_range *user_range)
5419 {
5420 	struct msr_bitmap_range range;
5421 	unsigned long *bitmap = NULL;
5422 	size_t bitmap_size;
5423 	int r;
5424 
5425 	if (!user_range->nmsrs)
5426 		return 0;
5427 
5428 	bitmap_size = BITS_TO_LONGS(user_range->nmsrs) * sizeof(long);
5429 	if (!bitmap_size || bitmap_size > KVM_MSR_FILTER_MAX_BITMAP_SIZE)
5430 		return -EINVAL;
5431 
5432 	bitmap = memdup_user((__user u8*)user_range->bitmap, bitmap_size);
5433 	if (IS_ERR(bitmap))
5434 		return PTR_ERR(bitmap);
5435 
5436 	range = (struct msr_bitmap_range) {
5437 		.flags = user_range->flags,
5438 		.base = user_range->base,
5439 		.nmsrs = user_range->nmsrs,
5440 		.bitmap = bitmap,
5441 	};
5442 
5443 	if (range.flags & ~(KVM_MSR_FILTER_READ | KVM_MSR_FILTER_WRITE)) {
5444 		r = -EINVAL;
5445 		goto err;
5446 	}
5447 
5448 	if (!range.flags) {
5449 		r = -EINVAL;
5450 		goto err;
5451 	}
5452 
5453 	/* Everything ok, add this range identifier. */
5454 	msr_filter->ranges[msr_filter->count] = range;
5455 	msr_filter->count++;
5456 
5457 	return 0;
5458 err:
5459 	kfree(bitmap);
5460 	return r;
5461 }
5462 
kvm_vm_ioctl_set_msr_filter(struct kvm * kvm,struct kvm_msr_filter * filter)5463 static int kvm_vm_ioctl_set_msr_filter(struct kvm *kvm,
5464 				       struct kvm_msr_filter *filter)
5465 {
5466 	struct kvm_x86_msr_filter *new_filter, *old_filter;
5467 	bool default_allow;
5468 	bool empty = true;
5469 	int r = 0;
5470 	u32 i;
5471 
5472 	if (filter->flags & ~KVM_MSR_FILTER_DEFAULT_DENY)
5473 		return -EINVAL;
5474 
5475 	for (i = 0; i < ARRAY_SIZE(filter->ranges); i++)
5476 		empty &= !filter->ranges[i].nmsrs;
5477 
5478 	default_allow = !(filter->flags & KVM_MSR_FILTER_DEFAULT_DENY);
5479 	if (empty && !default_allow)
5480 		return -EINVAL;
5481 
5482 	new_filter = kvm_alloc_msr_filter(default_allow);
5483 	if (!new_filter)
5484 		return -ENOMEM;
5485 
5486 	for (i = 0; i < ARRAY_SIZE(filter->ranges); i++) {
5487 		r = kvm_add_msr_filter(new_filter, &filter->ranges[i]);
5488 		if (r) {
5489 			kvm_free_msr_filter(new_filter);
5490 			return r;
5491 		}
5492 	}
5493 
5494 	mutex_lock(&kvm->lock);
5495 
5496 	/* The per-VM filter is protected by kvm->lock... */
5497 	old_filter = srcu_dereference_check(kvm->arch.msr_filter, &kvm->srcu, 1);
5498 
5499 	rcu_assign_pointer(kvm->arch.msr_filter, new_filter);
5500 	synchronize_srcu(&kvm->srcu);
5501 
5502 	kvm_free_msr_filter(old_filter);
5503 
5504 	kvm_make_all_cpus_request(kvm, KVM_REQ_MSR_FILTER_CHANGED);
5505 	mutex_unlock(&kvm->lock);
5506 
5507 	return 0;
5508 }
5509 
5510 #ifdef CONFIG_KVM_COMPAT
5511 /* for KVM_X86_SET_MSR_FILTER */
5512 struct kvm_msr_filter_range_compat {
5513 	__u32 flags;
5514 	__u32 nmsrs;
5515 	__u32 base;
5516 	__u32 bitmap;
5517 };
5518 
5519 struct kvm_msr_filter_compat {
5520 	__u32 flags;
5521 	struct kvm_msr_filter_range_compat ranges[KVM_MSR_FILTER_MAX_RANGES];
5522 };
5523 
5524 #define KVM_X86_SET_MSR_FILTER_COMPAT _IOW(KVMIO, 0xc6, struct kvm_msr_filter_compat)
5525 
kvm_arch_vm_compat_ioctl(struct file * filp,unsigned int ioctl,unsigned long arg)5526 long kvm_arch_vm_compat_ioctl(struct file *filp, unsigned int ioctl,
5527 			      unsigned long arg)
5528 {
5529 	void __user *argp = (void __user *)arg;
5530 	struct kvm *kvm = filp->private_data;
5531 	long r = -ENOTTY;
5532 
5533 	switch (ioctl) {
5534 	case KVM_X86_SET_MSR_FILTER_COMPAT: {
5535 		struct kvm_msr_filter __user *user_msr_filter = argp;
5536 		struct kvm_msr_filter_compat filter_compat;
5537 		struct kvm_msr_filter filter;
5538 		int i;
5539 
5540 		if (copy_from_user(&filter_compat, user_msr_filter,
5541 				   sizeof(filter_compat)))
5542 			return -EFAULT;
5543 
5544 		filter.flags = filter_compat.flags;
5545 		for (i = 0; i < ARRAY_SIZE(filter.ranges); i++) {
5546 			struct kvm_msr_filter_range_compat *cr;
5547 
5548 			cr = &filter_compat.ranges[i];
5549 			filter.ranges[i] = (struct kvm_msr_filter_range) {
5550 				.flags = cr->flags,
5551 				.nmsrs = cr->nmsrs,
5552 				.base = cr->base,
5553 				.bitmap = (__u8 *)(ulong)cr->bitmap,
5554 			};
5555 		}
5556 
5557 		r = kvm_vm_ioctl_set_msr_filter(kvm, &filter);
5558 		break;
5559 	}
5560 	}
5561 
5562 	return r;
5563 }
5564 #endif
5565 
kvm_arch_vm_ioctl(struct file * filp,unsigned int ioctl,unsigned long arg)5566 long kvm_arch_vm_ioctl(struct file *filp,
5567 		       unsigned int ioctl, unsigned long arg)
5568 {
5569 	struct kvm *kvm = filp->private_data;
5570 	void __user *argp = (void __user *)arg;
5571 	int r = -ENOTTY;
5572 	/*
5573 	 * This union makes it completely explicit to gcc-3.x
5574 	 * that these two variables' stack usage should be
5575 	 * combined, not added together.
5576 	 */
5577 	union {
5578 		struct kvm_pit_state ps;
5579 		struct kvm_pit_state2 ps2;
5580 		struct kvm_pit_config pit_config;
5581 	} u;
5582 
5583 	switch (ioctl) {
5584 	case KVM_SET_TSS_ADDR:
5585 		r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
5586 		break;
5587 	case KVM_SET_IDENTITY_MAP_ADDR: {
5588 		u64 ident_addr;
5589 
5590 		mutex_lock(&kvm->lock);
5591 		r = -EINVAL;
5592 		if (kvm->created_vcpus)
5593 			goto set_identity_unlock;
5594 		r = -EFAULT;
5595 		if (copy_from_user(&ident_addr, argp, sizeof(ident_addr)))
5596 			goto set_identity_unlock;
5597 		r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr);
5598 set_identity_unlock:
5599 		mutex_unlock(&kvm->lock);
5600 		break;
5601 	}
5602 	case KVM_SET_NR_MMU_PAGES:
5603 		r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
5604 		break;
5605 	case KVM_GET_NR_MMU_PAGES:
5606 		r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
5607 		break;
5608 	case KVM_CREATE_IRQCHIP: {
5609 		mutex_lock(&kvm->lock);
5610 
5611 		r = -EEXIST;
5612 		if (irqchip_in_kernel(kvm))
5613 			goto create_irqchip_unlock;
5614 
5615 		r = -EINVAL;
5616 		if (kvm->created_vcpus)
5617 			goto create_irqchip_unlock;
5618 
5619 		r = kvm_pic_init(kvm);
5620 		if (r)
5621 			goto create_irqchip_unlock;
5622 
5623 		r = kvm_ioapic_init(kvm);
5624 		if (r) {
5625 			kvm_pic_destroy(kvm);
5626 			goto create_irqchip_unlock;
5627 		}
5628 
5629 		r = kvm_setup_default_irq_routing(kvm);
5630 		if (r) {
5631 			kvm_ioapic_destroy(kvm);
5632 			kvm_pic_destroy(kvm);
5633 			goto create_irqchip_unlock;
5634 		}
5635 		/* Write kvm->irq_routing before enabling irqchip_in_kernel. */
5636 		smp_wmb();
5637 		kvm->arch.irqchip_mode = KVM_IRQCHIP_KERNEL;
5638 	create_irqchip_unlock:
5639 		mutex_unlock(&kvm->lock);
5640 		break;
5641 	}
5642 	case KVM_CREATE_PIT:
5643 		u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY;
5644 		goto create_pit;
5645 	case KVM_CREATE_PIT2:
5646 		r = -EFAULT;
5647 		if (copy_from_user(&u.pit_config, argp,
5648 				   sizeof(struct kvm_pit_config)))
5649 			goto out;
5650 	create_pit:
5651 		mutex_lock(&kvm->lock);
5652 		r = -EEXIST;
5653 		if (kvm->arch.vpit)
5654 			goto create_pit_unlock;
5655 		r = -ENOMEM;
5656 		kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags);
5657 		if (kvm->arch.vpit)
5658 			r = 0;
5659 	create_pit_unlock:
5660 		mutex_unlock(&kvm->lock);
5661 		break;
5662 	case KVM_GET_IRQCHIP: {
5663 		/* 0: PIC master, 1: PIC slave, 2: IOAPIC */
5664 		struct kvm_irqchip *chip;
5665 
5666 		chip = memdup_user(argp, sizeof(*chip));
5667 		if (IS_ERR(chip)) {
5668 			r = PTR_ERR(chip);
5669 			goto out;
5670 		}
5671 
5672 		r = -ENXIO;
5673 		if (!irqchip_kernel(kvm))
5674 			goto get_irqchip_out;
5675 		r = kvm_vm_ioctl_get_irqchip(kvm, chip);
5676 		if (r)
5677 			goto get_irqchip_out;
5678 		r = -EFAULT;
5679 		if (copy_to_user(argp, chip, sizeof(*chip)))
5680 			goto get_irqchip_out;
5681 		r = 0;
5682 	get_irqchip_out:
5683 		kfree(chip);
5684 		break;
5685 	}
5686 	case KVM_SET_IRQCHIP: {
5687 		/* 0: PIC master, 1: PIC slave, 2: IOAPIC */
5688 		struct kvm_irqchip *chip;
5689 
5690 		chip = memdup_user(argp, sizeof(*chip));
5691 		if (IS_ERR(chip)) {
5692 			r = PTR_ERR(chip);
5693 			goto out;
5694 		}
5695 
5696 		r = -ENXIO;
5697 		if (!irqchip_kernel(kvm))
5698 			goto set_irqchip_out;
5699 		r = kvm_vm_ioctl_set_irqchip(kvm, chip);
5700 	set_irqchip_out:
5701 		kfree(chip);
5702 		break;
5703 	}
5704 	case KVM_GET_PIT: {
5705 		r = -EFAULT;
5706 		if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
5707 			goto out;
5708 		r = -ENXIO;
5709 		if (!kvm->arch.vpit)
5710 			goto out;
5711 		r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
5712 		if (r)
5713 			goto out;
5714 		r = -EFAULT;
5715 		if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
5716 			goto out;
5717 		r = 0;
5718 		break;
5719 	}
5720 	case KVM_SET_PIT: {
5721 		r = -EFAULT;
5722 		if (copy_from_user(&u.ps, argp, sizeof(u.ps)))
5723 			goto out;
5724 		mutex_lock(&kvm->lock);
5725 		r = -ENXIO;
5726 		if (!kvm->arch.vpit)
5727 			goto set_pit_out;
5728 		r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
5729 set_pit_out:
5730 		mutex_unlock(&kvm->lock);
5731 		break;
5732 	}
5733 	case KVM_GET_PIT2: {
5734 		r = -ENXIO;
5735 		if (!kvm->arch.vpit)
5736 			goto out;
5737 		r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2);
5738 		if (r)
5739 			goto out;
5740 		r = -EFAULT;
5741 		if (copy_to_user(argp, &u.ps2, sizeof(u.ps2)))
5742 			goto out;
5743 		r = 0;
5744 		break;
5745 	}
5746 	case KVM_SET_PIT2: {
5747 		r = -EFAULT;
5748 		if (copy_from_user(&u.ps2, argp, sizeof(u.ps2)))
5749 			goto out;
5750 		mutex_lock(&kvm->lock);
5751 		r = -ENXIO;
5752 		if (!kvm->arch.vpit)
5753 			goto set_pit2_out;
5754 		r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2);
5755 set_pit2_out:
5756 		mutex_unlock(&kvm->lock);
5757 		break;
5758 	}
5759 	case KVM_REINJECT_CONTROL: {
5760 		struct kvm_reinject_control control;
5761 		r =  -EFAULT;
5762 		if (copy_from_user(&control, argp, sizeof(control)))
5763 			goto out;
5764 		r = -ENXIO;
5765 		if (!kvm->arch.vpit)
5766 			goto out;
5767 		r = kvm_vm_ioctl_reinject(kvm, &control);
5768 		break;
5769 	}
5770 	case KVM_SET_BOOT_CPU_ID:
5771 		r = 0;
5772 		mutex_lock(&kvm->lock);
5773 		if (kvm->created_vcpus)
5774 			r = -EBUSY;
5775 		else
5776 			kvm->arch.bsp_vcpu_id = arg;
5777 		mutex_unlock(&kvm->lock);
5778 		break;
5779 	case KVM_XEN_HVM_CONFIG: {
5780 		struct kvm_xen_hvm_config xhc;
5781 		r = -EFAULT;
5782 		if (copy_from_user(&xhc, argp, sizeof(xhc)))
5783 			goto out;
5784 		r = -EINVAL;
5785 		if (xhc.flags)
5786 			goto out;
5787 		memcpy(&kvm->arch.xen_hvm_config, &xhc, sizeof(xhc));
5788 		r = 0;
5789 		break;
5790 	}
5791 	case KVM_SET_CLOCK: {
5792 		struct kvm_clock_data user_ns;
5793 		u64 now_ns;
5794 
5795 		r = -EFAULT;
5796 		if (copy_from_user(&user_ns, argp, sizeof(user_ns)))
5797 			goto out;
5798 
5799 		r = -EINVAL;
5800 		if (user_ns.flags)
5801 			goto out;
5802 
5803 		r = 0;
5804 		/*
5805 		 * TODO: userspace has to take care of races with VCPU_RUN, so
5806 		 * kvm_gen_update_masterclock() can be cut down to locked
5807 		 * pvclock_update_vm_gtod_copy().
5808 		 */
5809 		kvm_gen_update_masterclock(kvm);
5810 		now_ns = get_kvmclock_ns(kvm);
5811 		kvm->arch.kvmclock_offset += user_ns.clock - now_ns;
5812 		kvm_make_all_cpus_request(kvm, KVM_REQ_CLOCK_UPDATE);
5813 		break;
5814 	}
5815 	case KVM_GET_CLOCK: {
5816 		struct kvm_clock_data user_ns;
5817 		u64 now_ns;
5818 
5819 		now_ns = get_kvmclock_ns(kvm);
5820 		user_ns.clock = now_ns;
5821 		user_ns.flags = kvm->arch.use_master_clock ? KVM_CLOCK_TSC_STABLE : 0;
5822 		memset(&user_ns.pad, 0, sizeof(user_ns.pad));
5823 
5824 		r = -EFAULT;
5825 		if (copy_to_user(argp, &user_ns, sizeof(user_ns)))
5826 			goto out;
5827 		r = 0;
5828 		break;
5829 	}
5830 	case KVM_MEMORY_ENCRYPT_OP: {
5831 		r = -ENOTTY;
5832 		if (kvm_x86_ops.mem_enc_op)
5833 			r = kvm_x86_ops.mem_enc_op(kvm, argp);
5834 		break;
5835 	}
5836 	case KVM_MEMORY_ENCRYPT_REG_REGION: {
5837 		struct kvm_enc_region region;
5838 
5839 		r = -EFAULT;
5840 		if (copy_from_user(&region, argp, sizeof(region)))
5841 			goto out;
5842 
5843 		r = -ENOTTY;
5844 		if (kvm_x86_ops.mem_enc_reg_region)
5845 			r = kvm_x86_ops.mem_enc_reg_region(kvm, &region);
5846 		break;
5847 	}
5848 	case KVM_MEMORY_ENCRYPT_UNREG_REGION: {
5849 		struct kvm_enc_region region;
5850 
5851 		r = -EFAULT;
5852 		if (copy_from_user(&region, argp, sizeof(region)))
5853 			goto out;
5854 
5855 		r = -ENOTTY;
5856 		if (kvm_x86_ops.mem_enc_unreg_region)
5857 			r = kvm_x86_ops.mem_enc_unreg_region(kvm, &region);
5858 		break;
5859 	}
5860 	case KVM_HYPERV_EVENTFD: {
5861 		struct kvm_hyperv_eventfd hvevfd;
5862 
5863 		r = -EFAULT;
5864 		if (copy_from_user(&hvevfd, argp, sizeof(hvevfd)))
5865 			goto out;
5866 		r = kvm_vm_ioctl_hv_eventfd(kvm, &hvevfd);
5867 		break;
5868 	}
5869 	case KVM_SET_PMU_EVENT_FILTER:
5870 		r = kvm_vm_ioctl_set_pmu_event_filter(kvm, argp);
5871 		break;
5872 	case KVM_X86_SET_MSR_FILTER: {
5873 		struct kvm_msr_filter __user *user_msr_filter = argp;
5874 		struct kvm_msr_filter filter;
5875 
5876 		if (copy_from_user(&filter, user_msr_filter, sizeof(filter)))
5877 			return -EFAULT;
5878 
5879 		r = kvm_vm_ioctl_set_msr_filter(kvm, &filter);
5880 		break;
5881 	}
5882 	default:
5883 		r = -ENOTTY;
5884 	}
5885 out:
5886 	return r;
5887 }
5888 
kvm_init_msr_list(void)5889 static void kvm_init_msr_list(void)
5890 {
5891 	struct x86_pmu_capability x86_pmu;
5892 	u32 dummy[2];
5893 	unsigned i;
5894 
5895 	BUILD_BUG_ON_MSG(INTEL_PMC_MAX_FIXED != 4,
5896 			 "Please update the fixed PMCs in msrs_to_saved_all[]");
5897 
5898 	perf_get_x86_pmu_capability(&x86_pmu);
5899 
5900 	num_msrs_to_save = 0;
5901 	num_emulated_msrs = 0;
5902 	num_msr_based_features = 0;
5903 
5904 	for (i = 0; i < ARRAY_SIZE(msrs_to_save_all); i++) {
5905 		if (rdmsr_safe(msrs_to_save_all[i], &dummy[0], &dummy[1]) < 0)
5906 			continue;
5907 
5908 		/*
5909 		 * Even MSRs that are valid in the host may not be exposed
5910 		 * to the guests in some cases.
5911 		 */
5912 		switch (msrs_to_save_all[i]) {
5913 		case MSR_IA32_BNDCFGS:
5914 			if (!kvm_mpx_supported())
5915 				continue;
5916 			break;
5917 		case MSR_TSC_AUX:
5918 			if (!kvm_cpu_cap_has(X86_FEATURE_RDTSCP))
5919 				continue;
5920 			break;
5921 		case MSR_IA32_UMWAIT_CONTROL:
5922 			if (!kvm_cpu_cap_has(X86_FEATURE_WAITPKG))
5923 				continue;
5924 			break;
5925 		case MSR_IA32_RTIT_CTL:
5926 		case MSR_IA32_RTIT_STATUS:
5927 			if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT))
5928 				continue;
5929 			break;
5930 		case MSR_IA32_RTIT_CR3_MATCH:
5931 			if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) ||
5932 			    !intel_pt_validate_hw_cap(PT_CAP_cr3_filtering))
5933 				continue;
5934 			break;
5935 		case MSR_IA32_RTIT_OUTPUT_BASE:
5936 		case MSR_IA32_RTIT_OUTPUT_MASK:
5937 			if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) ||
5938 				(!intel_pt_validate_hw_cap(PT_CAP_topa_output) &&
5939 				 !intel_pt_validate_hw_cap(PT_CAP_single_range_output)))
5940 				continue;
5941 			break;
5942 		case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B:
5943 			if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) ||
5944 				msrs_to_save_all[i] - MSR_IA32_RTIT_ADDR0_A >=
5945 				intel_pt_validate_hw_cap(PT_CAP_num_address_ranges) * 2)
5946 				continue;
5947 			break;
5948 		case MSR_ARCH_PERFMON_PERFCTR0 ... MSR_ARCH_PERFMON_PERFCTR0 + 17:
5949 			if (msrs_to_save_all[i] - MSR_ARCH_PERFMON_PERFCTR0 >=
5950 			    min(INTEL_PMC_MAX_GENERIC, x86_pmu.num_counters_gp))
5951 				continue;
5952 			break;
5953 		case MSR_ARCH_PERFMON_EVENTSEL0 ... MSR_ARCH_PERFMON_EVENTSEL0 + 17:
5954 			if (msrs_to_save_all[i] - MSR_ARCH_PERFMON_EVENTSEL0 >=
5955 			    min(INTEL_PMC_MAX_GENERIC, x86_pmu.num_counters_gp))
5956 				continue;
5957 			break;
5958 		default:
5959 			break;
5960 		}
5961 
5962 		msrs_to_save[num_msrs_to_save++] = msrs_to_save_all[i];
5963 	}
5964 
5965 	for (i = 0; i < ARRAY_SIZE(emulated_msrs_all); i++) {
5966 		if (!kvm_x86_ops.has_emulated_msr(emulated_msrs_all[i]))
5967 			continue;
5968 
5969 		emulated_msrs[num_emulated_msrs++] = emulated_msrs_all[i];
5970 	}
5971 
5972 	for (i = 0; i < ARRAY_SIZE(msr_based_features_all); i++) {
5973 		struct kvm_msr_entry msr;
5974 
5975 		msr.index = msr_based_features_all[i];
5976 		if (kvm_get_msr_feature(&msr))
5977 			continue;
5978 
5979 		msr_based_features[num_msr_based_features++] = msr_based_features_all[i];
5980 	}
5981 }
5982 
vcpu_mmio_write(struct kvm_vcpu * vcpu,gpa_t addr,int len,const void * v)5983 static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len,
5984 			   const void *v)
5985 {
5986 	int handled = 0;
5987 	int n;
5988 
5989 	do {
5990 		n = min(len, 8);
5991 		if (!(lapic_in_kernel(vcpu) &&
5992 		      !kvm_iodevice_write(vcpu, &vcpu->arch.apic->dev, addr, n, v))
5993 		    && kvm_io_bus_write(vcpu, KVM_MMIO_BUS, addr, n, v))
5994 			break;
5995 		handled += n;
5996 		addr += n;
5997 		len -= n;
5998 		v += n;
5999 	} while (len);
6000 
6001 	return handled;
6002 }
6003 
vcpu_mmio_read(struct kvm_vcpu * vcpu,gpa_t addr,int len,void * v)6004 static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v)
6005 {
6006 	int handled = 0;
6007 	int n;
6008 
6009 	do {
6010 		n = min(len, 8);
6011 		if (!(lapic_in_kernel(vcpu) &&
6012 		      !kvm_iodevice_read(vcpu, &vcpu->arch.apic->dev,
6013 					 addr, n, v))
6014 		    && kvm_io_bus_read(vcpu, KVM_MMIO_BUS, addr, n, v))
6015 			break;
6016 		trace_kvm_mmio(KVM_TRACE_MMIO_READ, n, addr, v);
6017 		handled += n;
6018 		addr += n;
6019 		len -= n;
6020 		v += n;
6021 	} while (len);
6022 
6023 	return handled;
6024 }
6025 
kvm_set_segment(struct kvm_vcpu * vcpu,struct kvm_segment * var,int seg)6026 static void kvm_set_segment(struct kvm_vcpu *vcpu,
6027 			struct kvm_segment *var, int seg)
6028 {
6029 	kvm_x86_ops.set_segment(vcpu, var, seg);
6030 }
6031 
kvm_get_segment(struct kvm_vcpu * vcpu,struct kvm_segment * var,int seg)6032 void kvm_get_segment(struct kvm_vcpu *vcpu,
6033 		     struct kvm_segment *var, int seg)
6034 {
6035 	kvm_x86_ops.get_segment(vcpu, var, seg);
6036 }
6037 
translate_nested_gpa(struct kvm_vcpu * vcpu,gpa_t gpa,u32 access,struct x86_exception * exception)6038 gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access,
6039 			   struct x86_exception *exception)
6040 {
6041 	gpa_t t_gpa;
6042 
6043 	BUG_ON(!mmu_is_nested(vcpu));
6044 
6045 	/* NPT walks are always user-walks */
6046 	access |= PFERR_USER_MASK;
6047 	t_gpa  = vcpu->arch.mmu->gva_to_gpa(vcpu, gpa, access, exception);
6048 
6049 	return t_gpa;
6050 }
6051 
kvm_mmu_gva_to_gpa_read(struct kvm_vcpu * vcpu,gva_t gva,struct x86_exception * exception)6052 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva,
6053 			      struct x86_exception *exception)
6054 {
6055 	u32 access = (kvm_x86_ops.get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
6056 	return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
6057 }
6058 
kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu * vcpu,gva_t gva,struct x86_exception * exception)6059  gpa_t kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu *vcpu, gva_t gva,
6060 				struct x86_exception *exception)
6061 {
6062 	u32 access = (kvm_x86_ops.get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
6063 	access |= PFERR_FETCH_MASK;
6064 	return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
6065 }
6066 
kvm_mmu_gva_to_gpa_write(struct kvm_vcpu * vcpu,gva_t gva,struct x86_exception * exception)6067 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva,
6068 			       struct x86_exception *exception)
6069 {
6070 	u32 access = (kvm_x86_ops.get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
6071 	access |= PFERR_WRITE_MASK;
6072 	return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
6073 }
6074 
6075 /* uses this to access any guest's mapped memory without checking CPL */
kvm_mmu_gva_to_gpa_system(struct kvm_vcpu * vcpu,gva_t gva,struct x86_exception * exception)6076 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva,
6077 				struct x86_exception *exception)
6078 {
6079 	return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, 0, exception);
6080 }
6081 
kvm_read_guest_virt_helper(gva_t addr,void * val,unsigned int bytes,struct kvm_vcpu * vcpu,u32 access,struct x86_exception * exception)6082 static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
6083 				      struct kvm_vcpu *vcpu, u32 access,
6084 				      struct x86_exception *exception)
6085 {
6086 	void *data = val;
6087 	int r = X86EMUL_CONTINUE;
6088 
6089 	while (bytes) {
6090 		gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access,
6091 							    exception);
6092 		unsigned offset = addr & (PAGE_SIZE-1);
6093 		unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
6094 		int ret;
6095 
6096 		if (gpa == UNMAPPED_GVA)
6097 			return X86EMUL_PROPAGATE_FAULT;
6098 		ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, data,
6099 					       offset, toread);
6100 		if (ret < 0) {
6101 			r = X86EMUL_IO_NEEDED;
6102 			goto out;
6103 		}
6104 
6105 		bytes -= toread;
6106 		data += toread;
6107 		addr += toread;
6108 	}
6109 out:
6110 	return r;
6111 }
6112 
6113 /* used for instruction fetching */
kvm_fetch_guest_virt(struct x86_emulate_ctxt * ctxt,gva_t addr,void * val,unsigned int bytes,struct x86_exception * exception)6114 static int kvm_fetch_guest_virt(struct x86_emulate_ctxt *ctxt,
6115 				gva_t addr, void *val, unsigned int bytes,
6116 				struct x86_exception *exception)
6117 {
6118 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6119 	u32 access = (kvm_x86_ops.get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
6120 	unsigned offset;
6121 	int ret;
6122 
6123 	/* Inline kvm_read_guest_virt_helper for speed.  */
6124 	gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access|PFERR_FETCH_MASK,
6125 						    exception);
6126 	if (unlikely(gpa == UNMAPPED_GVA))
6127 		return X86EMUL_PROPAGATE_FAULT;
6128 
6129 	offset = addr & (PAGE_SIZE-1);
6130 	if (WARN_ON(offset + bytes > PAGE_SIZE))
6131 		bytes = (unsigned)PAGE_SIZE - offset;
6132 	ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, val,
6133 				       offset, bytes);
6134 	if (unlikely(ret < 0))
6135 		return X86EMUL_IO_NEEDED;
6136 
6137 	return X86EMUL_CONTINUE;
6138 }
6139 
kvm_read_guest_virt(struct kvm_vcpu * vcpu,gva_t addr,void * val,unsigned int bytes,struct x86_exception * exception)6140 int kvm_read_guest_virt(struct kvm_vcpu *vcpu,
6141 			       gva_t addr, void *val, unsigned int bytes,
6142 			       struct x86_exception *exception)
6143 {
6144 	u32 access = (kvm_x86_ops.get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
6145 
6146 	/*
6147 	 * FIXME: this should call handle_emulation_failure if X86EMUL_IO_NEEDED
6148 	 * is returned, but our callers are not ready for that and they blindly
6149 	 * call kvm_inject_page_fault.  Ensure that they at least do not leak
6150 	 * uninitialized kernel stack memory into cr2 and error code.
6151 	 */
6152 	memset(exception, 0, sizeof(*exception));
6153 	return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access,
6154 					  exception);
6155 }
6156 EXPORT_SYMBOL_GPL(kvm_read_guest_virt);
6157 
emulator_read_std(struct x86_emulate_ctxt * ctxt,gva_t addr,void * val,unsigned int bytes,struct x86_exception * exception,bool system)6158 static int emulator_read_std(struct x86_emulate_ctxt *ctxt,
6159 			     gva_t addr, void *val, unsigned int bytes,
6160 			     struct x86_exception *exception, bool system)
6161 {
6162 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6163 	u32 access = 0;
6164 
6165 	if (!system && kvm_x86_ops.get_cpl(vcpu) == 3)
6166 		access |= PFERR_USER_MASK;
6167 
6168 	return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access, exception);
6169 }
6170 
kvm_read_guest_phys_system(struct x86_emulate_ctxt * ctxt,unsigned long addr,void * val,unsigned int bytes)6171 static int kvm_read_guest_phys_system(struct x86_emulate_ctxt *ctxt,
6172 		unsigned long addr, void *val, unsigned int bytes)
6173 {
6174 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6175 	int r = kvm_vcpu_read_guest(vcpu, addr, val, bytes);
6176 
6177 	return r < 0 ? X86EMUL_IO_NEEDED : X86EMUL_CONTINUE;
6178 }
6179 
kvm_write_guest_virt_helper(gva_t addr,void * val,unsigned int bytes,struct kvm_vcpu * vcpu,u32 access,struct x86_exception * exception)6180 static int kvm_write_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
6181 				      struct kvm_vcpu *vcpu, u32 access,
6182 				      struct x86_exception *exception)
6183 {
6184 	void *data = val;
6185 	int r = X86EMUL_CONTINUE;
6186 
6187 	while (bytes) {
6188 		gpa_t gpa =  vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr,
6189 							     access,
6190 							     exception);
6191 		unsigned offset = addr & (PAGE_SIZE-1);
6192 		unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
6193 		int ret;
6194 
6195 		if (gpa == UNMAPPED_GVA)
6196 			return X86EMUL_PROPAGATE_FAULT;
6197 		ret = kvm_vcpu_write_guest(vcpu, gpa, data, towrite);
6198 		if (ret < 0) {
6199 			r = X86EMUL_IO_NEEDED;
6200 			goto out;
6201 		}
6202 
6203 		bytes -= towrite;
6204 		data += towrite;
6205 		addr += towrite;
6206 	}
6207 out:
6208 	return r;
6209 }
6210 
emulator_write_std(struct x86_emulate_ctxt * ctxt,gva_t addr,void * val,unsigned int bytes,struct x86_exception * exception,bool system)6211 static int emulator_write_std(struct x86_emulate_ctxt *ctxt, gva_t addr, void *val,
6212 			      unsigned int bytes, struct x86_exception *exception,
6213 			      bool system)
6214 {
6215 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6216 	u32 access = PFERR_WRITE_MASK;
6217 
6218 	if (!system && kvm_x86_ops.get_cpl(vcpu) == 3)
6219 		access |= PFERR_USER_MASK;
6220 
6221 	return kvm_write_guest_virt_helper(addr, val, bytes, vcpu,
6222 					   access, exception);
6223 }
6224 
kvm_write_guest_virt_system(struct kvm_vcpu * vcpu,gva_t addr,void * val,unsigned int bytes,struct x86_exception * exception)6225 int kvm_write_guest_virt_system(struct kvm_vcpu *vcpu, gva_t addr, void *val,
6226 				unsigned int bytes, struct x86_exception *exception)
6227 {
6228 	/* kvm_write_guest_virt_system can pull in tons of pages. */
6229 	vcpu->arch.l1tf_flush_l1d = true;
6230 
6231 	return kvm_write_guest_virt_helper(addr, val, bytes, vcpu,
6232 					   PFERR_WRITE_MASK, exception);
6233 }
6234 EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system);
6235 
handle_ud(struct kvm_vcpu * vcpu)6236 int handle_ud(struct kvm_vcpu *vcpu)
6237 {
6238 	static const char kvm_emulate_prefix[] = { __KVM_EMULATE_PREFIX };
6239 	int emul_type = EMULTYPE_TRAP_UD;
6240 	char sig[5]; /* ud2; .ascii "kvm" */
6241 	struct x86_exception e;
6242 
6243 	if (unlikely(!kvm_x86_ops.can_emulate_instruction(vcpu, NULL, 0)))
6244 		return 1;
6245 
6246 	if (force_emulation_prefix &&
6247 	    kvm_read_guest_virt(vcpu, kvm_get_linear_rip(vcpu),
6248 				sig, sizeof(sig), &e) == 0 &&
6249 	    memcmp(sig, kvm_emulate_prefix, sizeof(sig)) == 0) {
6250 		kvm_rip_write(vcpu, kvm_rip_read(vcpu) + sizeof(sig));
6251 		emul_type = EMULTYPE_TRAP_UD_FORCED;
6252 	}
6253 
6254 	return kvm_emulate_instruction(vcpu, emul_type);
6255 }
6256 EXPORT_SYMBOL_GPL(handle_ud);
6257 
vcpu_is_mmio_gpa(struct kvm_vcpu * vcpu,unsigned long gva,gpa_t gpa,bool write)6258 static int vcpu_is_mmio_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
6259 			    gpa_t gpa, bool write)
6260 {
6261 	/* For APIC access vmexit */
6262 	if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
6263 		return 1;
6264 
6265 	if (vcpu_match_mmio_gpa(vcpu, gpa)) {
6266 		trace_vcpu_match_mmio(gva, gpa, write, true);
6267 		return 1;
6268 	}
6269 
6270 	return 0;
6271 }
6272 
vcpu_mmio_gva_to_gpa(struct kvm_vcpu * vcpu,unsigned long gva,gpa_t * gpa,struct x86_exception * exception,bool write)6273 static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
6274 				gpa_t *gpa, struct x86_exception *exception,
6275 				bool write)
6276 {
6277 	u32 access = ((kvm_x86_ops.get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0)
6278 		| (write ? PFERR_WRITE_MASK : 0);
6279 
6280 	/*
6281 	 * currently PKRU is only applied to ept enabled guest so
6282 	 * there is no pkey in EPT page table for L1 guest or EPT
6283 	 * shadow page table for L2 guest.
6284 	 */
6285 	if (vcpu_match_mmio_gva(vcpu, gva)
6286 	    && !permission_fault(vcpu, vcpu->arch.walk_mmu,
6287 				 vcpu->arch.mmio_access, 0, access)) {
6288 		*gpa = vcpu->arch.mmio_gfn << PAGE_SHIFT |
6289 					(gva & (PAGE_SIZE - 1));
6290 		trace_vcpu_match_mmio(gva, *gpa, write, false);
6291 		return 1;
6292 	}
6293 
6294 	*gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
6295 
6296 	if (*gpa == UNMAPPED_GVA)
6297 		return -1;
6298 
6299 	return vcpu_is_mmio_gpa(vcpu, gva, *gpa, write);
6300 }
6301 
emulator_write_phys(struct kvm_vcpu * vcpu,gpa_t gpa,const void * val,int bytes)6302 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
6303 			const void *val, int bytes)
6304 {
6305 	int ret;
6306 
6307 	ret = kvm_vcpu_write_guest(vcpu, gpa, val, bytes);
6308 	if (ret < 0)
6309 		return 0;
6310 	kvm_page_track_write(vcpu, gpa, val, bytes);
6311 	return 1;
6312 }
6313 
6314 struct read_write_emulator_ops {
6315 	int (*read_write_prepare)(struct kvm_vcpu *vcpu, void *val,
6316 				  int bytes);
6317 	int (*read_write_emulate)(struct kvm_vcpu *vcpu, gpa_t gpa,
6318 				  void *val, int bytes);
6319 	int (*read_write_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
6320 			       int bytes, void *val);
6321 	int (*read_write_exit_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
6322 				    void *val, int bytes);
6323 	bool write;
6324 };
6325 
read_prepare(struct kvm_vcpu * vcpu,void * val,int bytes)6326 static int read_prepare(struct kvm_vcpu *vcpu, void *val, int bytes)
6327 {
6328 	if (vcpu->mmio_read_completed) {
6329 		trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes,
6330 			       vcpu->mmio_fragments[0].gpa, val);
6331 		vcpu->mmio_read_completed = 0;
6332 		return 1;
6333 	}
6334 
6335 	return 0;
6336 }
6337 
read_emulate(struct kvm_vcpu * vcpu,gpa_t gpa,void * val,int bytes)6338 static int read_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
6339 			void *val, int bytes)
6340 {
6341 	return !kvm_vcpu_read_guest(vcpu, gpa, val, bytes);
6342 }
6343 
write_emulate(struct kvm_vcpu * vcpu,gpa_t gpa,void * val,int bytes)6344 static int write_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
6345 			 void *val, int bytes)
6346 {
6347 	return emulator_write_phys(vcpu, gpa, val, bytes);
6348 }
6349 
write_mmio(struct kvm_vcpu * vcpu,gpa_t gpa,int bytes,void * val)6350 static int write_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes, void *val)
6351 {
6352 	trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, val);
6353 	return vcpu_mmio_write(vcpu, gpa, bytes, val);
6354 }
6355 
read_exit_mmio(struct kvm_vcpu * vcpu,gpa_t gpa,void * val,int bytes)6356 static int read_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
6357 			  void *val, int bytes)
6358 {
6359 	trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, NULL);
6360 	return X86EMUL_IO_NEEDED;
6361 }
6362 
write_exit_mmio(struct kvm_vcpu * vcpu,gpa_t gpa,void * val,int bytes)6363 static int write_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
6364 			   void *val, int bytes)
6365 {
6366 	struct kvm_mmio_fragment *frag = &vcpu->mmio_fragments[0];
6367 
6368 	memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len));
6369 	return X86EMUL_CONTINUE;
6370 }
6371 
6372 static const struct read_write_emulator_ops read_emultor = {
6373 	.read_write_prepare = read_prepare,
6374 	.read_write_emulate = read_emulate,
6375 	.read_write_mmio = vcpu_mmio_read,
6376 	.read_write_exit_mmio = read_exit_mmio,
6377 };
6378 
6379 static const struct read_write_emulator_ops write_emultor = {
6380 	.read_write_emulate = write_emulate,
6381 	.read_write_mmio = write_mmio,
6382 	.read_write_exit_mmio = write_exit_mmio,
6383 	.write = true,
6384 };
6385 
emulator_read_write_onepage(unsigned long addr,void * val,unsigned int bytes,struct x86_exception * exception,struct kvm_vcpu * vcpu,const struct read_write_emulator_ops * ops)6386 static int emulator_read_write_onepage(unsigned long addr, void *val,
6387 				       unsigned int bytes,
6388 				       struct x86_exception *exception,
6389 				       struct kvm_vcpu *vcpu,
6390 				       const struct read_write_emulator_ops *ops)
6391 {
6392 	gpa_t gpa;
6393 	int handled, ret;
6394 	bool write = ops->write;
6395 	struct kvm_mmio_fragment *frag;
6396 	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
6397 
6398 	/*
6399 	 * If the exit was due to a NPF we may already have a GPA.
6400 	 * If the GPA is present, use it to avoid the GVA to GPA table walk.
6401 	 * Note, this cannot be used on string operations since string
6402 	 * operation using rep will only have the initial GPA from the NPF
6403 	 * occurred.
6404 	 */
6405 	if (ctxt->gpa_available && emulator_can_use_gpa(ctxt) &&
6406 	    (addr & ~PAGE_MASK) == (ctxt->gpa_val & ~PAGE_MASK)) {
6407 		gpa = ctxt->gpa_val;
6408 		ret = vcpu_is_mmio_gpa(vcpu, addr, gpa, write);
6409 	} else {
6410 		ret = vcpu_mmio_gva_to_gpa(vcpu, addr, &gpa, exception, write);
6411 		if (ret < 0)
6412 			return X86EMUL_PROPAGATE_FAULT;
6413 	}
6414 
6415 	if (!ret && ops->read_write_emulate(vcpu, gpa, val, bytes))
6416 		return X86EMUL_CONTINUE;
6417 
6418 	/*
6419 	 * Is this MMIO handled locally?
6420 	 */
6421 	handled = ops->read_write_mmio(vcpu, gpa, bytes, val);
6422 	if (handled == bytes)
6423 		return X86EMUL_CONTINUE;
6424 
6425 	gpa += handled;
6426 	bytes -= handled;
6427 	val += handled;
6428 
6429 	WARN_ON(vcpu->mmio_nr_fragments >= KVM_MAX_MMIO_FRAGMENTS);
6430 	frag = &vcpu->mmio_fragments[vcpu->mmio_nr_fragments++];
6431 	frag->gpa = gpa;
6432 	frag->data = val;
6433 	frag->len = bytes;
6434 	return X86EMUL_CONTINUE;
6435 }
6436 
emulator_read_write(struct x86_emulate_ctxt * ctxt,unsigned long addr,void * val,unsigned int bytes,struct x86_exception * exception,const struct read_write_emulator_ops * ops)6437 static int emulator_read_write(struct x86_emulate_ctxt *ctxt,
6438 			unsigned long addr,
6439 			void *val, unsigned int bytes,
6440 			struct x86_exception *exception,
6441 			const struct read_write_emulator_ops *ops)
6442 {
6443 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6444 	gpa_t gpa;
6445 	int rc;
6446 
6447 	if (ops->read_write_prepare &&
6448 		  ops->read_write_prepare(vcpu, val, bytes))
6449 		return X86EMUL_CONTINUE;
6450 
6451 	vcpu->mmio_nr_fragments = 0;
6452 
6453 	/* Crossing a page boundary? */
6454 	if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
6455 		int now;
6456 
6457 		now = -addr & ~PAGE_MASK;
6458 		rc = emulator_read_write_onepage(addr, val, now, exception,
6459 						 vcpu, ops);
6460 
6461 		if (rc != X86EMUL_CONTINUE)
6462 			return rc;
6463 		addr += now;
6464 		if (ctxt->mode != X86EMUL_MODE_PROT64)
6465 			addr = (u32)addr;
6466 		val += now;
6467 		bytes -= now;
6468 	}
6469 
6470 	rc = emulator_read_write_onepage(addr, val, bytes, exception,
6471 					 vcpu, ops);
6472 	if (rc != X86EMUL_CONTINUE)
6473 		return rc;
6474 
6475 	if (!vcpu->mmio_nr_fragments)
6476 		return rc;
6477 
6478 	gpa = vcpu->mmio_fragments[0].gpa;
6479 
6480 	vcpu->mmio_needed = 1;
6481 	vcpu->mmio_cur_fragment = 0;
6482 
6483 	vcpu->run->mmio.len = min(8u, vcpu->mmio_fragments[0].len);
6484 	vcpu->run->mmio.is_write = vcpu->mmio_is_write = ops->write;
6485 	vcpu->run->exit_reason = KVM_EXIT_MMIO;
6486 	vcpu->run->mmio.phys_addr = gpa;
6487 
6488 	return ops->read_write_exit_mmio(vcpu, gpa, val, bytes);
6489 }
6490 
emulator_read_emulated(struct x86_emulate_ctxt * ctxt,unsigned long addr,void * val,unsigned int bytes,struct x86_exception * exception)6491 static int emulator_read_emulated(struct x86_emulate_ctxt *ctxt,
6492 				  unsigned long addr,
6493 				  void *val,
6494 				  unsigned int bytes,
6495 				  struct x86_exception *exception)
6496 {
6497 	return emulator_read_write(ctxt, addr, val, bytes,
6498 				   exception, &read_emultor);
6499 }
6500 
emulator_write_emulated(struct x86_emulate_ctxt * ctxt,unsigned long addr,const void * val,unsigned int bytes,struct x86_exception * exception)6501 static int emulator_write_emulated(struct x86_emulate_ctxt *ctxt,
6502 			    unsigned long addr,
6503 			    const void *val,
6504 			    unsigned int bytes,
6505 			    struct x86_exception *exception)
6506 {
6507 	return emulator_read_write(ctxt, addr, (void *)val, bytes,
6508 				   exception, &write_emultor);
6509 }
6510 
6511 #define CMPXCHG_TYPE(t, ptr, old, new) \
6512 	(cmpxchg((t *)(ptr), *(t *)(old), *(t *)(new)) == *(t *)(old))
6513 
6514 #ifdef CONFIG_X86_64
6515 #  define CMPXCHG64(ptr, old, new) CMPXCHG_TYPE(u64, ptr, old, new)
6516 #else
6517 #  define CMPXCHG64(ptr, old, new) \
6518 	(cmpxchg64((u64 *)(ptr), *(u64 *)(old), *(u64 *)(new)) == *(u64 *)(old))
6519 #endif
6520 
emulator_cmpxchg_emulated(struct x86_emulate_ctxt * ctxt,unsigned long addr,const void * old,const void * new,unsigned int bytes,struct x86_exception * exception)6521 static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt *ctxt,
6522 				     unsigned long addr,
6523 				     const void *old,
6524 				     const void *new,
6525 				     unsigned int bytes,
6526 				     struct x86_exception *exception)
6527 {
6528 	struct kvm_host_map map;
6529 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6530 	u64 page_line_mask;
6531 	gpa_t gpa;
6532 	char *kaddr;
6533 	bool exchanged;
6534 
6535 	/* guests cmpxchg8b have to be emulated atomically */
6536 	if (bytes > 8 || (bytes & (bytes - 1)))
6537 		goto emul_write;
6538 
6539 	gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL);
6540 
6541 	if (gpa == UNMAPPED_GVA ||
6542 	    (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
6543 		goto emul_write;
6544 
6545 	/*
6546 	 * Emulate the atomic as a straight write to avoid #AC if SLD is
6547 	 * enabled in the host and the access splits a cache line.
6548 	 */
6549 	if (boot_cpu_has(X86_FEATURE_SPLIT_LOCK_DETECT))
6550 		page_line_mask = ~(cache_line_size() - 1);
6551 	else
6552 		page_line_mask = PAGE_MASK;
6553 
6554 	if (((gpa + bytes - 1) & page_line_mask) != (gpa & page_line_mask))
6555 		goto emul_write;
6556 
6557 	if (kvm_vcpu_map(vcpu, gpa_to_gfn(gpa), &map))
6558 		goto emul_write;
6559 
6560 	kaddr = map.hva + offset_in_page(gpa);
6561 
6562 	switch (bytes) {
6563 	case 1:
6564 		exchanged = CMPXCHG_TYPE(u8, kaddr, old, new);
6565 		break;
6566 	case 2:
6567 		exchanged = CMPXCHG_TYPE(u16, kaddr, old, new);
6568 		break;
6569 	case 4:
6570 		exchanged = CMPXCHG_TYPE(u32, kaddr, old, new);
6571 		break;
6572 	case 8:
6573 		exchanged = CMPXCHG64(kaddr, old, new);
6574 		break;
6575 	default:
6576 		BUG();
6577 	}
6578 
6579 	kvm_vcpu_unmap(vcpu, &map, true);
6580 
6581 	if (!exchanged)
6582 		return X86EMUL_CMPXCHG_FAILED;
6583 
6584 	kvm_page_track_write(vcpu, gpa, new, bytes);
6585 
6586 	return X86EMUL_CONTINUE;
6587 
6588 emul_write:
6589 	printk_once(KERN_WARNING "kvm: emulating exchange as write\n");
6590 
6591 	return emulator_write_emulated(ctxt, addr, new, bytes, exception);
6592 }
6593 
kernel_pio(struct kvm_vcpu * vcpu,void * pd)6594 static int kernel_pio(struct kvm_vcpu *vcpu, void *pd)
6595 {
6596 	int r = 0, i;
6597 
6598 	for (i = 0; i < vcpu->arch.pio.count; i++) {
6599 		if (vcpu->arch.pio.in)
6600 			r = kvm_io_bus_read(vcpu, KVM_PIO_BUS, vcpu->arch.pio.port,
6601 					    vcpu->arch.pio.size, pd);
6602 		else
6603 			r = kvm_io_bus_write(vcpu, KVM_PIO_BUS,
6604 					     vcpu->arch.pio.port, vcpu->arch.pio.size,
6605 					     pd);
6606 		if (r)
6607 			break;
6608 		pd += vcpu->arch.pio.size;
6609 	}
6610 	return r;
6611 }
6612 
emulator_pio_in_out(struct kvm_vcpu * vcpu,int size,unsigned short port,void * val,unsigned int count,bool in)6613 static int emulator_pio_in_out(struct kvm_vcpu *vcpu, int size,
6614 			       unsigned short port, void *val,
6615 			       unsigned int count, bool in)
6616 {
6617 	vcpu->arch.pio.port = port;
6618 	vcpu->arch.pio.in = in;
6619 	vcpu->arch.pio.count  = count;
6620 	vcpu->arch.pio.size = size;
6621 
6622 	if (!kernel_pio(vcpu, vcpu->arch.pio_data)) {
6623 		vcpu->arch.pio.count = 0;
6624 		return 1;
6625 	}
6626 
6627 	vcpu->run->exit_reason = KVM_EXIT_IO;
6628 	vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
6629 	vcpu->run->io.size = size;
6630 	vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
6631 	vcpu->run->io.count = count;
6632 	vcpu->run->io.port = port;
6633 
6634 	return 0;
6635 }
6636 
emulator_pio_in(struct kvm_vcpu * vcpu,int size,unsigned short port,void * val,unsigned int count)6637 static int emulator_pio_in(struct kvm_vcpu *vcpu, int size,
6638 			   unsigned short port, void *val, unsigned int count)
6639 {
6640 	int ret;
6641 
6642 	if (vcpu->arch.pio.count)
6643 		goto data_avail;
6644 
6645 	memset(vcpu->arch.pio_data, 0, size * count);
6646 
6647 	ret = emulator_pio_in_out(vcpu, size, port, val, count, true);
6648 	if (ret) {
6649 data_avail:
6650 		memcpy(val, vcpu->arch.pio_data, size * count);
6651 		trace_kvm_pio(KVM_PIO_IN, port, size, count, vcpu->arch.pio_data);
6652 		vcpu->arch.pio.count = 0;
6653 		return 1;
6654 	}
6655 
6656 	return 0;
6657 }
6658 
emulator_pio_in_emulated(struct x86_emulate_ctxt * ctxt,int size,unsigned short port,void * val,unsigned int count)6659 static int emulator_pio_in_emulated(struct x86_emulate_ctxt *ctxt,
6660 				    int size, unsigned short port, void *val,
6661 				    unsigned int count)
6662 {
6663 	return emulator_pio_in(emul_to_vcpu(ctxt), size, port, val, count);
6664 
6665 }
6666 
emulator_pio_out(struct kvm_vcpu * vcpu,int size,unsigned short port,const void * val,unsigned int count)6667 static int emulator_pio_out(struct kvm_vcpu *vcpu, int size,
6668 			    unsigned short port, const void *val,
6669 			    unsigned int count)
6670 {
6671 	memcpy(vcpu->arch.pio_data, val, size * count);
6672 	trace_kvm_pio(KVM_PIO_OUT, port, size, count, vcpu->arch.pio_data);
6673 	return emulator_pio_in_out(vcpu, size, port, (void *)val, count, false);
6674 }
6675 
emulator_pio_out_emulated(struct x86_emulate_ctxt * ctxt,int size,unsigned short port,const void * val,unsigned int count)6676 static int emulator_pio_out_emulated(struct x86_emulate_ctxt *ctxt,
6677 				     int size, unsigned short port,
6678 				     const void *val, unsigned int count)
6679 {
6680 	return emulator_pio_out(emul_to_vcpu(ctxt), size, port, val, count);
6681 }
6682 
get_segment_base(struct kvm_vcpu * vcpu,int seg)6683 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
6684 {
6685 	return kvm_x86_ops.get_segment_base(vcpu, seg);
6686 }
6687 
emulator_invlpg(struct x86_emulate_ctxt * ctxt,ulong address)6688 static void emulator_invlpg(struct x86_emulate_ctxt *ctxt, ulong address)
6689 {
6690 	kvm_mmu_invlpg(emul_to_vcpu(ctxt), address);
6691 }
6692 
kvm_emulate_wbinvd_noskip(struct kvm_vcpu * vcpu)6693 static int kvm_emulate_wbinvd_noskip(struct kvm_vcpu *vcpu)
6694 {
6695 	if (!need_emulate_wbinvd(vcpu))
6696 		return X86EMUL_CONTINUE;
6697 
6698 	if (kvm_x86_ops.has_wbinvd_exit()) {
6699 		int cpu = get_cpu();
6700 
6701 		cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
6702 		smp_call_function_many(vcpu->arch.wbinvd_dirty_mask,
6703 				wbinvd_ipi, NULL, 1);
6704 		put_cpu();
6705 		cpumask_clear(vcpu->arch.wbinvd_dirty_mask);
6706 	} else
6707 		wbinvd();
6708 	return X86EMUL_CONTINUE;
6709 }
6710 
kvm_emulate_wbinvd(struct kvm_vcpu * vcpu)6711 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu)
6712 {
6713 	kvm_emulate_wbinvd_noskip(vcpu);
6714 	return kvm_skip_emulated_instruction(vcpu);
6715 }
6716 EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd);
6717 
6718 
6719 
emulator_wbinvd(struct x86_emulate_ctxt * ctxt)6720 static void emulator_wbinvd(struct x86_emulate_ctxt *ctxt)
6721 {
6722 	kvm_emulate_wbinvd_noskip(emul_to_vcpu(ctxt));
6723 }
6724 
emulator_get_dr(struct x86_emulate_ctxt * ctxt,int dr,unsigned long * dest)6725 static int emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr,
6726 			   unsigned long *dest)
6727 {
6728 	return kvm_get_dr(emul_to_vcpu(ctxt), dr, dest);
6729 }
6730 
emulator_set_dr(struct x86_emulate_ctxt * ctxt,int dr,unsigned long value)6731 static int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr,
6732 			   unsigned long value)
6733 {
6734 
6735 	return __kvm_set_dr(emul_to_vcpu(ctxt), dr, value);
6736 }
6737 
mk_cr_64(u64 curr_cr,u32 new_val)6738 static u64 mk_cr_64(u64 curr_cr, u32 new_val)
6739 {
6740 	return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
6741 }
6742 
emulator_get_cr(struct x86_emulate_ctxt * ctxt,int cr)6743 static unsigned long emulator_get_cr(struct x86_emulate_ctxt *ctxt, int cr)
6744 {
6745 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6746 	unsigned long value;
6747 
6748 	switch (cr) {
6749 	case 0:
6750 		value = kvm_read_cr0(vcpu);
6751 		break;
6752 	case 2:
6753 		value = vcpu->arch.cr2;
6754 		break;
6755 	case 3:
6756 		value = kvm_read_cr3(vcpu);
6757 		break;
6758 	case 4:
6759 		value = kvm_read_cr4(vcpu);
6760 		break;
6761 	case 8:
6762 		value = kvm_get_cr8(vcpu);
6763 		break;
6764 	default:
6765 		kvm_err("%s: unexpected cr %u\n", __func__, cr);
6766 		return 0;
6767 	}
6768 
6769 	return value;
6770 }
6771 
emulator_set_cr(struct x86_emulate_ctxt * ctxt,int cr,ulong val)6772 static int emulator_set_cr(struct x86_emulate_ctxt *ctxt, int cr, ulong val)
6773 {
6774 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6775 	int res = 0;
6776 
6777 	switch (cr) {
6778 	case 0:
6779 		res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val));
6780 		break;
6781 	case 2:
6782 		vcpu->arch.cr2 = val;
6783 		break;
6784 	case 3:
6785 		res = kvm_set_cr3(vcpu, val);
6786 		break;
6787 	case 4:
6788 		res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val));
6789 		break;
6790 	case 8:
6791 		res = kvm_set_cr8(vcpu, val);
6792 		break;
6793 	default:
6794 		kvm_err("%s: unexpected cr %u\n", __func__, cr);
6795 		res = -1;
6796 	}
6797 
6798 	return res;
6799 }
6800 
emulator_get_cpl(struct x86_emulate_ctxt * ctxt)6801 static int emulator_get_cpl(struct x86_emulate_ctxt *ctxt)
6802 {
6803 	return kvm_x86_ops.get_cpl(emul_to_vcpu(ctxt));
6804 }
6805 
emulator_get_gdt(struct x86_emulate_ctxt * ctxt,struct desc_ptr * dt)6806 static void emulator_get_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
6807 {
6808 	kvm_x86_ops.get_gdt(emul_to_vcpu(ctxt), dt);
6809 }
6810 
emulator_get_idt(struct x86_emulate_ctxt * ctxt,struct desc_ptr * dt)6811 static void emulator_get_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
6812 {
6813 	kvm_x86_ops.get_idt(emul_to_vcpu(ctxt), dt);
6814 }
6815 
emulator_set_gdt(struct x86_emulate_ctxt * ctxt,struct desc_ptr * dt)6816 static void emulator_set_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
6817 {
6818 	kvm_x86_ops.set_gdt(emul_to_vcpu(ctxt), dt);
6819 }
6820 
emulator_set_idt(struct x86_emulate_ctxt * ctxt,struct desc_ptr * dt)6821 static void emulator_set_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
6822 {
6823 	kvm_x86_ops.set_idt(emul_to_vcpu(ctxt), dt);
6824 }
6825 
emulator_get_cached_segment_base(struct x86_emulate_ctxt * ctxt,int seg)6826 static unsigned long emulator_get_cached_segment_base(
6827 	struct x86_emulate_ctxt *ctxt, int seg)
6828 {
6829 	return get_segment_base(emul_to_vcpu(ctxt), seg);
6830 }
6831 
emulator_get_segment(struct x86_emulate_ctxt * ctxt,u16 * selector,struct desc_struct * desc,u32 * base3,int seg)6832 static bool emulator_get_segment(struct x86_emulate_ctxt *ctxt, u16 *selector,
6833 				 struct desc_struct *desc, u32 *base3,
6834 				 int seg)
6835 {
6836 	struct kvm_segment var;
6837 
6838 	kvm_get_segment(emul_to_vcpu(ctxt), &var, seg);
6839 	*selector = var.selector;
6840 
6841 	if (var.unusable) {
6842 		memset(desc, 0, sizeof(*desc));
6843 		if (base3)
6844 			*base3 = 0;
6845 		return false;
6846 	}
6847 
6848 	if (var.g)
6849 		var.limit >>= 12;
6850 	set_desc_limit(desc, var.limit);
6851 	set_desc_base(desc, (unsigned long)var.base);
6852 #ifdef CONFIG_X86_64
6853 	if (base3)
6854 		*base3 = var.base >> 32;
6855 #endif
6856 	desc->type = var.type;
6857 	desc->s = var.s;
6858 	desc->dpl = var.dpl;
6859 	desc->p = var.present;
6860 	desc->avl = var.avl;
6861 	desc->l = var.l;
6862 	desc->d = var.db;
6863 	desc->g = var.g;
6864 
6865 	return true;
6866 }
6867 
emulator_set_segment(struct x86_emulate_ctxt * ctxt,u16 selector,struct desc_struct * desc,u32 base3,int seg)6868 static void emulator_set_segment(struct x86_emulate_ctxt *ctxt, u16 selector,
6869 				 struct desc_struct *desc, u32 base3,
6870 				 int seg)
6871 {
6872 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6873 	struct kvm_segment var;
6874 
6875 	var.selector = selector;
6876 	var.base = get_desc_base(desc);
6877 #ifdef CONFIG_X86_64
6878 	var.base |= ((u64)base3) << 32;
6879 #endif
6880 	var.limit = get_desc_limit(desc);
6881 	if (desc->g)
6882 		var.limit = (var.limit << 12) | 0xfff;
6883 	var.type = desc->type;
6884 	var.dpl = desc->dpl;
6885 	var.db = desc->d;
6886 	var.s = desc->s;
6887 	var.l = desc->l;
6888 	var.g = desc->g;
6889 	var.avl = desc->avl;
6890 	var.present = desc->p;
6891 	var.unusable = !var.present;
6892 	var.padding = 0;
6893 
6894 	kvm_set_segment(vcpu, &var, seg);
6895 	return;
6896 }
6897 
emulator_get_msr(struct x86_emulate_ctxt * ctxt,u32 msr_index,u64 * pdata)6898 static int emulator_get_msr(struct x86_emulate_ctxt *ctxt,
6899 			    u32 msr_index, u64 *pdata)
6900 {
6901 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6902 	int r;
6903 
6904 	r = kvm_get_msr(vcpu, msr_index, pdata);
6905 
6906 	if (r && kvm_get_msr_user_space(vcpu, msr_index, r)) {
6907 		/* Bounce to user space */
6908 		return X86EMUL_IO_NEEDED;
6909 	}
6910 
6911 	return r;
6912 }
6913 
emulator_set_msr(struct x86_emulate_ctxt * ctxt,u32 msr_index,u64 data)6914 static int emulator_set_msr(struct x86_emulate_ctxt *ctxt,
6915 			    u32 msr_index, u64 data)
6916 {
6917 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6918 	int r;
6919 
6920 	r = kvm_set_msr(vcpu, msr_index, data);
6921 
6922 	if (r && kvm_set_msr_user_space(vcpu, msr_index, data, r)) {
6923 		/* Bounce to user space */
6924 		return X86EMUL_IO_NEEDED;
6925 	}
6926 
6927 	return r;
6928 }
6929 
emulator_get_smbase(struct x86_emulate_ctxt * ctxt)6930 static u64 emulator_get_smbase(struct x86_emulate_ctxt *ctxt)
6931 {
6932 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6933 
6934 	return vcpu->arch.smbase;
6935 }
6936 
emulator_set_smbase(struct x86_emulate_ctxt * ctxt,u64 smbase)6937 static void emulator_set_smbase(struct x86_emulate_ctxt *ctxt, u64 smbase)
6938 {
6939 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6940 
6941 	vcpu->arch.smbase = smbase;
6942 }
6943 
emulator_check_pmc(struct x86_emulate_ctxt * ctxt,u32 pmc)6944 static int emulator_check_pmc(struct x86_emulate_ctxt *ctxt,
6945 			      u32 pmc)
6946 {
6947 	return kvm_pmu_is_valid_rdpmc_ecx(emul_to_vcpu(ctxt), pmc);
6948 }
6949 
emulator_read_pmc(struct x86_emulate_ctxt * ctxt,u32 pmc,u64 * pdata)6950 static int emulator_read_pmc(struct x86_emulate_ctxt *ctxt,
6951 			     u32 pmc, u64 *pdata)
6952 {
6953 	return kvm_pmu_rdpmc(emul_to_vcpu(ctxt), pmc, pdata);
6954 }
6955 
emulator_halt(struct x86_emulate_ctxt * ctxt)6956 static void emulator_halt(struct x86_emulate_ctxt *ctxt)
6957 {
6958 	emul_to_vcpu(ctxt)->arch.halt_request = 1;
6959 }
6960 
emulator_intercept(struct x86_emulate_ctxt * ctxt,struct x86_instruction_info * info,enum x86_intercept_stage stage)6961 static int emulator_intercept(struct x86_emulate_ctxt *ctxt,
6962 			      struct x86_instruction_info *info,
6963 			      enum x86_intercept_stage stage)
6964 {
6965 	return kvm_x86_ops.check_intercept(emul_to_vcpu(ctxt), info, stage,
6966 					    &ctxt->exception);
6967 }
6968 
emulator_get_cpuid(struct x86_emulate_ctxt * ctxt,u32 * eax,u32 * ebx,u32 * ecx,u32 * edx,bool exact_only)6969 static bool emulator_get_cpuid(struct x86_emulate_ctxt *ctxt,
6970 			      u32 *eax, u32 *ebx, u32 *ecx, u32 *edx,
6971 			      bool exact_only)
6972 {
6973 	return kvm_cpuid(emul_to_vcpu(ctxt), eax, ebx, ecx, edx, exact_only);
6974 }
6975 
emulator_guest_has_long_mode(struct x86_emulate_ctxt * ctxt)6976 static bool emulator_guest_has_long_mode(struct x86_emulate_ctxt *ctxt)
6977 {
6978 	return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_LM);
6979 }
6980 
emulator_guest_has_movbe(struct x86_emulate_ctxt * ctxt)6981 static bool emulator_guest_has_movbe(struct x86_emulate_ctxt *ctxt)
6982 {
6983 	return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_MOVBE);
6984 }
6985 
emulator_guest_has_fxsr(struct x86_emulate_ctxt * ctxt)6986 static bool emulator_guest_has_fxsr(struct x86_emulate_ctxt *ctxt)
6987 {
6988 	return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_FXSR);
6989 }
6990 
emulator_guest_has_rdpid(struct x86_emulate_ctxt * ctxt)6991 static bool emulator_guest_has_rdpid(struct x86_emulate_ctxt *ctxt)
6992 {
6993 	return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_RDPID);
6994 }
6995 
emulator_read_gpr(struct x86_emulate_ctxt * ctxt,unsigned reg)6996 static ulong emulator_read_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg)
6997 {
6998 	return kvm_register_read(emul_to_vcpu(ctxt), reg);
6999 }
7000 
emulator_write_gpr(struct x86_emulate_ctxt * ctxt,unsigned reg,ulong val)7001 static void emulator_write_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg, ulong val)
7002 {
7003 	kvm_register_write(emul_to_vcpu(ctxt), reg, val);
7004 }
7005 
emulator_set_nmi_mask(struct x86_emulate_ctxt * ctxt,bool masked)7006 static void emulator_set_nmi_mask(struct x86_emulate_ctxt *ctxt, bool masked)
7007 {
7008 	kvm_x86_ops.set_nmi_mask(emul_to_vcpu(ctxt), masked);
7009 }
7010 
emulator_get_hflags(struct x86_emulate_ctxt * ctxt)7011 static unsigned emulator_get_hflags(struct x86_emulate_ctxt *ctxt)
7012 {
7013 	return emul_to_vcpu(ctxt)->arch.hflags;
7014 }
7015 
emulator_set_hflags(struct x86_emulate_ctxt * ctxt,unsigned emul_flags)7016 static void emulator_set_hflags(struct x86_emulate_ctxt *ctxt, unsigned emul_flags)
7017 {
7018 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7019 
7020 	vcpu->arch.hflags = emul_flags;
7021 	kvm_mmu_reset_context(vcpu);
7022 }
7023 
emulator_pre_leave_smm(struct x86_emulate_ctxt * ctxt,const char * smstate)7024 static int emulator_pre_leave_smm(struct x86_emulate_ctxt *ctxt,
7025 				  const char *smstate)
7026 {
7027 	return kvm_x86_ops.pre_leave_smm(emul_to_vcpu(ctxt), smstate);
7028 }
7029 
emulator_post_leave_smm(struct x86_emulate_ctxt * ctxt)7030 static void emulator_post_leave_smm(struct x86_emulate_ctxt *ctxt)
7031 {
7032 	kvm_smm_changed(emul_to_vcpu(ctxt));
7033 }
7034 
emulator_set_xcr(struct x86_emulate_ctxt * ctxt,u32 index,u64 xcr)7035 static int emulator_set_xcr(struct x86_emulate_ctxt *ctxt, u32 index, u64 xcr)
7036 {
7037 	return __kvm_set_xcr(emul_to_vcpu(ctxt), index, xcr);
7038 }
7039 
7040 static const struct x86_emulate_ops emulate_ops = {
7041 	.read_gpr            = emulator_read_gpr,
7042 	.write_gpr           = emulator_write_gpr,
7043 	.read_std            = emulator_read_std,
7044 	.write_std           = emulator_write_std,
7045 	.read_phys           = kvm_read_guest_phys_system,
7046 	.fetch               = kvm_fetch_guest_virt,
7047 	.read_emulated       = emulator_read_emulated,
7048 	.write_emulated      = emulator_write_emulated,
7049 	.cmpxchg_emulated    = emulator_cmpxchg_emulated,
7050 	.invlpg              = emulator_invlpg,
7051 	.pio_in_emulated     = emulator_pio_in_emulated,
7052 	.pio_out_emulated    = emulator_pio_out_emulated,
7053 	.get_segment         = emulator_get_segment,
7054 	.set_segment         = emulator_set_segment,
7055 	.get_cached_segment_base = emulator_get_cached_segment_base,
7056 	.get_gdt             = emulator_get_gdt,
7057 	.get_idt	     = emulator_get_idt,
7058 	.set_gdt             = emulator_set_gdt,
7059 	.set_idt	     = emulator_set_idt,
7060 	.get_cr              = emulator_get_cr,
7061 	.set_cr              = emulator_set_cr,
7062 	.cpl                 = emulator_get_cpl,
7063 	.get_dr              = emulator_get_dr,
7064 	.set_dr              = emulator_set_dr,
7065 	.get_smbase          = emulator_get_smbase,
7066 	.set_smbase          = emulator_set_smbase,
7067 	.set_msr             = emulator_set_msr,
7068 	.get_msr             = emulator_get_msr,
7069 	.check_pmc	     = emulator_check_pmc,
7070 	.read_pmc            = emulator_read_pmc,
7071 	.halt                = emulator_halt,
7072 	.wbinvd              = emulator_wbinvd,
7073 	.fix_hypercall       = emulator_fix_hypercall,
7074 	.intercept           = emulator_intercept,
7075 	.get_cpuid           = emulator_get_cpuid,
7076 	.guest_has_long_mode = emulator_guest_has_long_mode,
7077 	.guest_has_movbe     = emulator_guest_has_movbe,
7078 	.guest_has_fxsr      = emulator_guest_has_fxsr,
7079 	.guest_has_rdpid     = emulator_guest_has_rdpid,
7080 	.set_nmi_mask        = emulator_set_nmi_mask,
7081 	.get_hflags          = emulator_get_hflags,
7082 	.set_hflags          = emulator_set_hflags,
7083 	.pre_leave_smm       = emulator_pre_leave_smm,
7084 	.post_leave_smm      = emulator_post_leave_smm,
7085 	.set_xcr             = emulator_set_xcr,
7086 };
7087 
toggle_interruptibility(struct kvm_vcpu * vcpu,u32 mask)7088 static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask)
7089 {
7090 	u32 int_shadow = kvm_x86_ops.get_interrupt_shadow(vcpu);
7091 	/*
7092 	 * an sti; sti; sequence only disable interrupts for the first
7093 	 * instruction. So, if the last instruction, be it emulated or
7094 	 * not, left the system with the INT_STI flag enabled, it
7095 	 * means that the last instruction is an sti. We should not
7096 	 * leave the flag on in this case. The same goes for mov ss
7097 	 */
7098 	if (int_shadow & mask)
7099 		mask = 0;
7100 	if (unlikely(int_shadow || mask)) {
7101 		kvm_x86_ops.set_interrupt_shadow(vcpu, mask);
7102 		if (!mask)
7103 			kvm_make_request(KVM_REQ_EVENT, vcpu);
7104 	}
7105 }
7106 
inject_emulated_exception(struct kvm_vcpu * vcpu)7107 static bool inject_emulated_exception(struct kvm_vcpu *vcpu)
7108 {
7109 	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
7110 	if (ctxt->exception.vector == PF_VECTOR)
7111 		return kvm_inject_emulated_page_fault(vcpu, &ctxt->exception);
7112 
7113 	if (ctxt->exception.error_code_valid)
7114 		kvm_queue_exception_e(vcpu, ctxt->exception.vector,
7115 				      ctxt->exception.error_code);
7116 	else
7117 		kvm_queue_exception(vcpu, ctxt->exception.vector);
7118 	return false;
7119 }
7120 
alloc_emulate_ctxt(struct kvm_vcpu * vcpu)7121 static struct x86_emulate_ctxt *alloc_emulate_ctxt(struct kvm_vcpu *vcpu)
7122 {
7123 	struct x86_emulate_ctxt *ctxt;
7124 
7125 	ctxt = kmem_cache_zalloc(x86_emulator_cache, GFP_KERNEL_ACCOUNT);
7126 	if (!ctxt) {
7127 		pr_err("kvm: failed to allocate vcpu's emulator\n");
7128 		return NULL;
7129 	}
7130 
7131 	ctxt->vcpu = vcpu;
7132 	ctxt->ops = &emulate_ops;
7133 	vcpu->arch.emulate_ctxt = ctxt;
7134 
7135 	return ctxt;
7136 }
7137 
init_emulate_ctxt(struct kvm_vcpu * vcpu)7138 static void init_emulate_ctxt(struct kvm_vcpu *vcpu)
7139 {
7140 	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
7141 	int cs_db, cs_l;
7142 
7143 	kvm_x86_ops.get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
7144 
7145 	ctxt->gpa_available = false;
7146 	ctxt->eflags = kvm_get_rflags(vcpu);
7147 	ctxt->tf = (ctxt->eflags & X86_EFLAGS_TF) != 0;
7148 
7149 	ctxt->eip = kvm_rip_read(vcpu);
7150 	ctxt->mode = (!is_protmode(vcpu))		? X86EMUL_MODE_REAL :
7151 		     (ctxt->eflags & X86_EFLAGS_VM)	? X86EMUL_MODE_VM86 :
7152 		     (cs_l && is_long_mode(vcpu))	? X86EMUL_MODE_PROT64 :
7153 		     cs_db				? X86EMUL_MODE_PROT32 :
7154 							  X86EMUL_MODE_PROT16;
7155 	BUILD_BUG_ON(HF_GUEST_MASK != X86EMUL_GUEST_MASK);
7156 	BUILD_BUG_ON(HF_SMM_MASK != X86EMUL_SMM_MASK);
7157 	BUILD_BUG_ON(HF_SMM_INSIDE_NMI_MASK != X86EMUL_SMM_INSIDE_NMI_MASK);
7158 
7159 	ctxt->interruptibility = 0;
7160 	ctxt->have_exception = false;
7161 	ctxt->exception.vector = -1;
7162 	ctxt->perm_ok = false;
7163 
7164 	init_decode_cache(ctxt);
7165 	vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
7166 }
7167 
kvm_inject_realmode_interrupt(struct kvm_vcpu * vcpu,int irq,int inc_eip)7168 void kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip)
7169 {
7170 	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
7171 	int ret;
7172 
7173 	init_emulate_ctxt(vcpu);
7174 
7175 	ctxt->op_bytes = 2;
7176 	ctxt->ad_bytes = 2;
7177 	ctxt->_eip = ctxt->eip + inc_eip;
7178 	ret = emulate_int_real(ctxt, irq);
7179 
7180 	if (ret != X86EMUL_CONTINUE) {
7181 		kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
7182 	} else {
7183 		ctxt->eip = ctxt->_eip;
7184 		kvm_rip_write(vcpu, ctxt->eip);
7185 		kvm_set_rflags(vcpu, ctxt->eflags);
7186 	}
7187 }
7188 EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt);
7189 
handle_emulation_failure(struct kvm_vcpu * vcpu,int emulation_type)7190 static int handle_emulation_failure(struct kvm_vcpu *vcpu, int emulation_type)
7191 {
7192 	++vcpu->stat.insn_emulation_fail;
7193 	trace_kvm_emulate_insn_failed(vcpu);
7194 
7195 	if (emulation_type & EMULTYPE_VMWARE_GP) {
7196 		kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
7197 		return 1;
7198 	}
7199 
7200 	if (emulation_type & EMULTYPE_SKIP) {
7201 		vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
7202 		vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
7203 		vcpu->run->internal.ndata = 0;
7204 		return 0;
7205 	}
7206 
7207 	kvm_queue_exception(vcpu, UD_VECTOR);
7208 
7209 	if (!is_guest_mode(vcpu) && kvm_x86_ops.get_cpl(vcpu) == 0) {
7210 		vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
7211 		vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
7212 		vcpu->run->internal.ndata = 0;
7213 		return 0;
7214 	}
7215 
7216 	return 1;
7217 }
7218 
reexecute_instruction(struct kvm_vcpu * vcpu,gpa_t cr2_or_gpa,bool write_fault_to_shadow_pgtable,int emulation_type)7219 static bool reexecute_instruction(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
7220 				  bool write_fault_to_shadow_pgtable,
7221 				  int emulation_type)
7222 {
7223 	gpa_t gpa = cr2_or_gpa;
7224 	kvm_pfn_t pfn;
7225 
7226 	if (!(emulation_type & EMULTYPE_ALLOW_RETRY_PF))
7227 		return false;
7228 
7229 	if (WARN_ON_ONCE(is_guest_mode(vcpu)) ||
7230 	    WARN_ON_ONCE(!(emulation_type & EMULTYPE_PF)))
7231 		return false;
7232 
7233 	if (!vcpu->arch.mmu->direct_map) {
7234 		/*
7235 		 * Write permission should be allowed since only
7236 		 * write access need to be emulated.
7237 		 */
7238 		gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2_or_gpa, NULL);
7239 
7240 		/*
7241 		 * If the mapping is invalid in guest, let cpu retry
7242 		 * it to generate fault.
7243 		 */
7244 		if (gpa == UNMAPPED_GVA)
7245 			return true;
7246 	}
7247 
7248 	/*
7249 	 * Do not retry the unhandleable instruction if it faults on the
7250 	 * readonly host memory, otherwise it will goto a infinite loop:
7251 	 * retry instruction -> write #PF -> emulation fail -> retry
7252 	 * instruction -> ...
7253 	 */
7254 	pfn = gfn_to_pfn(vcpu->kvm, gpa_to_gfn(gpa));
7255 
7256 	/*
7257 	 * If the instruction failed on the error pfn, it can not be fixed,
7258 	 * report the error to userspace.
7259 	 */
7260 	if (is_error_noslot_pfn(pfn))
7261 		return false;
7262 
7263 	kvm_release_pfn_clean(pfn);
7264 
7265 	/* The instructions are well-emulated on direct mmu. */
7266 	if (vcpu->arch.mmu->direct_map) {
7267 		unsigned int indirect_shadow_pages;
7268 
7269 		spin_lock(&vcpu->kvm->mmu_lock);
7270 		indirect_shadow_pages = vcpu->kvm->arch.indirect_shadow_pages;
7271 		spin_unlock(&vcpu->kvm->mmu_lock);
7272 
7273 		if (indirect_shadow_pages)
7274 			kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
7275 
7276 		return true;
7277 	}
7278 
7279 	/*
7280 	 * if emulation was due to access to shadowed page table
7281 	 * and it failed try to unshadow page and re-enter the
7282 	 * guest to let CPU execute the instruction.
7283 	 */
7284 	kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
7285 
7286 	/*
7287 	 * If the access faults on its page table, it can not
7288 	 * be fixed by unprotecting shadow page and it should
7289 	 * be reported to userspace.
7290 	 */
7291 	return !write_fault_to_shadow_pgtable;
7292 }
7293 
retry_instruction(struct x86_emulate_ctxt * ctxt,gpa_t cr2_or_gpa,int emulation_type)7294 static bool retry_instruction(struct x86_emulate_ctxt *ctxt,
7295 			      gpa_t cr2_or_gpa,  int emulation_type)
7296 {
7297 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7298 	unsigned long last_retry_eip, last_retry_addr, gpa = cr2_or_gpa;
7299 
7300 	last_retry_eip = vcpu->arch.last_retry_eip;
7301 	last_retry_addr = vcpu->arch.last_retry_addr;
7302 
7303 	/*
7304 	 * If the emulation is caused by #PF and it is non-page_table
7305 	 * writing instruction, it means the VM-EXIT is caused by shadow
7306 	 * page protected, we can zap the shadow page and retry this
7307 	 * instruction directly.
7308 	 *
7309 	 * Note: if the guest uses a non-page-table modifying instruction
7310 	 * on the PDE that points to the instruction, then we will unmap
7311 	 * the instruction and go to an infinite loop. So, we cache the
7312 	 * last retried eip and the last fault address, if we meet the eip
7313 	 * and the address again, we can break out of the potential infinite
7314 	 * loop.
7315 	 */
7316 	vcpu->arch.last_retry_eip = vcpu->arch.last_retry_addr = 0;
7317 
7318 	if (!(emulation_type & EMULTYPE_ALLOW_RETRY_PF))
7319 		return false;
7320 
7321 	if (WARN_ON_ONCE(is_guest_mode(vcpu)) ||
7322 	    WARN_ON_ONCE(!(emulation_type & EMULTYPE_PF)))
7323 		return false;
7324 
7325 	if (x86_page_table_writing_insn(ctxt))
7326 		return false;
7327 
7328 	if (ctxt->eip == last_retry_eip && last_retry_addr == cr2_or_gpa)
7329 		return false;
7330 
7331 	vcpu->arch.last_retry_eip = ctxt->eip;
7332 	vcpu->arch.last_retry_addr = cr2_or_gpa;
7333 
7334 	if (!vcpu->arch.mmu->direct_map)
7335 		gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2_or_gpa, NULL);
7336 
7337 	kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
7338 
7339 	return true;
7340 }
7341 
7342 static int complete_emulated_mmio(struct kvm_vcpu *vcpu);
7343 static int complete_emulated_pio(struct kvm_vcpu *vcpu);
7344 
kvm_smm_changed(struct kvm_vcpu * vcpu)7345 static void kvm_smm_changed(struct kvm_vcpu *vcpu)
7346 {
7347 	if (!(vcpu->arch.hflags & HF_SMM_MASK)) {
7348 		/* This is a good place to trace that we are exiting SMM.  */
7349 		trace_kvm_enter_smm(vcpu->vcpu_id, vcpu->arch.smbase, false);
7350 
7351 		/* Process a latched INIT or SMI, if any.  */
7352 		kvm_make_request(KVM_REQ_EVENT, vcpu);
7353 	}
7354 
7355 	kvm_mmu_reset_context(vcpu);
7356 }
7357 
kvm_vcpu_check_hw_bp(unsigned long addr,u32 type,u32 dr7,unsigned long * db)7358 static int kvm_vcpu_check_hw_bp(unsigned long addr, u32 type, u32 dr7,
7359 				unsigned long *db)
7360 {
7361 	u32 dr6 = 0;
7362 	int i;
7363 	u32 enable, rwlen;
7364 
7365 	enable = dr7;
7366 	rwlen = dr7 >> 16;
7367 	for (i = 0; i < 4; i++, enable >>= 2, rwlen >>= 4)
7368 		if ((enable & 3) && (rwlen & 15) == type && db[i] == addr)
7369 			dr6 |= (1 << i);
7370 	return dr6;
7371 }
7372 
kvm_vcpu_do_singlestep(struct kvm_vcpu * vcpu)7373 static int kvm_vcpu_do_singlestep(struct kvm_vcpu *vcpu)
7374 {
7375 	struct kvm_run *kvm_run = vcpu->run;
7376 
7377 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) {
7378 		kvm_run->debug.arch.dr6 = DR6_BS | DR6_FIXED_1 | DR6_RTM;
7379 		kvm_run->debug.arch.pc = kvm_get_linear_rip(vcpu);
7380 		kvm_run->debug.arch.exception = DB_VECTOR;
7381 		kvm_run->exit_reason = KVM_EXIT_DEBUG;
7382 		return 0;
7383 	}
7384 	kvm_queue_exception_p(vcpu, DB_VECTOR, DR6_BS);
7385 	return 1;
7386 }
7387 
kvm_skip_emulated_instruction(struct kvm_vcpu * vcpu)7388 int kvm_skip_emulated_instruction(struct kvm_vcpu *vcpu)
7389 {
7390 	unsigned long rflags = kvm_x86_ops.get_rflags(vcpu);
7391 	int r;
7392 
7393 	r = kvm_x86_ops.skip_emulated_instruction(vcpu);
7394 	if (unlikely(!r))
7395 		return 0;
7396 
7397 	/*
7398 	 * rflags is the old, "raw" value of the flags.  The new value has
7399 	 * not been saved yet.
7400 	 *
7401 	 * This is correct even for TF set by the guest, because "the
7402 	 * processor will not generate this exception after the instruction
7403 	 * that sets the TF flag".
7404 	 */
7405 	if (unlikely(rflags & X86_EFLAGS_TF))
7406 		r = kvm_vcpu_do_singlestep(vcpu);
7407 	return r;
7408 }
7409 EXPORT_SYMBOL_GPL(kvm_skip_emulated_instruction);
7410 
kvm_vcpu_check_code_breakpoint(struct kvm_vcpu * vcpu,int * r)7411 static bool kvm_vcpu_check_code_breakpoint(struct kvm_vcpu *vcpu, int *r)
7412 {
7413 	if (unlikely(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) &&
7414 	    (vcpu->arch.guest_debug_dr7 & DR7_BP_EN_MASK)) {
7415 		struct kvm_run *kvm_run = vcpu->run;
7416 		unsigned long eip = kvm_get_linear_rip(vcpu);
7417 		u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
7418 					   vcpu->arch.guest_debug_dr7,
7419 					   vcpu->arch.eff_db);
7420 
7421 		if (dr6 != 0) {
7422 			kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1 | DR6_RTM;
7423 			kvm_run->debug.arch.pc = eip;
7424 			kvm_run->debug.arch.exception = DB_VECTOR;
7425 			kvm_run->exit_reason = KVM_EXIT_DEBUG;
7426 			*r = 0;
7427 			return true;
7428 		}
7429 	}
7430 
7431 	if (unlikely(vcpu->arch.dr7 & DR7_BP_EN_MASK) &&
7432 	    !(kvm_get_rflags(vcpu) & X86_EFLAGS_RF)) {
7433 		unsigned long eip = kvm_get_linear_rip(vcpu);
7434 		u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
7435 					   vcpu->arch.dr7,
7436 					   vcpu->arch.db);
7437 
7438 		if (dr6 != 0) {
7439 			kvm_queue_exception_p(vcpu, DB_VECTOR, dr6);
7440 			*r = 1;
7441 			return true;
7442 		}
7443 	}
7444 
7445 	return false;
7446 }
7447 
is_vmware_backdoor_opcode(struct x86_emulate_ctxt * ctxt)7448 static bool is_vmware_backdoor_opcode(struct x86_emulate_ctxt *ctxt)
7449 {
7450 	switch (ctxt->opcode_len) {
7451 	case 1:
7452 		switch (ctxt->b) {
7453 		case 0xe4:	/* IN */
7454 		case 0xe5:
7455 		case 0xec:
7456 		case 0xed:
7457 		case 0xe6:	/* OUT */
7458 		case 0xe7:
7459 		case 0xee:
7460 		case 0xef:
7461 		case 0x6c:	/* INS */
7462 		case 0x6d:
7463 		case 0x6e:	/* OUTS */
7464 		case 0x6f:
7465 			return true;
7466 		}
7467 		break;
7468 	case 2:
7469 		switch (ctxt->b) {
7470 		case 0x33:	/* RDPMC */
7471 			return true;
7472 		}
7473 		break;
7474 	}
7475 
7476 	return false;
7477 }
7478 
7479 /*
7480  * Decode an instruction for emulation.  The caller is responsible for handling
7481  * code breakpoints.  Note, manually detecting code breakpoints is unnecessary
7482  * (and wrong) when emulating on an intercepted fault-like exception[*], as
7483  * code breakpoints have higher priority and thus have already been done by
7484  * hardware.
7485  *
7486  * [*] Except #MC, which is higher priority, but KVM should never emulate in
7487  *     response to a machine check.
7488  */
x86_decode_emulated_instruction(struct kvm_vcpu * vcpu,int emulation_type,void * insn,int insn_len)7489 int x86_decode_emulated_instruction(struct kvm_vcpu *vcpu, int emulation_type,
7490 				    void *insn, int insn_len)
7491 {
7492 	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
7493 	int r;
7494 
7495 	init_emulate_ctxt(vcpu);
7496 
7497 	ctxt->ud = emulation_type & EMULTYPE_TRAP_UD;
7498 
7499 	r = x86_decode_insn(ctxt, insn, insn_len);
7500 
7501 	trace_kvm_emulate_insn_start(vcpu);
7502 	++vcpu->stat.insn_emulation;
7503 
7504 	return r;
7505 }
7506 EXPORT_SYMBOL_GPL(x86_decode_emulated_instruction);
7507 
x86_emulate_instruction(struct kvm_vcpu * vcpu,gpa_t cr2_or_gpa,int emulation_type,void * insn,int insn_len)7508 int x86_emulate_instruction(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
7509 			    int emulation_type, void *insn, int insn_len)
7510 {
7511 	int r;
7512 	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
7513 	bool writeback = true;
7514 	bool write_fault_to_spt;
7515 
7516 	if (unlikely(!kvm_x86_ops.can_emulate_instruction(vcpu, insn, insn_len)))
7517 		return 1;
7518 
7519 	vcpu->arch.l1tf_flush_l1d = true;
7520 
7521 	/*
7522 	 * Clear write_fault_to_shadow_pgtable here to ensure it is
7523 	 * never reused.
7524 	 */
7525 	write_fault_to_spt = vcpu->arch.write_fault_to_shadow_pgtable;
7526 	vcpu->arch.write_fault_to_shadow_pgtable = false;
7527 
7528 	if (!(emulation_type & EMULTYPE_NO_DECODE)) {
7529 		kvm_clear_exception_queue(vcpu);
7530 
7531 		/*
7532 		 * Return immediately if RIP hits a code breakpoint, such #DBs
7533 		 * are fault-like and are higher priority than any faults on
7534 		 * the code fetch itself.
7535 		 */
7536 		if (!(emulation_type & EMULTYPE_SKIP) &&
7537 		    kvm_vcpu_check_code_breakpoint(vcpu, &r))
7538 			return r;
7539 
7540 		r = x86_decode_emulated_instruction(vcpu, emulation_type,
7541 						    insn, insn_len);
7542 		if (r != EMULATION_OK)  {
7543 			if ((emulation_type & EMULTYPE_TRAP_UD) ||
7544 			    (emulation_type & EMULTYPE_TRAP_UD_FORCED)) {
7545 				kvm_queue_exception(vcpu, UD_VECTOR);
7546 				return 1;
7547 			}
7548 			if (reexecute_instruction(vcpu, cr2_or_gpa,
7549 						  write_fault_to_spt,
7550 						  emulation_type))
7551 				return 1;
7552 			if (ctxt->have_exception) {
7553 				/*
7554 				 * #UD should result in just EMULATION_FAILED, and trap-like
7555 				 * exception should not be encountered during decode.
7556 				 */
7557 				WARN_ON_ONCE(ctxt->exception.vector == UD_VECTOR ||
7558 					     exception_type(ctxt->exception.vector) == EXCPT_TRAP);
7559 				inject_emulated_exception(vcpu);
7560 				return 1;
7561 			}
7562 			return handle_emulation_failure(vcpu, emulation_type);
7563 		}
7564 	}
7565 
7566 	if ((emulation_type & EMULTYPE_VMWARE_GP) &&
7567 	    !is_vmware_backdoor_opcode(ctxt)) {
7568 		kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
7569 		return 1;
7570 	}
7571 
7572 	/*
7573 	 * Note, EMULTYPE_SKIP is intended for use *only* by vendor callbacks
7574 	 * for kvm_skip_emulated_instruction().  The caller is responsible for
7575 	 * updating interruptibility state and injecting single-step #DBs.
7576 	 */
7577 	if (emulation_type & EMULTYPE_SKIP) {
7578 		kvm_rip_write(vcpu, ctxt->_eip);
7579 		if (ctxt->eflags & X86_EFLAGS_RF)
7580 			kvm_set_rflags(vcpu, ctxt->eflags & ~X86_EFLAGS_RF);
7581 		return 1;
7582 	}
7583 
7584 	if (retry_instruction(ctxt, cr2_or_gpa, emulation_type))
7585 		return 1;
7586 
7587 	/* this is needed for vmware backdoor interface to work since it
7588 	   changes registers values  during IO operation */
7589 	if (vcpu->arch.emulate_regs_need_sync_from_vcpu) {
7590 		vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
7591 		emulator_invalidate_register_cache(ctxt);
7592 	}
7593 
7594 restart:
7595 	if (emulation_type & EMULTYPE_PF) {
7596 		/* Save the faulting GPA (cr2) in the address field */
7597 		ctxt->exception.address = cr2_or_gpa;
7598 
7599 		/* With shadow page tables, cr2 contains a GVA or nGPA. */
7600 		if (vcpu->arch.mmu->direct_map) {
7601 			ctxt->gpa_available = true;
7602 			ctxt->gpa_val = cr2_or_gpa;
7603 		}
7604 	} else {
7605 		/* Sanitize the address out of an abundance of paranoia. */
7606 		ctxt->exception.address = 0;
7607 	}
7608 
7609 	r = x86_emulate_insn(ctxt);
7610 
7611 	if (r == EMULATION_INTERCEPTED)
7612 		return 1;
7613 
7614 	if (r == EMULATION_FAILED) {
7615 		if (reexecute_instruction(vcpu, cr2_or_gpa, write_fault_to_spt,
7616 					emulation_type))
7617 			return 1;
7618 
7619 		return handle_emulation_failure(vcpu, emulation_type);
7620 	}
7621 
7622 	if (ctxt->have_exception) {
7623 		r = 1;
7624 		if (inject_emulated_exception(vcpu))
7625 			return r;
7626 	} else if (vcpu->arch.pio.count) {
7627 		if (!vcpu->arch.pio.in) {
7628 			/* FIXME: return into emulator if single-stepping.  */
7629 			vcpu->arch.pio.count = 0;
7630 		} else {
7631 			writeback = false;
7632 			vcpu->arch.complete_userspace_io = complete_emulated_pio;
7633 		}
7634 		r = 0;
7635 	} else if (vcpu->mmio_needed) {
7636 		++vcpu->stat.mmio_exits;
7637 
7638 		if (!vcpu->mmio_is_write)
7639 			writeback = false;
7640 		r = 0;
7641 		vcpu->arch.complete_userspace_io = complete_emulated_mmio;
7642 	} else if (r == EMULATION_RESTART)
7643 		goto restart;
7644 	else
7645 		r = 1;
7646 
7647 	if (writeback) {
7648 		unsigned long rflags = kvm_x86_ops.get_rflags(vcpu);
7649 		toggle_interruptibility(vcpu, ctxt->interruptibility);
7650 		vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
7651 
7652 		/*
7653 		 * Note, EXCPT_DB is assumed to be fault-like as the emulator
7654 		 * only supports code breakpoints and general detect #DB, both
7655 		 * of which are fault-like.
7656 		 */
7657 		if (!ctxt->have_exception ||
7658 		    exception_type(ctxt->exception.vector) == EXCPT_TRAP) {
7659 			kvm_rip_write(vcpu, ctxt->eip);
7660 			if (r && (ctxt->tf || (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)))
7661 				r = kvm_vcpu_do_singlestep(vcpu);
7662 			if (kvm_x86_ops.update_emulated_instruction)
7663 				kvm_x86_ops.update_emulated_instruction(vcpu);
7664 			__kvm_set_rflags(vcpu, ctxt->eflags);
7665 		}
7666 
7667 		/*
7668 		 * For STI, interrupts are shadowed; so KVM_REQ_EVENT will
7669 		 * do nothing, and it will be requested again as soon as
7670 		 * the shadow expires.  But we still need to check here,
7671 		 * because POPF has no interrupt shadow.
7672 		 */
7673 		if (unlikely((ctxt->eflags & ~rflags) & X86_EFLAGS_IF))
7674 			kvm_make_request(KVM_REQ_EVENT, vcpu);
7675 	} else
7676 		vcpu->arch.emulate_regs_need_sync_to_vcpu = true;
7677 
7678 	return r;
7679 }
7680 
kvm_emulate_instruction(struct kvm_vcpu * vcpu,int emulation_type)7681 int kvm_emulate_instruction(struct kvm_vcpu *vcpu, int emulation_type)
7682 {
7683 	return x86_emulate_instruction(vcpu, 0, emulation_type, NULL, 0);
7684 }
7685 EXPORT_SYMBOL_GPL(kvm_emulate_instruction);
7686 
kvm_emulate_instruction_from_buffer(struct kvm_vcpu * vcpu,void * insn,int insn_len)7687 int kvm_emulate_instruction_from_buffer(struct kvm_vcpu *vcpu,
7688 					void *insn, int insn_len)
7689 {
7690 	return x86_emulate_instruction(vcpu, 0, 0, insn, insn_len);
7691 }
7692 EXPORT_SYMBOL_GPL(kvm_emulate_instruction_from_buffer);
7693 
complete_fast_pio_out_port_0x7e(struct kvm_vcpu * vcpu)7694 static int complete_fast_pio_out_port_0x7e(struct kvm_vcpu *vcpu)
7695 {
7696 	vcpu->arch.pio.count = 0;
7697 	return 1;
7698 }
7699 
complete_fast_pio_out(struct kvm_vcpu * vcpu)7700 static int complete_fast_pio_out(struct kvm_vcpu *vcpu)
7701 {
7702 	vcpu->arch.pio.count = 0;
7703 
7704 	if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.pio.linear_rip)))
7705 		return 1;
7706 
7707 	return kvm_skip_emulated_instruction(vcpu);
7708 }
7709 
kvm_fast_pio_out(struct kvm_vcpu * vcpu,int size,unsigned short port)7710 static int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size,
7711 			    unsigned short port)
7712 {
7713 	unsigned long val = kvm_rax_read(vcpu);
7714 	int ret = emulator_pio_out(vcpu, size, port, &val, 1);
7715 
7716 	if (ret)
7717 		return ret;
7718 
7719 	/*
7720 	 * Workaround userspace that relies on old KVM behavior of %rip being
7721 	 * incremented prior to exiting to userspace to handle "OUT 0x7e".
7722 	 */
7723 	if (port == 0x7e &&
7724 	    kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_OUT_7E_INC_RIP)) {
7725 		vcpu->arch.complete_userspace_io =
7726 			complete_fast_pio_out_port_0x7e;
7727 		kvm_skip_emulated_instruction(vcpu);
7728 	} else {
7729 		vcpu->arch.pio.linear_rip = kvm_get_linear_rip(vcpu);
7730 		vcpu->arch.complete_userspace_io = complete_fast_pio_out;
7731 	}
7732 	return 0;
7733 }
7734 
complete_fast_pio_in(struct kvm_vcpu * vcpu)7735 static int complete_fast_pio_in(struct kvm_vcpu *vcpu)
7736 {
7737 	unsigned long val;
7738 
7739 	/* We should only ever be called with arch.pio.count equal to 1 */
7740 	BUG_ON(vcpu->arch.pio.count != 1);
7741 
7742 	if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.pio.linear_rip))) {
7743 		vcpu->arch.pio.count = 0;
7744 		return 1;
7745 	}
7746 
7747 	/* For size less than 4 we merge, else we zero extend */
7748 	val = (vcpu->arch.pio.size < 4) ? kvm_rax_read(vcpu) : 0;
7749 
7750 	/*
7751 	 * Since vcpu->arch.pio.count == 1 let emulator_pio_in perform
7752 	 * the copy and tracing
7753 	 */
7754 	emulator_pio_in(vcpu, vcpu->arch.pio.size, vcpu->arch.pio.port, &val, 1);
7755 	kvm_rax_write(vcpu, val);
7756 
7757 	return kvm_skip_emulated_instruction(vcpu);
7758 }
7759 
kvm_fast_pio_in(struct kvm_vcpu * vcpu,int size,unsigned short port)7760 static int kvm_fast_pio_in(struct kvm_vcpu *vcpu, int size,
7761 			   unsigned short port)
7762 {
7763 	unsigned long val;
7764 	int ret;
7765 
7766 	/* For size less than 4 we merge, else we zero extend */
7767 	val = (size < 4) ? kvm_rax_read(vcpu) : 0;
7768 
7769 	ret = emulator_pio_in(vcpu, size, port, &val, 1);
7770 	if (ret) {
7771 		kvm_rax_write(vcpu, val);
7772 		return ret;
7773 	}
7774 
7775 	vcpu->arch.pio.linear_rip = kvm_get_linear_rip(vcpu);
7776 	vcpu->arch.complete_userspace_io = complete_fast_pio_in;
7777 
7778 	return 0;
7779 }
7780 
kvm_fast_pio(struct kvm_vcpu * vcpu,int size,unsigned short port,int in)7781 int kvm_fast_pio(struct kvm_vcpu *vcpu, int size, unsigned short port, int in)
7782 {
7783 	int ret;
7784 
7785 	if (in)
7786 		ret = kvm_fast_pio_in(vcpu, size, port);
7787 	else
7788 		ret = kvm_fast_pio_out(vcpu, size, port);
7789 	return ret && kvm_skip_emulated_instruction(vcpu);
7790 }
7791 EXPORT_SYMBOL_GPL(kvm_fast_pio);
7792 
kvmclock_cpu_down_prep(unsigned int cpu)7793 static int kvmclock_cpu_down_prep(unsigned int cpu)
7794 {
7795 	__this_cpu_write(cpu_tsc_khz, 0);
7796 	return 0;
7797 }
7798 
tsc_khz_changed(void * data)7799 static void tsc_khz_changed(void *data)
7800 {
7801 	struct cpufreq_freqs *freq = data;
7802 	unsigned long khz = 0;
7803 
7804 	if (data)
7805 		khz = freq->new;
7806 	else if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
7807 		khz = cpufreq_quick_get(raw_smp_processor_id());
7808 	if (!khz)
7809 		khz = tsc_khz;
7810 	__this_cpu_write(cpu_tsc_khz, khz);
7811 }
7812 
7813 #ifdef CONFIG_X86_64
kvm_hyperv_tsc_notifier(void)7814 static void kvm_hyperv_tsc_notifier(void)
7815 {
7816 	struct kvm *kvm;
7817 	struct kvm_vcpu *vcpu;
7818 	int cpu;
7819 
7820 	mutex_lock(&kvm_lock);
7821 	list_for_each_entry(kvm, &vm_list, vm_list)
7822 		kvm_make_mclock_inprogress_request(kvm);
7823 
7824 	hyperv_stop_tsc_emulation();
7825 
7826 	/* TSC frequency always matches when on Hyper-V */
7827 	for_each_present_cpu(cpu)
7828 		per_cpu(cpu_tsc_khz, cpu) = tsc_khz;
7829 	kvm_max_guest_tsc_khz = tsc_khz;
7830 
7831 	list_for_each_entry(kvm, &vm_list, vm_list) {
7832 		struct kvm_arch *ka = &kvm->arch;
7833 
7834 		spin_lock(&ka->pvclock_gtod_sync_lock);
7835 
7836 		pvclock_update_vm_gtod_copy(kvm);
7837 
7838 		kvm_for_each_vcpu(cpu, vcpu, kvm)
7839 			kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
7840 
7841 		kvm_for_each_vcpu(cpu, vcpu, kvm)
7842 			kvm_clear_request(KVM_REQ_MCLOCK_INPROGRESS, vcpu);
7843 
7844 		spin_unlock(&ka->pvclock_gtod_sync_lock);
7845 	}
7846 	mutex_unlock(&kvm_lock);
7847 }
7848 #endif
7849 
__kvmclock_cpufreq_notifier(struct cpufreq_freqs * freq,int cpu)7850 static void __kvmclock_cpufreq_notifier(struct cpufreq_freqs *freq, int cpu)
7851 {
7852 	struct kvm *kvm;
7853 	struct kvm_vcpu *vcpu;
7854 	int i, send_ipi = 0;
7855 
7856 	/*
7857 	 * We allow guests to temporarily run on slowing clocks,
7858 	 * provided we notify them after, or to run on accelerating
7859 	 * clocks, provided we notify them before.  Thus time never
7860 	 * goes backwards.
7861 	 *
7862 	 * However, we have a problem.  We can't atomically update
7863 	 * the frequency of a given CPU from this function; it is
7864 	 * merely a notifier, which can be called from any CPU.
7865 	 * Changing the TSC frequency at arbitrary points in time
7866 	 * requires a recomputation of local variables related to
7867 	 * the TSC for each VCPU.  We must flag these local variables
7868 	 * to be updated and be sure the update takes place with the
7869 	 * new frequency before any guests proceed.
7870 	 *
7871 	 * Unfortunately, the combination of hotplug CPU and frequency
7872 	 * change creates an intractable locking scenario; the order
7873 	 * of when these callouts happen is undefined with respect to
7874 	 * CPU hotplug, and they can race with each other.  As such,
7875 	 * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is
7876 	 * undefined; you can actually have a CPU frequency change take
7877 	 * place in between the computation of X and the setting of the
7878 	 * variable.  To protect against this problem, all updates of
7879 	 * the per_cpu tsc_khz variable are done in an interrupt
7880 	 * protected IPI, and all callers wishing to update the value
7881 	 * must wait for a synchronous IPI to complete (which is trivial
7882 	 * if the caller is on the CPU already).  This establishes the
7883 	 * necessary total order on variable updates.
7884 	 *
7885 	 * Note that because a guest time update may take place
7886 	 * anytime after the setting of the VCPU's request bit, the
7887 	 * correct TSC value must be set before the request.  However,
7888 	 * to ensure the update actually makes it to any guest which
7889 	 * starts running in hardware virtualization between the set
7890 	 * and the acquisition of the spinlock, we must also ping the
7891 	 * CPU after setting the request bit.
7892 	 *
7893 	 */
7894 
7895 	smp_call_function_single(cpu, tsc_khz_changed, freq, 1);
7896 
7897 	mutex_lock(&kvm_lock);
7898 	list_for_each_entry(kvm, &vm_list, vm_list) {
7899 		kvm_for_each_vcpu(i, vcpu, kvm) {
7900 			if (vcpu->cpu != cpu)
7901 				continue;
7902 			kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
7903 			if (vcpu->cpu != raw_smp_processor_id())
7904 				send_ipi = 1;
7905 		}
7906 	}
7907 	mutex_unlock(&kvm_lock);
7908 
7909 	if (freq->old < freq->new && send_ipi) {
7910 		/*
7911 		 * We upscale the frequency.  Must make the guest
7912 		 * doesn't see old kvmclock values while running with
7913 		 * the new frequency, otherwise we risk the guest sees
7914 		 * time go backwards.
7915 		 *
7916 		 * In case we update the frequency for another cpu
7917 		 * (which might be in guest context) send an interrupt
7918 		 * to kick the cpu out of guest context.  Next time
7919 		 * guest context is entered kvmclock will be updated,
7920 		 * so the guest will not see stale values.
7921 		 */
7922 		smp_call_function_single(cpu, tsc_khz_changed, freq, 1);
7923 	}
7924 }
7925 
kvmclock_cpufreq_notifier(struct notifier_block * nb,unsigned long val,void * data)7926 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
7927 				     void *data)
7928 {
7929 	struct cpufreq_freqs *freq = data;
7930 	int cpu;
7931 
7932 	if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
7933 		return 0;
7934 	if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
7935 		return 0;
7936 
7937 	for_each_cpu(cpu, freq->policy->cpus)
7938 		__kvmclock_cpufreq_notifier(freq, cpu);
7939 
7940 	return 0;
7941 }
7942 
7943 static struct notifier_block kvmclock_cpufreq_notifier_block = {
7944 	.notifier_call  = kvmclock_cpufreq_notifier
7945 };
7946 
kvmclock_cpu_online(unsigned int cpu)7947 static int kvmclock_cpu_online(unsigned int cpu)
7948 {
7949 	tsc_khz_changed(NULL);
7950 	return 0;
7951 }
7952 
kvm_timer_init(void)7953 static void kvm_timer_init(void)
7954 {
7955 	max_tsc_khz = tsc_khz;
7956 
7957 	if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
7958 #ifdef CONFIG_CPU_FREQ
7959 		struct cpufreq_policy *policy;
7960 		int cpu;
7961 
7962 		cpu = get_cpu();
7963 		policy = cpufreq_cpu_get(cpu);
7964 		if (policy) {
7965 			if (policy->cpuinfo.max_freq)
7966 				max_tsc_khz = policy->cpuinfo.max_freq;
7967 			cpufreq_cpu_put(policy);
7968 		}
7969 		put_cpu();
7970 #endif
7971 		cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
7972 					  CPUFREQ_TRANSITION_NOTIFIER);
7973 	}
7974 
7975 	cpuhp_setup_state(CPUHP_AP_X86_KVM_CLK_ONLINE, "x86/kvm/clk:online",
7976 			  kvmclock_cpu_online, kvmclock_cpu_down_prep);
7977 }
7978 
7979 DEFINE_PER_CPU(struct kvm_vcpu *, current_vcpu);
7980 EXPORT_PER_CPU_SYMBOL_GPL(current_vcpu);
7981 
kvm_is_in_guest(void)7982 int kvm_is_in_guest(void)
7983 {
7984 	return __this_cpu_read(current_vcpu) != NULL;
7985 }
7986 
kvm_is_user_mode(void)7987 static int kvm_is_user_mode(void)
7988 {
7989 	int user_mode = 3;
7990 
7991 	if (__this_cpu_read(current_vcpu))
7992 		user_mode = kvm_x86_ops.get_cpl(__this_cpu_read(current_vcpu));
7993 
7994 	return user_mode != 0;
7995 }
7996 
kvm_get_guest_ip(void)7997 static unsigned long kvm_get_guest_ip(void)
7998 {
7999 	unsigned long ip = 0;
8000 
8001 	if (__this_cpu_read(current_vcpu))
8002 		ip = kvm_rip_read(__this_cpu_read(current_vcpu));
8003 
8004 	return ip;
8005 }
8006 
kvm_handle_intel_pt_intr(void)8007 static void kvm_handle_intel_pt_intr(void)
8008 {
8009 	struct kvm_vcpu *vcpu = __this_cpu_read(current_vcpu);
8010 
8011 	kvm_make_request(KVM_REQ_PMI, vcpu);
8012 	__set_bit(MSR_CORE_PERF_GLOBAL_OVF_CTRL_TRACE_TOPA_PMI_BIT,
8013 			(unsigned long *)&vcpu->arch.pmu.global_status);
8014 }
8015 
8016 static struct perf_guest_info_callbacks kvm_guest_cbs = {
8017 	.is_in_guest		= kvm_is_in_guest,
8018 	.is_user_mode		= kvm_is_user_mode,
8019 	.get_guest_ip		= kvm_get_guest_ip,
8020 	.handle_intel_pt_intr	= NULL,
8021 };
8022 
8023 #ifdef CONFIG_X86_64
pvclock_gtod_update_fn(struct work_struct * work)8024 static void pvclock_gtod_update_fn(struct work_struct *work)
8025 {
8026 	struct kvm *kvm;
8027 
8028 	struct kvm_vcpu *vcpu;
8029 	int i;
8030 
8031 	mutex_lock(&kvm_lock);
8032 	list_for_each_entry(kvm, &vm_list, vm_list)
8033 		kvm_for_each_vcpu(i, vcpu, kvm)
8034 			kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
8035 	atomic_set(&kvm_guest_has_master_clock, 0);
8036 	mutex_unlock(&kvm_lock);
8037 }
8038 
8039 static DECLARE_WORK(pvclock_gtod_work, pvclock_gtod_update_fn);
8040 
8041 /*
8042  * Indirection to move queue_work() out of the tk_core.seq write held
8043  * region to prevent possible deadlocks against time accessors which
8044  * are invoked with work related locks held.
8045  */
pvclock_irq_work_fn(struct irq_work * w)8046 static void pvclock_irq_work_fn(struct irq_work *w)
8047 {
8048 	queue_work(system_long_wq, &pvclock_gtod_work);
8049 }
8050 
8051 static DEFINE_IRQ_WORK(pvclock_irq_work, pvclock_irq_work_fn);
8052 
8053 /*
8054  * Notification about pvclock gtod data update.
8055  */
pvclock_gtod_notify(struct notifier_block * nb,unsigned long unused,void * priv)8056 static int pvclock_gtod_notify(struct notifier_block *nb, unsigned long unused,
8057 			       void *priv)
8058 {
8059 	struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
8060 	struct timekeeper *tk = priv;
8061 
8062 	update_pvclock_gtod(tk);
8063 
8064 	/*
8065 	 * Disable master clock if host does not trust, or does not use,
8066 	 * TSC based clocksource. Delegate queue_work() to irq_work as
8067 	 * this is invoked with tk_core.seq write held.
8068 	 */
8069 	if (!gtod_is_based_on_tsc(gtod->clock.vclock_mode) &&
8070 	    atomic_read(&kvm_guest_has_master_clock) != 0)
8071 		irq_work_queue(&pvclock_irq_work);
8072 	return 0;
8073 }
8074 
8075 static struct notifier_block pvclock_gtod_notifier = {
8076 	.notifier_call = pvclock_gtod_notify,
8077 };
8078 #endif
8079 
kvm_arch_init(void * opaque)8080 int kvm_arch_init(void *opaque)
8081 {
8082 	struct kvm_x86_init_ops *ops = opaque;
8083 	int r;
8084 
8085 	if (kvm_x86_ops.hardware_enable) {
8086 		printk(KERN_ERR "kvm: already loaded the other module\n");
8087 		r = -EEXIST;
8088 		goto out;
8089 	}
8090 
8091 	if (!ops->cpu_has_kvm_support()) {
8092 		pr_err_ratelimited("kvm: no hardware support\n");
8093 		r = -EOPNOTSUPP;
8094 		goto out;
8095 	}
8096 	if (ops->disabled_by_bios()) {
8097 		pr_err_ratelimited("kvm: disabled by bios\n");
8098 		r = -EOPNOTSUPP;
8099 		goto out;
8100 	}
8101 
8102 	/*
8103 	 * KVM explicitly assumes that the guest has an FPU and
8104 	 * FXSAVE/FXRSTOR. For example, the KVM_GET_FPU explicitly casts the
8105 	 * vCPU's FPU state as a fxregs_state struct.
8106 	 */
8107 	if (!boot_cpu_has(X86_FEATURE_FPU) || !boot_cpu_has(X86_FEATURE_FXSR)) {
8108 		printk(KERN_ERR "kvm: inadequate fpu\n");
8109 		r = -EOPNOTSUPP;
8110 		goto out;
8111 	}
8112 
8113 	r = -ENOMEM;
8114 	x86_fpu_cache = kmem_cache_create("x86_fpu", sizeof(struct fpu),
8115 					  __alignof__(struct fpu), SLAB_ACCOUNT,
8116 					  NULL);
8117 	if (!x86_fpu_cache) {
8118 		printk(KERN_ERR "kvm: failed to allocate cache for x86 fpu\n");
8119 		goto out;
8120 	}
8121 
8122 	x86_emulator_cache = kvm_alloc_emulator_cache();
8123 	if (!x86_emulator_cache) {
8124 		pr_err("kvm: failed to allocate cache for x86 emulator\n");
8125 		goto out_free_x86_fpu_cache;
8126 	}
8127 
8128 	user_return_msrs = alloc_percpu(struct kvm_user_return_msrs);
8129 	if (!user_return_msrs) {
8130 		printk(KERN_ERR "kvm: failed to allocate percpu kvm_user_return_msrs\n");
8131 		goto out_free_x86_emulator_cache;
8132 	}
8133 
8134 	r = kvm_mmu_vendor_module_init();
8135 	if (r)
8136 		goto out_free_percpu;
8137 
8138 	kvm_mmu_set_mask_ptes(PT_USER_MASK, PT_ACCESSED_MASK,
8139 			PT_DIRTY_MASK, PT64_NX_MASK, 0,
8140 			PT_PRESENT_MASK, 0, sme_me_mask);
8141 	kvm_timer_init();
8142 
8143 	if (ops->intel_pt_intr_in_guest && ops->intel_pt_intr_in_guest())
8144 		kvm_guest_cbs.handle_intel_pt_intr = kvm_handle_intel_pt_intr;
8145 	perf_register_guest_info_callbacks(&kvm_guest_cbs);
8146 
8147 	if (boot_cpu_has(X86_FEATURE_XSAVE)) {
8148 		host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK);
8149 		supported_xcr0 = host_xcr0 & KVM_SUPPORTED_XCR0;
8150 	}
8151 
8152 	kvm_lapic_init();
8153 	if (pi_inject_timer == -1)
8154 		pi_inject_timer = housekeeping_enabled(HK_FLAG_TIMER);
8155 #ifdef CONFIG_X86_64
8156 	pvclock_gtod_register_notifier(&pvclock_gtod_notifier);
8157 
8158 	if (hypervisor_is_type(X86_HYPER_MS_HYPERV))
8159 		set_hv_tscchange_cb(kvm_hyperv_tsc_notifier);
8160 #endif
8161 
8162 	return 0;
8163 
8164 out_free_percpu:
8165 	free_percpu(user_return_msrs);
8166 out_free_x86_emulator_cache:
8167 	kmem_cache_destroy(x86_emulator_cache);
8168 out_free_x86_fpu_cache:
8169 	kmem_cache_destroy(x86_fpu_cache);
8170 out:
8171 	return r;
8172 }
8173 
kvm_arch_exit(void)8174 void kvm_arch_exit(void)
8175 {
8176 #ifdef CONFIG_X86_64
8177 	if (hypervisor_is_type(X86_HYPER_MS_HYPERV))
8178 		clear_hv_tscchange_cb();
8179 #endif
8180 	kvm_lapic_exit();
8181 	perf_unregister_guest_info_callbacks(&kvm_guest_cbs);
8182 	kvm_guest_cbs.handle_intel_pt_intr = NULL;
8183 
8184 	if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
8185 		cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
8186 					    CPUFREQ_TRANSITION_NOTIFIER);
8187 	cpuhp_remove_state_nocalls(CPUHP_AP_X86_KVM_CLK_ONLINE);
8188 #ifdef CONFIG_X86_64
8189 	pvclock_gtod_unregister_notifier(&pvclock_gtod_notifier);
8190 	irq_work_sync(&pvclock_irq_work);
8191 	cancel_work_sync(&pvclock_gtod_work);
8192 #endif
8193 	kvm_x86_ops.hardware_enable = NULL;
8194 	kvm_mmu_vendor_module_exit();
8195 	free_percpu(user_return_msrs);
8196 	kmem_cache_destroy(x86_emulator_cache);
8197 	kmem_cache_destroy(x86_fpu_cache);
8198 }
8199 
kvm_vcpu_halt(struct kvm_vcpu * vcpu)8200 int kvm_vcpu_halt(struct kvm_vcpu *vcpu)
8201 {
8202 	++vcpu->stat.halt_exits;
8203 	if (lapic_in_kernel(vcpu)) {
8204 		vcpu->arch.mp_state = KVM_MP_STATE_HALTED;
8205 		return 1;
8206 	} else {
8207 		vcpu->run->exit_reason = KVM_EXIT_HLT;
8208 		return 0;
8209 	}
8210 }
8211 EXPORT_SYMBOL_GPL(kvm_vcpu_halt);
8212 
kvm_emulate_halt(struct kvm_vcpu * vcpu)8213 int kvm_emulate_halt(struct kvm_vcpu *vcpu)
8214 {
8215 	int ret = kvm_skip_emulated_instruction(vcpu);
8216 	/*
8217 	 * TODO: we might be squashing a GUESTDBG_SINGLESTEP-triggered
8218 	 * KVM_EXIT_DEBUG here.
8219 	 */
8220 	return kvm_vcpu_halt(vcpu) && ret;
8221 }
8222 EXPORT_SYMBOL_GPL(kvm_emulate_halt);
8223 
8224 #ifdef CONFIG_X86_64
kvm_pv_clock_pairing(struct kvm_vcpu * vcpu,gpa_t paddr,unsigned long clock_type)8225 static int kvm_pv_clock_pairing(struct kvm_vcpu *vcpu, gpa_t paddr,
8226 			        unsigned long clock_type)
8227 {
8228 	struct kvm_clock_pairing clock_pairing;
8229 	struct timespec64 ts;
8230 	u64 cycle;
8231 	int ret;
8232 
8233 	if (clock_type != KVM_CLOCK_PAIRING_WALLCLOCK)
8234 		return -KVM_EOPNOTSUPP;
8235 
8236 	if (kvm_get_walltime_and_clockread(&ts, &cycle) == false)
8237 		return -KVM_EOPNOTSUPP;
8238 
8239 	clock_pairing.sec = ts.tv_sec;
8240 	clock_pairing.nsec = ts.tv_nsec;
8241 	clock_pairing.tsc = kvm_read_l1_tsc(vcpu, cycle);
8242 	clock_pairing.flags = 0;
8243 	memset(&clock_pairing.pad, 0, sizeof(clock_pairing.pad));
8244 
8245 	ret = 0;
8246 	if (kvm_write_guest(vcpu->kvm, paddr, &clock_pairing,
8247 			    sizeof(struct kvm_clock_pairing)))
8248 		ret = -KVM_EFAULT;
8249 
8250 	return ret;
8251 }
8252 #endif
8253 
8254 /*
8255  * kvm_pv_kick_cpu_op:  Kick a vcpu.
8256  *
8257  * @apicid - apicid of vcpu to be kicked.
8258  */
kvm_pv_kick_cpu_op(struct kvm * kvm,unsigned long flags,int apicid)8259 static void kvm_pv_kick_cpu_op(struct kvm *kvm, unsigned long flags, int apicid)
8260 {
8261 	/*
8262 	 * All other fields are unused for APIC_DM_REMRD, but may be consumed by
8263 	 * common code, e.g. for tracing. Defer initialization to the compiler.
8264 	 */
8265 	struct kvm_lapic_irq lapic_irq = {
8266 		.delivery_mode = APIC_DM_REMRD,
8267 		.dest_mode = APIC_DEST_PHYSICAL,
8268 		.shorthand = APIC_DEST_NOSHORT,
8269 		.dest_id = apicid,
8270 	};
8271 
8272 	kvm_irq_delivery_to_apic(kvm, NULL, &lapic_irq, NULL);
8273 }
8274 
kvm_apicv_activated(struct kvm * kvm)8275 bool kvm_apicv_activated(struct kvm *kvm)
8276 {
8277 	return (READ_ONCE(kvm->arch.apicv_inhibit_reasons) == 0);
8278 }
8279 EXPORT_SYMBOL_GPL(kvm_apicv_activated);
8280 
kvm_apicv_init(struct kvm * kvm,bool enable)8281 void kvm_apicv_init(struct kvm *kvm, bool enable)
8282 {
8283 	if (enable)
8284 		clear_bit(APICV_INHIBIT_REASON_DISABLE,
8285 			  &kvm->arch.apicv_inhibit_reasons);
8286 	else
8287 		set_bit(APICV_INHIBIT_REASON_DISABLE,
8288 			&kvm->arch.apicv_inhibit_reasons);
8289 }
8290 EXPORT_SYMBOL_GPL(kvm_apicv_init);
8291 
kvm_sched_yield(struct kvm * kvm,unsigned long dest_id)8292 static void kvm_sched_yield(struct kvm *kvm, unsigned long dest_id)
8293 {
8294 	struct kvm_vcpu *target = NULL;
8295 	struct kvm_apic_map *map;
8296 
8297 	rcu_read_lock();
8298 	map = rcu_dereference(kvm->arch.apic_map);
8299 
8300 	if (likely(map) && dest_id <= map->max_apic_id && map->phys_map[dest_id])
8301 		target = map->phys_map[dest_id]->vcpu;
8302 
8303 	rcu_read_unlock();
8304 
8305 	if (target && READ_ONCE(target->ready))
8306 		kvm_vcpu_yield_to(target);
8307 }
8308 
kvm_emulate_hypercall(struct kvm_vcpu * vcpu)8309 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
8310 {
8311 	unsigned long nr, a0, a1, a2, a3, ret;
8312 	int op_64_bit;
8313 
8314 	if (kvm_hv_hypercall_enabled(vcpu->kvm))
8315 		return kvm_hv_hypercall(vcpu);
8316 
8317 	nr = kvm_rax_read(vcpu);
8318 	a0 = kvm_rbx_read(vcpu);
8319 	a1 = kvm_rcx_read(vcpu);
8320 	a2 = kvm_rdx_read(vcpu);
8321 	a3 = kvm_rsi_read(vcpu);
8322 
8323 	trace_kvm_hypercall(nr, a0, a1, a2, a3);
8324 
8325 	op_64_bit = is_64_bit_mode(vcpu);
8326 	if (!op_64_bit) {
8327 		nr &= 0xFFFFFFFF;
8328 		a0 &= 0xFFFFFFFF;
8329 		a1 &= 0xFFFFFFFF;
8330 		a2 &= 0xFFFFFFFF;
8331 		a3 &= 0xFFFFFFFF;
8332 	}
8333 
8334 	if (kvm_x86_ops.get_cpl(vcpu) != 0) {
8335 		ret = -KVM_EPERM;
8336 		goto out;
8337 	}
8338 
8339 	ret = -KVM_ENOSYS;
8340 
8341 	switch (nr) {
8342 	case KVM_HC_VAPIC_POLL_IRQ:
8343 		ret = 0;
8344 		break;
8345 	case KVM_HC_KICK_CPU:
8346 		if (!guest_pv_has(vcpu, KVM_FEATURE_PV_UNHALT))
8347 			break;
8348 
8349 		kvm_pv_kick_cpu_op(vcpu->kvm, a0, a1);
8350 		kvm_sched_yield(vcpu->kvm, a1);
8351 		ret = 0;
8352 		break;
8353 #ifdef CONFIG_X86_64
8354 	case KVM_HC_CLOCK_PAIRING:
8355 		ret = kvm_pv_clock_pairing(vcpu, a0, a1);
8356 		break;
8357 #endif
8358 	case KVM_HC_SEND_IPI:
8359 		if (!guest_pv_has(vcpu, KVM_FEATURE_PV_SEND_IPI))
8360 			break;
8361 
8362 		ret = kvm_pv_send_ipi(vcpu->kvm, a0, a1, a2, a3, op_64_bit);
8363 		break;
8364 	case KVM_HC_SCHED_YIELD:
8365 		if (!guest_pv_has(vcpu, KVM_FEATURE_PV_SCHED_YIELD))
8366 			break;
8367 
8368 		kvm_sched_yield(vcpu->kvm, a0);
8369 		ret = 0;
8370 		break;
8371 	default:
8372 		ret = -KVM_ENOSYS;
8373 		break;
8374 	}
8375 out:
8376 	if (!op_64_bit)
8377 		ret = (u32)ret;
8378 	kvm_rax_write(vcpu, ret);
8379 
8380 	++vcpu->stat.hypercalls;
8381 	return kvm_skip_emulated_instruction(vcpu);
8382 }
8383 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
8384 
emulator_fix_hypercall(struct x86_emulate_ctxt * ctxt)8385 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt)
8386 {
8387 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
8388 	char instruction[3];
8389 	unsigned long rip = kvm_rip_read(vcpu);
8390 
8391 	kvm_x86_ops.patch_hypercall(vcpu, instruction);
8392 
8393 	return emulator_write_emulated(ctxt, rip, instruction, 3,
8394 		&ctxt->exception);
8395 }
8396 
dm_request_for_irq_injection(struct kvm_vcpu * vcpu)8397 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu)
8398 {
8399 	return vcpu->run->request_interrupt_window &&
8400 		likely(!pic_in_kernel(vcpu->kvm));
8401 }
8402 
post_kvm_run_save(struct kvm_vcpu * vcpu)8403 static void post_kvm_run_save(struct kvm_vcpu *vcpu)
8404 {
8405 	struct kvm_run *kvm_run = vcpu->run;
8406 
8407 	kvm_run->if_flag = (kvm_get_rflags(vcpu) & X86_EFLAGS_IF) != 0;
8408 	kvm_run->flags = is_smm(vcpu) ? KVM_RUN_X86_SMM : 0;
8409 	kvm_run->cr8 = kvm_get_cr8(vcpu);
8410 	kvm_run->apic_base = kvm_get_apic_base(vcpu);
8411 	kvm_run->ready_for_interrupt_injection =
8412 		pic_in_kernel(vcpu->kvm) ||
8413 		kvm_vcpu_ready_for_interrupt_injection(vcpu);
8414 }
8415 
update_cr8_intercept(struct kvm_vcpu * vcpu)8416 static void update_cr8_intercept(struct kvm_vcpu *vcpu)
8417 {
8418 	int max_irr, tpr;
8419 
8420 	if (!kvm_x86_ops.update_cr8_intercept)
8421 		return;
8422 
8423 	if (!lapic_in_kernel(vcpu))
8424 		return;
8425 
8426 	if (vcpu->arch.apicv_active)
8427 		return;
8428 
8429 	if (!vcpu->arch.apic->vapic_addr)
8430 		max_irr = kvm_lapic_find_highest_irr(vcpu);
8431 	else
8432 		max_irr = -1;
8433 
8434 	if (max_irr != -1)
8435 		max_irr >>= 4;
8436 
8437 	tpr = kvm_lapic_get_cr8(vcpu);
8438 
8439 	kvm_x86_ops.update_cr8_intercept(vcpu, tpr, max_irr);
8440 }
8441 
kvm_inject_exception(struct kvm_vcpu * vcpu)8442 static void kvm_inject_exception(struct kvm_vcpu *vcpu)
8443 {
8444 	trace_kvm_inj_exception(vcpu->arch.exception.nr,
8445 				vcpu->arch.exception.has_error_code,
8446 				vcpu->arch.exception.error_code,
8447 				vcpu->arch.exception.injected);
8448 
8449 	if (vcpu->arch.exception.error_code && !is_protmode(vcpu))
8450 		vcpu->arch.exception.error_code = false;
8451 	kvm_x86_ops.queue_exception(vcpu);
8452 }
8453 
inject_pending_event(struct kvm_vcpu * vcpu,bool * req_immediate_exit)8454 static void inject_pending_event(struct kvm_vcpu *vcpu, bool *req_immediate_exit)
8455 {
8456 	int r;
8457 	bool can_inject = true;
8458 
8459 	/* try to reinject previous events if any */
8460 
8461 	if (vcpu->arch.exception.injected) {
8462 		kvm_inject_exception(vcpu);
8463 		can_inject = false;
8464 	}
8465 	/*
8466 	 * Do not inject an NMI or interrupt if there is a pending
8467 	 * exception.  Exceptions and interrupts are recognized at
8468 	 * instruction boundaries, i.e. the start of an instruction.
8469 	 * Trap-like exceptions, e.g. #DB, have higher priority than
8470 	 * NMIs and interrupts, i.e. traps are recognized before an
8471 	 * NMI/interrupt that's pending on the same instruction.
8472 	 * Fault-like exceptions, e.g. #GP and #PF, are the lowest
8473 	 * priority, but are only generated (pended) during instruction
8474 	 * execution, i.e. a pending fault-like exception means the
8475 	 * fault occurred on the *previous* instruction and must be
8476 	 * serviced prior to recognizing any new events in order to
8477 	 * fully complete the previous instruction.
8478 	 */
8479 	else if (!vcpu->arch.exception.pending) {
8480 		if (vcpu->arch.nmi_injected) {
8481 			kvm_x86_ops.set_nmi(vcpu);
8482 			can_inject = false;
8483 		} else if (vcpu->arch.interrupt.injected) {
8484 			kvm_x86_ops.set_irq(vcpu);
8485 			can_inject = false;
8486 		}
8487 	}
8488 
8489 	WARN_ON_ONCE(vcpu->arch.exception.injected &&
8490 		     vcpu->arch.exception.pending);
8491 
8492 	/*
8493 	 * Call check_nested_events() even if we reinjected a previous event
8494 	 * in order for caller to determine if it should require immediate-exit
8495 	 * from L2 to L1 due to pending L1 events which require exit
8496 	 * from L2 to L1.
8497 	 */
8498 	if (is_guest_mode(vcpu)) {
8499 		r = kvm_x86_ops.nested_ops->check_events(vcpu);
8500 		if (r < 0)
8501 			goto busy;
8502 	}
8503 
8504 	/* try to inject new event if pending */
8505 	if (vcpu->arch.exception.pending) {
8506 		/*
8507 		 * Fault-class exceptions, except #DBs, set RF=1 in the RFLAGS
8508 		 * value pushed on the stack.  Trap-like exception and all #DBs
8509 		 * leave RF as-is (KVM follows Intel's behavior in this regard;
8510 		 * AMD states that code breakpoint #DBs excplitly clear RF=0).
8511 		 *
8512 		 * Note, most versions of Intel's SDM and AMD's APM incorrectly
8513 		 * describe the behavior of General Detect #DBs, which are
8514 		 * fault-like.  They do _not_ set RF, a la code breakpoints.
8515 		 */
8516 		if (exception_type(vcpu->arch.exception.nr) == EXCPT_FAULT)
8517 			__kvm_set_rflags(vcpu, kvm_get_rflags(vcpu) |
8518 					     X86_EFLAGS_RF);
8519 
8520 		if (vcpu->arch.exception.nr == DB_VECTOR) {
8521 			kvm_deliver_exception_payload(vcpu);
8522 			if (vcpu->arch.dr7 & DR7_GD) {
8523 				vcpu->arch.dr7 &= ~DR7_GD;
8524 				kvm_update_dr7(vcpu);
8525 			}
8526 		}
8527 
8528 		kvm_inject_exception(vcpu);
8529 
8530 		vcpu->arch.exception.pending = false;
8531 		vcpu->arch.exception.injected = true;
8532 
8533 		can_inject = false;
8534 	}
8535 
8536 	/*
8537 	 * Finally, inject interrupt events.  If an event cannot be injected
8538 	 * due to architectural conditions (e.g. IF=0) a window-open exit
8539 	 * will re-request KVM_REQ_EVENT.  Sometimes however an event is pending
8540 	 * and can architecturally be injected, but we cannot do it right now:
8541 	 * an interrupt could have arrived just now and we have to inject it
8542 	 * as a vmexit, or there could already an event in the queue, which is
8543 	 * indicated by can_inject.  In that case we request an immediate exit
8544 	 * in order to make progress and get back here for another iteration.
8545 	 * The kvm_x86_ops hooks communicate this by returning -EBUSY.
8546 	 */
8547 	if (vcpu->arch.smi_pending) {
8548 		r = can_inject ? kvm_x86_ops.smi_allowed(vcpu, true) : -EBUSY;
8549 		if (r < 0)
8550 			goto busy;
8551 		if (r) {
8552 			vcpu->arch.smi_pending = false;
8553 			++vcpu->arch.smi_count;
8554 			enter_smm(vcpu);
8555 			can_inject = false;
8556 		} else
8557 			kvm_x86_ops.enable_smi_window(vcpu);
8558 	}
8559 
8560 	if (vcpu->arch.nmi_pending) {
8561 		r = can_inject ? kvm_x86_ops.nmi_allowed(vcpu, true) : -EBUSY;
8562 		if (r < 0)
8563 			goto busy;
8564 		if (r) {
8565 			--vcpu->arch.nmi_pending;
8566 			vcpu->arch.nmi_injected = true;
8567 			kvm_x86_ops.set_nmi(vcpu);
8568 			can_inject = false;
8569 			WARN_ON(kvm_x86_ops.nmi_allowed(vcpu, true) < 0);
8570 		}
8571 		if (vcpu->arch.nmi_pending)
8572 			kvm_x86_ops.enable_nmi_window(vcpu);
8573 	}
8574 
8575 	if (kvm_cpu_has_injectable_intr(vcpu)) {
8576 		r = can_inject ? kvm_x86_ops.interrupt_allowed(vcpu, true) : -EBUSY;
8577 		if (r < 0)
8578 			goto busy;
8579 		if (r) {
8580 			kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu), false);
8581 			kvm_x86_ops.set_irq(vcpu);
8582 			WARN_ON(kvm_x86_ops.interrupt_allowed(vcpu, true) < 0);
8583 		}
8584 		if (kvm_cpu_has_injectable_intr(vcpu))
8585 			kvm_x86_ops.enable_irq_window(vcpu);
8586 	}
8587 
8588 	if (is_guest_mode(vcpu) &&
8589 	    kvm_x86_ops.nested_ops->hv_timer_pending &&
8590 	    kvm_x86_ops.nested_ops->hv_timer_pending(vcpu))
8591 		*req_immediate_exit = true;
8592 
8593 	WARN_ON(vcpu->arch.exception.pending);
8594 	return;
8595 
8596 busy:
8597 	*req_immediate_exit = true;
8598 	return;
8599 }
8600 
process_nmi(struct kvm_vcpu * vcpu)8601 static void process_nmi(struct kvm_vcpu *vcpu)
8602 {
8603 	unsigned limit = 2;
8604 
8605 	/*
8606 	 * x86 is limited to one NMI running, and one NMI pending after it.
8607 	 * If an NMI is already in progress, limit further NMIs to just one.
8608 	 * Otherwise, allow two (and we'll inject the first one immediately).
8609 	 */
8610 	if (kvm_x86_ops.get_nmi_mask(vcpu) || vcpu->arch.nmi_injected)
8611 		limit = 1;
8612 
8613 	vcpu->arch.nmi_pending += atomic_xchg(&vcpu->arch.nmi_queued, 0);
8614 	vcpu->arch.nmi_pending = min(vcpu->arch.nmi_pending, limit);
8615 	kvm_make_request(KVM_REQ_EVENT, vcpu);
8616 }
8617 
enter_smm_get_segment_flags(struct kvm_segment * seg)8618 static u32 enter_smm_get_segment_flags(struct kvm_segment *seg)
8619 {
8620 	u32 flags = 0;
8621 	flags |= seg->g       << 23;
8622 	flags |= seg->db      << 22;
8623 	flags |= seg->l       << 21;
8624 	flags |= seg->avl     << 20;
8625 	flags |= seg->present << 15;
8626 	flags |= seg->dpl     << 13;
8627 	flags |= seg->s       << 12;
8628 	flags |= seg->type    << 8;
8629 	return flags;
8630 }
8631 
enter_smm_save_seg_32(struct kvm_vcpu * vcpu,char * buf,int n)8632 static void enter_smm_save_seg_32(struct kvm_vcpu *vcpu, char *buf, int n)
8633 {
8634 	struct kvm_segment seg;
8635 	int offset;
8636 
8637 	kvm_get_segment(vcpu, &seg, n);
8638 	put_smstate(u32, buf, 0x7fa8 + n * 4, seg.selector);
8639 
8640 	if (n < 3)
8641 		offset = 0x7f84 + n * 12;
8642 	else
8643 		offset = 0x7f2c + (n - 3) * 12;
8644 
8645 	put_smstate(u32, buf, offset + 8, seg.base);
8646 	put_smstate(u32, buf, offset + 4, seg.limit);
8647 	put_smstate(u32, buf, offset, enter_smm_get_segment_flags(&seg));
8648 }
8649 
8650 #ifdef CONFIG_X86_64
enter_smm_save_seg_64(struct kvm_vcpu * vcpu,char * buf,int n)8651 static void enter_smm_save_seg_64(struct kvm_vcpu *vcpu, char *buf, int n)
8652 {
8653 	struct kvm_segment seg;
8654 	int offset;
8655 	u16 flags;
8656 
8657 	kvm_get_segment(vcpu, &seg, n);
8658 	offset = 0x7e00 + n * 16;
8659 
8660 	flags = enter_smm_get_segment_flags(&seg) >> 8;
8661 	put_smstate(u16, buf, offset, seg.selector);
8662 	put_smstate(u16, buf, offset + 2, flags);
8663 	put_smstate(u32, buf, offset + 4, seg.limit);
8664 	put_smstate(u64, buf, offset + 8, seg.base);
8665 }
8666 #endif
8667 
enter_smm_save_state_32(struct kvm_vcpu * vcpu,char * buf)8668 static void enter_smm_save_state_32(struct kvm_vcpu *vcpu, char *buf)
8669 {
8670 	struct desc_ptr dt;
8671 	struct kvm_segment seg;
8672 	unsigned long val;
8673 	int i;
8674 
8675 	put_smstate(u32, buf, 0x7ffc, kvm_read_cr0(vcpu));
8676 	put_smstate(u32, buf, 0x7ff8, kvm_read_cr3(vcpu));
8677 	put_smstate(u32, buf, 0x7ff4, kvm_get_rflags(vcpu));
8678 	put_smstate(u32, buf, 0x7ff0, kvm_rip_read(vcpu));
8679 
8680 	for (i = 0; i < 8; i++)
8681 		put_smstate(u32, buf, 0x7fd0 + i * 4, kvm_register_read(vcpu, i));
8682 
8683 	kvm_get_dr(vcpu, 6, &val);
8684 	put_smstate(u32, buf, 0x7fcc, (u32)val);
8685 	kvm_get_dr(vcpu, 7, &val);
8686 	put_smstate(u32, buf, 0x7fc8, (u32)val);
8687 
8688 	kvm_get_segment(vcpu, &seg, VCPU_SREG_TR);
8689 	put_smstate(u32, buf, 0x7fc4, seg.selector);
8690 	put_smstate(u32, buf, 0x7f64, seg.base);
8691 	put_smstate(u32, buf, 0x7f60, seg.limit);
8692 	put_smstate(u32, buf, 0x7f5c, enter_smm_get_segment_flags(&seg));
8693 
8694 	kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR);
8695 	put_smstate(u32, buf, 0x7fc0, seg.selector);
8696 	put_smstate(u32, buf, 0x7f80, seg.base);
8697 	put_smstate(u32, buf, 0x7f7c, seg.limit);
8698 	put_smstate(u32, buf, 0x7f78, enter_smm_get_segment_flags(&seg));
8699 
8700 	kvm_x86_ops.get_gdt(vcpu, &dt);
8701 	put_smstate(u32, buf, 0x7f74, dt.address);
8702 	put_smstate(u32, buf, 0x7f70, dt.size);
8703 
8704 	kvm_x86_ops.get_idt(vcpu, &dt);
8705 	put_smstate(u32, buf, 0x7f58, dt.address);
8706 	put_smstate(u32, buf, 0x7f54, dt.size);
8707 
8708 	for (i = 0; i < 6; i++)
8709 		enter_smm_save_seg_32(vcpu, buf, i);
8710 
8711 	put_smstate(u32, buf, 0x7f14, kvm_read_cr4(vcpu));
8712 
8713 	/* revision id */
8714 	put_smstate(u32, buf, 0x7efc, 0x00020000);
8715 	put_smstate(u32, buf, 0x7ef8, vcpu->arch.smbase);
8716 }
8717 
8718 #ifdef CONFIG_X86_64
enter_smm_save_state_64(struct kvm_vcpu * vcpu,char * buf)8719 static void enter_smm_save_state_64(struct kvm_vcpu *vcpu, char *buf)
8720 {
8721 	struct desc_ptr dt;
8722 	struct kvm_segment seg;
8723 	unsigned long val;
8724 	int i;
8725 
8726 	for (i = 0; i < 16; i++)
8727 		put_smstate(u64, buf, 0x7ff8 - i * 8, kvm_register_read(vcpu, i));
8728 
8729 	put_smstate(u64, buf, 0x7f78, kvm_rip_read(vcpu));
8730 	put_smstate(u32, buf, 0x7f70, kvm_get_rflags(vcpu));
8731 
8732 	kvm_get_dr(vcpu, 6, &val);
8733 	put_smstate(u64, buf, 0x7f68, val);
8734 	kvm_get_dr(vcpu, 7, &val);
8735 	put_smstate(u64, buf, 0x7f60, val);
8736 
8737 	put_smstate(u64, buf, 0x7f58, kvm_read_cr0(vcpu));
8738 	put_smstate(u64, buf, 0x7f50, kvm_read_cr3(vcpu));
8739 	put_smstate(u64, buf, 0x7f48, kvm_read_cr4(vcpu));
8740 
8741 	put_smstate(u32, buf, 0x7f00, vcpu->arch.smbase);
8742 
8743 	/* revision id */
8744 	put_smstate(u32, buf, 0x7efc, 0x00020064);
8745 
8746 	put_smstate(u64, buf, 0x7ed0, vcpu->arch.efer);
8747 
8748 	kvm_get_segment(vcpu, &seg, VCPU_SREG_TR);
8749 	put_smstate(u16, buf, 0x7e90, seg.selector);
8750 	put_smstate(u16, buf, 0x7e92, enter_smm_get_segment_flags(&seg) >> 8);
8751 	put_smstate(u32, buf, 0x7e94, seg.limit);
8752 	put_smstate(u64, buf, 0x7e98, seg.base);
8753 
8754 	kvm_x86_ops.get_idt(vcpu, &dt);
8755 	put_smstate(u32, buf, 0x7e84, dt.size);
8756 	put_smstate(u64, buf, 0x7e88, dt.address);
8757 
8758 	kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR);
8759 	put_smstate(u16, buf, 0x7e70, seg.selector);
8760 	put_smstate(u16, buf, 0x7e72, enter_smm_get_segment_flags(&seg) >> 8);
8761 	put_smstate(u32, buf, 0x7e74, seg.limit);
8762 	put_smstate(u64, buf, 0x7e78, seg.base);
8763 
8764 	kvm_x86_ops.get_gdt(vcpu, &dt);
8765 	put_smstate(u32, buf, 0x7e64, dt.size);
8766 	put_smstate(u64, buf, 0x7e68, dt.address);
8767 
8768 	for (i = 0; i < 6; i++)
8769 		enter_smm_save_seg_64(vcpu, buf, i);
8770 }
8771 #endif
8772 
enter_smm(struct kvm_vcpu * vcpu)8773 static void enter_smm(struct kvm_vcpu *vcpu)
8774 {
8775 	struct kvm_segment cs, ds;
8776 	struct desc_ptr dt;
8777 	char buf[512];
8778 	u32 cr0;
8779 
8780 	trace_kvm_enter_smm(vcpu->vcpu_id, vcpu->arch.smbase, true);
8781 	memset(buf, 0, 512);
8782 #ifdef CONFIG_X86_64
8783 	if (guest_cpuid_has(vcpu, X86_FEATURE_LM))
8784 		enter_smm_save_state_64(vcpu, buf);
8785 	else
8786 #endif
8787 		enter_smm_save_state_32(vcpu, buf);
8788 
8789 	/*
8790 	 * Give pre_enter_smm() a chance to make ISA-specific changes to the
8791 	 * vCPU state (e.g. leave guest mode) after we've saved the state into
8792 	 * the SMM state-save area.
8793 	 */
8794 	kvm_x86_ops.pre_enter_smm(vcpu, buf);
8795 
8796 	vcpu->arch.hflags |= HF_SMM_MASK;
8797 	kvm_vcpu_write_guest(vcpu, vcpu->arch.smbase + 0xfe00, buf, sizeof(buf));
8798 
8799 	if (kvm_x86_ops.get_nmi_mask(vcpu))
8800 		vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
8801 	else
8802 		kvm_x86_ops.set_nmi_mask(vcpu, true);
8803 
8804 	kvm_set_rflags(vcpu, X86_EFLAGS_FIXED);
8805 	kvm_rip_write(vcpu, 0x8000);
8806 
8807 	cr0 = vcpu->arch.cr0 & ~(X86_CR0_PE | X86_CR0_EM | X86_CR0_TS | X86_CR0_PG);
8808 	kvm_x86_ops.set_cr0(vcpu, cr0);
8809 	vcpu->arch.cr0 = cr0;
8810 
8811 	kvm_x86_ops.set_cr4(vcpu, 0);
8812 
8813 	/* Undocumented: IDT limit is set to zero on entry to SMM.  */
8814 	dt.address = dt.size = 0;
8815 	kvm_x86_ops.set_idt(vcpu, &dt);
8816 
8817 	__kvm_set_dr(vcpu, 7, DR7_FIXED_1);
8818 
8819 	cs.selector = (vcpu->arch.smbase >> 4) & 0xffff;
8820 	cs.base = vcpu->arch.smbase;
8821 
8822 	ds.selector = 0;
8823 	ds.base = 0;
8824 
8825 	cs.limit    = ds.limit = 0xffffffff;
8826 	cs.type     = ds.type = 0x3;
8827 	cs.dpl      = ds.dpl = 0;
8828 	cs.db       = ds.db = 0;
8829 	cs.s        = ds.s = 1;
8830 	cs.l        = ds.l = 0;
8831 	cs.g        = ds.g = 1;
8832 	cs.avl      = ds.avl = 0;
8833 	cs.present  = ds.present = 1;
8834 	cs.unusable = ds.unusable = 0;
8835 	cs.padding  = ds.padding = 0;
8836 
8837 	kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
8838 	kvm_set_segment(vcpu, &ds, VCPU_SREG_DS);
8839 	kvm_set_segment(vcpu, &ds, VCPU_SREG_ES);
8840 	kvm_set_segment(vcpu, &ds, VCPU_SREG_FS);
8841 	kvm_set_segment(vcpu, &ds, VCPU_SREG_GS);
8842 	kvm_set_segment(vcpu, &ds, VCPU_SREG_SS);
8843 
8844 #ifdef CONFIG_X86_64
8845 	if (guest_cpuid_has(vcpu, X86_FEATURE_LM))
8846 		kvm_x86_ops.set_efer(vcpu, 0);
8847 #endif
8848 
8849 	kvm_update_cpuid_runtime(vcpu);
8850 	kvm_mmu_reset_context(vcpu);
8851 }
8852 
process_smi(struct kvm_vcpu * vcpu)8853 static void process_smi(struct kvm_vcpu *vcpu)
8854 {
8855 	vcpu->arch.smi_pending = true;
8856 	kvm_make_request(KVM_REQ_EVENT, vcpu);
8857 }
8858 
kvm_make_scan_ioapic_request_mask(struct kvm * kvm,unsigned long * vcpu_bitmap)8859 void kvm_make_scan_ioapic_request_mask(struct kvm *kvm,
8860 				       unsigned long *vcpu_bitmap)
8861 {
8862 	cpumask_var_t cpus;
8863 
8864 	zalloc_cpumask_var(&cpus, GFP_ATOMIC);
8865 
8866 	kvm_make_vcpus_request_mask(kvm, KVM_REQ_SCAN_IOAPIC,
8867 				    NULL, vcpu_bitmap, cpus);
8868 
8869 	free_cpumask_var(cpus);
8870 }
8871 
kvm_make_scan_ioapic_request(struct kvm * kvm)8872 void kvm_make_scan_ioapic_request(struct kvm *kvm)
8873 {
8874 	kvm_make_all_cpus_request(kvm, KVM_REQ_SCAN_IOAPIC);
8875 }
8876 
kvm_vcpu_update_apicv(struct kvm_vcpu * vcpu)8877 void kvm_vcpu_update_apicv(struct kvm_vcpu *vcpu)
8878 {
8879 	if (!lapic_in_kernel(vcpu))
8880 		return;
8881 
8882 	vcpu->arch.apicv_active = kvm_apicv_activated(vcpu->kvm);
8883 	kvm_apic_update_apicv(vcpu);
8884 	kvm_x86_ops.refresh_apicv_exec_ctrl(vcpu);
8885 }
8886 EXPORT_SYMBOL_GPL(kvm_vcpu_update_apicv);
8887 
8888 /*
8889  * NOTE: Do not hold any lock prior to calling this.
8890  *
8891  * In particular, kvm_request_apicv_update() expects kvm->srcu not to be
8892  * locked, because it calls __x86_set_memory_region() which does
8893  * synchronize_srcu(&kvm->srcu).
8894  */
kvm_request_apicv_update(struct kvm * kvm,bool activate,ulong bit)8895 void kvm_request_apicv_update(struct kvm *kvm, bool activate, ulong bit)
8896 {
8897 	struct kvm_vcpu *except;
8898 	unsigned long old, new, expected;
8899 
8900 	if (!kvm_x86_ops.check_apicv_inhibit_reasons ||
8901 	    !kvm_x86_ops.check_apicv_inhibit_reasons(bit))
8902 		return;
8903 
8904 	old = READ_ONCE(kvm->arch.apicv_inhibit_reasons);
8905 	do {
8906 		expected = new = old;
8907 		if (activate)
8908 			__clear_bit(bit, &new);
8909 		else
8910 			__set_bit(bit, &new);
8911 		if (new == old)
8912 			break;
8913 		old = cmpxchg(&kvm->arch.apicv_inhibit_reasons, expected, new);
8914 	} while (old != expected);
8915 
8916 	if (!!old == !!new)
8917 		return;
8918 
8919 	trace_kvm_apicv_update_request(activate, bit);
8920 	if (kvm_x86_ops.pre_update_apicv_exec_ctrl)
8921 		kvm_x86_ops.pre_update_apicv_exec_ctrl(kvm, activate);
8922 
8923 	/*
8924 	 * Sending request to update APICV for all other vcpus,
8925 	 * while update the calling vcpu immediately instead of
8926 	 * waiting for another #VMEXIT to handle the request.
8927 	 */
8928 	except = kvm_get_running_vcpu();
8929 	kvm_make_all_cpus_request_except(kvm, KVM_REQ_APICV_UPDATE,
8930 					 except);
8931 	if (except)
8932 		kvm_vcpu_update_apicv(except);
8933 }
8934 EXPORT_SYMBOL_GPL(kvm_request_apicv_update);
8935 
vcpu_scan_ioapic(struct kvm_vcpu * vcpu)8936 static void vcpu_scan_ioapic(struct kvm_vcpu *vcpu)
8937 {
8938 	if (!kvm_apic_present(vcpu))
8939 		return;
8940 
8941 	bitmap_zero(vcpu->arch.ioapic_handled_vectors, 256);
8942 
8943 	if (irqchip_split(vcpu->kvm))
8944 		kvm_scan_ioapic_routes(vcpu, vcpu->arch.ioapic_handled_vectors);
8945 	else {
8946 		if (vcpu->arch.apicv_active)
8947 			kvm_x86_ops.sync_pir_to_irr(vcpu);
8948 		if (ioapic_in_kernel(vcpu->kvm))
8949 			kvm_ioapic_scan_entry(vcpu, vcpu->arch.ioapic_handled_vectors);
8950 	}
8951 
8952 	if (is_guest_mode(vcpu))
8953 		vcpu->arch.load_eoi_exitmap_pending = true;
8954 	else
8955 		kvm_make_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu);
8956 }
8957 
vcpu_load_eoi_exitmap(struct kvm_vcpu * vcpu)8958 static void vcpu_load_eoi_exitmap(struct kvm_vcpu *vcpu)
8959 {
8960 	u64 eoi_exit_bitmap[4];
8961 
8962 	if (!kvm_apic_hw_enabled(vcpu->arch.apic))
8963 		return;
8964 
8965 	bitmap_or((ulong *)eoi_exit_bitmap, vcpu->arch.ioapic_handled_vectors,
8966 		  vcpu_to_synic(vcpu)->vec_bitmap, 256);
8967 	kvm_x86_ops.load_eoi_exitmap(vcpu, eoi_exit_bitmap);
8968 }
8969 
kvm_arch_mmu_notifier_invalidate_range(struct kvm * kvm,unsigned long start,unsigned long end)8970 void kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm,
8971 					    unsigned long start, unsigned long end)
8972 {
8973 	unsigned long apic_address;
8974 
8975 	/*
8976 	 * The physical address of apic access page is stored in the VMCS.
8977 	 * Update it when it becomes invalid.
8978 	 */
8979 	apic_address = gfn_to_hva(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
8980 	if (start <= apic_address && apic_address < end)
8981 		kvm_make_all_cpus_request(kvm, KVM_REQ_APIC_PAGE_RELOAD);
8982 }
8983 
kvm_arch_guest_memory_reclaimed(struct kvm * kvm)8984 void kvm_arch_guest_memory_reclaimed(struct kvm *kvm)
8985 {
8986 	if (kvm_x86_ops.guest_memory_reclaimed)
8987 		kvm_x86_ops.guest_memory_reclaimed(kvm);
8988 }
8989 
kvm_vcpu_reload_apic_access_page(struct kvm_vcpu * vcpu)8990 void kvm_vcpu_reload_apic_access_page(struct kvm_vcpu *vcpu)
8991 {
8992 	if (!lapic_in_kernel(vcpu))
8993 		return;
8994 
8995 	if (!kvm_x86_ops.set_apic_access_page_addr)
8996 		return;
8997 
8998 	kvm_x86_ops.set_apic_access_page_addr(vcpu);
8999 }
9000 
__kvm_request_immediate_exit(struct kvm_vcpu * vcpu)9001 void __kvm_request_immediate_exit(struct kvm_vcpu *vcpu)
9002 {
9003 	smp_send_reschedule(vcpu->cpu);
9004 }
9005 EXPORT_SYMBOL_GPL(__kvm_request_immediate_exit);
9006 
9007 /*
9008  * Returns 1 to let vcpu_run() continue the guest execution loop without
9009  * exiting to the userspace.  Otherwise, the value will be returned to the
9010  * userspace.
9011  */
vcpu_enter_guest(struct kvm_vcpu * vcpu)9012 static int vcpu_enter_guest(struct kvm_vcpu *vcpu)
9013 {
9014 	int r;
9015 	bool req_int_win =
9016 		dm_request_for_irq_injection(vcpu) &&
9017 		kvm_cpu_accept_dm_intr(vcpu);
9018 	fastpath_t exit_fastpath;
9019 
9020 	bool req_immediate_exit = false;
9021 
9022 	if (kvm_request_pending(vcpu)) {
9023 		if (kvm_check_request(KVM_REQ_GET_NESTED_STATE_PAGES, vcpu)) {
9024 			if (unlikely(!kvm_x86_ops.nested_ops->get_nested_state_pages(vcpu))) {
9025 				r = 0;
9026 				goto out;
9027 			}
9028 		}
9029 		if (kvm_check_request(KVM_REQ_MMU_RELOAD, vcpu))
9030 			kvm_mmu_unload(vcpu);
9031 		if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu))
9032 			__kvm_migrate_timers(vcpu);
9033 		if (kvm_check_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu))
9034 			kvm_gen_update_masterclock(vcpu->kvm);
9035 		if (kvm_check_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu))
9036 			kvm_gen_kvmclock_update(vcpu);
9037 		if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) {
9038 			r = kvm_guest_time_update(vcpu);
9039 			if (unlikely(r))
9040 				goto out;
9041 		}
9042 		if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu))
9043 			kvm_mmu_sync_roots(vcpu);
9044 		if (kvm_check_request(KVM_REQ_LOAD_MMU_PGD, vcpu))
9045 			kvm_mmu_load_pgd(vcpu);
9046 		if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu)) {
9047 			kvm_vcpu_flush_tlb_all(vcpu);
9048 
9049 			/* Flushing all ASIDs flushes the current ASID... */
9050 			kvm_clear_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
9051 		}
9052 		if (kvm_check_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu))
9053 			kvm_vcpu_flush_tlb_current(vcpu);
9054 		if (kvm_check_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu))
9055 			kvm_vcpu_flush_tlb_guest(vcpu);
9056 
9057 		if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) {
9058 			vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS;
9059 			r = 0;
9060 			goto out;
9061 		}
9062 		if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
9063 			vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
9064 			vcpu->mmio_needed = 0;
9065 			r = 0;
9066 			goto out;
9067 		}
9068 		if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) {
9069 			/* Page is swapped out. Do synthetic halt */
9070 			vcpu->arch.apf.halted = true;
9071 			r = 1;
9072 			goto out;
9073 		}
9074 		if (kvm_check_request(KVM_REQ_STEAL_UPDATE, vcpu))
9075 			record_steal_time(vcpu);
9076 		if (kvm_check_request(KVM_REQ_SMI, vcpu))
9077 			process_smi(vcpu);
9078 		if (kvm_check_request(KVM_REQ_NMI, vcpu))
9079 			process_nmi(vcpu);
9080 		if (kvm_check_request(KVM_REQ_PMU, vcpu))
9081 			kvm_pmu_handle_event(vcpu);
9082 		if (kvm_check_request(KVM_REQ_PMI, vcpu))
9083 			kvm_pmu_deliver_pmi(vcpu);
9084 		if (kvm_check_request(KVM_REQ_IOAPIC_EOI_EXIT, vcpu)) {
9085 			BUG_ON(vcpu->arch.pending_ioapic_eoi > 255);
9086 			if (test_bit(vcpu->arch.pending_ioapic_eoi,
9087 				     vcpu->arch.ioapic_handled_vectors)) {
9088 				vcpu->run->exit_reason = KVM_EXIT_IOAPIC_EOI;
9089 				vcpu->run->eoi.vector =
9090 						vcpu->arch.pending_ioapic_eoi;
9091 				r = 0;
9092 				goto out;
9093 			}
9094 		}
9095 		if (kvm_check_request(KVM_REQ_SCAN_IOAPIC, vcpu))
9096 			vcpu_scan_ioapic(vcpu);
9097 		if (kvm_check_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu))
9098 			vcpu_load_eoi_exitmap(vcpu);
9099 		if (kvm_check_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu))
9100 			kvm_vcpu_reload_apic_access_page(vcpu);
9101 		if (kvm_check_request(KVM_REQ_HV_CRASH, vcpu)) {
9102 			vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
9103 			vcpu->run->system_event.type = KVM_SYSTEM_EVENT_CRASH;
9104 			r = 0;
9105 			goto out;
9106 		}
9107 		if (kvm_check_request(KVM_REQ_HV_RESET, vcpu)) {
9108 			vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
9109 			vcpu->run->system_event.type = KVM_SYSTEM_EVENT_RESET;
9110 			r = 0;
9111 			goto out;
9112 		}
9113 		if (kvm_check_request(KVM_REQ_HV_EXIT, vcpu)) {
9114 			vcpu->run->exit_reason = KVM_EXIT_HYPERV;
9115 			vcpu->run->hyperv = vcpu->arch.hyperv.exit;
9116 			r = 0;
9117 			goto out;
9118 		}
9119 
9120 		/*
9121 		 * KVM_REQ_HV_STIMER has to be processed after
9122 		 * KVM_REQ_CLOCK_UPDATE, because Hyper-V SynIC timers
9123 		 * depend on the guest clock being up-to-date
9124 		 */
9125 		if (kvm_check_request(KVM_REQ_HV_STIMER, vcpu))
9126 			kvm_hv_process_stimers(vcpu);
9127 		if (kvm_check_request(KVM_REQ_APICV_UPDATE, vcpu))
9128 			kvm_vcpu_update_apicv(vcpu);
9129 		if (kvm_check_request(KVM_REQ_APF_READY, vcpu))
9130 			kvm_check_async_pf_completion(vcpu);
9131 		if (kvm_check_request(KVM_REQ_MSR_FILTER_CHANGED, vcpu))
9132 			kvm_x86_ops.msr_filter_changed(vcpu);
9133 	}
9134 
9135 	if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win) {
9136 		++vcpu->stat.req_event;
9137 		kvm_apic_accept_events(vcpu);
9138 		if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) {
9139 			r = 1;
9140 			goto out;
9141 		}
9142 
9143 		inject_pending_event(vcpu, &req_immediate_exit);
9144 		if (req_int_win)
9145 			kvm_x86_ops.enable_irq_window(vcpu);
9146 
9147 		if (kvm_lapic_enabled(vcpu)) {
9148 			update_cr8_intercept(vcpu);
9149 			kvm_lapic_sync_to_vapic(vcpu);
9150 		}
9151 	}
9152 
9153 	r = kvm_mmu_reload(vcpu);
9154 	if (unlikely(r)) {
9155 		goto cancel_injection;
9156 	}
9157 
9158 	preempt_disable();
9159 
9160 	kvm_x86_ops.prepare_guest_switch(vcpu);
9161 
9162 	/*
9163 	 * Disable IRQs before setting IN_GUEST_MODE.  Posted interrupt
9164 	 * IPI are then delayed after guest entry, which ensures that they
9165 	 * result in virtual interrupt delivery.
9166 	 */
9167 	local_irq_disable();
9168 	vcpu->mode = IN_GUEST_MODE;
9169 
9170 	srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
9171 
9172 	/*
9173 	 * 1) We should set ->mode before checking ->requests.  Please see
9174 	 * the comment in kvm_vcpu_exiting_guest_mode().
9175 	 *
9176 	 * 2) For APICv, we should set ->mode before checking PID.ON. This
9177 	 * pairs with the memory barrier implicit in pi_test_and_set_on
9178 	 * (see vmx_deliver_posted_interrupt).
9179 	 *
9180 	 * 3) This also orders the write to mode from any reads to the page
9181 	 * tables done while the VCPU is running.  Please see the comment
9182 	 * in kvm_flush_remote_tlbs.
9183 	 */
9184 	smp_mb__after_srcu_read_unlock();
9185 
9186 	/*
9187 	 * This handles the case where a posted interrupt was
9188 	 * notified with kvm_vcpu_kick.
9189 	 */
9190 	if (kvm_lapic_enabled(vcpu) && vcpu->arch.apicv_active)
9191 		kvm_x86_ops.sync_pir_to_irr(vcpu);
9192 
9193 	if (kvm_vcpu_exit_request(vcpu)) {
9194 		vcpu->mode = OUTSIDE_GUEST_MODE;
9195 		smp_wmb();
9196 		local_irq_enable();
9197 		preempt_enable();
9198 		vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
9199 		r = 1;
9200 		goto cancel_injection;
9201 	}
9202 
9203 	if (req_immediate_exit) {
9204 		kvm_make_request(KVM_REQ_EVENT, vcpu);
9205 		kvm_x86_ops.request_immediate_exit(vcpu);
9206 	}
9207 
9208 	trace_kvm_entry(vcpu);
9209 
9210 	fpregs_assert_state_consistent();
9211 	if (test_thread_flag(TIF_NEED_FPU_LOAD))
9212 		switch_fpu_return();
9213 
9214 	if (unlikely(vcpu->arch.switch_db_regs)) {
9215 		set_debugreg(0, 7);
9216 		set_debugreg(vcpu->arch.eff_db[0], 0);
9217 		set_debugreg(vcpu->arch.eff_db[1], 1);
9218 		set_debugreg(vcpu->arch.eff_db[2], 2);
9219 		set_debugreg(vcpu->arch.eff_db[3], 3);
9220 		set_debugreg(vcpu->arch.dr6, 6);
9221 		vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_RELOAD;
9222 	} else if (unlikely(hw_breakpoint_active())) {
9223 		set_debugreg(0, 7);
9224 	}
9225 
9226 	exit_fastpath = kvm_x86_ops.run(vcpu);
9227 
9228 	/*
9229 	 * Do this here before restoring debug registers on the host.  And
9230 	 * since we do this before handling the vmexit, a DR access vmexit
9231 	 * can (a) read the correct value of the debug registers, (b) set
9232 	 * KVM_DEBUGREG_WONT_EXIT again.
9233 	 */
9234 	if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)) {
9235 		WARN_ON(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP);
9236 		kvm_x86_ops.sync_dirty_debug_regs(vcpu);
9237 		kvm_update_dr0123(vcpu);
9238 		kvm_update_dr7(vcpu);
9239 		vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_RELOAD;
9240 	}
9241 
9242 	/*
9243 	 * If the guest has used debug registers, at least dr7
9244 	 * will be disabled while returning to the host.
9245 	 * If we don't have active breakpoints in the host, we don't
9246 	 * care about the messed up debug address registers. But if
9247 	 * we have some of them active, restore the old state.
9248 	 */
9249 	if (hw_breakpoint_active())
9250 		hw_breakpoint_restore();
9251 
9252 	vcpu->arch.last_vmentry_cpu = vcpu->cpu;
9253 	vcpu->arch.last_guest_tsc = kvm_read_l1_tsc(vcpu, rdtsc());
9254 
9255 	vcpu->mode = OUTSIDE_GUEST_MODE;
9256 	smp_wmb();
9257 
9258 	kvm_x86_ops.handle_exit_irqoff(vcpu);
9259 
9260 	/*
9261 	 * Consume any pending interrupts, including the possible source of
9262 	 * VM-Exit on SVM and any ticks that occur between VM-Exit and now.
9263 	 * An instruction is required after local_irq_enable() to fully unblock
9264 	 * interrupts on processors that implement an interrupt shadow, the
9265 	 * stat.exits increment will do nicely.
9266 	 */
9267 	kvm_before_interrupt(vcpu);
9268 	local_irq_enable();
9269 	++vcpu->stat.exits;
9270 	local_irq_disable();
9271 	kvm_after_interrupt(vcpu);
9272 
9273 	/*
9274 	 * Wait until after servicing IRQs to account guest time so that any
9275 	 * ticks that occurred while running the guest are properly accounted
9276 	 * to the guest.  Waiting until IRQs are enabled degrades the accuracy
9277 	 * of accounting via context tracking, but the loss of accuracy is
9278 	 * acceptable for all known use cases.
9279 	 */
9280 	vtime_account_guest_exit();
9281 
9282 	if (lapic_in_kernel(vcpu)) {
9283 		s64 delta = vcpu->arch.apic->lapic_timer.advance_expire_delta;
9284 		if (delta != S64_MIN) {
9285 			trace_kvm_wait_lapic_expire(vcpu->vcpu_id, delta);
9286 			vcpu->arch.apic->lapic_timer.advance_expire_delta = S64_MIN;
9287 		}
9288 	}
9289 
9290 	local_irq_enable();
9291 	preempt_enable();
9292 
9293 	vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
9294 
9295 	/*
9296 	 * Profile KVM exit RIPs:
9297 	 */
9298 	if (unlikely(prof_on == KVM_PROFILING)) {
9299 		unsigned long rip = kvm_rip_read(vcpu);
9300 		profile_hit(KVM_PROFILING, (void *)rip);
9301 	}
9302 
9303 	if (unlikely(vcpu->arch.tsc_always_catchup))
9304 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
9305 
9306 	if (vcpu->arch.apic_attention)
9307 		kvm_lapic_sync_from_vapic(vcpu);
9308 
9309 	r = kvm_x86_ops.handle_exit(vcpu, exit_fastpath);
9310 	return r;
9311 
9312 cancel_injection:
9313 	if (req_immediate_exit)
9314 		kvm_make_request(KVM_REQ_EVENT, vcpu);
9315 	kvm_x86_ops.cancel_injection(vcpu);
9316 	if (unlikely(vcpu->arch.apic_attention))
9317 		kvm_lapic_sync_from_vapic(vcpu);
9318 out:
9319 	return r;
9320 }
9321 
vcpu_block(struct kvm * kvm,struct kvm_vcpu * vcpu)9322 static inline int vcpu_block(struct kvm *kvm, struct kvm_vcpu *vcpu)
9323 {
9324 	if (!kvm_arch_vcpu_runnable(vcpu) &&
9325 	    (!kvm_x86_ops.pre_block || kvm_x86_ops.pre_block(vcpu) == 0)) {
9326 		srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
9327 		kvm_vcpu_block(vcpu);
9328 		vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
9329 
9330 		if (kvm_x86_ops.post_block)
9331 			kvm_x86_ops.post_block(vcpu);
9332 
9333 		if (!kvm_check_request(KVM_REQ_UNHALT, vcpu))
9334 			return 1;
9335 	}
9336 
9337 	kvm_apic_accept_events(vcpu);
9338 	switch(vcpu->arch.mp_state) {
9339 	case KVM_MP_STATE_HALTED:
9340 		vcpu->arch.pv.pv_unhalted = false;
9341 		vcpu->arch.mp_state =
9342 			KVM_MP_STATE_RUNNABLE;
9343 		fallthrough;
9344 	case KVM_MP_STATE_RUNNABLE:
9345 		vcpu->arch.apf.halted = false;
9346 		break;
9347 	case KVM_MP_STATE_INIT_RECEIVED:
9348 		break;
9349 	default:
9350 		return -EINTR;
9351 	}
9352 	return 1;
9353 }
9354 
kvm_vcpu_running(struct kvm_vcpu * vcpu)9355 static inline bool kvm_vcpu_running(struct kvm_vcpu *vcpu)
9356 {
9357 	if (is_guest_mode(vcpu))
9358 		kvm_x86_ops.nested_ops->check_events(vcpu);
9359 
9360 	return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
9361 		!vcpu->arch.apf.halted);
9362 }
9363 
vcpu_run(struct kvm_vcpu * vcpu)9364 static int vcpu_run(struct kvm_vcpu *vcpu)
9365 {
9366 	int r;
9367 	struct kvm *kvm = vcpu->kvm;
9368 
9369 	vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
9370 	vcpu->arch.l1tf_flush_l1d = true;
9371 
9372 	for (;;) {
9373 		/*
9374 		 * If another guest vCPU requests a PV TLB flush in the middle
9375 		 * of instruction emulation, the rest of the emulation could
9376 		 * use a stale page translation. Assume that any code after
9377 		 * this point can start executing an instruction.
9378 		 */
9379 		vcpu->arch.at_instruction_boundary = false;
9380 		if (kvm_vcpu_running(vcpu)) {
9381 			r = vcpu_enter_guest(vcpu);
9382 		} else {
9383 			r = vcpu_block(kvm, vcpu);
9384 		}
9385 
9386 		if (r <= 0)
9387 			break;
9388 
9389 		kvm_clear_request(KVM_REQ_PENDING_TIMER, vcpu);
9390 		if (kvm_cpu_has_pending_timer(vcpu))
9391 			kvm_inject_pending_timer_irqs(vcpu);
9392 
9393 		if (dm_request_for_irq_injection(vcpu) &&
9394 			kvm_vcpu_ready_for_interrupt_injection(vcpu)) {
9395 			r = 0;
9396 			vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
9397 			++vcpu->stat.request_irq_exits;
9398 			break;
9399 		}
9400 
9401 		if (__xfer_to_guest_mode_work_pending()) {
9402 			srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
9403 			r = xfer_to_guest_mode_handle_work(vcpu);
9404 			if (r)
9405 				return r;
9406 			vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
9407 		}
9408 	}
9409 
9410 	srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
9411 
9412 	return r;
9413 }
9414 
complete_emulated_io(struct kvm_vcpu * vcpu)9415 static inline int complete_emulated_io(struct kvm_vcpu *vcpu)
9416 {
9417 	int r;
9418 
9419 	vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
9420 	r = kvm_emulate_instruction(vcpu, EMULTYPE_NO_DECODE);
9421 	srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
9422 	return r;
9423 }
9424 
complete_emulated_pio(struct kvm_vcpu * vcpu)9425 static int complete_emulated_pio(struct kvm_vcpu *vcpu)
9426 {
9427 	BUG_ON(!vcpu->arch.pio.count);
9428 
9429 	return complete_emulated_io(vcpu);
9430 }
9431 
9432 /*
9433  * Implements the following, as a state machine:
9434  *
9435  * read:
9436  *   for each fragment
9437  *     for each mmio piece in the fragment
9438  *       write gpa, len
9439  *       exit
9440  *       copy data
9441  *   execute insn
9442  *
9443  * write:
9444  *   for each fragment
9445  *     for each mmio piece in the fragment
9446  *       write gpa, len
9447  *       copy data
9448  *       exit
9449  */
complete_emulated_mmio(struct kvm_vcpu * vcpu)9450 static int complete_emulated_mmio(struct kvm_vcpu *vcpu)
9451 {
9452 	struct kvm_run *run = vcpu->run;
9453 	struct kvm_mmio_fragment *frag;
9454 	unsigned len;
9455 
9456 	BUG_ON(!vcpu->mmio_needed);
9457 
9458 	/* Complete previous fragment */
9459 	frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment];
9460 	len = min(8u, frag->len);
9461 	if (!vcpu->mmio_is_write)
9462 		memcpy(frag->data, run->mmio.data, len);
9463 
9464 	if (frag->len <= 8) {
9465 		/* Switch to the next fragment. */
9466 		frag++;
9467 		vcpu->mmio_cur_fragment++;
9468 	} else {
9469 		/* Go forward to the next mmio piece. */
9470 		frag->data += len;
9471 		frag->gpa += len;
9472 		frag->len -= len;
9473 	}
9474 
9475 	if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) {
9476 		vcpu->mmio_needed = 0;
9477 
9478 		/* FIXME: return into emulator if single-stepping.  */
9479 		if (vcpu->mmio_is_write)
9480 			return 1;
9481 		vcpu->mmio_read_completed = 1;
9482 		return complete_emulated_io(vcpu);
9483 	}
9484 
9485 	run->exit_reason = KVM_EXIT_MMIO;
9486 	run->mmio.phys_addr = frag->gpa;
9487 	if (vcpu->mmio_is_write)
9488 		memcpy(run->mmio.data, frag->data, min(8u, frag->len));
9489 	run->mmio.len = min(8u, frag->len);
9490 	run->mmio.is_write = vcpu->mmio_is_write;
9491 	vcpu->arch.complete_userspace_io = complete_emulated_mmio;
9492 	return 0;
9493 }
9494 
kvm_save_current_fpu(struct fpu * fpu)9495 static void kvm_save_current_fpu(struct fpu *fpu)
9496 {
9497 	/*
9498 	 * If the target FPU state is not resident in the CPU registers, just
9499 	 * memcpy() from current, else save CPU state directly to the target.
9500 	 */
9501 	if (test_thread_flag(TIF_NEED_FPU_LOAD))
9502 		memcpy(&fpu->state, &current->thread.fpu.state,
9503 		       fpu_kernel_xstate_size);
9504 	else
9505 		copy_fpregs_to_fpstate(fpu);
9506 }
9507 
9508 /* Swap (qemu) user FPU context for the guest FPU context. */
kvm_load_guest_fpu(struct kvm_vcpu * vcpu)9509 static void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
9510 {
9511 	fpregs_lock();
9512 
9513 	kvm_save_current_fpu(vcpu->arch.user_fpu);
9514 
9515 	/* PKRU is separately restored in kvm_x86_ops.run.  */
9516 	__copy_kernel_to_fpregs(&vcpu->arch.guest_fpu->state,
9517 				~XFEATURE_MASK_PKRU);
9518 
9519 	fpregs_mark_activate();
9520 	fpregs_unlock();
9521 
9522 	trace_kvm_fpu(1);
9523 }
9524 
9525 /* When vcpu_run ends, restore user space FPU context. */
kvm_put_guest_fpu(struct kvm_vcpu * vcpu)9526 static void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
9527 {
9528 	fpregs_lock();
9529 
9530 	kvm_save_current_fpu(vcpu->arch.guest_fpu);
9531 
9532 	copy_kernel_to_fpregs(&vcpu->arch.user_fpu->state);
9533 
9534 	fpregs_mark_activate();
9535 	fpregs_unlock();
9536 
9537 	++vcpu->stat.fpu_reload;
9538 	trace_kvm_fpu(0);
9539 }
9540 
kvm_arch_vcpu_ioctl_run(struct kvm_vcpu * vcpu)9541 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu)
9542 {
9543 	struct kvm_run *kvm_run = vcpu->run;
9544 	int r;
9545 
9546 	vcpu_load(vcpu);
9547 	kvm_sigset_activate(vcpu);
9548 	kvm_load_guest_fpu(vcpu);
9549 
9550 	if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
9551 		if (kvm_run->immediate_exit) {
9552 			r = -EINTR;
9553 			goto out;
9554 		}
9555 		kvm_vcpu_block(vcpu);
9556 		kvm_apic_accept_events(vcpu);
9557 		kvm_clear_request(KVM_REQ_UNHALT, vcpu);
9558 		r = -EAGAIN;
9559 		if (signal_pending(current)) {
9560 			r = -EINTR;
9561 			kvm_run->exit_reason = KVM_EXIT_INTR;
9562 			++vcpu->stat.signal_exits;
9563 		}
9564 		goto out;
9565 	}
9566 
9567 	if (kvm_run->kvm_valid_regs & ~KVM_SYNC_X86_VALID_FIELDS) {
9568 		r = -EINVAL;
9569 		goto out;
9570 	}
9571 
9572 	if (kvm_run->kvm_dirty_regs) {
9573 		r = sync_regs(vcpu);
9574 		if (r != 0)
9575 			goto out;
9576 	}
9577 
9578 	/* re-sync apic's tpr */
9579 	if (!lapic_in_kernel(vcpu)) {
9580 		if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) {
9581 			r = -EINVAL;
9582 			goto out;
9583 		}
9584 	}
9585 
9586 	if (unlikely(vcpu->arch.complete_userspace_io)) {
9587 		int (*cui)(struct kvm_vcpu *) = vcpu->arch.complete_userspace_io;
9588 		vcpu->arch.complete_userspace_io = NULL;
9589 		r = cui(vcpu);
9590 		if (r <= 0)
9591 			goto out;
9592 	} else
9593 		WARN_ON(vcpu->arch.pio.count || vcpu->mmio_needed);
9594 
9595 	if (kvm_run->immediate_exit)
9596 		r = -EINTR;
9597 	else
9598 		r = vcpu_run(vcpu);
9599 
9600 out:
9601 	kvm_put_guest_fpu(vcpu);
9602 	if (kvm_run->kvm_valid_regs)
9603 		store_regs(vcpu);
9604 	post_kvm_run_save(vcpu);
9605 	kvm_sigset_deactivate(vcpu);
9606 
9607 	vcpu_put(vcpu);
9608 	return r;
9609 }
9610 
__get_regs(struct kvm_vcpu * vcpu,struct kvm_regs * regs)9611 static void __get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
9612 {
9613 	if (vcpu->arch.emulate_regs_need_sync_to_vcpu) {
9614 		/*
9615 		 * We are here if userspace calls get_regs() in the middle of
9616 		 * instruction emulation. Registers state needs to be copied
9617 		 * back from emulation context to vcpu. Userspace shouldn't do
9618 		 * that usually, but some bad designed PV devices (vmware
9619 		 * backdoor interface) need this to work
9620 		 */
9621 		emulator_writeback_register_cache(vcpu->arch.emulate_ctxt);
9622 		vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
9623 	}
9624 	regs->rax = kvm_rax_read(vcpu);
9625 	regs->rbx = kvm_rbx_read(vcpu);
9626 	regs->rcx = kvm_rcx_read(vcpu);
9627 	regs->rdx = kvm_rdx_read(vcpu);
9628 	regs->rsi = kvm_rsi_read(vcpu);
9629 	regs->rdi = kvm_rdi_read(vcpu);
9630 	regs->rsp = kvm_rsp_read(vcpu);
9631 	regs->rbp = kvm_rbp_read(vcpu);
9632 #ifdef CONFIG_X86_64
9633 	regs->r8 = kvm_r8_read(vcpu);
9634 	regs->r9 = kvm_r9_read(vcpu);
9635 	regs->r10 = kvm_r10_read(vcpu);
9636 	regs->r11 = kvm_r11_read(vcpu);
9637 	regs->r12 = kvm_r12_read(vcpu);
9638 	regs->r13 = kvm_r13_read(vcpu);
9639 	regs->r14 = kvm_r14_read(vcpu);
9640 	regs->r15 = kvm_r15_read(vcpu);
9641 #endif
9642 
9643 	regs->rip = kvm_rip_read(vcpu);
9644 	regs->rflags = kvm_get_rflags(vcpu);
9645 }
9646 
kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu * vcpu,struct kvm_regs * regs)9647 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
9648 {
9649 	vcpu_load(vcpu);
9650 	__get_regs(vcpu, regs);
9651 	vcpu_put(vcpu);
9652 	return 0;
9653 }
9654 
__set_regs(struct kvm_vcpu * vcpu,struct kvm_regs * regs)9655 static void __set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
9656 {
9657 	vcpu->arch.emulate_regs_need_sync_from_vcpu = true;
9658 	vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
9659 
9660 	kvm_rax_write(vcpu, regs->rax);
9661 	kvm_rbx_write(vcpu, regs->rbx);
9662 	kvm_rcx_write(vcpu, regs->rcx);
9663 	kvm_rdx_write(vcpu, regs->rdx);
9664 	kvm_rsi_write(vcpu, regs->rsi);
9665 	kvm_rdi_write(vcpu, regs->rdi);
9666 	kvm_rsp_write(vcpu, regs->rsp);
9667 	kvm_rbp_write(vcpu, regs->rbp);
9668 #ifdef CONFIG_X86_64
9669 	kvm_r8_write(vcpu, regs->r8);
9670 	kvm_r9_write(vcpu, regs->r9);
9671 	kvm_r10_write(vcpu, regs->r10);
9672 	kvm_r11_write(vcpu, regs->r11);
9673 	kvm_r12_write(vcpu, regs->r12);
9674 	kvm_r13_write(vcpu, regs->r13);
9675 	kvm_r14_write(vcpu, regs->r14);
9676 	kvm_r15_write(vcpu, regs->r15);
9677 #endif
9678 
9679 	kvm_rip_write(vcpu, regs->rip);
9680 	kvm_set_rflags(vcpu, regs->rflags | X86_EFLAGS_FIXED);
9681 
9682 	vcpu->arch.exception.pending = false;
9683 
9684 	kvm_make_request(KVM_REQ_EVENT, vcpu);
9685 }
9686 
kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu * vcpu,struct kvm_regs * regs)9687 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
9688 {
9689 	vcpu_load(vcpu);
9690 	__set_regs(vcpu, regs);
9691 	vcpu_put(vcpu);
9692 	return 0;
9693 }
9694 
kvm_get_cs_db_l_bits(struct kvm_vcpu * vcpu,int * db,int * l)9695 void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
9696 {
9697 	struct kvm_segment cs;
9698 
9699 	kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
9700 	*db = cs.db;
9701 	*l = cs.l;
9702 }
9703 EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
9704 
__get_sregs(struct kvm_vcpu * vcpu,struct kvm_sregs * sregs)9705 static void __get_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
9706 {
9707 	struct desc_ptr dt;
9708 
9709 	kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
9710 	kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
9711 	kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
9712 	kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
9713 	kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
9714 	kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
9715 
9716 	kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
9717 	kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
9718 
9719 	kvm_x86_ops.get_idt(vcpu, &dt);
9720 	sregs->idt.limit = dt.size;
9721 	sregs->idt.base = dt.address;
9722 	kvm_x86_ops.get_gdt(vcpu, &dt);
9723 	sregs->gdt.limit = dt.size;
9724 	sregs->gdt.base = dt.address;
9725 
9726 	sregs->cr0 = kvm_read_cr0(vcpu);
9727 	sregs->cr2 = vcpu->arch.cr2;
9728 	sregs->cr3 = kvm_read_cr3(vcpu);
9729 	sregs->cr4 = kvm_read_cr4(vcpu);
9730 	sregs->cr8 = kvm_get_cr8(vcpu);
9731 	sregs->efer = vcpu->arch.efer;
9732 	sregs->apic_base = kvm_get_apic_base(vcpu);
9733 
9734 	memset(sregs->interrupt_bitmap, 0, sizeof(sregs->interrupt_bitmap));
9735 
9736 	if (vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft)
9737 		set_bit(vcpu->arch.interrupt.nr,
9738 			(unsigned long *)sregs->interrupt_bitmap);
9739 }
9740 
kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu * vcpu,struct kvm_sregs * sregs)9741 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
9742 				  struct kvm_sregs *sregs)
9743 {
9744 	vcpu_load(vcpu);
9745 	__get_sregs(vcpu, sregs);
9746 	vcpu_put(vcpu);
9747 	return 0;
9748 }
9749 
kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu * vcpu,struct kvm_mp_state * mp_state)9750 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
9751 				    struct kvm_mp_state *mp_state)
9752 {
9753 	vcpu_load(vcpu);
9754 	if (kvm_mpx_supported())
9755 		kvm_load_guest_fpu(vcpu);
9756 
9757 	kvm_apic_accept_events(vcpu);
9758 	if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED &&
9759 					vcpu->arch.pv.pv_unhalted)
9760 		mp_state->mp_state = KVM_MP_STATE_RUNNABLE;
9761 	else
9762 		mp_state->mp_state = vcpu->arch.mp_state;
9763 
9764 	if (kvm_mpx_supported())
9765 		kvm_put_guest_fpu(vcpu);
9766 	vcpu_put(vcpu);
9767 	return 0;
9768 }
9769 
kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu * vcpu,struct kvm_mp_state * mp_state)9770 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
9771 				    struct kvm_mp_state *mp_state)
9772 {
9773 	int ret = -EINVAL;
9774 
9775 	vcpu_load(vcpu);
9776 
9777 	if (!lapic_in_kernel(vcpu) &&
9778 	    mp_state->mp_state != KVM_MP_STATE_RUNNABLE)
9779 		goto out;
9780 
9781 	/*
9782 	 * KVM_MP_STATE_INIT_RECEIVED means the processor is in
9783 	 * INIT state; latched init should be reported using
9784 	 * KVM_SET_VCPU_EVENTS, so reject it here.
9785 	 */
9786 	if ((kvm_vcpu_latch_init(vcpu) || vcpu->arch.smi_pending) &&
9787 	    (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED ||
9788 	     mp_state->mp_state == KVM_MP_STATE_INIT_RECEIVED))
9789 		goto out;
9790 
9791 	if (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED) {
9792 		vcpu->arch.mp_state = KVM_MP_STATE_INIT_RECEIVED;
9793 		set_bit(KVM_APIC_SIPI, &vcpu->arch.apic->pending_events);
9794 	} else
9795 		vcpu->arch.mp_state = mp_state->mp_state;
9796 	kvm_make_request(KVM_REQ_EVENT, vcpu);
9797 
9798 	ret = 0;
9799 out:
9800 	vcpu_put(vcpu);
9801 	return ret;
9802 }
9803 
kvm_task_switch(struct kvm_vcpu * vcpu,u16 tss_selector,int idt_index,int reason,bool has_error_code,u32 error_code)9804 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index,
9805 		    int reason, bool has_error_code, u32 error_code)
9806 {
9807 	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
9808 	int ret;
9809 
9810 	init_emulate_ctxt(vcpu);
9811 
9812 	ret = emulator_task_switch(ctxt, tss_selector, idt_index, reason,
9813 				   has_error_code, error_code);
9814 	if (ret) {
9815 		vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
9816 		vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
9817 		vcpu->run->internal.ndata = 0;
9818 		return 0;
9819 	}
9820 
9821 	kvm_rip_write(vcpu, ctxt->eip);
9822 	kvm_set_rflags(vcpu, ctxt->eflags);
9823 	return 1;
9824 }
9825 EXPORT_SYMBOL_GPL(kvm_task_switch);
9826 
kvm_valid_sregs(struct kvm_vcpu * vcpu,struct kvm_sregs * sregs)9827 static int kvm_valid_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
9828 {
9829 	if ((sregs->efer & EFER_LME) && (sregs->cr0 & X86_CR0_PG)) {
9830 		/*
9831 		 * When EFER.LME and CR0.PG are set, the processor is in
9832 		 * 64-bit mode (though maybe in a 32-bit code segment).
9833 		 * CR4.PAE and EFER.LMA must be set.
9834 		 */
9835 		if (!(sregs->cr4 & X86_CR4_PAE)
9836 		    || !(sregs->efer & EFER_LMA))
9837 			return -EINVAL;
9838 		if (sregs->cr3 & vcpu->arch.cr3_lm_rsvd_bits)
9839 			return -EINVAL;
9840 	} else {
9841 		/*
9842 		 * Not in 64-bit mode: EFER.LMA is clear and the code
9843 		 * segment cannot be 64-bit.
9844 		 */
9845 		if (sregs->efer & EFER_LMA || sregs->cs.l)
9846 			return -EINVAL;
9847 	}
9848 
9849 	return kvm_valid_cr4(vcpu, sregs->cr4);
9850 }
9851 
__set_sregs(struct kvm_vcpu * vcpu,struct kvm_sregs * sregs)9852 static int __set_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
9853 {
9854 	struct msr_data apic_base_msr;
9855 	int mmu_reset_needed = 0;
9856 	int cpuid_update_needed = 0;
9857 	int pending_vec, max_bits, idx;
9858 	struct desc_ptr dt;
9859 	int ret = -EINVAL;
9860 
9861 	if (kvm_valid_sregs(vcpu, sregs))
9862 		goto out;
9863 
9864 	apic_base_msr.data = sregs->apic_base;
9865 	apic_base_msr.host_initiated = true;
9866 	if (kvm_set_apic_base(vcpu, &apic_base_msr))
9867 		goto out;
9868 
9869 	dt.size = sregs->idt.limit;
9870 	dt.address = sregs->idt.base;
9871 	kvm_x86_ops.set_idt(vcpu, &dt);
9872 	dt.size = sregs->gdt.limit;
9873 	dt.address = sregs->gdt.base;
9874 	kvm_x86_ops.set_gdt(vcpu, &dt);
9875 
9876 	vcpu->arch.cr2 = sregs->cr2;
9877 	mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3;
9878 	vcpu->arch.cr3 = sregs->cr3;
9879 	kvm_register_mark_available(vcpu, VCPU_EXREG_CR3);
9880 
9881 	kvm_set_cr8(vcpu, sregs->cr8);
9882 
9883 	mmu_reset_needed |= vcpu->arch.efer != sregs->efer;
9884 	kvm_x86_ops.set_efer(vcpu, sregs->efer);
9885 
9886 	mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0;
9887 	kvm_x86_ops.set_cr0(vcpu, sregs->cr0);
9888 	vcpu->arch.cr0 = sregs->cr0;
9889 
9890 	mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4;
9891 	cpuid_update_needed |= ((kvm_read_cr4(vcpu) ^ sregs->cr4) &
9892 				(X86_CR4_OSXSAVE | X86_CR4_PKE));
9893 	kvm_x86_ops.set_cr4(vcpu, sregs->cr4);
9894 	if (cpuid_update_needed)
9895 		kvm_update_cpuid_runtime(vcpu);
9896 
9897 	idx = srcu_read_lock(&vcpu->kvm->srcu);
9898 	if (is_pae_paging(vcpu)) {
9899 		load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu));
9900 		mmu_reset_needed = 1;
9901 	}
9902 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
9903 
9904 	if (mmu_reset_needed)
9905 		kvm_mmu_reset_context(vcpu);
9906 
9907 	max_bits = KVM_NR_INTERRUPTS;
9908 	pending_vec = find_first_bit(
9909 		(const unsigned long *)sregs->interrupt_bitmap, max_bits);
9910 	if (pending_vec < max_bits) {
9911 		kvm_queue_interrupt(vcpu, pending_vec, false);
9912 		pr_debug("Set back pending irq %d\n", pending_vec);
9913 	}
9914 
9915 	kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
9916 	kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
9917 	kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
9918 	kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
9919 	kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
9920 	kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
9921 
9922 	kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
9923 	kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
9924 
9925 	update_cr8_intercept(vcpu);
9926 
9927 	/* Older userspace won't unhalt the vcpu on reset. */
9928 	if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 &&
9929 	    sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
9930 	    !is_protmode(vcpu))
9931 		vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
9932 
9933 	kvm_make_request(KVM_REQ_EVENT, vcpu);
9934 
9935 	ret = 0;
9936 out:
9937 	return ret;
9938 }
9939 
kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu * vcpu,struct kvm_sregs * sregs)9940 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
9941 				  struct kvm_sregs *sregs)
9942 {
9943 	int ret;
9944 
9945 	vcpu_load(vcpu);
9946 	ret = __set_sregs(vcpu, sregs);
9947 	vcpu_put(vcpu);
9948 	return ret;
9949 }
9950 
kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu * vcpu,struct kvm_guest_debug * dbg)9951 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
9952 					struct kvm_guest_debug *dbg)
9953 {
9954 	unsigned long rflags;
9955 	int i, r;
9956 
9957 	vcpu_load(vcpu);
9958 
9959 	if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) {
9960 		r = -EBUSY;
9961 		if (vcpu->arch.exception.pending)
9962 			goto out;
9963 		if (dbg->control & KVM_GUESTDBG_INJECT_DB)
9964 			kvm_queue_exception(vcpu, DB_VECTOR);
9965 		else
9966 			kvm_queue_exception(vcpu, BP_VECTOR);
9967 	}
9968 
9969 	/*
9970 	 * Read rflags as long as potentially injected trace flags are still
9971 	 * filtered out.
9972 	 */
9973 	rflags = kvm_get_rflags(vcpu);
9974 
9975 	vcpu->guest_debug = dbg->control;
9976 	if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE))
9977 		vcpu->guest_debug = 0;
9978 
9979 	if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
9980 		for (i = 0; i < KVM_NR_DB_REGS; ++i)
9981 			vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
9982 		vcpu->arch.guest_debug_dr7 = dbg->arch.debugreg[7];
9983 	} else {
9984 		for (i = 0; i < KVM_NR_DB_REGS; i++)
9985 			vcpu->arch.eff_db[i] = vcpu->arch.db[i];
9986 	}
9987 	kvm_update_dr7(vcpu);
9988 
9989 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
9990 		vcpu->arch.singlestep_rip = kvm_rip_read(vcpu) +
9991 			get_segment_base(vcpu, VCPU_SREG_CS);
9992 
9993 	/*
9994 	 * Trigger an rflags update that will inject or remove the trace
9995 	 * flags.
9996 	 */
9997 	kvm_set_rflags(vcpu, rflags);
9998 
9999 	kvm_x86_ops.update_exception_bitmap(vcpu);
10000 
10001 	r = 0;
10002 
10003 out:
10004 	vcpu_put(vcpu);
10005 	return r;
10006 }
10007 
10008 /*
10009  * Translate a guest virtual address to a guest physical address.
10010  */
kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu * vcpu,struct kvm_translation * tr)10011 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
10012 				    struct kvm_translation *tr)
10013 {
10014 	unsigned long vaddr = tr->linear_address;
10015 	gpa_t gpa;
10016 	int idx;
10017 
10018 	vcpu_load(vcpu);
10019 
10020 	idx = srcu_read_lock(&vcpu->kvm->srcu);
10021 	gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL);
10022 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
10023 	tr->physical_address = gpa;
10024 	tr->valid = gpa != UNMAPPED_GVA;
10025 	tr->writeable = 1;
10026 	tr->usermode = 0;
10027 
10028 	vcpu_put(vcpu);
10029 	return 0;
10030 }
10031 
kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu * vcpu,struct kvm_fpu * fpu)10032 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
10033 {
10034 	struct fxregs_state *fxsave;
10035 
10036 	vcpu_load(vcpu);
10037 
10038 	fxsave = &vcpu->arch.guest_fpu->state.fxsave;
10039 	memcpy(fpu->fpr, fxsave->st_space, 128);
10040 	fpu->fcw = fxsave->cwd;
10041 	fpu->fsw = fxsave->swd;
10042 	fpu->ftwx = fxsave->twd;
10043 	fpu->last_opcode = fxsave->fop;
10044 	fpu->last_ip = fxsave->rip;
10045 	fpu->last_dp = fxsave->rdp;
10046 	memcpy(fpu->xmm, fxsave->xmm_space, sizeof(fxsave->xmm_space));
10047 
10048 	vcpu_put(vcpu);
10049 	return 0;
10050 }
10051 
kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu * vcpu,struct kvm_fpu * fpu)10052 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
10053 {
10054 	struct fxregs_state *fxsave;
10055 
10056 	vcpu_load(vcpu);
10057 
10058 	fxsave = &vcpu->arch.guest_fpu->state.fxsave;
10059 
10060 	memcpy(fxsave->st_space, fpu->fpr, 128);
10061 	fxsave->cwd = fpu->fcw;
10062 	fxsave->swd = fpu->fsw;
10063 	fxsave->twd = fpu->ftwx;
10064 	fxsave->fop = fpu->last_opcode;
10065 	fxsave->rip = fpu->last_ip;
10066 	fxsave->rdp = fpu->last_dp;
10067 	memcpy(fxsave->xmm_space, fpu->xmm, sizeof(fxsave->xmm_space));
10068 
10069 	vcpu_put(vcpu);
10070 	return 0;
10071 }
10072 
store_regs(struct kvm_vcpu * vcpu)10073 static void store_regs(struct kvm_vcpu *vcpu)
10074 {
10075 	BUILD_BUG_ON(sizeof(struct kvm_sync_regs) > SYNC_REGS_SIZE_BYTES);
10076 
10077 	if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_REGS)
10078 		__get_regs(vcpu, &vcpu->run->s.regs.regs);
10079 
10080 	if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_SREGS)
10081 		__get_sregs(vcpu, &vcpu->run->s.regs.sregs);
10082 
10083 	if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_EVENTS)
10084 		kvm_vcpu_ioctl_x86_get_vcpu_events(
10085 				vcpu, &vcpu->run->s.regs.events);
10086 }
10087 
sync_regs(struct kvm_vcpu * vcpu)10088 static int sync_regs(struct kvm_vcpu *vcpu)
10089 {
10090 	if (vcpu->run->kvm_dirty_regs & ~KVM_SYNC_X86_VALID_FIELDS)
10091 		return -EINVAL;
10092 
10093 	if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_REGS) {
10094 		__set_regs(vcpu, &vcpu->run->s.regs.regs);
10095 		vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_REGS;
10096 	}
10097 	if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_SREGS) {
10098 		if (__set_sregs(vcpu, &vcpu->run->s.regs.sregs))
10099 			return -EINVAL;
10100 		vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_SREGS;
10101 	}
10102 	if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_EVENTS) {
10103 		if (kvm_vcpu_ioctl_x86_set_vcpu_events(
10104 				vcpu, &vcpu->run->s.regs.events))
10105 			return -EINVAL;
10106 		vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_EVENTS;
10107 	}
10108 
10109 	return 0;
10110 }
10111 
fx_init(struct kvm_vcpu * vcpu)10112 static void fx_init(struct kvm_vcpu *vcpu)
10113 {
10114 	fpstate_init(&vcpu->arch.guest_fpu->state);
10115 	if (boot_cpu_has(X86_FEATURE_XSAVES))
10116 		vcpu->arch.guest_fpu->state.xsave.header.xcomp_bv =
10117 			host_xcr0 | XSTATE_COMPACTION_ENABLED;
10118 
10119 	/*
10120 	 * Ensure guest xcr0 is valid for loading
10121 	 */
10122 	vcpu->arch.xcr0 = XFEATURE_MASK_FP;
10123 
10124 	vcpu->arch.cr0 |= X86_CR0_ET;
10125 }
10126 
kvm_arch_vcpu_precreate(struct kvm * kvm,unsigned int id)10127 int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id)
10128 {
10129 	if (kvm_check_tsc_unstable() && atomic_read(&kvm->online_vcpus) != 0)
10130 		pr_warn_once("kvm: SMP vm created on host with unstable TSC; "
10131 			     "guest TSC will not be reliable\n");
10132 
10133 	return 0;
10134 }
10135 
kvm_arch_vcpu_create(struct kvm_vcpu * vcpu)10136 int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu)
10137 {
10138 	struct page *page;
10139 	int r;
10140 
10141 	if (!irqchip_in_kernel(vcpu->kvm) || kvm_vcpu_is_reset_bsp(vcpu))
10142 		vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
10143 	else
10144 		vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
10145 
10146 	kvm_set_tsc_khz(vcpu, max_tsc_khz);
10147 
10148 	r = kvm_mmu_create(vcpu);
10149 	if (r < 0)
10150 		return r;
10151 
10152 	if (irqchip_in_kernel(vcpu->kvm)) {
10153 		r = kvm_create_lapic(vcpu, lapic_timer_advance_ns);
10154 		if (r < 0)
10155 			goto fail_mmu_destroy;
10156 		if (kvm_apicv_activated(vcpu->kvm))
10157 			vcpu->arch.apicv_active = true;
10158 	} else
10159 		static_key_slow_inc(&kvm_no_apic_vcpu);
10160 
10161 	r = -ENOMEM;
10162 
10163 	page = alloc_page(GFP_KERNEL | __GFP_ZERO);
10164 	if (!page)
10165 		goto fail_free_lapic;
10166 	vcpu->arch.pio_data = page_address(page);
10167 
10168 	vcpu->arch.mce_banks = kzalloc(KVM_MAX_MCE_BANKS * sizeof(u64) * 4,
10169 				       GFP_KERNEL_ACCOUNT);
10170 	if (!vcpu->arch.mce_banks)
10171 		goto fail_free_pio_data;
10172 	vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS;
10173 
10174 	if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask,
10175 				GFP_KERNEL_ACCOUNT))
10176 		goto fail_free_mce_banks;
10177 
10178 	if (!alloc_emulate_ctxt(vcpu))
10179 		goto free_wbinvd_dirty_mask;
10180 
10181 	vcpu->arch.user_fpu = kmem_cache_zalloc(x86_fpu_cache,
10182 						GFP_KERNEL_ACCOUNT);
10183 	if (!vcpu->arch.user_fpu) {
10184 		pr_err("kvm: failed to allocate userspace's fpu\n");
10185 		goto free_emulate_ctxt;
10186 	}
10187 
10188 	vcpu->arch.guest_fpu = kmem_cache_zalloc(x86_fpu_cache,
10189 						 GFP_KERNEL_ACCOUNT);
10190 	if (!vcpu->arch.guest_fpu) {
10191 		pr_err("kvm: failed to allocate vcpu's fpu\n");
10192 		goto free_user_fpu;
10193 	}
10194 	fx_init(vcpu);
10195 
10196 	vcpu->arch.maxphyaddr = cpuid_query_maxphyaddr(vcpu);
10197 	vcpu->arch.cr3_lm_rsvd_bits = rsvd_bits(cpuid_maxphyaddr(vcpu), 63);
10198 
10199 	vcpu->arch.pat = MSR_IA32_CR_PAT_DEFAULT;
10200 
10201 	kvm_async_pf_hash_reset(vcpu);
10202 	kvm_pmu_init(vcpu);
10203 
10204 	vcpu->arch.pending_external_vector = -1;
10205 	vcpu->arch.preempted_in_kernel = false;
10206 
10207 	kvm_hv_vcpu_init(vcpu);
10208 
10209 	r = kvm_x86_ops.vcpu_create(vcpu);
10210 	if (r)
10211 		goto free_guest_fpu;
10212 
10213 	vcpu->arch.arch_capabilities = kvm_get_arch_capabilities();
10214 	vcpu->arch.msr_platform_info = MSR_PLATFORM_INFO_CPUID_FAULT;
10215 	kvm_vcpu_mtrr_init(vcpu);
10216 	vcpu_load(vcpu);
10217 	kvm_vcpu_reset(vcpu, false);
10218 	kvm_init_mmu(vcpu, false);
10219 	vcpu_put(vcpu);
10220 	return 0;
10221 
10222 free_guest_fpu:
10223 	kmem_cache_free(x86_fpu_cache, vcpu->arch.guest_fpu);
10224 free_user_fpu:
10225 	kmem_cache_free(x86_fpu_cache, vcpu->arch.user_fpu);
10226 free_emulate_ctxt:
10227 	kmem_cache_free(x86_emulator_cache, vcpu->arch.emulate_ctxt);
10228 free_wbinvd_dirty_mask:
10229 	free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
10230 fail_free_mce_banks:
10231 	kfree(vcpu->arch.mce_banks);
10232 fail_free_pio_data:
10233 	free_page((unsigned long)vcpu->arch.pio_data);
10234 fail_free_lapic:
10235 	kvm_free_lapic(vcpu);
10236 fail_mmu_destroy:
10237 	kvm_mmu_destroy(vcpu);
10238 	return r;
10239 }
10240 
kvm_arch_vcpu_postcreate(struct kvm_vcpu * vcpu)10241 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
10242 {
10243 	struct kvm *kvm = vcpu->kvm;
10244 
10245 	kvm_hv_vcpu_postcreate(vcpu);
10246 
10247 	if (mutex_lock_killable(&vcpu->mutex))
10248 		return;
10249 	vcpu_load(vcpu);
10250 	kvm_synchronize_tsc(vcpu, 0);
10251 	vcpu_put(vcpu);
10252 
10253 	/* poll control enabled by default */
10254 	vcpu->arch.msr_kvm_poll_control = 1;
10255 
10256 	mutex_unlock(&vcpu->mutex);
10257 
10258 	if (kvmclock_periodic_sync && vcpu->vcpu_idx == 0)
10259 		schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
10260 						KVMCLOCK_SYNC_PERIOD);
10261 }
10262 
kvm_arch_vcpu_destroy(struct kvm_vcpu * vcpu)10263 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
10264 {
10265 	struct gfn_to_pfn_cache *cache = &vcpu->arch.st.cache;
10266 	int idx;
10267 
10268 	kvm_release_pfn(cache->pfn, cache->dirty, cache);
10269 
10270 	kvmclock_reset(vcpu);
10271 
10272 	kvm_x86_ops.vcpu_free(vcpu);
10273 
10274 	kmem_cache_free(x86_emulator_cache, vcpu->arch.emulate_ctxt);
10275 	free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
10276 	kmem_cache_free(x86_fpu_cache, vcpu->arch.user_fpu);
10277 	kmem_cache_free(x86_fpu_cache, vcpu->arch.guest_fpu);
10278 
10279 	kvm_hv_vcpu_uninit(vcpu);
10280 	kvm_pmu_destroy(vcpu);
10281 	kfree(vcpu->arch.mce_banks);
10282 	kvm_free_lapic(vcpu);
10283 	idx = srcu_read_lock(&vcpu->kvm->srcu);
10284 	kvm_mmu_destroy(vcpu);
10285 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
10286 	free_page((unsigned long)vcpu->arch.pio_data);
10287 	kvfree(vcpu->arch.cpuid_entries);
10288 	if (!lapic_in_kernel(vcpu))
10289 		static_key_slow_dec(&kvm_no_apic_vcpu);
10290 }
10291 
kvm_vcpu_reset(struct kvm_vcpu * vcpu,bool init_event)10292 void kvm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
10293 {
10294 	kvm_lapic_reset(vcpu, init_event);
10295 
10296 	vcpu->arch.hflags = 0;
10297 
10298 	vcpu->arch.smi_pending = 0;
10299 	vcpu->arch.smi_count = 0;
10300 	atomic_set(&vcpu->arch.nmi_queued, 0);
10301 	vcpu->arch.nmi_pending = 0;
10302 	vcpu->arch.nmi_injected = false;
10303 	kvm_clear_interrupt_queue(vcpu);
10304 	kvm_clear_exception_queue(vcpu);
10305 
10306 	memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
10307 	kvm_update_dr0123(vcpu);
10308 	vcpu->arch.dr6 = DR6_INIT;
10309 	vcpu->arch.dr7 = DR7_FIXED_1;
10310 	kvm_update_dr7(vcpu);
10311 
10312 	vcpu->arch.cr2 = 0;
10313 
10314 	kvm_make_request(KVM_REQ_EVENT, vcpu);
10315 	vcpu->arch.apf.msr_en_val = 0;
10316 	vcpu->arch.apf.msr_int_val = 0;
10317 	vcpu->arch.st.msr_val = 0;
10318 
10319 	kvmclock_reset(vcpu);
10320 
10321 	kvm_clear_async_pf_completion_queue(vcpu);
10322 	kvm_async_pf_hash_reset(vcpu);
10323 	vcpu->arch.apf.halted = false;
10324 
10325 	if (kvm_mpx_supported()) {
10326 		void *mpx_state_buffer;
10327 
10328 		/*
10329 		 * To avoid have the INIT path from kvm_apic_has_events() that be
10330 		 * called with loaded FPU and does not let userspace fix the state.
10331 		 */
10332 		if (init_event)
10333 			kvm_put_guest_fpu(vcpu);
10334 		mpx_state_buffer = get_xsave_addr(&vcpu->arch.guest_fpu->state.xsave,
10335 					XFEATURE_BNDREGS);
10336 		if (mpx_state_buffer)
10337 			memset(mpx_state_buffer, 0, sizeof(struct mpx_bndreg_state));
10338 		mpx_state_buffer = get_xsave_addr(&vcpu->arch.guest_fpu->state.xsave,
10339 					XFEATURE_BNDCSR);
10340 		if (mpx_state_buffer)
10341 			memset(mpx_state_buffer, 0, sizeof(struct mpx_bndcsr));
10342 		if (init_event)
10343 			kvm_load_guest_fpu(vcpu);
10344 	}
10345 
10346 	if (!init_event) {
10347 		kvm_pmu_reset(vcpu);
10348 		vcpu->arch.smbase = 0x30000;
10349 
10350 		vcpu->arch.msr_misc_features_enables = 0;
10351 
10352 		vcpu->arch.xcr0 = XFEATURE_MASK_FP;
10353 	}
10354 
10355 	memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs));
10356 	vcpu->arch.regs_avail = ~0;
10357 	vcpu->arch.regs_dirty = ~0;
10358 
10359 	vcpu->arch.ia32_xss = 0;
10360 
10361 	kvm_x86_ops.vcpu_reset(vcpu, init_event);
10362 }
10363 
kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu * vcpu,u8 vector)10364 void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector)
10365 {
10366 	struct kvm_segment cs;
10367 
10368 	kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
10369 	cs.selector = vector << 8;
10370 	cs.base = vector << 12;
10371 	kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
10372 	kvm_rip_write(vcpu, 0);
10373 }
10374 
kvm_arch_hardware_enable(void)10375 int kvm_arch_hardware_enable(void)
10376 {
10377 	struct kvm *kvm;
10378 	struct kvm_vcpu *vcpu;
10379 	int i;
10380 	int ret;
10381 	u64 local_tsc;
10382 	u64 max_tsc = 0;
10383 	bool stable, backwards_tsc = false;
10384 
10385 	kvm_user_return_msr_cpu_online();
10386 	ret = kvm_x86_ops.hardware_enable();
10387 	if (ret != 0)
10388 		return ret;
10389 
10390 	local_tsc = rdtsc();
10391 	stable = !kvm_check_tsc_unstable();
10392 	list_for_each_entry(kvm, &vm_list, vm_list) {
10393 		kvm_for_each_vcpu(i, vcpu, kvm) {
10394 			if (!stable && vcpu->cpu == smp_processor_id())
10395 				kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
10396 			if (stable && vcpu->arch.last_host_tsc > local_tsc) {
10397 				backwards_tsc = true;
10398 				if (vcpu->arch.last_host_tsc > max_tsc)
10399 					max_tsc = vcpu->arch.last_host_tsc;
10400 			}
10401 		}
10402 	}
10403 
10404 	/*
10405 	 * Sometimes, even reliable TSCs go backwards.  This happens on
10406 	 * platforms that reset TSC during suspend or hibernate actions, but
10407 	 * maintain synchronization.  We must compensate.  Fortunately, we can
10408 	 * detect that condition here, which happens early in CPU bringup,
10409 	 * before any KVM threads can be running.  Unfortunately, we can't
10410 	 * bring the TSCs fully up to date with real time, as we aren't yet far
10411 	 * enough into CPU bringup that we know how much real time has actually
10412 	 * elapsed; our helper function, ktime_get_boottime_ns() will be using boot
10413 	 * variables that haven't been updated yet.
10414 	 *
10415 	 * So we simply find the maximum observed TSC above, then record the
10416 	 * adjustment to TSC in each VCPU.  When the VCPU later gets loaded,
10417 	 * the adjustment will be applied.  Note that we accumulate
10418 	 * adjustments, in case multiple suspend cycles happen before some VCPU
10419 	 * gets a chance to run again.  In the event that no KVM threads get a
10420 	 * chance to run, we will miss the entire elapsed period, as we'll have
10421 	 * reset last_host_tsc, so VCPUs will not have the TSC adjusted and may
10422 	 * loose cycle time.  This isn't too big a deal, since the loss will be
10423 	 * uniform across all VCPUs (not to mention the scenario is extremely
10424 	 * unlikely). It is possible that a second hibernate recovery happens
10425 	 * much faster than a first, causing the observed TSC here to be
10426 	 * smaller; this would require additional padding adjustment, which is
10427 	 * why we set last_host_tsc to the local tsc observed here.
10428 	 *
10429 	 * N.B. - this code below runs only on platforms with reliable TSC,
10430 	 * as that is the only way backwards_tsc is set above.  Also note
10431 	 * that this runs for ALL vcpus, which is not a bug; all VCPUs should
10432 	 * have the same delta_cyc adjustment applied if backwards_tsc
10433 	 * is detected.  Note further, this adjustment is only done once,
10434 	 * as we reset last_host_tsc on all VCPUs to stop this from being
10435 	 * called multiple times (one for each physical CPU bringup).
10436 	 *
10437 	 * Platforms with unreliable TSCs don't have to deal with this, they
10438 	 * will be compensated by the logic in vcpu_load, which sets the TSC to
10439 	 * catchup mode.  This will catchup all VCPUs to real time, but cannot
10440 	 * guarantee that they stay in perfect synchronization.
10441 	 */
10442 	if (backwards_tsc) {
10443 		u64 delta_cyc = max_tsc - local_tsc;
10444 		list_for_each_entry(kvm, &vm_list, vm_list) {
10445 			kvm->arch.backwards_tsc_observed = true;
10446 			kvm_for_each_vcpu(i, vcpu, kvm) {
10447 				vcpu->arch.tsc_offset_adjustment += delta_cyc;
10448 				vcpu->arch.last_host_tsc = local_tsc;
10449 				kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
10450 			}
10451 
10452 			/*
10453 			 * We have to disable TSC offset matching.. if you were
10454 			 * booting a VM while issuing an S4 host suspend....
10455 			 * you may have some problem.  Solving this issue is
10456 			 * left as an exercise to the reader.
10457 			 */
10458 			kvm->arch.last_tsc_nsec = 0;
10459 			kvm->arch.last_tsc_write = 0;
10460 		}
10461 
10462 	}
10463 	return 0;
10464 }
10465 
kvm_arch_hardware_disable(void)10466 void kvm_arch_hardware_disable(void)
10467 {
10468 	kvm_x86_ops.hardware_disable();
10469 	drop_user_return_notifiers();
10470 }
10471 
kvm_arch_hardware_setup(void * opaque)10472 int kvm_arch_hardware_setup(void *opaque)
10473 {
10474 	struct kvm_x86_init_ops *ops = opaque;
10475 	int r;
10476 
10477 	rdmsrl_safe(MSR_EFER, &host_efer);
10478 
10479 	if (boot_cpu_has(X86_FEATURE_XSAVES))
10480 		rdmsrl(MSR_IA32_XSS, host_xss);
10481 
10482 	r = ops->hardware_setup();
10483 	if (r != 0)
10484 		return r;
10485 
10486 	memcpy(&kvm_x86_ops, ops->runtime_ops, sizeof(kvm_x86_ops));
10487 
10488 	if (!kvm_cpu_cap_has(X86_FEATURE_XSAVES))
10489 		supported_xss = 0;
10490 
10491 #define __kvm_cpu_cap_has(UNUSED_, f) kvm_cpu_cap_has(f)
10492 	cr4_reserved_bits = __cr4_reserved_bits(__kvm_cpu_cap_has, UNUSED_);
10493 #undef __kvm_cpu_cap_has
10494 
10495 	if (kvm_has_tsc_control) {
10496 		/*
10497 		 * Make sure the user can only configure tsc_khz values that
10498 		 * fit into a signed integer.
10499 		 * A min value is not calculated because it will always
10500 		 * be 1 on all machines.
10501 		 */
10502 		u64 max = min(0x7fffffffULL,
10503 			      __scale_tsc(kvm_max_tsc_scaling_ratio, tsc_khz));
10504 		kvm_max_guest_tsc_khz = max;
10505 
10506 		kvm_default_tsc_scaling_ratio = 1ULL << kvm_tsc_scaling_ratio_frac_bits;
10507 	}
10508 
10509 	kvm_init_msr_list();
10510 	return 0;
10511 }
10512 
kvm_arch_hardware_unsetup(void)10513 void kvm_arch_hardware_unsetup(void)
10514 {
10515 	kvm_x86_ops.hardware_unsetup();
10516 }
10517 
kvm_arch_check_processor_compat(void * opaque)10518 int kvm_arch_check_processor_compat(void *opaque)
10519 {
10520 	struct cpuinfo_x86 *c = &cpu_data(smp_processor_id());
10521 	struct kvm_x86_init_ops *ops = opaque;
10522 
10523 	WARN_ON(!irqs_disabled());
10524 
10525 	if (__cr4_reserved_bits(cpu_has, c) !=
10526 	    __cr4_reserved_bits(cpu_has, &boot_cpu_data))
10527 		return -EIO;
10528 
10529 	return ops->check_processor_compatibility();
10530 }
10531 
kvm_vcpu_is_reset_bsp(struct kvm_vcpu * vcpu)10532 bool kvm_vcpu_is_reset_bsp(struct kvm_vcpu *vcpu)
10533 {
10534 	return vcpu->kvm->arch.bsp_vcpu_id == vcpu->vcpu_id;
10535 }
10536 EXPORT_SYMBOL_GPL(kvm_vcpu_is_reset_bsp);
10537 
kvm_vcpu_is_bsp(struct kvm_vcpu * vcpu)10538 bool kvm_vcpu_is_bsp(struct kvm_vcpu *vcpu)
10539 {
10540 	return (vcpu->arch.apic_base & MSR_IA32_APICBASE_BSP) != 0;
10541 }
10542 
10543 struct static_key kvm_no_apic_vcpu __read_mostly;
10544 EXPORT_SYMBOL_GPL(kvm_no_apic_vcpu);
10545 
kvm_arch_sched_in(struct kvm_vcpu * vcpu,int cpu)10546 void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu)
10547 {
10548 	struct kvm_pmu *pmu = vcpu_to_pmu(vcpu);
10549 
10550 	vcpu->arch.l1tf_flush_l1d = true;
10551 	if (pmu->version && unlikely(pmu->event_count)) {
10552 		pmu->need_cleanup = true;
10553 		kvm_make_request(KVM_REQ_PMU, vcpu);
10554 	}
10555 	kvm_x86_ops.sched_in(vcpu, cpu);
10556 }
10557 
kvm_arch_free_vm(struct kvm * kvm)10558 void kvm_arch_free_vm(struct kvm *kvm)
10559 {
10560 	kfree(kvm->arch.hyperv.hv_pa_pg);
10561 	vfree(kvm);
10562 }
10563 
10564 
kvm_arch_init_vm(struct kvm * kvm,unsigned long type)10565 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
10566 {
10567 	int ret;
10568 
10569 	if (type)
10570 		return -EINVAL;
10571 
10572 	ret = kvm_page_track_init(kvm);
10573 	if (ret)
10574 		return ret;
10575 
10576 	INIT_HLIST_HEAD(&kvm->arch.mask_notifier_list);
10577 	INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
10578 	INIT_LIST_HEAD(&kvm->arch.zapped_obsolete_pages);
10579 	INIT_LIST_HEAD(&kvm->arch.lpage_disallowed_mmu_pages);
10580 	INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
10581 	atomic_set(&kvm->arch.noncoherent_dma_count, 0);
10582 
10583 	/* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
10584 	set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
10585 	/* Reserve bit 1 of irq_sources_bitmap for irqfd-resampler */
10586 	set_bit(KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID,
10587 		&kvm->arch.irq_sources_bitmap);
10588 
10589 	raw_spin_lock_init(&kvm->arch.tsc_write_lock);
10590 	mutex_init(&kvm->arch.apic_map_lock);
10591 	spin_lock_init(&kvm->arch.pvclock_gtod_sync_lock);
10592 
10593 	kvm->arch.kvmclock_offset = -get_kvmclock_base_ns();
10594 	pvclock_update_vm_gtod_copy(kvm);
10595 
10596 	kvm->arch.guest_can_read_msr_platform_info = true;
10597 
10598 	INIT_DELAYED_WORK(&kvm->arch.kvmclock_update_work, kvmclock_update_fn);
10599 	INIT_DELAYED_WORK(&kvm->arch.kvmclock_sync_work, kvmclock_sync_fn);
10600 
10601 	kvm_hv_init_vm(kvm);
10602 	kvm_mmu_init_vm(kvm);
10603 
10604 	return kvm_x86_ops.vm_init(kvm);
10605 }
10606 
kvm_arch_post_init_vm(struct kvm * kvm)10607 int kvm_arch_post_init_vm(struct kvm *kvm)
10608 {
10609 	return kvm_mmu_post_init_vm(kvm);
10610 }
10611 
kvm_unload_vcpu_mmu(struct kvm_vcpu * vcpu)10612 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
10613 {
10614 	vcpu_load(vcpu);
10615 	kvm_mmu_unload(vcpu);
10616 	vcpu_put(vcpu);
10617 }
10618 
kvm_free_vcpus(struct kvm * kvm)10619 static void kvm_free_vcpus(struct kvm *kvm)
10620 {
10621 	unsigned int i;
10622 	struct kvm_vcpu *vcpu;
10623 
10624 	/*
10625 	 * Unpin any mmu pages first.
10626 	 */
10627 	kvm_for_each_vcpu(i, vcpu, kvm) {
10628 		kvm_clear_async_pf_completion_queue(vcpu);
10629 		kvm_unload_vcpu_mmu(vcpu);
10630 	}
10631 	kvm_for_each_vcpu(i, vcpu, kvm)
10632 		kvm_vcpu_destroy(vcpu);
10633 
10634 	mutex_lock(&kvm->lock);
10635 	for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
10636 		kvm->vcpus[i] = NULL;
10637 
10638 	atomic_set(&kvm->online_vcpus, 0);
10639 	mutex_unlock(&kvm->lock);
10640 }
10641 
kvm_arch_sync_events(struct kvm * kvm)10642 void kvm_arch_sync_events(struct kvm *kvm)
10643 {
10644 	cancel_delayed_work_sync(&kvm->arch.kvmclock_sync_work);
10645 	cancel_delayed_work_sync(&kvm->arch.kvmclock_update_work);
10646 	kvm_free_pit(kvm);
10647 }
10648 
__x86_set_memory_region(struct kvm * kvm,int id,gpa_t gpa,u32 size)10649 int __x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa, u32 size)
10650 {
10651 	int i, r;
10652 	unsigned long hva, old_npages;
10653 	struct kvm_memslots *slots = kvm_memslots(kvm);
10654 	struct kvm_memory_slot *slot;
10655 
10656 	/* Called with kvm->slots_lock held.  */
10657 	if (WARN_ON(id >= KVM_MEM_SLOTS_NUM))
10658 		return -EINVAL;
10659 
10660 	slot = id_to_memslot(slots, id);
10661 	if (size) {
10662 		if (slot && slot->npages)
10663 			return -EEXIST;
10664 
10665 		/*
10666 		 * MAP_SHARED to prevent internal slot pages from being moved
10667 		 * by fork()/COW.
10668 		 */
10669 		hva = vm_mmap(NULL, 0, size, PROT_READ | PROT_WRITE,
10670 			      MAP_SHARED | MAP_ANONYMOUS, 0);
10671 		if (IS_ERR((void *)hva))
10672 			return PTR_ERR((void *)hva);
10673 	} else {
10674 		if (!slot || !slot->npages)
10675 			return 0;
10676 
10677 		old_npages = slot->npages;
10678 		hva = 0;
10679 	}
10680 
10681 	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
10682 		struct kvm_userspace_memory_region m;
10683 
10684 		m.slot = id | (i << 16);
10685 		m.flags = 0;
10686 		m.guest_phys_addr = gpa;
10687 		m.userspace_addr = hva;
10688 		m.memory_size = size;
10689 		r = __kvm_set_memory_region(kvm, &m);
10690 		if (r < 0)
10691 			return r;
10692 	}
10693 
10694 	if (!size)
10695 		vm_munmap(hva, old_npages * PAGE_SIZE);
10696 
10697 	return 0;
10698 }
10699 EXPORT_SYMBOL_GPL(__x86_set_memory_region);
10700 
kvm_arch_pre_destroy_vm(struct kvm * kvm)10701 void kvm_arch_pre_destroy_vm(struct kvm *kvm)
10702 {
10703 	kvm_mmu_pre_destroy_vm(kvm);
10704 }
10705 
kvm_arch_destroy_vm(struct kvm * kvm)10706 void kvm_arch_destroy_vm(struct kvm *kvm)
10707 {
10708 	if (current->mm == kvm->mm) {
10709 		/*
10710 		 * Free memory regions allocated on behalf of userspace,
10711 		 * unless the the memory map has changed due to process exit
10712 		 * or fd copying.
10713 		 */
10714 		mutex_lock(&kvm->slots_lock);
10715 		__x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT,
10716 					0, 0);
10717 		__x86_set_memory_region(kvm, IDENTITY_PAGETABLE_PRIVATE_MEMSLOT,
10718 					0, 0);
10719 		__x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, 0, 0);
10720 		mutex_unlock(&kvm->slots_lock);
10721 	}
10722 	if (kvm_x86_ops.vm_destroy)
10723 		kvm_x86_ops.vm_destroy(kvm);
10724 	kvm_free_msr_filter(srcu_dereference_check(kvm->arch.msr_filter, &kvm->srcu, 1));
10725 	kvm_pic_destroy(kvm);
10726 	kvm_ioapic_destroy(kvm);
10727 	kvm_free_vcpus(kvm);
10728 	kvfree(rcu_dereference_check(kvm->arch.apic_map, 1));
10729 	kfree(srcu_dereference_check(kvm->arch.pmu_event_filter, &kvm->srcu, 1));
10730 	kvm_mmu_uninit_vm(kvm);
10731 	kvm_page_track_cleanup(kvm);
10732 	kvm_hv_destroy_vm(kvm);
10733 }
10734 
kvm_arch_free_memslot(struct kvm * kvm,struct kvm_memory_slot * slot)10735 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot)
10736 {
10737 	int i;
10738 
10739 	for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
10740 		kvfree(slot->arch.rmap[i]);
10741 		slot->arch.rmap[i] = NULL;
10742 
10743 		if (i == 0)
10744 			continue;
10745 
10746 		kvfree(slot->arch.lpage_info[i - 1]);
10747 		slot->arch.lpage_info[i - 1] = NULL;
10748 	}
10749 
10750 	kvm_page_track_free_memslot(slot);
10751 }
10752 
kvm_alloc_memslot_metadata(struct kvm_memory_slot * slot,unsigned long npages)10753 static int kvm_alloc_memslot_metadata(struct kvm_memory_slot *slot,
10754 				      unsigned long npages)
10755 {
10756 	int i;
10757 
10758 	/*
10759 	 * Clear out the previous array pointers for the KVM_MR_MOVE case.  The
10760 	 * old arrays will be freed by __kvm_set_memory_region() if installing
10761 	 * the new memslot is successful.
10762 	 */
10763 	memset(&slot->arch, 0, sizeof(slot->arch));
10764 
10765 	for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
10766 		struct kvm_lpage_info *linfo;
10767 		unsigned long ugfn;
10768 		int lpages;
10769 		int level = i + 1;
10770 
10771 		lpages = gfn_to_index(slot->base_gfn + npages - 1,
10772 				      slot->base_gfn, level) + 1;
10773 
10774 		slot->arch.rmap[i] =
10775 			kvcalloc(lpages, sizeof(*slot->arch.rmap[i]),
10776 				 GFP_KERNEL_ACCOUNT);
10777 		if (!slot->arch.rmap[i])
10778 			goto out_free;
10779 		if (i == 0)
10780 			continue;
10781 
10782 		linfo = kvcalloc(lpages, sizeof(*linfo), GFP_KERNEL_ACCOUNT);
10783 		if (!linfo)
10784 			goto out_free;
10785 
10786 		slot->arch.lpage_info[i - 1] = linfo;
10787 
10788 		if (slot->base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1))
10789 			linfo[0].disallow_lpage = 1;
10790 		if ((slot->base_gfn + npages) & (KVM_PAGES_PER_HPAGE(level) - 1))
10791 			linfo[lpages - 1].disallow_lpage = 1;
10792 		ugfn = slot->userspace_addr >> PAGE_SHIFT;
10793 		/*
10794 		 * If the gfn and userspace address are not aligned wrt each
10795 		 * other, disable large page support for this slot.
10796 		 */
10797 		if ((slot->base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1)) {
10798 			unsigned long j;
10799 
10800 			for (j = 0; j < lpages; ++j)
10801 				linfo[j].disallow_lpage = 1;
10802 		}
10803 	}
10804 
10805 	if (kvm_page_track_create_memslot(slot, npages))
10806 		goto out_free;
10807 
10808 	return 0;
10809 
10810 out_free:
10811 	for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
10812 		kvfree(slot->arch.rmap[i]);
10813 		slot->arch.rmap[i] = NULL;
10814 		if (i == 0)
10815 			continue;
10816 
10817 		kvfree(slot->arch.lpage_info[i - 1]);
10818 		slot->arch.lpage_info[i - 1] = NULL;
10819 	}
10820 	return -ENOMEM;
10821 }
10822 
kvm_arch_memslots_updated(struct kvm * kvm,u64 gen)10823 void kvm_arch_memslots_updated(struct kvm *kvm, u64 gen)
10824 {
10825 	struct kvm_vcpu *vcpu;
10826 	int i;
10827 
10828 	/*
10829 	 * memslots->generation has been incremented.
10830 	 * mmio generation may have reached its maximum value.
10831 	 */
10832 	kvm_mmu_invalidate_mmio_sptes(kvm, gen);
10833 
10834 	/* Force re-initialization of steal_time cache */
10835 	kvm_for_each_vcpu(i, vcpu, kvm)
10836 		kvm_vcpu_kick(vcpu);
10837 }
10838 
kvm_arch_prepare_memory_region(struct kvm * kvm,struct kvm_memory_slot * memslot,const struct kvm_userspace_memory_region * mem,enum kvm_mr_change change)10839 int kvm_arch_prepare_memory_region(struct kvm *kvm,
10840 				struct kvm_memory_slot *memslot,
10841 				const struct kvm_userspace_memory_region *mem,
10842 				enum kvm_mr_change change)
10843 {
10844 	if (change == KVM_MR_CREATE || change == KVM_MR_MOVE)
10845 		return kvm_alloc_memslot_metadata(memslot,
10846 						  mem->memory_size >> PAGE_SHIFT);
10847 	return 0;
10848 }
10849 
kvm_mmu_slot_apply_flags(struct kvm * kvm,struct kvm_memory_slot * old,struct kvm_memory_slot * new,enum kvm_mr_change change)10850 static void kvm_mmu_slot_apply_flags(struct kvm *kvm,
10851 				     struct kvm_memory_slot *old,
10852 				     struct kvm_memory_slot *new,
10853 				     enum kvm_mr_change change)
10854 {
10855 	/*
10856 	 * Nothing to do for RO slots or CREATE/MOVE/DELETE of a slot.
10857 	 * See comments below.
10858 	 */
10859 	if ((change != KVM_MR_FLAGS_ONLY) || (new->flags & KVM_MEM_READONLY))
10860 		return;
10861 
10862 	/*
10863 	 * Dirty logging tracks sptes in 4k granularity, meaning that large
10864 	 * sptes have to be split.  If live migration is successful, the guest
10865 	 * in the source machine will be destroyed and large sptes will be
10866 	 * created in the destination. However, if the guest continues to run
10867 	 * in the source machine (for example if live migration fails), small
10868 	 * sptes will remain around and cause bad performance.
10869 	 *
10870 	 * Scan sptes if dirty logging has been stopped, dropping those
10871 	 * which can be collapsed into a single large-page spte.  Later
10872 	 * page faults will create the large-page sptes.
10873 	 *
10874 	 * There is no need to do this in any of the following cases:
10875 	 * CREATE:      No dirty mappings will already exist.
10876 	 * MOVE/DELETE: The old mappings will already have been cleaned up by
10877 	 *		kvm_arch_flush_shadow_memslot()
10878 	 */
10879 	if ((old->flags & KVM_MEM_LOG_DIRTY_PAGES) &&
10880 	    !(new->flags & KVM_MEM_LOG_DIRTY_PAGES))
10881 		kvm_mmu_zap_collapsible_sptes(kvm, new);
10882 
10883 	/*
10884 	 * Enable or disable dirty logging for the slot.
10885 	 *
10886 	 * For KVM_MR_DELETE and KVM_MR_MOVE, the shadow pages of the old
10887 	 * slot have been zapped so no dirty logging updates are needed for
10888 	 * the old slot.
10889 	 * For KVM_MR_CREATE and KVM_MR_MOVE, once the new slot is visible
10890 	 * any mappings that might be created in it will consume the
10891 	 * properties of the new slot and do not need to be updated here.
10892 	 *
10893 	 * When PML is enabled, the kvm_x86_ops dirty logging hooks are
10894 	 * called to enable/disable dirty logging.
10895 	 *
10896 	 * When disabling dirty logging with PML enabled, the D-bit is set
10897 	 * for sptes in the slot in order to prevent unnecessary GPA
10898 	 * logging in the PML buffer (and potential PML buffer full VMEXIT).
10899 	 * This guarantees leaving PML enabled for the guest's lifetime
10900 	 * won't have any additional overhead from PML when the guest is
10901 	 * running with dirty logging disabled.
10902 	 *
10903 	 * When enabling dirty logging, large sptes are write-protected
10904 	 * so they can be split on first write.  New large sptes cannot
10905 	 * be created for this slot until the end of the logging.
10906 	 * See the comments in fast_page_fault().
10907 	 * For small sptes, nothing is done if the dirty log is in the
10908 	 * initial-all-set state.  Otherwise, depending on whether pml
10909 	 * is enabled the D-bit or the W-bit will be cleared.
10910 	 */
10911 	if (new->flags & KVM_MEM_LOG_DIRTY_PAGES) {
10912 		if (kvm_x86_ops.slot_enable_log_dirty) {
10913 			kvm_x86_ops.slot_enable_log_dirty(kvm, new);
10914 		} else {
10915 			int level =
10916 				kvm_dirty_log_manual_protect_and_init_set(kvm) ?
10917 				PG_LEVEL_2M : PG_LEVEL_4K;
10918 
10919 			/*
10920 			 * If we're with initial-all-set, we don't need
10921 			 * to write protect any small page because
10922 			 * they're reported as dirty already.  However
10923 			 * we still need to write-protect huge pages
10924 			 * so that the page split can happen lazily on
10925 			 * the first write to the huge page.
10926 			 */
10927 			kvm_mmu_slot_remove_write_access(kvm, new, level);
10928 		}
10929 	} else {
10930 		if (kvm_x86_ops.slot_disable_log_dirty)
10931 			kvm_x86_ops.slot_disable_log_dirty(kvm, new);
10932 	}
10933 }
10934 
kvm_arch_commit_memory_region(struct kvm * kvm,const struct kvm_userspace_memory_region * mem,struct kvm_memory_slot * old,const struct kvm_memory_slot * new,enum kvm_mr_change change)10935 void kvm_arch_commit_memory_region(struct kvm *kvm,
10936 				const struct kvm_userspace_memory_region *mem,
10937 				struct kvm_memory_slot *old,
10938 				const struct kvm_memory_slot *new,
10939 				enum kvm_mr_change change)
10940 {
10941 	if (!kvm->arch.n_requested_mmu_pages)
10942 		kvm_mmu_change_mmu_pages(kvm,
10943 				kvm_mmu_calculate_default_mmu_pages(kvm));
10944 
10945 	/*
10946 	 * FIXME: const-ify all uses of struct kvm_memory_slot.
10947 	 */
10948 	kvm_mmu_slot_apply_flags(kvm, old, (struct kvm_memory_slot *) new, change);
10949 
10950 	/* Free the arrays associated with the old memslot. */
10951 	if (change == KVM_MR_MOVE)
10952 		kvm_arch_free_memslot(kvm, old);
10953 }
10954 
kvm_arch_flush_shadow_all(struct kvm * kvm)10955 void kvm_arch_flush_shadow_all(struct kvm *kvm)
10956 {
10957 	kvm_mmu_zap_all(kvm);
10958 }
10959 
kvm_arch_flush_shadow_memslot(struct kvm * kvm,struct kvm_memory_slot * slot)10960 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
10961 				   struct kvm_memory_slot *slot)
10962 {
10963 	kvm_page_track_flush_slot(kvm, slot);
10964 }
10965 
kvm_guest_apic_has_interrupt(struct kvm_vcpu * vcpu)10966 static inline bool kvm_guest_apic_has_interrupt(struct kvm_vcpu *vcpu)
10967 {
10968 	return (is_guest_mode(vcpu) &&
10969 			kvm_x86_ops.guest_apic_has_interrupt &&
10970 			kvm_x86_ops.guest_apic_has_interrupt(vcpu));
10971 }
10972 
kvm_vcpu_has_events(struct kvm_vcpu * vcpu)10973 static inline bool kvm_vcpu_has_events(struct kvm_vcpu *vcpu)
10974 {
10975 	if (!list_empty_careful(&vcpu->async_pf.done))
10976 		return true;
10977 
10978 	if (kvm_apic_has_events(vcpu))
10979 		return true;
10980 
10981 	if (vcpu->arch.pv.pv_unhalted)
10982 		return true;
10983 
10984 	if (vcpu->arch.exception.pending)
10985 		return true;
10986 
10987 	if (kvm_test_request(KVM_REQ_NMI, vcpu) ||
10988 	    (vcpu->arch.nmi_pending &&
10989 	     kvm_x86_ops.nmi_allowed(vcpu, false)))
10990 		return true;
10991 
10992 	if (kvm_test_request(KVM_REQ_SMI, vcpu) ||
10993 	    (vcpu->arch.smi_pending &&
10994 	     kvm_x86_ops.smi_allowed(vcpu, false)))
10995 		return true;
10996 
10997 	if (kvm_arch_interrupt_allowed(vcpu) &&
10998 	    (kvm_cpu_has_interrupt(vcpu) ||
10999 	    kvm_guest_apic_has_interrupt(vcpu)))
11000 		return true;
11001 
11002 	if (kvm_hv_has_stimer_pending(vcpu))
11003 		return true;
11004 
11005 	if (is_guest_mode(vcpu) &&
11006 	    kvm_x86_ops.nested_ops->hv_timer_pending &&
11007 	    kvm_x86_ops.nested_ops->hv_timer_pending(vcpu))
11008 		return true;
11009 
11010 	return false;
11011 }
11012 
kvm_arch_vcpu_runnable(struct kvm_vcpu * vcpu)11013 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
11014 {
11015 	return kvm_vcpu_running(vcpu) || kvm_vcpu_has_events(vcpu);
11016 }
11017 
kvm_arch_dy_runnable(struct kvm_vcpu * vcpu)11018 bool kvm_arch_dy_runnable(struct kvm_vcpu *vcpu)
11019 {
11020 	if (READ_ONCE(vcpu->arch.pv.pv_unhalted))
11021 		return true;
11022 
11023 	if (kvm_test_request(KVM_REQ_NMI, vcpu) ||
11024 		kvm_test_request(KVM_REQ_SMI, vcpu) ||
11025 		 kvm_test_request(KVM_REQ_EVENT, vcpu))
11026 		return true;
11027 
11028 	if (vcpu->arch.apicv_active && kvm_x86_ops.dy_apicv_has_pending_interrupt(vcpu))
11029 		return true;
11030 
11031 	return false;
11032 }
11033 
kvm_arch_vcpu_in_kernel(struct kvm_vcpu * vcpu)11034 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu)
11035 {
11036 	return vcpu->arch.preempted_in_kernel;
11037 }
11038 
kvm_arch_vcpu_should_kick(struct kvm_vcpu * vcpu)11039 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
11040 {
11041 	return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
11042 }
11043 
kvm_arch_interrupt_allowed(struct kvm_vcpu * vcpu)11044 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
11045 {
11046 	return kvm_x86_ops.interrupt_allowed(vcpu, false);
11047 }
11048 
kvm_get_linear_rip(struct kvm_vcpu * vcpu)11049 unsigned long kvm_get_linear_rip(struct kvm_vcpu *vcpu)
11050 {
11051 	if (is_64_bit_mode(vcpu))
11052 		return kvm_rip_read(vcpu);
11053 	return (u32)(get_segment_base(vcpu, VCPU_SREG_CS) +
11054 		     kvm_rip_read(vcpu));
11055 }
11056 EXPORT_SYMBOL_GPL(kvm_get_linear_rip);
11057 
kvm_is_linear_rip(struct kvm_vcpu * vcpu,unsigned long linear_rip)11058 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip)
11059 {
11060 	return kvm_get_linear_rip(vcpu) == linear_rip;
11061 }
11062 EXPORT_SYMBOL_GPL(kvm_is_linear_rip);
11063 
kvm_get_rflags(struct kvm_vcpu * vcpu)11064 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu)
11065 {
11066 	unsigned long rflags;
11067 
11068 	rflags = kvm_x86_ops.get_rflags(vcpu);
11069 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
11070 		rflags &= ~X86_EFLAGS_TF;
11071 	return rflags;
11072 }
11073 EXPORT_SYMBOL_GPL(kvm_get_rflags);
11074 
__kvm_set_rflags(struct kvm_vcpu * vcpu,unsigned long rflags)11075 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
11076 {
11077 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP &&
11078 	    kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip))
11079 		rflags |= X86_EFLAGS_TF;
11080 	kvm_x86_ops.set_rflags(vcpu, rflags);
11081 }
11082 
kvm_set_rflags(struct kvm_vcpu * vcpu,unsigned long rflags)11083 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
11084 {
11085 	__kvm_set_rflags(vcpu, rflags);
11086 	kvm_make_request(KVM_REQ_EVENT, vcpu);
11087 }
11088 EXPORT_SYMBOL_GPL(kvm_set_rflags);
11089 
kvm_arch_async_page_ready(struct kvm_vcpu * vcpu,struct kvm_async_pf * work)11090 void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu, struct kvm_async_pf *work)
11091 {
11092 	int r;
11093 
11094 	if ((vcpu->arch.mmu->direct_map != work->arch.direct_map) ||
11095 	      work->wakeup_all)
11096 		return;
11097 
11098 	r = kvm_mmu_reload(vcpu);
11099 	if (unlikely(r))
11100 		return;
11101 
11102 	if (!vcpu->arch.mmu->direct_map &&
11103 	      work->arch.cr3 != vcpu->arch.mmu->get_guest_pgd(vcpu))
11104 		return;
11105 
11106 	kvm_mmu_do_page_fault(vcpu, work->cr2_or_gpa, 0, true);
11107 }
11108 
kvm_async_pf_hash_fn(gfn_t gfn)11109 static inline u32 kvm_async_pf_hash_fn(gfn_t gfn)
11110 {
11111 	BUILD_BUG_ON(!is_power_of_2(ASYNC_PF_PER_VCPU));
11112 
11113 	return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU));
11114 }
11115 
kvm_async_pf_next_probe(u32 key)11116 static inline u32 kvm_async_pf_next_probe(u32 key)
11117 {
11118 	return (key + 1) & (ASYNC_PF_PER_VCPU - 1);
11119 }
11120 
kvm_add_async_pf_gfn(struct kvm_vcpu * vcpu,gfn_t gfn)11121 static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
11122 {
11123 	u32 key = kvm_async_pf_hash_fn(gfn);
11124 
11125 	while (vcpu->arch.apf.gfns[key] != ~0)
11126 		key = kvm_async_pf_next_probe(key);
11127 
11128 	vcpu->arch.apf.gfns[key] = gfn;
11129 }
11130 
kvm_async_pf_gfn_slot(struct kvm_vcpu * vcpu,gfn_t gfn)11131 static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn)
11132 {
11133 	int i;
11134 	u32 key = kvm_async_pf_hash_fn(gfn);
11135 
11136 	for (i = 0; i < ASYNC_PF_PER_VCPU &&
11137 		     (vcpu->arch.apf.gfns[key] != gfn &&
11138 		      vcpu->arch.apf.gfns[key] != ~0); i++)
11139 		key = kvm_async_pf_next_probe(key);
11140 
11141 	return key;
11142 }
11143 
kvm_find_async_pf_gfn(struct kvm_vcpu * vcpu,gfn_t gfn)11144 bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
11145 {
11146 	return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn;
11147 }
11148 
kvm_del_async_pf_gfn(struct kvm_vcpu * vcpu,gfn_t gfn)11149 static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
11150 {
11151 	u32 i, j, k;
11152 
11153 	i = j = kvm_async_pf_gfn_slot(vcpu, gfn);
11154 
11155 	if (WARN_ON_ONCE(vcpu->arch.apf.gfns[i] != gfn))
11156 		return;
11157 
11158 	while (true) {
11159 		vcpu->arch.apf.gfns[i] = ~0;
11160 		do {
11161 			j = kvm_async_pf_next_probe(j);
11162 			if (vcpu->arch.apf.gfns[j] == ~0)
11163 				return;
11164 			k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]);
11165 			/*
11166 			 * k lies cyclically in ]i,j]
11167 			 * |    i.k.j |
11168 			 * |....j i.k.| or  |.k..j i...|
11169 			 */
11170 		} while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j));
11171 		vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j];
11172 		i = j;
11173 	}
11174 }
11175 
apf_put_user_notpresent(struct kvm_vcpu * vcpu)11176 static inline int apf_put_user_notpresent(struct kvm_vcpu *vcpu)
11177 {
11178 	u32 reason = KVM_PV_REASON_PAGE_NOT_PRESENT;
11179 
11180 	return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, &reason,
11181 				      sizeof(reason));
11182 }
11183 
apf_put_user_ready(struct kvm_vcpu * vcpu,u32 token)11184 static inline int apf_put_user_ready(struct kvm_vcpu *vcpu, u32 token)
11185 {
11186 	unsigned int offset = offsetof(struct kvm_vcpu_pv_apf_data, token);
11187 
11188 	return kvm_write_guest_offset_cached(vcpu->kvm, &vcpu->arch.apf.data,
11189 					     &token, offset, sizeof(token));
11190 }
11191 
apf_pageready_slot_free(struct kvm_vcpu * vcpu)11192 static inline bool apf_pageready_slot_free(struct kvm_vcpu *vcpu)
11193 {
11194 	unsigned int offset = offsetof(struct kvm_vcpu_pv_apf_data, token);
11195 	u32 val;
11196 
11197 	if (kvm_read_guest_offset_cached(vcpu->kvm, &vcpu->arch.apf.data,
11198 					 &val, offset, sizeof(val)))
11199 		return false;
11200 
11201 	return !val;
11202 }
11203 
kvm_can_deliver_async_pf(struct kvm_vcpu * vcpu)11204 static bool kvm_can_deliver_async_pf(struct kvm_vcpu *vcpu)
11205 {
11206 	if (!vcpu->arch.apf.delivery_as_pf_vmexit && is_guest_mode(vcpu))
11207 		return false;
11208 
11209 	if (!kvm_pv_async_pf_enabled(vcpu) ||
11210 	    (vcpu->arch.apf.send_user_only && kvm_x86_ops.get_cpl(vcpu) == 0))
11211 		return false;
11212 
11213 	return true;
11214 }
11215 
kvm_can_do_async_pf(struct kvm_vcpu * vcpu)11216 bool kvm_can_do_async_pf(struct kvm_vcpu *vcpu)
11217 {
11218 	if (unlikely(!lapic_in_kernel(vcpu) ||
11219 		     kvm_event_needs_reinjection(vcpu) ||
11220 		     vcpu->arch.exception.pending))
11221 		return false;
11222 
11223 	if (kvm_hlt_in_guest(vcpu->kvm) && !kvm_can_deliver_async_pf(vcpu))
11224 		return false;
11225 
11226 	/*
11227 	 * If interrupts are off we cannot even use an artificial
11228 	 * halt state.
11229 	 */
11230 	return kvm_arch_interrupt_allowed(vcpu);
11231 }
11232 
kvm_arch_async_page_not_present(struct kvm_vcpu * vcpu,struct kvm_async_pf * work)11233 bool kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
11234 				     struct kvm_async_pf *work)
11235 {
11236 	struct x86_exception fault;
11237 
11238 	trace_kvm_async_pf_not_present(work->arch.token, work->cr2_or_gpa);
11239 	kvm_add_async_pf_gfn(vcpu, work->arch.gfn);
11240 
11241 	if (kvm_can_deliver_async_pf(vcpu) &&
11242 	    !apf_put_user_notpresent(vcpu)) {
11243 		fault.vector = PF_VECTOR;
11244 		fault.error_code_valid = true;
11245 		fault.error_code = 0;
11246 		fault.nested_page_fault = false;
11247 		fault.address = work->arch.token;
11248 		fault.async_page_fault = true;
11249 		kvm_inject_page_fault(vcpu, &fault);
11250 		return true;
11251 	} else {
11252 		/*
11253 		 * It is not possible to deliver a paravirtualized asynchronous
11254 		 * page fault, but putting the guest in an artificial halt state
11255 		 * can be beneficial nevertheless: if an interrupt arrives, we
11256 		 * can deliver it timely and perhaps the guest will schedule
11257 		 * another process.  When the instruction that triggered a page
11258 		 * fault is retried, hopefully the page will be ready in the host.
11259 		 */
11260 		kvm_make_request(KVM_REQ_APF_HALT, vcpu);
11261 		return false;
11262 	}
11263 }
11264 
kvm_arch_async_page_present(struct kvm_vcpu * vcpu,struct kvm_async_pf * work)11265 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
11266 				 struct kvm_async_pf *work)
11267 {
11268 	struct kvm_lapic_irq irq = {
11269 		.delivery_mode = APIC_DM_FIXED,
11270 		.vector = vcpu->arch.apf.vec
11271 	};
11272 
11273 	if (work->wakeup_all)
11274 		work->arch.token = ~0; /* broadcast wakeup */
11275 	else
11276 		kvm_del_async_pf_gfn(vcpu, work->arch.gfn);
11277 	trace_kvm_async_pf_ready(work->arch.token, work->cr2_or_gpa);
11278 
11279 	if ((work->wakeup_all || work->notpresent_injected) &&
11280 	    kvm_pv_async_pf_enabled(vcpu) &&
11281 	    !apf_put_user_ready(vcpu, work->arch.token)) {
11282 		vcpu->arch.apf.pageready_pending = true;
11283 		kvm_apic_set_irq(vcpu, &irq, NULL);
11284 	}
11285 
11286 	vcpu->arch.apf.halted = false;
11287 	vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
11288 }
11289 
kvm_arch_async_page_present_queued(struct kvm_vcpu * vcpu)11290 void kvm_arch_async_page_present_queued(struct kvm_vcpu *vcpu)
11291 {
11292 	kvm_make_request(KVM_REQ_APF_READY, vcpu);
11293 	if (!vcpu->arch.apf.pageready_pending)
11294 		kvm_vcpu_kick(vcpu);
11295 }
11296 
kvm_arch_can_dequeue_async_page_present(struct kvm_vcpu * vcpu)11297 bool kvm_arch_can_dequeue_async_page_present(struct kvm_vcpu *vcpu)
11298 {
11299 	if (!kvm_pv_async_pf_enabled(vcpu))
11300 		return true;
11301 	else
11302 		return kvm_lapic_enabled(vcpu) && apf_pageready_slot_free(vcpu);
11303 }
11304 
kvm_arch_start_assignment(struct kvm * kvm)11305 void kvm_arch_start_assignment(struct kvm *kvm)
11306 {
11307 	atomic_inc(&kvm->arch.assigned_device_count);
11308 }
11309 EXPORT_SYMBOL_GPL(kvm_arch_start_assignment);
11310 
kvm_arch_end_assignment(struct kvm * kvm)11311 void kvm_arch_end_assignment(struct kvm *kvm)
11312 {
11313 	atomic_dec(&kvm->arch.assigned_device_count);
11314 }
11315 EXPORT_SYMBOL_GPL(kvm_arch_end_assignment);
11316 
kvm_arch_has_assigned_device(struct kvm * kvm)11317 bool noinstr kvm_arch_has_assigned_device(struct kvm *kvm)
11318 {
11319 	return arch_atomic_read(&kvm->arch.assigned_device_count);
11320 }
11321 EXPORT_SYMBOL_GPL(kvm_arch_has_assigned_device);
11322 
kvm_arch_register_noncoherent_dma(struct kvm * kvm)11323 void kvm_arch_register_noncoherent_dma(struct kvm *kvm)
11324 {
11325 	atomic_inc(&kvm->arch.noncoherent_dma_count);
11326 }
11327 EXPORT_SYMBOL_GPL(kvm_arch_register_noncoherent_dma);
11328 
kvm_arch_unregister_noncoherent_dma(struct kvm * kvm)11329 void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm)
11330 {
11331 	atomic_dec(&kvm->arch.noncoherent_dma_count);
11332 }
11333 EXPORT_SYMBOL_GPL(kvm_arch_unregister_noncoherent_dma);
11334 
kvm_arch_has_noncoherent_dma(struct kvm * kvm)11335 bool kvm_arch_has_noncoherent_dma(struct kvm *kvm)
11336 {
11337 	return atomic_read(&kvm->arch.noncoherent_dma_count);
11338 }
11339 EXPORT_SYMBOL_GPL(kvm_arch_has_noncoherent_dma);
11340 
kvm_arch_has_irq_bypass(void)11341 bool kvm_arch_has_irq_bypass(void)
11342 {
11343 	return true;
11344 }
11345 
kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer * cons,struct irq_bypass_producer * prod)11346 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons,
11347 				      struct irq_bypass_producer *prod)
11348 {
11349 	struct kvm_kernel_irqfd *irqfd =
11350 		container_of(cons, struct kvm_kernel_irqfd, consumer);
11351 	int ret;
11352 
11353 	irqfd->producer = prod;
11354 	kvm_arch_start_assignment(irqfd->kvm);
11355 	ret = kvm_x86_ops.update_pi_irte(irqfd->kvm,
11356 					 prod->irq, irqfd->gsi, 1);
11357 
11358 	if (ret)
11359 		kvm_arch_end_assignment(irqfd->kvm);
11360 
11361 	return ret;
11362 }
11363 
kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer * cons,struct irq_bypass_producer * prod)11364 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons,
11365 				      struct irq_bypass_producer *prod)
11366 {
11367 	int ret;
11368 	struct kvm_kernel_irqfd *irqfd =
11369 		container_of(cons, struct kvm_kernel_irqfd, consumer);
11370 
11371 	WARN_ON(irqfd->producer != prod);
11372 	irqfd->producer = NULL;
11373 
11374 	/*
11375 	 * When producer of consumer is unregistered, we change back to
11376 	 * remapped mode, so we can re-use the current implementation
11377 	 * when the irq is masked/disabled or the consumer side (KVM
11378 	 * int this case doesn't want to receive the interrupts.
11379 	*/
11380 	ret = kvm_x86_ops.update_pi_irte(irqfd->kvm, prod->irq, irqfd->gsi, 0);
11381 	if (ret)
11382 		printk(KERN_INFO "irq bypass consumer (token %p) unregistration"
11383 		       " fails: %d\n", irqfd->consumer.token, ret);
11384 
11385 	kvm_arch_end_assignment(irqfd->kvm);
11386 }
11387 
kvm_arch_update_irqfd_routing(struct kvm * kvm,unsigned int host_irq,uint32_t guest_irq,bool set)11388 int kvm_arch_update_irqfd_routing(struct kvm *kvm, unsigned int host_irq,
11389 				   uint32_t guest_irq, bool set)
11390 {
11391 	return kvm_x86_ops.update_pi_irte(kvm, host_irq, guest_irq, set);
11392 }
11393 
kvm_vector_hashing_enabled(void)11394 bool kvm_vector_hashing_enabled(void)
11395 {
11396 	return vector_hashing;
11397 }
11398 
kvm_arch_no_poll(struct kvm_vcpu * vcpu)11399 bool kvm_arch_no_poll(struct kvm_vcpu *vcpu)
11400 {
11401 	return (vcpu->arch.msr_kvm_poll_control & 1) == 0;
11402 }
11403 EXPORT_SYMBOL_GPL(kvm_arch_no_poll);
11404 
11405 
kvm_spec_ctrl_test_value(u64 value)11406 int kvm_spec_ctrl_test_value(u64 value)
11407 {
11408 	/*
11409 	 * test that setting IA32_SPEC_CTRL to given value
11410 	 * is allowed by the host processor
11411 	 */
11412 
11413 	u64 saved_value;
11414 	unsigned long flags;
11415 	int ret = 0;
11416 
11417 	local_irq_save(flags);
11418 
11419 	if (rdmsrl_safe(MSR_IA32_SPEC_CTRL, &saved_value))
11420 		ret = 1;
11421 	else if (wrmsrl_safe(MSR_IA32_SPEC_CTRL, value))
11422 		ret = 1;
11423 	else
11424 		wrmsrl(MSR_IA32_SPEC_CTRL, saved_value);
11425 
11426 	local_irq_restore(flags);
11427 
11428 	return ret;
11429 }
11430 EXPORT_SYMBOL_GPL(kvm_spec_ctrl_test_value);
11431 
kvm_fixup_and_inject_pf_error(struct kvm_vcpu * vcpu,gva_t gva,u16 error_code)11432 void kvm_fixup_and_inject_pf_error(struct kvm_vcpu *vcpu, gva_t gva, u16 error_code)
11433 {
11434 	struct x86_exception fault;
11435 	u32 access = error_code &
11436 		(PFERR_WRITE_MASK | PFERR_FETCH_MASK | PFERR_USER_MASK);
11437 
11438 	if (!(error_code & PFERR_PRESENT_MASK) ||
11439 	    vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, &fault) != UNMAPPED_GVA) {
11440 		/*
11441 		 * If vcpu->arch.walk_mmu->gva_to_gpa succeeded, the page
11442 		 * tables probably do not match the TLB.  Just proceed
11443 		 * with the error code that the processor gave.
11444 		 */
11445 		fault.vector = PF_VECTOR;
11446 		fault.error_code_valid = true;
11447 		fault.error_code = error_code;
11448 		fault.nested_page_fault = false;
11449 		fault.address = gva;
11450 	}
11451 	vcpu->arch.walk_mmu->inject_page_fault(vcpu, &fault);
11452 }
11453 EXPORT_SYMBOL_GPL(kvm_fixup_and_inject_pf_error);
11454 
11455 /*
11456  * Handles kvm_read/write_guest_virt*() result and either injects #PF or returns
11457  * KVM_EXIT_INTERNAL_ERROR for cases not currently handled by KVM. Return value
11458  * indicates whether exit to userspace is needed.
11459  */
kvm_handle_memory_failure(struct kvm_vcpu * vcpu,int r,struct x86_exception * e)11460 int kvm_handle_memory_failure(struct kvm_vcpu *vcpu, int r,
11461 			      struct x86_exception *e)
11462 {
11463 	if (r == X86EMUL_PROPAGATE_FAULT) {
11464 		kvm_inject_emulated_page_fault(vcpu, e);
11465 		return 1;
11466 	}
11467 
11468 	/*
11469 	 * In case kvm_read/write_guest_virt*() failed with X86EMUL_IO_NEEDED
11470 	 * while handling a VMX instruction KVM could've handled the request
11471 	 * correctly by exiting to userspace and performing I/O but there
11472 	 * doesn't seem to be a real use-case behind such requests, just return
11473 	 * KVM_EXIT_INTERNAL_ERROR for now.
11474 	 */
11475 	vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
11476 	vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
11477 	vcpu->run->internal.ndata = 0;
11478 
11479 	return 0;
11480 }
11481 EXPORT_SYMBOL_GPL(kvm_handle_memory_failure);
11482 
kvm_handle_invpcid(struct kvm_vcpu * vcpu,unsigned long type,gva_t gva)11483 int kvm_handle_invpcid(struct kvm_vcpu *vcpu, unsigned long type, gva_t gva)
11484 {
11485 	bool pcid_enabled;
11486 	struct x86_exception e;
11487 	unsigned i;
11488 	unsigned long roots_to_free = 0;
11489 	struct {
11490 		u64 pcid;
11491 		u64 gla;
11492 	} operand;
11493 	int r;
11494 
11495 	r = kvm_read_guest_virt(vcpu, gva, &operand, sizeof(operand), &e);
11496 	if (r != X86EMUL_CONTINUE)
11497 		return kvm_handle_memory_failure(vcpu, r, &e);
11498 
11499 	if (operand.pcid >> 12 != 0) {
11500 		kvm_inject_gp(vcpu, 0);
11501 		return 1;
11502 	}
11503 
11504 	pcid_enabled = kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE);
11505 
11506 	switch (type) {
11507 	case INVPCID_TYPE_INDIV_ADDR:
11508 		if ((!pcid_enabled && (operand.pcid != 0)) ||
11509 		    is_noncanonical_address(operand.gla, vcpu)) {
11510 			kvm_inject_gp(vcpu, 0);
11511 			return 1;
11512 		}
11513 		kvm_mmu_invpcid_gva(vcpu, operand.gla, operand.pcid);
11514 		return kvm_skip_emulated_instruction(vcpu);
11515 
11516 	case INVPCID_TYPE_SINGLE_CTXT:
11517 		if (!pcid_enabled && (operand.pcid != 0)) {
11518 			kvm_inject_gp(vcpu, 0);
11519 			return 1;
11520 		}
11521 
11522 		if (kvm_get_active_pcid(vcpu) == operand.pcid) {
11523 			kvm_mmu_sync_roots(vcpu);
11524 			kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
11525 		}
11526 
11527 		for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
11528 			if (kvm_get_pcid(vcpu, vcpu->arch.mmu->prev_roots[i].pgd)
11529 			    == operand.pcid)
11530 				roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i);
11531 
11532 		kvm_mmu_free_roots(vcpu, vcpu->arch.mmu, roots_to_free);
11533 		/*
11534 		 * If neither the current cr3 nor any of the prev_roots use the
11535 		 * given PCID, then nothing needs to be done here because a
11536 		 * resync will happen anyway before switching to any other CR3.
11537 		 */
11538 
11539 		return kvm_skip_emulated_instruction(vcpu);
11540 
11541 	case INVPCID_TYPE_ALL_NON_GLOBAL:
11542 		/*
11543 		 * Currently, KVM doesn't mark global entries in the shadow
11544 		 * page tables, so a non-global flush just degenerates to a
11545 		 * global flush. If needed, we could optimize this later by
11546 		 * keeping track of global entries in shadow page tables.
11547 		 */
11548 
11549 		fallthrough;
11550 	case INVPCID_TYPE_ALL_INCL_GLOBAL:
11551 		kvm_make_request(KVM_REQ_MMU_RELOAD, vcpu);
11552 		return kvm_skip_emulated_instruction(vcpu);
11553 
11554 	default:
11555 		BUG(); /* We have already checked above that type <= 3 */
11556 	}
11557 }
11558 EXPORT_SYMBOL_GPL(kvm_handle_invpcid);
11559 
11560 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit);
11561 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_fast_mmio);
11562 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq);
11563 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault);
11564 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr);
11565 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr);
11566 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmrun);
11567 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit);
11568 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject);
11569 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit);
11570 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmenter_failed);
11571 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga);
11572 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit);
11573 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts);
11574 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_write_tsc_offset);
11575 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ple_window_update);
11576 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pml_full);
11577 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pi_irte_update);
11578 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_unaccelerated_access);
11579 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_incomplete_ipi);
11580 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_ga_log);
11581 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_apicv_update_request);
11582 
kvm_x86_init(void)11583 static int __init kvm_x86_init(void)
11584 {
11585 	kvm_mmu_x86_module_init();
11586 	return 0;
11587 }
11588 module_init(kvm_x86_init);
11589 
kvm_x86_exit(void)11590 static void __exit kvm_x86_exit(void)
11591 {
11592 	/*
11593 	 * If module_init() is implemented, module_exit() must also be
11594 	 * implemented to allow module unload.
11595 	 */
11596 }
11597 module_exit(kvm_x86_exit);
11598