1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Kernel-based Virtual Machine driver for Linux
4 *
5 * derived from drivers/kvm/kvm_main.c
6 *
7 * Copyright (C) 2006 Qumranet, Inc.
8 * Copyright (C) 2008 Qumranet, Inc.
9 * Copyright IBM Corporation, 2008
10 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
11 *
12 * Authors:
13 * Avi Kivity <avi@qumranet.com>
14 * Yaniv Kamay <yaniv@qumranet.com>
15 * Amit Shah <amit.shah@qumranet.com>
16 * Ben-Ami Yassour <benami@il.ibm.com>
17 */
18
19 #include <linux/kvm_host.h>
20 #include "irq.h"
21 #include "ioapic.h"
22 #include "mmu.h"
23 #include "i8254.h"
24 #include "tss.h"
25 #include "kvm_cache_regs.h"
26 #include "kvm_emulate.h"
27 #include "x86.h"
28 #include "cpuid.h"
29 #include "pmu.h"
30 #include "hyperv.h"
31 #include "lapic.h"
32
33 #include <linux/clocksource.h>
34 #include <linux/interrupt.h>
35 #include <linux/kvm.h>
36 #include <linux/fs.h>
37 #include <linux/vmalloc.h>
38 #include <linux/export.h>
39 #include <linux/moduleparam.h>
40 #include <linux/mman.h>
41 #include <linux/highmem.h>
42 #include <linux/iommu.h>
43 #include <linux/intel-iommu.h>
44 #include <linux/cpufreq.h>
45 #include <linux/user-return-notifier.h>
46 #include <linux/srcu.h>
47 #include <linux/slab.h>
48 #include <linux/perf_event.h>
49 #include <linux/uaccess.h>
50 #include <linux/hash.h>
51 #include <linux/pci.h>
52 #include <linux/timekeeper_internal.h>
53 #include <linux/pvclock_gtod.h>
54 #include <linux/kvm_irqfd.h>
55 #include <linux/irqbypass.h>
56 #include <linux/sched/stat.h>
57 #include <linux/sched/isolation.h>
58 #include <linux/mem_encrypt.h>
59 #include <linux/entry-kvm.h>
60
61 #include <trace/events/kvm.h>
62
63 #include <asm/debugreg.h>
64 #include <asm/msr.h>
65 #include <asm/desc.h>
66 #include <asm/mce.h>
67 #include <linux/kernel_stat.h>
68 #include <asm/fpu/internal.h> /* Ugh! */
69 #include <asm/pvclock.h>
70 #include <asm/div64.h>
71 #include <asm/irq_remapping.h>
72 #include <asm/mshyperv.h>
73 #include <asm/hypervisor.h>
74 #include <asm/tlbflush.h>
75 #include <asm/intel_pt.h>
76 #include <asm/emulate_prefix.h>
77 #include <clocksource/hyperv_timer.h>
78
79 #define CREATE_TRACE_POINTS
80 #include "trace.h"
81
82 #define MAX_IO_MSRS 256
83 #define KVM_MAX_MCE_BANKS 32
84 u64 __read_mostly kvm_mce_cap_supported = MCG_CTL_P | MCG_SER_P;
85 EXPORT_SYMBOL_GPL(kvm_mce_cap_supported);
86
87 #define emul_to_vcpu(ctxt) \
88 ((struct kvm_vcpu *)(ctxt)->vcpu)
89
90 /* EFER defaults:
91 * - enable syscall per default because its emulated by KVM
92 * - enable LME and LMA per default on 64 bit KVM
93 */
94 #ifdef CONFIG_X86_64
95 static
96 u64 __read_mostly efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA));
97 #else
98 static u64 __read_mostly efer_reserved_bits = ~((u64)EFER_SCE);
99 #endif
100
101 static u64 __read_mostly cr4_reserved_bits = CR4_RESERVED_BITS;
102
103 #define KVM_X2APIC_API_VALID_FLAGS (KVM_X2APIC_API_USE_32BIT_IDS | \
104 KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
105
106 static void update_cr8_intercept(struct kvm_vcpu *vcpu);
107 static void process_nmi(struct kvm_vcpu *vcpu);
108 static void process_smi(struct kvm_vcpu *vcpu);
109 static void enter_smm(struct kvm_vcpu *vcpu);
110 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags);
111 static void store_regs(struct kvm_vcpu *vcpu);
112 static int sync_regs(struct kvm_vcpu *vcpu);
113
114 struct kvm_x86_ops kvm_x86_ops __read_mostly;
115 EXPORT_SYMBOL_GPL(kvm_x86_ops);
116
117 static bool __read_mostly ignore_msrs = 0;
118 module_param(ignore_msrs, bool, S_IRUGO | S_IWUSR);
119
120 static bool __read_mostly report_ignored_msrs = true;
121 module_param(report_ignored_msrs, bool, S_IRUGO | S_IWUSR);
122
123 unsigned int min_timer_period_us = 200;
124 module_param(min_timer_period_us, uint, S_IRUGO | S_IWUSR);
125
126 static bool __read_mostly kvmclock_periodic_sync = true;
127 module_param(kvmclock_periodic_sync, bool, S_IRUGO);
128
129 bool __read_mostly kvm_has_tsc_control;
130 EXPORT_SYMBOL_GPL(kvm_has_tsc_control);
131 u32 __read_mostly kvm_max_guest_tsc_khz;
132 EXPORT_SYMBOL_GPL(kvm_max_guest_tsc_khz);
133 u8 __read_mostly kvm_tsc_scaling_ratio_frac_bits;
134 EXPORT_SYMBOL_GPL(kvm_tsc_scaling_ratio_frac_bits);
135 u64 __read_mostly kvm_max_tsc_scaling_ratio;
136 EXPORT_SYMBOL_GPL(kvm_max_tsc_scaling_ratio);
137 u64 __read_mostly kvm_default_tsc_scaling_ratio;
138 EXPORT_SYMBOL_GPL(kvm_default_tsc_scaling_ratio);
139
140 /* tsc tolerance in parts per million - default to 1/2 of the NTP threshold */
141 static u32 __read_mostly tsc_tolerance_ppm = 250;
142 module_param(tsc_tolerance_ppm, uint, S_IRUGO | S_IWUSR);
143
144 /*
145 * lapic timer advance (tscdeadline mode only) in nanoseconds. '-1' enables
146 * adaptive tuning starting from default advancment of 1000ns. '0' disables
147 * advancement entirely. Any other value is used as-is and disables adaptive
148 * tuning, i.e. allows priveleged userspace to set an exact advancement time.
149 */
150 static int __read_mostly lapic_timer_advance_ns = -1;
151 module_param(lapic_timer_advance_ns, int, S_IRUGO | S_IWUSR);
152
153 static bool __read_mostly vector_hashing = true;
154 module_param(vector_hashing, bool, S_IRUGO);
155
156 bool __read_mostly enable_vmware_backdoor = false;
157 module_param(enable_vmware_backdoor, bool, S_IRUGO);
158 EXPORT_SYMBOL_GPL(enable_vmware_backdoor);
159
160 static bool __read_mostly force_emulation_prefix = false;
161 module_param(force_emulation_prefix, bool, S_IRUGO);
162
163 int __read_mostly pi_inject_timer = -1;
164 module_param(pi_inject_timer, bint, S_IRUGO | S_IWUSR);
165
166 /*
167 * Restoring the host value for MSRs that are only consumed when running in
168 * usermode, e.g. SYSCALL MSRs and TSC_AUX, can be deferred until the CPU
169 * returns to userspace, i.e. the kernel can run with the guest's value.
170 */
171 #define KVM_MAX_NR_USER_RETURN_MSRS 16
172
173 struct kvm_user_return_msrs_global {
174 int nr;
175 u32 msrs[KVM_MAX_NR_USER_RETURN_MSRS];
176 };
177
178 struct kvm_user_return_msrs {
179 struct user_return_notifier urn;
180 bool registered;
181 struct kvm_user_return_msr_values {
182 u64 host;
183 u64 curr;
184 } values[KVM_MAX_NR_USER_RETURN_MSRS];
185 };
186
187 static struct kvm_user_return_msrs_global __read_mostly user_return_msrs_global;
188 static struct kvm_user_return_msrs __percpu *user_return_msrs;
189
190 #define KVM_SUPPORTED_XCR0 (XFEATURE_MASK_FP | XFEATURE_MASK_SSE \
191 | XFEATURE_MASK_YMM | XFEATURE_MASK_BNDREGS \
192 | XFEATURE_MASK_BNDCSR | XFEATURE_MASK_AVX512 \
193 | XFEATURE_MASK_PKRU)
194
195 u64 __read_mostly host_efer;
196 EXPORT_SYMBOL_GPL(host_efer);
197
198 bool __read_mostly allow_smaller_maxphyaddr = 0;
199 EXPORT_SYMBOL_GPL(allow_smaller_maxphyaddr);
200
201 static u64 __read_mostly host_xss;
202 u64 __read_mostly supported_xss;
203 EXPORT_SYMBOL_GPL(supported_xss);
204
205 struct kvm_stats_debugfs_item debugfs_entries[] = {
206 VCPU_STAT("pf_fixed", pf_fixed),
207 VCPU_STAT("pf_guest", pf_guest),
208 VCPU_STAT("tlb_flush", tlb_flush),
209 VCPU_STAT("invlpg", invlpg),
210 VCPU_STAT("exits", exits),
211 VCPU_STAT("io_exits", io_exits),
212 VCPU_STAT("mmio_exits", mmio_exits),
213 VCPU_STAT("signal_exits", signal_exits),
214 VCPU_STAT("irq_window", irq_window_exits),
215 VCPU_STAT("nmi_window", nmi_window_exits),
216 VCPU_STAT("halt_exits", halt_exits),
217 VCPU_STAT("halt_successful_poll", halt_successful_poll),
218 VCPU_STAT("halt_attempted_poll", halt_attempted_poll),
219 VCPU_STAT("halt_poll_invalid", halt_poll_invalid),
220 VCPU_STAT("halt_wakeup", halt_wakeup),
221 VCPU_STAT("hypercalls", hypercalls),
222 VCPU_STAT("request_irq", request_irq_exits),
223 VCPU_STAT("irq_exits", irq_exits),
224 VCPU_STAT("host_state_reload", host_state_reload),
225 VCPU_STAT("fpu_reload", fpu_reload),
226 VCPU_STAT("insn_emulation", insn_emulation),
227 VCPU_STAT("insn_emulation_fail", insn_emulation_fail),
228 VCPU_STAT("irq_injections", irq_injections),
229 VCPU_STAT("nmi_injections", nmi_injections),
230 VCPU_STAT("req_event", req_event),
231 VCPU_STAT("l1d_flush", l1d_flush),
232 VCPU_STAT("halt_poll_success_ns", halt_poll_success_ns),
233 VCPU_STAT("halt_poll_fail_ns", halt_poll_fail_ns),
234 VCPU_STAT("preemption_reported", preemption_reported),
235 VCPU_STAT("preemption_other", preemption_other),
236 VM_STAT("mmu_shadow_zapped", mmu_shadow_zapped),
237 VM_STAT("mmu_pte_write", mmu_pte_write),
238 VM_STAT("mmu_pde_zapped", mmu_pde_zapped),
239 VM_STAT("mmu_flooded", mmu_flooded),
240 VM_STAT("mmu_recycled", mmu_recycled),
241 VM_STAT("mmu_cache_miss", mmu_cache_miss),
242 VM_STAT("mmu_unsync", mmu_unsync),
243 VM_STAT("remote_tlb_flush", remote_tlb_flush),
244 VM_STAT("largepages", lpages, .mode = 0444),
245 VM_STAT("nx_largepages_splitted", nx_lpage_splits, .mode = 0444),
246 VM_STAT("max_mmu_page_hash_collisions", max_mmu_page_hash_collisions),
247 { NULL }
248 };
249
250 u64 __read_mostly host_xcr0;
251 u64 __read_mostly supported_xcr0;
252 EXPORT_SYMBOL_GPL(supported_xcr0);
253
254 static struct kmem_cache *x86_fpu_cache;
255
256 static struct kmem_cache *x86_emulator_cache;
257
258 /*
259 * When called, it means the previous get/set msr reached an invalid msr.
260 * Return true if we want to ignore/silent this failed msr access.
261 */
kvm_msr_ignored_check(struct kvm_vcpu * vcpu,u32 msr,u64 data,bool write)262 static bool kvm_msr_ignored_check(struct kvm_vcpu *vcpu, u32 msr,
263 u64 data, bool write)
264 {
265 const char *op = write ? "wrmsr" : "rdmsr";
266
267 if (ignore_msrs) {
268 if (report_ignored_msrs)
269 kvm_pr_unimpl("ignored %s: 0x%x data 0x%llx\n",
270 op, msr, data);
271 /* Mask the error */
272 return true;
273 } else {
274 kvm_debug_ratelimited("unhandled %s: 0x%x data 0x%llx\n",
275 op, msr, data);
276 return false;
277 }
278 }
279
kvm_alloc_emulator_cache(void)280 static struct kmem_cache *kvm_alloc_emulator_cache(void)
281 {
282 unsigned int useroffset = offsetof(struct x86_emulate_ctxt, src);
283 unsigned int size = sizeof(struct x86_emulate_ctxt);
284
285 return kmem_cache_create_usercopy("x86_emulator", size,
286 __alignof__(struct x86_emulate_ctxt),
287 SLAB_ACCOUNT, useroffset,
288 size - useroffset, NULL);
289 }
290
291 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt);
292
kvm_async_pf_hash_reset(struct kvm_vcpu * vcpu)293 static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu)
294 {
295 int i;
296 for (i = 0; i < ASYNC_PF_PER_VCPU; i++)
297 vcpu->arch.apf.gfns[i] = ~0;
298 }
299
kvm_on_user_return(struct user_return_notifier * urn)300 static void kvm_on_user_return(struct user_return_notifier *urn)
301 {
302 unsigned slot;
303 struct kvm_user_return_msrs *msrs
304 = container_of(urn, struct kvm_user_return_msrs, urn);
305 struct kvm_user_return_msr_values *values;
306 unsigned long flags;
307
308 /*
309 * Disabling irqs at this point since the following code could be
310 * interrupted and executed through kvm_arch_hardware_disable()
311 */
312 local_irq_save(flags);
313 if (msrs->registered) {
314 msrs->registered = false;
315 user_return_notifier_unregister(urn);
316 }
317 local_irq_restore(flags);
318 for (slot = 0; slot < user_return_msrs_global.nr; ++slot) {
319 values = &msrs->values[slot];
320 if (values->host != values->curr) {
321 wrmsrl(user_return_msrs_global.msrs[slot], values->host);
322 values->curr = values->host;
323 }
324 }
325 }
326
kvm_probe_user_return_msr(u32 msr)327 int kvm_probe_user_return_msr(u32 msr)
328 {
329 u64 val;
330 int ret;
331
332 preempt_disable();
333 ret = rdmsrl_safe(msr, &val);
334 if (ret)
335 goto out;
336 ret = wrmsrl_safe(msr, val);
337 out:
338 preempt_enable();
339 return ret;
340 }
341 EXPORT_SYMBOL_GPL(kvm_probe_user_return_msr);
342
kvm_define_user_return_msr(unsigned slot,u32 msr)343 void kvm_define_user_return_msr(unsigned slot, u32 msr)
344 {
345 BUG_ON(slot >= KVM_MAX_NR_USER_RETURN_MSRS);
346 user_return_msrs_global.msrs[slot] = msr;
347 if (slot >= user_return_msrs_global.nr)
348 user_return_msrs_global.nr = slot + 1;
349 }
350 EXPORT_SYMBOL_GPL(kvm_define_user_return_msr);
351
kvm_user_return_msr_cpu_online(void)352 static void kvm_user_return_msr_cpu_online(void)
353 {
354 unsigned int cpu = smp_processor_id();
355 struct kvm_user_return_msrs *msrs = per_cpu_ptr(user_return_msrs, cpu);
356 u64 value;
357 int i;
358
359 for (i = 0; i < user_return_msrs_global.nr; ++i) {
360 rdmsrl_safe(user_return_msrs_global.msrs[i], &value);
361 msrs->values[i].host = value;
362 msrs->values[i].curr = value;
363 }
364 }
365
kvm_set_user_return_msr(unsigned slot,u64 value,u64 mask)366 int kvm_set_user_return_msr(unsigned slot, u64 value, u64 mask)
367 {
368 unsigned int cpu = smp_processor_id();
369 struct kvm_user_return_msrs *msrs = per_cpu_ptr(user_return_msrs, cpu);
370 int err;
371
372 value = (value & mask) | (msrs->values[slot].host & ~mask);
373 if (value == msrs->values[slot].curr)
374 return 0;
375 err = wrmsrl_safe(user_return_msrs_global.msrs[slot], value);
376 if (err)
377 return 1;
378
379 msrs->values[slot].curr = value;
380 if (!msrs->registered) {
381 msrs->urn.on_user_return = kvm_on_user_return;
382 user_return_notifier_register(&msrs->urn);
383 msrs->registered = true;
384 }
385 return 0;
386 }
387 EXPORT_SYMBOL_GPL(kvm_set_user_return_msr);
388
drop_user_return_notifiers(void)389 static void drop_user_return_notifiers(void)
390 {
391 unsigned int cpu = smp_processor_id();
392 struct kvm_user_return_msrs *msrs = per_cpu_ptr(user_return_msrs, cpu);
393
394 if (msrs->registered)
395 kvm_on_user_return(&msrs->urn);
396 }
397
kvm_get_apic_base(struct kvm_vcpu * vcpu)398 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
399 {
400 return vcpu->arch.apic_base;
401 }
402 EXPORT_SYMBOL_GPL(kvm_get_apic_base);
403
kvm_get_apic_mode(struct kvm_vcpu * vcpu)404 enum lapic_mode kvm_get_apic_mode(struct kvm_vcpu *vcpu)
405 {
406 return kvm_apic_mode(kvm_get_apic_base(vcpu));
407 }
408 EXPORT_SYMBOL_GPL(kvm_get_apic_mode);
409
kvm_set_apic_base(struct kvm_vcpu * vcpu,struct msr_data * msr_info)410 int kvm_set_apic_base(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
411 {
412 enum lapic_mode old_mode = kvm_get_apic_mode(vcpu);
413 enum lapic_mode new_mode = kvm_apic_mode(msr_info->data);
414 u64 reserved_bits = ((~0ULL) << cpuid_maxphyaddr(vcpu)) | 0x2ff |
415 (guest_cpuid_has(vcpu, X86_FEATURE_X2APIC) ? 0 : X2APIC_ENABLE);
416
417 if ((msr_info->data & reserved_bits) != 0 || new_mode == LAPIC_MODE_INVALID)
418 return 1;
419 if (!msr_info->host_initiated) {
420 if (old_mode == LAPIC_MODE_X2APIC && new_mode == LAPIC_MODE_XAPIC)
421 return 1;
422 if (old_mode == LAPIC_MODE_DISABLED && new_mode == LAPIC_MODE_X2APIC)
423 return 1;
424 }
425
426 kvm_lapic_set_base(vcpu, msr_info->data);
427 kvm_recalculate_apic_map(vcpu->kvm);
428 return 0;
429 }
430 EXPORT_SYMBOL_GPL(kvm_set_apic_base);
431
kvm_spurious_fault(void)432 asmlinkage __visible noinstr void kvm_spurious_fault(void)
433 {
434 /* Fault while not rebooting. We want the trace. */
435 BUG_ON(!kvm_rebooting);
436 }
437 EXPORT_SYMBOL_GPL(kvm_spurious_fault);
438
439 #define EXCPT_BENIGN 0
440 #define EXCPT_CONTRIBUTORY 1
441 #define EXCPT_PF 2
442
exception_class(int vector)443 static int exception_class(int vector)
444 {
445 switch (vector) {
446 case PF_VECTOR:
447 return EXCPT_PF;
448 case DE_VECTOR:
449 case TS_VECTOR:
450 case NP_VECTOR:
451 case SS_VECTOR:
452 case GP_VECTOR:
453 return EXCPT_CONTRIBUTORY;
454 default:
455 break;
456 }
457 return EXCPT_BENIGN;
458 }
459
460 #define EXCPT_FAULT 0
461 #define EXCPT_TRAP 1
462 #define EXCPT_ABORT 2
463 #define EXCPT_INTERRUPT 3
464 #define EXCPT_DB 4
465
exception_type(int vector)466 static int exception_type(int vector)
467 {
468 unsigned int mask;
469
470 if (WARN_ON(vector > 31 || vector == NMI_VECTOR))
471 return EXCPT_INTERRUPT;
472
473 mask = 1 << vector;
474
475 /*
476 * #DBs can be trap-like or fault-like, the caller must check other CPU
477 * state, e.g. DR6, to determine whether a #DB is a trap or fault.
478 */
479 if (mask & (1 << DB_VECTOR))
480 return EXCPT_DB;
481
482 if (mask & ((1 << BP_VECTOR) | (1 << OF_VECTOR)))
483 return EXCPT_TRAP;
484
485 if (mask & ((1 << DF_VECTOR) | (1 << MC_VECTOR)))
486 return EXCPT_ABORT;
487
488 /* Reserved exceptions will result in fault */
489 return EXCPT_FAULT;
490 }
491
kvm_deliver_exception_payload(struct kvm_vcpu * vcpu)492 void kvm_deliver_exception_payload(struct kvm_vcpu *vcpu)
493 {
494 unsigned nr = vcpu->arch.exception.nr;
495 bool has_payload = vcpu->arch.exception.has_payload;
496 unsigned long payload = vcpu->arch.exception.payload;
497
498 if (!has_payload)
499 return;
500
501 switch (nr) {
502 case DB_VECTOR:
503 /*
504 * "Certain debug exceptions may clear bit 0-3. The
505 * remaining contents of the DR6 register are never
506 * cleared by the processor".
507 */
508 vcpu->arch.dr6 &= ~DR_TRAP_BITS;
509 /*
510 * DR6.RTM is set by all #DB exceptions that don't clear it.
511 */
512 vcpu->arch.dr6 |= DR6_RTM;
513 vcpu->arch.dr6 |= payload;
514 /*
515 * Bit 16 should be set in the payload whenever the #DB
516 * exception should clear DR6.RTM. This makes the payload
517 * compatible with the pending debug exceptions under VMX.
518 * Though not currently documented in the SDM, this also
519 * makes the payload compatible with the exit qualification
520 * for #DB exceptions under VMX.
521 */
522 vcpu->arch.dr6 ^= payload & DR6_RTM;
523
524 /*
525 * The #DB payload is defined as compatible with the 'pending
526 * debug exceptions' field under VMX, not DR6. While bit 12 is
527 * defined in the 'pending debug exceptions' field (enabled
528 * breakpoint), it is reserved and must be zero in DR6.
529 */
530 vcpu->arch.dr6 &= ~BIT(12);
531 break;
532 case PF_VECTOR:
533 vcpu->arch.cr2 = payload;
534 break;
535 }
536
537 vcpu->arch.exception.has_payload = false;
538 vcpu->arch.exception.payload = 0;
539 }
540 EXPORT_SYMBOL_GPL(kvm_deliver_exception_payload);
541
kvm_multiple_exception(struct kvm_vcpu * vcpu,unsigned nr,bool has_error,u32 error_code,bool has_payload,unsigned long payload,bool reinject)542 static void kvm_multiple_exception(struct kvm_vcpu *vcpu,
543 unsigned nr, bool has_error, u32 error_code,
544 bool has_payload, unsigned long payload, bool reinject)
545 {
546 u32 prev_nr;
547 int class1, class2;
548
549 kvm_make_request(KVM_REQ_EVENT, vcpu);
550
551 if (!vcpu->arch.exception.pending && !vcpu->arch.exception.injected) {
552 queue:
553 if (reinject) {
554 /*
555 * On vmentry, vcpu->arch.exception.pending is only
556 * true if an event injection was blocked by
557 * nested_run_pending. In that case, however,
558 * vcpu_enter_guest requests an immediate exit,
559 * and the guest shouldn't proceed far enough to
560 * need reinjection.
561 */
562 WARN_ON_ONCE(vcpu->arch.exception.pending);
563 vcpu->arch.exception.injected = true;
564 if (WARN_ON_ONCE(has_payload)) {
565 /*
566 * A reinjected event has already
567 * delivered its payload.
568 */
569 has_payload = false;
570 payload = 0;
571 }
572 } else {
573 vcpu->arch.exception.pending = true;
574 vcpu->arch.exception.injected = false;
575 }
576 vcpu->arch.exception.has_error_code = has_error;
577 vcpu->arch.exception.nr = nr;
578 vcpu->arch.exception.error_code = error_code;
579 vcpu->arch.exception.has_payload = has_payload;
580 vcpu->arch.exception.payload = payload;
581 if (!is_guest_mode(vcpu))
582 kvm_deliver_exception_payload(vcpu);
583 return;
584 }
585
586 /* to check exception */
587 prev_nr = vcpu->arch.exception.nr;
588 if (prev_nr == DF_VECTOR) {
589 /* triple fault -> shutdown */
590 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
591 return;
592 }
593 class1 = exception_class(prev_nr);
594 class2 = exception_class(nr);
595 if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY)
596 || (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) {
597 /*
598 * Generate double fault per SDM Table 5-5. Set
599 * exception.pending = true so that the double fault
600 * can trigger a nested vmexit.
601 */
602 vcpu->arch.exception.pending = true;
603 vcpu->arch.exception.injected = false;
604 vcpu->arch.exception.has_error_code = true;
605 vcpu->arch.exception.nr = DF_VECTOR;
606 vcpu->arch.exception.error_code = 0;
607 vcpu->arch.exception.has_payload = false;
608 vcpu->arch.exception.payload = 0;
609 } else
610 /* replace previous exception with a new one in a hope
611 that instruction re-execution will regenerate lost
612 exception */
613 goto queue;
614 }
615
kvm_queue_exception(struct kvm_vcpu * vcpu,unsigned nr)616 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
617 {
618 kvm_multiple_exception(vcpu, nr, false, 0, false, 0, false);
619 }
620 EXPORT_SYMBOL_GPL(kvm_queue_exception);
621
kvm_requeue_exception(struct kvm_vcpu * vcpu,unsigned nr)622 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr)
623 {
624 kvm_multiple_exception(vcpu, nr, false, 0, false, 0, true);
625 }
626 EXPORT_SYMBOL_GPL(kvm_requeue_exception);
627
kvm_queue_exception_p(struct kvm_vcpu * vcpu,unsigned nr,unsigned long payload)628 void kvm_queue_exception_p(struct kvm_vcpu *vcpu, unsigned nr,
629 unsigned long payload)
630 {
631 kvm_multiple_exception(vcpu, nr, false, 0, true, payload, false);
632 }
633 EXPORT_SYMBOL_GPL(kvm_queue_exception_p);
634
kvm_queue_exception_e_p(struct kvm_vcpu * vcpu,unsigned nr,u32 error_code,unsigned long payload)635 static void kvm_queue_exception_e_p(struct kvm_vcpu *vcpu, unsigned nr,
636 u32 error_code, unsigned long payload)
637 {
638 kvm_multiple_exception(vcpu, nr, true, error_code,
639 true, payload, false);
640 }
641
kvm_complete_insn_gp(struct kvm_vcpu * vcpu,int err)642 int kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err)
643 {
644 if (err)
645 kvm_inject_gp(vcpu, 0);
646 else
647 return kvm_skip_emulated_instruction(vcpu);
648
649 return 1;
650 }
651 EXPORT_SYMBOL_GPL(kvm_complete_insn_gp);
652
kvm_inject_page_fault(struct kvm_vcpu * vcpu,struct x86_exception * fault)653 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
654 {
655 ++vcpu->stat.pf_guest;
656 vcpu->arch.exception.nested_apf =
657 is_guest_mode(vcpu) && fault->async_page_fault;
658 if (vcpu->arch.exception.nested_apf) {
659 vcpu->arch.apf.nested_apf_token = fault->address;
660 kvm_queue_exception_e(vcpu, PF_VECTOR, fault->error_code);
661 } else {
662 kvm_queue_exception_e_p(vcpu, PF_VECTOR, fault->error_code,
663 fault->address);
664 }
665 }
666 EXPORT_SYMBOL_GPL(kvm_inject_page_fault);
667
kvm_inject_emulated_page_fault(struct kvm_vcpu * vcpu,struct x86_exception * fault)668 bool kvm_inject_emulated_page_fault(struct kvm_vcpu *vcpu,
669 struct x86_exception *fault)
670 {
671 struct kvm_mmu *fault_mmu;
672 WARN_ON_ONCE(fault->vector != PF_VECTOR);
673
674 fault_mmu = fault->nested_page_fault ? vcpu->arch.mmu :
675 vcpu->arch.walk_mmu;
676
677 /*
678 * Invalidate the TLB entry for the faulting address, if it exists,
679 * else the access will fault indefinitely (and to emulate hardware).
680 */
681 if ((fault->error_code & PFERR_PRESENT_MASK) &&
682 !(fault->error_code & PFERR_RSVD_MASK))
683 kvm_mmu_invalidate_gva(vcpu, fault_mmu, fault->address,
684 fault_mmu->root_hpa);
685
686 fault_mmu->inject_page_fault(vcpu, fault);
687 return fault->nested_page_fault;
688 }
689 EXPORT_SYMBOL_GPL(kvm_inject_emulated_page_fault);
690
kvm_inject_nmi(struct kvm_vcpu * vcpu)691 void kvm_inject_nmi(struct kvm_vcpu *vcpu)
692 {
693 atomic_inc(&vcpu->arch.nmi_queued);
694 kvm_make_request(KVM_REQ_NMI, vcpu);
695 }
696 EXPORT_SYMBOL_GPL(kvm_inject_nmi);
697
kvm_queue_exception_e(struct kvm_vcpu * vcpu,unsigned nr,u32 error_code)698 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
699 {
700 kvm_multiple_exception(vcpu, nr, true, error_code, false, 0, false);
701 }
702 EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
703
kvm_requeue_exception_e(struct kvm_vcpu * vcpu,unsigned nr,u32 error_code)704 void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
705 {
706 kvm_multiple_exception(vcpu, nr, true, error_code, false, 0, true);
707 }
708 EXPORT_SYMBOL_GPL(kvm_requeue_exception_e);
709
710 /*
711 * Checks if cpl <= required_cpl; if true, return true. Otherwise queue
712 * a #GP and return false.
713 */
kvm_require_cpl(struct kvm_vcpu * vcpu,int required_cpl)714 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl)
715 {
716 if (kvm_x86_ops.get_cpl(vcpu) <= required_cpl)
717 return true;
718 kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
719 return false;
720 }
721 EXPORT_SYMBOL_GPL(kvm_require_cpl);
722
kvm_require_dr(struct kvm_vcpu * vcpu,int dr)723 bool kvm_require_dr(struct kvm_vcpu *vcpu, int dr)
724 {
725 if ((dr != 4 && dr != 5) || !kvm_read_cr4_bits(vcpu, X86_CR4_DE))
726 return true;
727
728 kvm_queue_exception(vcpu, UD_VECTOR);
729 return false;
730 }
731 EXPORT_SYMBOL_GPL(kvm_require_dr);
732
733 /*
734 * This function will be used to read from the physical memory of the currently
735 * running guest. The difference to kvm_vcpu_read_guest_page is that this function
736 * can read from guest physical or from the guest's guest physical memory.
737 */
kvm_read_guest_page_mmu(struct kvm_vcpu * vcpu,struct kvm_mmu * mmu,gfn_t ngfn,void * data,int offset,int len,u32 access)738 int kvm_read_guest_page_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
739 gfn_t ngfn, void *data, int offset, int len,
740 u32 access)
741 {
742 struct x86_exception exception;
743 gfn_t real_gfn;
744 gpa_t ngpa;
745
746 ngpa = gfn_to_gpa(ngfn);
747 real_gfn = mmu->translate_gpa(vcpu, ngpa, access, &exception);
748 if (real_gfn == UNMAPPED_GVA)
749 return -EFAULT;
750
751 real_gfn = gpa_to_gfn(real_gfn);
752
753 return kvm_vcpu_read_guest_page(vcpu, real_gfn, data, offset, len);
754 }
755 EXPORT_SYMBOL_GPL(kvm_read_guest_page_mmu);
756
kvm_read_nested_guest_page(struct kvm_vcpu * vcpu,gfn_t gfn,void * data,int offset,int len,u32 access)757 static int kvm_read_nested_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
758 void *data, int offset, int len, u32 access)
759 {
760 return kvm_read_guest_page_mmu(vcpu, vcpu->arch.walk_mmu, gfn,
761 data, offset, len, access);
762 }
763
pdptr_rsvd_bits(struct kvm_vcpu * vcpu)764 static inline u64 pdptr_rsvd_bits(struct kvm_vcpu *vcpu)
765 {
766 return rsvd_bits(cpuid_maxphyaddr(vcpu), 63) | rsvd_bits(5, 8) |
767 rsvd_bits(1, 2);
768 }
769
770 /*
771 * Load the pae pdptrs. Return 1 if they are all valid, 0 otherwise.
772 */
load_pdptrs(struct kvm_vcpu * vcpu,struct kvm_mmu * mmu,unsigned long cr3)773 int load_pdptrs(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, unsigned long cr3)
774 {
775 gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
776 unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
777 int i;
778 int ret;
779 u64 pdpte[ARRAY_SIZE(mmu->pdptrs)];
780
781 ret = kvm_read_guest_page_mmu(vcpu, mmu, pdpt_gfn, pdpte,
782 offset * sizeof(u64), sizeof(pdpte),
783 PFERR_USER_MASK|PFERR_WRITE_MASK);
784 if (ret < 0) {
785 ret = 0;
786 goto out;
787 }
788 for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
789 if ((pdpte[i] & PT_PRESENT_MASK) &&
790 (pdpte[i] & pdptr_rsvd_bits(vcpu))) {
791 ret = 0;
792 goto out;
793 }
794 }
795 ret = 1;
796
797 memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs));
798 kvm_register_mark_dirty(vcpu, VCPU_EXREG_PDPTR);
799
800 out:
801
802 return ret;
803 }
804 EXPORT_SYMBOL_GPL(load_pdptrs);
805
pdptrs_changed(struct kvm_vcpu * vcpu)806 bool pdptrs_changed(struct kvm_vcpu *vcpu)
807 {
808 u64 pdpte[ARRAY_SIZE(vcpu->arch.walk_mmu->pdptrs)];
809 int offset;
810 gfn_t gfn;
811 int r;
812
813 if (!is_pae_paging(vcpu))
814 return false;
815
816 if (!kvm_register_is_available(vcpu, VCPU_EXREG_PDPTR))
817 return true;
818
819 gfn = (kvm_read_cr3(vcpu) & 0xffffffe0ul) >> PAGE_SHIFT;
820 offset = (kvm_read_cr3(vcpu) & 0xffffffe0ul) & (PAGE_SIZE - 1);
821 r = kvm_read_nested_guest_page(vcpu, gfn, pdpte, offset, sizeof(pdpte),
822 PFERR_USER_MASK | PFERR_WRITE_MASK);
823 if (r < 0)
824 return true;
825
826 return memcmp(pdpte, vcpu->arch.walk_mmu->pdptrs, sizeof(pdpte)) != 0;
827 }
828 EXPORT_SYMBOL_GPL(pdptrs_changed);
829
kvm_set_cr0(struct kvm_vcpu * vcpu,unsigned long cr0)830 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
831 {
832 unsigned long old_cr0 = kvm_read_cr0(vcpu);
833 unsigned long pdptr_bits = X86_CR0_CD | X86_CR0_NW | X86_CR0_PG;
834 unsigned long update_bits = X86_CR0_PG | X86_CR0_WP;
835
836 cr0 |= X86_CR0_ET;
837
838 #ifdef CONFIG_X86_64
839 if (cr0 & 0xffffffff00000000UL)
840 return 1;
841 #endif
842
843 cr0 &= ~CR0_RESERVED_BITS;
844
845 if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD))
846 return 1;
847
848 if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE))
849 return 1;
850
851 #ifdef CONFIG_X86_64
852 if ((vcpu->arch.efer & EFER_LME) && !is_paging(vcpu) &&
853 (cr0 & X86_CR0_PG)) {
854 int cs_db, cs_l;
855
856 if (!is_pae(vcpu))
857 return 1;
858 kvm_x86_ops.get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
859 if (cs_l)
860 return 1;
861 }
862 #endif
863 if (!(vcpu->arch.efer & EFER_LME) && (cr0 & X86_CR0_PG) &&
864 is_pae(vcpu) && ((cr0 ^ old_cr0) & pdptr_bits) &&
865 !load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu)))
866 return 1;
867
868 if (!(cr0 & X86_CR0_PG) && kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE))
869 return 1;
870
871 kvm_x86_ops.set_cr0(vcpu, cr0);
872
873 if ((cr0 ^ old_cr0) & X86_CR0_PG) {
874 kvm_clear_async_pf_completion_queue(vcpu);
875 kvm_async_pf_hash_reset(vcpu);
876 }
877
878 if ((cr0 ^ old_cr0) & update_bits)
879 kvm_mmu_reset_context(vcpu);
880
881 if (((cr0 ^ old_cr0) & X86_CR0_CD) &&
882 kvm_arch_has_noncoherent_dma(vcpu->kvm) &&
883 !kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
884 kvm_zap_gfn_range(vcpu->kvm, 0, ~0ULL);
885
886 return 0;
887 }
888 EXPORT_SYMBOL_GPL(kvm_set_cr0);
889
kvm_lmsw(struct kvm_vcpu * vcpu,unsigned long msw)890 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
891 {
892 (void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f));
893 }
894 EXPORT_SYMBOL_GPL(kvm_lmsw);
895
kvm_load_guest_xsave_state(struct kvm_vcpu * vcpu)896 void kvm_load_guest_xsave_state(struct kvm_vcpu *vcpu)
897 {
898 if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE)) {
899
900 if (vcpu->arch.xcr0 != host_xcr0)
901 xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0);
902
903 if (vcpu->arch.xsaves_enabled &&
904 vcpu->arch.ia32_xss != host_xss)
905 wrmsrl(MSR_IA32_XSS, vcpu->arch.ia32_xss);
906 }
907
908 if (static_cpu_has(X86_FEATURE_PKU) &&
909 (kvm_read_cr4_bits(vcpu, X86_CR4_PKE) ||
910 (vcpu->arch.xcr0 & XFEATURE_MASK_PKRU)) &&
911 vcpu->arch.pkru != vcpu->arch.host_pkru)
912 __write_pkru(vcpu->arch.pkru);
913 }
914 EXPORT_SYMBOL_GPL(kvm_load_guest_xsave_state);
915
kvm_load_host_xsave_state(struct kvm_vcpu * vcpu)916 void kvm_load_host_xsave_state(struct kvm_vcpu *vcpu)
917 {
918 if (static_cpu_has(X86_FEATURE_PKU) &&
919 (kvm_read_cr4_bits(vcpu, X86_CR4_PKE) ||
920 (vcpu->arch.xcr0 & XFEATURE_MASK_PKRU))) {
921 vcpu->arch.pkru = rdpkru();
922 if (vcpu->arch.pkru != vcpu->arch.host_pkru)
923 __write_pkru(vcpu->arch.host_pkru);
924 }
925
926 if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE)) {
927
928 if (vcpu->arch.xcr0 != host_xcr0)
929 xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0);
930
931 if (vcpu->arch.xsaves_enabled &&
932 vcpu->arch.ia32_xss != host_xss)
933 wrmsrl(MSR_IA32_XSS, host_xss);
934 }
935
936 }
937 EXPORT_SYMBOL_GPL(kvm_load_host_xsave_state);
938
__kvm_set_xcr(struct kvm_vcpu * vcpu,u32 index,u64 xcr)939 static int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
940 {
941 u64 xcr0 = xcr;
942 u64 old_xcr0 = vcpu->arch.xcr0;
943 u64 valid_bits;
944
945 /* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now */
946 if (index != XCR_XFEATURE_ENABLED_MASK)
947 return 1;
948 if (!(xcr0 & XFEATURE_MASK_FP))
949 return 1;
950 if ((xcr0 & XFEATURE_MASK_YMM) && !(xcr0 & XFEATURE_MASK_SSE))
951 return 1;
952
953 /*
954 * Do not allow the guest to set bits that we do not support
955 * saving. However, xcr0 bit 0 is always set, even if the
956 * emulated CPU does not support XSAVE (see fx_init).
957 */
958 valid_bits = vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FP;
959 if (xcr0 & ~valid_bits)
960 return 1;
961
962 if ((!(xcr0 & XFEATURE_MASK_BNDREGS)) !=
963 (!(xcr0 & XFEATURE_MASK_BNDCSR)))
964 return 1;
965
966 if (xcr0 & XFEATURE_MASK_AVX512) {
967 if (!(xcr0 & XFEATURE_MASK_YMM))
968 return 1;
969 if ((xcr0 & XFEATURE_MASK_AVX512) != XFEATURE_MASK_AVX512)
970 return 1;
971 }
972 vcpu->arch.xcr0 = xcr0;
973
974 if ((xcr0 ^ old_xcr0) & XFEATURE_MASK_EXTEND)
975 kvm_update_cpuid_runtime(vcpu);
976 return 0;
977 }
978
kvm_set_xcr(struct kvm_vcpu * vcpu,u32 index,u64 xcr)979 int kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
980 {
981 if (kvm_x86_ops.get_cpl(vcpu) != 0 ||
982 __kvm_set_xcr(vcpu, index, xcr)) {
983 kvm_inject_gp(vcpu, 0);
984 return 1;
985 }
986 return 0;
987 }
988 EXPORT_SYMBOL_GPL(kvm_set_xcr);
989
kvm_valid_cr4(struct kvm_vcpu * vcpu,unsigned long cr4)990 int kvm_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
991 {
992 if (cr4 & cr4_reserved_bits)
993 return -EINVAL;
994
995 if (cr4 & vcpu->arch.cr4_guest_rsvd_bits)
996 return -EINVAL;
997
998 if (!kvm_x86_ops.is_valid_cr4(vcpu, cr4))
999 return -EINVAL;
1000
1001 return 0;
1002 }
1003 EXPORT_SYMBOL_GPL(kvm_valid_cr4);
1004
kvm_set_cr4(struct kvm_vcpu * vcpu,unsigned long cr4)1005 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1006 {
1007 unsigned long old_cr4 = kvm_read_cr4(vcpu);
1008 unsigned long pdptr_bits = X86_CR4_PGE | X86_CR4_PSE | X86_CR4_PAE |
1009 X86_CR4_SMEP;
1010 unsigned long mmu_role_bits = pdptr_bits | X86_CR4_SMAP | X86_CR4_PKE;
1011
1012 if (kvm_valid_cr4(vcpu, cr4))
1013 return 1;
1014
1015 if (is_long_mode(vcpu)) {
1016 if (!(cr4 & X86_CR4_PAE))
1017 return 1;
1018 if ((cr4 ^ old_cr4) & X86_CR4_LA57)
1019 return 1;
1020 } else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
1021 && ((cr4 ^ old_cr4) & pdptr_bits)
1022 && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
1023 kvm_read_cr3(vcpu)))
1024 return 1;
1025
1026 if ((cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) {
1027 if (!guest_cpuid_has(vcpu, X86_FEATURE_PCID))
1028 return 1;
1029
1030 /* PCID can not be enabled when cr3[11:0]!=000H or EFER.LMA=0 */
1031 if ((kvm_read_cr3(vcpu) & X86_CR3_PCID_MASK) || !is_long_mode(vcpu))
1032 return 1;
1033 }
1034
1035 kvm_x86_ops.set_cr4(vcpu, cr4);
1036
1037 if (((cr4 ^ old_cr4) & mmu_role_bits) ||
1038 (!(cr4 & X86_CR4_PCIDE) && (old_cr4 & X86_CR4_PCIDE)))
1039 kvm_mmu_reset_context(vcpu);
1040
1041 if ((cr4 ^ old_cr4) & (X86_CR4_OSXSAVE | X86_CR4_PKE))
1042 kvm_update_cpuid_runtime(vcpu);
1043
1044 return 0;
1045 }
1046 EXPORT_SYMBOL_GPL(kvm_set_cr4);
1047
kvm_set_cr3(struct kvm_vcpu * vcpu,unsigned long cr3)1048 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
1049 {
1050 bool skip_tlb_flush = false;
1051 #ifdef CONFIG_X86_64
1052 bool pcid_enabled = kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE);
1053
1054 if (pcid_enabled) {
1055 skip_tlb_flush = cr3 & X86_CR3_PCID_NOFLUSH;
1056 cr3 &= ~X86_CR3_PCID_NOFLUSH;
1057 }
1058 #endif
1059
1060 if (cr3 == kvm_read_cr3(vcpu) && !pdptrs_changed(vcpu)) {
1061 if (!skip_tlb_flush) {
1062 kvm_mmu_sync_roots(vcpu);
1063 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
1064 }
1065 return 0;
1066 }
1067
1068 if (is_long_mode(vcpu) &&
1069 (cr3 & vcpu->arch.cr3_lm_rsvd_bits))
1070 return 1;
1071 else if (is_pae_paging(vcpu) &&
1072 !load_pdptrs(vcpu, vcpu->arch.walk_mmu, cr3))
1073 return 1;
1074
1075 kvm_mmu_new_pgd(vcpu, cr3, skip_tlb_flush, skip_tlb_flush);
1076 vcpu->arch.cr3 = cr3;
1077 kvm_register_mark_available(vcpu, VCPU_EXREG_CR3);
1078
1079 return 0;
1080 }
1081 EXPORT_SYMBOL_GPL(kvm_set_cr3);
1082
kvm_set_cr8(struct kvm_vcpu * vcpu,unsigned long cr8)1083 int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
1084 {
1085 if (cr8 & CR8_RESERVED_BITS)
1086 return 1;
1087 if (lapic_in_kernel(vcpu))
1088 kvm_lapic_set_tpr(vcpu, cr8);
1089 else
1090 vcpu->arch.cr8 = cr8;
1091 return 0;
1092 }
1093 EXPORT_SYMBOL_GPL(kvm_set_cr8);
1094
kvm_get_cr8(struct kvm_vcpu * vcpu)1095 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
1096 {
1097 if (lapic_in_kernel(vcpu))
1098 return kvm_lapic_get_cr8(vcpu);
1099 else
1100 return vcpu->arch.cr8;
1101 }
1102 EXPORT_SYMBOL_GPL(kvm_get_cr8);
1103
kvm_update_dr0123(struct kvm_vcpu * vcpu)1104 static void kvm_update_dr0123(struct kvm_vcpu *vcpu)
1105 {
1106 int i;
1107
1108 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) {
1109 for (i = 0; i < KVM_NR_DB_REGS; i++)
1110 vcpu->arch.eff_db[i] = vcpu->arch.db[i];
1111 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_RELOAD;
1112 }
1113 }
1114
kvm_update_dr7(struct kvm_vcpu * vcpu)1115 void kvm_update_dr7(struct kvm_vcpu *vcpu)
1116 {
1117 unsigned long dr7;
1118
1119 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
1120 dr7 = vcpu->arch.guest_debug_dr7;
1121 else
1122 dr7 = vcpu->arch.dr7;
1123 kvm_x86_ops.set_dr7(vcpu, dr7);
1124 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_BP_ENABLED;
1125 if (dr7 & DR7_BP_EN_MASK)
1126 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_BP_ENABLED;
1127 }
1128 EXPORT_SYMBOL_GPL(kvm_update_dr7);
1129
kvm_dr6_fixed(struct kvm_vcpu * vcpu)1130 static u64 kvm_dr6_fixed(struct kvm_vcpu *vcpu)
1131 {
1132 u64 fixed = DR6_FIXED_1;
1133
1134 if (!guest_cpuid_has(vcpu, X86_FEATURE_RTM))
1135 fixed |= DR6_RTM;
1136 return fixed;
1137 }
1138
__kvm_set_dr(struct kvm_vcpu * vcpu,int dr,unsigned long val)1139 static int __kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
1140 {
1141 size_t size = ARRAY_SIZE(vcpu->arch.db);
1142
1143 switch (dr) {
1144 case 0 ... 3:
1145 vcpu->arch.db[array_index_nospec(dr, size)] = val;
1146 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
1147 vcpu->arch.eff_db[dr] = val;
1148 break;
1149 case 4:
1150 case 6:
1151 if (!kvm_dr6_valid(val))
1152 return -1; /* #GP */
1153 vcpu->arch.dr6 = (val & DR6_VOLATILE) | kvm_dr6_fixed(vcpu);
1154 break;
1155 case 5:
1156 default: /* 7 */
1157 if (!kvm_dr7_valid(val))
1158 return -1; /* #GP */
1159 vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1;
1160 kvm_update_dr7(vcpu);
1161 break;
1162 }
1163
1164 return 0;
1165 }
1166
kvm_set_dr(struct kvm_vcpu * vcpu,int dr,unsigned long val)1167 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
1168 {
1169 if (__kvm_set_dr(vcpu, dr, val)) {
1170 kvm_inject_gp(vcpu, 0);
1171 return 1;
1172 }
1173 return 0;
1174 }
1175 EXPORT_SYMBOL_GPL(kvm_set_dr);
1176
kvm_get_dr(struct kvm_vcpu * vcpu,int dr,unsigned long * val)1177 int kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
1178 {
1179 size_t size = ARRAY_SIZE(vcpu->arch.db);
1180
1181 switch (dr) {
1182 case 0 ... 3:
1183 *val = vcpu->arch.db[array_index_nospec(dr, size)];
1184 break;
1185 case 4:
1186 case 6:
1187 *val = vcpu->arch.dr6;
1188 break;
1189 case 5:
1190 default: /* 7 */
1191 *val = vcpu->arch.dr7;
1192 break;
1193 }
1194 return 0;
1195 }
1196 EXPORT_SYMBOL_GPL(kvm_get_dr);
1197
kvm_rdpmc(struct kvm_vcpu * vcpu)1198 bool kvm_rdpmc(struct kvm_vcpu *vcpu)
1199 {
1200 u32 ecx = kvm_rcx_read(vcpu);
1201 u64 data;
1202 int err;
1203
1204 err = kvm_pmu_rdpmc(vcpu, ecx, &data);
1205 if (err)
1206 return err;
1207 kvm_rax_write(vcpu, (u32)data);
1208 kvm_rdx_write(vcpu, data >> 32);
1209 return err;
1210 }
1211 EXPORT_SYMBOL_GPL(kvm_rdpmc);
1212
1213 /*
1214 * List of msr numbers which we expose to userspace through KVM_GET_MSRS
1215 * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
1216 *
1217 * The three MSR lists(msrs_to_save, emulated_msrs, msr_based_features)
1218 * extract the supported MSRs from the related const lists.
1219 * msrs_to_save is selected from the msrs_to_save_all to reflect the
1220 * capabilities of the host cpu. This capabilities test skips MSRs that are
1221 * kvm-specific. Those are put in emulated_msrs_all; filtering of emulated_msrs
1222 * may depend on host virtualization features rather than host cpu features.
1223 */
1224
1225 static const u32 msrs_to_save_all[] = {
1226 MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
1227 MSR_STAR,
1228 #ifdef CONFIG_X86_64
1229 MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
1230 #endif
1231 MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA,
1232 MSR_IA32_FEAT_CTL, MSR_IA32_BNDCFGS, MSR_TSC_AUX,
1233 MSR_IA32_SPEC_CTRL,
1234 MSR_IA32_RTIT_CTL, MSR_IA32_RTIT_STATUS, MSR_IA32_RTIT_CR3_MATCH,
1235 MSR_IA32_RTIT_OUTPUT_BASE, MSR_IA32_RTIT_OUTPUT_MASK,
1236 MSR_IA32_RTIT_ADDR0_A, MSR_IA32_RTIT_ADDR0_B,
1237 MSR_IA32_RTIT_ADDR1_A, MSR_IA32_RTIT_ADDR1_B,
1238 MSR_IA32_RTIT_ADDR2_A, MSR_IA32_RTIT_ADDR2_B,
1239 MSR_IA32_RTIT_ADDR3_A, MSR_IA32_RTIT_ADDR3_B,
1240 MSR_IA32_UMWAIT_CONTROL,
1241
1242 MSR_ARCH_PERFMON_FIXED_CTR0, MSR_ARCH_PERFMON_FIXED_CTR1,
1243 MSR_ARCH_PERFMON_FIXED_CTR0 + 2,
1244 MSR_CORE_PERF_FIXED_CTR_CTRL, MSR_CORE_PERF_GLOBAL_STATUS,
1245 MSR_CORE_PERF_GLOBAL_CTRL, MSR_CORE_PERF_GLOBAL_OVF_CTRL,
1246 MSR_ARCH_PERFMON_PERFCTR0, MSR_ARCH_PERFMON_PERFCTR1,
1247 MSR_ARCH_PERFMON_PERFCTR0 + 2, MSR_ARCH_PERFMON_PERFCTR0 + 3,
1248 MSR_ARCH_PERFMON_PERFCTR0 + 4, MSR_ARCH_PERFMON_PERFCTR0 + 5,
1249 MSR_ARCH_PERFMON_PERFCTR0 + 6, MSR_ARCH_PERFMON_PERFCTR0 + 7,
1250 MSR_ARCH_PERFMON_PERFCTR0 + 8, MSR_ARCH_PERFMON_PERFCTR0 + 9,
1251 MSR_ARCH_PERFMON_PERFCTR0 + 10, MSR_ARCH_PERFMON_PERFCTR0 + 11,
1252 MSR_ARCH_PERFMON_PERFCTR0 + 12, MSR_ARCH_PERFMON_PERFCTR0 + 13,
1253 MSR_ARCH_PERFMON_PERFCTR0 + 14, MSR_ARCH_PERFMON_PERFCTR0 + 15,
1254 MSR_ARCH_PERFMON_PERFCTR0 + 16, MSR_ARCH_PERFMON_PERFCTR0 + 17,
1255 MSR_ARCH_PERFMON_EVENTSEL0, MSR_ARCH_PERFMON_EVENTSEL1,
1256 MSR_ARCH_PERFMON_EVENTSEL0 + 2, MSR_ARCH_PERFMON_EVENTSEL0 + 3,
1257 MSR_ARCH_PERFMON_EVENTSEL0 + 4, MSR_ARCH_PERFMON_EVENTSEL0 + 5,
1258 MSR_ARCH_PERFMON_EVENTSEL0 + 6, MSR_ARCH_PERFMON_EVENTSEL0 + 7,
1259 MSR_ARCH_PERFMON_EVENTSEL0 + 8, MSR_ARCH_PERFMON_EVENTSEL0 + 9,
1260 MSR_ARCH_PERFMON_EVENTSEL0 + 10, MSR_ARCH_PERFMON_EVENTSEL0 + 11,
1261 MSR_ARCH_PERFMON_EVENTSEL0 + 12, MSR_ARCH_PERFMON_EVENTSEL0 + 13,
1262 MSR_ARCH_PERFMON_EVENTSEL0 + 14, MSR_ARCH_PERFMON_EVENTSEL0 + 15,
1263 MSR_ARCH_PERFMON_EVENTSEL0 + 16, MSR_ARCH_PERFMON_EVENTSEL0 + 17,
1264
1265 MSR_K7_EVNTSEL0, MSR_K7_EVNTSEL1, MSR_K7_EVNTSEL2, MSR_K7_EVNTSEL3,
1266 MSR_K7_PERFCTR0, MSR_K7_PERFCTR1, MSR_K7_PERFCTR2, MSR_K7_PERFCTR3,
1267 MSR_F15H_PERF_CTL0, MSR_F15H_PERF_CTL1, MSR_F15H_PERF_CTL2,
1268 MSR_F15H_PERF_CTL3, MSR_F15H_PERF_CTL4, MSR_F15H_PERF_CTL5,
1269 MSR_F15H_PERF_CTR0, MSR_F15H_PERF_CTR1, MSR_F15H_PERF_CTR2,
1270 MSR_F15H_PERF_CTR3, MSR_F15H_PERF_CTR4, MSR_F15H_PERF_CTR5,
1271 };
1272
1273 static u32 msrs_to_save[ARRAY_SIZE(msrs_to_save_all)];
1274 static unsigned num_msrs_to_save;
1275
1276 static const u32 emulated_msrs_all[] = {
1277 MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
1278 MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW,
1279 HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL,
1280 HV_X64_MSR_TIME_REF_COUNT, HV_X64_MSR_REFERENCE_TSC,
1281 HV_X64_MSR_TSC_FREQUENCY, HV_X64_MSR_APIC_FREQUENCY,
1282 HV_X64_MSR_CRASH_P0, HV_X64_MSR_CRASH_P1, HV_X64_MSR_CRASH_P2,
1283 HV_X64_MSR_CRASH_P3, HV_X64_MSR_CRASH_P4, HV_X64_MSR_CRASH_CTL,
1284 HV_X64_MSR_RESET,
1285 HV_X64_MSR_VP_INDEX,
1286 HV_X64_MSR_VP_RUNTIME,
1287 HV_X64_MSR_SCONTROL,
1288 HV_X64_MSR_STIMER0_CONFIG,
1289 HV_X64_MSR_VP_ASSIST_PAGE,
1290 HV_X64_MSR_REENLIGHTENMENT_CONTROL, HV_X64_MSR_TSC_EMULATION_CONTROL,
1291 HV_X64_MSR_TSC_EMULATION_STATUS,
1292 HV_X64_MSR_SYNDBG_OPTIONS,
1293 HV_X64_MSR_SYNDBG_CONTROL, HV_X64_MSR_SYNDBG_STATUS,
1294 HV_X64_MSR_SYNDBG_SEND_BUFFER, HV_X64_MSR_SYNDBG_RECV_BUFFER,
1295 HV_X64_MSR_SYNDBG_PENDING_BUFFER,
1296
1297 MSR_KVM_ASYNC_PF_EN, MSR_KVM_STEAL_TIME,
1298 MSR_KVM_PV_EOI_EN, MSR_KVM_ASYNC_PF_INT, MSR_KVM_ASYNC_PF_ACK,
1299
1300 MSR_IA32_TSC_ADJUST,
1301 MSR_IA32_TSCDEADLINE,
1302 MSR_IA32_ARCH_CAPABILITIES,
1303 MSR_IA32_PERF_CAPABILITIES,
1304 MSR_IA32_MISC_ENABLE,
1305 MSR_IA32_MCG_STATUS,
1306 MSR_IA32_MCG_CTL,
1307 MSR_IA32_MCG_EXT_CTL,
1308 MSR_IA32_SMBASE,
1309 MSR_SMI_COUNT,
1310 MSR_PLATFORM_INFO,
1311 MSR_MISC_FEATURES_ENABLES,
1312 MSR_AMD64_VIRT_SPEC_CTRL,
1313 MSR_IA32_POWER_CTL,
1314 MSR_IA32_UCODE_REV,
1315
1316 /*
1317 * The following list leaves out MSRs whose values are determined
1318 * by arch/x86/kvm/vmx/nested.c based on CPUID or other MSRs.
1319 * We always support the "true" VMX control MSRs, even if the host
1320 * processor does not, so I am putting these registers here rather
1321 * than in msrs_to_save_all.
1322 */
1323 MSR_IA32_VMX_BASIC,
1324 MSR_IA32_VMX_TRUE_PINBASED_CTLS,
1325 MSR_IA32_VMX_TRUE_PROCBASED_CTLS,
1326 MSR_IA32_VMX_TRUE_EXIT_CTLS,
1327 MSR_IA32_VMX_TRUE_ENTRY_CTLS,
1328 MSR_IA32_VMX_MISC,
1329 MSR_IA32_VMX_CR0_FIXED0,
1330 MSR_IA32_VMX_CR4_FIXED0,
1331 MSR_IA32_VMX_VMCS_ENUM,
1332 MSR_IA32_VMX_PROCBASED_CTLS2,
1333 MSR_IA32_VMX_EPT_VPID_CAP,
1334 MSR_IA32_VMX_VMFUNC,
1335
1336 MSR_K7_HWCR,
1337 MSR_KVM_POLL_CONTROL,
1338 };
1339
1340 static u32 emulated_msrs[ARRAY_SIZE(emulated_msrs_all)];
1341 static unsigned num_emulated_msrs;
1342
1343 /*
1344 * List of msr numbers which are used to expose MSR-based features that
1345 * can be used by a hypervisor to validate requested CPU features.
1346 */
1347 static const u32 msr_based_features_all[] = {
1348 MSR_IA32_VMX_BASIC,
1349 MSR_IA32_VMX_TRUE_PINBASED_CTLS,
1350 MSR_IA32_VMX_PINBASED_CTLS,
1351 MSR_IA32_VMX_TRUE_PROCBASED_CTLS,
1352 MSR_IA32_VMX_PROCBASED_CTLS,
1353 MSR_IA32_VMX_TRUE_EXIT_CTLS,
1354 MSR_IA32_VMX_EXIT_CTLS,
1355 MSR_IA32_VMX_TRUE_ENTRY_CTLS,
1356 MSR_IA32_VMX_ENTRY_CTLS,
1357 MSR_IA32_VMX_MISC,
1358 MSR_IA32_VMX_CR0_FIXED0,
1359 MSR_IA32_VMX_CR0_FIXED1,
1360 MSR_IA32_VMX_CR4_FIXED0,
1361 MSR_IA32_VMX_CR4_FIXED1,
1362 MSR_IA32_VMX_VMCS_ENUM,
1363 MSR_IA32_VMX_PROCBASED_CTLS2,
1364 MSR_IA32_VMX_EPT_VPID_CAP,
1365 MSR_IA32_VMX_VMFUNC,
1366
1367 MSR_AMD64_DE_CFG,
1368 MSR_IA32_UCODE_REV,
1369 MSR_IA32_ARCH_CAPABILITIES,
1370 MSR_IA32_PERF_CAPABILITIES,
1371 };
1372
1373 static u32 msr_based_features[ARRAY_SIZE(msr_based_features_all)];
1374 static unsigned int num_msr_based_features;
1375
1376 /*
1377 * Some IA32_ARCH_CAPABILITIES bits have dependencies on MSRs that KVM
1378 * does not yet virtualize. These include:
1379 * 10 - MISC_PACKAGE_CTRLS
1380 * 11 - ENERGY_FILTERING_CTL
1381 * 12 - DOITM
1382 * 18 - FB_CLEAR_CTRL
1383 * 21 - XAPIC_DISABLE_STATUS
1384 * 23 - OVERCLOCKING_STATUS
1385 */
1386
1387 #define KVM_SUPPORTED_ARCH_CAP \
1388 (ARCH_CAP_RDCL_NO | ARCH_CAP_IBRS_ALL | ARCH_CAP_RSBA | \
1389 ARCH_CAP_SKIP_VMENTRY_L1DFLUSH | ARCH_CAP_SSB_NO | ARCH_CAP_MDS_NO | \
1390 ARCH_CAP_PSCHANGE_MC_NO | ARCH_CAP_TSX_CTRL_MSR | ARCH_CAP_TAA_NO | \
1391 ARCH_CAP_SBDR_SSDP_NO | ARCH_CAP_FBSDP_NO | ARCH_CAP_PSDP_NO | \
1392 ARCH_CAP_FB_CLEAR | ARCH_CAP_RRSBA | ARCH_CAP_PBRSB_NO)
1393
kvm_get_arch_capabilities(void)1394 static u64 kvm_get_arch_capabilities(void)
1395 {
1396 u64 data = 0;
1397
1398 if (boot_cpu_has(X86_FEATURE_ARCH_CAPABILITIES)) {
1399 rdmsrl(MSR_IA32_ARCH_CAPABILITIES, data);
1400 data &= KVM_SUPPORTED_ARCH_CAP;
1401 }
1402
1403 /*
1404 * If nx_huge_pages is enabled, KVM's shadow paging will ensure that
1405 * the nested hypervisor runs with NX huge pages. If it is not,
1406 * L1 is anyway vulnerable to ITLB_MULTIHIT explots from other
1407 * L1 guests, so it need not worry about its own (L2) guests.
1408 */
1409 data |= ARCH_CAP_PSCHANGE_MC_NO;
1410
1411 /*
1412 * If we're doing cache flushes (either "always" or "cond")
1413 * we will do one whenever the guest does a vmlaunch/vmresume.
1414 * If an outer hypervisor is doing the cache flush for us
1415 * (VMENTER_L1D_FLUSH_NESTED_VM), we can safely pass that
1416 * capability to the guest too, and if EPT is disabled we're not
1417 * vulnerable. Overall, only VMENTER_L1D_FLUSH_NEVER will
1418 * require a nested hypervisor to do a flush of its own.
1419 */
1420 if (l1tf_vmx_mitigation != VMENTER_L1D_FLUSH_NEVER)
1421 data |= ARCH_CAP_SKIP_VMENTRY_L1DFLUSH;
1422
1423 if (!boot_cpu_has_bug(X86_BUG_CPU_MELTDOWN))
1424 data |= ARCH_CAP_RDCL_NO;
1425 if (!boot_cpu_has_bug(X86_BUG_SPEC_STORE_BYPASS))
1426 data |= ARCH_CAP_SSB_NO;
1427 if (!boot_cpu_has_bug(X86_BUG_MDS))
1428 data |= ARCH_CAP_MDS_NO;
1429
1430 if (!boot_cpu_has(X86_FEATURE_RTM)) {
1431 /*
1432 * If RTM=0 because the kernel has disabled TSX, the host might
1433 * have TAA_NO or TSX_CTRL. Clear TAA_NO (the guest sees RTM=0
1434 * and therefore knows that there cannot be TAA) but keep
1435 * TSX_CTRL: some buggy userspaces leave it set on tsx=on hosts,
1436 * and we want to allow migrating those guests to tsx=off hosts.
1437 */
1438 data &= ~ARCH_CAP_TAA_NO;
1439 } else if (!boot_cpu_has_bug(X86_BUG_TAA)) {
1440 data |= ARCH_CAP_TAA_NO;
1441 } else {
1442 /*
1443 * Nothing to do here; we emulate TSX_CTRL if present on the
1444 * host so the guest can choose between disabling TSX or
1445 * using VERW to clear CPU buffers.
1446 */
1447 }
1448
1449 return data;
1450 }
1451
kvm_get_msr_feature(struct kvm_msr_entry * msr)1452 static int kvm_get_msr_feature(struct kvm_msr_entry *msr)
1453 {
1454 switch (msr->index) {
1455 case MSR_IA32_ARCH_CAPABILITIES:
1456 msr->data = kvm_get_arch_capabilities();
1457 break;
1458 case MSR_IA32_UCODE_REV:
1459 rdmsrl_safe(msr->index, &msr->data);
1460 break;
1461 default:
1462 return kvm_x86_ops.get_msr_feature(msr);
1463 }
1464 return 0;
1465 }
1466
do_get_msr_feature(struct kvm_vcpu * vcpu,unsigned index,u64 * data)1467 static int do_get_msr_feature(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1468 {
1469 struct kvm_msr_entry msr;
1470 int r;
1471
1472 msr.index = index;
1473 r = kvm_get_msr_feature(&msr);
1474
1475 if (r == KVM_MSR_RET_INVALID) {
1476 /* Unconditionally clear the output for simplicity */
1477 *data = 0;
1478 if (kvm_msr_ignored_check(vcpu, index, 0, false))
1479 r = 0;
1480 }
1481
1482 if (r)
1483 return r;
1484
1485 *data = msr.data;
1486
1487 return 0;
1488 }
1489
__kvm_valid_efer(struct kvm_vcpu * vcpu,u64 efer)1490 static bool __kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
1491 {
1492 if (efer & EFER_FFXSR && !guest_cpuid_has(vcpu, X86_FEATURE_FXSR_OPT))
1493 return false;
1494
1495 if (efer & EFER_SVME && !guest_cpuid_has(vcpu, X86_FEATURE_SVM))
1496 return false;
1497
1498 if (efer & (EFER_LME | EFER_LMA) &&
1499 !guest_cpuid_has(vcpu, X86_FEATURE_LM))
1500 return false;
1501
1502 if (efer & EFER_NX && !guest_cpuid_has(vcpu, X86_FEATURE_NX))
1503 return false;
1504
1505 return true;
1506
1507 }
kvm_valid_efer(struct kvm_vcpu * vcpu,u64 efer)1508 bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
1509 {
1510 if (efer & efer_reserved_bits)
1511 return false;
1512
1513 return __kvm_valid_efer(vcpu, efer);
1514 }
1515 EXPORT_SYMBOL_GPL(kvm_valid_efer);
1516
set_efer(struct kvm_vcpu * vcpu,struct msr_data * msr_info)1517 static int set_efer(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
1518 {
1519 u64 old_efer = vcpu->arch.efer;
1520 u64 efer = msr_info->data;
1521 int r;
1522
1523 if (efer & efer_reserved_bits)
1524 return 1;
1525
1526 if (!msr_info->host_initiated) {
1527 if (!__kvm_valid_efer(vcpu, efer))
1528 return 1;
1529
1530 if (is_paging(vcpu) &&
1531 (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME))
1532 return 1;
1533 }
1534
1535 efer &= ~EFER_LMA;
1536 efer |= vcpu->arch.efer & EFER_LMA;
1537
1538 r = kvm_x86_ops.set_efer(vcpu, efer);
1539 if (r) {
1540 WARN_ON(r > 0);
1541 return r;
1542 }
1543
1544 /* Update reserved bits */
1545 if ((efer ^ old_efer) & EFER_NX)
1546 kvm_mmu_reset_context(vcpu);
1547
1548 return 0;
1549 }
1550
kvm_enable_efer_bits(u64 mask)1551 void kvm_enable_efer_bits(u64 mask)
1552 {
1553 efer_reserved_bits &= ~mask;
1554 }
1555 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
1556
kvm_msr_allowed(struct kvm_vcpu * vcpu,u32 index,u32 type)1557 bool kvm_msr_allowed(struct kvm_vcpu *vcpu, u32 index, u32 type)
1558 {
1559 struct kvm_x86_msr_filter *msr_filter;
1560 struct msr_bitmap_range *ranges;
1561 struct kvm *kvm = vcpu->kvm;
1562 bool allowed;
1563 int idx;
1564 u32 i;
1565
1566 /* x2APIC MSRs do not support filtering. */
1567 if (index >= 0x800 && index <= 0x8ff)
1568 return true;
1569
1570 idx = srcu_read_lock(&kvm->srcu);
1571
1572 msr_filter = srcu_dereference(kvm->arch.msr_filter, &kvm->srcu);
1573 if (!msr_filter) {
1574 allowed = true;
1575 goto out;
1576 }
1577
1578 allowed = msr_filter->default_allow;
1579 ranges = msr_filter->ranges;
1580
1581 for (i = 0; i < msr_filter->count; i++) {
1582 u32 start = ranges[i].base;
1583 u32 end = start + ranges[i].nmsrs;
1584 u32 flags = ranges[i].flags;
1585 unsigned long *bitmap = ranges[i].bitmap;
1586
1587 if ((index >= start) && (index < end) && (flags & type)) {
1588 allowed = !!test_bit(index - start, bitmap);
1589 break;
1590 }
1591 }
1592
1593 out:
1594 srcu_read_unlock(&kvm->srcu, idx);
1595
1596 return allowed;
1597 }
1598 EXPORT_SYMBOL_GPL(kvm_msr_allowed);
1599
1600 /*
1601 * Write @data into the MSR specified by @index. Select MSR specific fault
1602 * checks are bypassed if @host_initiated is %true.
1603 * Returns 0 on success, non-0 otherwise.
1604 * Assumes vcpu_load() was already called.
1605 */
__kvm_set_msr(struct kvm_vcpu * vcpu,u32 index,u64 data,bool host_initiated)1606 static int __kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data,
1607 bool host_initiated)
1608 {
1609 struct msr_data msr;
1610
1611 if (!host_initiated && !kvm_msr_allowed(vcpu, index, KVM_MSR_FILTER_WRITE))
1612 return KVM_MSR_RET_FILTERED;
1613
1614 switch (index) {
1615 case MSR_FS_BASE:
1616 case MSR_GS_BASE:
1617 case MSR_KERNEL_GS_BASE:
1618 case MSR_CSTAR:
1619 case MSR_LSTAR:
1620 if (is_noncanonical_address(data, vcpu))
1621 return 1;
1622 break;
1623 case MSR_IA32_SYSENTER_EIP:
1624 case MSR_IA32_SYSENTER_ESP:
1625 /*
1626 * IA32_SYSENTER_ESP and IA32_SYSENTER_EIP cause #GP if
1627 * non-canonical address is written on Intel but not on
1628 * AMD (which ignores the top 32-bits, because it does
1629 * not implement 64-bit SYSENTER).
1630 *
1631 * 64-bit code should hence be able to write a non-canonical
1632 * value on AMD. Making the address canonical ensures that
1633 * vmentry does not fail on Intel after writing a non-canonical
1634 * value, and that something deterministic happens if the guest
1635 * invokes 64-bit SYSENTER.
1636 */
1637 data = get_canonical(data, vcpu_virt_addr_bits(vcpu));
1638 }
1639
1640 msr.data = data;
1641 msr.index = index;
1642 msr.host_initiated = host_initiated;
1643
1644 return kvm_x86_ops.set_msr(vcpu, &msr);
1645 }
1646
kvm_set_msr_ignored_check(struct kvm_vcpu * vcpu,u32 index,u64 data,bool host_initiated)1647 static int kvm_set_msr_ignored_check(struct kvm_vcpu *vcpu,
1648 u32 index, u64 data, bool host_initiated)
1649 {
1650 int ret = __kvm_set_msr(vcpu, index, data, host_initiated);
1651
1652 if (ret == KVM_MSR_RET_INVALID)
1653 if (kvm_msr_ignored_check(vcpu, index, data, true))
1654 ret = 0;
1655
1656 return ret;
1657 }
1658
1659 /*
1660 * Read the MSR specified by @index into @data. Select MSR specific fault
1661 * checks are bypassed if @host_initiated is %true.
1662 * Returns 0 on success, non-0 otherwise.
1663 * Assumes vcpu_load() was already called.
1664 */
__kvm_get_msr(struct kvm_vcpu * vcpu,u32 index,u64 * data,bool host_initiated)1665 int __kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data,
1666 bool host_initiated)
1667 {
1668 struct msr_data msr;
1669 int ret;
1670
1671 if (!host_initiated && !kvm_msr_allowed(vcpu, index, KVM_MSR_FILTER_READ))
1672 return KVM_MSR_RET_FILTERED;
1673
1674 msr.index = index;
1675 msr.host_initiated = host_initiated;
1676
1677 ret = kvm_x86_ops.get_msr(vcpu, &msr);
1678 if (!ret)
1679 *data = msr.data;
1680 return ret;
1681 }
1682
kvm_get_msr_ignored_check(struct kvm_vcpu * vcpu,u32 index,u64 * data,bool host_initiated)1683 static int kvm_get_msr_ignored_check(struct kvm_vcpu *vcpu,
1684 u32 index, u64 *data, bool host_initiated)
1685 {
1686 int ret = __kvm_get_msr(vcpu, index, data, host_initiated);
1687
1688 if (ret == KVM_MSR_RET_INVALID) {
1689 /* Unconditionally clear *data for simplicity */
1690 *data = 0;
1691 if (kvm_msr_ignored_check(vcpu, index, 0, false))
1692 ret = 0;
1693 }
1694
1695 return ret;
1696 }
1697
kvm_get_msr(struct kvm_vcpu * vcpu,u32 index,u64 * data)1698 int kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data)
1699 {
1700 return kvm_get_msr_ignored_check(vcpu, index, data, false);
1701 }
1702 EXPORT_SYMBOL_GPL(kvm_get_msr);
1703
kvm_set_msr(struct kvm_vcpu * vcpu,u32 index,u64 data)1704 int kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data)
1705 {
1706 return kvm_set_msr_ignored_check(vcpu, index, data, false);
1707 }
1708 EXPORT_SYMBOL_GPL(kvm_set_msr);
1709
complete_emulated_msr(struct kvm_vcpu * vcpu,bool is_read)1710 static int complete_emulated_msr(struct kvm_vcpu *vcpu, bool is_read)
1711 {
1712 if (vcpu->run->msr.error) {
1713 kvm_inject_gp(vcpu, 0);
1714 return 1;
1715 } else if (is_read) {
1716 kvm_rax_write(vcpu, (u32)vcpu->run->msr.data);
1717 kvm_rdx_write(vcpu, vcpu->run->msr.data >> 32);
1718 }
1719
1720 return kvm_skip_emulated_instruction(vcpu);
1721 }
1722
complete_emulated_rdmsr(struct kvm_vcpu * vcpu)1723 static int complete_emulated_rdmsr(struct kvm_vcpu *vcpu)
1724 {
1725 return complete_emulated_msr(vcpu, true);
1726 }
1727
complete_emulated_wrmsr(struct kvm_vcpu * vcpu)1728 static int complete_emulated_wrmsr(struct kvm_vcpu *vcpu)
1729 {
1730 return complete_emulated_msr(vcpu, false);
1731 }
1732
kvm_msr_reason(int r)1733 static u64 kvm_msr_reason(int r)
1734 {
1735 switch (r) {
1736 case KVM_MSR_RET_INVALID:
1737 return KVM_MSR_EXIT_REASON_UNKNOWN;
1738 case KVM_MSR_RET_FILTERED:
1739 return KVM_MSR_EXIT_REASON_FILTER;
1740 default:
1741 return KVM_MSR_EXIT_REASON_INVAL;
1742 }
1743 }
1744
kvm_msr_user_space(struct kvm_vcpu * vcpu,u32 index,u32 exit_reason,u64 data,int (* completion)(struct kvm_vcpu * vcpu),int r)1745 static int kvm_msr_user_space(struct kvm_vcpu *vcpu, u32 index,
1746 u32 exit_reason, u64 data,
1747 int (*completion)(struct kvm_vcpu *vcpu),
1748 int r)
1749 {
1750 u64 msr_reason = kvm_msr_reason(r);
1751
1752 /* Check if the user wanted to know about this MSR fault */
1753 if (!(vcpu->kvm->arch.user_space_msr_mask & msr_reason))
1754 return 0;
1755
1756 vcpu->run->exit_reason = exit_reason;
1757 vcpu->run->msr.error = 0;
1758 memset(vcpu->run->msr.pad, 0, sizeof(vcpu->run->msr.pad));
1759 vcpu->run->msr.reason = msr_reason;
1760 vcpu->run->msr.index = index;
1761 vcpu->run->msr.data = data;
1762 vcpu->arch.complete_userspace_io = completion;
1763
1764 return 1;
1765 }
1766
kvm_get_msr_user_space(struct kvm_vcpu * vcpu,u32 index,int r)1767 static int kvm_get_msr_user_space(struct kvm_vcpu *vcpu, u32 index, int r)
1768 {
1769 return kvm_msr_user_space(vcpu, index, KVM_EXIT_X86_RDMSR, 0,
1770 complete_emulated_rdmsr, r);
1771 }
1772
kvm_set_msr_user_space(struct kvm_vcpu * vcpu,u32 index,u64 data,int r)1773 static int kvm_set_msr_user_space(struct kvm_vcpu *vcpu, u32 index, u64 data, int r)
1774 {
1775 return kvm_msr_user_space(vcpu, index, KVM_EXIT_X86_WRMSR, data,
1776 complete_emulated_wrmsr, r);
1777 }
1778
kvm_emulate_rdmsr(struct kvm_vcpu * vcpu)1779 int kvm_emulate_rdmsr(struct kvm_vcpu *vcpu)
1780 {
1781 u32 ecx = kvm_rcx_read(vcpu);
1782 u64 data;
1783 int r;
1784
1785 r = kvm_get_msr(vcpu, ecx, &data);
1786
1787 /* MSR read failed? See if we should ask user space */
1788 if (r && kvm_get_msr_user_space(vcpu, ecx, r)) {
1789 /* Bounce to user space */
1790 return 0;
1791 }
1792
1793 /* MSR read failed? Inject a #GP */
1794 if (r) {
1795 trace_kvm_msr_read_ex(ecx);
1796 kvm_inject_gp(vcpu, 0);
1797 return 1;
1798 }
1799
1800 trace_kvm_msr_read(ecx, data);
1801
1802 kvm_rax_write(vcpu, data & -1u);
1803 kvm_rdx_write(vcpu, (data >> 32) & -1u);
1804 return kvm_skip_emulated_instruction(vcpu);
1805 }
1806 EXPORT_SYMBOL_GPL(kvm_emulate_rdmsr);
1807
kvm_emulate_wrmsr(struct kvm_vcpu * vcpu)1808 int kvm_emulate_wrmsr(struct kvm_vcpu *vcpu)
1809 {
1810 u32 ecx = kvm_rcx_read(vcpu);
1811 u64 data = kvm_read_edx_eax(vcpu);
1812 int r;
1813
1814 r = kvm_set_msr(vcpu, ecx, data);
1815
1816 /* MSR write failed? See if we should ask user space */
1817 if (r && kvm_set_msr_user_space(vcpu, ecx, data, r))
1818 /* Bounce to user space */
1819 return 0;
1820
1821 /* Signal all other negative errors to userspace */
1822 if (r < 0)
1823 return r;
1824
1825 /* MSR write failed? Inject a #GP */
1826 if (r > 0) {
1827 trace_kvm_msr_write_ex(ecx, data);
1828 kvm_inject_gp(vcpu, 0);
1829 return 1;
1830 }
1831
1832 trace_kvm_msr_write(ecx, data);
1833 return kvm_skip_emulated_instruction(vcpu);
1834 }
1835 EXPORT_SYMBOL_GPL(kvm_emulate_wrmsr);
1836
kvm_vcpu_exit_request(struct kvm_vcpu * vcpu)1837 bool kvm_vcpu_exit_request(struct kvm_vcpu *vcpu)
1838 {
1839 return vcpu->mode == EXITING_GUEST_MODE || kvm_request_pending(vcpu) ||
1840 xfer_to_guest_mode_work_pending();
1841 }
1842 EXPORT_SYMBOL_GPL(kvm_vcpu_exit_request);
1843
1844 /*
1845 * The fast path for frequent and performance sensitive wrmsr emulation,
1846 * i.e. the sending of IPI, sending IPI early in the VM-Exit flow reduces
1847 * the latency of virtual IPI by avoiding the expensive bits of transitioning
1848 * from guest to host, e.g. reacquiring KVM's SRCU lock. In contrast to the
1849 * other cases which must be called after interrupts are enabled on the host.
1850 */
handle_fastpath_set_x2apic_icr_irqoff(struct kvm_vcpu * vcpu,u64 data)1851 static int handle_fastpath_set_x2apic_icr_irqoff(struct kvm_vcpu *vcpu, u64 data)
1852 {
1853 if (!lapic_in_kernel(vcpu) || !apic_x2apic_mode(vcpu->arch.apic))
1854 return 1;
1855
1856 if (((data & APIC_SHORT_MASK) == APIC_DEST_NOSHORT) &&
1857 ((data & APIC_DEST_MASK) == APIC_DEST_PHYSICAL) &&
1858 ((data & APIC_MODE_MASK) == APIC_DM_FIXED) &&
1859 ((u32)(data >> 32) != X2APIC_BROADCAST)) {
1860
1861 data &= ~(1 << 12);
1862 kvm_apic_send_ipi(vcpu->arch.apic, (u32)data, (u32)(data >> 32));
1863 kvm_lapic_set_reg(vcpu->arch.apic, APIC_ICR2, (u32)(data >> 32));
1864 kvm_lapic_set_reg(vcpu->arch.apic, APIC_ICR, (u32)data);
1865 trace_kvm_apic_write(APIC_ICR, (u32)data);
1866 return 0;
1867 }
1868
1869 return 1;
1870 }
1871
handle_fastpath_set_tscdeadline(struct kvm_vcpu * vcpu,u64 data)1872 static int handle_fastpath_set_tscdeadline(struct kvm_vcpu *vcpu, u64 data)
1873 {
1874 if (!kvm_can_use_hv_timer(vcpu))
1875 return 1;
1876
1877 kvm_set_lapic_tscdeadline_msr(vcpu, data);
1878 return 0;
1879 }
1880
handle_fastpath_set_msr_irqoff(struct kvm_vcpu * vcpu)1881 fastpath_t handle_fastpath_set_msr_irqoff(struct kvm_vcpu *vcpu)
1882 {
1883 u32 msr = kvm_rcx_read(vcpu);
1884 u64 data;
1885 fastpath_t ret = EXIT_FASTPATH_NONE;
1886
1887 switch (msr) {
1888 case APIC_BASE_MSR + (APIC_ICR >> 4):
1889 data = kvm_read_edx_eax(vcpu);
1890 if (!handle_fastpath_set_x2apic_icr_irqoff(vcpu, data)) {
1891 kvm_skip_emulated_instruction(vcpu);
1892 ret = EXIT_FASTPATH_EXIT_HANDLED;
1893 }
1894 break;
1895 case MSR_IA32_TSCDEADLINE:
1896 data = kvm_read_edx_eax(vcpu);
1897 if (!handle_fastpath_set_tscdeadline(vcpu, data)) {
1898 kvm_skip_emulated_instruction(vcpu);
1899 ret = EXIT_FASTPATH_REENTER_GUEST;
1900 }
1901 break;
1902 default:
1903 break;
1904 }
1905
1906 if (ret != EXIT_FASTPATH_NONE)
1907 trace_kvm_msr_write(msr, data);
1908
1909 return ret;
1910 }
1911 EXPORT_SYMBOL_GPL(handle_fastpath_set_msr_irqoff);
1912
1913 /*
1914 * Adapt set_msr() to msr_io()'s calling convention
1915 */
do_get_msr(struct kvm_vcpu * vcpu,unsigned index,u64 * data)1916 static int do_get_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1917 {
1918 return kvm_get_msr_ignored_check(vcpu, index, data, true);
1919 }
1920
do_set_msr(struct kvm_vcpu * vcpu,unsigned index,u64 * data)1921 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1922 {
1923 return kvm_set_msr_ignored_check(vcpu, index, *data, true);
1924 }
1925
1926 #ifdef CONFIG_X86_64
1927 struct pvclock_clock {
1928 int vclock_mode;
1929 u64 cycle_last;
1930 u64 mask;
1931 u32 mult;
1932 u32 shift;
1933 u64 base_cycles;
1934 u64 offset;
1935 };
1936
1937 struct pvclock_gtod_data {
1938 seqcount_t seq;
1939
1940 struct pvclock_clock clock; /* extract of a clocksource struct */
1941 struct pvclock_clock raw_clock; /* extract of a clocksource struct */
1942
1943 ktime_t offs_boot;
1944 u64 wall_time_sec;
1945 };
1946
1947 static struct pvclock_gtod_data pvclock_gtod_data;
1948
update_pvclock_gtod(struct timekeeper * tk)1949 static void update_pvclock_gtod(struct timekeeper *tk)
1950 {
1951 struct pvclock_gtod_data *vdata = &pvclock_gtod_data;
1952
1953 write_seqcount_begin(&vdata->seq);
1954
1955 /* copy pvclock gtod data */
1956 vdata->clock.vclock_mode = tk->tkr_mono.clock->vdso_clock_mode;
1957 vdata->clock.cycle_last = tk->tkr_mono.cycle_last;
1958 vdata->clock.mask = tk->tkr_mono.mask;
1959 vdata->clock.mult = tk->tkr_mono.mult;
1960 vdata->clock.shift = tk->tkr_mono.shift;
1961 vdata->clock.base_cycles = tk->tkr_mono.xtime_nsec;
1962 vdata->clock.offset = tk->tkr_mono.base;
1963
1964 vdata->raw_clock.vclock_mode = tk->tkr_raw.clock->vdso_clock_mode;
1965 vdata->raw_clock.cycle_last = tk->tkr_raw.cycle_last;
1966 vdata->raw_clock.mask = tk->tkr_raw.mask;
1967 vdata->raw_clock.mult = tk->tkr_raw.mult;
1968 vdata->raw_clock.shift = tk->tkr_raw.shift;
1969 vdata->raw_clock.base_cycles = tk->tkr_raw.xtime_nsec;
1970 vdata->raw_clock.offset = tk->tkr_raw.base;
1971
1972 vdata->wall_time_sec = tk->xtime_sec;
1973
1974 vdata->offs_boot = tk->offs_boot;
1975
1976 write_seqcount_end(&vdata->seq);
1977 }
1978
get_kvmclock_base_ns(void)1979 static s64 get_kvmclock_base_ns(void)
1980 {
1981 /* Count up from boot time, but with the frequency of the raw clock. */
1982 return ktime_to_ns(ktime_add(ktime_get_raw(), pvclock_gtod_data.offs_boot));
1983 }
1984 #else
get_kvmclock_base_ns(void)1985 static s64 get_kvmclock_base_ns(void)
1986 {
1987 /* Master clock not used, so we can just use CLOCK_BOOTTIME. */
1988 return ktime_get_boottime_ns();
1989 }
1990 #endif
1991
kvm_write_wall_clock(struct kvm * kvm,gpa_t wall_clock)1992 static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock)
1993 {
1994 int version;
1995 int r;
1996 struct pvclock_wall_clock wc;
1997 u64 wall_nsec;
1998
1999 kvm->arch.wall_clock = wall_clock;
2000
2001 if (!wall_clock)
2002 return;
2003
2004 r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version));
2005 if (r)
2006 return;
2007
2008 if (version & 1)
2009 ++version; /* first time write, random junk */
2010
2011 ++version;
2012
2013 if (kvm_write_guest(kvm, wall_clock, &version, sizeof(version)))
2014 return;
2015
2016 /*
2017 * The guest calculates current wall clock time by adding
2018 * system time (updated by kvm_guest_time_update below) to the
2019 * wall clock specified here. We do the reverse here.
2020 */
2021 wall_nsec = ktime_get_real_ns() - get_kvmclock_ns(kvm);
2022
2023 wc.nsec = do_div(wall_nsec, 1000000000);
2024 wc.sec = (u32)wall_nsec; /* overflow in 2106 guest time */
2025 wc.version = version;
2026
2027 kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
2028
2029 version++;
2030 kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
2031 }
2032
kvm_write_system_time(struct kvm_vcpu * vcpu,gpa_t system_time,bool old_msr,bool host_initiated)2033 static void kvm_write_system_time(struct kvm_vcpu *vcpu, gpa_t system_time,
2034 bool old_msr, bool host_initiated)
2035 {
2036 struct kvm_arch *ka = &vcpu->kvm->arch;
2037
2038 if (vcpu->vcpu_id == 0 && !host_initiated) {
2039 if (ka->boot_vcpu_runs_old_kvmclock != old_msr)
2040 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
2041
2042 ka->boot_vcpu_runs_old_kvmclock = old_msr;
2043 }
2044
2045 vcpu->arch.time = system_time;
2046 kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
2047
2048 /* we verify if the enable bit is set... */
2049 vcpu->arch.pv_time_enabled = false;
2050 if (!(system_time & 1))
2051 return;
2052
2053 if (!kvm_gfn_to_hva_cache_init(vcpu->kvm,
2054 &vcpu->arch.pv_time, system_time & ~1ULL,
2055 sizeof(struct pvclock_vcpu_time_info)))
2056 vcpu->arch.pv_time_enabled = true;
2057
2058 return;
2059 }
2060
div_frac(uint32_t dividend,uint32_t divisor)2061 static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
2062 {
2063 do_shl32_div32(dividend, divisor);
2064 return dividend;
2065 }
2066
kvm_get_time_scale(uint64_t scaled_hz,uint64_t base_hz,s8 * pshift,u32 * pmultiplier)2067 static void kvm_get_time_scale(uint64_t scaled_hz, uint64_t base_hz,
2068 s8 *pshift, u32 *pmultiplier)
2069 {
2070 uint64_t scaled64;
2071 int32_t shift = 0;
2072 uint64_t tps64;
2073 uint32_t tps32;
2074
2075 tps64 = base_hz;
2076 scaled64 = scaled_hz;
2077 while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) {
2078 tps64 >>= 1;
2079 shift--;
2080 }
2081
2082 tps32 = (uint32_t)tps64;
2083 while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) {
2084 if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000)
2085 scaled64 >>= 1;
2086 else
2087 tps32 <<= 1;
2088 shift++;
2089 }
2090
2091 *pshift = shift;
2092 *pmultiplier = div_frac(scaled64, tps32);
2093 }
2094
2095 #ifdef CONFIG_X86_64
2096 static atomic_t kvm_guest_has_master_clock = ATOMIC_INIT(0);
2097 #endif
2098
2099 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
2100 static unsigned long max_tsc_khz;
2101
adjust_tsc_khz(u32 khz,s32 ppm)2102 static u32 adjust_tsc_khz(u32 khz, s32 ppm)
2103 {
2104 u64 v = (u64)khz * (1000000 + ppm);
2105 do_div(v, 1000000);
2106 return v;
2107 }
2108
set_tsc_khz(struct kvm_vcpu * vcpu,u32 user_tsc_khz,bool scale)2109 static int set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz, bool scale)
2110 {
2111 u64 ratio;
2112
2113 /* Guest TSC same frequency as host TSC? */
2114 if (!scale) {
2115 vcpu->arch.tsc_scaling_ratio = kvm_default_tsc_scaling_ratio;
2116 return 0;
2117 }
2118
2119 /* TSC scaling supported? */
2120 if (!kvm_has_tsc_control) {
2121 if (user_tsc_khz > tsc_khz) {
2122 vcpu->arch.tsc_catchup = 1;
2123 vcpu->arch.tsc_always_catchup = 1;
2124 return 0;
2125 } else {
2126 pr_warn_ratelimited("user requested TSC rate below hardware speed\n");
2127 return -1;
2128 }
2129 }
2130
2131 /* TSC scaling required - calculate ratio */
2132 ratio = mul_u64_u32_div(1ULL << kvm_tsc_scaling_ratio_frac_bits,
2133 user_tsc_khz, tsc_khz);
2134
2135 if (ratio == 0 || ratio >= kvm_max_tsc_scaling_ratio) {
2136 pr_warn_ratelimited("Invalid TSC scaling ratio - virtual-tsc-khz=%u\n",
2137 user_tsc_khz);
2138 return -1;
2139 }
2140
2141 vcpu->arch.tsc_scaling_ratio = ratio;
2142 return 0;
2143 }
2144
kvm_set_tsc_khz(struct kvm_vcpu * vcpu,u32 user_tsc_khz)2145 static int kvm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz)
2146 {
2147 u32 thresh_lo, thresh_hi;
2148 int use_scaling = 0;
2149
2150 /* tsc_khz can be zero if TSC calibration fails */
2151 if (user_tsc_khz == 0) {
2152 /* set tsc_scaling_ratio to a safe value */
2153 vcpu->arch.tsc_scaling_ratio = kvm_default_tsc_scaling_ratio;
2154 return -1;
2155 }
2156
2157 /* Compute a scale to convert nanoseconds in TSC cycles */
2158 kvm_get_time_scale(user_tsc_khz * 1000LL, NSEC_PER_SEC,
2159 &vcpu->arch.virtual_tsc_shift,
2160 &vcpu->arch.virtual_tsc_mult);
2161 vcpu->arch.virtual_tsc_khz = user_tsc_khz;
2162
2163 /*
2164 * Compute the variation in TSC rate which is acceptable
2165 * within the range of tolerance and decide if the
2166 * rate being applied is within that bounds of the hardware
2167 * rate. If so, no scaling or compensation need be done.
2168 */
2169 thresh_lo = adjust_tsc_khz(tsc_khz, -tsc_tolerance_ppm);
2170 thresh_hi = adjust_tsc_khz(tsc_khz, tsc_tolerance_ppm);
2171 if (user_tsc_khz < thresh_lo || user_tsc_khz > thresh_hi) {
2172 pr_debug("kvm: requested TSC rate %u falls outside tolerance [%u,%u]\n", user_tsc_khz, thresh_lo, thresh_hi);
2173 use_scaling = 1;
2174 }
2175 return set_tsc_khz(vcpu, user_tsc_khz, use_scaling);
2176 }
2177
compute_guest_tsc(struct kvm_vcpu * vcpu,s64 kernel_ns)2178 static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns)
2179 {
2180 u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.this_tsc_nsec,
2181 vcpu->arch.virtual_tsc_mult,
2182 vcpu->arch.virtual_tsc_shift);
2183 tsc += vcpu->arch.this_tsc_write;
2184 return tsc;
2185 }
2186
gtod_is_based_on_tsc(int mode)2187 static inline int gtod_is_based_on_tsc(int mode)
2188 {
2189 return mode == VDSO_CLOCKMODE_TSC || mode == VDSO_CLOCKMODE_HVCLOCK;
2190 }
2191
kvm_track_tsc_matching(struct kvm_vcpu * vcpu)2192 static void kvm_track_tsc_matching(struct kvm_vcpu *vcpu)
2193 {
2194 #ifdef CONFIG_X86_64
2195 bool vcpus_matched;
2196 struct kvm_arch *ka = &vcpu->kvm->arch;
2197 struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
2198
2199 vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
2200 atomic_read(&vcpu->kvm->online_vcpus));
2201
2202 /*
2203 * Once the masterclock is enabled, always perform request in
2204 * order to update it.
2205 *
2206 * In order to enable masterclock, the host clocksource must be TSC
2207 * and the vcpus need to have matched TSCs. When that happens,
2208 * perform request to enable masterclock.
2209 */
2210 if (ka->use_master_clock ||
2211 (gtod_is_based_on_tsc(gtod->clock.vclock_mode) && vcpus_matched))
2212 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
2213
2214 trace_kvm_track_tsc(vcpu->vcpu_id, ka->nr_vcpus_matched_tsc,
2215 atomic_read(&vcpu->kvm->online_vcpus),
2216 ka->use_master_clock, gtod->clock.vclock_mode);
2217 #endif
2218 }
2219
2220 /*
2221 * Multiply tsc by a fixed point number represented by ratio.
2222 *
2223 * The most significant 64-N bits (mult) of ratio represent the
2224 * integral part of the fixed point number; the remaining N bits
2225 * (frac) represent the fractional part, ie. ratio represents a fixed
2226 * point number (mult + frac * 2^(-N)).
2227 *
2228 * N equals to kvm_tsc_scaling_ratio_frac_bits.
2229 */
__scale_tsc(u64 ratio,u64 tsc)2230 static inline u64 __scale_tsc(u64 ratio, u64 tsc)
2231 {
2232 return mul_u64_u64_shr(tsc, ratio, kvm_tsc_scaling_ratio_frac_bits);
2233 }
2234
kvm_scale_tsc(struct kvm_vcpu * vcpu,u64 tsc)2235 u64 kvm_scale_tsc(struct kvm_vcpu *vcpu, u64 tsc)
2236 {
2237 u64 _tsc = tsc;
2238 u64 ratio = vcpu->arch.tsc_scaling_ratio;
2239
2240 if (ratio != kvm_default_tsc_scaling_ratio)
2241 _tsc = __scale_tsc(ratio, tsc);
2242
2243 return _tsc;
2244 }
2245 EXPORT_SYMBOL_GPL(kvm_scale_tsc);
2246
kvm_compute_tsc_offset(struct kvm_vcpu * vcpu,u64 target_tsc)2247 static u64 kvm_compute_tsc_offset(struct kvm_vcpu *vcpu, u64 target_tsc)
2248 {
2249 u64 tsc;
2250
2251 tsc = kvm_scale_tsc(vcpu, rdtsc());
2252
2253 return target_tsc - tsc;
2254 }
2255
kvm_read_l1_tsc(struct kvm_vcpu * vcpu,u64 host_tsc)2256 u64 kvm_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc)
2257 {
2258 return vcpu->arch.l1_tsc_offset + kvm_scale_tsc(vcpu, host_tsc);
2259 }
2260 EXPORT_SYMBOL_GPL(kvm_read_l1_tsc);
2261
kvm_vcpu_write_tsc_offset(struct kvm_vcpu * vcpu,u64 offset)2262 static void kvm_vcpu_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
2263 {
2264 vcpu->arch.l1_tsc_offset = offset;
2265 vcpu->arch.tsc_offset = kvm_x86_ops.write_l1_tsc_offset(vcpu, offset);
2266 }
2267
kvm_check_tsc_unstable(void)2268 static inline bool kvm_check_tsc_unstable(void)
2269 {
2270 #ifdef CONFIG_X86_64
2271 /*
2272 * TSC is marked unstable when we're running on Hyper-V,
2273 * 'TSC page' clocksource is good.
2274 */
2275 if (pvclock_gtod_data.clock.vclock_mode == VDSO_CLOCKMODE_HVCLOCK)
2276 return false;
2277 #endif
2278 return check_tsc_unstable();
2279 }
2280
kvm_synchronize_tsc(struct kvm_vcpu * vcpu,u64 data)2281 static void kvm_synchronize_tsc(struct kvm_vcpu *vcpu, u64 data)
2282 {
2283 struct kvm *kvm = vcpu->kvm;
2284 u64 offset, ns, elapsed;
2285 unsigned long flags;
2286 bool matched;
2287 bool already_matched;
2288 bool synchronizing = false;
2289
2290 raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
2291 offset = kvm_compute_tsc_offset(vcpu, data);
2292 ns = get_kvmclock_base_ns();
2293 elapsed = ns - kvm->arch.last_tsc_nsec;
2294
2295 if (vcpu->arch.virtual_tsc_khz) {
2296 if (data == 0) {
2297 /*
2298 * detection of vcpu initialization -- need to sync
2299 * with other vCPUs. This particularly helps to keep
2300 * kvm_clock stable after CPU hotplug
2301 */
2302 synchronizing = true;
2303 } else {
2304 u64 tsc_exp = kvm->arch.last_tsc_write +
2305 nsec_to_cycles(vcpu, elapsed);
2306 u64 tsc_hz = vcpu->arch.virtual_tsc_khz * 1000LL;
2307 /*
2308 * Special case: TSC write with a small delta (1 second)
2309 * of virtual cycle time against real time is
2310 * interpreted as an attempt to synchronize the CPU.
2311 */
2312 synchronizing = data < tsc_exp + tsc_hz &&
2313 data + tsc_hz > tsc_exp;
2314 }
2315 }
2316
2317 /*
2318 * For a reliable TSC, we can match TSC offsets, and for an unstable
2319 * TSC, we add elapsed time in this computation. We could let the
2320 * compensation code attempt to catch up if we fall behind, but
2321 * it's better to try to match offsets from the beginning.
2322 */
2323 if (synchronizing &&
2324 vcpu->arch.virtual_tsc_khz == kvm->arch.last_tsc_khz) {
2325 if (!kvm_check_tsc_unstable()) {
2326 offset = kvm->arch.cur_tsc_offset;
2327 } else {
2328 u64 delta = nsec_to_cycles(vcpu, elapsed);
2329 data += delta;
2330 offset = kvm_compute_tsc_offset(vcpu, data);
2331 }
2332 matched = true;
2333 already_matched = (vcpu->arch.this_tsc_generation == kvm->arch.cur_tsc_generation);
2334 } else {
2335 /*
2336 * We split periods of matched TSC writes into generations.
2337 * For each generation, we track the original measured
2338 * nanosecond time, offset, and write, so if TSCs are in
2339 * sync, we can match exact offset, and if not, we can match
2340 * exact software computation in compute_guest_tsc()
2341 *
2342 * These values are tracked in kvm->arch.cur_xxx variables.
2343 */
2344 kvm->arch.cur_tsc_generation++;
2345 kvm->arch.cur_tsc_nsec = ns;
2346 kvm->arch.cur_tsc_write = data;
2347 kvm->arch.cur_tsc_offset = offset;
2348 matched = false;
2349 }
2350
2351 /*
2352 * We also track th most recent recorded KHZ, write and time to
2353 * allow the matching interval to be extended at each write.
2354 */
2355 kvm->arch.last_tsc_nsec = ns;
2356 kvm->arch.last_tsc_write = data;
2357 kvm->arch.last_tsc_khz = vcpu->arch.virtual_tsc_khz;
2358
2359 vcpu->arch.last_guest_tsc = data;
2360
2361 /* Keep track of which generation this VCPU has synchronized to */
2362 vcpu->arch.this_tsc_generation = kvm->arch.cur_tsc_generation;
2363 vcpu->arch.this_tsc_nsec = kvm->arch.cur_tsc_nsec;
2364 vcpu->arch.this_tsc_write = kvm->arch.cur_tsc_write;
2365
2366 kvm_vcpu_write_tsc_offset(vcpu, offset);
2367 raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
2368
2369 spin_lock(&kvm->arch.pvclock_gtod_sync_lock);
2370 if (!matched) {
2371 kvm->arch.nr_vcpus_matched_tsc = 0;
2372 } else if (!already_matched) {
2373 kvm->arch.nr_vcpus_matched_tsc++;
2374 }
2375
2376 kvm_track_tsc_matching(vcpu);
2377 spin_unlock(&kvm->arch.pvclock_gtod_sync_lock);
2378 }
2379
adjust_tsc_offset_guest(struct kvm_vcpu * vcpu,s64 adjustment)2380 static inline void adjust_tsc_offset_guest(struct kvm_vcpu *vcpu,
2381 s64 adjustment)
2382 {
2383 u64 tsc_offset = vcpu->arch.l1_tsc_offset;
2384 kvm_vcpu_write_tsc_offset(vcpu, tsc_offset + adjustment);
2385 }
2386
adjust_tsc_offset_host(struct kvm_vcpu * vcpu,s64 adjustment)2387 static inline void adjust_tsc_offset_host(struct kvm_vcpu *vcpu, s64 adjustment)
2388 {
2389 if (vcpu->arch.tsc_scaling_ratio != kvm_default_tsc_scaling_ratio)
2390 WARN_ON(adjustment < 0);
2391 adjustment = kvm_scale_tsc(vcpu, (u64) adjustment);
2392 adjust_tsc_offset_guest(vcpu, adjustment);
2393 }
2394
2395 #ifdef CONFIG_X86_64
2396
read_tsc(void)2397 static u64 read_tsc(void)
2398 {
2399 u64 ret = (u64)rdtsc_ordered();
2400 u64 last = pvclock_gtod_data.clock.cycle_last;
2401
2402 if (likely(ret >= last))
2403 return ret;
2404
2405 /*
2406 * GCC likes to generate cmov here, but this branch is extremely
2407 * predictable (it's just a function of time and the likely is
2408 * very likely) and there's a data dependence, so force GCC
2409 * to generate a branch instead. I don't barrier() because
2410 * we don't actually need a barrier, and if this function
2411 * ever gets inlined it will generate worse code.
2412 */
2413 asm volatile ("");
2414 return last;
2415 }
2416
vgettsc(struct pvclock_clock * clock,u64 * tsc_timestamp,int * mode)2417 static inline u64 vgettsc(struct pvclock_clock *clock, u64 *tsc_timestamp,
2418 int *mode)
2419 {
2420 long v;
2421 u64 tsc_pg_val;
2422
2423 switch (clock->vclock_mode) {
2424 case VDSO_CLOCKMODE_HVCLOCK:
2425 tsc_pg_val = hv_read_tsc_page_tsc(hv_get_tsc_page(),
2426 tsc_timestamp);
2427 if (tsc_pg_val != U64_MAX) {
2428 /* TSC page valid */
2429 *mode = VDSO_CLOCKMODE_HVCLOCK;
2430 v = (tsc_pg_val - clock->cycle_last) &
2431 clock->mask;
2432 } else {
2433 /* TSC page invalid */
2434 *mode = VDSO_CLOCKMODE_NONE;
2435 }
2436 break;
2437 case VDSO_CLOCKMODE_TSC:
2438 *mode = VDSO_CLOCKMODE_TSC;
2439 *tsc_timestamp = read_tsc();
2440 v = (*tsc_timestamp - clock->cycle_last) &
2441 clock->mask;
2442 break;
2443 default:
2444 *mode = VDSO_CLOCKMODE_NONE;
2445 }
2446
2447 if (*mode == VDSO_CLOCKMODE_NONE)
2448 *tsc_timestamp = v = 0;
2449
2450 return v * clock->mult;
2451 }
2452
do_monotonic_raw(s64 * t,u64 * tsc_timestamp)2453 static int do_monotonic_raw(s64 *t, u64 *tsc_timestamp)
2454 {
2455 struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
2456 unsigned long seq;
2457 int mode;
2458 u64 ns;
2459
2460 do {
2461 seq = read_seqcount_begin(>od->seq);
2462 ns = gtod->raw_clock.base_cycles;
2463 ns += vgettsc(>od->raw_clock, tsc_timestamp, &mode);
2464 ns >>= gtod->raw_clock.shift;
2465 ns += ktime_to_ns(ktime_add(gtod->raw_clock.offset, gtod->offs_boot));
2466 } while (unlikely(read_seqcount_retry(>od->seq, seq)));
2467 *t = ns;
2468
2469 return mode;
2470 }
2471
do_realtime(struct timespec64 * ts,u64 * tsc_timestamp)2472 static int do_realtime(struct timespec64 *ts, u64 *tsc_timestamp)
2473 {
2474 struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
2475 unsigned long seq;
2476 int mode;
2477 u64 ns;
2478
2479 do {
2480 seq = read_seqcount_begin(>od->seq);
2481 ts->tv_sec = gtod->wall_time_sec;
2482 ns = gtod->clock.base_cycles;
2483 ns += vgettsc(>od->clock, tsc_timestamp, &mode);
2484 ns >>= gtod->clock.shift;
2485 } while (unlikely(read_seqcount_retry(>od->seq, seq)));
2486
2487 ts->tv_sec += __iter_div_u64_rem(ns, NSEC_PER_SEC, &ns);
2488 ts->tv_nsec = ns;
2489
2490 return mode;
2491 }
2492
2493 /* returns true if host is using TSC based clocksource */
kvm_get_time_and_clockread(s64 * kernel_ns,u64 * tsc_timestamp)2494 static bool kvm_get_time_and_clockread(s64 *kernel_ns, u64 *tsc_timestamp)
2495 {
2496 /* checked again under seqlock below */
2497 if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode))
2498 return false;
2499
2500 return gtod_is_based_on_tsc(do_monotonic_raw(kernel_ns,
2501 tsc_timestamp));
2502 }
2503
2504 /* returns true if host is using TSC based clocksource */
kvm_get_walltime_and_clockread(struct timespec64 * ts,u64 * tsc_timestamp)2505 static bool kvm_get_walltime_and_clockread(struct timespec64 *ts,
2506 u64 *tsc_timestamp)
2507 {
2508 /* checked again under seqlock below */
2509 if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode))
2510 return false;
2511
2512 return gtod_is_based_on_tsc(do_realtime(ts, tsc_timestamp));
2513 }
2514 #endif
2515
2516 /*
2517 *
2518 * Assuming a stable TSC across physical CPUS, and a stable TSC
2519 * across virtual CPUs, the following condition is possible.
2520 * Each numbered line represents an event visible to both
2521 * CPUs at the next numbered event.
2522 *
2523 * "timespecX" represents host monotonic time. "tscX" represents
2524 * RDTSC value.
2525 *
2526 * VCPU0 on CPU0 | VCPU1 on CPU1
2527 *
2528 * 1. read timespec0,tsc0
2529 * 2. | timespec1 = timespec0 + N
2530 * | tsc1 = tsc0 + M
2531 * 3. transition to guest | transition to guest
2532 * 4. ret0 = timespec0 + (rdtsc - tsc0) |
2533 * 5. | ret1 = timespec1 + (rdtsc - tsc1)
2534 * | ret1 = timespec0 + N + (rdtsc - (tsc0 + M))
2535 *
2536 * Since ret0 update is visible to VCPU1 at time 5, to obey monotonicity:
2537 *
2538 * - ret0 < ret1
2539 * - timespec0 + (rdtsc - tsc0) < timespec0 + N + (rdtsc - (tsc0 + M))
2540 * ...
2541 * - 0 < N - M => M < N
2542 *
2543 * That is, when timespec0 != timespec1, M < N. Unfortunately that is not
2544 * always the case (the difference between two distinct xtime instances
2545 * might be smaller then the difference between corresponding TSC reads,
2546 * when updating guest vcpus pvclock areas).
2547 *
2548 * To avoid that problem, do not allow visibility of distinct
2549 * system_timestamp/tsc_timestamp values simultaneously: use a master
2550 * copy of host monotonic time values. Update that master copy
2551 * in lockstep.
2552 *
2553 * Rely on synchronization of host TSCs and guest TSCs for monotonicity.
2554 *
2555 */
2556
pvclock_update_vm_gtod_copy(struct kvm * kvm)2557 static void pvclock_update_vm_gtod_copy(struct kvm *kvm)
2558 {
2559 #ifdef CONFIG_X86_64
2560 struct kvm_arch *ka = &kvm->arch;
2561 int vclock_mode;
2562 bool host_tsc_clocksource, vcpus_matched;
2563
2564 vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
2565 atomic_read(&kvm->online_vcpus));
2566
2567 /*
2568 * If the host uses TSC clock, then passthrough TSC as stable
2569 * to the guest.
2570 */
2571 host_tsc_clocksource = kvm_get_time_and_clockread(
2572 &ka->master_kernel_ns,
2573 &ka->master_cycle_now);
2574
2575 ka->use_master_clock = host_tsc_clocksource && vcpus_matched
2576 && !ka->backwards_tsc_observed
2577 && !ka->boot_vcpu_runs_old_kvmclock;
2578
2579 if (ka->use_master_clock)
2580 atomic_set(&kvm_guest_has_master_clock, 1);
2581
2582 vclock_mode = pvclock_gtod_data.clock.vclock_mode;
2583 trace_kvm_update_master_clock(ka->use_master_clock, vclock_mode,
2584 vcpus_matched);
2585 #endif
2586 }
2587
kvm_make_mclock_inprogress_request(struct kvm * kvm)2588 void kvm_make_mclock_inprogress_request(struct kvm *kvm)
2589 {
2590 kvm_make_all_cpus_request(kvm, KVM_REQ_MCLOCK_INPROGRESS);
2591 }
2592
kvm_gen_update_masterclock(struct kvm * kvm)2593 static void kvm_gen_update_masterclock(struct kvm *kvm)
2594 {
2595 #ifdef CONFIG_X86_64
2596 int i;
2597 struct kvm_vcpu *vcpu;
2598 struct kvm_arch *ka = &kvm->arch;
2599
2600 spin_lock(&ka->pvclock_gtod_sync_lock);
2601 kvm_make_mclock_inprogress_request(kvm);
2602 /* no guest entries from this point */
2603 pvclock_update_vm_gtod_copy(kvm);
2604
2605 kvm_for_each_vcpu(i, vcpu, kvm)
2606 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
2607
2608 /* guest entries allowed */
2609 kvm_for_each_vcpu(i, vcpu, kvm)
2610 kvm_clear_request(KVM_REQ_MCLOCK_INPROGRESS, vcpu);
2611
2612 spin_unlock(&ka->pvclock_gtod_sync_lock);
2613 #endif
2614 }
2615
get_kvmclock_ns(struct kvm * kvm)2616 u64 get_kvmclock_ns(struct kvm *kvm)
2617 {
2618 struct kvm_arch *ka = &kvm->arch;
2619 struct pvclock_vcpu_time_info hv_clock;
2620 u64 ret;
2621
2622 spin_lock(&ka->pvclock_gtod_sync_lock);
2623 if (!ka->use_master_clock) {
2624 spin_unlock(&ka->pvclock_gtod_sync_lock);
2625 return get_kvmclock_base_ns() + ka->kvmclock_offset;
2626 }
2627
2628 hv_clock.tsc_timestamp = ka->master_cycle_now;
2629 hv_clock.system_time = ka->master_kernel_ns + ka->kvmclock_offset;
2630 spin_unlock(&ka->pvclock_gtod_sync_lock);
2631
2632 /* both __this_cpu_read() and rdtsc() should be on the same cpu */
2633 get_cpu();
2634
2635 if (__this_cpu_read(cpu_tsc_khz)) {
2636 kvm_get_time_scale(NSEC_PER_SEC, __this_cpu_read(cpu_tsc_khz) * 1000LL,
2637 &hv_clock.tsc_shift,
2638 &hv_clock.tsc_to_system_mul);
2639 ret = __pvclock_read_cycles(&hv_clock, rdtsc());
2640 } else
2641 ret = get_kvmclock_base_ns() + ka->kvmclock_offset;
2642
2643 put_cpu();
2644
2645 return ret;
2646 }
2647
kvm_setup_pvclock_page(struct kvm_vcpu * v)2648 static void kvm_setup_pvclock_page(struct kvm_vcpu *v)
2649 {
2650 struct kvm_vcpu_arch *vcpu = &v->arch;
2651 struct pvclock_vcpu_time_info guest_hv_clock;
2652
2653 if (unlikely(kvm_read_guest_cached(v->kvm, &vcpu->pv_time,
2654 &guest_hv_clock, sizeof(guest_hv_clock))))
2655 return;
2656
2657 /* This VCPU is paused, but it's legal for a guest to read another
2658 * VCPU's kvmclock, so we really have to follow the specification where
2659 * it says that version is odd if data is being modified, and even after
2660 * it is consistent.
2661 *
2662 * Version field updates must be kept separate. This is because
2663 * kvm_write_guest_cached might use a "rep movs" instruction, and
2664 * writes within a string instruction are weakly ordered. So there
2665 * are three writes overall.
2666 *
2667 * As a small optimization, only write the version field in the first
2668 * and third write. The vcpu->pv_time cache is still valid, because the
2669 * version field is the first in the struct.
2670 */
2671 BUILD_BUG_ON(offsetof(struct pvclock_vcpu_time_info, version) != 0);
2672
2673 if (guest_hv_clock.version & 1)
2674 ++guest_hv_clock.version; /* first time write, random junk */
2675
2676 vcpu->hv_clock.version = guest_hv_clock.version + 1;
2677 kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
2678 &vcpu->hv_clock,
2679 sizeof(vcpu->hv_clock.version));
2680
2681 smp_wmb();
2682
2683 /* retain PVCLOCK_GUEST_STOPPED if set in guest copy */
2684 vcpu->hv_clock.flags |= (guest_hv_clock.flags & PVCLOCK_GUEST_STOPPED);
2685
2686 if (vcpu->pvclock_set_guest_stopped_request) {
2687 vcpu->hv_clock.flags |= PVCLOCK_GUEST_STOPPED;
2688 vcpu->pvclock_set_guest_stopped_request = false;
2689 }
2690
2691 trace_kvm_pvclock_update(v->vcpu_id, &vcpu->hv_clock);
2692
2693 kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
2694 &vcpu->hv_clock,
2695 sizeof(vcpu->hv_clock));
2696
2697 smp_wmb();
2698
2699 vcpu->hv_clock.version++;
2700 kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
2701 &vcpu->hv_clock,
2702 sizeof(vcpu->hv_clock.version));
2703 }
2704
kvm_guest_time_update(struct kvm_vcpu * v)2705 static int kvm_guest_time_update(struct kvm_vcpu *v)
2706 {
2707 unsigned long flags, tgt_tsc_khz;
2708 struct kvm_vcpu_arch *vcpu = &v->arch;
2709 struct kvm_arch *ka = &v->kvm->arch;
2710 s64 kernel_ns;
2711 u64 tsc_timestamp, host_tsc;
2712 u8 pvclock_flags;
2713 bool use_master_clock;
2714
2715 kernel_ns = 0;
2716 host_tsc = 0;
2717
2718 /*
2719 * If the host uses TSC clock, then passthrough TSC as stable
2720 * to the guest.
2721 */
2722 spin_lock(&ka->pvclock_gtod_sync_lock);
2723 use_master_clock = ka->use_master_clock;
2724 if (use_master_clock) {
2725 host_tsc = ka->master_cycle_now;
2726 kernel_ns = ka->master_kernel_ns;
2727 }
2728 spin_unlock(&ka->pvclock_gtod_sync_lock);
2729
2730 /* Keep irq disabled to prevent changes to the clock */
2731 local_irq_save(flags);
2732 tgt_tsc_khz = __this_cpu_read(cpu_tsc_khz);
2733 if (unlikely(tgt_tsc_khz == 0)) {
2734 local_irq_restore(flags);
2735 kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
2736 return 1;
2737 }
2738 if (!use_master_clock) {
2739 host_tsc = rdtsc();
2740 kernel_ns = get_kvmclock_base_ns();
2741 }
2742
2743 tsc_timestamp = kvm_read_l1_tsc(v, host_tsc);
2744
2745 /*
2746 * We may have to catch up the TSC to match elapsed wall clock
2747 * time for two reasons, even if kvmclock is used.
2748 * 1) CPU could have been running below the maximum TSC rate
2749 * 2) Broken TSC compensation resets the base at each VCPU
2750 * entry to avoid unknown leaps of TSC even when running
2751 * again on the same CPU. This may cause apparent elapsed
2752 * time to disappear, and the guest to stand still or run
2753 * very slowly.
2754 */
2755 if (vcpu->tsc_catchup) {
2756 u64 tsc = compute_guest_tsc(v, kernel_ns);
2757 if (tsc > tsc_timestamp) {
2758 adjust_tsc_offset_guest(v, tsc - tsc_timestamp);
2759 tsc_timestamp = tsc;
2760 }
2761 }
2762
2763 local_irq_restore(flags);
2764
2765 /* With all the info we got, fill in the values */
2766
2767 if (kvm_has_tsc_control)
2768 tgt_tsc_khz = kvm_scale_tsc(v, tgt_tsc_khz);
2769
2770 if (unlikely(vcpu->hw_tsc_khz != tgt_tsc_khz)) {
2771 kvm_get_time_scale(NSEC_PER_SEC, tgt_tsc_khz * 1000LL,
2772 &vcpu->hv_clock.tsc_shift,
2773 &vcpu->hv_clock.tsc_to_system_mul);
2774 vcpu->hw_tsc_khz = tgt_tsc_khz;
2775 }
2776
2777 vcpu->hv_clock.tsc_timestamp = tsc_timestamp;
2778 vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset;
2779 vcpu->last_guest_tsc = tsc_timestamp;
2780
2781 /* If the host uses TSC clocksource, then it is stable */
2782 pvclock_flags = 0;
2783 if (use_master_clock)
2784 pvclock_flags |= PVCLOCK_TSC_STABLE_BIT;
2785
2786 vcpu->hv_clock.flags = pvclock_flags;
2787
2788 if (vcpu->pv_time_enabled)
2789 kvm_setup_pvclock_page(v);
2790 if (v == kvm_get_vcpu(v->kvm, 0))
2791 kvm_hv_setup_tsc_page(v->kvm, &vcpu->hv_clock);
2792 return 0;
2793 }
2794
2795 /*
2796 * kvmclock updates which are isolated to a given vcpu, such as
2797 * vcpu->cpu migration, should not allow system_timestamp from
2798 * the rest of the vcpus to remain static. Otherwise ntp frequency
2799 * correction applies to one vcpu's system_timestamp but not
2800 * the others.
2801 *
2802 * So in those cases, request a kvmclock update for all vcpus.
2803 * We need to rate-limit these requests though, as they can
2804 * considerably slow guests that have a large number of vcpus.
2805 * The time for a remote vcpu to update its kvmclock is bound
2806 * by the delay we use to rate-limit the updates.
2807 */
2808
2809 #define KVMCLOCK_UPDATE_DELAY msecs_to_jiffies(100)
2810
kvmclock_update_fn(struct work_struct * work)2811 static void kvmclock_update_fn(struct work_struct *work)
2812 {
2813 int i;
2814 struct delayed_work *dwork = to_delayed_work(work);
2815 struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
2816 kvmclock_update_work);
2817 struct kvm *kvm = container_of(ka, struct kvm, arch);
2818 struct kvm_vcpu *vcpu;
2819
2820 kvm_for_each_vcpu(i, vcpu, kvm) {
2821 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
2822 kvm_vcpu_kick(vcpu);
2823 }
2824 }
2825
kvm_gen_kvmclock_update(struct kvm_vcpu * v)2826 static void kvm_gen_kvmclock_update(struct kvm_vcpu *v)
2827 {
2828 struct kvm *kvm = v->kvm;
2829
2830 kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
2831 schedule_delayed_work(&kvm->arch.kvmclock_update_work,
2832 KVMCLOCK_UPDATE_DELAY);
2833 }
2834
2835 #define KVMCLOCK_SYNC_PERIOD (300 * HZ)
2836
kvmclock_sync_fn(struct work_struct * work)2837 static void kvmclock_sync_fn(struct work_struct *work)
2838 {
2839 struct delayed_work *dwork = to_delayed_work(work);
2840 struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
2841 kvmclock_sync_work);
2842 struct kvm *kvm = container_of(ka, struct kvm, arch);
2843
2844 if (!kvmclock_periodic_sync)
2845 return;
2846
2847 schedule_delayed_work(&kvm->arch.kvmclock_update_work, 0);
2848 schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
2849 KVMCLOCK_SYNC_PERIOD);
2850 }
2851
2852 /*
2853 * On AMD, HWCR[McStatusWrEn] controls whether setting MCi_STATUS results in #GP.
2854 */
can_set_mci_status(struct kvm_vcpu * vcpu)2855 static bool can_set_mci_status(struct kvm_vcpu *vcpu)
2856 {
2857 /* McStatusWrEn enabled? */
2858 if (guest_cpuid_is_amd_or_hygon(vcpu))
2859 return !!(vcpu->arch.msr_hwcr & BIT_ULL(18));
2860
2861 return false;
2862 }
2863
set_msr_mce(struct kvm_vcpu * vcpu,struct msr_data * msr_info)2864 static int set_msr_mce(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2865 {
2866 u64 mcg_cap = vcpu->arch.mcg_cap;
2867 unsigned bank_num = mcg_cap & 0xff;
2868 u32 msr = msr_info->index;
2869 u64 data = msr_info->data;
2870
2871 switch (msr) {
2872 case MSR_IA32_MCG_STATUS:
2873 vcpu->arch.mcg_status = data;
2874 break;
2875 case MSR_IA32_MCG_CTL:
2876 if (!(mcg_cap & MCG_CTL_P) &&
2877 (data || !msr_info->host_initiated))
2878 return 1;
2879 if (data != 0 && data != ~(u64)0)
2880 return 1;
2881 vcpu->arch.mcg_ctl = data;
2882 break;
2883 default:
2884 if (msr >= MSR_IA32_MC0_CTL &&
2885 msr < MSR_IA32_MCx_CTL(bank_num)) {
2886 u32 offset = array_index_nospec(
2887 msr - MSR_IA32_MC0_CTL,
2888 MSR_IA32_MCx_CTL(bank_num) - MSR_IA32_MC0_CTL);
2889
2890 /* only 0 or all 1s can be written to IA32_MCi_CTL
2891 * some Linux kernels though clear bit 10 in bank 4 to
2892 * workaround a BIOS/GART TBL issue on AMD K8s, ignore
2893 * this to avoid an uncatched #GP in the guest.
2894 *
2895 * UNIXWARE clears bit 0 of MC1_CTL to ignore
2896 * correctable, single-bit ECC data errors.
2897 */
2898 if ((offset & 0x3) == 0 &&
2899 data != 0 && (data | (1 << 10) | 1) != ~(u64)0)
2900 return 1;
2901
2902 /* MCi_STATUS */
2903 if (!msr_info->host_initiated &&
2904 (offset & 0x3) == 1 && data != 0) {
2905 if (!can_set_mci_status(vcpu))
2906 return 1;
2907 }
2908
2909 vcpu->arch.mce_banks[offset] = data;
2910 break;
2911 }
2912 return 1;
2913 }
2914 return 0;
2915 }
2916
xen_hvm_config(struct kvm_vcpu * vcpu,u64 data)2917 static int xen_hvm_config(struct kvm_vcpu *vcpu, u64 data)
2918 {
2919 struct kvm *kvm = vcpu->kvm;
2920 int lm = is_long_mode(vcpu);
2921 u8 *blob_addr = lm ? (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_64
2922 : (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_32;
2923 u8 blob_size = lm ? kvm->arch.xen_hvm_config.blob_size_64
2924 : kvm->arch.xen_hvm_config.blob_size_32;
2925 u32 page_num = data & ~PAGE_MASK;
2926 u64 page_addr = data & PAGE_MASK;
2927 u8 *page;
2928
2929 if (page_num >= blob_size)
2930 return 1;
2931
2932 page = memdup_user(blob_addr + (page_num * PAGE_SIZE), PAGE_SIZE);
2933 if (IS_ERR(page))
2934 return PTR_ERR(page);
2935
2936 if (kvm_vcpu_write_guest(vcpu, page_addr, page, PAGE_SIZE)) {
2937 kfree(page);
2938 return 1;
2939 }
2940 return 0;
2941 }
2942
kvm_pv_async_pf_enabled(struct kvm_vcpu * vcpu)2943 static inline bool kvm_pv_async_pf_enabled(struct kvm_vcpu *vcpu)
2944 {
2945 u64 mask = KVM_ASYNC_PF_ENABLED | KVM_ASYNC_PF_DELIVERY_AS_INT;
2946
2947 return (vcpu->arch.apf.msr_en_val & mask) == mask;
2948 }
2949
kvm_pv_enable_async_pf(struct kvm_vcpu * vcpu,u64 data)2950 static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data)
2951 {
2952 gpa_t gpa = data & ~0x3f;
2953
2954 /* Bits 4:5 are reserved, Should be zero */
2955 if (data & 0x30)
2956 return 1;
2957
2958 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_VMEXIT) &&
2959 (data & KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT))
2960 return 1;
2961
2962 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT) &&
2963 (data & KVM_ASYNC_PF_DELIVERY_AS_INT))
2964 return 1;
2965
2966 if (!lapic_in_kernel(vcpu))
2967 return data ? 1 : 0;
2968
2969 vcpu->arch.apf.msr_en_val = data;
2970
2971 if (!kvm_pv_async_pf_enabled(vcpu)) {
2972 kvm_clear_async_pf_completion_queue(vcpu);
2973 kvm_async_pf_hash_reset(vcpu);
2974 return 0;
2975 }
2976
2977 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa,
2978 sizeof(u64)))
2979 return 1;
2980
2981 vcpu->arch.apf.send_user_only = !(data & KVM_ASYNC_PF_SEND_ALWAYS);
2982 vcpu->arch.apf.delivery_as_pf_vmexit = data & KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT;
2983
2984 kvm_async_pf_wakeup_all(vcpu);
2985
2986 return 0;
2987 }
2988
kvm_pv_enable_async_pf_int(struct kvm_vcpu * vcpu,u64 data)2989 static int kvm_pv_enable_async_pf_int(struct kvm_vcpu *vcpu, u64 data)
2990 {
2991 /* Bits 8-63 are reserved */
2992 if (data >> 8)
2993 return 1;
2994
2995 if (!lapic_in_kernel(vcpu))
2996 return 1;
2997
2998 vcpu->arch.apf.msr_int_val = data;
2999
3000 vcpu->arch.apf.vec = data & KVM_ASYNC_PF_VEC_MASK;
3001
3002 return 0;
3003 }
3004
kvmclock_reset(struct kvm_vcpu * vcpu)3005 static void kvmclock_reset(struct kvm_vcpu *vcpu)
3006 {
3007 vcpu->arch.pv_time_enabled = false;
3008 vcpu->arch.time = 0;
3009 }
3010
kvm_vcpu_flush_tlb_all(struct kvm_vcpu * vcpu)3011 static void kvm_vcpu_flush_tlb_all(struct kvm_vcpu *vcpu)
3012 {
3013 ++vcpu->stat.tlb_flush;
3014 kvm_x86_ops.tlb_flush_all(vcpu);
3015 }
3016
kvm_vcpu_flush_tlb_guest(struct kvm_vcpu * vcpu)3017 static void kvm_vcpu_flush_tlb_guest(struct kvm_vcpu *vcpu)
3018 {
3019 ++vcpu->stat.tlb_flush;
3020 kvm_x86_ops.tlb_flush_guest(vcpu);
3021 }
3022
record_steal_time(struct kvm_vcpu * vcpu)3023 static void record_steal_time(struct kvm_vcpu *vcpu)
3024 {
3025 struct kvm_host_map map;
3026 struct kvm_steal_time *st;
3027
3028 if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
3029 return;
3030
3031 /* -EAGAIN is returned in atomic context so we can just return. */
3032 if (kvm_map_gfn(vcpu, vcpu->arch.st.msr_val >> PAGE_SHIFT,
3033 &map, &vcpu->arch.st.cache, false))
3034 return;
3035
3036 st = map.hva +
3037 offset_in_page(vcpu->arch.st.msr_val & KVM_STEAL_VALID_BITS);
3038
3039 /*
3040 * Doing a TLB flush here, on the guest's behalf, can avoid
3041 * expensive IPIs.
3042 */
3043 if (guest_pv_has(vcpu, KVM_FEATURE_PV_TLB_FLUSH)) {
3044 trace_kvm_pv_tlb_flush(vcpu->vcpu_id,
3045 st->preempted & KVM_VCPU_FLUSH_TLB);
3046 if (xchg(&st->preempted, 0) & KVM_VCPU_FLUSH_TLB)
3047 kvm_vcpu_flush_tlb_guest(vcpu);
3048 } else {
3049 st->preempted = 0;
3050 }
3051
3052 vcpu->arch.st.preempted = 0;
3053
3054 if (st->version & 1)
3055 st->version += 1; /* first time write, random junk */
3056
3057 st->version += 1;
3058
3059 smp_wmb();
3060
3061 st->steal += current->sched_info.run_delay -
3062 vcpu->arch.st.last_steal;
3063 vcpu->arch.st.last_steal = current->sched_info.run_delay;
3064
3065 smp_wmb();
3066
3067 st->version += 1;
3068
3069 kvm_unmap_gfn(vcpu, &map, &vcpu->arch.st.cache, true, false);
3070 }
3071
kvm_set_msr_common(struct kvm_vcpu * vcpu,struct msr_data * msr_info)3072 int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
3073 {
3074 bool pr = false;
3075 u32 msr = msr_info->index;
3076 u64 data = msr_info->data;
3077
3078 switch (msr) {
3079 case MSR_AMD64_NB_CFG:
3080 case MSR_IA32_UCODE_WRITE:
3081 case MSR_VM_HSAVE_PA:
3082 case MSR_AMD64_PATCH_LOADER:
3083 case MSR_AMD64_BU_CFG2:
3084 case MSR_AMD64_DC_CFG:
3085 case MSR_F15H_EX_CFG:
3086 break;
3087
3088 case MSR_IA32_UCODE_REV:
3089 if (msr_info->host_initiated)
3090 vcpu->arch.microcode_version = data;
3091 break;
3092 case MSR_IA32_ARCH_CAPABILITIES:
3093 if (!msr_info->host_initiated)
3094 return 1;
3095 vcpu->arch.arch_capabilities = data;
3096 break;
3097 case MSR_IA32_PERF_CAPABILITIES: {
3098 struct kvm_msr_entry msr_ent = {.index = msr, .data = 0};
3099
3100 if (!msr_info->host_initiated)
3101 return 1;
3102 if (kvm_get_msr_feature(&msr_ent))
3103 return 1;
3104 if (data & ~msr_ent.data)
3105 return 1;
3106
3107 vcpu->arch.perf_capabilities = data;
3108
3109 return 0;
3110 }
3111 case MSR_EFER:
3112 return set_efer(vcpu, msr_info);
3113 case MSR_K7_HWCR:
3114 data &= ~(u64)0x40; /* ignore flush filter disable */
3115 data &= ~(u64)0x100; /* ignore ignne emulation enable */
3116 data &= ~(u64)0x8; /* ignore TLB cache disable */
3117
3118 /* Handle McStatusWrEn */
3119 if (data == BIT_ULL(18)) {
3120 vcpu->arch.msr_hwcr = data;
3121 } else if (data != 0) {
3122 vcpu_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n",
3123 data);
3124 return 1;
3125 }
3126 break;
3127 case MSR_FAM10H_MMIO_CONF_BASE:
3128 if (data != 0) {
3129 vcpu_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: "
3130 "0x%llx\n", data);
3131 return 1;
3132 }
3133 break;
3134 case MSR_IA32_DEBUGCTLMSR:
3135 if (!data) {
3136 /* We support the non-activated case already */
3137 break;
3138 } else if (data & ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_BTF)) {
3139 /* Values other than LBR and BTF are vendor-specific,
3140 thus reserved and should throw a #GP */
3141 return 1;
3142 } else if (report_ignored_msrs)
3143 vcpu_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n",
3144 __func__, data);
3145 break;
3146 case 0x200 ... 0x2ff:
3147 return kvm_mtrr_set_msr(vcpu, msr, data);
3148 case MSR_IA32_APICBASE:
3149 return kvm_set_apic_base(vcpu, msr_info);
3150 case APIC_BASE_MSR ... APIC_BASE_MSR + 0xff:
3151 return kvm_x2apic_msr_write(vcpu, msr, data);
3152 case MSR_IA32_TSCDEADLINE:
3153 kvm_set_lapic_tscdeadline_msr(vcpu, data);
3154 break;
3155 case MSR_IA32_TSC_ADJUST:
3156 if (guest_cpuid_has(vcpu, X86_FEATURE_TSC_ADJUST)) {
3157 if (!msr_info->host_initiated) {
3158 s64 adj = data - vcpu->arch.ia32_tsc_adjust_msr;
3159 adjust_tsc_offset_guest(vcpu, adj);
3160 /* Before back to guest, tsc_timestamp must be adjusted
3161 * as well, otherwise guest's percpu pvclock time could jump.
3162 */
3163 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3164 }
3165 vcpu->arch.ia32_tsc_adjust_msr = data;
3166 }
3167 break;
3168 case MSR_IA32_MISC_ENABLE:
3169 if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_MISC_ENABLE_NO_MWAIT) &&
3170 ((vcpu->arch.ia32_misc_enable_msr ^ data) & MSR_IA32_MISC_ENABLE_MWAIT)) {
3171 if (!guest_cpuid_has(vcpu, X86_FEATURE_XMM3))
3172 return 1;
3173 vcpu->arch.ia32_misc_enable_msr = data;
3174 kvm_update_cpuid_runtime(vcpu);
3175 } else {
3176 vcpu->arch.ia32_misc_enable_msr = data;
3177 }
3178 break;
3179 case MSR_IA32_SMBASE:
3180 if (!msr_info->host_initiated)
3181 return 1;
3182 vcpu->arch.smbase = data;
3183 break;
3184 case MSR_IA32_POWER_CTL:
3185 vcpu->arch.msr_ia32_power_ctl = data;
3186 break;
3187 case MSR_IA32_TSC:
3188 if (msr_info->host_initiated) {
3189 kvm_synchronize_tsc(vcpu, data);
3190 } else {
3191 u64 adj = kvm_compute_tsc_offset(vcpu, data) - vcpu->arch.l1_tsc_offset;
3192 adjust_tsc_offset_guest(vcpu, adj);
3193 vcpu->arch.ia32_tsc_adjust_msr += adj;
3194 }
3195 break;
3196 case MSR_IA32_XSS:
3197 if (!msr_info->host_initiated &&
3198 !guest_cpuid_has(vcpu, X86_FEATURE_XSAVES))
3199 return 1;
3200 /*
3201 * KVM supports exposing PT to the guest, but does not support
3202 * IA32_XSS[bit 8]. Guests have to use RDMSR/WRMSR rather than
3203 * XSAVES/XRSTORS to save/restore PT MSRs.
3204 */
3205 if (data & ~supported_xss)
3206 return 1;
3207 vcpu->arch.ia32_xss = data;
3208 kvm_update_cpuid_runtime(vcpu);
3209 break;
3210 case MSR_SMI_COUNT:
3211 if (!msr_info->host_initiated)
3212 return 1;
3213 vcpu->arch.smi_count = data;
3214 break;
3215 case MSR_KVM_WALL_CLOCK_NEW:
3216 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
3217 return 1;
3218
3219 kvm_write_wall_clock(vcpu->kvm, data);
3220 break;
3221 case MSR_KVM_WALL_CLOCK:
3222 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
3223 return 1;
3224
3225 kvm_write_wall_clock(vcpu->kvm, data);
3226 break;
3227 case MSR_KVM_SYSTEM_TIME_NEW:
3228 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
3229 return 1;
3230
3231 kvm_write_system_time(vcpu, data, false, msr_info->host_initiated);
3232 break;
3233 case MSR_KVM_SYSTEM_TIME:
3234 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
3235 return 1;
3236
3237 kvm_write_system_time(vcpu, data, true, msr_info->host_initiated);
3238 break;
3239 case MSR_KVM_ASYNC_PF_EN:
3240 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF))
3241 return 1;
3242
3243 if (kvm_pv_enable_async_pf(vcpu, data))
3244 return 1;
3245 break;
3246 case MSR_KVM_ASYNC_PF_INT:
3247 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
3248 return 1;
3249
3250 if (kvm_pv_enable_async_pf_int(vcpu, data))
3251 return 1;
3252 break;
3253 case MSR_KVM_ASYNC_PF_ACK:
3254 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
3255 return 1;
3256 if (data & 0x1) {
3257 vcpu->arch.apf.pageready_pending = false;
3258 kvm_check_async_pf_completion(vcpu);
3259 }
3260 break;
3261 case MSR_KVM_STEAL_TIME:
3262 if (!guest_pv_has(vcpu, KVM_FEATURE_STEAL_TIME))
3263 return 1;
3264
3265 if (unlikely(!sched_info_on()))
3266 return 1;
3267
3268 if (data & KVM_STEAL_RESERVED_MASK)
3269 return 1;
3270
3271 vcpu->arch.st.msr_val = data;
3272
3273 if (!(data & KVM_MSR_ENABLED))
3274 break;
3275
3276 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
3277
3278 break;
3279 case MSR_KVM_PV_EOI_EN:
3280 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_EOI))
3281 return 1;
3282
3283 if (kvm_lapic_enable_pv_eoi(vcpu, data, sizeof(u8)))
3284 return 1;
3285 break;
3286
3287 case MSR_KVM_POLL_CONTROL:
3288 if (!guest_pv_has(vcpu, KVM_FEATURE_POLL_CONTROL))
3289 return 1;
3290
3291 /* only enable bit supported */
3292 if (data & (-1ULL << 1))
3293 return 1;
3294
3295 vcpu->arch.msr_kvm_poll_control = data;
3296 break;
3297
3298 case MSR_IA32_MCG_CTL:
3299 case MSR_IA32_MCG_STATUS:
3300 case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
3301 return set_msr_mce(vcpu, msr_info);
3302
3303 case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
3304 case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
3305 pr = true;
3306 fallthrough;
3307 case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
3308 case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
3309 if (kvm_pmu_is_valid_msr(vcpu, msr))
3310 return kvm_pmu_set_msr(vcpu, msr_info);
3311
3312 if (pr || data != 0)
3313 vcpu_unimpl(vcpu, "disabled perfctr wrmsr: "
3314 "0x%x data 0x%llx\n", msr, data);
3315 break;
3316 case MSR_K7_CLK_CTL:
3317 /*
3318 * Ignore all writes to this no longer documented MSR.
3319 * Writes are only relevant for old K7 processors,
3320 * all pre-dating SVM, but a recommended workaround from
3321 * AMD for these chips. It is possible to specify the
3322 * affected processor models on the command line, hence
3323 * the need to ignore the workaround.
3324 */
3325 break;
3326 case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
3327 case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER:
3328 case HV_X64_MSR_SYNDBG_OPTIONS:
3329 case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
3330 case HV_X64_MSR_CRASH_CTL:
3331 case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
3332 case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
3333 case HV_X64_MSR_TSC_EMULATION_CONTROL:
3334 case HV_X64_MSR_TSC_EMULATION_STATUS:
3335 return kvm_hv_set_msr_common(vcpu, msr, data,
3336 msr_info->host_initiated);
3337 case MSR_IA32_BBL_CR_CTL3:
3338 /* Drop writes to this legacy MSR -- see rdmsr
3339 * counterpart for further detail.
3340 */
3341 if (report_ignored_msrs)
3342 vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data 0x%llx\n",
3343 msr, data);
3344 break;
3345 case MSR_AMD64_OSVW_ID_LENGTH:
3346 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
3347 return 1;
3348 vcpu->arch.osvw.length = data;
3349 break;
3350 case MSR_AMD64_OSVW_STATUS:
3351 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
3352 return 1;
3353 vcpu->arch.osvw.status = data;
3354 break;
3355 case MSR_PLATFORM_INFO:
3356 if (!msr_info->host_initiated ||
3357 (!(data & MSR_PLATFORM_INFO_CPUID_FAULT) &&
3358 cpuid_fault_enabled(vcpu)))
3359 return 1;
3360 vcpu->arch.msr_platform_info = data;
3361 break;
3362 case MSR_MISC_FEATURES_ENABLES:
3363 if (data & ~MSR_MISC_FEATURES_ENABLES_CPUID_FAULT ||
3364 (data & MSR_MISC_FEATURES_ENABLES_CPUID_FAULT &&
3365 !supports_cpuid_fault(vcpu)))
3366 return 1;
3367 vcpu->arch.msr_misc_features_enables = data;
3368 break;
3369 default:
3370 if (msr && (msr == vcpu->kvm->arch.xen_hvm_config.msr))
3371 return xen_hvm_config(vcpu, data);
3372 if (kvm_pmu_is_valid_msr(vcpu, msr))
3373 return kvm_pmu_set_msr(vcpu, msr_info);
3374 return KVM_MSR_RET_INVALID;
3375 }
3376 return 0;
3377 }
3378 EXPORT_SYMBOL_GPL(kvm_set_msr_common);
3379
get_msr_mce(struct kvm_vcpu * vcpu,u32 msr,u64 * pdata,bool host)3380 static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata, bool host)
3381 {
3382 u64 data;
3383 u64 mcg_cap = vcpu->arch.mcg_cap;
3384 unsigned bank_num = mcg_cap & 0xff;
3385
3386 switch (msr) {
3387 case MSR_IA32_P5_MC_ADDR:
3388 case MSR_IA32_P5_MC_TYPE:
3389 data = 0;
3390 break;
3391 case MSR_IA32_MCG_CAP:
3392 data = vcpu->arch.mcg_cap;
3393 break;
3394 case MSR_IA32_MCG_CTL:
3395 if (!(mcg_cap & MCG_CTL_P) && !host)
3396 return 1;
3397 data = vcpu->arch.mcg_ctl;
3398 break;
3399 case MSR_IA32_MCG_STATUS:
3400 data = vcpu->arch.mcg_status;
3401 break;
3402 default:
3403 if (msr >= MSR_IA32_MC0_CTL &&
3404 msr < MSR_IA32_MCx_CTL(bank_num)) {
3405 u32 offset = array_index_nospec(
3406 msr - MSR_IA32_MC0_CTL,
3407 MSR_IA32_MCx_CTL(bank_num) - MSR_IA32_MC0_CTL);
3408
3409 data = vcpu->arch.mce_banks[offset];
3410 break;
3411 }
3412 return 1;
3413 }
3414 *pdata = data;
3415 return 0;
3416 }
3417
kvm_get_msr_common(struct kvm_vcpu * vcpu,struct msr_data * msr_info)3418 int kvm_get_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
3419 {
3420 switch (msr_info->index) {
3421 case MSR_IA32_PLATFORM_ID:
3422 case MSR_IA32_EBL_CR_POWERON:
3423 case MSR_IA32_DEBUGCTLMSR:
3424 case MSR_IA32_LASTBRANCHFROMIP:
3425 case MSR_IA32_LASTBRANCHTOIP:
3426 case MSR_IA32_LASTINTFROMIP:
3427 case MSR_IA32_LASTINTTOIP:
3428 case MSR_K8_SYSCFG:
3429 case MSR_K8_TSEG_ADDR:
3430 case MSR_K8_TSEG_MASK:
3431 case MSR_VM_HSAVE_PA:
3432 case MSR_K8_INT_PENDING_MSG:
3433 case MSR_AMD64_NB_CFG:
3434 case MSR_FAM10H_MMIO_CONF_BASE:
3435 case MSR_AMD64_BU_CFG2:
3436 case MSR_IA32_PERF_CTL:
3437 case MSR_AMD64_DC_CFG:
3438 case MSR_F15H_EX_CFG:
3439 /*
3440 * Intel Sandy Bridge CPUs must support the RAPL (running average power
3441 * limit) MSRs. Just return 0, as we do not want to expose the host
3442 * data here. Do not conditionalize this on CPUID, as KVM does not do
3443 * so for existing CPU-specific MSRs.
3444 */
3445 case MSR_RAPL_POWER_UNIT:
3446 case MSR_PP0_ENERGY_STATUS: /* Power plane 0 (core) */
3447 case MSR_PP1_ENERGY_STATUS: /* Power plane 1 (graphics uncore) */
3448 case MSR_PKG_ENERGY_STATUS: /* Total package */
3449 case MSR_DRAM_ENERGY_STATUS: /* DRAM controller */
3450 msr_info->data = 0;
3451 break;
3452 case MSR_F15H_PERF_CTL0 ... MSR_F15H_PERF_CTR5:
3453 case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
3454 case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
3455 case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
3456 case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
3457 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
3458 return kvm_pmu_get_msr(vcpu, msr_info);
3459 msr_info->data = 0;
3460 break;
3461 case MSR_IA32_UCODE_REV:
3462 msr_info->data = vcpu->arch.microcode_version;
3463 break;
3464 case MSR_IA32_ARCH_CAPABILITIES:
3465 if (!msr_info->host_initiated &&
3466 !guest_cpuid_has(vcpu, X86_FEATURE_ARCH_CAPABILITIES))
3467 return 1;
3468 msr_info->data = vcpu->arch.arch_capabilities;
3469 break;
3470 case MSR_IA32_PERF_CAPABILITIES:
3471 if (!msr_info->host_initiated &&
3472 !guest_cpuid_has(vcpu, X86_FEATURE_PDCM))
3473 return 1;
3474 msr_info->data = vcpu->arch.perf_capabilities;
3475 break;
3476 case MSR_IA32_POWER_CTL:
3477 msr_info->data = vcpu->arch.msr_ia32_power_ctl;
3478 break;
3479 case MSR_IA32_TSC: {
3480 /*
3481 * Intel SDM states that MSR_IA32_TSC read adds the TSC offset
3482 * even when not intercepted. AMD manual doesn't explicitly
3483 * state this but appears to behave the same.
3484 *
3485 * On userspace reads and writes, however, we unconditionally
3486 * return L1's TSC value to ensure backwards-compatible
3487 * behavior for migration.
3488 */
3489 u64 tsc_offset = msr_info->host_initiated ? vcpu->arch.l1_tsc_offset :
3490 vcpu->arch.tsc_offset;
3491
3492 msr_info->data = kvm_scale_tsc(vcpu, rdtsc()) + tsc_offset;
3493 break;
3494 }
3495 case MSR_MTRRcap:
3496 case 0x200 ... 0x2ff:
3497 return kvm_mtrr_get_msr(vcpu, msr_info->index, &msr_info->data);
3498 case 0xcd: /* fsb frequency */
3499 msr_info->data = 3;
3500 break;
3501 /*
3502 * MSR_EBC_FREQUENCY_ID
3503 * Conservative value valid for even the basic CPU models.
3504 * Models 0,1: 000 in bits 23:21 indicating a bus speed of
3505 * 100MHz, model 2 000 in bits 18:16 indicating 100MHz,
3506 * and 266MHz for model 3, or 4. Set Core Clock
3507 * Frequency to System Bus Frequency Ratio to 1 (bits
3508 * 31:24) even though these are only valid for CPU
3509 * models > 2, however guests may end up dividing or
3510 * multiplying by zero otherwise.
3511 */
3512 case MSR_EBC_FREQUENCY_ID:
3513 msr_info->data = 1 << 24;
3514 break;
3515 case MSR_IA32_APICBASE:
3516 msr_info->data = kvm_get_apic_base(vcpu);
3517 break;
3518 case APIC_BASE_MSR ... APIC_BASE_MSR + 0xff:
3519 return kvm_x2apic_msr_read(vcpu, msr_info->index, &msr_info->data);
3520 case MSR_IA32_TSCDEADLINE:
3521 msr_info->data = kvm_get_lapic_tscdeadline_msr(vcpu);
3522 break;
3523 case MSR_IA32_TSC_ADJUST:
3524 msr_info->data = (u64)vcpu->arch.ia32_tsc_adjust_msr;
3525 break;
3526 case MSR_IA32_MISC_ENABLE:
3527 msr_info->data = vcpu->arch.ia32_misc_enable_msr;
3528 break;
3529 case MSR_IA32_SMBASE:
3530 if (!msr_info->host_initiated)
3531 return 1;
3532 msr_info->data = vcpu->arch.smbase;
3533 break;
3534 case MSR_SMI_COUNT:
3535 msr_info->data = vcpu->arch.smi_count;
3536 break;
3537 case MSR_IA32_PERF_STATUS:
3538 /* TSC increment by tick */
3539 msr_info->data = 1000ULL;
3540 /* CPU multiplier */
3541 msr_info->data |= (((uint64_t)4ULL) << 40);
3542 break;
3543 case MSR_EFER:
3544 msr_info->data = vcpu->arch.efer;
3545 break;
3546 case MSR_KVM_WALL_CLOCK:
3547 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
3548 return 1;
3549
3550 msr_info->data = vcpu->kvm->arch.wall_clock;
3551 break;
3552 case MSR_KVM_WALL_CLOCK_NEW:
3553 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
3554 return 1;
3555
3556 msr_info->data = vcpu->kvm->arch.wall_clock;
3557 break;
3558 case MSR_KVM_SYSTEM_TIME:
3559 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
3560 return 1;
3561
3562 msr_info->data = vcpu->arch.time;
3563 break;
3564 case MSR_KVM_SYSTEM_TIME_NEW:
3565 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
3566 return 1;
3567
3568 msr_info->data = vcpu->arch.time;
3569 break;
3570 case MSR_KVM_ASYNC_PF_EN:
3571 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF))
3572 return 1;
3573
3574 msr_info->data = vcpu->arch.apf.msr_en_val;
3575 break;
3576 case MSR_KVM_ASYNC_PF_INT:
3577 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
3578 return 1;
3579
3580 msr_info->data = vcpu->arch.apf.msr_int_val;
3581 break;
3582 case MSR_KVM_ASYNC_PF_ACK:
3583 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
3584 return 1;
3585
3586 msr_info->data = 0;
3587 break;
3588 case MSR_KVM_STEAL_TIME:
3589 if (!guest_pv_has(vcpu, KVM_FEATURE_STEAL_TIME))
3590 return 1;
3591
3592 msr_info->data = vcpu->arch.st.msr_val;
3593 break;
3594 case MSR_KVM_PV_EOI_EN:
3595 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_EOI))
3596 return 1;
3597
3598 msr_info->data = vcpu->arch.pv_eoi.msr_val;
3599 break;
3600 case MSR_KVM_POLL_CONTROL:
3601 if (!guest_pv_has(vcpu, KVM_FEATURE_POLL_CONTROL))
3602 return 1;
3603
3604 msr_info->data = vcpu->arch.msr_kvm_poll_control;
3605 break;
3606 case MSR_IA32_P5_MC_ADDR:
3607 case MSR_IA32_P5_MC_TYPE:
3608 case MSR_IA32_MCG_CAP:
3609 case MSR_IA32_MCG_CTL:
3610 case MSR_IA32_MCG_STATUS:
3611 case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
3612 return get_msr_mce(vcpu, msr_info->index, &msr_info->data,
3613 msr_info->host_initiated);
3614 case MSR_IA32_XSS:
3615 if (!msr_info->host_initiated &&
3616 !guest_cpuid_has(vcpu, X86_FEATURE_XSAVES))
3617 return 1;
3618 msr_info->data = vcpu->arch.ia32_xss;
3619 break;
3620 case MSR_K7_CLK_CTL:
3621 /*
3622 * Provide expected ramp-up count for K7. All other
3623 * are set to zero, indicating minimum divisors for
3624 * every field.
3625 *
3626 * This prevents guest kernels on AMD host with CPU
3627 * type 6, model 8 and higher from exploding due to
3628 * the rdmsr failing.
3629 */
3630 msr_info->data = 0x20000000;
3631 break;
3632 case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
3633 case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER:
3634 case HV_X64_MSR_SYNDBG_OPTIONS:
3635 case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
3636 case HV_X64_MSR_CRASH_CTL:
3637 case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
3638 case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
3639 case HV_X64_MSR_TSC_EMULATION_CONTROL:
3640 case HV_X64_MSR_TSC_EMULATION_STATUS:
3641 return kvm_hv_get_msr_common(vcpu,
3642 msr_info->index, &msr_info->data,
3643 msr_info->host_initiated);
3644 case MSR_IA32_BBL_CR_CTL3:
3645 /* This legacy MSR exists but isn't fully documented in current
3646 * silicon. It is however accessed by winxp in very narrow
3647 * scenarios where it sets bit #19, itself documented as
3648 * a "reserved" bit. Best effort attempt to source coherent
3649 * read data here should the balance of the register be
3650 * interpreted by the guest:
3651 *
3652 * L2 cache control register 3: 64GB range, 256KB size,
3653 * enabled, latency 0x1, configured
3654 */
3655 msr_info->data = 0xbe702111;
3656 break;
3657 case MSR_AMD64_OSVW_ID_LENGTH:
3658 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
3659 return 1;
3660 msr_info->data = vcpu->arch.osvw.length;
3661 break;
3662 case MSR_AMD64_OSVW_STATUS:
3663 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
3664 return 1;
3665 msr_info->data = vcpu->arch.osvw.status;
3666 break;
3667 case MSR_PLATFORM_INFO:
3668 if (!msr_info->host_initiated &&
3669 !vcpu->kvm->arch.guest_can_read_msr_platform_info)
3670 return 1;
3671 msr_info->data = vcpu->arch.msr_platform_info;
3672 break;
3673 case MSR_MISC_FEATURES_ENABLES:
3674 msr_info->data = vcpu->arch.msr_misc_features_enables;
3675 break;
3676 case MSR_K7_HWCR:
3677 msr_info->data = vcpu->arch.msr_hwcr;
3678 break;
3679 default:
3680 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
3681 return kvm_pmu_get_msr(vcpu, msr_info);
3682 return KVM_MSR_RET_INVALID;
3683 }
3684 return 0;
3685 }
3686 EXPORT_SYMBOL_GPL(kvm_get_msr_common);
3687
3688 /*
3689 * Read or write a bunch of msrs. All parameters are kernel addresses.
3690 *
3691 * @return number of msrs set successfully.
3692 */
__msr_io(struct kvm_vcpu * vcpu,struct kvm_msrs * msrs,struct kvm_msr_entry * entries,int (* do_msr)(struct kvm_vcpu * vcpu,unsigned index,u64 * data))3693 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
3694 struct kvm_msr_entry *entries,
3695 int (*do_msr)(struct kvm_vcpu *vcpu,
3696 unsigned index, u64 *data))
3697 {
3698 int i;
3699
3700 for (i = 0; i < msrs->nmsrs; ++i)
3701 if (do_msr(vcpu, entries[i].index, &entries[i].data))
3702 break;
3703
3704 return i;
3705 }
3706
3707 /*
3708 * Read or write a bunch of msrs. Parameters are user addresses.
3709 *
3710 * @return number of msrs set successfully.
3711 */
msr_io(struct kvm_vcpu * vcpu,struct kvm_msrs __user * user_msrs,int (* do_msr)(struct kvm_vcpu * vcpu,unsigned index,u64 * data),int writeback)3712 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
3713 int (*do_msr)(struct kvm_vcpu *vcpu,
3714 unsigned index, u64 *data),
3715 int writeback)
3716 {
3717 struct kvm_msrs msrs;
3718 struct kvm_msr_entry *entries;
3719 int r, n;
3720 unsigned size;
3721
3722 r = -EFAULT;
3723 if (copy_from_user(&msrs, user_msrs, sizeof(msrs)))
3724 goto out;
3725
3726 r = -E2BIG;
3727 if (msrs.nmsrs >= MAX_IO_MSRS)
3728 goto out;
3729
3730 size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
3731 entries = memdup_user(user_msrs->entries, size);
3732 if (IS_ERR(entries)) {
3733 r = PTR_ERR(entries);
3734 goto out;
3735 }
3736
3737 r = n = __msr_io(vcpu, &msrs, entries, do_msr);
3738 if (r < 0)
3739 goto out_free;
3740
3741 r = -EFAULT;
3742 if (writeback && copy_to_user(user_msrs->entries, entries, size))
3743 goto out_free;
3744
3745 r = n;
3746
3747 out_free:
3748 kfree(entries);
3749 out:
3750 return r;
3751 }
3752
kvm_can_mwait_in_guest(void)3753 static inline bool kvm_can_mwait_in_guest(void)
3754 {
3755 return boot_cpu_has(X86_FEATURE_MWAIT) &&
3756 !boot_cpu_has_bug(X86_BUG_MONITOR) &&
3757 boot_cpu_has(X86_FEATURE_ARAT);
3758 }
3759
kvm_vm_ioctl_check_extension(struct kvm * kvm,long ext)3760 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
3761 {
3762 int r = 0;
3763
3764 switch (ext) {
3765 case KVM_CAP_IRQCHIP:
3766 case KVM_CAP_HLT:
3767 case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
3768 case KVM_CAP_SET_TSS_ADDR:
3769 case KVM_CAP_EXT_CPUID:
3770 case KVM_CAP_EXT_EMUL_CPUID:
3771 case KVM_CAP_CLOCKSOURCE:
3772 case KVM_CAP_PIT:
3773 case KVM_CAP_NOP_IO_DELAY:
3774 case KVM_CAP_MP_STATE:
3775 case KVM_CAP_SYNC_MMU:
3776 case KVM_CAP_USER_NMI:
3777 case KVM_CAP_REINJECT_CONTROL:
3778 case KVM_CAP_IRQ_INJECT_STATUS:
3779 case KVM_CAP_IOEVENTFD:
3780 case KVM_CAP_IOEVENTFD_NO_LENGTH:
3781 case KVM_CAP_PIT2:
3782 case KVM_CAP_PIT_STATE2:
3783 case KVM_CAP_SET_IDENTITY_MAP_ADDR:
3784 case KVM_CAP_XEN_HVM:
3785 case KVM_CAP_VCPU_EVENTS:
3786 case KVM_CAP_HYPERV:
3787 case KVM_CAP_HYPERV_VAPIC:
3788 case KVM_CAP_HYPERV_SPIN:
3789 case KVM_CAP_HYPERV_SYNIC:
3790 case KVM_CAP_HYPERV_SYNIC2:
3791 case KVM_CAP_HYPERV_VP_INDEX:
3792 case KVM_CAP_HYPERV_EVENTFD:
3793 case KVM_CAP_HYPERV_TLBFLUSH:
3794 case KVM_CAP_HYPERV_SEND_IPI:
3795 case KVM_CAP_HYPERV_CPUID:
3796 case KVM_CAP_PCI_SEGMENT:
3797 case KVM_CAP_DEBUGREGS:
3798 case KVM_CAP_X86_ROBUST_SINGLESTEP:
3799 case KVM_CAP_XSAVE:
3800 case KVM_CAP_ASYNC_PF:
3801 case KVM_CAP_ASYNC_PF_INT:
3802 case KVM_CAP_GET_TSC_KHZ:
3803 case KVM_CAP_KVMCLOCK_CTRL:
3804 case KVM_CAP_READONLY_MEM:
3805 case KVM_CAP_HYPERV_TIME:
3806 case KVM_CAP_IOAPIC_POLARITY_IGNORED:
3807 case KVM_CAP_TSC_DEADLINE_TIMER:
3808 case KVM_CAP_DISABLE_QUIRKS:
3809 case KVM_CAP_SET_BOOT_CPU_ID:
3810 case KVM_CAP_SPLIT_IRQCHIP:
3811 case KVM_CAP_IMMEDIATE_EXIT:
3812 case KVM_CAP_PMU_EVENT_FILTER:
3813 case KVM_CAP_GET_MSR_FEATURES:
3814 case KVM_CAP_MSR_PLATFORM_INFO:
3815 case KVM_CAP_EXCEPTION_PAYLOAD:
3816 case KVM_CAP_SET_GUEST_DEBUG:
3817 case KVM_CAP_LAST_CPU:
3818 case KVM_CAP_X86_USER_SPACE_MSR:
3819 case KVM_CAP_X86_MSR_FILTER:
3820 case KVM_CAP_ENFORCE_PV_FEATURE_CPUID:
3821 r = 1;
3822 break;
3823 case KVM_CAP_SYNC_REGS:
3824 r = KVM_SYNC_X86_VALID_FIELDS;
3825 break;
3826 case KVM_CAP_ADJUST_CLOCK:
3827 r = KVM_CLOCK_TSC_STABLE;
3828 break;
3829 case KVM_CAP_X86_DISABLE_EXITS:
3830 r |= KVM_X86_DISABLE_EXITS_HLT | KVM_X86_DISABLE_EXITS_PAUSE |
3831 KVM_X86_DISABLE_EXITS_CSTATE;
3832 if(kvm_can_mwait_in_guest())
3833 r |= KVM_X86_DISABLE_EXITS_MWAIT;
3834 break;
3835 case KVM_CAP_X86_SMM:
3836 /* SMBASE is usually relocated above 1M on modern chipsets,
3837 * and SMM handlers might indeed rely on 4G segment limits,
3838 * so do not report SMM to be available if real mode is
3839 * emulated via vm86 mode. Still, do not go to great lengths
3840 * to avoid userspace's usage of the feature, because it is a
3841 * fringe case that is not enabled except via specific settings
3842 * of the module parameters.
3843 */
3844 r = kvm_x86_ops.has_emulated_msr(MSR_IA32_SMBASE);
3845 break;
3846 case KVM_CAP_VAPIC:
3847 r = !kvm_x86_ops.cpu_has_accelerated_tpr();
3848 break;
3849 case KVM_CAP_NR_VCPUS:
3850 r = KVM_SOFT_MAX_VCPUS;
3851 break;
3852 case KVM_CAP_MAX_VCPUS:
3853 r = KVM_MAX_VCPUS;
3854 break;
3855 case KVM_CAP_MAX_VCPU_ID:
3856 r = KVM_MAX_VCPU_ID;
3857 break;
3858 case KVM_CAP_PV_MMU: /* obsolete */
3859 r = 0;
3860 break;
3861 case KVM_CAP_MCE:
3862 r = KVM_MAX_MCE_BANKS;
3863 break;
3864 case KVM_CAP_XCRS:
3865 r = boot_cpu_has(X86_FEATURE_XSAVE);
3866 break;
3867 case KVM_CAP_TSC_CONTROL:
3868 r = kvm_has_tsc_control;
3869 break;
3870 case KVM_CAP_X2APIC_API:
3871 r = KVM_X2APIC_API_VALID_FLAGS;
3872 break;
3873 case KVM_CAP_NESTED_STATE:
3874 r = kvm_x86_ops.nested_ops->get_state ?
3875 kvm_x86_ops.nested_ops->get_state(NULL, NULL, 0) : 0;
3876 break;
3877 case KVM_CAP_HYPERV_DIRECT_TLBFLUSH:
3878 r = kvm_x86_ops.enable_direct_tlbflush != NULL;
3879 break;
3880 case KVM_CAP_HYPERV_ENLIGHTENED_VMCS:
3881 r = kvm_x86_ops.nested_ops->enable_evmcs != NULL;
3882 break;
3883 case KVM_CAP_SMALLER_MAXPHYADDR:
3884 r = (int) allow_smaller_maxphyaddr;
3885 break;
3886 case KVM_CAP_STEAL_TIME:
3887 r = sched_info_on();
3888 break;
3889 default:
3890 break;
3891 }
3892 return r;
3893
3894 }
3895
kvm_arch_dev_ioctl(struct file * filp,unsigned int ioctl,unsigned long arg)3896 long kvm_arch_dev_ioctl(struct file *filp,
3897 unsigned int ioctl, unsigned long arg)
3898 {
3899 void __user *argp = (void __user *)arg;
3900 long r;
3901
3902 switch (ioctl) {
3903 case KVM_GET_MSR_INDEX_LIST: {
3904 struct kvm_msr_list __user *user_msr_list = argp;
3905 struct kvm_msr_list msr_list;
3906 unsigned n;
3907
3908 r = -EFAULT;
3909 if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list)))
3910 goto out;
3911 n = msr_list.nmsrs;
3912 msr_list.nmsrs = num_msrs_to_save + num_emulated_msrs;
3913 if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list)))
3914 goto out;
3915 r = -E2BIG;
3916 if (n < msr_list.nmsrs)
3917 goto out;
3918 r = -EFAULT;
3919 if (copy_to_user(user_msr_list->indices, &msrs_to_save,
3920 num_msrs_to_save * sizeof(u32)))
3921 goto out;
3922 if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
3923 &emulated_msrs,
3924 num_emulated_msrs * sizeof(u32)))
3925 goto out;
3926 r = 0;
3927 break;
3928 }
3929 case KVM_GET_SUPPORTED_CPUID:
3930 case KVM_GET_EMULATED_CPUID: {
3931 struct kvm_cpuid2 __user *cpuid_arg = argp;
3932 struct kvm_cpuid2 cpuid;
3933
3934 r = -EFAULT;
3935 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
3936 goto out;
3937
3938 r = kvm_dev_ioctl_get_cpuid(&cpuid, cpuid_arg->entries,
3939 ioctl);
3940 if (r)
3941 goto out;
3942
3943 r = -EFAULT;
3944 if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
3945 goto out;
3946 r = 0;
3947 break;
3948 }
3949 case KVM_X86_GET_MCE_CAP_SUPPORTED:
3950 r = -EFAULT;
3951 if (copy_to_user(argp, &kvm_mce_cap_supported,
3952 sizeof(kvm_mce_cap_supported)))
3953 goto out;
3954 r = 0;
3955 break;
3956 case KVM_GET_MSR_FEATURE_INDEX_LIST: {
3957 struct kvm_msr_list __user *user_msr_list = argp;
3958 struct kvm_msr_list msr_list;
3959 unsigned int n;
3960
3961 r = -EFAULT;
3962 if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list)))
3963 goto out;
3964 n = msr_list.nmsrs;
3965 msr_list.nmsrs = num_msr_based_features;
3966 if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list)))
3967 goto out;
3968 r = -E2BIG;
3969 if (n < msr_list.nmsrs)
3970 goto out;
3971 r = -EFAULT;
3972 if (copy_to_user(user_msr_list->indices, &msr_based_features,
3973 num_msr_based_features * sizeof(u32)))
3974 goto out;
3975 r = 0;
3976 break;
3977 }
3978 case KVM_GET_MSRS:
3979 r = msr_io(NULL, argp, do_get_msr_feature, 1);
3980 break;
3981 default:
3982 r = -EINVAL;
3983 break;
3984 }
3985 out:
3986 return r;
3987 }
3988
wbinvd_ipi(void * garbage)3989 static void wbinvd_ipi(void *garbage)
3990 {
3991 wbinvd();
3992 }
3993
need_emulate_wbinvd(struct kvm_vcpu * vcpu)3994 static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu)
3995 {
3996 return kvm_arch_has_noncoherent_dma(vcpu->kvm);
3997 }
3998
kvm_arch_vcpu_load(struct kvm_vcpu * vcpu,int cpu)3999 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
4000 {
4001 /* Address WBINVD may be executed by guest */
4002 if (need_emulate_wbinvd(vcpu)) {
4003 if (kvm_x86_ops.has_wbinvd_exit())
4004 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
4005 else if (vcpu->cpu != -1 && vcpu->cpu != cpu)
4006 smp_call_function_single(vcpu->cpu,
4007 wbinvd_ipi, NULL, 1);
4008 }
4009
4010 kvm_x86_ops.vcpu_load(vcpu, cpu);
4011
4012 /* Save host pkru register if supported */
4013 vcpu->arch.host_pkru = read_pkru();
4014
4015 /* Apply any externally detected TSC adjustments (due to suspend) */
4016 if (unlikely(vcpu->arch.tsc_offset_adjustment)) {
4017 adjust_tsc_offset_host(vcpu, vcpu->arch.tsc_offset_adjustment);
4018 vcpu->arch.tsc_offset_adjustment = 0;
4019 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
4020 }
4021
4022 if (unlikely(vcpu->cpu != cpu) || kvm_check_tsc_unstable()) {
4023 s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 :
4024 rdtsc() - vcpu->arch.last_host_tsc;
4025 if (tsc_delta < 0)
4026 mark_tsc_unstable("KVM discovered backwards TSC");
4027
4028 if (kvm_check_tsc_unstable()) {
4029 u64 offset = kvm_compute_tsc_offset(vcpu,
4030 vcpu->arch.last_guest_tsc);
4031 kvm_vcpu_write_tsc_offset(vcpu, offset);
4032 vcpu->arch.tsc_catchup = 1;
4033 }
4034
4035 if (kvm_lapic_hv_timer_in_use(vcpu))
4036 kvm_lapic_restart_hv_timer(vcpu);
4037
4038 /*
4039 * On a host with synchronized TSC, there is no need to update
4040 * kvmclock on vcpu->cpu migration
4041 */
4042 if (!vcpu->kvm->arch.use_master_clock || vcpu->cpu == -1)
4043 kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
4044 if (vcpu->cpu != cpu)
4045 kvm_make_request(KVM_REQ_MIGRATE_TIMER, vcpu);
4046 vcpu->cpu = cpu;
4047 }
4048
4049 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
4050 }
4051
kvm_steal_time_set_preempted(struct kvm_vcpu * vcpu)4052 static void kvm_steal_time_set_preempted(struct kvm_vcpu *vcpu)
4053 {
4054 struct kvm_host_map map;
4055 struct kvm_steal_time *st;
4056
4057 /*
4058 * The vCPU can be marked preempted if and only if the VM-Exit was on
4059 * an instruction boundary and will not trigger guest emulation of any
4060 * kind (see vcpu_run). Vendor specific code controls (conservatively)
4061 * when this is true, for example allowing the vCPU to be marked
4062 * preempted if and only if the VM-Exit was due to a host interrupt.
4063 */
4064 if (!vcpu->arch.at_instruction_boundary) {
4065 vcpu->stat.preemption_other++;
4066 return;
4067 }
4068
4069 vcpu->stat.preemption_reported++;
4070 if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
4071 return;
4072
4073 if (vcpu->arch.st.preempted)
4074 return;
4075
4076 if (kvm_map_gfn(vcpu, vcpu->arch.st.msr_val >> PAGE_SHIFT, &map,
4077 &vcpu->arch.st.cache, true))
4078 return;
4079
4080 st = map.hva +
4081 offset_in_page(vcpu->arch.st.msr_val & KVM_STEAL_VALID_BITS);
4082
4083 st->preempted = vcpu->arch.st.preempted = KVM_VCPU_PREEMPTED;
4084
4085 kvm_unmap_gfn(vcpu, &map, &vcpu->arch.st.cache, true, true);
4086 }
4087
kvm_arch_vcpu_put(struct kvm_vcpu * vcpu)4088 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
4089 {
4090 int idx;
4091
4092 if (vcpu->preempted)
4093 vcpu->arch.preempted_in_kernel = !kvm_x86_ops.get_cpl(vcpu);
4094
4095 /*
4096 * Disable page faults because we're in atomic context here.
4097 * kvm_write_guest_offset_cached() would call might_fault()
4098 * that relies on pagefault_disable() to tell if there's a
4099 * bug. NOTE: the write to guest memory may not go through if
4100 * during postcopy live migration or if there's heavy guest
4101 * paging.
4102 */
4103 pagefault_disable();
4104 /*
4105 * kvm_memslots() will be called by
4106 * kvm_write_guest_offset_cached() so take the srcu lock.
4107 */
4108 idx = srcu_read_lock(&vcpu->kvm->srcu);
4109 kvm_steal_time_set_preempted(vcpu);
4110 srcu_read_unlock(&vcpu->kvm->srcu, idx);
4111 pagefault_enable();
4112 kvm_x86_ops.vcpu_put(vcpu);
4113 vcpu->arch.last_host_tsc = rdtsc();
4114 /*
4115 * If userspace has set any breakpoints or watchpoints, dr6 is restored
4116 * on every vmexit, but if not, we might have a stale dr6 from the
4117 * guest. do_debug expects dr6 to be cleared after it runs, do the same.
4118 */
4119 set_debugreg(0, 6);
4120 }
4121
kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu * vcpu,struct kvm_lapic_state * s)4122 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
4123 struct kvm_lapic_state *s)
4124 {
4125 if (vcpu->arch.apicv_active)
4126 kvm_x86_ops.sync_pir_to_irr(vcpu);
4127
4128 return kvm_apic_get_state(vcpu, s);
4129 }
4130
kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu * vcpu,struct kvm_lapic_state * s)4131 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
4132 struct kvm_lapic_state *s)
4133 {
4134 int r;
4135
4136 r = kvm_apic_set_state(vcpu, s);
4137 if (r)
4138 return r;
4139 update_cr8_intercept(vcpu);
4140
4141 return 0;
4142 }
4143
kvm_cpu_accept_dm_intr(struct kvm_vcpu * vcpu)4144 static int kvm_cpu_accept_dm_intr(struct kvm_vcpu *vcpu)
4145 {
4146 /*
4147 * We can accept userspace's request for interrupt injection
4148 * as long as we have a place to store the interrupt number.
4149 * The actual injection will happen when the CPU is able to
4150 * deliver the interrupt.
4151 */
4152 if (kvm_cpu_has_extint(vcpu))
4153 return false;
4154
4155 /* Acknowledging ExtINT does not happen if LINT0 is masked. */
4156 return (!lapic_in_kernel(vcpu) ||
4157 kvm_apic_accept_pic_intr(vcpu));
4158 }
4159
kvm_vcpu_ready_for_interrupt_injection(struct kvm_vcpu * vcpu)4160 static int kvm_vcpu_ready_for_interrupt_injection(struct kvm_vcpu *vcpu)
4161 {
4162 /*
4163 * Do not cause an interrupt window exit if an exception
4164 * is pending or an event needs reinjection; userspace
4165 * might want to inject the interrupt manually using KVM_SET_REGS
4166 * or KVM_SET_SREGS. For that to work, we must be at an
4167 * instruction boundary and with no events half-injected.
4168 */
4169 return (kvm_arch_interrupt_allowed(vcpu) &&
4170 kvm_cpu_accept_dm_intr(vcpu) &&
4171 !kvm_event_needs_reinjection(vcpu) &&
4172 !vcpu->arch.exception.pending);
4173 }
4174
kvm_vcpu_ioctl_interrupt(struct kvm_vcpu * vcpu,struct kvm_interrupt * irq)4175 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
4176 struct kvm_interrupt *irq)
4177 {
4178 if (irq->irq >= KVM_NR_INTERRUPTS)
4179 return -EINVAL;
4180
4181 if (!irqchip_in_kernel(vcpu->kvm)) {
4182 kvm_queue_interrupt(vcpu, irq->irq, false);
4183 kvm_make_request(KVM_REQ_EVENT, vcpu);
4184 return 0;
4185 }
4186
4187 /*
4188 * With in-kernel LAPIC, we only use this to inject EXTINT, so
4189 * fail for in-kernel 8259.
4190 */
4191 if (pic_in_kernel(vcpu->kvm))
4192 return -ENXIO;
4193
4194 if (vcpu->arch.pending_external_vector != -1)
4195 return -EEXIST;
4196
4197 vcpu->arch.pending_external_vector = irq->irq;
4198 kvm_make_request(KVM_REQ_EVENT, vcpu);
4199 return 0;
4200 }
4201
kvm_vcpu_ioctl_nmi(struct kvm_vcpu * vcpu)4202 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
4203 {
4204 kvm_inject_nmi(vcpu);
4205
4206 return 0;
4207 }
4208
kvm_vcpu_ioctl_smi(struct kvm_vcpu * vcpu)4209 static int kvm_vcpu_ioctl_smi(struct kvm_vcpu *vcpu)
4210 {
4211 kvm_make_request(KVM_REQ_SMI, vcpu);
4212
4213 return 0;
4214 }
4215
vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu * vcpu,struct kvm_tpr_access_ctl * tac)4216 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
4217 struct kvm_tpr_access_ctl *tac)
4218 {
4219 if (tac->flags)
4220 return -EINVAL;
4221 vcpu->arch.tpr_access_reporting = !!tac->enabled;
4222 return 0;
4223 }
4224
kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu * vcpu,u64 mcg_cap)4225 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu,
4226 u64 mcg_cap)
4227 {
4228 int r;
4229 unsigned bank_num = mcg_cap & 0xff, bank;
4230
4231 r = -EINVAL;
4232 if (!bank_num || bank_num > KVM_MAX_MCE_BANKS)
4233 goto out;
4234 if (mcg_cap & ~(kvm_mce_cap_supported | 0xff | 0xff0000))
4235 goto out;
4236 r = 0;
4237 vcpu->arch.mcg_cap = mcg_cap;
4238 /* Init IA32_MCG_CTL to all 1s */
4239 if (mcg_cap & MCG_CTL_P)
4240 vcpu->arch.mcg_ctl = ~(u64)0;
4241 /* Init IA32_MCi_CTL to all 1s */
4242 for (bank = 0; bank < bank_num; bank++)
4243 vcpu->arch.mce_banks[bank*4] = ~(u64)0;
4244
4245 kvm_x86_ops.setup_mce(vcpu);
4246 out:
4247 return r;
4248 }
4249
kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu * vcpu,struct kvm_x86_mce * mce)4250 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
4251 struct kvm_x86_mce *mce)
4252 {
4253 u64 mcg_cap = vcpu->arch.mcg_cap;
4254 unsigned bank_num = mcg_cap & 0xff;
4255 u64 *banks = vcpu->arch.mce_banks;
4256
4257 if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL))
4258 return -EINVAL;
4259 /*
4260 * if IA32_MCG_CTL is not all 1s, the uncorrected error
4261 * reporting is disabled
4262 */
4263 if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
4264 vcpu->arch.mcg_ctl != ~(u64)0)
4265 return 0;
4266 banks += 4 * mce->bank;
4267 /*
4268 * if IA32_MCi_CTL is not all 1s, the uncorrected error
4269 * reporting is disabled for the bank
4270 */
4271 if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0)
4272 return 0;
4273 if (mce->status & MCI_STATUS_UC) {
4274 if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) ||
4275 !kvm_read_cr4_bits(vcpu, X86_CR4_MCE)) {
4276 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
4277 return 0;
4278 }
4279 if (banks[1] & MCI_STATUS_VAL)
4280 mce->status |= MCI_STATUS_OVER;
4281 banks[2] = mce->addr;
4282 banks[3] = mce->misc;
4283 vcpu->arch.mcg_status = mce->mcg_status;
4284 banks[1] = mce->status;
4285 kvm_queue_exception(vcpu, MC_VECTOR);
4286 } else if (!(banks[1] & MCI_STATUS_VAL)
4287 || !(banks[1] & MCI_STATUS_UC)) {
4288 if (banks[1] & MCI_STATUS_VAL)
4289 mce->status |= MCI_STATUS_OVER;
4290 banks[2] = mce->addr;
4291 banks[3] = mce->misc;
4292 banks[1] = mce->status;
4293 } else
4294 banks[1] |= MCI_STATUS_OVER;
4295 return 0;
4296 }
4297
kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu * vcpu,struct kvm_vcpu_events * events)4298 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu,
4299 struct kvm_vcpu_events *events)
4300 {
4301 process_nmi(vcpu);
4302
4303 if (kvm_check_request(KVM_REQ_SMI, vcpu))
4304 process_smi(vcpu);
4305
4306 /*
4307 * In guest mode, payload delivery should be deferred,
4308 * so that the L1 hypervisor can intercept #PF before
4309 * CR2 is modified (or intercept #DB before DR6 is
4310 * modified under nVMX). Unless the per-VM capability,
4311 * KVM_CAP_EXCEPTION_PAYLOAD, is set, we may not defer the delivery of
4312 * an exception payload and handle after a KVM_GET_VCPU_EVENTS. Since we
4313 * opportunistically defer the exception payload, deliver it if the
4314 * capability hasn't been requested before processing a
4315 * KVM_GET_VCPU_EVENTS.
4316 */
4317 if (!vcpu->kvm->arch.exception_payload_enabled &&
4318 vcpu->arch.exception.pending && vcpu->arch.exception.has_payload)
4319 kvm_deliver_exception_payload(vcpu);
4320
4321 /*
4322 * The API doesn't provide the instruction length for software
4323 * exceptions, so don't report them. As long as the guest RIP
4324 * isn't advanced, we should expect to encounter the exception
4325 * again.
4326 */
4327 if (kvm_exception_is_soft(vcpu->arch.exception.nr)) {
4328 events->exception.injected = 0;
4329 events->exception.pending = 0;
4330 } else {
4331 events->exception.injected = vcpu->arch.exception.injected;
4332 events->exception.pending = vcpu->arch.exception.pending;
4333 /*
4334 * For ABI compatibility, deliberately conflate
4335 * pending and injected exceptions when
4336 * KVM_CAP_EXCEPTION_PAYLOAD isn't enabled.
4337 */
4338 if (!vcpu->kvm->arch.exception_payload_enabled)
4339 events->exception.injected |=
4340 vcpu->arch.exception.pending;
4341 }
4342 events->exception.nr = vcpu->arch.exception.nr;
4343 events->exception.has_error_code = vcpu->arch.exception.has_error_code;
4344 events->exception.error_code = vcpu->arch.exception.error_code;
4345 events->exception_has_payload = vcpu->arch.exception.has_payload;
4346 events->exception_payload = vcpu->arch.exception.payload;
4347
4348 events->interrupt.injected =
4349 vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft;
4350 events->interrupt.nr = vcpu->arch.interrupt.nr;
4351 events->interrupt.soft = 0;
4352 events->interrupt.shadow = kvm_x86_ops.get_interrupt_shadow(vcpu);
4353
4354 events->nmi.injected = vcpu->arch.nmi_injected;
4355 events->nmi.pending = vcpu->arch.nmi_pending != 0;
4356 events->nmi.masked = kvm_x86_ops.get_nmi_mask(vcpu);
4357 events->nmi.pad = 0;
4358
4359 events->sipi_vector = 0; /* never valid when reporting to user space */
4360
4361 events->smi.smm = is_smm(vcpu);
4362 events->smi.pending = vcpu->arch.smi_pending;
4363 events->smi.smm_inside_nmi =
4364 !!(vcpu->arch.hflags & HF_SMM_INSIDE_NMI_MASK);
4365 events->smi.latched_init = kvm_lapic_latched_init(vcpu);
4366
4367 events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING
4368 | KVM_VCPUEVENT_VALID_SHADOW
4369 | KVM_VCPUEVENT_VALID_SMM);
4370 if (vcpu->kvm->arch.exception_payload_enabled)
4371 events->flags |= KVM_VCPUEVENT_VALID_PAYLOAD;
4372
4373 memset(&events->reserved, 0, sizeof(events->reserved));
4374 }
4375
4376 static void kvm_smm_changed(struct kvm_vcpu *vcpu);
4377
kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu * vcpu,struct kvm_vcpu_events * events)4378 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu,
4379 struct kvm_vcpu_events *events)
4380 {
4381 if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING
4382 | KVM_VCPUEVENT_VALID_SIPI_VECTOR
4383 | KVM_VCPUEVENT_VALID_SHADOW
4384 | KVM_VCPUEVENT_VALID_SMM
4385 | KVM_VCPUEVENT_VALID_PAYLOAD))
4386 return -EINVAL;
4387
4388 if (events->flags & KVM_VCPUEVENT_VALID_PAYLOAD) {
4389 if (!vcpu->kvm->arch.exception_payload_enabled)
4390 return -EINVAL;
4391 if (events->exception.pending)
4392 events->exception.injected = 0;
4393 else
4394 events->exception_has_payload = 0;
4395 } else {
4396 events->exception.pending = 0;
4397 events->exception_has_payload = 0;
4398 }
4399
4400 if ((events->exception.injected || events->exception.pending) &&
4401 (events->exception.nr > 31 || events->exception.nr == NMI_VECTOR))
4402 return -EINVAL;
4403
4404 /* INITs are latched while in SMM */
4405 if (events->flags & KVM_VCPUEVENT_VALID_SMM &&
4406 (events->smi.smm || events->smi.pending) &&
4407 vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED)
4408 return -EINVAL;
4409
4410 process_nmi(vcpu);
4411 vcpu->arch.exception.injected = events->exception.injected;
4412 vcpu->arch.exception.pending = events->exception.pending;
4413 vcpu->arch.exception.nr = events->exception.nr;
4414 vcpu->arch.exception.has_error_code = events->exception.has_error_code;
4415 vcpu->arch.exception.error_code = events->exception.error_code;
4416 vcpu->arch.exception.has_payload = events->exception_has_payload;
4417 vcpu->arch.exception.payload = events->exception_payload;
4418
4419 vcpu->arch.interrupt.injected = events->interrupt.injected;
4420 vcpu->arch.interrupt.nr = events->interrupt.nr;
4421 vcpu->arch.interrupt.soft = events->interrupt.soft;
4422 if (events->flags & KVM_VCPUEVENT_VALID_SHADOW)
4423 kvm_x86_ops.set_interrupt_shadow(vcpu,
4424 events->interrupt.shadow);
4425
4426 vcpu->arch.nmi_injected = events->nmi.injected;
4427 if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING)
4428 vcpu->arch.nmi_pending = events->nmi.pending;
4429 kvm_x86_ops.set_nmi_mask(vcpu, events->nmi.masked);
4430
4431 if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR &&
4432 lapic_in_kernel(vcpu))
4433 vcpu->arch.apic->sipi_vector = events->sipi_vector;
4434
4435 if (events->flags & KVM_VCPUEVENT_VALID_SMM) {
4436 if (!!(vcpu->arch.hflags & HF_SMM_MASK) != events->smi.smm) {
4437 if (events->smi.smm)
4438 vcpu->arch.hflags |= HF_SMM_MASK;
4439 else
4440 vcpu->arch.hflags &= ~HF_SMM_MASK;
4441
4442 kvm_x86_ops.nested_ops->leave_nested(vcpu);
4443 kvm_smm_changed(vcpu);
4444 }
4445
4446 vcpu->arch.smi_pending = events->smi.pending;
4447
4448 if (events->smi.smm) {
4449 if (events->smi.smm_inside_nmi)
4450 vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
4451 else
4452 vcpu->arch.hflags &= ~HF_SMM_INSIDE_NMI_MASK;
4453 }
4454
4455 if (lapic_in_kernel(vcpu)) {
4456 if (events->smi.latched_init)
4457 set_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
4458 else
4459 clear_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
4460 }
4461 }
4462
4463 kvm_make_request(KVM_REQ_EVENT, vcpu);
4464
4465 return 0;
4466 }
4467
kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu * vcpu,struct kvm_debugregs * dbgregs)4468 static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu,
4469 struct kvm_debugregs *dbgregs)
4470 {
4471 unsigned long val;
4472
4473 memset(dbgregs, 0, sizeof(*dbgregs));
4474 memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db));
4475 kvm_get_dr(vcpu, 6, &val);
4476 dbgregs->dr6 = val;
4477 dbgregs->dr7 = vcpu->arch.dr7;
4478 }
4479
kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu * vcpu,struct kvm_debugregs * dbgregs)4480 static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu,
4481 struct kvm_debugregs *dbgregs)
4482 {
4483 if (dbgregs->flags)
4484 return -EINVAL;
4485
4486 if (dbgregs->dr6 & ~0xffffffffull)
4487 return -EINVAL;
4488 if (dbgregs->dr7 & ~0xffffffffull)
4489 return -EINVAL;
4490
4491 memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db));
4492 kvm_update_dr0123(vcpu);
4493 vcpu->arch.dr6 = dbgregs->dr6;
4494 vcpu->arch.dr7 = dbgregs->dr7;
4495 kvm_update_dr7(vcpu);
4496
4497 return 0;
4498 }
4499
4500 #define XSTATE_COMPACTION_ENABLED (1ULL << 63)
4501
fill_xsave(u8 * dest,struct kvm_vcpu * vcpu)4502 static void fill_xsave(u8 *dest, struct kvm_vcpu *vcpu)
4503 {
4504 struct xregs_state *xsave = &vcpu->arch.guest_fpu->state.xsave;
4505 u64 xstate_bv = xsave->header.xfeatures;
4506 u64 valid;
4507
4508 /*
4509 * Copy legacy XSAVE area, to avoid complications with CPUID
4510 * leaves 0 and 1 in the loop below.
4511 */
4512 memcpy(dest, xsave, XSAVE_HDR_OFFSET);
4513
4514 /* Set XSTATE_BV */
4515 xstate_bv &= vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FPSSE;
4516 *(u64 *)(dest + XSAVE_HDR_OFFSET) = xstate_bv;
4517
4518 /*
4519 * Copy each region from the possibly compacted offset to the
4520 * non-compacted offset.
4521 */
4522 valid = xstate_bv & ~XFEATURE_MASK_FPSSE;
4523 while (valid) {
4524 u64 xfeature_mask = valid & -valid;
4525 int xfeature_nr = fls64(xfeature_mask) - 1;
4526 void *src = get_xsave_addr(xsave, xfeature_nr);
4527
4528 if (src) {
4529 u32 size, offset, ecx, edx;
4530 cpuid_count(XSTATE_CPUID, xfeature_nr,
4531 &size, &offset, &ecx, &edx);
4532 if (xfeature_nr == XFEATURE_PKRU)
4533 memcpy(dest + offset, &vcpu->arch.pkru,
4534 sizeof(vcpu->arch.pkru));
4535 else
4536 memcpy(dest + offset, src, size);
4537
4538 }
4539
4540 valid -= xfeature_mask;
4541 }
4542 }
4543
load_xsave(struct kvm_vcpu * vcpu,u8 * src)4544 static void load_xsave(struct kvm_vcpu *vcpu, u8 *src)
4545 {
4546 struct xregs_state *xsave = &vcpu->arch.guest_fpu->state.xsave;
4547 u64 xstate_bv = *(u64 *)(src + XSAVE_HDR_OFFSET);
4548 u64 valid;
4549
4550 /*
4551 * Copy legacy XSAVE area, to avoid complications with CPUID
4552 * leaves 0 and 1 in the loop below.
4553 */
4554 memcpy(xsave, src, XSAVE_HDR_OFFSET);
4555
4556 /* Set XSTATE_BV and possibly XCOMP_BV. */
4557 xsave->header.xfeatures = xstate_bv;
4558 if (boot_cpu_has(X86_FEATURE_XSAVES))
4559 xsave->header.xcomp_bv = host_xcr0 | XSTATE_COMPACTION_ENABLED;
4560
4561 /*
4562 * Copy each region from the non-compacted offset to the
4563 * possibly compacted offset.
4564 */
4565 valid = xstate_bv & ~XFEATURE_MASK_FPSSE;
4566 while (valid) {
4567 u64 xfeature_mask = valid & -valid;
4568 int xfeature_nr = fls64(xfeature_mask) - 1;
4569 void *dest = get_xsave_addr(xsave, xfeature_nr);
4570
4571 if (dest) {
4572 u32 size, offset, ecx, edx;
4573 cpuid_count(XSTATE_CPUID, xfeature_nr,
4574 &size, &offset, &ecx, &edx);
4575 if (xfeature_nr == XFEATURE_PKRU)
4576 memcpy(&vcpu->arch.pkru, src + offset,
4577 sizeof(vcpu->arch.pkru));
4578 else
4579 memcpy(dest, src + offset, size);
4580 }
4581
4582 valid -= xfeature_mask;
4583 }
4584 }
4585
kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu * vcpu,struct kvm_xsave * guest_xsave)4586 static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu,
4587 struct kvm_xsave *guest_xsave)
4588 {
4589 if (boot_cpu_has(X86_FEATURE_XSAVE)) {
4590 memset(guest_xsave, 0, sizeof(struct kvm_xsave));
4591 fill_xsave((u8 *) guest_xsave->region, vcpu);
4592 } else {
4593 memcpy(guest_xsave->region,
4594 &vcpu->arch.guest_fpu->state.fxsave,
4595 sizeof(struct fxregs_state));
4596 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)] =
4597 XFEATURE_MASK_FPSSE;
4598 }
4599 }
4600
4601 #define XSAVE_MXCSR_OFFSET 24
4602
kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu * vcpu,struct kvm_xsave * guest_xsave)4603 static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu,
4604 struct kvm_xsave *guest_xsave)
4605 {
4606 u64 xstate_bv =
4607 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)];
4608 u32 mxcsr = *(u32 *)&guest_xsave->region[XSAVE_MXCSR_OFFSET / sizeof(u32)];
4609
4610 if (boot_cpu_has(X86_FEATURE_XSAVE)) {
4611 /*
4612 * Here we allow setting states that are not present in
4613 * CPUID leaf 0xD, index 0, EDX:EAX. This is for compatibility
4614 * with old userspace.
4615 */
4616 if (xstate_bv & ~supported_xcr0 || mxcsr & ~mxcsr_feature_mask)
4617 return -EINVAL;
4618 load_xsave(vcpu, (u8 *)guest_xsave->region);
4619 } else {
4620 if (xstate_bv & ~XFEATURE_MASK_FPSSE ||
4621 mxcsr & ~mxcsr_feature_mask)
4622 return -EINVAL;
4623 memcpy(&vcpu->arch.guest_fpu->state.fxsave,
4624 guest_xsave->region, sizeof(struct fxregs_state));
4625 }
4626 return 0;
4627 }
4628
kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu * vcpu,struct kvm_xcrs * guest_xcrs)4629 static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu,
4630 struct kvm_xcrs *guest_xcrs)
4631 {
4632 if (!boot_cpu_has(X86_FEATURE_XSAVE)) {
4633 guest_xcrs->nr_xcrs = 0;
4634 return;
4635 }
4636
4637 guest_xcrs->nr_xcrs = 1;
4638 guest_xcrs->flags = 0;
4639 guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK;
4640 guest_xcrs->xcrs[0].value = vcpu->arch.xcr0;
4641 }
4642
kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu * vcpu,struct kvm_xcrs * guest_xcrs)4643 static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu,
4644 struct kvm_xcrs *guest_xcrs)
4645 {
4646 int i, r = 0;
4647
4648 if (!boot_cpu_has(X86_FEATURE_XSAVE))
4649 return -EINVAL;
4650
4651 if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags)
4652 return -EINVAL;
4653
4654 for (i = 0; i < guest_xcrs->nr_xcrs; i++)
4655 /* Only support XCR0 currently */
4656 if (guest_xcrs->xcrs[i].xcr == XCR_XFEATURE_ENABLED_MASK) {
4657 r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK,
4658 guest_xcrs->xcrs[i].value);
4659 break;
4660 }
4661 if (r)
4662 r = -EINVAL;
4663 return r;
4664 }
4665
4666 /*
4667 * kvm_set_guest_paused() indicates to the guest kernel that it has been
4668 * stopped by the hypervisor. This function will be called from the host only.
4669 * EINVAL is returned when the host attempts to set the flag for a guest that
4670 * does not support pv clocks.
4671 */
kvm_set_guest_paused(struct kvm_vcpu * vcpu)4672 static int kvm_set_guest_paused(struct kvm_vcpu *vcpu)
4673 {
4674 if (!vcpu->arch.pv_time_enabled)
4675 return -EINVAL;
4676 vcpu->arch.pvclock_set_guest_stopped_request = true;
4677 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
4678 return 0;
4679 }
4680
kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu * vcpu,struct kvm_enable_cap * cap)4681 static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu,
4682 struct kvm_enable_cap *cap)
4683 {
4684 int r;
4685 uint16_t vmcs_version;
4686 void __user *user_ptr;
4687
4688 if (cap->flags)
4689 return -EINVAL;
4690
4691 switch (cap->cap) {
4692 case KVM_CAP_HYPERV_SYNIC2:
4693 if (cap->args[0])
4694 return -EINVAL;
4695 fallthrough;
4696
4697 case KVM_CAP_HYPERV_SYNIC:
4698 if (!irqchip_in_kernel(vcpu->kvm))
4699 return -EINVAL;
4700 return kvm_hv_activate_synic(vcpu, cap->cap ==
4701 KVM_CAP_HYPERV_SYNIC2);
4702 case KVM_CAP_HYPERV_ENLIGHTENED_VMCS:
4703 if (!kvm_x86_ops.nested_ops->enable_evmcs)
4704 return -ENOTTY;
4705 r = kvm_x86_ops.nested_ops->enable_evmcs(vcpu, &vmcs_version);
4706 if (!r) {
4707 user_ptr = (void __user *)(uintptr_t)cap->args[0];
4708 if (copy_to_user(user_ptr, &vmcs_version,
4709 sizeof(vmcs_version)))
4710 r = -EFAULT;
4711 }
4712 return r;
4713 case KVM_CAP_HYPERV_DIRECT_TLBFLUSH:
4714 if (!kvm_x86_ops.enable_direct_tlbflush)
4715 return -ENOTTY;
4716
4717 return kvm_x86_ops.enable_direct_tlbflush(vcpu);
4718
4719 case KVM_CAP_ENFORCE_PV_FEATURE_CPUID:
4720 vcpu->arch.pv_cpuid.enforce = cap->args[0];
4721 if (vcpu->arch.pv_cpuid.enforce)
4722 kvm_update_pv_runtime(vcpu);
4723
4724 return 0;
4725
4726 default:
4727 return -EINVAL;
4728 }
4729 }
4730
kvm_arch_vcpu_ioctl(struct file * filp,unsigned int ioctl,unsigned long arg)4731 long kvm_arch_vcpu_ioctl(struct file *filp,
4732 unsigned int ioctl, unsigned long arg)
4733 {
4734 struct kvm_vcpu *vcpu = filp->private_data;
4735 void __user *argp = (void __user *)arg;
4736 int r;
4737 union {
4738 struct kvm_lapic_state *lapic;
4739 struct kvm_xsave *xsave;
4740 struct kvm_xcrs *xcrs;
4741 void *buffer;
4742 } u;
4743
4744 vcpu_load(vcpu);
4745
4746 u.buffer = NULL;
4747 switch (ioctl) {
4748 case KVM_GET_LAPIC: {
4749 r = -EINVAL;
4750 if (!lapic_in_kernel(vcpu))
4751 goto out;
4752 u.lapic = kzalloc(sizeof(struct kvm_lapic_state),
4753 GFP_KERNEL_ACCOUNT);
4754
4755 r = -ENOMEM;
4756 if (!u.lapic)
4757 goto out;
4758 r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic);
4759 if (r)
4760 goto out;
4761 r = -EFAULT;
4762 if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state)))
4763 goto out;
4764 r = 0;
4765 break;
4766 }
4767 case KVM_SET_LAPIC: {
4768 r = -EINVAL;
4769 if (!lapic_in_kernel(vcpu))
4770 goto out;
4771 u.lapic = memdup_user(argp, sizeof(*u.lapic));
4772 if (IS_ERR(u.lapic)) {
4773 r = PTR_ERR(u.lapic);
4774 goto out_nofree;
4775 }
4776
4777 r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic);
4778 break;
4779 }
4780 case KVM_INTERRUPT: {
4781 struct kvm_interrupt irq;
4782
4783 r = -EFAULT;
4784 if (copy_from_user(&irq, argp, sizeof(irq)))
4785 goto out;
4786 r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
4787 break;
4788 }
4789 case KVM_NMI: {
4790 r = kvm_vcpu_ioctl_nmi(vcpu);
4791 break;
4792 }
4793 case KVM_SMI: {
4794 r = kvm_vcpu_ioctl_smi(vcpu);
4795 break;
4796 }
4797 case KVM_SET_CPUID: {
4798 struct kvm_cpuid __user *cpuid_arg = argp;
4799 struct kvm_cpuid cpuid;
4800
4801 r = -EFAULT;
4802 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
4803 goto out;
4804 r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
4805 break;
4806 }
4807 case KVM_SET_CPUID2: {
4808 struct kvm_cpuid2 __user *cpuid_arg = argp;
4809 struct kvm_cpuid2 cpuid;
4810
4811 r = -EFAULT;
4812 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
4813 goto out;
4814 r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
4815 cpuid_arg->entries);
4816 break;
4817 }
4818 case KVM_GET_CPUID2: {
4819 struct kvm_cpuid2 __user *cpuid_arg = argp;
4820 struct kvm_cpuid2 cpuid;
4821
4822 r = -EFAULT;
4823 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
4824 goto out;
4825 r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
4826 cpuid_arg->entries);
4827 if (r)
4828 goto out;
4829 r = -EFAULT;
4830 if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
4831 goto out;
4832 r = 0;
4833 break;
4834 }
4835 case KVM_GET_MSRS: {
4836 int idx = srcu_read_lock(&vcpu->kvm->srcu);
4837 r = msr_io(vcpu, argp, do_get_msr, 1);
4838 srcu_read_unlock(&vcpu->kvm->srcu, idx);
4839 break;
4840 }
4841 case KVM_SET_MSRS: {
4842 int idx = srcu_read_lock(&vcpu->kvm->srcu);
4843 r = msr_io(vcpu, argp, do_set_msr, 0);
4844 srcu_read_unlock(&vcpu->kvm->srcu, idx);
4845 break;
4846 }
4847 case KVM_TPR_ACCESS_REPORTING: {
4848 struct kvm_tpr_access_ctl tac;
4849
4850 r = -EFAULT;
4851 if (copy_from_user(&tac, argp, sizeof(tac)))
4852 goto out;
4853 r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
4854 if (r)
4855 goto out;
4856 r = -EFAULT;
4857 if (copy_to_user(argp, &tac, sizeof(tac)))
4858 goto out;
4859 r = 0;
4860 break;
4861 };
4862 case KVM_SET_VAPIC_ADDR: {
4863 struct kvm_vapic_addr va;
4864 int idx;
4865
4866 r = -EINVAL;
4867 if (!lapic_in_kernel(vcpu))
4868 goto out;
4869 r = -EFAULT;
4870 if (copy_from_user(&va, argp, sizeof(va)))
4871 goto out;
4872 idx = srcu_read_lock(&vcpu->kvm->srcu);
4873 r = kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
4874 srcu_read_unlock(&vcpu->kvm->srcu, idx);
4875 break;
4876 }
4877 case KVM_X86_SETUP_MCE: {
4878 u64 mcg_cap;
4879
4880 r = -EFAULT;
4881 if (copy_from_user(&mcg_cap, argp, sizeof(mcg_cap)))
4882 goto out;
4883 r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap);
4884 break;
4885 }
4886 case KVM_X86_SET_MCE: {
4887 struct kvm_x86_mce mce;
4888
4889 r = -EFAULT;
4890 if (copy_from_user(&mce, argp, sizeof(mce)))
4891 goto out;
4892 r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce);
4893 break;
4894 }
4895 case KVM_GET_VCPU_EVENTS: {
4896 struct kvm_vcpu_events events;
4897
4898 kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events);
4899
4900 r = -EFAULT;
4901 if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events)))
4902 break;
4903 r = 0;
4904 break;
4905 }
4906 case KVM_SET_VCPU_EVENTS: {
4907 struct kvm_vcpu_events events;
4908
4909 r = -EFAULT;
4910 if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events)))
4911 break;
4912
4913 r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events);
4914 break;
4915 }
4916 case KVM_GET_DEBUGREGS: {
4917 struct kvm_debugregs dbgregs;
4918
4919 kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs);
4920
4921 r = -EFAULT;
4922 if (copy_to_user(argp, &dbgregs,
4923 sizeof(struct kvm_debugregs)))
4924 break;
4925 r = 0;
4926 break;
4927 }
4928 case KVM_SET_DEBUGREGS: {
4929 struct kvm_debugregs dbgregs;
4930
4931 r = -EFAULT;
4932 if (copy_from_user(&dbgregs, argp,
4933 sizeof(struct kvm_debugregs)))
4934 break;
4935
4936 r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs);
4937 break;
4938 }
4939 case KVM_GET_XSAVE: {
4940 u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL_ACCOUNT);
4941 r = -ENOMEM;
4942 if (!u.xsave)
4943 break;
4944
4945 kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave);
4946
4947 r = -EFAULT;
4948 if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave)))
4949 break;
4950 r = 0;
4951 break;
4952 }
4953 case KVM_SET_XSAVE: {
4954 u.xsave = memdup_user(argp, sizeof(*u.xsave));
4955 if (IS_ERR(u.xsave)) {
4956 r = PTR_ERR(u.xsave);
4957 goto out_nofree;
4958 }
4959
4960 r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave);
4961 break;
4962 }
4963 case KVM_GET_XCRS: {
4964 u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL_ACCOUNT);
4965 r = -ENOMEM;
4966 if (!u.xcrs)
4967 break;
4968
4969 kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs);
4970
4971 r = -EFAULT;
4972 if (copy_to_user(argp, u.xcrs,
4973 sizeof(struct kvm_xcrs)))
4974 break;
4975 r = 0;
4976 break;
4977 }
4978 case KVM_SET_XCRS: {
4979 u.xcrs = memdup_user(argp, sizeof(*u.xcrs));
4980 if (IS_ERR(u.xcrs)) {
4981 r = PTR_ERR(u.xcrs);
4982 goto out_nofree;
4983 }
4984
4985 r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs);
4986 break;
4987 }
4988 case KVM_SET_TSC_KHZ: {
4989 u32 user_tsc_khz;
4990
4991 r = -EINVAL;
4992 user_tsc_khz = (u32)arg;
4993
4994 if (kvm_has_tsc_control &&
4995 user_tsc_khz >= kvm_max_guest_tsc_khz)
4996 goto out;
4997
4998 if (user_tsc_khz == 0)
4999 user_tsc_khz = tsc_khz;
5000
5001 if (!kvm_set_tsc_khz(vcpu, user_tsc_khz))
5002 r = 0;
5003
5004 goto out;
5005 }
5006 case KVM_GET_TSC_KHZ: {
5007 r = vcpu->arch.virtual_tsc_khz;
5008 goto out;
5009 }
5010 case KVM_KVMCLOCK_CTRL: {
5011 r = kvm_set_guest_paused(vcpu);
5012 goto out;
5013 }
5014 case KVM_ENABLE_CAP: {
5015 struct kvm_enable_cap cap;
5016
5017 r = -EFAULT;
5018 if (copy_from_user(&cap, argp, sizeof(cap)))
5019 goto out;
5020 r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap);
5021 break;
5022 }
5023 case KVM_GET_NESTED_STATE: {
5024 struct kvm_nested_state __user *user_kvm_nested_state = argp;
5025 u32 user_data_size;
5026
5027 r = -EINVAL;
5028 if (!kvm_x86_ops.nested_ops->get_state)
5029 break;
5030
5031 BUILD_BUG_ON(sizeof(user_data_size) != sizeof(user_kvm_nested_state->size));
5032 r = -EFAULT;
5033 if (get_user(user_data_size, &user_kvm_nested_state->size))
5034 break;
5035
5036 r = kvm_x86_ops.nested_ops->get_state(vcpu, user_kvm_nested_state,
5037 user_data_size);
5038 if (r < 0)
5039 break;
5040
5041 if (r > user_data_size) {
5042 if (put_user(r, &user_kvm_nested_state->size))
5043 r = -EFAULT;
5044 else
5045 r = -E2BIG;
5046 break;
5047 }
5048
5049 r = 0;
5050 break;
5051 }
5052 case KVM_SET_NESTED_STATE: {
5053 struct kvm_nested_state __user *user_kvm_nested_state = argp;
5054 struct kvm_nested_state kvm_state;
5055 int idx;
5056
5057 r = -EINVAL;
5058 if (!kvm_x86_ops.nested_ops->set_state)
5059 break;
5060
5061 r = -EFAULT;
5062 if (copy_from_user(&kvm_state, user_kvm_nested_state, sizeof(kvm_state)))
5063 break;
5064
5065 r = -EINVAL;
5066 if (kvm_state.size < sizeof(kvm_state))
5067 break;
5068
5069 if (kvm_state.flags &
5070 ~(KVM_STATE_NESTED_RUN_PENDING | KVM_STATE_NESTED_GUEST_MODE
5071 | KVM_STATE_NESTED_EVMCS | KVM_STATE_NESTED_MTF_PENDING
5072 | KVM_STATE_NESTED_GIF_SET))
5073 break;
5074
5075 /* nested_run_pending implies guest_mode. */
5076 if ((kvm_state.flags & KVM_STATE_NESTED_RUN_PENDING)
5077 && !(kvm_state.flags & KVM_STATE_NESTED_GUEST_MODE))
5078 break;
5079
5080 idx = srcu_read_lock(&vcpu->kvm->srcu);
5081 r = kvm_x86_ops.nested_ops->set_state(vcpu, user_kvm_nested_state, &kvm_state);
5082 srcu_read_unlock(&vcpu->kvm->srcu, idx);
5083 break;
5084 }
5085 case KVM_GET_SUPPORTED_HV_CPUID: {
5086 struct kvm_cpuid2 __user *cpuid_arg = argp;
5087 struct kvm_cpuid2 cpuid;
5088
5089 r = -EFAULT;
5090 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
5091 goto out;
5092
5093 r = kvm_vcpu_ioctl_get_hv_cpuid(vcpu, &cpuid,
5094 cpuid_arg->entries);
5095 if (r)
5096 goto out;
5097
5098 r = -EFAULT;
5099 if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
5100 goto out;
5101 r = 0;
5102 break;
5103 }
5104 default:
5105 r = -EINVAL;
5106 }
5107 out:
5108 kfree(u.buffer);
5109 out_nofree:
5110 vcpu_put(vcpu);
5111 return r;
5112 }
5113
kvm_arch_vcpu_fault(struct kvm_vcpu * vcpu,struct vm_fault * vmf)5114 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
5115 {
5116 return VM_FAULT_SIGBUS;
5117 }
5118
kvm_vm_ioctl_set_tss_addr(struct kvm * kvm,unsigned long addr)5119 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
5120 {
5121 int ret;
5122
5123 if (addr > (unsigned int)(-3 * PAGE_SIZE))
5124 return -EINVAL;
5125 ret = kvm_x86_ops.set_tss_addr(kvm, addr);
5126 return ret;
5127 }
5128
kvm_vm_ioctl_set_identity_map_addr(struct kvm * kvm,u64 ident_addr)5129 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm,
5130 u64 ident_addr)
5131 {
5132 return kvm_x86_ops.set_identity_map_addr(kvm, ident_addr);
5133 }
5134
kvm_vm_ioctl_set_nr_mmu_pages(struct kvm * kvm,unsigned long kvm_nr_mmu_pages)5135 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
5136 unsigned long kvm_nr_mmu_pages)
5137 {
5138 if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
5139 return -EINVAL;
5140
5141 mutex_lock(&kvm->slots_lock);
5142
5143 kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
5144 kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
5145
5146 mutex_unlock(&kvm->slots_lock);
5147 return 0;
5148 }
5149
kvm_vm_ioctl_get_nr_mmu_pages(struct kvm * kvm)5150 static unsigned long kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
5151 {
5152 return kvm->arch.n_max_mmu_pages;
5153 }
5154
kvm_vm_ioctl_get_irqchip(struct kvm * kvm,struct kvm_irqchip * chip)5155 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
5156 {
5157 struct kvm_pic *pic = kvm->arch.vpic;
5158 int r;
5159
5160 r = 0;
5161 switch (chip->chip_id) {
5162 case KVM_IRQCHIP_PIC_MASTER:
5163 memcpy(&chip->chip.pic, &pic->pics[0],
5164 sizeof(struct kvm_pic_state));
5165 break;
5166 case KVM_IRQCHIP_PIC_SLAVE:
5167 memcpy(&chip->chip.pic, &pic->pics[1],
5168 sizeof(struct kvm_pic_state));
5169 break;
5170 case KVM_IRQCHIP_IOAPIC:
5171 kvm_get_ioapic(kvm, &chip->chip.ioapic);
5172 break;
5173 default:
5174 r = -EINVAL;
5175 break;
5176 }
5177 return r;
5178 }
5179
kvm_vm_ioctl_set_irqchip(struct kvm * kvm,struct kvm_irqchip * chip)5180 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
5181 {
5182 struct kvm_pic *pic = kvm->arch.vpic;
5183 int r;
5184
5185 r = 0;
5186 switch (chip->chip_id) {
5187 case KVM_IRQCHIP_PIC_MASTER:
5188 spin_lock(&pic->lock);
5189 memcpy(&pic->pics[0], &chip->chip.pic,
5190 sizeof(struct kvm_pic_state));
5191 spin_unlock(&pic->lock);
5192 break;
5193 case KVM_IRQCHIP_PIC_SLAVE:
5194 spin_lock(&pic->lock);
5195 memcpy(&pic->pics[1], &chip->chip.pic,
5196 sizeof(struct kvm_pic_state));
5197 spin_unlock(&pic->lock);
5198 break;
5199 case KVM_IRQCHIP_IOAPIC:
5200 kvm_set_ioapic(kvm, &chip->chip.ioapic);
5201 break;
5202 default:
5203 r = -EINVAL;
5204 break;
5205 }
5206 kvm_pic_update_irq(pic);
5207 return r;
5208 }
5209
kvm_vm_ioctl_get_pit(struct kvm * kvm,struct kvm_pit_state * ps)5210 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
5211 {
5212 struct kvm_kpit_state *kps = &kvm->arch.vpit->pit_state;
5213
5214 BUILD_BUG_ON(sizeof(*ps) != sizeof(kps->channels));
5215
5216 mutex_lock(&kps->lock);
5217 memcpy(ps, &kps->channels, sizeof(*ps));
5218 mutex_unlock(&kps->lock);
5219 return 0;
5220 }
5221
kvm_vm_ioctl_set_pit(struct kvm * kvm,struct kvm_pit_state * ps)5222 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
5223 {
5224 int i;
5225 struct kvm_pit *pit = kvm->arch.vpit;
5226
5227 mutex_lock(&pit->pit_state.lock);
5228 memcpy(&pit->pit_state.channels, ps, sizeof(*ps));
5229 for (i = 0; i < 3; i++)
5230 kvm_pit_load_count(pit, i, ps->channels[i].count, 0);
5231 mutex_unlock(&pit->pit_state.lock);
5232 return 0;
5233 }
5234
kvm_vm_ioctl_get_pit2(struct kvm * kvm,struct kvm_pit_state2 * ps)5235 static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
5236 {
5237 mutex_lock(&kvm->arch.vpit->pit_state.lock);
5238 memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels,
5239 sizeof(ps->channels));
5240 ps->flags = kvm->arch.vpit->pit_state.flags;
5241 mutex_unlock(&kvm->arch.vpit->pit_state.lock);
5242 memset(&ps->reserved, 0, sizeof(ps->reserved));
5243 return 0;
5244 }
5245
kvm_vm_ioctl_set_pit2(struct kvm * kvm,struct kvm_pit_state2 * ps)5246 static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
5247 {
5248 int start = 0;
5249 int i;
5250 u32 prev_legacy, cur_legacy;
5251 struct kvm_pit *pit = kvm->arch.vpit;
5252
5253 mutex_lock(&pit->pit_state.lock);
5254 prev_legacy = pit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY;
5255 cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY;
5256 if (!prev_legacy && cur_legacy)
5257 start = 1;
5258 memcpy(&pit->pit_state.channels, &ps->channels,
5259 sizeof(pit->pit_state.channels));
5260 pit->pit_state.flags = ps->flags;
5261 for (i = 0; i < 3; i++)
5262 kvm_pit_load_count(pit, i, pit->pit_state.channels[i].count,
5263 start && i == 0);
5264 mutex_unlock(&pit->pit_state.lock);
5265 return 0;
5266 }
5267
kvm_vm_ioctl_reinject(struct kvm * kvm,struct kvm_reinject_control * control)5268 static int kvm_vm_ioctl_reinject(struct kvm *kvm,
5269 struct kvm_reinject_control *control)
5270 {
5271 struct kvm_pit *pit = kvm->arch.vpit;
5272
5273 /* pit->pit_state.lock was overloaded to prevent userspace from getting
5274 * an inconsistent state after running multiple KVM_REINJECT_CONTROL
5275 * ioctls in parallel. Use a separate lock if that ioctl isn't rare.
5276 */
5277 mutex_lock(&pit->pit_state.lock);
5278 kvm_pit_set_reinject(pit, control->pit_reinject);
5279 mutex_unlock(&pit->pit_state.lock);
5280
5281 return 0;
5282 }
5283
kvm_arch_sync_dirty_log(struct kvm * kvm,struct kvm_memory_slot * memslot)5284 void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot)
5285 {
5286 /*
5287 * Flush potentially hardware-cached dirty pages to dirty_bitmap.
5288 */
5289 if (kvm_x86_ops.flush_log_dirty)
5290 kvm_x86_ops.flush_log_dirty(kvm);
5291 }
5292
kvm_vm_ioctl_irq_line(struct kvm * kvm,struct kvm_irq_level * irq_event,bool line_status)5293 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event,
5294 bool line_status)
5295 {
5296 if (!irqchip_in_kernel(kvm))
5297 return -ENXIO;
5298
5299 irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
5300 irq_event->irq, irq_event->level,
5301 line_status);
5302 return 0;
5303 }
5304
kvm_vm_ioctl_enable_cap(struct kvm * kvm,struct kvm_enable_cap * cap)5305 int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
5306 struct kvm_enable_cap *cap)
5307 {
5308 int r;
5309
5310 if (cap->flags)
5311 return -EINVAL;
5312
5313 switch (cap->cap) {
5314 case KVM_CAP_DISABLE_QUIRKS:
5315 kvm->arch.disabled_quirks = cap->args[0];
5316 r = 0;
5317 break;
5318 case KVM_CAP_SPLIT_IRQCHIP: {
5319 mutex_lock(&kvm->lock);
5320 r = -EINVAL;
5321 if (cap->args[0] > MAX_NR_RESERVED_IOAPIC_PINS)
5322 goto split_irqchip_unlock;
5323 r = -EEXIST;
5324 if (irqchip_in_kernel(kvm))
5325 goto split_irqchip_unlock;
5326 if (kvm->created_vcpus)
5327 goto split_irqchip_unlock;
5328 r = kvm_setup_empty_irq_routing(kvm);
5329 if (r)
5330 goto split_irqchip_unlock;
5331 /* Pairs with irqchip_in_kernel. */
5332 smp_wmb();
5333 kvm->arch.irqchip_mode = KVM_IRQCHIP_SPLIT;
5334 kvm->arch.nr_reserved_ioapic_pins = cap->args[0];
5335 r = 0;
5336 split_irqchip_unlock:
5337 mutex_unlock(&kvm->lock);
5338 break;
5339 }
5340 case KVM_CAP_X2APIC_API:
5341 r = -EINVAL;
5342 if (cap->args[0] & ~KVM_X2APIC_API_VALID_FLAGS)
5343 break;
5344
5345 if (cap->args[0] & KVM_X2APIC_API_USE_32BIT_IDS)
5346 kvm->arch.x2apic_format = true;
5347 if (cap->args[0] & KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
5348 kvm->arch.x2apic_broadcast_quirk_disabled = true;
5349
5350 r = 0;
5351 break;
5352 case KVM_CAP_X86_DISABLE_EXITS:
5353 r = -EINVAL;
5354 if (cap->args[0] & ~KVM_X86_DISABLE_VALID_EXITS)
5355 break;
5356
5357 if ((cap->args[0] & KVM_X86_DISABLE_EXITS_MWAIT) &&
5358 kvm_can_mwait_in_guest())
5359 kvm->arch.mwait_in_guest = true;
5360 if (cap->args[0] & KVM_X86_DISABLE_EXITS_HLT)
5361 kvm->arch.hlt_in_guest = true;
5362 if (cap->args[0] & KVM_X86_DISABLE_EXITS_PAUSE)
5363 kvm->arch.pause_in_guest = true;
5364 if (cap->args[0] & KVM_X86_DISABLE_EXITS_CSTATE)
5365 kvm->arch.cstate_in_guest = true;
5366 r = 0;
5367 break;
5368 case KVM_CAP_MSR_PLATFORM_INFO:
5369 kvm->arch.guest_can_read_msr_platform_info = cap->args[0];
5370 r = 0;
5371 break;
5372 case KVM_CAP_EXCEPTION_PAYLOAD:
5373 kvm->arch.exception_payload_enabled = cap->args[0];
5374 r = 0;
5375 break;
5376 case KVM_CAP_X86_USER_SPACE_MSR:
5377 r = -EINVAL;
5378 if (cap->args[0] & ~(KVM_MSR_EXIT_REASON_INVAL |
5379 KVM_MSR_EXIT_REASON_UNKNOWN |
5380 KVM_MSR_EXIT_REASON_FILTER))
5381 break;
5382 kvm->arch.user_space_msr_mask = cap->args[0];
5383 r = 0;
5384 break;
5385 default:
5386 r = -EINVAL;
5387 break;
5388 }
5389 return r;
5390 }
5391
kvm_alloc_msr_filter(bool default_allow)5392 static struct kvm_x86_msr_filter *kvm_alloc_msr_filter(bool default_allow)
5393 {
5394 struct kvm_x86_msr_filter *msr_filter;
5395
5396 msr_filter = kzalloc(sizeof(*msr_filter), GFP_KERNEL_ACCOUNT);
5397 if (!msr_filter)
5398 return NULL;
5399
5400 msr_filter->default_allow = default_allow;
5401 return msr_filter;
5402 }
5403
kvm_free_msr_filter(struct kvm_x86_msr_filter * msr_filter)5404 static void kvm_free_msr_filter(struct kvm_x86_msr_filter *msr_filter)
5405 {
5406 u32 i;
5407
5408 if (!msr_filter)
5409 return;
5410
5411 for (i = 0; i < msr_filter->count; i++)
5412 kfree(msr_filter->ranges[i].bitmap);
5413
5414 kfree(msr_filter);
5415 }
5416
kvm_add_msr_filter(struct kvm_x86_msr_filter * msr_filter,struct kvm_msr_filter_range * user_range)5417 static int kvm_add_msr_filter(struct kvm_x86_msr_filter *msr_filter,
5418 struct kvm_msr_filter_range *user_range)
5419 {
5420 struct msr_bitmap_range range;
5421 unsigned long *bitmap = NULL;
5422 size_t bitmap_size;
5423 int r;
5424
5425 if (!user_range->nmsrs)
5426 return 0;
5427
5428 bitmap_size = BITS_TO_LONGS(user_range->nmsrs) * sizeof(long);
5429 if (!bitmap_size || bitmap_size > KVM_MSR_FILTER_MAX_BITMAP_SIZE)
5430 return -EINVAL;
5431
5432 bitmap = memdup_user((__user u8*)user_range->bitmap, bitmap_size);
5433 if (IS_ERR(bitmap))
5434 return PTR_ERR(bitmap);
5435
5436 range = (struct msr_bitmap_range) {
5437 .flags = user_range->flags,
5438 .base = user_range->base,
5439 .nmsrs = user_range->nmsrs,
5440 .bitmap = bitmap,
5441 };
5442
5443 if (range.flags & ~(KVM_MSR_FILTER_READ | KVM_MSR_FILTER_WRITE)) {
5444 r = -EINVAL;
5445 goto err;
5446 }
5447
5448 if (!range.flags) {
5449 r = -EINVAL;
5450 goto err;
5451 }
5452
5453 /* Everything ok, add this range identifier. */
5454 msr_filter->ranges[msr_filter->count] = range;
5455 msr_filter->count++;
5456
5457 return 0;
5458 err:
5459 kfree(bitmap);
5460 return r;
5461 }
5462
kvm_vm_ioctl_set_msr_filter(struct kvm * kvm,struct kvm_msr_filter * filter)5463 static int kvm_vm_ioctl_set_msr_filter(struct kvm *kvm,
5464 struct kvm_msr_filter *filter)
5465 {
5466 struct kvm_x86_msr_filter *new_filter, *old_filter;
5467 bool default_allow;
5468 bool empty = true;
5469 int r = 0;
5470 u32 i;
5471
5472 if (filter->flags & ~KVM_MSR_FILTER_DEFAULT_DENY)
5473 return -EINVAL;
5474
5475 for (i = 0; i < ARRAY_SIZE(filter->ranges); i++)
5476 empty &= !filter->ranges[i].nmsrs;
5477
5478 default_allow = !(filter->flags & KVM_MSR_FILTER_DEFAULT_DENY);
5479 if (empty && !default_allow)
5480 return -EINVAL;
5481
5482 new_filter = kvm_alloc_msr_filter(default_allow);
5483 if (!new_filter)
5484 return -ENOMEM;
5485
5486 for (i = 0; i < ARRAY_SIZE(filter->ranges); i++) {
5487 r = kvm_add_msr_filter(new_filter, &filter->ranges[i]);
5488 if (r) {
5489 kvm_free_msr_filter(new_filter);
5490 return r;
5491 }
5492 }
5493
5494 mutex_lock(&kvm->lock);
5495
5496 /* The per-VM filter is protected by kvm->lock... */
5497 old_filter = srcu_dereference_check(kvm->arch.msr_filter, &kvm->srcu, 1);
5498
5499 rcu_assign_pointer(kvm->arch.msr_filter, new_filter);
5500 synchronize_srcu(&kvm->srcu);
5501
5502 kvm_free_msr_filter(old_filter);
5503
5504 kvm_make_all_cpus_request(kvm, KVM_REQ_MSR_FILTER_CHANGED);
5505 mutex_unlock(&kvm->lock);
5506
5507 return 0;
5508 }
5509
5510 #ifdef CONFIG_KVM_COMPAT
5511 /* for KVM_X86_SET_MSR_FILTER */
5512 struct kvm_msr_filter_range_compat {
5513 __u32 flags;
5514 __u32 nmsrs;
5515 __u32 base;
5516 __u32 bitmap;
5517 };
5518
5519 struct kvm_msr_filter_compat {
5520 __u32 flags;
5521 struct kvm_msr_filter_range_compat ranges[KVM_MSR_FILTER_MAX_RANGES];
5522 };
5523
5524 #define KVM_X86_SET_MSR_FILTER_COMPAT _IOW(KVMIO, 0xc6, struct kvm_msr_filter_compat)
5525
kvm_arch_vm_compat_ioctl(struct file * filp,unsigned int ioctl,unsigned long arg)5526 long kvm_arch_vm_compat_ioctl(struct file *filp, unsigned int ioctl,
5527 unsigned long arg)
5528 {
5529 void __user *argp = (void __user *)arg;
5530 struct kvm *kvm = filp->private_data;
5531 long r = -ENOTTY;
5532
5533 switch (ioctl) {
5534 case KVM_X86_SET_MSR_FILTER_COMPAT: {
5535 struct kvm_msr_filter __user *user_msr_filter = argp;
5536 struct kvm_msr_filter_compat filter_compat;
5537 struct kvm_msr_filter filter;
5538 int i;
5539
5540 if (copy_from_user(&filter_compat, user_msr_filter,
5541 sizeof(filter_compat)))
5542 return -EFAULT;
5543
5544 filter.flags = filter_compat.flags;
5545 for (i = 0; i < ARRAY_SIZE(filter.ranges); i++) {
5546 struct kvm_msr_filter_range_compat *cr;
5547
5548 cr = &filter_compat.ranges[i];
5549 filter.ranges[i] = (struct kvm_msr_filter_range) {
5550 .flags = cr->flags,
5551 .nmsrs = cr->nmsrs,
5552 .base = cr->base,
5553 .bitmap = (__u8 *)(ulong)cr->bitmap,
5554 };
5555 }
5556
5557 r = kvm_vm_ioctl_set_msr_filter(kvm, &filter);
5558 break;
5559 }
5560 }
5561
5562 return r;
5563 }
5564 #endif
5565
kvm_arch_vm_ioctl(struct file * filp,unsigned int ioctl,unsigned long arg)5566 long kvm_arch_vm_ioctl(struct file *filp,
5567 unsigned int ioctl, unsigned long arg)
5568 {
5569 struct kvm *kvm = filp->private_data;
5570 void __user *argp = (void __user *)arg;
5571 int r = -ENOTTY;
5572 /*
5573 * This union makes it completely explicit to gcc-3.x
5574 * that these two variables' stack usage should be
5575 * combined, not added together.
5576 */
5577 union {
5578 struct kvm_pit_state ps;
5579 struct kvm_pit_state2 ps2;
5580 struct kvm_pit_config pit_config;
5581 } u;
5582
5583 switch (ioctl) {
5584 case KVM_SET_TSS_ADDR:
5585 r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
5586 break;
5587 case KVM_SET_IDENTITY_MAP_ADDR: {
5588 u64 ident_addr;
5589
5590 mutex_lock(&kvm->lock);
5591 r = -EINVAL;
5592 if (kvm->created_vcpus)
5593 goto set_identity_unlock;
5594 r = -EFAULT;
5595 if (copy_from_user(&ident_addr, argp, sizeof(ident_addr)))
5596 goto set_identity_unlock;
5597 r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr);
5598 set_identity_unlock:
5599 mutex_unlock(&kvm->lock);
5600 break;
5601 }
5602 case KVM_SET_NR_MMU_PAGES:
5603 r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
5604 break;
5605 case KVM_GET_NR_MMU_PAGES:
5606 r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
5607 break;
5608 case KVM_CREATE_IRQCHIP: {
5609 mutex_lock(&kvm->lock);
5610
5611 r = -EEXIST;
5612 if (irqchip_in_kernel(kvm))
5613 goto create_irqchip_unlock;
5614
5615 r = -EINVAL;
5616 if (kvm->created_vcpus)
5617 goto create_irqchip_unlock;
5618
5619 r = kvm_pic_init(kvm);
5620 if (r)
5621 goto create_irqchip_unlock;
5622
5623 r = kvm_ioapic_init(kvm);
5624 if (r) {
5625 kvm_pic_destroy(kvm);
5626 goto create_irqchip_unlock;
5627 }
5628
5629 r = kvm_setup_default_irq_routing(kvm);
5630 if (r) {
5631 kvm_ioapic_destroy(kvm);
5632 kvm_pic_destroy(kvm);
5633 goto create_irqchip_unlock;
5634 }
5635 /* Write kvm->irq_routing before enabling irqchip_in_kernel. */
5636 smp_wmb();
5637 kvm->arch.irqchip_mode = KVM_IRQCHIP_KERNEL;
5638 create_irqchip_unlock:
5639 mutex_unlock(&kvm->lock);
5640 break;
5641 }
5642 case KVM_CREATE_PIT:
5643 u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY;
5644 goto create_pit;
5645 case KVM_CREATE_PIT2:
5646 r = -EFAULT;
5647 if (copy_from_user(&u.pit_config, argp,
5648 sizeof(struct kvm_pit_config)))
5649 goto out;
5650 create_pit:
5651 mutex_lock(&kvm->lock);
5652 r = -EEXIST;
5653 if (kvm->arch.vpit)
5654 goto create_pit_unlock;
5655 r = -ENOMEM;
5656 kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags);
5657 if (kvm->arch.vpit)
5658 r = 0;
5659 create_pit_unlock:
5660 mutex_unlock(&kvm->lock);
5661 break;
5662 case KVM_GET_IRQCHIP: {
5663 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
5664 struct kvm_irqchip *chip;
5665
5666 chip = memdup_user(argp, sizeof(*chip));
5667 if (IS_ERR(chip)) {
5668 r = PTR_ERR(chip);
5669 goto out;
5670 }
5671
5672 r = -ENXIO;
5673 if (!irqchip_kernel(kvm))
5674 goto get_irqchip_out;
5675 r = kvm_vm_ioctl_get_irqchip(kvm, chip);
5676 if (r)
5677 goto get_irqchip_out;
5678 r = -EFAULT;
5679 if (copy_to_user(argp, chip, sizeof(*chip)))
5680 goto get_irqchip_out;
5681 r = 0;
5682 get_irqchip_out:
5683 kfree(chip);
5684 break;
5685 }
5686 case KVM_SET_IRQCHIP: {
5687 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
5688 struct kvm_irqchip *chip;
5689
5690 chip = memdup_user(argp, sizeof(*chip));
5691 if (IS_ERR(chip)) {
5692 r = PTR_ERR(chip);
5693 goto out;
5694 }
5695
5696 r = -ENXIO;
5697 if (!irqchip_kernel(kvm))
5698 goto set_irqchip_out;
5699 r = kvm_vm_ioctl_set_irqchip(kvm, chip);
5700 set_irqchip_out:
5701 kfree(chip);
5702 break;
5703 }
5704 case KVM_GET_PIT: {
5705 r = -EFAULT;
5706 if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
5707 goto out;
5708 r = -ENXIO;
5709 if (!kvm->arch.vpit)
5710 goto out;
5711 r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
5712 if (r)
5713 goto out;
5714 r = -EFAULT;
5715 if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
5716 goto out;
5717 r = 0;
5718 break;
5719 }
5720 case KVM_SET_PIT: {
5721 r = -EFAULT;
5722 if (copy_from_user(&u.ps, argp, sizeof(u.ps)))
5723 goto out;
5724 mutex_lock(&kvm->lock);
5725 r = -ENXIO;
5726 if (!kvm->arch.vpit)
5727 goto set_pit_out;
5728 r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
5729 set_pit_out:
5730 mutex_unlock(&kvm->lock);
5731 break;
5732 }
5733 case KVM_GET_PIT2: {
5734 r = -ENXIO;
5735 if (!kvm->arch.vpit)
5736 goto out;
5737 r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2);
5738 if (r)
5739 goto out;
5740 r = -EFAULT;
5741 if (copy_to_user(argp, &u.ps2, sizeof(u.ps2)))
5742 goto out;
5743 r = 0;
5744 break;
5745 }
5746 case KVM_SET_PIT2: {
5747 r = -EFAULT;
5748 if (copy_from_user(&u.ps2, argp, sizeof(u.ps2)))
5749 goto out;
5750 mutex_lock(&kvm->lock);
5751 r = -ENXIO;
5752 if (!kvm->arch.vpit)
5753 goto set_pit2_out;
5754 r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2);
5755 set_pit2_out:
5756 mutex_unlock(&kvm->lock);
5757 break;
5758 }
5759 case KVM_REINJECT_CONTROL: {
5760 struct kvm_reinject_control control;
5761 r = -EFAULT;
5762 if (copy_from_user(&control, argp, sizeof(control)))
5763 goto out;
5764 r = -ENXIO;
5765 if (!kvm->arch.vpit)
5766 goto out;
5767 r = kvm_vm_ioctl_reinject(kvm, &control);
5768 break;
5769 }
5770 case KVM_SET_BOOT_CPU_ID:
5771 r = 0;
5772 mutex_lock(&kvm->lock);
5773 if (kvm->created_vcpus)
5774 r = -EBUSY;
5775 else
5776 kvm->arch.bsp_vcpu_id = arg;
5777 mutex_unlock(&kvm->lock);
5778 break;
5779 case KVM_XEN_HVM_CONFIG: {
5780 struct kvm_xen_hvm_config xhc;
5781 r = -EFAULT;
5782 if (copy_from_user(&xhc, argp, sizeof(xhc)))
5783 goto out;
5784 r = -EINVAL;
5785 if (xhc.flags)
5786 goto out;
5787 memcpy(&kvm->arch.xen_hvm_config, &xhc, sizeof(xhc));
5788 r = 0;
5789 break;
5790 }
5791 case KVM_SET_CLOCK: {
5792 struct kvm_clock_data user_ns;
5793 u64 now_ns;
5794
5795 r = -EFAULT;
5796 if (copy_from_user(&user_ns, argp, sizeof(user_ns)))
5797 goto out;
5798
5799 r = -EINVAL;
5800 if (user_ns.flags)
5801 goto out;
5802
5803 r = 0;
5804 /*
5805 * TODO: userspace has to take care of races with VCPU_RUN, so
5806 * kvm_gen_update_masterclock() can be cut down to locked
5807 * pvclock_update_vm_gtod_copy().
5808 */
5809 kvm_gen_update_masterclock(kvm);
5810 now_ns = get_kvmclock_ns(kvm);
5811 kvm->arch.kvmclock_offset += user_ns.clock - now_ns;
5812 kvm_make_all_cpus_request(kvm, KVM_REQ_CLOCK_UPDATE);
5813 break;
5814 }
5815 case KVM_GET_CLOCK: {
5816 struct kvm_clock_data user_ns;
5817 u64 now_ns;
5818
5819 now_ns = get_kvmclock_ns(kvm);
5820 user_ns.clock = now_ns;
5821 user_ns.flags = kvm->arch.use_master_clock ? KVM_CLOCK_TSC_STABLE : 0;
5822 memset(&user_ns.pad, 0, sizeof(user_ns.pad));
5823
5824 r = -EFAULT;
5825 if (copy_to_user(argp, &user_ns, sizeof(user_ns)))
5826 goto out;
5827 r = 0;
5828 break;
5829 }
5830 case KVM_MEMORY_ENCRYPT_OP: {
5831 r = -ENOTTY;
5832 if (kvm_x86_ops.mem_enc_op)
5833 r = kvm_x86_ops.mem_enc_op(kvm, argp);
5834 break;
5835 }
5836 case KVM_MEMORY_ENCRYPT_REG_REGION: {
5837 struct kvm_enc_region region;
5838
5839 r = -EFAULT;
5840 if (copy_from_user(®ion, argp, sizeof(region)))
5841 goto out;
5842
5843 r = -ENOTTY;
5844 if (kvm_x86_ops.mem_enc_reg_region)
5845 r = kvm_x86_ops.mem_enc_reg_region(kvm, ®ion);
5846 break;
5847 }
5848 case KVM_MEMORY_ENCRYPT_UNREG_REGION: {
5849 struct kvm_enc_region region;
5850
5851 r = -EFAULT;
5852 if (copy_from_user(®ion, argp, sizeof(region)))
5853 goto out;
5854
5855 r = -ENOTTY;
5856 if (kvm_x86_ops.mem_enc_unreg_region)
5857 r = kvm_x86_ops.mem_enc_unreg_region(kvm, ®ion);
5858 break;
5859 }
5860 case KVM_HYPERV_EVENTFD: {
5861 struct kvm_hyperv_eventfd hvevfd;
5862
5863 r = -EFAULT;
5864 if (copy_from_user(&hvevfd, argp, sizeof(hvevfd)))
5865 goto out;
5866 r = kvm_vm_ioctl_hv_eventfd(kvm, &hvevfd);
5867 break;
5868 }
5869 case KVM_SET_PMU_EVENT_FILTER:
5870 r = kvm_vm_ioctl_set_pmu_event_filter(kvm, argp);
5871 break;
5872 case KVM_X86_SET_MSR_FILTER: {
5873 struct kvm_msr_filter __user *user_msr_filter = argp;
5874 struct kvm_msr_filter filter;
5875
5876 if (copy_from_user(&filter, user_msr_filter, sizeof(filter)))
5877 return -EFAULT;
5878
5879 r = kvm_vm_ioctl_set_msr_filter(kvm, &filter);
5880 break;
5881 }
5882 default:
5883 r = -ENOTTY;
5884 }
5885 out:
5886 return r;
5887 }
5888
kvm_init_msr_list(void)5889 static void kvm_init_msr_list(void)
5890 {
5891 struct x86_pmu_capability x86_pmu;
5892 u32 dummy[2];
5893 unsigned i;
5894
5895 BUILD_BUG_ON_MSG(INTEL_PMC_MAX_FIXED != 4,
5896 "Please update the fixed PMCs in msrs_to_saved_all[]");
5897
5898 perf_get_x86_pmu_capability(&x86_pmu);
5899
5900 num_msrs_to_save = 0;
5901 num_emulated_msrs = 0;
5902 num_msr_based_features = 0;
5903
5904 for (i = 0; i < ARRAY_SIZE(msrs_to_save_all); i++) {
5905 if (rdmsr_safe(msrs_to_save_all[i], &dummy[0], &dummy[1]) < 0)
5906 continue;
5907
5908 /*
5909 * Even MSRs that are valid in the host may not be exposed
5910 * to the guests in some cases.
5911 */
5912 switch (msrs_to_save_all[i]) {
5913 case MSR_IA32_BNDCFGS:
5914 if (!kvm_mpx_supported())
5915 continue;
5916 break;
5917 case MSR_TSC_AUX:
5918 if (!kvm_cpu_cap_has(X86_FEATURE_RDTSCP))
5919 continue;
5920 break;
5921 case MSR_IA32_UMWAIT_CONTROL:
5922 if (!kvm_cpu_cap_has(X86_FEATURE_WAITPKG))
5923 continue;
5924 break;
5925 case MSR_IA32_RTIT_CTL:
5926 case MSR_IA32_RTIT_STATUS:
5927 if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT))
5928 continue;
5929 break;
5930 case MSR_IA32_RTIT_CR3_MATCH:
5931 if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) ||
5932 !intel_pt_validate_hw_cap(PT_CAP_cr3_filtering))
5933 continue;
5934 break;
5935 case MSR_IA32_RTIT_OUTPUT_BASE:
5936 case MSR_IA32_RTIT_OUTPUT_MASK:
5937 if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) ||
5938 (!intel_pt_validate_hw_cap(PT_CAP_topa_output) &&
5939 !intel_pt_validate_hw_cap(PT_CAP_single_range_output)))
5940 continue;
5941 break;
5942 case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B:
5943 if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) ||
5944 msrs_to_save_all[i] - MSR_IA32_RTIT_ADDR0_A >=
5945 intel_pt_validate_hw_cap(PT_CAP_num_address_ranges) * 2)
5946 continue;
5947 break;
5948 case MSR_ARCH_PERFMON_PERFCTR0 ... MSR_ARCH_PERFMON_PERFCTR0 + 17:
5949 if (msrs_to_save_all[i] - MSR_ARCH_PERFMON_PERFCTR0 >=
5950 min(INTEL_PMC_MAX_GENERIC, x86_pmu.num_counters_gp))
5951 continue;
5952 break;
5953 case MSR_ARCH_PERFMON_EVENTSEL0 ... MSR_ARCH_PERFMON_EVENTSEL0 + 17:
5954 if (msrs_to_save_all[i] - MSR_ARCH_PERFMON_EVENTSEL0 >=
5955 min(INTEL_PMC_MAX_GENERIC, x86_pmu.num_counters_gp))
5956 continue;
5957 break;
5958 default:
5959 break;
5960 }
5961
5962 msrs_to_save[num_msrs_to_save++] = msrs_to_save_all[i];
5963 }
5964
5965 for (i = 0; i < ARRAY_SIZE(emulated_msrs_all); i++) {
5966 if (!kvm_x86_ops.has_emulated_msr(emulated_msrs_all[i]))
5967 continue;
5968
5969 emulated_msrs[num_emulated_msrs++] = emulated_msrs_all[i];
5970 }
5971
5972 for (i = 0; i < ARRAY_SIZE(msr_based_features_all); i++) {
5973 struct kvm_msr_entry msr;
5974
5975 msr.index = msr_based_features_all[i];
5976 if (kvm_get_msr_feature(&msr))
5977 continue;
5978
5979 msr_based_features[num_msr_based_features++] = msr_based_features_all[i];
5980 }
5981 }
5982
vcpu_mmio_write(struct kvm_vcpu * vcpu,gpa_t addr,int len,const void * v)5983 static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len,
5984 const void *v)
5985 {
5986 int handled = 0;
5987 int n;
5988
5989 do {
5990 n = min(len, 8);
5991 if (!(lapic_in_kernel(vcpu) &&
5992 !kvm_iodevice_write(vcpu, &vcpu->arch.apic->dev, addr, n, v))
5993 && kvm_io_bus_write(vcpu, KVM_MMIO_BUS, addr, n, v))
5994 break;
5995 handled += n;
5996 addr += n;
5997 len -= n;
5998 v += n;
5999 } while (len);
6000
6001 return handled;
6002 }
6003
vcpu_mmio_read(struct kvm_vcpu * vcpu,gpa_t addr,int len,void * v)6004 static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v)
6005 {
6006 int handled = 0;
6007 int n;
6008
6009 do {
6010 n = min(len, 8);
6011 if (!(lapic_in_kernel(vcpu) &&
6012 !kvm_iodevice_read(vcpu, &vcpu->arch.apic->dev,
6013 addr, n, v))
6014 && kvm_io_bus_read(vcpu, KVM_MMIO_BUS, addr, n, v))
6015 break;
6016 trace_kvm_mmio(KVM_TRACE_MMIO_READ, n, addr, v);
6017 handled += n;
6018 addr += n;
6019 len -= n;
6020 v += n;
6021 } while (len);
6022
6023 return handled;
6024 }
6025
kvm_set_segment(struct kvm_vcpu * vcpu,struct kvm_segment * var,int seg)6026 static void kvm_set_segment(struct kvm_vcpu *vcpu,
6027 struct kvm_segment *var, int seg)
6028 {
6029 kvm_x86_ops.set_segment(vcpu, var, seg);
6030 }
6031
kvm_get_segment(struct kvm_vcpu * vcpu,struct kvm_segment * var,int seg)6032 void kvm_get_segment(struct kvm_vcpu *vcpu,
6033 struct kvm_segment *var, int seg)
6034 {
6035 kvm_x86_ops.get_segment(vcpu, var, seg);
6036 }
6037
translate_nested_gpa(struct kvm_vcpu * vcpu,gpa_t gpa,u32 access,struct x86_exception * exception)6038 gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access,
6039 struct x86_exception *exception)
6040 {
6041 gpa_t t_gpa;
6042
6043 BUG_ON(!mmu_is_nested(vcpu));
6044
6045 /* NPT walks are always user-walks */
6046 access |= PFERR_USER_MASK;
6047 t_gpa = vcpu->arch.mmu->gva_to_gpa(vcpu, gpa, access, exception);
6048
6049 return t_gpa;
6050 }
6051
kvm_mmu_gva_to_gpa_read(struct kvm_vcpu * vcpu,gva_t gva,struct x86_exception * exception)6052 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva,
6053 struct x86_exception *exception)
6054 {
6055 u32 access = (kvm_x86_ops.get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
6056 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
6057 }
6058
kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu * vcpu,gva_t gva,struct x86_exception * exception)6059 gpa_t kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu *vcpu, gva_t gva,
6060 struct x86_exception *exception)
6061 {
6062 u32 access = (kvm_x86_ops.get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
6063 access |= PFERR_FETCH_MASK;
6064 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
6065 }
6066
kvm_mmu_gva_to_gpa_write(struct kvm_vcpu * vcpu,gva_t gva,struct x86_exception * exception)6067 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva,
6068 struct x86_exception *exception)
6069 {
6070 u32 access = (kvm_x86_ops.get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
6071 access |= PFERR_WRITE_MASK;
6072 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
6073 }
6074
6075 /* uses this to access any guest's mapped memory without checking CPL */
kvm_mmu_gva_to_gpa_system(struct kvm_vcpu * vcpu,gva_t gva,struct x86_exception * exception)6076 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva,
6077 struct x86_exception *exception)
6078 {
6079 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, 0, exception);
6080 }
6081
kvm_read_guest_virt_helper(gva_t addr,void * val,unsigned int bytes,struct kvm_vcpu * vcpu,u32 access,struct x86_exception * exception)6082 static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
6083 struct kvm_vcpu *vcpu, u32 access,
6084 struct x86_exception *exception)
6085 {
6086 void *data = val;
6087 int r = X86EMUL_CONTINUE;
6088
6089 while (bytes) {
6090 gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access,
6091 exception);
6092 unsigned offset = addr & (PAGE_SIZE-1);
6093 unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
6094 int ret;
6095
6096 if (gpa == UNMAPPED_GVA)
6097 return X86EMUL_PROPAGATE_FAULT;
6098 ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, data,
6099 offset, toread);
6100 if (ret < 0) {
6101 r = X86EMUL_IO_NEEDED;
6102 goto out;
6103 }
6104
6105 bytes -= toread;
6106 data += toread;
6107 addr += toread;
6108 }
6109 out:
6110 return r;
6111 }
6112
6113 /* used for instruction fetching */
kvm_fetch_guest_virt(struct x86_emulate_ctxt * ctxt,gva_t addr,void * val,unsigned int bytes,struct x86_exception * exception)6114 static int kvm_fetch_guest_virt(struct x86_emulate_ctxt *ctxt,
6115 gva_t addr, void *val, unsigned int bytes,
6116 struct x86_exception *exception)
6117 {
6118 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6119 u32 access = (kvm_x86_ops.get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
6120 unsigned offset;
6121 int ret;
6122
6123 /* Inline kvm_read_guest_virt_helper for speed. */
6124 gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access|PFERR_FETCH_MASK,
6125 exception);
6126 if (unlikely(gpa == UNMAPPED_GVA))
6127 return X86EMUL_PROPAGATE_FAULT;
6128
6129 offset = addr & (PAGE_SIZE-1);
6130 if (WARN_ON(offset + bytes > PAGE_SIZE))
6131 bytes = (unsigned)PAGE_SIZE - offset;
6132 ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, val,
6133 offset, bytes);
6134 if (unlikely(ret < 0))
6135 return X86EMUL_IO_NEEDED;
6136
6137 return X86EMUL_CONTINUE;
6138 }
6139
kvm_read_guest_virt(struct kvm_vcpu * vcpu,gva_t addr,void * val,unsigned int bytes,struct x86_exception * exception)6140 int kvm_read_guest_virt(struct kvm_vcpu *vcpu,
6141 gva_t addr, void *val, unsigned int bytes,
6142 struct x86_exception *exception)
6143 {
6144 u32 access = (kvm_x86_ops.get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
6145
6146 /*
6147 * FIXME: this should call handle_emulation_failure if X86EMUL_IO_NEEDED
6148 * is returned, but our callers are not ready for that and they blindly
6149 * call kvm_inject_page_fault. Ensure that they at least do not leak
6150 * uninitialized kernel stack memory into cr2 and error code.
6151 */
6152 memset(exception, 0, sizeof(*exception));
6153 return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access,
6154 exception);
6155 }
6156 EXPORT_SYMBOL_GPL(kvm_read_guest_virt);
6157
emulator_read_std(struct x86_emulate_ctxt * ctxt,gva_t addr,void * val,unsigned int bytes,struct x86_exception * exception,bool system)6158 static int emulator_read_std(struct x86_emulate_ctxt *ctxt,
6159 gva_t addr, void *val, unsigned int bytes,
6160 struct x86_exception *exception, bool system)
6161 {
6162 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6163 u32 access = 0;
6164
6165 if (!system && kvm_x86_ops.get_cpl(vcpu) == 3)
6166 access |= PFERR_USER_MASK;
6167
6168 return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access, exception);
6169 }
6170
kvm_read_guest_phys_system(struct x86_emulate_ctxt * ctxt,unsigned long addr,void * val,unsigned int bytes)6171 static int kvm_read_guest_phys_system(struct x86_emulate_ctxt *ctxt,
6172 unsigned long addr, void *val, unsigned int bytes)
6173 {
6174 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6175 int r = kvm_vcpu_read_guest(vcpu, addr, val, bytes);
6176
6177 return r < 0 ? X86EMUL_IO_NEEDED : X86EMUL_CONTINUE;
6178 }
6179
kvm_write_guest_virt_helper(gva_t addr,void * val,unsigned int bytes,struct kvm_vcpu * vcpu,u32 access,struct x86_exception * exception)6180 static int kvm_write_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
6181 struct kvm_vcpu *vcpu, u32 access,
6182 struct x86_exception *exception)
6183 {
6184 void *data = val;
6185 int r = X86EMUL_CONTINUE;
6186
6187 while (bytes) {
6188 gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr,
6189 access,
6190 exception);
6191 unsigned offset = addr & (PAGE_SIZE-1);
6192 unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
6193 int ret;
6194
6195 if (gpa == UNMAPPED_GVA)
6196 return X86EMUL_PROPAGATE_FAULT;
6197 ret = kvm_vcpu_write_guest(vcpu, gpa, data, towrite);
6198 if (ret < 0) {
6199 r = X86EMUL_IO_NEEDED;
6200 goto out;
6201 }
6202
6203 bytes -= towrite;
6204 data += towrite;
6205 addr += towrite;
6206 }
6207 out:
6208 return r;
6209 }
6210
emulator_write_std(struct x86_emulate_ctxt * ctxt,gva_t addr,void * val,unsigned int bytes,struct x86_exception * exception,bool system)6211 static int emulator_write_std(struct x86_emulate_ctxt *ctxt, gva_t addr, void *val,
6212 unsigned int bytes, struct x86_exception *exception,
6213 bool system)
6214 {
6215 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6216 u32 access = PFERR_WRITE_MASK;
6217
6218 if (!system && kvm_x86_ops.get_cpl(vcpu) == 3)
6219 access |= PFERR_USER_MASK;
6220
6221 return kvm_write_guest_virt_helper(addr, val, bytes, vcpu,
6222 access, exception);
6223 }
6224
kvm_write_guest_virt_system(struct kvm_vcpu * vcpu,gva_t addr,void * val,unsigned int bytes,struct x86_exception * exception)6225 int kvm_write_guest_virt_system(struct kvm_vcpu *vcpu, gva_t addr, void *val,
6226 unsigned int bytes, struct x86_exception *exception)
6227 {
6228 /* kvm_write_guest_virt_system can pull in tons of pages. */
6229 vcpu->arch.l1tf_flush_l1d = true;
6230
6231 return kvm_write_guest_virt_helper(addr, val, bytes, vcpu,
6232 PFERR_WRITE_MASK, exception);
6233 }
6234 EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system);
6235
handle_ud(struct kvm_vcpu * vcpu)6236 int handle_ud(struct kvm_vcpu *vcpu)
6237 {
6238 static const char kvm_emulate_prefix[] = { __KVM_EMULATE_PREFIX };
6239 int emul_type = EMULTYPE_TRAP_UD;
6240 char sig[5]; /* ud2; .ascii "kvm" */
6241 struct x86_exception e;
6242
6243 if (unlikely(!kvm_x86_ops.can_emulate_instruction(vcpu, NULL, 0)))
6244 return 1;
6245
6246 if (force_emulation_prefix &&
6247 kvm_read_guest_virt(vcpu, kvm_get_linear_rip(vcpu),
6248 sig, sizeof(sig), &e) == 0 &&
6249 memcmp(sig, kvm_emulate_prefix, sizeof(sig)) == 0) {
6250 kvm_rip_write(vcpu, kvm_rip_read(vcpu) + sizeof(sig));
6251 emul_type = EMULTYPE_TRAP_UD_FORCED;
6252 }
6253
6254 return kvm_emulate_instruction(vcpu, emul_type);
6255 }
6256 EXPORT_SYMBOL_GPL(handle_ud);
6257
vcpu_is_mmio_gpa(struct kvm_vcpu * vcpu,unsigned long gva,gpa_t gpa,bool write)6258 static int vcpu_is_mmio_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
6259 gpa_t gpa, bool write)
6260 {
6261 /* For APIC access vmexit */
6262 if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
6263 return 1;
6264
6265 if (vcpu_match_mmio_gpa(vcpu, gpa)) {
6266 trace_vcpu_match_mmio(gva, gpa, write, true);
6267 return 1;
6268 }
6269
6270 return 0;
6271 }
6272
vcpu_mmio_gva_to_gpa(struct kvm_vcpu * vcpu,unsigned long gva,gpa_t * gpa,struct x86_exception * exception,bool write)6273 static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
6274 gpa_t *gpa, struct x86_exception *exception,
6275 bool write)
6276 {
6277 u32 access = ((kvm_x86_ops.get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0)
6278 | (write ? PFERR_WRITE_MASK : 0);
6279
6280 /*
6281 * currently PKRU is only applied to ept enabled guest so
6282 * there is no pkey in EPT page table for L1 guest or EPT
6283 * shadow page table for L2 guest.
6284 */
6285 if (vcpu_match_mmio_gva(vcpu, gva)
6286 && !permission_fault(vcpu, vcpu->arch.walk_mmu,
6287 vcpu->arch.mmio_access, 0, access)) {
6288 *gpa = vcpu->arch.mmio_gfn << PAGE_SHIFT |
6289 (gva & (PAGE_SIZE - 1));
6290 trace_vcpu_match_mmio(gva, *gpa, write, false);
6291 return 1;
6292 }
6293
6294 *gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
6295
6296 if (*gpa == UNMAPPED_GVA)
6297 return -1;
6298
6299 return vcpu_is_mmio_gpa(vcpu, gva, *gpa, write);
6300 }
6301
emulator_write_phys(struct kvm_vcpu * vcpu,gpa_t gpa,const void * val,int bytes)6302 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
6303 const void *val, int bytes)
6304 {
6305 int ret;
6306
6307 ret = kvm_vcpu_write_guest(vcpu, gpa, val, bytes);
6308 if (ret < 0)
6309 return 0;
6310 kvm_page_track_write(vcpu, gpa, val, bytes);
6311 return 1;
6312 }
6313
6314 struct read_write_emulator_ops {
6315 int (*read_write_prepare)(struct kvm_vcpu *vcpu, void *val,
6316 int bytes);
6317 int (*read_write_emulate)(struct kvm_vcpu *vcpu, gpa_t gpa,
6318 void *val, int bytes);
6319 int (*read_write_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
6320 int bytes, void *val);
6321 int (*read_write_exit_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
6322 void *val, int bytes);
6323 bool write;
6324 };
6325
read_prepare(struct kvm_vcpu * vcpu,void * val,int bytes)6326 static int read_prepare(struct kvm_vcpu *vcpu, void *val, int bytes)
6327 {
6328 if (vcpu->mmio_read_completed) {
6329 trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes,
6330 vcpu->mmio_fragments[0].gpa, val);
6331 vcpu->mmio_read_completed = 0;
6332 return 1;
6333 }
6334
6335 return 0;
6336 }
6337
read_emulate(struct kvm_vcpu * vcpu,gpa_t gpa,void * val,int bytes)6338 static int read_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
6339 void *val, int bytes)
6340 {
6341 return !kvm_vcpu_read_guest(vcpu, gpa, val, bytes);
6342 }
6343
write_emulate(struct kvm_vcpu * vcpu,gpa_t gpa,void * val,int bytes)6344 static int write_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
6345 void *val, int bytes)
6346 {
6347 return emulator_write_phys(vcpu, gpa, val, bytes);
6348 }
6349
write_mmio(struct kvm_vcpu * vcpu,gpa_t gpa,int bytes,void * val)6350 static int write_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes, void *val)
6351 {
6352 trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, val);
6353 return vcpu_mmio_write(vcpu, gpa, bytes, val);
6354 }
6355
read_exit_mmio(struct kvm_vcpu * vcpu,gpa_t gpa,void * val,int bytes)6356 static int read_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
6357 void *val, int bytes)
6358 {
6359 trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, NULL);
6360 return X86EMUL_IO_NEEDED;
6361 }
6362
write_exit_mmio(struct kvm_vcpu * vcpu,gpa_t gpa,void * val,int bytes)6363 static int write_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
6364 void *val, int bytes)
6365 {
6366 struct kvm_mmio_fragment *frag = &vcpu->mmio_fragments[0];
6367
6368 memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len));
6369 return X86EMUL_CONTINUE;
6370 }
6371
6372 static const struct read_write_emulator_ops read_emultor = {
6373 .read_write_prepare = read_prepare,
6374 .read_write_emulate = read_emulate,
6375 .read_write_mmio = vcpu_mmio_read,
6376 .read_write_exit_mmio = read_exit_mmio,
6377 };
6378
6379 static const struct read_write_emulator_ops write_emultor = {
6380 .read_write_emulate = write_emulate,
6381 .read_write_mmio = write_mmio,
6382 .read_write_exit_mmio = write_exit_mmio,
6383 .write = true,
6384 };
6385
emulator_read_write_onepage(unsigned long addr,void * val,unsigned int bytes,struct x86_exception * exception,struct kvm_vcpu * vcpu,const struct read_write_emulator_ops * ops)6386 static int emulator_read_write_onepage(unsigned long addr, void *val,
6387 unsigned int bytes,
6388 struct x86_exception *exception,
6389 struct kvm_vcpu *vcpu,
6390 const struct read_write_emulator_ops *ops)
6391 {
6392 gpa_t gpa;
6393 int handled, ret;
6394 bool write = ops->write;
6395 struct kvm_mmio_fragment *frag;
6396 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
6397
6398 /*
6399 * If the exit was due to a NPF we may already have a GPA.
6400 * If the GPA is present, use it to avoid the GVA to GPA table walk.
6401 * Note, this cannot be used on string operations since string
6402 * operation using rep will only have the initial GPA from the NPF
6403 * occurred.
6404 */
6405 if (ctxt->gpa_available && emulator_can_use_gpa(ctxt) &&
6406 (addr & ~PAGE_MASK) == (ctxt->gpa_val & ~PAGE_MASK)) {
6407 gpa = ctxt->gpa_val;
6408 ret = vcpu_is_mmio_gpa(vcpu, addr, gpa, write);
6409 } else {
6410 ret = vcpu_mmio_gva_to_gpa(vcpu, addr, &gpa, exception, write);
6411 if (ret < 0)
6412 return X86EMUL_PROPAGATE_FAULT;
6413 }
6414
6415 if (!ret && ops->read_write_emulate(vcpu, gpa, val, bytes))
6416 return X86EMUL_CONTINUE;
6417
6418 /*
6419 * Is this MMIO handled locally?
6420 */
6421 handled = ops->read_write_mmio(vcpu, gpa, bytes, val);
6422 if (handled == bytes)
6423 return X86EMUL_CONTINUE;
6424
6425 gpa += handled;
6426 bytes -= handled;
6427 val += handled;
6428
6429 WARN_ON(vcpu->mmio_nr_fragments >= KVM_MAX_MMIO_FRAGMENTS);
6430 frag = &vcpu->mmio_fragments[vcpu->mmio_nr_fragments++];
6431 frag->gpa = gpa;
6432 frag->data = val;
6433 frag->len = bytes;
6434 return X86EMUL_CONTINUE;
6435 }
6436
emulator_read_write(struct x86_emulate_ctxt * ctxt,unsigned long addr,void * val,unsigned int bytes,struct x86_exception * exception,const struct read_write_emulator_ops * ops)6437 static int emulator_read_write(struct x86_emulate_ctxt *ctxt,
6438 unsigned long addr,
6439 void *val, unsigned int bytes,
6440 struct x86_exception *exception,
6441 const struct read_write_emulator_ops *ops)
6442 {
6443 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6444 gpa_t gpa;
6445 int rc;
6446
6447 if (ops->read_write_prepare &&
6448 ops->read_write_prepare(vcpu, val, bytes))
6449 return X86EMUL_CONTINUE;
6450
6451 vcpu->mmio_nr_fragments = 0;
6452
6453 /* Crossing a page boundary? */
6454 if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
6455 int now;
6456
6457 now = -addr & ~PAGE_MASK;
6458 rc = emulator_read_write_onepage(addr, val, now, exception,
6459 vcpu, ops);
6460
6461 if (rc != X86EMUL_CONTINUE)
6462 return rc;
6463 addr += now;
6464 if (ctxt->mode != X86EMUL_MODE_PROT64)
6465 addr = (u32)addr;
6466 val += now;
6467 bytes -= now;
6468 }
6469
6470 rc = emulator_read_write_onepage(addr, val, bytes, exception,
6471 vcpu, ops);
6472 if (rc != X86EMUL_CONTINUE)
6473 return rc;
6474
6475 if (!vcpu->mmio_nr_fragments)
6476 return rc;
6477
6478 gpa = vcpu->mmio_fragments[0].gpa;
6479
6480 vcpu->mmio_needed = 1;
6481 vcpu->mmio_cur_fragment = 0;
6482
6483 vcpu->run->mmio.len = min(8u, vcpu->mmio_fragments[0].len);
6484 vcpu->run->mmio.is_write = vcpu->mmio_is_write = ops->write;
6485 vcpu->run->exit_reason = KVM_EXIT_MMIO;
6486 vcpu->run->mmio.phys_addr = gpa;
6487
6488 return ops->read_write_exit_mmio(vcpu, gpa, val, bytes);
6489 }
6490
emulator_read_emulated(struct x86_emulate_ctxt * ctxt,unsigned long addr,void * val,unsigned int bytes,struct x86_exception * exception)6491 static int emulator_read_emulated(struct x86_emulate_ctxt *ctxt,
6492 unsigned long addr,
6493 void *val,
6494 unsigned int bytes,
6495 struct x86_exception *exception)
6496 {
6497 return emulator_read_write(ctxt, addr, val, bytes,
6498 exception, &read_emultor);
6499 }
6500
emulator_write_emulated(struct x86_emulate_ctxt * ctxt,unsigned long addr,const void * val,unsigned int bytes,struct x86_exception * exception)6501 static int emulator_write_emulated(struct x86_emulate_ctxt *ctxt,
6502 unsigned long addr,
6503 const void *val,
6504 unsigned int bytes,
6505 struct x86_exception *exception)
6506 {
6507 return emulator_read_write(ctxt, addr, (void *)val, bytes,
6508 exception, &write_emultor);
6509 }
6510
6511 #define CMPXCHG_TYPE(t, ptr, old, new) \
6512 (cmpxchg((t *)(ptr), *(t *)(old), *(t *)(new)) == *(t *)(old))
6513
6514 #ifdef CONFIG_X86_64
6515 # define CMPXCHG64(ptr, old, new) CMPXCHG_TYPE(u64, ptr, old, new)
6516 #else
6517 # define CMPXCHG64(ptr, old, new) \
6518 (cmpxchg64((u64 *)(ptr), *(u64 *)(old), *(u64 *)(new)) == *(u64 *)(old))
6519 #endif
6520
emulator_cmpxchg_emulated(struct x86_emulate_ctxt * ctxt,unsigned long addr,const void * old,const void * new,unsigned int bytes,struct x86_exception * exception)6521 static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt *ctxt,
6522 unsigned long addr,
6523 const void *old,
6524 const void *new,
6525 unsigned int bytes,
6526 struct x86_exception *exception)
6527 {
6528 struct kvm_host_map map;
6529 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6530 u64 page_line_mask;
6531 gpa_t gpa;
6532 char *kaddr;
6533 bool exchanged;
6534
6535 /* guests cmpxchg8b have to be emulated atomically */
6536 if (bytes > 8 || (bytes & (bytes - 1)))
6537 goto emul_write;
6538
6539 gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL);
6540
6541 if (gpa == UNMAPPED_GVA ||
6542 (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
6543 goto emul_write;
6544
6545 /*
6546 * Emulate the atomic as a straight write to avoid #AC if SLD is
6547 * enabled in the host and the access splits a cache line.
6548 */
6549 if (boot_cpu_has(X86_FEATURE_SPLIT_LOCK_DETECT))
6550 page_line_mask = ~(cache_line_size() - 1);
6551 else
6552 page_line_mask = PAGE_MASK;
6553
6554 if (((gpa + bytes - 1) & page_line_mask) != (gpa & page_line_mask))
6555 goto emul_write;
6556
6557 if (kvm_vcpu_map(vcpu, gpa_to_gfn(gpa), &map))
6558 goto emul_write;
6559
6560 kaddr = map.hva + offset_in_page(gpa);
6561
6562 switch (bytes) {
6563 case 1:
6564 exchanged = CMPXCHG_TYPE(u8, kaddr, old, new);
6565 break;
6566 case 2:
6567 exchanged = CMPXCHG_TYPE(u16, kaddr, old, new);
6568 break;
6569 case 4:
6570 exchanged = CMPXCHG_TYPE(u32, kaddr, old, new);
6571 break;
6572 case 8:
6573 exchanged = CMPXCHG64(kaddr, old, new);
6574 break;
6575 default:
6576 BUG();
6577 }
6578
6579 kvm_vcpu_unmap(vcpu, &map, true);
6580
6581 if (!exchanged)
6582 return X86EMUL_CMPXCHG_FAILED;
6583
6584 kvm_page_track_write(vcpu, gpa, new, bytes);
6585
6586 return X86EMUL_CONTINUE;
6587
6588 emul_write:
6589 printk_once(KERN_WARNING "kvm: emulating exchange as write\n");
6590
6591 return emulator_write_emulated(ctxt, addr, new, bytes, exception);
6592 }
6593
kernel_pio(struct kvm_vcpu * vcpu,void * pd)6594 static int kernel_pio(struct kvm_vcpu *vcpu, void *pd)
6595 {
6596 int r = 0, i;
6597
6598 for (i = 0; i < vcpu->arch.pio.count; i++) {
6599 if (vcpu->arch.pio.in)
6600 r = kvm_io_bus_read(vcpu, KVM_PIO_BUS, vcpu->arch.pio.port,
6601 vcpu->arch.pio.size, pd);
6602 else
6603 r = kvm_io_bus_write(vcpu, KVM_PIO_BUS,
6604 vcpu->arch.pio.port, vcpu->arch.pio.size,
6605 pd);
6606 if (r)
6607 break;
6608 pd += vcpu->arch.pio.size;
6609 }
6610 return r;
6611 }
6612
emulator_pio_in_out(struct kvm_vcpu * vcpu,int size,unsigned short port,void * val,unsigned int count,bool in)6613 static int emulator_pio_in_out(struct kvm_vcpu *vcpu, int size,
6614 unsigned short port, void *val,
6615 unsigned int count, bool in)
6616 {
6617 vcpu->arch.pio.port = port;
6618 vcpu->arch.pio.in = in;
6619 vcpu->arch.pio.count = count;
6620 vcpu->arch.pio.size = size;
6621
6622 if (!kernel_pio(vcpu, vcpu->arch.pio_data)) {
6623 vcpu->arch.pio.count = 0;
6624 return 1;
6625 }
6626
6627 vcpu->run->exit_reason = KVM_EXIT_IO;
6628 vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
6629 vcpu->run->io.size = size;
6630 vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
6631 vcpu->run->io.count = count;
6632 vcpu->run->io.port = port;
6633
6634 return 0;
6635 }
6636
emulator_pio_in(struct kvm_vcpu * vcpu,int size,unsigned short port,void * val,unsigned int count)6637 static int emulator_pio_in(struct kvm_vcpu *vcpu, int size,
6638 unsigned short port, void *val, unsigned int count)
6639 {
6640 int ret;
6641
6642 if (vcpu->arch.pio.count)
6643 goto data_avail;
6644
6645 memset(vcpu->arch.pio_data, 0, size * count);
6646
6647 ret = emulator_pio_in_out(vcpu, size, port, val, count, true);
6648 if (ret) {
6649 data_avail:
6650 memcpy(val, vcpu->arch.pio_data, size * count);
6651 trace_kvm_pio(KVM_PIO_IN, port, size, count, vcpu->arch.pio_data);
6652 vcpu->arch.pio.count = 0;
6653 return 1;
6654 }
6655
6656 return 0;
6657 }
6658
emulator_pio_in_emulated(struct x86_emulate_ctxt * ctxt,int size,unsigned short port,void * val,unsigned int count)6659 static int emulator_pio_in_emulated(struct x86_emulate_ctxt *ctxt,
6660 int size, unsigned short port, void *val,
6661 unsigned int count)
6662 {
6663 return emulator_pio_in(emul_to_vcpu(ctxt), size, port, val, count);
6664
6665 }
6666
emulator_pio_out(struct kvm_vcpu * vcpu,int size,unsigned short port,const void * val,unsigned int count)6667 static int emulator_pio_out(struct kvm_vcpu *vcpu, int size,
6668 unsigned short port, const void *val,
6669 unsigned int count)
6670 {
6671 memcpy(vcpu->arch.pio_data, val, size * count);
6672 trace_kvm_pio(KVM_PIO_OUT, port, size, count, vcpu->arch.pio_data);
6673 return emulator_pio_in_out(vcpu, size, port, (void *)val, count, false);
6674 }
6675
emulator_pio_out_emulated(struct x86_emulate_ctxt * ctxt,int size,unsigned short port,const void * val,unsigned int count)6676 static int emulator_pio_out_emulated(struct x86_emulate_ctxt *ctxt,
6677 int size, unsigned short port,
6678 const void *val, unsigned int count)
6679 {
6680 return emulator_pio_out(emul_to_vcpu(ctxt), size, port, val, count);
6681 }
6682
get_segment_base(struct kvm_vcpu * vcpu,int seg)6683 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
6684 {
6685 return kvm_x86_ops.get_segment_base(vcpu, seg);
6686 }
6687
emulator_invlpg(struct x86_emulate_ctxt * ctxt,ulong address)6688 static void emulator_invlpg(struct x86_emulate_ctxt *ctxt, ulong address)
6689 {
6690 kvm_mmu_invlpg(emul_to_vcpu(ctxt), address);
6691 }
6692
kvm_emulate_wbinvd_noskip(struct kvm_vcpu * vcpu)6693 static int kvm_emulate_wbinvd_noskip(struct kvm_vcpu *vcpu)
6694 {
6695 if (!need_emulate_wbinvd(vcpu))
6696 return X86EMUL_CONTINUE;
6697
6698 if (kvm_x86_ops.has_wbinvd_exit()) {
6699 int cpu = get_cpu();
6700
6701 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
6702 smp_call_function_many(vcpu->arch.wbinvd_dirty_mask,
6703 wbinvd_ipi, NULL, 1);
6704 put_cpu();
6705 cpumask_clear(vcpu->arch.wbinvd_dirty_mask);
6706 } else
6707 wbinvd();
6708 return X86EMUL_CONTINUE;
6709 }
6710
kvm_emulate_wbinvd(struct kvm_vcpu * vcpu)6711 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu)
6712 {
6713 kvm_emulate_wbinvd_noskip(vcpu);
6714 return kvm_skip_emulated_instruction(vcpu);
6715 }
6716 EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd);
6717
6718
6719
emulator_wbinvd(struct x86_emulate_ctxt * ctxt)6720 static void emulator_wbinvd(struct x86_emulate_ctxt *ctxt)
6721 {
6722 kvm_emulate_wbinvd_noskip(emul_to_vcpu(ctxt));
6723 }
6724
emulator_get_dr(struct x86_emulate_ctxt * ctxt,int dr,unsigned long * dest)6725 static int emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr,
6726 unsigned long *dest)
6727 {
6728 return kvm_get_dr(emul_to_vcpu(ctxt), dr, dest);
6729 }
6730
emulator_set_dr(struct x86_emulate_ctxt * ctxt,int dr,unsigned long value)6731 static int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr,
6732 unsigned long value)
6733 {
6734
6735 return __kvm_set_dr(emul_to_vcpu(ctxt), dr, value);
6736 }
6737
mk_cr_64(u64 curr_cr,u32 new_val)6738 static u64 mk_cr_64(u64 curr_cr, u32 new_val)
6739 {
6740 return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
6741 }
6742
emulator_get_cr(struct x86_emulate_ctxt * ctxt,int cr)6743 static unsigned long emulator_get_cr(struct x86_emulate_ctxt *ctxt, int cr)
6744 {
6745 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6746 unsigned long value;
6747
6748 switch (cr) {
6749 case 0:
6750 value = kvm_read_cr0(vcpu);
6751 break;
6752 case 2:
6753 value = vcpu->arch.cr2;
6754 break;
6755 case 3:
6756 value = kvm_read_cr3(vcpu);
6757 break;
6758 case 4:
6759 value = kvm_read_cr4(vcpu);
6760 break;
6761 case 8:
6762 value = kvm_get_cr8(vcpu);
6763 break;
6764 default:
6765 kvm_err("%s: unexpected cr %u\n", __func__, cr);
6766 return 0;
6767 }
6768
6769 return value;
6770 }
6771
emulator_set_cr(struct x86_emulate_ctxt * ctxt,int cr,ulong val)6772 static int emulator_set_cr(struct x86_emulate_ctxt *ctxt, int cr, ulong val)
6773 {
6774 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6775 int res = 0;
6776
6777 switch (cr) {
6778 case 0:
6779 res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val));
6780 break;
6781 case 2:
6782 vcpu->arch.cr2 = val;
6783 break;
6784 case 3:
6785 res = kvm_set_cr3(vcpu, val);
6786 break;
6787 case 4:
6788 res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val));
6789 break;
6790 case 8:
6791 res = kvm_set_cr8(vcpu, val);
6792 break;
6793 default:
6794 kvm_err("%s: unexpected cr %u\n", __func__, cr);
6795 res = -1;
6796 }
6797
6798 return res;
6799 }
6800
emulator_get_cpl(struct x86_emulate_ctxt * ctxt)6801 static int emulator_get_cpl(struct x86_emulate_ctxt *ctxt)
6802 {
6803 return kvm_x86_ops.get_cpl(emul_to_vcpu(ctxt));
6804 }
6805
emulator_get_gdt(struct x86_emulate_ctxt * ctxt,struct desc_ptr * dt)6806 static void emulator_get_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
6807 {
6808 kvm_x86_ops.get_gdt(emul_to_vcpu(ctxt), dt);
6809 }
6810
emulator_get_idt(struct x86_emulate_ctxt * ctxt,struct desc_ptr * dt)6811 static void emulator_get_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
6812 {
6813 kvm_x86_ops.get_idt(emul_to_vcpu(ctxt), dt);
6814 }
6815
emulator_set_gdt(struct x86_emulate_ctxt * ctxt,struct desc_ptr * dt)6816 static void emulator_set_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
6817 {
6818 kvm_x86_ops.set_gdt(emul_to_vcpu(ctxt), dt);
6819 }
6820
emulator_set_idt(struct x86_emulate_ctxt * ctxt,struct desc_ptr * dt)6821 static void emulator_set_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
6822 {
6823 kvm_x86_ops.set_idt(emul_to_vcpu(ctxt), dt);
6824 }
6825
emulator_get_cached_segment_base(struct x86_emulate_ctxt * ctxt,int seg)6826 static unsigned long emulator_get_cached_segment_base(
6827 struct x86_emulate_ctxt *ctxt, int seg)
6828 {
6829 return get_segment_base(emul_to_vcpu(ctxt), seg);
6830 }
6831
emulator_get_segment(struct x86_emulate_ctxt * ctxt,u16 * selector,struct desc_struct * desc,u32 * base3,int seg)6832 static bool emulator_get_segment(struct x86_emulate_ctxt *ctxt, u16 *selector,
6833 struct desc_struct *desc, u32 *base3,
6834 int seg)
6835 {
6836 struct kvm_segment var;
6837
6838 kvm_get_segment(emul_to_vcpu(ctxt), &var, seg);
6839 *selector = var.selector;
6840
6841 if (var.unusable) {
6842 memset(desc, 0, sizeof(*desc));
6843 if (base3)
6844 *base3 = 0;
6845 return false;
6846 }
6847
6848 if (var.g)
6849 var.limit >>= 12;
6850 set_desc_limit(desc, var.limit);
6851 set_desc_base(desc, (unsigned long)var.base);
6852 #ifdef CONFIG_X86_64
6853 if (base3)
6854 *base3 = var.base >> 32;
6855 #endif
6856 desc->type = var.type;
6857 desc->s = var.s;
6858 desc->dpl = var.dpl;
6859 desc->p = var.present;
6860 desc->avl = var.avl;
6861 desc->l = var.l;
6862 desc->d = var.db;
6863 desc->g = var.g;
6864
6865 return true;
6866 }
6867
emulator_set_segment(struct x86_emulate_ctxt * ctxt,u16 selector,struct desc_struct * desc,u32 base3,int seg)6868 static void emulator_set_segment(struct x86_emulate_ctxt *ctxt, u16 selector,
6869 struct desc_struct *desc, u32 base3,
6870 int seg)
6871 {
6872 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6873 struct kvm_segment var;
6874
6875 var.selector = selector;
6876 var.base = get_desc_base(desc);
6877 #ifdef CONFIG_X86_64
6878 var.base |= ((u64)base3) << 32;
6879 #endif
6880 var.limit = get_desc_limit(desc);
6881 if (desc->g)
6882 var.limit = (var.limit << 12) | 0xfff;
6883 var.type = desc->type;
6884 var.dpl = desc->dpl;
6885 var.db = desc->d;
6886 var.s = desc->s;
6887 var.l = desc->l;
6888 var.g = desc->g;
6889 var.avl = desc->avl;
6890 var.present = desc->p;
6891 var.unusable = !var.present;
6892 var.padding = 0;
6893
6894 kvm_set_segment(vcpu, &var, seg);
6895 return;
6896 }
6897
emulator_get_msr(struct x86_emulate_ctxt * ctxt,u32 msr_index,u64 * pdata)6898 static int emulator_get_msr(struct x86_emulate_ctxt *ctxt,
6899 u32 msr_index, u64 *pdata)
6900 {
6901 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6902 int r;
6903
6904 r = kvm_get_msr(vcpu, msr_index, pdata);
6905
6906 if (r && kvm_get_msr_user_space(vcpu, msr_index, r)) {
6907 /* Bounce to user space */
6908 return X86EMUL_IO_NEEDED;
6909 }
6910
6911 return r;
6912 }
6913
emulator_set_msr(struct x86_emulate_ctxt * ctxt,u32 msr_index,u64 data)6914 static int emulator_set_msr(struct x86_emulate_ctxt *ctxt,
6915 u32 msr_index, u64 data)
6916 {
6917 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6918 int r;
6919
6920 r = kvm_set_msr(vcpu, msr_index, data);
6921
6922 if (r && kvm_set_msr_user_space(vcpu, msr_index, data, r)) {
6923 /* Bounce to user space */
6924 return X86EMUL_IO_NEEDED;
6925 }
6926
6927 return r;
6928 }
6929
emulator_get_smbase(struct x86_emulate_ctxt * ctxt)6930 static u64 emulator_get_smbase(struct x86_emulate_ctxt *ctxt)
6931 {
6932 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6933
6934 return vcpu->arch.smbase;
6935 }
6936
emulator_set_smbase(struct x86_emulate_ctxt * ctxt,u64 smbase)6937 static void emulator_set_smbase(struct x86_emulate_ctxt *ctxt, u64 smbase)
6938 {
6939 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6940
6941 vcpu->arch.smbase = smbase;
6942 }
6943
emulator_check_pmc(struct x86_emulate_ctxt * ctxt,u32 pmc)6944 static int emulator_check_pmc(struct x86_emulate_ctxt *ctxt,
6945 u32 pmc)
6946 {
6947 return kvm_pmu_is_valid_rdpmc_ecx(emul_to_vcpu(ctxt), pmc);
6948 }
6949
emulator_read_pmc(struct x86_emulate_ctxt * ctxt,u32 pmc,u64 * pdata)6950 static int emulator_read_pmc(struct x86_emulate_ctxt *ctxt,
6951 u32 pmc, u64 *pdata)
6952 {
6953 return kvm_pmu_rdpmc(emul_to_vcpu(ctxt), pmc, pdata);
6954 }
6955
emulator_halt(struct x86_emulate_ctxt * ctxt)6956 static void emulator_halt(struct x86_emulate_ctxt *ctxt)
6957 {
6958 emul_to_vcpu(ctxt)->arch.halt_request = 1;
6959 }
6960
emulator_intercept(struct x86_emulate_ctxt * ctxt,struct x86_instruction_info * info,enum x86_intercept_stage stage)6961 static int emulator_intercept(struct x86_emulate_ctxt *ctxt,
6962 struct x86_instruction_info *info,
6963 enum x86_intercept_stage stage)
6964 {
6965 return kvm_x86_ops.check_intercept(emul_to_vcpu(ctxt), info, stage,
6966 &ctxt->exception);
6967 }
6968
emulator_get_cpuid(struct x86_emulate_ctxt * ctxt,u32 * eax,u32 * ebx,u32 * ecx,u32 * edx,bool exact_only)6969 static bool emulator_get_cpuid(struct x86_emulate_ctxt *ctxt,
6970 u32 *eax, u32 *ebx, u32 *ecx, u32 *edx,
6971 bool exact_only)
6972 {
6973 return kvm_cpuid(emul_to_vcpu(ctxt), eax, ebx, ecx, edx, exact_only);
6974 }
6975
emulator_guest_has_long_mode(struct x86_emulate_ctxt * ctxt)6976 static bool emulator_guest_has_long_mode(struct x86_emulate_ctxt *ctxt)
6977 {
6978 return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_LM);
6979 }
6980
emulator_guest_has_movbe(struct x86_emulate_ctxt * ctxt)6981 static bool emulator_guest_has_movbe(struct x86_emulate_ctxt *ctxt)
6982 {
6983 return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_MOVBE);
6984 }
6985
emulator_guest_has_fxsr(struct x86_emulate_ctxt * ctxt)6986 static bool emulator_guest_has_fxsr(struct x86_emulate_ctxt *ctxt)
6987 {
6988 return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_FXSR);
6989 }
6990
emulator_guest_has_rdpid(struct x86_emulate_ctxt * ctxt)6991 static bool emulator_guest_has_rdpid(struct x86_emulate_ctxt *ctxt)
6992 {
6993 return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_RDPID);
6994 }
6995
emulator_read_gpr(struct x86_emulate_ctxt * ctxt,unsigned reg)6996 static ulong emulator_read_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg)
6997 {
6998 return kvm_register_read(emul_to_vcpu(ctxt), reg);
6999 }
7000
emulator_write_gpr(struct x86_emulate_ctxt * ctxt,unsigned reg,ulong val)7001 static void emulator_write_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg, ulong val)
7002 {
7003 kvm_register_write(emul_to_vcpu(ctxt), reg, val);
7004 }
7005
emulator_set_nmi_mask(struct x86_emulate_ctxt * ctxt,bool masked)7006 static void emulator_set_nmi_mask(struct x86_emulate_ctxt *ctxt, bool masked)
7007 {
7008 kvm_x86_ops.set_nmi_mask(emul_to_vcpu(ctxt), masked);
7009 }
7010
emulator_get_hflags(struct x86_emulate_ctxt * ctxt)7011 static unsigned emulator_get_hflags(struct x86_emulate_ctxt *ctxt)
7012 {
7013 return emul_to_vcpu(ctxt)->arch.hflags;
7014 }
7015
emulator_set_hflags(struct x86_emulate_ctxt * ctxt,unsigned emul_flags)7016 static void emulator_set_hflags(struct x86_emulate_ctxt *ctxt, unsigned emul_flags)
7017 {
7018 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7019
7020 vcpu->arch.hflags = emul_flags;
7021 kvm_mmu_reset_context(vcpu);
7022 }
7023
emulator_pre_leave_smm(struct x86_emulate_ctxt * ctxt,const char * smstate)7024 static int emulator_pre_leave_smm(struct x86_emulate_ctxt *ctxt,
7025 const char *smstate)
7026 {
7027 return kvm_x86_ops.pre_leave_smm(emul_to_vcpu(ctxt), smstate);
7028 }
7029
emulator_post_leave_smm(struct x86_emulate_ctxt * ctxt)7030 static void emulator_post_leave_smm(struct x86_emulate_ctxt *ctxt)
7031 {
7032 kvm_smm_changed(emul_to_vcpu(ctxt));
7033 }
7034
emulator_set_xcr(struct x86_emulate_ctxt * ctxt,u32 index,u64 xcr)7035 static int emulator_set_xcr(struct x86_emulate_ctxt *ctxt, u32 index, u64 xcr)
7036 {
7037 return __kvm_set_xcr(emul_to_vcpu(ctxt), index, xcr);
7038 }
7039
7040 static const struct x86_emulate_ops emulate_ops = {
7041 .read_gpr = emulator_read_gpr,
7042 .write_gpr = emulator_write_gpr,
7043 .read_std = emulator_read_std,
7044 .write_std = emulator_write_std,
7045 .read_phys = kvm_read_guest_phys_system,
7046 .fetch = kvm_fetch_guest_virt,
7047 .read_emulated = emulator_read_emulated,
7048 .write_emulated = emulator_write_emulated,
7049 .cmpxchg_emulated = emulator_cmpxchg_emulated,
7050 .invlpg = emulator_invlpg,
7051 .pio_in_emulated = emulator_pio_in_emulated,
7052 .pio_out_emulated = emulator_pio_out_emulated,
7053 .get_segment = emulator_get_segment,
7054 .set_segment = emulator_set_segment,
7055 .get_cached_segment_base = emulator_get_cached_segment_base,
7056 .get_gdt = emulator_get_gdt,
7057 .get_idt = emulator_get_idt,
7058 .set_gdt = emulator_set_gdt,
7059 .set_idt = emulator_set_idt,
7060 .get_cr = emulator_get_cr,
7061 .set_cr = emulator_set_cr,
7062 .cpl = emulator_get_cpl,
7063 .get_dr = emulator_get_dr,
7064 .set_dr = emulator_set_dr,
7065 .get_smbase = emulator_get_smbase,
7066 .set_smbase = emulator_set_smbase,
7067 .set_msr = emulator_set_msr,
7068 .get_msr = emulator_get_msr,
7069 .check_pmc = emulator_check_pmc,
7070 .read_pmc = emulator_read_pmc,
7071 .halt = emulator_halt,
7072 .wbinvd = emulator_wbinvd,
7073 .fix_hypercall = emulator_fix_hypercall,
7074 .intercept = emulator_intercept,
7075 .get_cpuid = emulator_get_cpuid,
7076 .guest_has_long_mode = emulator_guest_has_long_mode,
7077 .guest_has_movbe = emulator_guest_has_movbe,
7078 .guest_has_fxsr = emulator_guest_has_fxsr,
7079 .guest_has_rdpid = emulator_guest_has_rdpid,
7080 .set_nmi_mask = emulator_set_nmi_mask,
7081 .get_hflags = emulator_get_hflags,
7082 .set_hflags = emulator_set_hflags,
7083 .pre_leave_smm = emulator_pre_leave_smm,
7084 .post_leave_smm = emulator_post_leave_smm,
7085 .set_xcr = emulator_set_xcr,
7086 };
7087
toggle_interruptibility(struct kvm_vcpu * vcpu,u32 mask)7088 static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask)
7089 {
7090 u32 int_shadow = kvm_x86_ops.get_interrupt_shadow(vcpu);
7091 /*
7092 * an sti; sti; sequence only disable interrupts for the first
7093 * instruction. So, if the last instruction, be it emulated or
7094 * not, left the system with the INT_STI flag enabled, it
7095 * means that the last instruction is an sti. We should not
7096 * leave the flag on in this case. The same goes for mov ss
7097 */
7098 if (int_shadow & mask)
7099 mask = 0;
7100 if (unlikely(int_shadow || mask)) {
7101 kvm_x86_ops.set_interrupt_shadow(vcpu, mask);
7102 if (!mask)
7103 kvm_make_request(KVM_REQ_EVENT, vcpu);
7104 }
7105 }
7106
inject_emulated_exception(struct kvm_vcpu * vcpu)7107 static bool inject_emulated_exception(struct kvm_vcpu *vcpu)
7108 {
7109 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
7110 if (ctxt->exception.vector == PF_VECTOR)
7111 return kvm_inject_emulated_page_fault(vcpu, &ctxt->exception);
7112
7113 if (ctxt->exception.error_code_valid)
7114 kvm_queue_exception_e(vcpu, ctxt->exception.vector,
7115 ctxt->exception.error_code);
7116 else
7117 kvm_queue_exception(vcpu, ctxt->exception.vector);
7118 return false;
7119 }
7120
alloc_emulate_ctxt(struct kvm_vcpu * vcpu)7121 static struct x86_emulate_ctxt *alloc_emulate_ctxt(struct kvm_vcpu *vcpu)
7122 {
7123 struct x86_emulate_ctxt *ctxt;
7124
7125 ctxt = kmem_cache_zalloc(x86_emulator_cache, GFP_KERNEL_ACCOUNT);
7126 if (!ctxt) {
7127 pr_err("kvm: failed to allocate vcpu's emulator\n");
7128 return NULL;
7129 }
7130
7131 ctxt->vcpu = vcpu;
7132 ctxt->ops = &emulate_ops;
7133 vcpu->arch.emulate_ctxt = ctxt;
7134
7135 return ctxt;
7136 }
7137
init_emulate_ctxt(struct kvm_vcpu * vcpu)7138 static void init_emulate_ctxt(struct kvm_vcpu *vcpu)
7139 {
7140 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
7141 int cs_db, cs_l;
7142
7143 kvm_x86_ops.get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
7144
7145 ctxt->gpa_available = false;
7146 ctxt->eflags = kvm_get_rflags(vcpu);
7147 ctxt->tf = (ctxt->eflags & X86_EFLAGS_TF) != 0;
7148
7149 ctxt->eip = kvm_rip_read(vcpu);
7150 ctxt->mode = (!is_protmode(vcpu)) ? X86EMUL_MODE_REAL :
7151 (ctxt->eflags & X86_EFLAGS_VM) ? X86EMUL_MODE_VM86 :
7152 (cs_l && is_long_mode(vcpu)) ? X86EMUL_MODE_PROT64 :
7153 cs_db ? X86EMUL_MODE_PROT32 :
7154 X86EMUL_MODE_PROT16;
7155 BUILD_BUG_ON(HF_GUEST_MASK != X86EMUL_GUEST_MASK);
7156 BUILD_BUG_ON(HF_SMM_MASK != X86EMUL_SMM_MASK);
7157 BUILD_BUG_ON(HF_SMM_INSIDE_NMI_MASK != X86EMUL_SMM_INSIDE_NMI_MASK);
7158
7159 ctxt->interruptibility = 0;
7160 ctxt->have_exception = false;
7161 ctxt->exception.vector = -1;
7162 ctxt->perm_ok = false;
7163
7164 init_decode_cache(ctxt);
7165 vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
7166 }
7167
kvm_inject_realmode_interrupt(struct kvm_vcpu * vcpu,int irq,int inc_eip)7168 void kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip)
7169 {
7170 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
7171 int ret;
7172
7173 init_emulate_ctxt(vcpu);
7174
7175 ctxt->op_bytes = 2;
7176 ctxt->ad_bytes = 2;
7177 ctxt->_eip = ctxt->eip + inc_eip;
7178 ret = emulate_int_real(ctxt, irq);
7179
7180 if (ret != X86EMUL_CONTINUE) {
7181 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
7182 } else {
7183 ctxt->eip = ctxt->_eip;
7184 kvm_rip_write(vcpu, ctxt->eip);
7185 kvm_set_rflags(vcpu, ctxt->eflags);
7186 }
7187 }
7188 EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt);
7189
handle_emulation_failure(struct kvm_vcpu * vcpu,int emulation_type)7190 static int handle_emulation_failure(struct kvm_vcpu *vcpu, int emulation_type)
7191 {
7192 ++vcpu->stat.insn_emulation_fail;
7193 trace_kvm_emulate_insn_failed(vcpu);
7194
7195 if (emulation_type & EMULTYPE_VMWARE_GP) {
7196 kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
7197 return 1;
7198 }
7199
7200 if (emulation_type & EMULTYPE_SKIP) {
7201 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
7202 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
7203 vcpu->run->internal.ndata = 0;
7204 return 0;
7205 }
7206
7207 kvm_queue_exception(vcpu, UD_VECTOR);
7208
7209 if (!is_guest_mode(vcpu) && kvm_x86_ops.get_cpl(vcpu) == 0) {
7210 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
7211 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
7212 vcpu->run->internal.ndata = 0;
7213 return 0;
7214 }
7215
7216 return 1;
7217 }
7218
reexecute_instruction(struct kvm_vcpu * vcpu,gpa_t cr2_or_gpa,bool write_fault_to_shadow_pgtable,int emulation_type)7219 static bool reexecute_instruction(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
7220 bool write_fault_to_shadow_pgtable,
7221 int emulation_type)
7222 {
7223 gpa_t gpa = cr2_or_gpa;
7224 kvm_pfn_t pfn;
7225
7226 if (!(emulation_type & EMULTYPE_ALLOW_RETRY_PF))
7227 return false;
7228
7229 if (WARN_ON_ONCE(is_guest_mode(vcpu)) ||
7230 WARN_ON_ONCE(!(emulation_type & EMULTYPE_PF)))
7231 return false;
7232
7233 if (!vcpu->arch.mmu->direct_map) {
7234 /*
7235 * Write permission should be allowed since only
7236 * write access need to be emulated.
7237 */
7238 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2_or_gpa, NULL);
7239
7240 /*
7241 * If the mapping is invalid in guest, let cpu retry
7242 * it to generate fault.
7243 */
7244 if (gpa == UNMAPPED_GVA)
7245 return true;
7246 }
7247
7248 /*
7249 * Do not retry the unhandleable instruction if it faults on the
7250 * readonly host memory, otherwise it will goto a infinite loop:
7251 * retry instruction -> write #PF -> emulation fail -> retry
7252 * instruction -> ...
7253 */
7254 pfn = gfn_to_pfn(vcpu->kvm, gpa_to_gfn(gpa));
7255
7256 /*
7257 * If the instruction failed on the error pfn, it can not be fixed,
7258 * report the error to userspace.
7259 */
7260 if (is_error_noslot_pfn(pfn))
7261 return false;
7262
7263 kvm_release_pfn_clean(pfn);
7264
7265 /* The instructions are well-emulated on direct mmu. */
7266 if (vcpu->arch.mmu->direct_map) {
7267 unsigned int indirect_shadow_pages;
7268
7269 spin_lock(&vcpu->kvm->mmu_lock);
7270 indirect_shadow_pages = vcpu->kvm->arch.indirect_shadow_pages;
7271 spin_unlock(&vcpu->kvm->mmu_lock);
7272
7273 if (indirect_shadow_pages)
7274 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
7275
7276 return true;
7277 }
7278
7279 /*
7280 * if emulation was due to access to shadowed page table
7281 * and it failed try to unshadow page and re-enter the
7282 * guest to let CPU execute the instruction.
7283 */
7284 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
7285
7286 /*
7287 * If the access faults on its page table, it can not
7288 * be fixed by unprotecting shadow page and it should
7289 * be reported to userspace.
7290 */
7291 return !write_fault_to_shadow_pgtable;
7292 }
7293
retry_instruction(struct x86_emulate_ctxt * ctxt,gpa_t cr2_or_gpa,int emulation_type)7294 static bool retry_instruction(struct x86_emulate_ctxt *ctxt,
7295 gpa_t cr2_or_gpa, int emulation_type)
7296 {
7297 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7298 unsigned long last_retry_eip, last_retry_addr, gpa = cr2_or_gpa;
7299
7300 last_retry_eip = vcpu->arch.last_retry_eip;
7301 last_retry_addr = vcpu->arch.last_retry_addr;
7302
7303 /*
7304 * If the emulation is caused by #PF and it is non-page_table
7305 * writing instruction, it means the VM-EXIT is caused by shadow
7306 * page protected, we can zap the shadow page and retry this
7307 * instruction directly.
7308 *
7309 * Note: if the guest uses a non-page-table modifying instruction
7310 * on the PDE that points to the instruction, then we will unmap
7311 * the instruction and go to an infinite loop. So, we cache the
7312 * last retried eip and the last fault address, if we meet the eip
7313 * and the address again, we can break out of the potential infinite
7314 * loop.
7315 */
7316 vcpu->arch.last_retry_eip = vcpu->arch.last_retry_addr = 0;
7317
7318 if (!(emulation_type & EMULTYPE_ALLOW_RETRY_PF))
7319 return false;
7320
7321 if (WARN_ON_ONCE(is_guest_mode(vcpu)) ||
7322 WARN_ON_ONCE(!(emulation_type & EMULTYPE_PF)))
7323 return false;
7324
7325 if (x86_page_table_writing_insn(ctxt))
7326 return false;
7327
7328 if (ctxt->eip == last_retry_eip && last_retry_addr == cr2_or_gpa)
7329 return false;
7330
7331 vcpu->arch.last_retry_eip = ctxt->eip;
7332 vcpu->arch.last_retry_addr = cr2_or_gpa;
7333
7334 if (!vcpu->arch.mmu->direct_map)
7335 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2_or_gpa, NULL);
7336
7337 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
7338
7339 return true;
7340 }
7341
7342 static int complete_emulated_mmio(struct kvm_vcpu *vcpu);
7343 static int complete_emulated_pio(struct kvm_vcpu *vcpu);
7344
kvm_smm_changed(struct kvm_vcpu * vcpu)7345 static void kvm_smm_changed(struct kvm_vcpu *vcpu)
7346 {
7347 if (!(vcpu->arch.hflags & HF_SMM_MASK)) {
7348 /* This is a good place to trace that we are exiting SMM. */
7349 trace_kvm_enter_smm(vcpu->vcpu_id, vcpu->arch.smbase, false);
7350
7351 /* Process a latched INIT or SMI, if any. */
7352 kvm_make_request(KVM_REQ_EVENT, vcpu);
7353 }
7354
7355 kvm_mmu_reset_context(vcpu);
7356 }
7357
kvm_vcpu_check_hw_bp(unsigned long addr,u32 type,u32 dr7,unsigned long * db)7358 static int kvm_vcpu_check_hw_bp(unsigned long addr, u32 type, u32 dr7,
7359 unsigned long *db)
7360 {
7361 u32 dr6 = 0;
7362 int i;
7363 u32 enable, rwlen;
7364
7365 enable = dr7;
7366 rwlen = dr7 >> 16;
7367 for (i = 0; i < 4; i++, enable >>= 2, rwlen >>= 4)
7368 if ((enable & 3) && (rwlen & 15) == type && db[i] == addr)
7369 dr6 |= (1 << i);
7370 return dr6;
7371 }
7372
kvm_vcpu_do_singlestep(struct kvm_vcpu * vcpu)7373 static int kvm_vcpu_do_singlestep(struct kvm_vcpu *vcpu)
7374 {
7375 struct kvm_run *kvm_run = vcpu->run;
7376
7377 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) {
7378 kvm_run->debug.arch.dr6 = DR6_BS | DR6_FIXED_1 | DR6_RTM;
7379 kvm_run->debug.arch.pc = kvm_get_linear_rip(vcpu);
7380 kvm_run->debug.arch.exception = DB_VECTOR;
7381 kvm_run->exit_reason = KVM_EXIT_DEBUG;
7382 return 0;
7383 }
7384 kvm_queue_exception_p(vcpu, DB_VECTOR, DR6_BS);
7385 return 1;
7386 }
7387
kvm_skip_emulated_instruction(struct kvm_vcpu * vcpu)7388 int kvm_skip_emulated_instruction(struct kvm_vcpu *vcpu)
7389 {
7390 unsigned long rflags = kvm_x86_ops.get_rflags(vcpu);
7391 int r;
7392
7393 r = kvm_x86_ops.skip_emulated_instruction(vcpu);
7394 if (unlikely(!r))
7395 return 0;
7396
7397 /*
7398 * rflags is the old, "raw" value of the flags. The new value has
7399 * not been saved yet.
7400 *
7401 * This is correct even for TF set by the guest, because "the
7402 * processor will not generate this exception after the instruction
7403 * that sets the TF flag".
7404 */
7405 if (unlikely(rflags & X86_EFLAGS_TF))
7406 r = kvm_vcpu_do_singlestep(vcpu);
7407 return r;
7408 }
7409 EXPORT_SYMBOL_GPL(kvm_skip_emulated_instruction);
7410
kvm_vcpu_check_code_breakpoint(struct kvm_vcpu * vcpu,int * r)7411 static bool kvm_vcpu_check_code_breakpoint(struct kvm_vcpu *vcpu, int *r)
7412 {
7413 if (unlikely(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) &&
7414 (vcpu->arch.guest_debug_dr7 & DR7_BP_EN_MASK)) {
7415 struct kvm_run *kvm_run = vcpu->run;
7416 unsigned long eip = kvm_get_linear_rip(vcpu);
7417 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
7418 vcpu->arch.guest_debug_dr7,
7419 vcpu->arch.eff_db);
7420
7421 if (dr6 != 0) {
7422 kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1 | DR6_RTM;
7423 kvm_run->debug.arch.pc = eip;
7424 kvm_run->debug.arch.exception = DB_VECTOR;
7425 kvm_run->exit_reason = KVM_EXIT_DEBUG;
7426 *r = 0;
7427 return true;
7428 }
7429 }
7430
7431 if (unlikely(vcpu->arch.dr7 & DR7_BP_EN_MASK) &&
7432 !(kvm_get_rflags(vcpu) & X86_EFLAGS_RF)) {
7433 unsigned long eip = kvm_get_linear_rip(vcpu);
7434 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
7435 vcpu->arch.dr7,
7436 vcpu->arch.db);
7437
7438 if (dr6 != 0) {
7439 kvm_queue_exception_p(vcpu, DB_VECTOR, dr6);
7440 *r = 1;
7441 return true;
7442 }
7443 }
7444
7445 return false;
7446 }
7447
is_vmware_backdoor_opcode(struct x86_emulate_ctxt * ctxt)7448 static bool is_vmware_backdoor_opcode(struct x86_emulate_ctxt *ctxt)
7449 {
7450 switch (ctxt->opcode_len) {
7451 case 1:
7452 switch (ctxt->b) {
7453 case 0xe4: /* IN */
7454 case 0xe5:
7455 case 0xec:
7456 case 0xed:
7457 case 0xe6: /* OUT */
7458 case 0xe7:
7459 case 0xee:
7460 case 0xef:
7461 case 0x6c: /* INS */
7462 case 0x6d:
7463 case 0x6e: /* OUTS */
7464 case 0x6f:
7465 return true;
7466 }
7467 break;
7468 case 2:
7469 switch (ctxt->b) {
7470 case 0x33: /* RDPMC */
7471 return true;
7472 }
7473 break;
7474 }
7475
7476 return false;
7477 }
7478
7479 /*
7480 * Decode an instruction for emulation. The caller is responsible for handling
7481 * code breakpoints. Note, manually detecting code breakpoints is unnecessary
7482 * (and wrong) when emulating on an intercepted fault-like exception[*], as
7483 * code breakpoints have higher priority and thus have already been done by
7484 * hardware.
7485 *
7486 * [*] Except #MC, which is higher priority, but KVM should never emulate in
7487 * response to a machine check.
7488 */
x86_decode_emulated_instruction(struct kvm_vcpu * vcpu,int emulation_type,void * insn,int insn_len)7489 int x86_decode_emulated_instruction(struct kvm_vcpu *vcpu, int emulation_type,
7490 void *insn, int insn_len)
7491 {
7492 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
7493 int r;
7494
7495 init_emulate_ctxt(vcpu);
7496
7497 ctxt->ud = emulation_type & EMULTYPE_TRAP_UD;
7498
7499 r = x86_decode_insn(ctxt, insn, insn_len);
7500
7501 trace_kvm_emulate_insn_start(vcpu);
7502 ++vcpu->stat.insn_emulation;
7503
7504 return r;
7505 }
7506 EXPORT_SYMBOL_GPL(x86_decode_emulated_instruction);
7507
x86_emulate_instruction(struct kvm_vcpu * vcpu,gpa_t cr2_or_gpa,int emulation_type,void * insn,int insn_len)7508 int x86_emulate_instruction(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
7509 int emulation_type, void *insn, int insn_len)
7510 {
7511 int r;
7512 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
7513 bool writeback = true;
7514 bool write_fault_to_spt;
7515
7516 if (unlikely(!kvm_x86_ops.can_emulate_instruction(vcpu, insn, insn_len)))
7517 return 1;
7518
7519 vcpu->arch.l1tf_flush_l1d = true;
7520
7521 /*
7522 * Clear write_fault_to_shadow_pgtable here to ensure it is
7523 * never reused.
7524 */
7525 write_fault_to_spt = vcpu->arch.write_fault_to_shadow_pgtable;
7526 vcpu->arch.write_fault_to_shadow_pgtable = false;
7527
7528 if (!(emulation_type & EMULTYPE_NO_DECODE)) {
7529 kvm_clear_exception_queue(vcpu);
7530
7531 /*
7532 * Return immediately if RIP hits a code breakpoint, such #DBs
7533 * are fault-like and are higher priority than any faults on
7534 * the code fetch itself.
7535 */
7536 if (!(emulation_type & EMULTYPE_SKIP) &&
7537 kvm_vcpu_check_code_breakpoint(vcpu, &r))
7538 return r;
7539
7540 r = x86_decode_emulated_instruction(vcpu, emulation_type,
7541 insn, insn_len);
7542 if (r != EMULATION_OK) {
7543 if ((emulation_type & EMULTYPE_TRAP_UD) ||
7544 (emulation_type & EMULTYPE_TRAP_UD_FORCED)) {
7545 kvm_queue_exception(vcpu, UD_VECTOR);
7546 return 1;
7547 }
7548 if (reexecute_instruction(vcpu, cr2_or_gpa,
7549 write_fault_to_spt,
7550 emulation_type))
7551 return 1;
7552 if (ctxt->have_exception) {
7553 /*
7554 * #UD should result in just EMULATION_FAILED, and trap-like
7555 * exception should not be encountered during decode.
7556 */
7557 WARN_ON_ONCE(ctxt->exception.vector == UD_VECTOR ||
7558 exception_type(ctxt->exception.vector) == EXCPT_TRAP);
7559 inject_emulated_exception(vcpu);
7560 return 1;
7561 }
7562 return handle_emulation_failure(vcpu, emulation_type);
7563 }
7564 }
7565
7566 if ((emulation_type & EMULTYPE_VMWARE_GP) &&
7567 !is_vmware_backdoor_opcode(ctxt)) {
7568 kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
7569 return 1;
7570 }
7571
7572 /*
7573 * Note, EMULTYPE_SKIP is intended for use *only* by vendor callbacks
7574 * for kvm_skip_emulated_instruction(). The caller is responsible for
7575 * updating interruptibility state and injecting single-step #DBs.
7576 */
7577 if (emulation_type & EMULTYPE_SKIP) {
7578 kvm_rip_write(vcpu, ctxt->_eip);
7579 if (ctxt->eflags & X86_EFLAGS_RF)
7580 kvm_set_rflags(vcpu, ctxt->eflags & ~X86_EFLAGS_RF);
7581 return 1;
7582 }
7583
7584 if (retry_instruction(ctxt, cr2_or_gpa, emulation_type))
7585 return 1;
7586
7587 /* this is needed for vmware backdoor interface to work since it
7588 changes registers values during IO operation */
7589 if (vcpu->arch.emulate_regs_need_sync_from_vcpu) {
7590 vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
7591 emulator_invalidate_register_cache(ctxt);
7592 }
7593
7594 restart:
7595 if (emulation_type & EMULTYPE_PF) {
7596 /* Save the faulting GPA (cr2) in the address field */
7597 ctxt->exception.address = cr2_or_gpa;
7598
7599 /* With shadow page tables, cr2 contains a GVA or nGPA. */
7600 if (vcpu->arch.mmu->direct_map) {
7601 ctxt->gpa_available = true;
7602 ctxt->gpa_val = cr2_or_gpa;
7603 }
7604 } else {
7605 /* Sanitize the address out of an abundance of paranoia. */
7606 ctxt->exception.address = 0;
7607 }
7608
7609 r = x86_emulate_insn(ctxt);
7610
7611 if (r == EMULATION_INTERCEPTED)
7612 return 1;
7613
7614 if (r == EMULATION_FAILED) {
7615 if (reexecute_instruction(vcpu, cr2_or_gpa, write_fault_to_spt,
7616 emulation_type))
7617 return 1;
7618
7619 return handle_emulation_failure(vcpu, emulation_type);
7620 }
7621
7622 if (ctxt->have_exception) {
7623 r = 1;
7624 if (inject_emulated_exception(vcpu))
7625 return r;
7626 } else if (vcpu->arch.pio.count) {
7627 if (!vcpu->arch.pio.in) {
7628 /* FIXME: return into emulator if single-stepping. */
7629 vcpu->arch.pio.count = 0;
7630 } else {
7631 writeback = false;
7632 vcpu->arch.complete_userspace_io = complete_emulated_pio;
7633 }
7634 r = 0;
7635 } else if (vcpu->mmio_needed) {
7636 ++vcpu->stat.mmio_exits;
7637
7638 if (!vcpu->mmio_is_write)
7639 writeback = false;
7640 r = 0;
7641 vcpu->arch.complete_userspace_io = complete_emulated_mmio;
7642 } else if (r == EMULATION_RESTART)
7643 goto restart;
7644 else
7645 r = 1;
7646
7647 if (writeback) {
7648 unsigned long rflags = kvm_x86_ops.get_rflags(vcpu);
7649 toggle_interruptibility(vcpu, ctxt->interruptibility);
7650 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
7651
7652 /*
7653 * Note, EXCPT_DB is assumed to be fault-like as the emulator
7654 * only supports code breakpoints and general detect #DB, both
7655 * of which are fault-like.
7656 */
7657 if (!ctxt->have_exception ||
7658 exception_type(ctxt->exception.vector) == EXCPT_TRAP) {
7659 kvm_rip_write(vcpu, ctxt->eip);
7660 if (r && (ctxt->tf || (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)))
7661 r = kvm_vcpu_do_singlestep(vcpu);
7662 if (kvm_x86_ops.update_emulated_instruction)
7663 kvm_x86_ops.update_emulated_instruction(vcpu);
7664 __kvm_set_rflags(vcpu, ctxt->eflags);
7665 }
7666
7667 /*
7668 * For STI, interrupts are shadowed; so KVM_REQ_EVENT will
7669 * do nothing, and it will be requested again as soon as
7670 * the shadow expires. But we still need to check here,
7671 * because POPF has no interrupt shadow.
7672 */
7673 if (unlikely((ctxt->eflags & ~rflags) & X86_EFLAGS_IF))
7674 kvm_make_request(KVM_REQ_EVENT, vcpu);
7675 } else
7676 vcpu->arch.emulate_regs_need_sync_to_vcpu = true;
7677
7678 return r;
7679 }
7680
kvm_emulate_instruction(struct kvm_vcpu * vcpu,int emulation_type)7681 int kvm_emulate_instruction(struct kvm_vcpu *vcpu, int emulation_type)
7682 {
7683 return x86_emulate_instruction(vcpu, 0, emulation_type, NULL, 0);
7684 }
7685 EXPORT_SYMBOL_GPL(kvm_emulate_instruction);
7686
kvm_emulate_instruction_from_buffer(struct kvm_vcpu * vcpu,void * insn,int insn_len)7687 int kvm_emulate_instruction_from_buffer(struct kvm_vcpu *vcpu,
7688 void *insn, int insn_len)
7689 {
7690 return x86_emulate_instruction(vcpu, 0, 0, insn, insn_len);
7691 }
7692 EXPORT_SYMBOL_GPL(kvm_emulate_instruction_from_buffer);
7693
complete_fast_pio_out_port_0x7e(struct kvm_vcpu * vcpu)7694 static int complete_fast_pio_out_port_0x7e(struct kvm_vcpu *vcpu)
7695 {
7696 vcpu->arch.pio.count = 0;
7697 return 1;
7698 }
7699
complete_fast_pio_out(struct kvm_vcpu * vcpu)7700 static int complete_fast_pio_out(struct kvm_vcpu *vcpu)
7701 {
7702 vcpu->arch.pio.count = 0;
7703
7704 if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.pio.linear_rip)))
7705 return 1;
7706
7707 return kvm_skip_emulated_instruction(vcpu);
7708 }
7709
kvm_fast_pio_out(struct kvm_vcpu * vcpu,int size,unsigned short port)7710 static int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size,
7711 unsigned short port)
7712 {
7713 unsigned long val = kvm_rax_read(vcpu);
7714 int ret = emulator_pio_out(vcpu, size, port, &val, 1);
7715
7716 if (ret)
7717 return ret;
7718
7719 /*
7720 * Workaround userspace that relies on old KVM behavior of %rip being
7721 * incremented prior to exiting to userspace to handle "OUT 0x7e".
7722 */
7723 if (port == 0x7e &&
7724 kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_OUT_7E_INC_RIP)) {
7725 vcpu->arch.complete_userspace_io =
7726 complete_fast_pio_out_port_0x7e;
7727 kvm_skip_emulated_instruction(vcpu);
7728 } else {
7729 vcpu->arch.pio.linear_rip = kvm_get_linear_rip(vcpu);
7730 vcpu->arch.complete_userspace_io = complete_fast_pio_out;
7731 }
7732 return 0;
7733 }
7734
complete_fast_pio_in(struct kvm_vcpu * vcpu)7735 static int complete_fast_pio_in(struct kvm_vcpu *vcpu)
7736 {
7737 unsigned long val;
7738
7739 /* We should only ever be called with arch.pio.count equal to 1 */
7740 BUG_ON(vcpu->arch.pio.count != 1);
7741
7742 if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.pio.linear_rip))) {
7743 vcpu->arch.pio.count = 0;
7744 return 1;
7745 }
7746
7747 /* For size less than 4 we merge, else we zero extend */
7748 val = (vcpu->arch.pio.size < 4) ? kvm_rax_read(vcpu) : 0;
7749
7750 /*
7751 * Since vcpu->arch.pio.count == 1 let emulator_pio_in perform
7752 * the copy and tracing
7753 */
7754 emulator_pio_in(vcpu, vcpu->arch.pio.size, vcpu->arch.pio.port, &val, 1);
7755 kvm_rax_write(vcpu, val);
7756
7757 return kvm_skip_emulated_instruction(vcpu);
7758 }
7759
kvm_fast_pio_in(struct kvm_vcpu * vcpu,int size,unsigned short port)7760 static int kvm_fast_pio_in(struct kvm_vcpu *vcpu, int size,
7761 unsigned short port)
7762 {
7763 unsigned long val;
7764 int ret;
7765
7766 /* For size less than 4 we merge, else we zero extend */
7767 val = (size < 4) ? kvm_rax_read(vcpu) : 0;
7768
7769 ret = emulator_pio_in(vcpu, size, port, &val, 1);
7770 if (ret) {
7771 kvm_rax_write(vcpu, val);
7772 return ret;
7773 }
7774
7775 vcpu->arch.pio.linear_rip = kvm_get_linear_rip(vcpu);
7776 vcpu->arch.complete_userspace_io = complete_fast_pio_in;
7777
7778 return 0;
7779 }
7780
kvm_fast_pio(struct kvm_vcpu * vcpu,int size,unsigned short port,int in)7781 int kvm_fast_pio(struct kvm_vcpu *vcpu, int size, unsigned short port, int in)
7782 {
7783 int ret;
7784
7785 if (in)
7786 ret = kvm_fast_pio_in(vcpu, size, port);
7787 else
7788 ret = kvm_fast_pio_out(vcpu, size, port);
7789 return ret && kvm_skip_emulated_instruction(vcpu);
7790 }
7791 EXPORT_SYMBOL_GPL(kvm_fast_pio);
7792
kvmclock_cpu_down_prep(unsigned int cpu)7793 static int kvmclock_cpu_down_prep(unsigned int cpu)
7794 {
7795 __this_cpu_write(cpu_tsc_khz, 0);
7796 return 0;
7797 }
7798
tsc_khz_changed(void * data)7799 static void tsc_khz_changed(void *data)
7800 {
7801 struct cpufreq_freqs *freq = data;
7802 unsigned long khz = 0;
7803
7804 if (data)
7805 khz = freq->new;
7806 else if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
7807 khz = cpufreq_quick_get(raw_smp_processor_id());
7808 if (!khz)
7809 khz = tsc_khz;
7810 __this_cpu_write(cpu_tsc_khz, khz);
7811 }
7812
7813 #ifdef CONFIG_X86_64
kvm_hyperv_tsc_notifier(void)7814 static void kvm_hyperv_tsc_notifier(void)
7815 {
7816 struct kvm *kvm;
7817 struct kvm_vcpu *vcpu;
7818 int cpu;
7819
7820 mutex_lock(&kvm_lock);
7821 list_for_each_entry(kvm, &vm_list, vm_list)
7822 kvm_make_mclock_inprogress_request(kvm);
7823
7824 hyperv_stop_tsc_emulation();
7825
7826 /* TSC frequency always matches when on Hyper-V */
7827 for_each_present_cpu(cpu)
7828 per_cpu(cpu_tsc_khz, cpu) = tsc_khz;
7829 kvm_max_guest_tsc_khz = tsc_khz;
7830
7831 list_for_each_entry(kvm, &vm_list, vm_list) {
7832 struct kvm_arch *ka = &kvm->arch;
7833
7834 spin_lock(&ka->pvclock_gtod_sync_lock);
7835
7836 pvclock_update_vm_gtod_copy(kvm);
7837
7838 kvm_for_each_vcpu(cpu, vcpu, kvm)
7839 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
7840
7841 kvm_for_each_vcpu(cpu, vcpu, kvm)
7842 kvm_clear_request(KVM_REQ_MCLOCK_INPROGRESS, vcpu);
7843
7844 spin_unlock(&ka->pvclock_gtod_sync_lock);
7845 }
7846 mutex_unlock(&kvm_lock);
7847 }
7848 #endif
7849
__kvmclock_cpufreq_notifier(struct cpufreq_freqs * freq,int cpu)7850 static void __kvmclock_cpufreq_notifier(struct cpufreq_freqs *freq, int cpu)
7851 {
7852 struct kvm *kvm;
7853 struct kvm_vcpu *vcpu;
7854 int i, send_ipi = 0;
7855
7856 /*
7857 * We allow guests to temporarily run on slowing clocks,
7858 * provided we notify them after, or to run on accelerating
7859 * clocks, provided we notify them before. Thus time never
7860 * goes backwards.
7861 *
7862 * However, we have a problem. We can't atomically update
7863 * the frequency of a given CPU from this function; it is
7864 * merely a notifier, which can be called from any CPU.
7865 * Changing the TSC frequency at arbitrary points in time
7866 * requires a recomputation of local variables related to
7867 * the TSC for each VCPU. We must flag these local variables
7868 * to be updated and be sure the update takes place with the
7869 * new frequency before any guests proceed.
7870 *
7871 * Unfortunately, the combination of hotplug CPU and frequency
7872 * change creates an intractable locking scenario; the order
7873 * of when these callouts happen is undefined with respect to
7874 * CPU hotplug, and they can race with each other. As such,
7875 * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is
7876 * undefined; you can actually have a CPU frequency change take
7877 * place in between the computation of X and the setting of the
7878 * variable. To protect against this problem, all updates of
7879 * the per_cpu tsc_khz variable are done in an interrupt
7880 * protected IPI, and all callers wishing to update the value
7881 * must wait for a synchronous IPI to complete (which is trivial
7882 * if the caller is on the CPU already). This establishes the
7883 * necessary total order on variable updates.
7884 *
7885 * Note that because a guest time update may take place
7886 * anytime after the setting of the VCPU's request bit, the
7887 * correct TSC value must be set before the request. However,
7888 * to ensure the update actually makes it to any guest which
7889 * starts running in hardware virtualization between the set
7890 * and the acquisition of the spinlock, we must also ping the
7891 * CPU after setting the request bit.
7892 *
7893 */
7894
7895 smp_call_function_single(cpu, tsc_khz_changed, freq, 1);
7896
7897 mutex_lock(&kvm_lock);
7898 list_for_each_entry(kvm, &vm_list, vm_list) {
7899 kvm_for_each_vcpu(i, vcpu, kvm) {
7900 if (vcpu->cpu != cpu)
7901 continue;
7902 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
7903 if (vcpu->cpu != raw_smp_processor_id())
7904 send_ipi = 1;
7905 }
7906 }
7907 mutex_unlock(&kvm_lock);
7908
7909 if (freq->old < freq->new && send_ipi) {
7910 /*
7911 * We upscale the frequency. Must make the guest
7912 * doesn't see old kvmclock values while running with
7913 * the new frequency, otherwise we risk the guest sees
7914 * time go backwards.
7915 *
7916 * In case we update the frequency for another cpu
7917 * (which might be in guest context) send an interrupt
7918 * to kick the cpu out of guest context. Next time
7919 * guest context is entered kvmclock will be updated,
7920 * so the guest will not see stale values.
7921 */
7922 smp_call_function_single(cpu, tsc_khz_changed, freq, 1);
7923 }
7924 }
7925
kvmclock_cpufreq_notifier(struct notifier_block * nb,unsigned long val,void * data)7926 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
7927 void *data)
7928 {
7929 struct cpufreq_freqs *freq = data;
7930 int cpu;
7931
7932 if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
7933 return 0;
7934 if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
7935 return 0;
7936
7937 for_each_cpu(cpu, freq->policy->cpus)
7938 __kvmclock_cpufreq_notifier(freq, cpu);
7939
7940 return 0;
7941 }
7942
7943 static struct notifier_block kvmclock_cpufreq_notifier_block = {
7944 .notifier_call = kvmclock_cpufreq_notifier
7945 };
7946
kvmclock_cpu_online(unsigned int cpu)7947 static int kvmclock_cpu_online(unsigned int cpu)
7948 {
7949 tsc_khz_changed(NULL);
7950 return 0;
7951 }
7952
kvm_timer_init(void)7953 static void kvm_timer_init(void)
7954 {
7955 max_tsc_khz = tsc_khz;
7956
7957 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
7958 #ifdef CONFIG_CPU_FREQ
7959 struct cpufreq_policy *policy;
7960 int cpu;
7961
7962 cpu = get_cpu();
7963 policy = cpufreq_cpu_get(cpu);
7964 if (policy) {
7965 if (policy->cpuinfo.max_freq)
7966 max_tsc_khz = policy->cpuinfo.max_freq;
7967 cpufreq_cpu_put(policy);
7968 }
7969 put_cpu();
7970 #endif
7971 cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
7972 CPUFREQ_TRANSITION_NOTIFIER);
7973 }
7974
7975 cpuhp_setup_state(CPUHP_AP_X86_KVM_CLK_ONLINE, "x86/kvm/clk:online",
7976 kvmclock_cpu_online, kvmclock_cpu_down_prep);
7977 }
7978
7979 DEFINE_PER_CPU(struct kvm_vcpu *, current_vcpu);
7980 EXPORT_PER_CPU_SYMBOL_GPL(current_vcpu);
7981
kvm_is_in_guest(void)7982 int kvm_is_in_guest(void)
7983 {
7984 return __this_cpu_read(current_vcpu) != NULL;
7985 }
7986
kvm_is_user_mode(void)7987 static int kvm_is_user_mode(void)
7988 {
7989 int user_mode = 3;
7990
7991 if (__this_cpu_read(current_vcpu))
7992 user_mode = kvm_x86_ops.get_cpl(__this_cpu_read(current_vcpu));
7993
7994 return user_mode != 0;
7995 }
7996
kvm_get_guest_ip(void)7997 static unsigned long kvm_get_guest_ip(void)
7998 {
7999 unsigned long ip = 0;
8000
8001 if (__this_cpu_read(current_vcpu))
8002 ip = kvm_rip_read(__this_cpu_read(current_vcpu));
8003
8004 return ip;
8005 }
8006
kvm_handle_intel_pt_intr(void)8007 static void kvm_handle_intel_pt_intr(void)
8008 {
8009 struct kvm_vcpu *vcpu = __this_cpu_read(current_vcpu);
8010
8011 kvm_make_request(KVM_REQ_PMI, vcpu);
8012 __set_bit(MSR_CORE_PERF_GLOBAL_OVF_CTRL_TRACE_TOPA_PMI_BIT,
8013 (unsigned long *)&vcpu->arch.pmu.global_status);
8014 }
8015
8016 static struct perf_guest_info_callbacks kvm_guest_cbs = {
8017 .is_in_guest = kvm_is_in_guest,
8018 .is_user_mode = kvm_is_user_mode,
8019 .get_guest_ip = kvm_get_guest_ip,
8020 .handle_intel_pt_intr = NULL,
8021 };
8022
8023 #ifdef CONFIG_X86_64
pvclock_gtod_update_fn(struct work_struct * work)8024 static void pvclock_gtod_update_fn(struct work_struct *work)
8025 {
8026 struct kvm *kvm;
8027
8028 struct kvm_vcpu *vcpu;
8029 int i;
8030
8031 mutex_lock(&kvm_lock);
8032 list_for_each_entry(kvm, &vm_list, vm_list)
8033 kvm_for_each_vcpu(i, vcpu, kvm)
8034 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
8035 atomic_set(&kvm_guest_has_master_clock, 0);
8036 mutex_unlock(&kvm_lock);
8037 }
8038
8039 static DECLARE_WORK(pvclock_gtod_work, pvclock_gtod_update_fn);
8040
8041 /*
8042 * Indirection to move queue_work() out of the tk_core.seq write held
8043 * region to prevent possible deadlocks against time accessors which
8044 * are invoked with work related locks held.
8045 */
pvclock_irq_work_fn(struct irq_work * w)8046 static void pvclock_irq_work_fn(struct irq_work *w)
8047 {
8048 queue_work(system_long_wq, &pvclock_gtod_work);
8049 }
8050
8051 static DEFINE_IRQ_WORK(pvclock_irq_work, pvclock_irq_work_fn);
8052
8053 /*
8054 * Notification about pvclock gtod data update.
8055 */
pvclock_gtod_notify(struct notifier_block * nb,unsigned long unused,void * priv)8056 static int pvclock_gtod_notify(struct notifier_block *nb, unsigned long unused,
8057 void *priv)
8058 {
8059 struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
8060 struct timekeeper *tk = priv;
8061
8062 update_pvclock_gtod(tk);
8063
8064 /*
8065 * Disable master clock if host does not trust, or does not use,
8066 * TSC based clocksource. Delegate queue_work() to irq_work as
8067 * this is invoked with tk_core.seq write held.
8068 */
8069 if (!gtod_is_based_on_tsc(gtod->clock.vclock_mode) &&
8070 atomic_read(&kvm_guest_has_master_clock) != 0)
8071 irq_work_queue(&pvclock_irq_work);
8072 return 0;
8073 }
8074
8075 static struct notifier_block pvclock_gtod_notifier = {
8076 .notifier_call = pvclock_gtod_notify,
8077 };
8078 #endif
8079
kvm_arch_init(void * opaque)8080 int kvm_arch_init(void *opaque)
8081 {
8082 struct kvm_x86_init_ops *ops = opaque;
8083 int r;
8084
8085 if (kvm_x86_ops.hardware_enable) {
8086 printk(KERN_ERR "kvm: already loaded the other module\n");
8087 r = -EEXIST;
8088 goto out;
8089 }
8090
8091 if (!ops->cpu_has_kvm_support()) {
8092 pr_err_ratelimited("kvm: no hardware support\n");
8093 r = -EOPNOTSUPP;
8094 goto out;
8095 }
8096 if (ops->disabled_by_bios()) {
8097 pr_err_ratelimited("kvm: disabled by bios\n");
8098 r = -EOPNOTSUPP;
8099 goto out;
8100 }
8101
8102 /*
8103 * KVM explicitly assumes that the guest has an FPU and
8104 * FXSAVE/FXRSTOR. For example, the KVM_GET_FPU explicitly casts the
8105 * vCPU's FPU state as a fxregs_state struct.
8106 */
8107 if (!boot_cpu_has(X86_FEATURE_FPU) || !boot_cpu_has(X86_FEATURE_FXSR)) {
8108 printk(KERN_ERR "kvm: inadequate fpu\n");
8109 r = -EOPNOTSUPP;
8110 goto out;
8111 }
8112
8113 r = -ENOMEM;
8114 x86_fpu_cache = kmem_cache_create("x86_fpu", sizeof(struct fpu),
8115 __alignof__(struct fpu), SLAB_ACCOUNT,
8116 NULL);
8117 if (!x86_fpu_cache) {
8118 printk(KERN_ERR "kvm: failed to allocate cache for x86 fpu\n");
8119 goto out;
8120 }
8121
8122 x86_emulator_cache = kvm_alloc_emulator_cache();
8123 if (!x86_emulator_cache) {
8124 pr_err("kvm: failed to allocate cache for x86 emulator\n");
8125 goto out_free_x86_fpu_cache;
8126 }
8127
8128 user_return_msrs = alloc_percpu(struct kvm_user_return_msrs);
8129 if (!user_return_msrs) {
8130 printk(KERN_ERR "kvm: failed to allocate percpu kvm_user_return_msrs\n");
8131 goto out_free_x86_emulator_cache;
8132 }
8133
8134 r = kvm_mmu_vendor_module_init();
8135 if (r)
8136 goto out_free_percpu;
8137
8138 kvm_mmu_set_mask_ptes(PT_USER_MASK, PT_ACCESSED_MASK,
8139 PT_DIRTY_MASK, PT64_NX_MASK, 0,
8140 PT_PRESENT_MASK, 0, sme_me_mask);
8141 kvm_timer_init();
8142
8143 if (ops->intel_pt_intr_in_guest && ops->intel_pt_intr_in_guest())
8144 kvm_guest_cbs.handle_intel_pt_intr = kvm_handle_intel_pt_intr;
8145 perf_register_guest_info_callbacks(&kvm_guest_cbs);
8146
8147 if (boot_cpu_has(X86_FEATURE_XSAVE)) {
8148 host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK);
8149 supported_xcr0 = host_xcr0 & KVM_SUPPORTED_XCR0;
8150 }
8151
8152 kvm_lapic_init();
8153 if (pi_inject_timer == -1)
8154 pi_inject_timer = housekeeping_enabled(HK_FLAG_TIMER);
8155 #ifdef CONFIG_X86_64
8156 pvclock_gtod_register_notifier(&pvclock_gtod_notifier);
8157
8158 if (hypervisor_is_type(X86_HYPER_MS_HYPERV))
8159 set_hv_tscchange_cb(kvm_hyperv_tsc_notifier);
8160 #endif
8161
8162 return 0;
8163
8164 out_free_percpu:
8165 free_percpu(user_return_msrs);
8166 out_free_x86_emulator_cache:
8167 kmem_cache_destroy(x86_emulator_cache);
8168 out_free_x86_fpu_cache:
8169 kmem_cache_destroy(x86_fpu_cache);
8170 out:
8171 return r;
8172 }
8173
kvm_arch_exit(void)8174 void kvm_arch_exit(void)
8175 {
8176 #ifdef CONFIG_X86_64
8177 if (hypervisor_is_type(X86_HYPER_MS_HYPERV))
8178 clear_hv_tscchange_cb();
8179 #endif
8180 kvm_lapic_exit();
8181 perf_unregister_guest_info_callbacks(&kvm_guest_cbs);
8182 kvm_guest_cbs.handle_intel_pt_intr = NULL;
8183
8184 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
8185 cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
8186 CPUFREQ_TRANSITION_NOTIFIER);
8187 cpuhp_remove_state_nocalls(CPUHP_AP_X86_KVM_CLK_ONLINE);
8188 #ifdef CONFIG_X86_64
8189 pvclock_gtod_unregister_notifier(&pvclock_gtod_notifier);
8190 irq_work_sync(&pvclock_irq_work);
8191 cancel_work_sync(&pvclock_gtod_work);
8192 #endif
8193 kvm_x86_ops.hardware_enable = NULL;
8194 kvm_mmu_vendor_module_exit();
8195 free_percpu(user_return_msrs);
8196 kmem_cache_destroy(x86_emulator_cache);
8197 kmem_cache_destroy(x86_fpu_cache);
8198 }
8199
kvm_vcpu_halt(struct kvm_vcpu * vcpu)8200 int kvm_vcpu_halt(struct kvm_vcpu *vcpu)
8201 {
8202 ++vcpu->stat.halt_exits;
8203 if (lapic_in_kernel(vcpu)) {
8204 vcpu->arch.mp_state = KVM_MP_STATE_HALTED;
8205 return 1;
8206 } else {
8207 vcpu->run->exit_reason = KVM_EXIT_HLT;
8208 return 0;
8209 }
8210 }
8211 EXPORT_SYMBOL_GPL(kvm_vcpu_halt);
8212
kvm_emulate_halt(struct kvm_vcpu * vcpu)8213 int kvm_emulate_halt(struct kvm_vcpu *vcpu)
8214 {
8215 int ret = kvm_skip_emulated_instruction(vcpu);
8216 /*
8217 * TODO: we might be squashing a GUESTDBG_SINGLESTEP-triggered
8218 * KVM_EXIT_DEBUG here.
8219 */
8220 return kvm_vcpu_halt(vcpu) && ret;
8221 }
8222 EXPORT_SYMBOL_GPL(kvm_emulate_halt);
8223
8224 #ifdef CONFIG_X86_64
kvm_pv_clock_pairing(struct kvm_vcpu * vcpu,gpa_t paddr,unsigned long clock_type)8225 static int kvm_pv_clock_pairing(struct kvm_vcpu *vcpu, gpa_t paddr,
8226 unsigned long clock_type)
8227 {
8228 struct kvm_clock_pairing clock_pairing;
8229 struct timespec64 ts;
8230 u64 cycle;
8231 int ret;
8232
8233 if (clock_type != KVM_CLOCK_PAIRING_WALLCLOCK)
8234 return -KVM_EOPNOTSUPP;
8235
8236 if (kvm_get_walltime_and_clockread(&ts, &cycle) == false)
8237 return -KVM_EOPNOTSUPP;
8238
8239 clock_pairing.sec = ts.tv_sec;
8240 clock_pairing.nsec = ts.tv_nsec;
8241 clock_pairing.tsc = kvm_read_l1_tsc(vcpu, cycle);
8242 clock_pairing.flags = 0;
8243 memset(&clock_pairing.pad, 0, sizeof(clock_pairing.pad));
8244
8245 ret = 0;
8246 if (kvm_write_guest(vcpu->kvm, paddr, &clock_pairing,
8247 sizeof(struct kvm_clock_pairing)))
8248 ret = -KVM_EFAULT;
8249
8250 return ret;
8251 }
8252 #endif
8253
8254 /*
8255 * kvm_pv_kick_cpu_op: Kick a vcpu.
8256 *
8257 * @apicid - apicid of vcpu to be kicked.
8258 */
kvm_pv_kick_cpu_op(struct kvm * kvm,unsigned long flags,int apicid)8259 static void kvm_pv_kick_cpu_op(struct kvm *kvm, unsigned long flags, int apicid)
8260 {
8261 /*
8262 * All other fields are unused for APIC_DM_REMRD, but may be consumed by
8263 * common code, e.g. for tracing. Defer initialization to the compiler.
8264 */
8265 struct kvm_lapic_irq lapic_irq = {
8266 .delivery_mode = APIC_DM_REMRD,
8267 .dest_mode = APIC_DEST_PHYSICAL,
8268 .shorthand = APIC_DEST_NOSHORT,
8269 .dest_id = apicid,
8270 };
8271
8272 kvm_irq_delivery_to_apic(kvm, NULL, &lapic_irq, NULL);
8273 }
8274
kvm_apicv_activated(struct kvm * kvm)8275 bool kvm_apicv_activated(struct kvm *kvm)
8276 {
8277 return (READ_ONCE(kvm->arch.apicv_inhibit_reasons) == 0);
8278 }
8279 EXPORT_SYMBOL_GPL(kvm_apicv_activated);
8280
kvm_apicv_init(struct kvm * kvm,bool enable)8281 void kvm_apicv_init(struct kvm *kvm, bool enable)
8282 {
8283 if (enable)
8284 clear_bit(APICV_INHIBIT_REASON_DISABLE,
8285 &kvm->arch.apicv_inhibit_reasons);
8286 else
8287 set_bit(APICV_INHIBIT_REASON_DISABLE,
8288 &kvm->arch.apicv_inhibit_reasons);
8289 }
8290 EXPORT_SYMBOL_GPL(kvm_apicv_init);
8291
kvm_sched_yield(struct kvm * kvm,unsigned long dest_id)8292 static void kvm_sched_yield(struct kvm *kvm, unsigned long dest_id)
8293 {
8294 struct kvm_vcpu *target = NULL;
8295 struct kvm_apic_map *map;
8296
8297 rcu_read_lock();
8298 map = rcu_dereference(kvm->arch.apic_map);
8299
8300 if (likely(map) && dest_id <= map->max_apic_id && map->phys_map[dest_id])
8301 target = map->phys_map[dest_id]->vcpu;
8302
8303 rcu_read_unlock();
8304
8305 if (target && READ_ONCE(target->ready))
8306 kvm_vcpu_yield_to(target);
8307 }
8308
kvm_emulate_hypercall(struct kvm_vcpu * vcpu)8309 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
8310 {
8311 unsigned long nr, a0, a1, a2, a3, ret;
8312 int op_64_bit;
8313
8314 if (kvm_hv_hypercall_enabled(vcpu->kvm))
8315 return kvm_hv_hypercall(vcpu);
8316
8317 nr = kvm_rax_read(vcpu);
8318 a0 = kvm_rbx_read(vcpu);
8319 a1 = kvm_rcx_read(vcpu);
8320 a2 = kvm_rdx_read(vcpu);
8321 a3 = kvm_rsi_read(vcpu);
8322
8323 trace_kvm_hypercall(nr, a0, a1, a2, a3);
8324
8325 op_64_bit = is_64_bit_mode(vcpu);
8326 if (!op_64_bit) {
8327 nr &= 0xFFFFFFFF;
8328 a0 &= 0xFFFFFFFF;
8329 a1 &= 0xFFFFFFFF;
8330 a2 &= 0xFFFFFFFF;
8331 a3 &= 0xFFFFFFFF;
8332 }
8333
8334 if (kvm_x86_ops.get_cpl(vcpu) != 0) {
8335 ret = -KVM_EPERM;
8336 goto out;
8337 }
8338
8339 ret = -KVM_ENOSYS;
8340
8341 switch (nr) {
8342 case KVM_HC_VAPIC_POLL_IRQ:
8343 ret = 0;
8344 break;
8345 case KVM_HC_KICK_CPU:
8346 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_UNHALT))
8347 break;
8348
8349 kvm_pv_kick_cpu_op(vcpu->kvm, a0, a1);
8350 kvm_sched_yield(vcpu->kvm, a1);
8351 ret = 0;
8352 break;
8353 #ifdef CONFIG_X86_64
8354 case KVM_HC_CLOCK_PAIRING:
8355 ret = kvm_pv_clock_pairing(vcpu, a0, a1);
8356 break;
8357 #endif
8358 case KVM_HC_SEND_IPI:
8359 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_SEND_IPI))
8360 break;
8361
8362 ret = kvm_pv_send_ipi(vcpu->kvm, a0, a1, a2, a3, op_64_bit);
8363 break;
8364 case KVM_HC_SCHED_YIELD:
8365 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_SCHED_YIELD))
8366 break;
8367
8368 kvm_sched_yield(vcpu->kvm, a0);
8369 ret = 0;
8370 break;
8371 default:
8372 ret = -KVM_ENOSYS;
8373 break;
8374 }
8375 out:
8376 if (!op_64_bit)
8377 ret = (u32)ret;
8378 kvm_rax_write(vcpu, ret);
8379
8380 ++vcpu->stat.hypercalls;
8381 return kvm_skip_emulated_instruction(vcpu);
8382 }
8383 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
8384
emulator_fix_hypercall(struct x86_emulate_ctxt * ctxt)8385 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt)
8386 {
8387 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
8388 char instruction[3];
8389 unsigned long rip = kvm_rip_read(vcpu);
8390
8391 kvm_x86_ops.patch_hypercall(vcpu, instruction);
8392
8393 return emulator_write_emulated(ctxt, rip, instruction, 3,
8394 &ctxt->exception);
8395 }
8396
dm_request_for_irq_injection(struct kvm_vcpu * vcpu)8397 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu)
8398 {
8399 return vcpu->run->request_interrupt_window &&
8400 likely(!pic_in_kernel(vcpu->kvm));
8401 }
8402
post_kvm_run_save(struct kvm_vcpu * vcpu)8403 static void post_kvm_run_save(struct kvm_vcpu *vcpu)
8404 {
8405 struct kvm_run *kvm_run = vcpu->run;
8406
8407 kvm_run->if_flag = (kvm_get_rflags(vcpu) & X86_EFLAGS_IF) != 0;
8408 kvm_run->flags = is_smm(vcpu) ? KVM_RUN_X86_SMM : 0;
8409 kvm_run->cr8 = kvm_get_cr8(vcpu);
8410 kvm_run->apic_base = kvm_get_apic_base(vcpu);
8411 kvm_run->ready_for_interrupt_injection =
8412 pic_in_kernel(vcpu->kvm) ||
8413 kvm_vcpu_ready_for_interrupt_injection(vcpu);
8414 }
8415
update_cr8_intercept(struct kvm_vcpu * vcpu)8416 static void update_cr8_intercept(struct kvm_vcpu *vcpu)
8417 {
8418 int max_irr, tpr;
8419
8420 if (!kvm_x86_ops.update_cr8_intercept)
8421 return;
8422
8423 if (!lapic_in_kernel(vcpu))
8424 return;
8425
8426 if (vcpu->arch.apicv_active)
8427 return;
8428
8429 if (!vcpu->arch.apic->vapic_addr)
8430 max_irr = kvm_lapic_find_highest_irr(vcpu);
8431 else
8432 max_irr = -1;
8433
8434 if (max_irr != -1)
8435 max_irr >>= 4;
8436
8437 tpr = kvm_lapic_get_cr8(vcpu);
8438
8439 kvm_x86_ops.update_cr8_intercept(vcpu, tpr, max_irr);
8440 }
8441
kvm_inject_exception(struct kvm_vcpu * vcpu)8442 static void kvm_inject_exception(struct kvm_vcpu *vcpu)
8443 {
8444 trace_kvm_inj_exception(vcpu->arch.exception.nr,
8445 vcpu->arch.exception.has_error_code,
8446 vcpu->arch.exception.error_code,
8447 vcpu->arch.exception.injected);
8448
8449 if (vcpu->arch.exception.error_code && !is_protmode(vcpu))
8450 vcpu->arch.exception.error_code = false;
8451 kvm_x86_ops.queue_exception(vcpu);
8452 }
8453
inject_pending_event(struct kvm_vcpu * vcpu,bool * req_immediate_exit)8454 static void inject_pending_event(struct kvm_vcpu *vcpu, bool *req_immediate_exit)
8455 {
8456 int r;
8457 bool can_inject = true;
8458
8459 /* try to reinject previous events if any */
8460
8461 if (vcpu->arch.exception.injected) {
8462 kvm_inject_exception(vcpu);
8463 can_inject = false;
8464 }
8465 /*
8466 * Do not inject an NMI or interrupt if there is a pending
8467 * exception. Exceptions and interrupts are recognized at
8468 * instruction boundaries, i.e. the start of an instruction.
8469 * Trap-like exceptions, e.g. #DB, have higher priority than
8470 * NMIs and interrupts, i.e. traps are recognized before an
8471 * NMI/interrupt that's pending on the same instruction.
8472 * Fault-like exceptions, e.g. #GP and #PF, are the lowest
8473 * priority, but are only generated (pended) during instruction
8474 * execution, i.e. a pending fault-like exception means the
8475 * fault occurred on the *previous* instruction and must be
8476 * serviced prior to recognizing any new events in order to
8477 * fully complete the previous instruction.
8478 */
8479 else if (!vcpu->arch.exception.pending) {
8480 if (vcpu->arch.nmi_injected) {
8481 kvm_x86_ops.set_nmi(vcpu);
8482 can_inject = false;
8483 } else if (vcpu->arch.interrupt.injected) {
8484 kvm_x86_ops.set_irq(vcpu);
8485 can_inject = false;
8486 }
8487 }
8488
8489 WARN_ON_ONCE(vcpu->arch.exception.injected &&
8490 vcpu->arch.exception.pending);
8491
8492 /*
8493 * Call check_nested_events() even if we reinjected a previous event
8494 * in order for caller to determine if it should require immediate-exit
8495 * from L2 to L1 due to pending L1 events which require exit
8496 * from L2 to L1.
8497 */
8498 if (is_guest_mode(vcpu)) {
8499 r = kvm_x86_ops.nested_ops->check_events(vcpu);
8500 if (r < 0)
8501 goto busy;
8502 }
8503
8504 /* try to inject new event if pending */
8505 if (vcpu->arch.exception.pending) {
8506 /*
8507 * Fault-class exceptions, except #DBs, set RF=1 in the RFLAGS
8508 * value pushed on the stack. Trap-like exception and all #DBs
8509 * leave RF as-is (KVM follows Intel's behavior in this regard;
8510 * AMD states that code breakpoint #DBs excplitly clear RF=0).
8511 *
8512 * Note, most versions of Intel's SDM and AMD's APM incorrectly
8513 * describe the behavior of General Detect #DBs, which are
8514 * fault-like. They do _not_ set RF, a la code breakpoints.
8515 */
8516 if (exception_type(vcpu->arch.exception.nr) == EXCPT_FAULT)
8517 __kvm_set_rflags(vcpu, kvm_get_rflags(vcpu) |
8518 X86_EFLAGS_RF);
8519
8520 if (vcpu->arch.exception.nr == DB_VECTOR) {
8521 kvm_deliver_exception_payload(vcpu);
8522 if (vcpu->arch.dr7 & DR7_GD) {
8523 vcpu->arch.dr7 &= ~DR7_GD;
8524 kvm_update_dr7(vcpu);
8525 }
8526 }
8527
8528 kvm_inject_exception(vcpu);
8529
8530 vcpu->arch.exception.pending = false;
8531 vcpu->arch.exception.injected = true;
8532
8533 can_inject = false;
8534 }
8535
8536 /*
8537 * Finally, inject interrupt events. If an event cannot be injected
8538 * due to architectural conditions (e.g. IF=0) a window-open exit
8539 * will re-request KVM_REQ_EVENT. Sometimes however an event is pending
8540 * and can architecturally be injected, but we cannot do it right now:
8541 * an interrupt could have arrived just now and we have to inject it
8542 * as a vmexit, or there could already an event in the queue, which is
8543 * indicated by can_inject. In that case we request an immediate exit
8544 * in order to make progress and get back here for another iteration.
8545 * The kvm_x86_ops hooks communicate this by returning -EBUSY.
8546 */
8547 if (vcpu->arch.smi_pending) {
8548 r = can_inject ? kvm_x86_ops.smi_allowed(vcpu, true) : -EBUSY;
8549 if (r < 0)
8550 goto busy;
8551 if (r) {
8552 vcpu->arch.smi_pending = false;
8553 ++vcpu->arch.smi_count;
8554 enter_smm(vcpu);
8555 can_inject = false;
8556 } else
8557 kvm_x86_ops.enable_smi_window(vcpu);
8558 }
8559
8560 if (vcpu->arch.nmi_pending) {
8561 r = can_inject ? kvm_x86_ops.nmi_allowed(vcpu, true) : -EBUSY;
8562 if (r < 0)
8563 goto busy;
8564 if (r) {
8565 --vcpu->arch.nmi_pending;
8566 vcpu->arch.nmi_injected = true;
8567 kvm_x86_ops.set_nmi(vcpu);
8568 can_inject = false;
8569 WARN_ON(kvm_x86_ops.nmi_allowed(vcpu, true) < 0);
8570 }
8571 if (vcpu->arch.nmi_pending)
8572 kvm_x86_ops.enable_nmi_window(vcpu);
8573 }
8574
8575 if (kvm_cpu_has_injectable_intr(vcpu)) {
8576 r = can_inject ? kvm_x86_ops.interrupt_allowed(vcpu, true) : -EBUSY;
8577 if (r < 0)
8578 goto busy;
8579 if (r) {
8580 kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu), false);
8581 kvm_x86_ops.set_irq(vcpu);
8582 WARN_ON(kvm_x86_ops.interrupt_allowed(vcpu, true) < 0);
8583 }
8584 if (kvm_cpu_has_injectable_intr(vcpu))
8585 kvm_x86_ops.enable_irq_window(vcpu);
8586 }
8587
8588 if (is_guest_mode(vcpu) &&
8589 kvm_x86_ops.nested_ops->hv_timer_pending &&
8590 kvm_x86_ops.nested_ops->hv_timer_pending(vcpu))
8591 *req_immediate_exit = true;
8592
8593 WARN_ON(vcpu->arch.exception.pending);
8594 return;
8595
8596 busy:
8597 *req_immediate_exit = true;
8598 return;
8599 }
8600
process_nmi(struct kvm_vcpu * vcpu)8601 static void process_nmi(struct kvm_vcpu *vcpu)
8602 {
8603 unsigned limit = 2;
8604
8605 /*
8606 * x86 is limited to one NMI running, and one NMI pending after it.
8607 * If an NMI is already in progress, limit further NMIs to just one.
8608 * Otherwise, allow two (and we'll inject the first one immediately).
8609 */
8610 if (kvm_x86_ops.get_nmi_mask(vcpu) || vcpu->arch.nmi_injected)
8611 limit = 1;
8612
8613 vcpu->arch.nmi_pending += atomic_xchg(&vcpu->arch.nmi_queued, 0);
8614 vcpu->arch.nmi_pending = min(vcpu->arch.nmi_pending, limit);
8615 kvm_make_request(KVM_REQ_EVENT, vcpu);
8616 }
8617
enter_smm_get_segment_flags(struct kvm_segment * seg)8618 static u32 enter_smm_get_segment_flags(struct kvm_segment *seg)
8619 {
8620 u32 flags = 0;
8621 flags |= seg->g << 23;
8622 flags |= seg->db << 22;
8623 flags |= seg->l << 21;
8624 flags |= seg->avl << 20;
8625 flags |= seg->present << 15;
8626 flags |= seg->dpl << 13;
8627 flags |= seg->s << 12;
8628 flags |= seg->type << 8;
8629 return flags;
8630 }
8631
enter_smm_save_seg_32(struct kvm_vcpu * vcpu,char * buf,int n)8632 static void enter_smm_save_seg_32(struct kvm_vcpu *vcpu, char *buf, int n)
8633 {
8634 struct kvm_segment seg;
8635 int offset;
8636
8637 kvm_get_segment(vcpu, &seg, n);
8638 put_smstate(u32, buf, 0x7fa8 + n * 4, seg.selector);
8639
8640 if (n < 3)
8641 offset = 0x7f84 + n * 12;
8642 else
8643 offset = 0x7f2c + (n - 3) * 12;
8644
8645 put_smstate(u32, buf, offset + 8, seg.base);
8646 put_smstate(u32, buf, offset + 4, seg.limit);
8647 put_smstate(u32, buf, offset, enter_smm_get_segment_flags(&seg));
8648 }
8649
8650 #ifdef CONFIG_X86_64
enter_smm_save_seg_64(struct kvm_vcpu * vcpu,char * buf,int n)8651 static void enter_smm_save_seg_64(struct kvm_vcpu *vcpu, char *buf, int n)
8652 {
8653 struct kvm_segment seg;
8654 int offset;
8655 u16 flags;
8656
8657 kvm_get_segment(vcpu, &seg, n);
8658 offset = 0x7e00 + n * 16;
8659
8660 flags = enter_smm_get_segment_flags(&seg) >> 8;
8661 put_smstate(u16, buf, offset, seg.selector);
8662 put_smstate(u16, buf, offset + 2, flags);
8663 put_smstate(u32, buf, offset + 4, seg.limit);
8664 put_smstate(u64, buf, offset + 8, seg.base);
8665 }
8666 #endif
8667
enter_smm_save_state_32(struct kvm_vcpu * vcpu,char * buf)8668 static void enter_smm_save_state_32(struct kvm_vcpu *vcpu, char *buf)
8669 {
8670 struct desc_ptr dt;
8671 struct kvm_segment seg;
8672 unsigned long val;
8673 int i;
8674
8675 put_smstate(u32, buf, 0x7ffc, kvm_read_cr0(vcpu));
8676 put_smstate(u32, buf, 0x7ff8, kvm_read_cr3(vcpu));
8677 put_smstate(u32, buf, 0x7ff4, kvm_get_rflags(vcpu));
8678 put_smstate(u32, buf, 0x7ff0, kvm_rip_read(vcpu));
8679
8680 for (i = 0; i < 8; i++)
8681 put_smstate(u32, buf, 0x7fd0 + i * 4, kvm_register_read(vcpu, i));
8682
8683 kvm_get_dr(vcpu, 6, &val);
8684 put_smstate(u32, buf, 0x7fcc, (u32)val);
8685 kvm_get_dr(vcpu, 7, &val);
8686 put_smstate(u32, buf, 0x7fc8, (u32)val);
8687
8688 kvm_get_segment(vcpu, &seg, VCPU_SREG_TR);
8689 put_smstate(u32, buf, 0x7fc4, seg.selector);
8690 put_smstate(u32, buf, 0x7f64, seg.base);
8691 put_smstate(u32, buf, 0x7f60, seg.limit);
8692 put_smstate(u32, buf, 0x7f5c, enter_smm_get_segment_flags(&seg));
8693
8694 kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR);
8695 put_smstate(u32, buf, 0x7fc0, seg.selector);
8696 put_smstate(u32, buf, 0x7f80, seg.base);
8697 put_smstate(u32, buf, 0x7f7c, seg.limit);
8698 put_smstate(u32, buf, 0x7f78, enter_smm_get_segment_flags(&seg));
8699
8700 kvm_x86_ops.get_gdt(vcpu, &dt);
8701 put_smstate(u32, buf, 0x7f74, dt.address);
8702 put_smstate(u32, buf, 0x7f70, dt.size);
8703
8704 kvm_x86_ops.get_idt(vcpu, &dt);
8705 put_smstate(u32, buf, 0x7f58, dt.address);
8706 put_smstate(u32, buf, 0x7f54, dt.size);
8707
8708 for (i = 0; i < 6; i++)
8709 enter_smm_save_seg_32(vcpu, buf, i);
8710
8711 put_smstate(u32, buf, 0x7f14, kvm_read_cr4(vcpu));
8712
8713 /* revision id */
8714 put_smstate(u32, buf, 0x7efc, 0x00020000);
8715 put_smstate(u32, buf, 0x7ef8, vcpu->arch.smbase);
8716 }
8717
8718 #ifdef CONFIG_X86_64
enter_smm_save_state_64(struct kvm_vcpu * vcpu,char * buf)8719 static void enter_smm_save_state_64(struct kvm_vcpu *vcpu, char *buf)
8720 {
8721 struct desc_ptr dt;
8722 struct kvm_segment seg;
8723 unsigned long val;
8724 int i;
8725
8726 for (i = 0; i < 16; i++)
8727 put_smstate(u64, buf, 0x7ff8 - i * 8, kvm_register_read(vcpu, i));
8728
8729 put_smstate(u64, buf, 0x7f78, kvm_rip_read(vcpu));
8730 put_smstate(u32, buf, 0x7f70, kvm_get_rflags(vcpu));
8731
8732 kvm_get_dr(vcpu, 6, &val);
8733 put_smstate(u64, buf, 0x7f68, val);
8734 kvm_get_dr(vcpu, 7, &val);
8735 put_smstate(u64, buf, 0x7f60, val);
8736
8737 put_smstate(u64, buf, 0x7f58, kvm_read_cr0(vcpu));
8738 put_smstate(u64, buf, 0x7f50, kvm_read_cr3(vcpu));
8739 put_smstate(u64, buf, 0x7f48, kvm_read_cr4(vcpu));
8740
8741 put_smstate(u32, buf, 0x7f00, vcpu->arch.smbase);
8742
8743 /* revision id */
8744 put_smstate(u32, buf, 0x7efc, 0x00020064);
8745
8746 put_smstate(u64, buf, 0x7ed0, vcpu->arch.efer);
8747
8748 kvm_get_segment(vcpu, &seg, VCPU_SREG_TR);
8749 put_smstate(u16, buf, 0x7e90, seg.selector);
8750 put_smstate(u16, buf, 0x7e92, enter_smm_get_segment_flags(&seg) >> 8);
8751 put_smstate(u32, buf, 0x7e94, seg.limit);
8752 put_smstate(u64, buf, 0x7e98, seg.base);
8753
8754 kvm_x86_ops.get_idt(vcpu, &dt);
8755 put_smstate(u32, buf, 0x7e84, dt.size);
8756 put_smstate(u64, buf, 0x7e88, dt.address);
8757
8758 kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR);
8759 put_smstate(u16, buf, 0x7e70, seg.selector);
8760 put_smstate(u16, buf, 0x7e72, enter_smm_get_segment_flags(&seg) >> 8);
8761 put_smstate(u32, buf, 0x7e74, seg.limit);
8762 put_smstate(u64, buf, 0x7e78, seg.base);
8763
8764 kvm_x86_ops.get_gdt(vcpu, &dt);
8765 put_smstate(u32, buf, 0x7e64, dt.size);
8766 put_smstate(u64, buf, 0x7e68, dt.address);
8767
8768 for (i = 0; i < 6; i++)
8769 enter_smm_save_seg_64(vcpu, buf, i);
8770 }
8771 #endif
8772
enter_smm(struct kvm_vcpu * vcpu)8773 static void enter_smm(struct kvm_vcpu *vcpu)
8774 {
8775 struct kvm_segment cs, ds;
8776 struct desc_ptr dt;
8777 char buf[512];
8778 u32 cr0;
8779
8780 trace_kvm_enter_smm(vcpu->vcpu_id, vcpu->arch.smbase, true);
8781 memset(buf, 0, 512);
8782 #ifdef CONFIG_X86_64
8783 if (guest_cpuid_has(vcpu, X86_FEATURE_LM))
8784 enter_smm_save_state_64(vcpu, buf);
8785 else
8786 #endif
8787 enter_smm_save_state_32(vcpu, buf);
8788
8789 /*
8790 * Give pre_enter_smm() a chance to make ISA-specific changes to the
8791 * vCPU state (e.g. leave guest mode) after we've saved the state into
8792 * the SMM state-save area.
8793 */
8794 kvm_x86_ops.pre_enter_smm(vcpu, buf);
8795
8796 vcpu->arch.hflags |= HF_SMM_MASK;
8797 kvm_vcpu_write_guest(vcpu, vcpu->arch.smbase + 0xfe00, buf, sizeof(buf));
8798
8799 if (kvm_x86_ops.get_nmi_mask(vcpu))
8800 vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
8801 else
8802 kvm_x86_ops.set_nmi_mask(vcpu, true);
8803
8804 kvm_set_rflags(vcpu, X86_EFLAGS_FIXED);
8805 kvm_rip_write(vcpu, 0x8000);
8806
8807 cr0 = vcpu->arch.cr0 & ~(X86_CR0_PE | X86_CR0_EM | X86_CR0_TS | X86_CR0_PG);
8808 kvm_x86_ops.set_cr0(vcpu, cr0);
8809 vcpu->arch.cr0 = cr0;
8810
8811 kvm_x86_ops.set_cr4(vcpu, 0);
8812
8813 /* Undocumented: IDT limit is set to zero on entry to SMM. */
8814 dt.address = dt.size = 0;
8815 kvm_x86_ops.set_idt(vcpu, &dt);
8816
8817 __kvm_set_dr(vcpu, 7, DR7_FIXED_1);
8818
8819 cs.selector = (vcpu->arch.smbase >> 4) & 0xffff;
8820 cs.base = vcpu->arch.smbase;
8821
8822 ds.selector = 0;
8823 ds.base = 0;
8824
8825 cs.limit = ds.limit = 0xffffffff;
8826 cs.type = ds.type = 0x3;
8827 cs.dpl = ds.dpl = 0;
8828 cs.db = ds.db = 0;
8829 cs.s = ds.s = 1;
8830 cs.l = ds.l = 0;
8831 cs.g = ds.g = 1;
8832 cs.avl = ds.avl = 0;
8833 cs.present = ds.present = 1;
8834 cs.unusable = ds.unusable = 0;
8835 cs.padding = ds.padding = 0;
8836
8837 kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
8838 kvm_set_segment(vcpu, &ds, VCPU_SREG_DS);
8839 kvm_set_segment(vcpu, &ds, VCPU_SREG_ES);
8840 kvm_set_segment(vcpu, &ds, VCPU_SREG_FS);
8841 kvm_set_segment(vcpu, &ds, VCPU_SREG_GS);
8842 kvm_set_segment(vcpu, &ds, VCPU_SREG_SS);
8843
8844 #ifdef CONFIG_X86_64
8845 if (guest_cpuid_has(vcpu, X86_FEATURE_LM))
8846 kvm_x86_ops.set_efer(vcpu, 0);
8847 #endif
8848
8849 kvm_update_cpuid_runtime(vcpu);
8850 kvm_mmu_reset_context(vcpu);
8851 }
8852
process_smi(struct kvm_vcpu * vcpu)8853 static void process_smi(struct kvm_vcpu *vcpu)
8854 {
8855 vcpu->arch.smi_pending = true;
8856 kvm_make_request(KVM_REQ_EVENT, vcpu);
8857 }
8858
kvm_make_scan_ioapic_request_mask(struct kvm * kvm,unsigned long * vcpu_bitmap)8859 void kvm_make_scan_ioapic_request_mask(struct kvm *kvm,
8860 unsigned long *vcpu_bitmap)
8861 {
8862 cpumask_var_t cpus;
8863
8864 zalloc_cpumask_var(&cpus, GFP_ATOMIC);
8865
8866 kvm_make_vcpus_request_mask(kvm, KVM_REQ_SCAN_IOAPIC,
8867 NULL, vcpu_bitmap, cpus);
8868
8869 free_cpumask_var(cpus);
8870 }
8871
kvm_make_scan_ioapic_request(struct kvm * kvm)8872 void kvm_make_scan_ioapic_request(struct kvm *kvm)
8873 {
8874 kvm_make_all_cpus_request(kvm, KVM_REQ_SCAN_IOAPIC);
8875 }
8876
kvm_vcpu_update_apicv(struct kvm_vcpu * vcpu)8877 void kvm_vcpu_update_apicv(struct kvm_vcpu *vcpu)
8878 {
8879 if (!lapic_in_kernel(vcpu))
8880 return;
8881
8882 vcpu->arch.apicv_active = kvm_apicv_activated(vcpu->kvm);
8883 kvm_apic_update_apicv(vcpu);
8884 kvm_x86_ops.refresh_apicv_exec_ctrl(vcpu);
8885 }
8886 EXPORT_SYMBOL_GPL(kvm_vcpu_update_apicv);
8887
8888 /*
8889 * NOTE: Do not hold any lock prior to calling this.
8890 *
8891 * In particular, kvm_request_apicv_update() expects kvm->srcu not to be
8892 * locked, because it calls __x86_set_memory_region() which does
8893 * synchronize_srcu(&kvm->srcu).
8894 */
kvm_request_apicv_update(struct kvm * kvm,bool activate,ulong bit)8895 void kvm_request_apicv_update(struct kvm *kvm, bool activate, ulong bit)
8896 {
8897 struct kvm_vcpu *except;
8898 unsigned long old, new, expected;
8899
8900 if (!kvm_x86_ops.check_apicv_inhibit_reasons ||
8901 !kvm_x86_ops.check_apicv_inhibit_reasons(bit))
8902 return;
8903
8904 old = READ_ONCE(kvm->arch.apicv_inhibit_reasons);
8905 do {
8906 expected = new = old;
8907 if (activate)
8908 __clear_bit(bit, &new);
8909 else
8910 __set_bit(bit, &new);
8911 if (new == old)
8912 break;
8913 old = cmpxchg(&kvm->arch.apicv_inhibit_reasons, expected, new);
8914 } while (old != expected);
8915
8916 if (!!old == !!new)
8917 return;
8918
8919 trace_kvm_apicv_update_request(activate, bit);
8920 if (kvm_x86_ops.pre_update_apicv_exec_ctrl)
8921 kvm_x86_ops.pre_update_apicv_exec_ctrl(kvm, activate);
8922
8923 /*
8924 * Sending request to update APICV for all other vcpus,
8925 * while update the calling vcpu immediately instead of
8926 * waiting for another #VMEXIT to handle the request.
8927 */
8928 except = kvm_get_running_vcpu();
8929 kvm_make_all_cpus_request_except(kvm, KVM_REQ_APICV_UPDATE,
8930 except);
8931 if (except)
8932 kvm_vcpu_update_apicv(except);
8933 }
8934 EXPORT_SYMBOL_GPL(kvm_request_apicv_update);
8935
vcpu_scan_ioapic(struct kvm_vcpu * vcpu)8936 static void vcpu_scan_ioapic(struct kvm_vcpu *vcpu)
8937 {
8938 if (!kvm_apic_present(vcpu))
8939 return;
8940
8941 bitmap_zero(vcpu->arch.ioapic_handled_vectors, 256);
8942
8943 if (irqchip_split(vcpu->kvm))
8944 kvm_scan_ioapic_routes(vcpu, vcpu->arch.ioapic_handled_vectors);
8945 else {
8946 if (vcpu->arch.apicv_active)
8947 kvm_x86_ops.sync_pir_to_irr(vcpu);
8948 if (ioapic_in_kernel(vcpu->kvm))
8949 kvm_ioapic_scan_entry(vcpu, vcpu->arch.ioapic_handled_vectors);
8950 }
8951
8952 if (is_guest_mode(vcpu))
8953 vcpu->arch.load_eoi_exitmap_pending = true;
8954 else
8955 kvm_make_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu);
8956 }
8957
vcpu_load_eoi_exitmap(struct kvm_vcpu * vcpu)8958 static void vcpu_load_eoi_exitmap(struct kvm_vcpu *vcpu)
8959 {
8960 u64 eoi_exit_bitmap[4];
8961
8962 if (!kvm_apic_hw_enabled(vcpu->arch.apic))
8963 return;
8964
8965 bitmap_or((ulong *)eoi_exit_bitmap, vcpu->arch.ioapic_handled_vectors,
8966 vcpu_to_synic(vcpu)->vec_bitmap, 256);
8967 kvm_x86_ops.load_eoi_exitmap(vcpu, eoi_exit_bitmap);
8968 }
8969
kvm_arch_mmu_notifier_invalidate_range(struct kvm * kvm,unsigned long start,unsigned long end)8970 void kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm,
8971 unsigned long start, unsigned long end)
8972 {
8973 unsigned long apic_address;
8974
8975 /*
8976 * The physical address of apic access page is stored in the VMCS.
8977 * Update it when it becomes invalid.
8978 */
8979 apic_address = gfn_to_hva(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
8980 if (start <= apic_address && apic_address < end)
8981 kvm_make_all_cpus_request(kvm, KVM_REQ_APIC_PAGE_RELOAD);
8982 }
8983
kvm_arch_guest_memory_reclaimed(struct kvm * kvm)8984 void kvm_arch_guest_memory_reclaimed(struct kvm *kvm)
8985 {
8986 if (kvm_x86_ops.guest_memory_reclaimed)
8987 kvm_x86_ops.guest_memory_reclaimed(kvm);
8988 }
8989
kvm_vcpu_reload_apic_access_page(struct kvm_vcpu * vcpu)8990 void kvm_vcpu_reload_apic_access_page(struct kvm_vcpu *vcpu)
8991 {
8992 if (!lapic_in_kernel(vcpu))
8993 return;
8994
8995 if (!kvm_x86_ops.set_apic_access_page_addr)
8996 return;
8997
8998 kvm_x86_ops.set_apic_access_page_addr(vcpu);
8999 }
9000
__kvm_request_immediate_exit(struct kvm_vcpu * vcpu)9001 void __kvm_request_immediate_exit(struct kvm_vcpu *vcpu)
9002 {
9003 smp_send_reschedule(vcpu->cpu);
9004 }
9005 EXPORT_SYMBOL_GPL(__kvm_request_immediate_exit);
9006
9007 /*
9008 * Returns 1 to let vcpu_run() continue the guest execution loop without
9009 * exiting to the userspace. Otherwise, the value will be returned to the
9010 * userspace.
9011 */
vcpu_enter_guest(struct kvm_vcpu * vcpu)9012 static int vcpu_enter_guest(struct kvm_vcpu *vcpu)
9013 {
9014 int r;
9015 bool req_int_win =
9016 dm_request_for_irq_injection(vcpu) &&
9017 kvm_cpu_accept_dm_intr(vcpu);
9018 fastpath_t exit_fastpath;
9019
9020 bool req_immediate_exit = false;
9021
9022 if (kvm_request_pending(vcpu)) {
9023 if (kvm_check_request(KVM_REQ_GET_NESTED_STATE_PAGES, vcpu)) {
9024 if (unlikely(!kvm_x86_ops.nested_ops->get_nested_state_pages(vcpu))) {
9025 r = 0;
9026 goto out;
9027 }
9028 }
9029 if (kvm_check_request(KVM_REQ_MMU_RELOAD, vcpu))
9030 kvm_mmu_unload(vcpu);
9031 if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu))
9032 __kvm_migrate_timers(vcpu);
9033 if (kvm_check_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu))
9034 kvm_gen_update_masterclock(vcpu->kvm);
9035 if (kvm_check_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu))
9036 kvm_gen_kvmclock_update(vcpu);
9037 if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) {
9038 r = kvm_guest_time_update(vcpu);
9039 if (unlikely(r))
9040 goto out;
9041 }
9042 if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu))
9043 kvm_mmu_sync_roots(vcpu);
9044 if (kvm_check_request(KVM_REQ_LOAD_MMU_PGD, vcpu))
9045 kvm_mmu_load_pgd(vcpu);
9046 if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu)) {
9047 kvm_vcpu_flush_tlb_all(vcpu);
9048
9049 /* Flushing all ASIDs flushes the current ASID... */
9050 kvm_clear_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
9051 }
9052 if (kvm_check_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu))
9053 kvm_vcpu_flush_tlb_current(vcpu);
9054 if (kvm_check_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu))
9055 kvm_vcpu_flush_tlb_guest(vcpu);
9056
9057 if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) {
9058 vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS;
9059 r = 0;
9060 goto out;
9061 }
9062 if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
9063 vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
9064 vcpu->mmio_needed = 0;
9065 r = 0;
9066 goto out;
9067 }
9068 if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) {
9069 /* Page is swapped out. Do synthetic halt */
9070 vcpu->arch.apf.halted = true;
9071 r = 1;
9072 goto out;
9073 }
9074 if (kvm_check_request(KVM_REQ_STEAL_UPDATE, vcpu))
9075 record_steal_time(vcpu);
9076 if (kvm_check_request(KVM_REQ_SMI, vcpu))
9077 process_smi(vcpu);
9078 if (kvm_check_request(KVM_REQ_NMI, vcpu))
9079 process_nmi(vcpu);
9080 if (kvm_check_request(KVM_REQ_PMU, vcpu))
9081 kvm_pmu_handle_event(vcpu);
9082 if (kvm_check_request(KVM_REQ_PMI, vcpu))
9083 kvm_pmu_deliver_pmi(vcpu);
9084 if (kvm_check_request(KVM_REQ_IOAPIC_EOI_EXIT, vcpu)) {
9085 BUG_ON(vcpu->arch.pending_ioapic_eoi > 255);
9086 if (test_bit(vcpu->arch.pending_ioapic_eoi,
9087 vcpu->arch.ioapic_handled_vectors)) {
9088 vcpu->run->exit_reason = KVM_EXIT_IOAPIC_EOI;
9089 vcpu->run->eoi.vector =
9090 vcpu->arch.pending_ioapic_eoi;
9091 r = 0;
9092 goto out;
9093 }
9094 }
9095 if (kvm_check_request(KVM_REQ_SCAN_IOAPIC, vcpu))
9096 vcpu_scan_ioapic(vcpu);
9097 if (kvm_check_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu))
9098 vcpu_load_eoi_exitmap(vcpu);
9099 if (kvm_check_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu))
9100 kvm_vcpu_reload_apic_access_page(vcpu);
9101 if (kvm_check_request(KVM_REQ_HV_CRASH, vcpu)) {
9102 vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
9103 vcpu->run->system_event.type = KVM_SYSTEM_EVENT_CRASH;
9104 r = 0;
9105 goto out;
9106 }
9107 if (kvm_check_request(KVM_REQ_HV_RESET, vcpu)) {
9108 vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
9109 vcpu->run->system_event.type = KVM_SYSTEM_EVENT_RESET;
9110 r = 0;
9111 goto out;
9112 }
9113 if (kvm_check_request(KVM_REQ_HV_EXIT, vcpu)) {
9114 vcpu->run->exit_reason = KVM_EXIT_HYPERV;
9115 vcpu->run->hyperv = vcpu->arch.hyperv.exit;
9116 r = 0;
9117 goto out;
9118 }
9119
9120 /*
9121 * KVM_REQ_HV_STIMER has to be processed after
9122 * KVM_REQ_CLOCK_UPDATE, because Hyper-V SynIC timers
9123 * depend on the guest clock being up-to-date
9124 */
9125 if (kvm_check_request(KVM_REQ_HV_STIMER, vcpu))
9126 kvm_hv_process_stimers(vcpu);
9127 if (kvm_check_request(KVM_REQ_APICV_UPDATE, vcpu))
9128 kvm_vcpu_update_apicv(vcpu);
9129 if (kvm_check_request(KVM_REQ_APF_READY, vcpu))
9130 kvm_check_async_pf_completion(vcpu);
9131 if (kvm_check_request(KVM_REQ_MSR_FILTER_CHANGED, vcpu))
9132 kvm_x86_ops.msr_filter_changed(vcpu);
9133 }
9134
9135 if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win) {
9136 ++vcpu->stat.req_event;
9137 kvm_apic_accept_events(vcpu);
9138 if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) {
9139 r = 1;
9140 goto out;
9141 }
9142
9143 inject_pending_event(vcpu, &req_immediate_exit);
9144 if (req_int_win)
9145 kvm_x86_ops.enable_irq_window(vcpu);
9146
9147 if (kvm_lapic_enabled(vcpu)) {
9148 update_cr8_intercept(vcpu);
9149 kvm_lapic_sync_to_vapic(vcpu);
9150 }
9151 }
9152
9153 r = kvm_mmu_reload(vcpu);
9154 if (unlikely(r)) {
9155 goto cancel_injection;
9156 }
9157
9158 preempt_disable();
9159
9160 kvm_x86_ops.prepare_guest_switch(vcpu);
9161
9162 /*
9163 * Disable IRQs before setting IN_GUEST_MODE. Posted interrupt
9164 * IPI are then delayed after guest entry, which ensures that they
9165 * result in virtual interrupt delivery.
9166 */
9167 local_irq_disable();
9168 vcpu->mode = IN_GUEST_MODE;
9169
9170 srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
9171
9172 /*
9173 * 1) We should set ->mode before checking ->requests. Please see
9174 * the comment in kvm_vcpu_exiting_guest_mode().
9175 *
9176 * 2) For APICv, we should set ->mode before checking PID.ON. This
9177 * pairs with the memory barrier implicit in pi_test_and_set_on
9178 * (see vmx_deliver_posted_interrupt).
9179 *
9180 * 3) This also orders the write to mode from any reads to the page
9181 * tables done while the VCPU is running. Please see the comment
9182 * in kvm_flush_remote_tlbs.
9183 */
9184 smp_mb__after_srcu_read_unlock();
9185
9186 /*
9187 * This handles the case where a posted interrupt was
9188 * notified with kvm_vcpu_kick.
9189 */
9190 if (kvm_lapic_enabled(vcpu) && vcpu->arch.apicv_active)
9191 kvm_x86_ops.sync_pir_to_irr(vcpu);
9192
9193 if (kvm_vcpu_exit_request(vcpu)) {
9194 vcpu->mode = OUTSIDE_GUEST_MODE;
9195 smp_wmb();
9196 local_irq_enable();
9197 preempt_enable();
9198 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
9199 r = 1;
9200 goto cancel_injection;
9201 }
9202
9203 if (req_immediate_exit) {
9204 kvm_make_request(KVM_REQ_EVENT, vcpu);
9205 kvm_x86_ops.request_immediate_exit(vcpu);
9206 }
9207
9208 trace_kvm_entry(vcpu);
9209
9210 fpregs_assert_state_consistent();
9211 if (test_thread_flag(TIF_NEED_FPU_LOAD))
9212 switch_fpu_return();
9213
9214 if (unlikely(vcpu->arch.switch_db_regs)) {
9215 set_debugreg(0, 7);
9216 set_debugreg(vcpu->arch.eff_db[0], 0);
9217 set_debugreg(vcpu->arch.eff_db[1], 1);
9218 set_debugreg(vcpu->arch.eff_db[2], 2);
9219 set_debugreg(vcpu->arch.eff_db[3], 3);
9220 set_debugreg(vcpu->arch.dr6, 6);
9221 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_RELOAD;
9222 } else if (unlikely(hw_breakpoint_active())) {
9223 set_debugreg(0, 7);
9224 }
9225
9226 exit_fastpath = kvm_x86_ops.run(vcpu);
9227
9228 /*
9229 * Do this here before restoring debug registers on the host. And
9230 * since we do this before handling the vmexit, a DR access vmexit
9231 * can (a) read the correct value of the debug registers, (b) set
9232 * KVM_DEBUGREG_WONT_EXIT again.
9233 */
9234 if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)) {
9235 WARN_ON(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP);
9236 kvm_x86_ops.sync_dirty_debug_regs(vcpu);
9237 kvm_update_dr0123(vcpu);
9238 kvm_update_dr7(vcpu);
9239 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_RELOAD;
9240 }
9241
9242 /*
9243 * If the guest has used debug registers, at least dr7
9244 * will be disabled while returning to the host.
9245 * If we don't have active breakpoints in the host, we don't
9246 * care about the messed up debug address registers. But if
9247 * we have some of them active, restore the old state.
9248 */
9249 if (hw_breakpoint_active())
9250 hw_breakpoint_restore();
9251
9252 vcpu->arch.last_vmentry_cpu = vcpu->cpu;
9253 vcpu->arch.last_guest_tsc = kvm_read_l1_tsc(vcpu, rdtsc());
9254
9255 vcpu->mode = OUTSIDE_GUEST_MODE;
9256 smp_wmb();
9257
9258 kvm_x86_ops.handle_exit_irqoff(vcpu);
9259
9260 /*
9261 * Consume any pending interrupts, including the possible source of
9262 * VM-Exit on SVM and any ticks that occur between VM-Exit and now.
9263 * An instruction is required after local_irq_enable() to fully unblock
9264 * interrupts on processors that implement an interrupt shadow, the
9265 * stat.exits increment will do nicely.
9266 */
9267 kvm_before_interrupt(vcpu);
9268 local_irq_enable();
9269 ++vcpu->stat.exits;
9270 local_irq_disable();
9271 kvm_after_interrupt(vcpu);
9272
9273 /*
9274 * Wait until after servicing IRQs to account guest time so that any
9275 * ticks that occurred while running the guest are properly accounted
9276 * to the guest. Waiting until IRQs are enabled degrades the accuracy
9277 * of accounting via context tracking, but the loss of accuracy is
9278 * acceptable for all known use cases.
9279 */
9280 vtime_account_guest_exit();
9281
9282 if (lapic_in_kernel(vcpu)) {
9283 s64 delta = vcpu->arch.apic->lapic_timer.advance_expire_delta;
9284 if (delta != S64_MIN) {
9285 trace_kvm_wait_lapic_expire(vcpu->vcpu_id, delta);
9286 vcpu->arch.apic->lapic_timer.advance_expire_delta = S64_MIN;
9287 }
9288 }
9289
9290 local_irq_enable();
9291 preempt_enable();
9292
9293 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
9294
9295 /*
9296 * Profile KVM exit RIPs:
9297 */
9298 if (unlikely(prof_on == KVM_PROFILING)) {
9299 unsigned long rip = kvm_rip_read(vcpu);
9300 profile_hit(KVM_PROFILING, (void *)rip);
9301 }
9302
9303 if (unlikely(vcpu->arch.tsc_always_catchup))
9304 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
9305
9306 if (vcpu->arch.apic_attention)
9307 kvm_lapic_sync_from_vapic(vcpu);
9308
9309 r = kvm_x86_ops.handle_exit(vcpu, exit_fastpath);
9310 return r;
9311
9312 cancel_injection:
9313 if (req_immediate_exit)
9314 kvm_make_request(KVM_REQ_EVENT, vcpu);
9315 kvm_x86_ops.cancel_injection(vcpu);
9316 if (unlikely(vcpu->arch.apic_attention))
9317 kvm_lapic_sync_from_vapic(vcpu);
9318 out:
9319 return r;
9320 }
9321
vcpu_block(struct kvm * kvm,struct kvm_vcpu * vcpu)9322 static inline int vcpu_block(struct kvm *kvm, struct kvm_vcpu *vcpu)
9323 {
9324 if (!kvm_arch_vcpu_runnable(vcpu) &&
9325 (!kvm_x86_ops.pre_block || kvm_x86_ops.pre_block(vcpu) == 0)) {
9326 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
9327 kvm_vcpu_block(vcpu);
9328 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
9329
9330 if (kvm_x86_ops.post_block)
9331 kvm_x86_ops.post_block(vcpu);
9332
9333 if (!kvm_check_request(KVM_REQ_UNHALT, vcpu))
9334 return 1;
9335 }
9336
9337 kvm_apic_accept_events(vcpu);
9338 switch(vcpu->arch.mp_state) {
9339 case KVM_MP_STATE_HALTED:
9340 vcpu->arch.pv.pv_unhalted = false;
9341 vcpu->arch.mp_state =
9342 KVM_MP_STATE_RUNNABLE;
9343 fallthrough;
9344 case KVM_MP_STATE_RUNNABLE:
9345 vcpu->arch.apf.halted = false;
9346 break;
9347 case KVM_MP_STATE_INIT_RECEIVED:
9348 break;
9349 default:
9350 return -EINTR;
9351 }
9352 return 1;
9353 }
9354
kvm_vcpu_running(struct kvm_vcpu * vcpu)9355 static inline bool kvm_vcpu_running(struct kvm_vcpu *vcpu)
9356 {
9357 if (is_guest_mode(vcpu))
9358 kvm_x86_ops.nested_ops->check_events(vcpu);
9359
9360 return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
9361 !vcpu->arch.apf.halted);
9362 }
9363
vcpu_run(struct kvm_vcpu * vcpu)9364 static int vcpu_run(struct kvm_vcpu *vcpu)
9365 {
9366 int r;
9367 struct kvm *kvm = vcpu->kvm;
9368
9369 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
9370 vcpu->arch.l1tf_flush_l1d = true;
9371
9372 for (;;) {
9373 /*
9374 * If another guest vCPU requests a PV TLB flush in the middle
9375 * of instruction emulation, the rest of the emulation could
9376 * use a stale page translation. Assume that any code after
9377 * this point can start executing an instruction.
9378 */
9379 vcpu->arch.at_instruction_boundary = false;
9380 if (kvm_vcpu_running(vcpu)) {
9381 r = vcpu_enter_guest(vcpu);
9382 } else {
9383 r = vcpu_block(kvm, vcpu);
9384 }
9385
9386 if (r <= 0)
9387 break;
9388
9389 kvm_clear_request(KVM_REQ_PENDING_TIMER, vcpu);
9390 if (kvm_cpu_has_pending_timer(vcpu))
9391 kvm_inject_pending_timer_irqs(vcpu);
9392
9393 if (dm_request_for_irq_injection(vcpu) &&
9394 kvm_vcpu_ready_for_interrupt_injection(vcpu)) {
9395 r = 0;
9396 vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
9397 ++vcpu->stat.request_irq_exits;
9398 break;
9399 }
9400
9401 if (__xfer_to_guest_mode_work_pending()) {
9402 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
9403 r = xfer_to_guest_mode_handle_work(vcpu);
9404 if (r)
9405 return r;
9406 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
9407 }
9408 }
9409
9410 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
9411
9412 return r;
9413 }
9414
complete_emulated_io(struct kvm_vcpu * vcpu)9415 static inline int complete_emulated_io(struct kvm_vcpu *vcpu)
9416 {
9417 int r;
9418
9419 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
9420 r = kvm_emulate_instruction(vcpu, EMULTYPE_NO_DECODE);
9421 srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
9422 return r;
9423 }
9424
complete_emulated_pio(struct kvm_vcpu * vcpu)9425 static int complete_emulated_pio(struct kvm_vcpu *vcpu)
9426 {
9427 BUG_ON(!vcpu->arch.pio.count);
9428
9429 return complete_emulated_io(vcpu);
9430 }
9431
9432 /*
9433 * Implements the following, as a state machine:
9434 *
9435 * read:
9436 * for each fragment
9437 * for each mmio piece in the fragment
9438 * write gpa, len
9439 * exit
9440 * copy data
9441 * execute insn
9442 *
9443 * write:
9444 * for each fragment
9445 * for each mmio piece in the fragment
9446 * write gpa, len
9447 * copy data
9448 * exit
9449 */
complete_emulated_mmio(struct kvm_vcpu * vcpu)9450 static int complete_emulated_mmio(struct kvm_vcpu *vcpu)
9451 {
9452 struct kvm_run *run = vcpu->run;
9453 struct kvm_mmio_fragment *frag;
9454 unsigned len;
9455
9456 BUG_ON(!vcpu->mmio_needed);
9457
9458 /* Complete previous fragment */
9459 frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment];
9460 len = min(8u, frag->len);
9461 if (!vcpu->mmio_is_write)
9462 memcpy(frag->data, run->mmio.data, len);
9463
9464 if (frag->len <= 8) {
9465 /* Switch to the next fragment. */
9466 frag++;
9467 vcpu->mmio_cur_fragment++;
9468 } else {
9469 /* Go forward to the next mmio piece. */
9470 frag->data += len;
9471 frag->gpa += len;
9472 frag->len -= len;
9473 }
9474
9475 if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) {
9476 vcpu->mmio_needed = 0;
9477
9478 /* FIXME: return into emulator if single-stepping. */
9479 if (vcpu->mmio_is_write)
9480 return 1;
9481 vcpu->mmio_read_completed = 1;
9482 return complete_emulated_io(vcpu);
9483 }
9484
9485 run->exit_reason = KVM_EXIT_MMIO;
9486 run->mmio.phys_addr = frag->gpa;
9487 if (vcpu->mmio_is_write)
9488 memcpy(run->mmio.data, frag->data, min(8u, frag->len));
9489 run->mmio.len = min(8u, frag->len);
9490 run->mmio.is_write = vcpu->mmio_is_write;
9491 vcpu->arch.complete_userspace_io = complete_emulated_mmio;
9492 return 0;
9493 }
9494
kvm_save_current_fpu(struct fpu * fpu)9495 static void kvm_save_current_fpu(struct fpu *fpu)
9496 {
9497 /*
9498 * If the target FPU state is not resident in the CPU registers, just
9499 * memcpy() from current, else save CPU state directly to the target.
9500 */
9501 if (test_thread_flag(TIF_NEED_FPU_LOAD))
9502 memcpy(&fpu->state, ¤t->thread.fpu.state,
9503 fpu_kernel_xstate_size);
9504 else
9505 copy_fpregs_to_fpstate(fpu);
9506 }
9507
9508 /* Swap (qemu) user FPU context for the guest FPU context. */
kvm_load_guest_fpu(struct kvm_vcpu * vcpu)9509 static void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
9510 {
9511 fpregs_lock();
9512
9513 kvm_save_current_fpu(vcpu->arch.user_fpu);
9514
9515 /* PKRU is separately restored in kvm_x86_ops.run. */
9516 __copy_kernel_to_fpregs(&vcpu->arch.guest_fpu->state,
9517 ~XFEATURE_MASK_PKRU);
9518
9519 fpregs_mark_activate();
9520 fpregs_unlock();
9521
9522 trace_kvm_fpu(1);
9523 }
9524
9525 /* When vcpu_run ends, restore user space FPU context. */
kvm_put_guest_fpu(struct kvm_vcpu * vcpu)9526 static void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
9527 {
9528 fpregs_lock();
9529
9530 kvm_save_current_fpu(vcpu->arch.guest_fpu);
9531
9532 copy_kernel_to_fpregs(&vcpu->arch.user_fpu->state);
9533
9534 fpregs_mark_activate();
9535 fpregs_unlock();
9536
9537 ++vcpu->stat.fpu_reload;
9538 trace_kvm_fpu(0);
9539 }
9540
kvm_arch_vcpu_ioctl_run(struct kvm_vcpu * vcpu)9541 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu)
9542 {
9543 struct kvm_run *kvm_run = vcpu->run;
9544 int r;
9545
9546 vcpu_load(vcpu);
9547 kvm_sigset_activate(vcpu);
9548 kvm_load_guest_fpu(vcpu);
9549
9550 if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
9551 if (kvm_run->immediate_exit) {
9552 r = -EINTR;
9553 goto out;
9554 }
9555 kvm_vcpu_block(vcpu);
9556 kvm_apic_accept_events(vcpu);
9557 kvm_clear_request(KVM_REQ_UNHALT, vcpu);
9558 r = -EAGAIN;
9559 if (signal_pending(current)) {
9560 r = -EINTR;
9561 kvm_run->exit_reason = KVM_EXIT_INTR;
9562 ++vcpu->stat.signal_exits;
9563 }
9564 goto out;
9565 }
9566
9567 if (kvm_run->kvm_valid_regs & ~KVM_SYNC_X86_VALID_FIELDS) {
9568 r = -EINVAL;
9569 goto out;
9570 }
9571
9572 if (kvm_run->kvm_dirty_regs) {
9573 r = sync_regs(vcpu);
9574 if (r != 0)
9575 goto out;
9576 }
9577
9578 /* re-sync apic's tpr */
9579 if (!lapic_in_kernel(vcpu)) {
9580 if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) {
9581 r = -EINVAL;
9582 goto out;
9583 }
9584 }
9585
9586 if (unlikely(vcpu->arch.complete_userspace_io)) {
9587 int (*cui)(struct kvm_vcpu *) = vcpu->arch.complete_userspace_io;
9588 vcpu->arch.complete_userspace_io = NULL;
9589 r = cui(vcpu);
9590 if (r <= 0)
9591 goto out;
9592 } else
9593 WARN_ON(vcpu->arch.pio.count || vcpu->mmio_needed);
9594
9595 if (kvm_run->immediate_exit)
9596 r = -EINTR;
9597 else
9598 r = vcpu_run(vcpu);
9599
9600 out:
9601 kvm_put_guest_fpu(vcpu);
9602 if (kvm_run->kvm_valid_regs)
9603 store_regs(vcpu);
9604 post_kvm_run_save(vcpu);
9605 kvm_sigset_deactivate(vcpu);
9606
9607 vcpu_put(vcpu);
9608 return r;
9609 }
9610
__get_regs(struct kvm_vcpu * vcpu,struct kvm_regs * regs)9611 static void __get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
9612 {
9613 if (vcpu->arch.emulate_regs_need_sync_to_vcpu) {
9614 /*
9615 * We are here if userspace calls get_regs() in the middle of
9616 * instruction emulation. Registers state needs to be copied
9617 * back from emulation context to vcpu. Userspace shouldn't do
9618 * that usually, but some bad designed PV devices (vmware
9619 * backdoor interface) need this to work
9620 */
9621 emulator_writeback_register_cache(vcpu->arch.emulate_ctxt);
9622 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
9623 }
9624 regs->rax = kvm_rax_read(vcpu);
9625 regs->rbx = kvm_rbx_read(vcpu);
9626 regs->rcx = kvm_rcx_read(vcpu);
9627 regs->rdx = kvm_rdx_read(vcpu);
9628 regs->rsi = kvm_rsi_read(vcpu);
9629 regs->rdi = kvm_rdi_read(vcpu);
9630 regs->rsp = kvm_rsp_read(vcpu);
9631 regs->rbp = kvm_rbp_read(vcpu);
9632 #ifdef CONFIG_X86_64
9633 regs->r8 = kvm_r8_read(vcpu);
9634 regs->r9 = kvm_r9_read(vcpu);
9635 regs->r10 = kvm_r10_read(vcpu);
9636 regs->r11 = kvm_r11_read(vcpu);
9637 regs->r12 = kvm_r12_read(vcpu);
9638 regs->r13 = kvm_r13_read(vcpu);
9639 regs->r14 = kvm_r14_read(vcpu);
9640 regs->r15 = kvm_r15_read(vcpu);
9641 #endif
9642
9643 regs->rip = kvm_rip_read(vcpu);
9644 regs->rflags = kvm_get_rflags(vcpu);
9645 }
9646
kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu * vcpu,struct kvm_regs * regs)9647 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
9648 {
9649 vcpu_load(vcpu);
9650 __get_regs(vcpu, regs);
9651 vcpu_put(vcpu);
9652 return 0;
9653 }
9654
__set_regs(struct kvm_vcpu * vcpu,struct kvm_regs * regs)9655 static void __set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
9656 {
9657 vcpu->arch.emulate_regs_need_sync_from_vcpu = true;
9658 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
9659
9660 kvm_rax_write(vcpu, regs->rax);
9661 kvm_rbx_write(vcpu, regs->rbx);
9662 kvm_rcx_write(vcpu, regs->rcx);
9663 kvm_rdx_write(vcpu, regs->rdx);
9664 kvm_rsi_write(vcpu, regs->rsi);
9665 kvm_rdi_write(vcpu, regs->rdi);
9666 kvm_rsp_write(vcpu, regs->rsp);
9667 kvm_rbp_write(vcpu, regs->rbp);
9668 #ifdef CONFIG_X86_64
9669 kvm_r8_write(vcpu, regs->r8);
9670 kvm_r9_write(vcpu, regs->r9);
9671 kvm_r10_write(vcpu, regs->r10);
9672 kvm_r11_write(vcpu, regs->r11);
9673 kvm_r12_write(vcpu, regs->r12);
9674 kvm_r13_write(vcpu, regs->r13);
9675 kvm_r14_write(vcpu, regs->r14);
9676 kvm_r15_write(vcpu, regs->r15);
9677 #endif
9678
9679 kvm_rip_write(vcpu, regs->rip);
9680 kvm_set_rflags(vcpu, regs->rflags | X86_EFLAGS_FIXED);
9681
9682 vcpu->arch.exception.pending = false;
9683
9684 kvm_make_request(KVM_REQ_EVENT, vcpu);
9685 }
9686
kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu * vcpu,struct kvm_regs * regs)9687 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
9688 {
9689 vcpu_load(vcpu);
9690 __set_regs(vcpu, regs);
9691 vcpu_put(vcpu);
9692 return 0;
9693 }
9694
kvm_get_cs_db_l_bits(struct kvm_vcpu * vcpu,int * db,int * l)9695 void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
9696 {
9697 struct kvm_segment cs;
9698
9699 kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
9700 *db = cs.db;
9701 *l = cs.l;
9702 }
9703 EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
9704
__get_sregs(struct kvm_vcpu * vcpu,struct kvm_sregs * sregs)9705 static void __get_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
9706 {
9707 struct desc_ptr dt;
9708
9709 kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
9710 kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
9711 kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
9712 kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
9713 kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
9714 kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
9715
9716 kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
9717 kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
9718
9719 kvm_x86_ops.get_idt(vcpu, &dt);
9720 sregs->idt.limit = dt.size;
9721 sregs->idt.base = dt.address;
9722 kvm_x86_ops.get_gdt(vcpu, &dt);
9723 sregs->gdt.limit = dt.size;
9724 sregs->gdt.base = dt.address;
9725
9726 sregs->cr0 = kvm_read_cr0(vcpu);
9727 sregs->cr2 = vcpu->arch.cr2;
9728 sregs->cr3 = kvm_read_cr3(vcpu);
9729 sregs->cr4 = kvm_read_cr4(vcpu);
9730 sregs->cr8 = kvm_get_cr8(vcpu);
9731 sregs->efer = vcpu->arch.efer;
9732 sregs->apic_base = kvm_get_apic_base(vcpu);
9733
9734 memset(sregs->interrupt_bitmap, 0, sizeof(sregs->interrupt_bitmap));
9735
9736 if (vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft)
9737 set_bit(vcpu->arch.interrupt.nr,
9738 (unsigned long *)sregs->interrupt_bitmap);
9739 }
9740
kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu * vcpu,struct kvm_sregs * sregs)9741 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
9742 struct kvm_sregs *sregs)
9743 {
9744 vcpu_load(vcpu);
9745 __get_sregs(vcpu, sregs);
9746 vcpu_put(vcpu);
9747 return 0;
9748 }
9749
kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu * vcpu,struct kvm_mp_state * mp_state)9750 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
9751 struct kvm_mp_state *mp_state)
9752 {
9753 vcpu_load(vcpu);
9754 if (kvm_mpx_supported())
9755 kvm_load_guest_fpu(vcpu);
9756
9757 kvm_apic_accept_events(vcpu);
9758 if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED &&
9759 vcpu->arch.pv.pv_unhalted)
9760 mp_state->mp_state = KVM_MP_STATE_RUNNABLE;
9761 else
9762 mp_state->mp_state = vcpu->arch.mp_state;
9763
9764 if (kvm_mpx_supported())
9765 kvm_put_guest_fpu(vcpu);
9766 vcpu_put(vcpu);
9767 return 0;
9768 }
9769
kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu * vcpu,struct kvm_mp_state * mp_state)9770 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
9771 struct kvm_mp_state *mp_state)
9772 {
9773 int ret = -EINVAL;
9774
9775 vcpu_load(vcpu);
9776
9777 if (!lapic_in_kernel(vcpu) &&
9778 mp_state->mp_state != KVM_MP_STATE_RUNNABLE)
9779 goto out;
9780
9781 /*
9782 * KVM_MP_STATE_INIT_RECEIVED means the processor is in
9783 * INIT state; latched init should be reported using
9784 * KVM_SET_VCPU_EVENTS, so reject it here.
9785 */
9786 if ((kvm_vcpu_latch_init(vcpu) || vcpu->arch.smi_pending) &&
9787 (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED ||
9788 mp_state->mp_state == KVM_MP_STATE_INIT_RECEIVED))
9789 goto out;
9790
9791 if (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED) {
9792 vcpu->arch.mp_state = KVM_MP_STATE_INIT_RECEIVED;
9793 set_bit(KVM_APIC_SIPI, &vcpu->arch.apic->pending_events);
9794 } else
9795 vcpu->arch.mp_state = mp_state->mp_state;
9796 kvm_make_request(KVM_REQ_EVENT, vcpu);
9797
9798 ret = 0;
9799 out:
9800 vcpu_put(vcpu);
9801 return ret;
9802 }
9803
kvm_task_switch(struct kvm_vcpu * vcpu,u16 tss_selector,int idt_index,int reason,bool has_error_code,u32 error_code)9804 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index,
9805 int reason, bool has_error_code, u32 error_code)
9806 {
9807 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
9808 int ret;
9809
9810 init_emulate_ctxt(vcpu);
9811
9812 ret = emulator_task_switch(ctxt, tss_selector, idt_index, reason,
9813 has_error_code, error_code);
9814 if (ret) {
9815 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
9816 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
9817 vcpu->run->internal.ndata = 0;
9818 return 0;
9819 }
9820
9821 kvm_rip_write(vcpu, ctxt->eip);
9822 kvm_set_rflags(vcpu, ctxt->eflags);
9823 return 1;
9824 }
9825 EXPORT_SYMBOL_GPL(kvm_task_switch);
9826
kvm_valid_sregs(struct kvm_vcpu * vcpu,struct kvm_sregs * sregs)9827 static int kvm_valid_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
9828 {
9829 if ((sregs->efer & EFER_LME) && (sregs->cr0 & X86_CR0_PG)) {
9830 /*
9831 * When EFER.LME and CR0.PG are set, the processor is in
9832 * 64-bit mode (though maybe in a 32-bit code segment).
9833 * CR4.PAE and EFER.LMA must be set.
9834 */
9835 if (!(sregs->cr4 & X86_CR4_PAE)
9836 || !(sregs->efer & EFER_LMA))
9837 return -EINVAL;
9838 if (sregs->cr3 & vcpu->arch.cr3_lm_rsvd_bits)
9839 return -EINVAL;
9840 } else {
9841 /*
9842 * Not in 64-bit mode: EFER.LMA is clear and the code
9843 * segment cannot be 64-bit.
9844 */
9845 if (sregs->efer & EFER_LMA || sregs->cs.l)
9846 return -EINVAL;
9847 }
9848
9849 return kvm_valid_cr4(vcpu, sregs->cr4);
9850 }
9851
__set_sregs(struct kvm_vcpu * vcpu,struct kvm_sregs * sregs)9852 static int __set_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
9853 {
9854 struct msr_data apic_base_msr;
9855 int mmu_reset_needed = 0;
9856 int cpuid_update_needed = 0;
9857 int pending_vec, max_bits, idx;
9858 struct desc_ptr dt;
9859 int ret = -EINVAL;
9860
9861 if (kvm_valid_sregs(vcpu, sregs))
9862 goto out;
9863
9864 apic_base_msr.data = sregs->apic_base;
9865 apic_base_msr.host_initiated = true;
9866 if (kvm_set_apic_base(vcpu, &apic_base_msr))
9867 goto out;
9868
9869 dt.size = sregs->idt.limit;
9870 dt.address = sregs->idt.base;
9871 kvm_x86_ops.set_idt(vcpu, &dt);
9872 dt.size = sregs->gdt.limit;
9873 dt.address = sregs->gdt.base;
9874 kvm_x86_ops.set_gdt(vcpu, &dt);
9875
9876 vcpu->arch.cr2 = sregs->cr2;
9877 mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3;
9878 vcpu->arch.cr3 = sregs->cr3;
9879 kvm_register_mark_available(vcpu, VCPU_EXREG_CR3);
9880
9881 kvm_set_cr8(vcpu, sregs->cr8);
9882
9883 mmu_reset_needed |= vcpu->arch.efer != sregs->efer;
9884 kvm_x86_ops.set_efer(vcpu, sregs->efer);
9885
9886 mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0;
9887 kvm_x86_ops.set_cr0(vcpu, sregs->cr0);
9888 vcpu->arch.cr0 = sregs->cr0;
9889
9890 mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4;
9891 cpuid_update_needed |= ((kvm_read_cr4(vcpu) ^ sregs->cr4) &
9892 (X86_CR4_OSXSAVE | X86_CR4_PKE));
9893 kvm_x86_ops.set_cr4(vcpu, sregs->cr4);
9894 if (cpuid_update_needed)
9895 kvm_update_cpuid_runtime(vcpu);
9896
9897 idx = srcu_read_lock(&vcpu->kvm->srcu);
9898 if (is_pae_paging(vcpu)) {
9899 load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu));
9900 mmu_reset_needed = 1;
9901 }
9902 srcu_read_unlock(&vcpu->kvm->srcu, idx);
9903
9904 if (mmu_reset_needed)
9905 kvm_mmu_reset_context(vcpu);
9906
9907 max_bits = KVM_NR_INTERRUPTS;
9908 pending_vec = find_first_bit(
9909 (const unsigned long *)sregs->interrupt_bitmap, max_bits);
9910 if (pending_vec < max_bits) {
9911 kvm_queue_interrupt(vcpu, pending_vec, false);
9912 pr_debug("Set back pending irq %d\n", pending_vec);
9913 }
9914
9915 kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
9916 kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
9917 kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
9918 kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
9919 kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
9920 kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
9921
9922 kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
9923 kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
9924
9925 update_cr8_intercept(vcpu);
9926
9927 /* Older userspace won't unhalt the vcpu on reset. */
9928 if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 &&
9929 sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
9930 !is_protmode(vcpu))
9931 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
9932
9933 kvm_make_request(KVM_REQ_EVENT, vcpu);
9934
9935 ret = 0;
9936 out:
9937 return ret;
9938 }
9939
kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu * vcpu,struct kvm_sregs * sregs)9940 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
9941 struct kvm_sregs *sregs)
9942 {
9943 int ret;
9944
9945 vcpu_load(vcpu);
9946 ret = __set_sregs(vcpu, sregs);
9947 vcpu_put(vcpu);
9948 return ret;
9949 }
9950
kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu * vcpu,struct kvm_guest_debug * dbg)9951 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
9952 struct kvm_guest_debug *dbg)
9953 {
9954 unsigned long rflags;
9955 int i, r;
9956
9957 vcpu_load(vcpu);
9958
9959 if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) {
9960 r = -EBUSY;
9961 if (vcpu->arch.exception.pending)
9962 goto out;
9963 if (dbg->control & KVM_GUESTDBG_INJECT_DB)
9964 kvm_queue_exception(vcpu, DB_VECTOR);
9965 else
9966 kvm_queue_exception(vcpu, BP_VECTOR);
9967 }
9968
9969 /*
9970 * Read rflags as long as potentially injected trace flags are still
9971 * filtered out.
9972 */
9973 rflags = kvm_get_rflags(vcpu);
9974
9975 vcpu->guest_debug = dbg->control;
9976 if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE))
9977 vcpu->guest_debug = 0;
9978
9979 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
9980 for (i = 0; i < KVM_NR_DB_REGS; ++i)
9981 vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
9982 vcpu->arch.guest_debug_dr7 = dbg->arch.debugreg[7];
9983 } else {
9984 for (i = 0; i < KVM_NR_DB_REGS; i++)
9985 vcpu->arch.eff_db[i] = vcpu->arch.db[i];
9986 }
9987 kvm_update_dr7(vcpu);
9988
9989 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
9990 vcpu->arch.singlestep_rip = kvm_rip_read(vcpu) +
9991 get_segment_base(vcpu, VCPU_SREG_CS);
9992
9993 /*
9994 * Trigger an rflags update that will inject or remove the trace
9995 * flags.
9996 */
9997 kvm_set_rflags(vcpu, rflags);
9998
9999 kvm_x86_ops.update_exception_bitmap(vcpu);
10000
10001 r = 0;
10002
10003 out:
10004 vcpu_put(vcpu);
10005 return r;
10006 }
10007
10008 /*
10009 * Translate a guest virtual address to a guest physical address.
10010 */
kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu * vcpu,struct kvm_translation * tr)10011 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
10012 struct kvm_translation *tr)
10013 {
10014 unsigned long vaddr = tr->linear_address;
10015 gpa_t gpa;
10016 int idx;
10017
10018 vcpu_load(vcpu);
10019
10020 idx = srcu_read_lock(&vcpu->kvm->srcu);
10021 gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL);
10022 srcu_read_unlock(&vcpu->kvm->srcu, idx);
10023 tr->physical_address = gpa;
10024 tr->valid = gpa != UNMAPPED_GVA;
10025 tr->writeable = 1;
10026 tr->usermode = 0;
10027
10028 vcpu_put(vcpu);
10029 return 0;
10030 }
10031
kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu * vcpu,struct kvm_fpu * fpu)10032 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
10033 {
10034 struct fxregs_state *fxsave;
10035
10036 vcpu_load(vcpu);
10037
10038 fxsave = &vcpu->arch.guest_fpu->state.fxsave;
10039 memcpy(fpu->fpr, fxsave->st_space, 128);
10040 fpu->fcw = fxsave->cwd;
10041 fpu->fsw = fxsave->swd;
10042 fpu->ftwx = fxsave->twd;
10043 fpu->last_opcode = fxsave->fop;
10044 fpu->last_ip = fxsave->rip;
10045 fpu->last_dp = fxsave->rdp;
10046 memcpy(fpu->xmm, fxsave->xmm_space, sizeof(fxsave->xmm_space));
10047
10048 vcpu_put(vcpu);
10049 return 0;
10050 }
10051
kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu * vcpu,struct kvm_fpu * fpu)10052 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
10053 {
10054 struct fxregs_state *fxsave;
10055
10056 vcpu_load(vcpu);
10057
10058 fxsave = &vcpu->arch.guest_fpu->state.fxsave;
10059
10060 memcpy(fxsave->st_space, fpu->fpr, 128);
10061 fxsave->cwd = fpu->fcw;
10062 fxsave->swd = fpu->fsw;
10063 fxsave->twd = fpu->ftwx;
10064 fxsave->fop = fpu->last_opcode;
10065 fxsave->rip = fpu->last_ip;
10066 fxsave->rdp = fpu->last_dp;
10067 memcpy(fxsave->xmm_space, fpu->xmm, sizeof(fxsave->xmm_space));
10068
10069 vcpu_put(vcpu);
10070 return 0;
10071 }
10072
store_regs(struct kvm_vcpu * vcpu)10073 static void store_regs(struct kvm_vcpu *vcpu)
10074 {
10075 BUILD_BUG_ON(sizeof(struct kvm_sync_regs) > SYNC_REGS_SIZE_BYTES);
10076
10077 if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_REGS)
10078 __get_regs(vcpu, &vcpu->run->s.regs.regs);
10079
10080 if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_SREGS)
10081 __get_sregs(vcpu, &vcpu->run->s.regs.sregs);
10082
10083 if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_EVENTS)
10084 kvm_vcpu_ioctl_x86_get_vcpu_events(
10085 vcpu, &vcpu->run->s.regs.events);
10086 }
10087
sync_regs(struct kvm_vcpu * vcpu)10088 static int sync_regs(struct kvm_vcpu *vcpu)
10089 {
10090 if (vcpu->run->kvm_dirty_regs & ~KVM_SYNC_X86_VALID_FIELDS)
10091 return -EINVAL;
10092
10093 if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_REGS) {
10094 __set_regs(vcpu, &vcpu->run->s.regs.regs);
10095 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_REGS;
10096 }
10097 if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_SREGS) {
10098 if (__set_sregs(vcpu, &vcpu->run->s.regs.sregs))
10099 return -EINVAL;
10100 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_SREGS;
10101 }
10102 if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_EVENTS) {
10103 if (kvm_vcpu_ioctl_x86_set_vcpu_events(
10104 vcpu, &vcpu->run->s.regs.events))
10105 return -EINVAL;
10106 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_EVENTS;
10107 }
10108
10109 return 0;
10110 }
10111
fx_init(struct kvm_vcpu * vcpu)10112 static void fx_init(struct kvm_vcpu *vcpu)
10113 {
10114 fpstate_init(&vcpu->arch.guest_fpu->state);
10115 if (boot_cpu_has(X86_FEATURE_XSAVES))
10116 vcpu->arch.guest_fpu->state.xsave.header.xcomp_bv =
10117 host_xcr0 | XSTATE_COMPACTION_ENABLED;
10118
10119 /*
10120 * Ensure guest xcr0 is valid for loading
10121 */
10122 vcpu->arch.xcr0 = XFEATURE_MASK_FP;
10123
10124 vcpu->arch.cr0 |= X86_CR0_ET;
10125 }
10126
kvm_arch_vcpu_precreate(struct kvm * kvm,unsigned int id)10127 int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id)
10128 {
10129 if (kvm_check_tsc_unstable() && atomic_read(&kvm->online_vcpus) != 0)
10130 pr_warn_once("kvm: SMP vm created on host with unstable TSC; "
10131 "guest TSC will not be reliable\n");
10132
10133 return 0;
10134 }
10135
kvm_arch_vcpu_create(struct kvm_vcpu * vcpu)10136 int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu)
10137 {
10138 struct page *page;
10139 int r;
10140
10141 if (!irqchip_in_kernel(vcpu->kvm) || kvm_vcpu_is_reset_bsp(vcpu))
10142 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
10143 else
10144 vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
10145
10146 kvm_set_tsc_khz(vcpu, max_tsc_khz);
10147
10148 r = kvm_mmu_create(vcpu);
10149 if (r < 0)
10150 return r;
10151
10152 if (irqchip_in_kernel(vcpu->kvm)) {
10153 r = kvm_create_lapic(vcpu, lapic_timer_advance_ns);
10154 if (r < 0)
10155 goto fail_mmu_destroy;
10156 if (kvm_apicv_activated(vcpu->kvm))
10157 vcpu->arch.apicv_active = true;
10158 } else
10159 static_key_slow_inc(&kvm_no_apic_vcpu);
10160
10161 r = -ENOMEM;
10162
10163 page = alloc_page(GFP_KERNEL | __GFP_ZERO);
10164 if (!page)
10165 goto fail_free_lapic;
10166 vcpu->arch.pio_data = page_address(page);
10167
10168 vcpu->arch.mce_banks = kzalloc(KVM_MAX_MCE_BANKS * sizeof(u64) * 4,
10169 GFP_KERNEL_ACCOUNT);
10170 if (!vcpu->arch.mce_banks)
10171 goto fail_free_pio_data;
10172 vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS;
10173
10174 if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask,
10175 GFP_KERNEL_ACCOUNT))
10176 goto fail_free_mce_banks;
10177
10178 if (!alloc_emulate_ctxt(vcpu))
10179 goto free_wbinvd_dirty_mask;
10180
10181 vcpu->arch.user_fpu = kmem_cache_zalloc(x86_fpu_cache,
10182 GFP_KERNEL_ACCOUNT);
10183 if (!vcpu->arch.user_fpu) {
10184 pr_err("kvm: failed to allocate userspace's fpu\n");
10185 goto free_emulate_ctxt;
10186 }
10187
10188 vcpu->arch.guest_fpu = kmem_cache_zalloc(x86_fpu_cache,
10189 GFP_KERNEL_ACCOUNT);
10190 if (!vcpu->arch.guest_fpu) {
10191 pr_err("kvm: failed to allocate vcpu's fpu\n");
10192 goto free_user_fpu;
10193 }
10194 fx_init(vcpu);
10195
10196 vcpu->arch.maxphyaddr = cpuid_query_maxphyaddr(vcpu);
10197 vcpu->arch.cr3_lm_rsvd_bits = rsvd_bits(cpuid_maxphyaddr(vcpu), 63);
10198
10199 vcpu->arch.pat = MSR_IA32_CR_PAT_DEFAULT;
10200
10201 kvm_async_pf_hash_reset(vcpu);
10202 kvm_pmu_init(vcpu);
10203
10204 vcpu->arch.pending_external_vector = -1;
10205 vcpu->arch.preempted_in_kernel = false;
10206
10207 kvm_hv_vcpu_init(vcpu);
10208
10209 r = kvm_x86_ops.vcpu_create(vcpu);
10210 if (r)
10211 goto free_guest_fpu;
10212
10213 vcpu->arch.arch_capabilities = kvm_get_arch_capabilities();
10214 vcpu->arch.msr_platform_info = MSR_PLATFORM_INFO_CPUID_FAULT;
10215 kvm_vcpu_mtrr_init(vcpu);
10216 vcpu_load(vcpu);
10217 kvm_vcpu_reset(vcpu, false);
10218 kvm_init_mmu(vcpu, false);
10219 vcpu_put(vcpu);
10220 return 0;
10221
10222 free_guest_fpu:
10223 kmem_cache_free(x86_fpu_cache, vcpu->arch.guest_fpu);
10224 free_user_fpu:
10225 kmem_cache_free(x86_fpu_cache, vcpu->arch.user_fpu);
10226 free_emulate_ctxt:
10227 kmem_cache_free(x86_emulator_cache, vcpu->arch.emulate_ctxt);
10228 free_wbinvd_dirty_mask:
10229 free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
10230 fail_free_mce_banks:
10231 kfree(vcpu->arch.mce_banks);
10232 fail_free_pio_data:
10233 free_page((unsigned long)vcpu->arch.pio_data);
10234 fail_free_lapic:
10235 kvm_free_lapic(vcpu);
10236 fail_mmu_destroy:
10237 kvm_mmu_destroy(vcpu);
10238 return r;
10239 }
10240
kvm_arch_vcpu_postcreate(struct kvm_vcpu * vcpu)10241 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
10242 {
10243 struct kvm *kvm = vcpu->kvm;
10244
10245 kvm_hv_vcpu_postcreate(vcpu);
10246
10247 if (mutex_lock_killable(&vcpu->mutex))
10248 return;
10249 vcpu_load(vcpu);
10250 kvm_synchronize_tsc(vcpu, 0);
10251 vcpu_put(vcpu);
10252
10253 /* poll control enabled by default */
10254 vcpu->arch.msr_kvm_poll_control = 1;
10255
10256 mutex_unlock(&vcpu->mutex);
10257
10258 if (kvmclock_periodic_sync && vcpu->vcpu_idx == 0)
10259 schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
10260 KVMCLOCK_SYNC_PERIOD);
10261 }
10262
kvm_arch_vcpu_destroy(struct kvm_vcpu * vcpu)10263 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
10264 {
10265 struct gfn_to_pfn_cache *cache = &vcpu->arch.st.cache;
10266 int idx;
10267
10268 kvm_release_pfn(cache->pfn, cache->dirty, cache);
10269
10270 kvmclock_reset(vcpu);
10271
10272 kvm_x86_ops.vcpu_free(vcpu);
10273
10274 kmem_cache_free(x86_emulator_cache, vcpu->arch.emulate_ctxt);
10275 free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
10276 kmem_cache_free(x86_fpu_cache, vcpu->arch.user_fpu);
10277 kmem_cache_free(x86_fpu_cache, vcpu->arch.guest_fpu);
10278
10279 kvm_hv_vcpu_uninit(vcpu);
10280 kvm_pmu_destroy(vcpu);
10281 kfree(vcpu->arch.mce_banks);
10282 kvm_free_lapic(vcpu);
10283 idx = srcu_read_lock(&vcpu->kvm->srcu);
10284 kvm_mmu_destroy(vcpu);
10285 srcu_read_unlock(&vcpu->kvm->srcu, idx);
10286 free_page((unsigned long)vcpu->arch.pio_data);
10287 kvfree(vcpu->arch.cpuid_entries);
10288 if (!lapic_in_kernel(vcpu))
10289 static_key_slow_dec(&kvm_no_apic_vcpu);
10290 }
10291
kvm_vcpu_reset(struct kvm_vcpu * vcpu,bool init_event)10292 void kvm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
10293 {
10294 kvm_lapic_reset(vcpu, init_event);
10295
10296 vcpu->arch.hflags = 0;
10297
10298 vcpu->arch.smi_pending = 0;
10299 vcpu->arch.smi_count = 0;
10300 atomic_set(&vcpu->arch.nmi_queued, 0);
10301 vcpu->arch.nmi_pending = 0;
10302 vcpu->arch.nmi_injected = false;
10303 kvm_clear_interrupt_queue(vcpu);
10304 kvm_clear_exception_queue(vcpu);
10305
10306 memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
10307 kvm_update_dr0123(vcpu);
10308 vcpu->arch.dr6 = DR6_INIT;
10309 vcpu->arch.dr7 = DR7_FIXED_1;
10310 kvm_update_dr7(vcpu);
10311
10312 vcpu->arch.cr2 = 0;
10313
10314 kvm_make_request(KVM_REQ_EVENT, vcpu);
10315 vcpu->arch.apf.msr_en_val = 0;
10316 vcpu->arch.apf.msr_int_val = 0;
10317 vcpu->arch.st.msr_val = 0;
10318
10319 kvmclock_reset(vcpu);
10320
10321 kvm_clear_async_pf_completion_queue(vcpu);
10322 kvm_async_pf_hash_reset(vcpu);
10323 vcpu->arch.apf.halted = false;
10324
10325 if (kvm_mpx_supported()) {
10326 void *mpx_state_buffer;
10327
10328 /*
10329 * To avoid have the INIT path from kvm_apic_has_events() that be
10330 * called with loaded FPU and does not let userspace fix the state.
10331 */
10332 if (init_event)
10333 kvm_put_guest_fpu(vcpu);
10334 mpx_state_buffer = get_xsave_addr(&vcpu->arch.guest_fpu->state.xsave,
10335 XFEATURE_BNDREGS);
10336 if (mpx_state_buffer)
10337 memset(mpx_state_buffer, 0, sizeof(struct mpx_bndreg_state));
10338 mpx_state_buffer = get_xsave_addr(&vcpu->arch.guest_fpu->state.xsave,
10339 XFEATURE_BNDCSR);
10340 if (mpx_state_buffer)
10341 memset(mpx_state_buffer, 0, sizeof(struct mpx_bndcsr));
10342 if (init_event)
10343 kvm_load_guest_fpu(vcpu);
10344 }
10345
10346 if (!init_event) {
10347 kvm_pmu_reset(vcpu);
10348 vcpu->arch.smbase = 0x30000;
10349
10350 vcpu->arch.msr_misc_features_enables = 0;
10351
10352 vcpu->arch.xcr0 = XFEATURE_MASK_FP;
10353 }
10354
10355 memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs));
10356 vcpu->arch.regs_avail = ~0;
10357 vcpu->arch.regs_dirty = ~0;
10358
10359 vcpu->arch.ia32_xss = 0;
10360
10361 kvm_x86_ops.vcpu_reset(vcpu, init_event);
10362 }
10363
kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu * vcpu,u8 vector)10364 void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector)
10365 {
10366 struct kvm_segment cs;
10367
10368 kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
10369 cs.selector = vector << 8;
10370 cs.base = vector << 12;
10371 kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
10372 kvm_rip_write(vcpu, 0);
10373 }
10374
kvm_arch_hardware_enable(void)10375 int kvm_arch_hardware_enable(void)
10376 {
10377 struct kvm *kvm;
10378 struct kvm_vcpu *vcpu;
10379 int i;
10380 int ret;
10381 u64 local_tsc;
10382 u64 max_tsc = 0;
10383 bool stable, backwards_tsc = false;
10384
10385 kvm_user_return_msr_cpu_online();
10386 ret = kvm_x86_ops.hardware_enable();
10387 if (ret != 0)
10388 return ret;
10389
10390 local_tsc = rdtsc();
10391 stable = !kvm_check_tsc_unstable();
10392 list_for_each_entry(kvm, &vm_list, vm_list) {
10393 kvm_for_each_vcpu(i, vcpu, kvm) {
10394 if (!stable && vcpu->cpu == smp_processor_id())
10395 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
10396 if (stable && vcpu->arch.last_host_tsc > local_tsc) {
10397 backwards_tsc = true;
10398 if (vcpu->arch.last_host_tsc > max_tsc)
10399 max_tsc = vcpu->arch.last_host_tsc;
10400 }
10401 }
10402 }
10403
10404 /*
10405 * Sometimes, even reliable TSCs go backwards. This happens on
10406 * platforms that reset TSC during suspend or hibernate actions, but
10407 * maintain synchronization. We must compensate. Fortunately, we can
10408 * detect that condition here, which happens early in CPU bringup,
10409 * before any KVM threads can be running. Unfortunately, we can't
10410 * bring the TSCs fully up to date with real time, as we aren't yet far
10411 * enough into CPU bringup that we know how much real time has actually
10412 * elapsed; our helper function, ktime_get_boottime_ns() will be using boot
10413 * variables that haven't been updated yet.
10414 *
10415 * So we simply find the maximum observed TSC above, then record the
10416 * adjustment to TSC in each VCPU. When the VCPU later gets loaded,
10417 * the adjustment will be applied. Note that we accumulate
10418 * adjustments, in case multiple suspend cycles happen before some VCPU
10419 * gets a chance to run again. In the event that no KVM threads get a
10420 * chance to run, we will miss the entire elapsed period, as we'll have
10421 * reset last_host_tsc, so VCPUs will not have the TSC adjusted and may
10422 * loose cycle time. This isn't too big a deal, since the loss will be
10423 * uniform across all VCPUs (not to mention the scenario is extremely
10424 * unlikely). It is possible that a second hibernate recovery happens
10425 * much faster than a first, causing the observed TSC here to be
10426 * smaller; this would require additional padding adjustment, which is
10427 * why we set last_host_tsc to the local tsc observed here.
10428 *
10429 * N.B. - this code below runs only on platforms with reliable TSC,
10430 * as that is the only way backwards_tsc is set above. Also note
10431 * that this runs for ALL vcpus, which is not a bug; all VCPUs should
10432 * have the same delta_cyc adjustment applied if backwards_tsc
10433 * is detected. Note further, this adjustment is only done once,
10434 * as we reset last_host_tsc on all VCPUs to stop this from being
10435 * called multiple times (one for each physical CPU bringup).
10436 *
10437 * Platforms with unreliable TSCs don't have to deal with this, they
10438 * will be compensated by the logic in vcpu_load, which sets the TSC to
10439 * catchup mode. This will catchup all VCPUs to real time, but cannot
10440 * guarantee that they stay in perfect synchronization.
10441 */
10442 if (backwards_tsc) {
10443 u64 delta_cyc = max_tsc - local_tsc;
10444 list_for_each_entry(kvm, &vm_list, vm_list) {
10445 kvm->arch.backwards_tsc_observed = true;
10446 kvm_for_each_vcpu(i, vcpu, kvm) {
10447 vcpu->arch.tsc_offset_adjustment += delta_cyc;
10448 vcpu->arch.last_host_tsc = local_tsc;
10449 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
10450 }
10451
10452 /*
10453 * We have to disable TSC offset matching.. if you were
10454 * booting a VM while issuing an S4 host suspend....
10455 * you may have some problem. Solving this issue is
10456 * left as an exercise to the reader.
10457 */
10458 kvm->arch.last_tsc_nsec = 0;
10459 kvm->arch.last_tsc_write = 0;
10460 }
10461
10462 }
10463 return 0;
10464 }
10465
kvm_arch_hardware_disable(void)10466 void kvm_arch_hardware_disable(void)
10467 {
10468 kvm_x86_ops.hardware_disable();
10469 drop_user_return_notifiers();
10470 }
10471
kvm_arch_hardware_setup(void * opaque)10472 int kvm_arch_hardware_setup(void *opaque)
10473 {
10474 struct kvm_x86_init_ops *ops = opaque;
10475 int r;
10476
10477 rdmsrl_safe(MSR_EFER, &host_efer);
10478
10479 if (boot_cpu_has(X86_FEATURE_XSAVES))
10480 rdmsrl(MSR_IA32_XSS, host_xss);
10481
10482 r = ops->hardware_setup();
10483 if (r != 0)
10484 return r;
10485
10486 memcpy(&kvm_x86_ops, ops->runtime_ops, sizeof(kvm_x86_ops));
10487
10488 if (!kvm_cpu_cap_has(X86_FEATURE_XSAVES))
10489 supported_xss = 0;
10490
10491 #define __kvm_cpu_cap_has(UNUSED_, f) kvm_cpu_cap_has(f)
10492 cr4_reserved_bits = __cr4_reserved_bits(__kvm_cpu_cap_has, UNUSED_);
10493 #undef __kvm_cpu_cap_has
10494
10495 if (kvm_has_tsc_control) {
10496 /*
10497 * Make sure the user can only configure tsc_khz values that
10498 * fit into a signed integer.
10499 * A min value is not calculated because it will always
10500 * be 1 on all machines.
10501 */
10502 u64 max = min(0x7fffffffULL,
10503 __scale_tsc(kvm_max_tsc_scaling_ratio, tsc_khz));
10504 kvm_max_guest_tsc_khz = max;
10505
10506 kvm_default_tsc_scaling_ratio = 1ULL << kvm_tsc_scaling_ratio_frac_bits;
10507 }
10508
10509 kvm_init_msr_list();
10510 return 0;
10511 }
10512
kvm_arch_hardware_unsetup(void)10513 void kvm_arch_hardware_unsetup(void)
10514 {
10515 kvm_x86_ops.hardware_unsetup();
10516 }
10517
kvm_arch_check_processor_compat(void * opaque)10518 int kvm_arch_check_processor_compat(void *opaque)
10519 {
10520 struct cpuinfo_x86 *c = &cpu_data(smp_processor_id());
10521 struct kvm_x86_init_ops *ops = opaque;
10522
10523 WARN_ON(!irqs_disabled());
10524
10525 if (__cr4_reserved_bits(cpu_has, c) !=
10526 __cr4_reserved_bits(cpu_has, &boot_cpu_data))
10527 return -EIO;
10528
10529 return ops->check_processor_compatibility();
10530 }
10531
kvm_vcpu_is_reset_bsp(struct kvm_vcpu * vcpu)10532 bool kvm_vcpu_is_reset_bsp(struct kvm_vcpu *vcpu)
10533 {
10534 return vcpu->kvm->arch.bsp_vcpu_id == vcpu->vcpu_id;
10535 }
10536 EXPORT_SYMBOL_GPL(kvm_vcpu_is_reset_bsp);
10537
kvm_vcpu_is_bsp(struct kvm_vcpu * vcpu)10538 bool kvm_vcpu_is_bsp(struct kvm_vcpu *vcpu)
10539 {
10540 return (vcpu->arch.apic_base & MSR_IA32_APICBASE_BSP) != 0;
10541 }
10542
10543 struct static_key kvm_no_apic_vcpu __read_mostly;
10544 EXPORT_SYMBOL_GPL(kvm_no_apic_vcpu);
10545
kvm_arch_sched_in(struct kvm_vcpu * vcpu,int cpu)10546 void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu)
10547 {
10548 struct kvm_pmu *pmu = vcpu_to_pmu(vcpu);
10549
10550 vcpu->arch.l1tf_flush_l1d = true;
10551 if (pmu->version && unlikely(pmu->event_count)) {
10552 pmu->need_cleanup = true;
10553 kvm_make_request(KVM_REQ_PMU, vcpu);
10554 }
10555 kvm_x86_ops.sched_in(vcpu, cpu);
10556 }
10557
kvm_arch_free_vm(struct kvm * kvm)10558 void kvm_arch_free_vm(struct kvm *kvm)
10559 {
10560 kfree(kvm->arch.hyperv.hv_pa_pg);
10561 vfree(kvm);
10562 }
10563
10564
kvm_arch_init_vm(struct kvm * kvm,unsigned long type)10565 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
10566 {
10567 int ret;
10568
10569 if (type)
10570 return -EINVAL;
10571
10572 ret = kvm_page_track_init(kvm);
10573 if (ret)
10574 return ret;
10575
10576 INIT_HLIST_HEAD(&kvm->arch.mask_notifier_list);
10577 INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
10578 INIT_LIST_HEAD(&kvm->arch.zapped_obsolete_pages);
10579 INIT_LIST_HEAD(&kvm->arch.lpage_disallowed_mmu_pages);
10580 INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
10581 atomic_set(&kvm->arch.noncoherent_dma_count, 0);
10582
10583 /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
10584 set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
10585 /* Reserve bit 1 of irq_sources_bitmap for irqfd-resampler */
10586 set_bit(KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID,
10587 &kvm->arch.irq_sources_bitmap);
10588
10589 raw_spin_lock_init(&kvm->arch.tsc_write_lock);
10590 mutex_init(&kvm->arch.apic_map_lock);
10591 spin_lock_init(&kvm->arch.pvclock_gtod_sync_lock);
10592
10593 kvm->arch.kvmclock_offset = -get_kvmclock_base_ns();
10594 pvclock_update_vm_gtod_copy(kvm);
10595
10596 kvm->arch.guest_can_read_msr_platform_info = true;
10597
10598 INIT_DELAYED_WORK(&kvm->arch.kvmclock_update_work, kvmclock_update_fn);
10599 INIT_DELAYED_WORK(&kvm->arch.kvmclock_sync_work, kvmclock_sync_fn);
10600
10601 kvm_hv_init_vm(kvm);
10602 kvm_mmu_init_vm(kvm);
10603
10604 return kvm_x86_ops.vm_init(kvm);
10605 }
10606
kvm_arch_post_init_vm(struct kvm * kvm)10607 int kvm_arch_post_init_vm(struct kvm *kvm)
10608 {
10609 return kvm_mmu_post_init_vm(kvm);
10610 }
10611
kvm_unload_vcpu_mmu(struct kvm_vcpu * vcpu)10612 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
10613 {
10614 vcpu_load(vcpu);
10615 kvm_mmu_unload(vcpu);
10616 vcpu_put(vcpu);
10617 }
10618
kvm_free_vcpus(struct kvm * kvm)10619 static void kvm_free_vcpus(struct kvm *kvm)
10620 {
10621 unsigned int i;
10622 struct kvm_vcpu *vcpu;
10623
10624 /*
10625 * Unpin any mmu pages first.
10626 */
10627 kvm_for_each_vcpu(i, vcpu, kvm) {
10628 kvm_clear_async_pf_completion_queue(vcpu);
10629 kvm_unload_vcpu_mmu(vcpu);
10630 }
10631 kvm_for_each_vcpu(i, vcpu, kvm)
10632 kvm_vcpu_destroy(vcpu);
10633
10634 mutex_lock(&kvm->lock);
10635 for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
10636 kvm->vcpus[i] = NULL;
10637
10638 atomic_set(&kvm->online_vcpus, 0);
10639 mutex_unlock(&kvm->lock);
10640 }
10641
kvm_arch_sync_events(struct kvm * kvm)10642 void kvm_arch_sync_events(struct kvm *kvm)
10643 {
10644 cancel_delayed_work_sync(&kvm->arch.kvmclock_sync_work);
10645 cancel_delayed_work_sync(&kvm->arch.kvmclock_update_work);
10646 kvm_free_pit(kvm);
10647 }
10648
__x86_set_memory_region(struct kvm * kvm,int id,gpa_t gpa,u32 size)10649 int __x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa, u32 size)
10650 {
10651 int i, r;
10652 unsigned long hva, old_npages;
10653 struct kvm_memslots *slots = kvm_memslots(kvm);
10654 struct kvm_memory_slot *slot;
10655
10656 /* Called with kvm->slots_lock held. */
10657 if (WARN_ON(id >= KVM_MEM_SLOTS_NUM))
10658 return -EINVAL;
10659
10660 slot = id_to_memslot(slots, id);
10661 if (size) {
10662 if (slot && slot->npages)
10663 return -EEXIST;
10664
10665 /*
10666 * MAP_SHARED to prevent internal slot pages from being moved
10667 * by fork()/COW.
10668 */
10669 hva = vm_mmap(NULL, 0, size, PROT_READ | PROT_WRITE,
10670 MAP_SHARED | MAP_ANONYMOUS, 0);
10671 if (IS_ERR((void *)hva))
10672 return PTR_ERR((void *)hva);
10673 } else {
10674 if (!slot || !slot->npages)
10675 return 0;
10676
10677 old_npages = slot->npages;
10678 hva = 0;
10679 }
10680
10681 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
10682 struct kvm_userspace_memory_region m;
10683
10684 m.slot = id | (i << 16);
10685 m.flags = 0;
10686 m.guest_phys_addr = gpa;
10687 m.userspace_addr = hva;
10688 m.memory_size = size;
10689 r = __kvm_set_memory_region(kvm, &m);
10690 if (r < 0)
10691 return r;
10692 }
10693
10694 if (!size)
10695 vm_munmap(hva, old_npages * PAGE_SIZE);
10696
10697 return 0;
10698 }
10699 EXPORT_SYMBOL_GPL(__x86_set_memory_region);
10700
kvm_arch_pre_destroy_vm(struct kvm * kvm)10701 void kvm_arch_pre_destroy_vm(struct kvm *kvm)
10702 {
10703 kvm_mmu_pre_destroy_vm(kvm);
10704 }
10705
kvm_arch_destroy_vm(struct kvm * kvm)10706 void kvm_arch_destroy_vm(struct kvm *kvm)
10707 {
10708 if (current->mm == kvm->mm) {
10709 /*
10710 * Free memory regions allocated on behalf of userspace,
10711 * unless the the memory map has changed due to process exit
10712 * or fd copying.
10713 */
10714 mutex_lock(&kvm->slots_lock);
10715 __x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT,
10716 0, 0);
10717 __x86_set_memory_region(kvm, IDENTITY_PAGETABLE_PRIVATE_MEMSLOT,
10718 0, 0);
10719 __x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, 0, 0);
10720 mutex_unlock(&kvm->slots_lock);
10721 }
10722 if (kvm_x86_ops.vm_destroy)
10723 kvm_x86_ops.vm_destroy(kvm);
10724 kvm_free_msr_filter(srcu_dereference_check(kvm->arch.msr_filter, &kvm->srcu, 1));
10725 kvm_pic_destroy(kvm);
10726 kvm_ioapic_destroy(kvm);
10727 kvm_free_vcpus(kvm);
10728 kvfree(rcu_dereference_check(kvm->arch.apic_map, 1));
10729 kfree(srcu_dereference_check(kvm->arch.pmu_event_filter, &kvm->srcu, 1));
10730 kvm_mmu_uninit_vm(kvm);
10731 kvm_page_track_cleanup(kvm);
10732 kvm_hv_destroy_vm(kvm);
10733 }
10734
kvm_arch_free_memslot(struct kvm * kvm,struct kvm_memory_slot * slot)10735 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot)
10736 {
10737 int i;
10738
10739 for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
10740 kvfree(slot->arch.rmap[i]);
10741 slot->arch.rmap[i] = NULL;
10742
10743 if (i == 0)
10744 continue;
10745
10746 kvfree(slot->arch.lpage_info[i - 1]);
10747 slot->arch.lpage_info[i - 1] = NULL;
10748 }
10749
10750 kvm_page_track_free_memslot(slot);
10751 }
10752
kvm_alloc_memslot_metadata(struct kvm_memory_slot * slot,unsigned long npages)10753 static int kvm_alloc_memslot_metadata(struct kvm_memory_slot *slot,
10754 unsigned long npages)
10755 {
10756 int i;
10757
10758 /*
10759 * Clear out the previous array pointers for the KVM_MR_MOVE case. The
10760 * old arrays will be freed by __kvm_set_memory_region() if installing
10761 * the new memslot is successful.
10762 */
10763 memset(&slot->arch, 0, sizeof(slot->arch));
10764
10765 for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
10766 struct kvm_lpage_info *linfo;
10767 unsigned long ugfn;
10768 int lpages;
10769 int level = i + 1;
10770
10771 lpages = gfn_to_index(slot->base_gfn + npages - 1,
10772 slot->base_gfn, level) + 1;
10773
10774 slot->arch.rmap[i] =
10775 kvcalloc(lpages, sizeof(*slot->arch.rmap[i]),
10776 GFP_KERNEL_ACCOUNT);
10777 if (!slot->arch.rmap[i])
10778 goto out_free;
10779 if (i == 0)
10780 continue;
10781
10782 linfo = kvcalloc(lpages, sizeof(*linfo), GFP_KERNEL_ACCOUNT);
10783 if (!linfo)
10784 goto out_free;
10785
10786 slot->arch.lpage_info[i - 1] = linfo;
10787
10788 if (slot->base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1))
10789 linfo[0].disallow_lpage = 1;
10790 if ((slot->base_gfn + npages) & (KVM_PAGES_PER_HPAGE(level) - 1))
10791 linfo[lpages - 1].disallow_lpage = 1;
10792 ugfn = slot->userspace_addr >> PAGE_SHIFT;
10793 /*
10794 * If the gfn and userspace address are not aligned wrt each
10795 * other, disable large page support for this slot.
10796 */
10797 if ((slot->base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1)) {
10798 unsigned long j;
10799
10800 for (j = 0; j < lpages; ++j)
10801 linfo[j].disallow_lpage = 1;
10802 }
10803 }
10804
10805 if (kvm_page_track_create_memslot(slot, npages))
10806 goto out_free;
10807
10808 return 0;
10809
10810 out_free:
10811 for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
10812 kvfree(slot->arch.rmap[i]);
10813 slot->arch.rmap[i] = NULL;
10814 if (i == 0)
10815 continue;
10816
10817 kvfree(slot->arch.lpage_info[i - 1]);
10818 slot->arch.lpage_info[i - 1] = NULL;
10819 }
10820 return -ENOMEM;
10821 }
10822
kvm_arch_memslots_updated(struct kvm * kvm,u64 gen)10823 void kvm_arch_memslots_updated(struct kvm *kvm, u64 gen)
10824 {
10825 struct kvm_vcpu *vcpu;
10826 int i;
10827
10828 /*
10829 * memslots->generation has been incremented.
10830 * mmio generation may have reached its maximum value.
10831 */
10832 kvm_mmu_invalidate_mmio_sptes(kvm, gen);
10833
10834 /* Force re-initialization of steal_time cache */
10835 kvm_for_each_vcpu(i, vcpu, kvm)
10836 kvm_vcpu_kick(vcpu);
10837 }
10838
kvm_arch_prepare_memory_region(struct kvm * kvm,struct kvm_memory_slot * memslot,const struct kvm_userspace_memory_region * mem,enum kvm_mr_change change)10839 int kvm_arch_prepare_memory_region(struct kvm *kvm,
10840 struct kvm_memory_slot *memslot,
10841 const struct kvm_userspace_memory_region *mem,
10842 enum kvm_mr_change change)
10843 {
10844 if (change == KVM_MR_CREATE || change == KVM_MR_MOVE)
10845 return kvm_alloc_memslot_metadata(memslot,
10846 mem->memory_size >> PAGE_SHIFT);
10847 return 0;
10848 }
10849
kvm_mmu_slot_apply_flags(struct kvm * kvm,struct kvm_memory_slot * old,struct kvm_memory_slot * new,enum kvm_mr_change change)10850 static void kvm_mmu_slot_apply_flags(struct kvm *kvm,
10851 struct kvm_memory_slot *old,
10852 struct kvm_memory_slot *new,
10853 enum kvm_mr_change change)
10854 {
10855 /*
10856 * Nothing to do for RO slots or CREATE/MOVE/DELETE of a slot.
10857 * See comments below.
10858 */
10859 if ((change != KVM_MR_FLAGS_ONLY) || (new->flags & KVM_MEM_READONLY))
10860 return;
10861
10862 /*
10863 * Dirty logging tracks sptes in 4k granularity, meaning that large
10864 * sptes have to be split. If live migration is successful, the guest
10865 * in the source machine will be destroyed and large sptes will be
10866 * created in the destination. However, if the guest continues to run
10867 * in the source machine (for example if live migration fails), small
10868 * sptes will remain around and cause bad performance.
10869 *
10870 * Scan sptes if dirty logging has been stopped, dropping those
10871 * which can be collapsed into a single large-page spte. Later
10872 * page faults will create the large-page sptes.
10873 *
10874 * There is no need to do this in any of the following cases:
10875 * CREATE: No dirty mappings will already exist.
10876 * MOVE/DELETE: The old mappings will already have been cleaned up by
10877 * kvm_arch_flush_shadow_memslot()
10878 */
10879 if ((old->flags & KVM_MEM_LOG_DIRTY_PAGES) &&
10880 !(new->flags & KVM_MEM_LOG_DIRTY_PAGES))
10881 kvm_mmu_zap_collapsible_sptes(kvm, new);
10882
10883 /*
10884 * Enable or disable dirty logging for the slot.
10885 *
10886 * For KVM_MR_DELETE and KVM_MR_MOVE, the shadow pages of the old
10887 * slot have been zapped so no dirty logging updates are needed for
10888 * the old slot.
10889 * For KVM_MR_CREATE and KVM_MR_MOVE, once the new slot is visible
10890 * any mappings that might be created in it will consume the
10891 * properties of the new slot and do not need to be updated here.
10892 *
10893 * When PML is enabled, the kvm_x86_ops dirty logging hooks are
10894 * called to enable/disable dirty logging.
10895 *
10896 * When disabling dirty logging with PML enabled, the D-bit is set
10897 * for sptes in the slot in order to prevent unnecessary GPA
10898 * logging in the PML buffer (and potential PML buffer full VMEXIT).
10899 * This guarantees leaving PML enabled for the guest's lifetime
10900 * won't have any additional overhead from PML when the guest is
10901 * running with dirty logging disabled.
10902 *
10903 * When enabling dirty logging, large sptes are write-protected
10904 * so they can be split on first write. New large sptes cannot
10905 * be created for this slot until the end of the logging.
10906 * See the comments in fast_page_fault().
10907 * For small sptes, nothing is done if the dirty log is in the
10908 * initial-all-set state. Otherwise, depending on whether pml
10909 * is enabled the D-bit or the W-bit will be cleared.
10910 */
10911 if (new->flags & KVM_MEM_LOG_DIRTY_PAGES) {
10912 if (kvm_x86_ops.slot_enable_log_dirty) {
10913 kvm_x86_ops.slot_enable_log_dirty(kvm, new);
10914 } else {
10915 int level =
10916 kvm_dirty_log_manual_protect_and_init_set(kvm) ?
10917 PG_LEVEL_2M : PG_LEVEL_4K;
10918
10919 /*
10920 * If we're with initial-all-set, we don't need
10921 * to write protect any small page because
10922 * they're reported as dirty already. However
10923 * we still need to write-protect huge pages
10924 * so that the page split can happen lazily on
10925 * the first write to the huge page.
10926 */
10927 kvm_mmu_slot_remove_write_access(kvm, new, level);
10928 }
10929 } else {
10930 if (kvm_x86_ops.slot_disable_log_dirty)
10931 kvm_x86_ops.slot_disable_log_dirty(kvm, new);
10932 }
10933 }
10934
kvm_arch_commit_memory_region(struct kvm * kvm,const struct kvm_userspace_memory_region * mem,struct kvm_memory_slot * old,const struct kvm_memory_slot * new,enum kvm_mr_change change)10935 void kvm_arch_commit_memory_region(struct kvm *kvm,
10936 const struct kvm_userspace_memory_region *mem,
10937 struct kvm_memory_slot *old,
10938 const struct kvm_memory_slot *new,
10939 enum kvm_mr_change change)
10940 {
10941 if (!kvm->arch.n_requested_mmu_pages)
10942 kvm_mmu_change_mmu_pages(kvm,
10943 kvm_mmu_calculate_default_mmu_pages(kvm));
10944
10945 /*
10946 * FIXME: const-ify all uses of struct kvm_memory_slot.
10947 */
10948 kvm_mmu_slot_apply_flags(kvm, old, (struct kvm_memory_slot *) new, change);
10949
10950 /* Free the arrays associated with the old memslot. */
10951 if (change == KVM_MR_MOVE)
10952 kvm_arch_free_memslot(kvm, old);
10953 }
10954
kvm_arch_flush_shadow_all(struct kvm * kvm)10955 void kvm_arch_flush_shadow_all(struct kvm *kvm)
10956 {
10957 kvm_mmu_zap_all(kvm);
10958 }
10959
kvm_arch_flush_shadow_memslot(struct kvm * kvm,struct kvm_memory_slot * slot)10960 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
10961 struct kvm_memory_slot *slot)
10962 {
10963 kvm_page_track_flush_slot(kvm, slot);
10964 }
10965
kvm_guest_apic_has_interrupt(struct kvm_vcpu * vcpu)10966 static inline bool kvm_guest_apic_has_interrupt(struct kvm_vcpu *vcpu)
10967 {
10968 return (is_guest_mode(vcpu) &&
10969 kvm_x86_ops.guest_apic_has_interrupt &&
10970 kvm_x86_ops.guest_apic_has_interrupt(vcpu));
10971 }
10972
kvm_vcpu_has_events(struct kvm_vcpu * vcpu)10973 static inline bool kvm_vcpu_has_events(struct kvm_vcpu *vcpu)
10974 {
10975 if (!list_empty_careful(&vcpu->async_pf.done))
10976 return true;
10977
10978 if (kvm_apic_has_events(vcpu))
10979 return true;
10980
10981 if (vcpu->arch.pv.pv_unhalted)
10982 return true;
10983
10984 if (vcpu->arch.exception.pending)
10985 return true;
10986
10987 if (kvm_test_request(KVM_REQ_NMI, vcpu) ||
10988 (vcpu->arch.nmi_pending &&
10989 kvm_x86_ops.nmi_allowed(vcpu, false)))
10990 return true;
10991
10992 if (kvm_test_request(KVM_REQ_SMI, vcpu) ||
10993 (vcpu->arch.smi_pending &&
10994 kvm_x86_ops.smi_allowed(vcpu, false)))
10995 return true;
10996
10997 if (kvm_arch_interrupt_allowed(vcpu) &&
10998 (kvm_cpu_has_interrupt(vcpu) ||
10999 kvm_guest_apic_has_interrupt(vcpu)))
11000 return true;
11001
11002 if (kvm_hv_has_stimer_pending(vcpu))
11003 return true;
11004
11005 if (is_guest_mode(vcpu) &&
11006 kvm_x86_ops.nested_ops->hv_timer_pending &&
11007 kvm_x86_ops.nested_ops->hv_timer_pending(vcpu))
11008 return true;
11009
11010 return false;
11011 }
11012
kvm_arch_vcpu_runnable(struct kvm_vcpu * vcpu)11013 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
11014 {
11015 return kvm_vcpu_running(vcpu) || kvm_vcpu_has_events(vcpu);
11016 }
11017
kvm_arch_dy_runnable(struct kvm_vcpu * vcpu)11018 bool kvm_arch_dy_runnable(struct kvm_vcpu *vcpu)
11019 {
11020 if (READ_ONCE(vcpu->arch.pv.pv_unhalted))
11021 return true;
11022
11023 if (kvm_test_request(KVM_REQ_NMI, vcpu) ||
11024 kvm_test_request(KVM_REQ_SMI, vcpu) ||
11025 kvm_test_request(KVM_REQ_EVENT, vcpu))
11026 return true;
11027
11028 if (vcpu->arch.apicv_active && kvm_x86_ops.dy_apicv_has_pending_interrupt(vcpu))
11029 return true;
11030
11031 return false;
11032 }
11033
kvm_arch_vcpu_in_kernel(struct kvm_vcpu * vcpu)11034 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu)
11035 {
11036 return vcpu->arch.preempted_in_kernel;
11037 }
11038
kvm_arch_vcpu_should_kick(struct kvm_vcpu * vcpu)11039 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
11040 {
11041 return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
11042 }
11043
kvm_arch_interrupt_allowed(struct kvm_vcpu * vcpu)11044 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
11045 {
11046 return kvm_x86_ops.interrupt_allowed(vcpu, false);
11047 }
11048
kvm_get_linear_rip(struct kvm_vcpu * vcpu)11049 unsigned long kvm_get_linear_rip(struct kvm_vcpu *vcpu)
11050 {
11051 if (is_64_bit_mode(vcpu))
11052 return kvm_rip_read(vcpu);
11053 return (u32)(get_segment_base(vcpu, VCPU_SREG_CS) +
11054 kvm_rip_read(vcpu));
11055 }
11056 EXPORT_SYMBOL_GPL(kvm_get_linear_rip);
11057
kvm_is_linear_rip(struct kvm_vcpu * vcpu,unsigned long linear_rip)11058 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip)
11059 {
11060 return kvm_get_linear_rip(vcpu) == linear_rip;
11061 }
11062 EXPORT_SYMBOL_GPL(kvm_is_linear_rip);
11063
kvm_get_rflags(struct kvm_vcpu * vcpu)11064 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu)
11065 {
11066 unsigned long rflags;
11067
11068 rflags = kvm_x86_ops.get_rflags(vcpu);
11069 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
11070 rflags &= ~X86_EFLAGS_TF;
11071 return rflags;
11072 }
11073 EXPORT_SYMBOL_GPL(kvm_get_rflags);
11074
__kvm_set_rflags(struct kvm_vcpu * vcpu,unsigned long rflags)11075 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
11076 {
11077 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP &&
11078 kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip))
11079 rflags |= X86_EFLAGS_TF;
11080 kvm_x86_ops.set_rflags(vcpu, rflags);
11081 }
11082
kvm_set_rflags(struct kvm_vcpu * vcpu,unsigned long rflags)11083 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
11084 {
11085 __kvm_set_rflags(vcpu, rflags);
11086 kvm_make_request(KVM_REQ_EVENT, vcpu);
11087 }
11088 EXPORT_SYMBOL_GPL(kvm_set_rflags);
11089
kvm_arch_async_page_ready(struct kvm_vcpu * vcpu,struct kvm_async_pf * work)11090 void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu, struct kvm_async_pf *work)
11091 {
11092 int r;
11093
11094 if ((vcpu->arch.mmu->direct_map != work->arch.direct_map) ||
11095 work->wakeup_all)
11096 return;
11097
11098 r = kvm_mmu_reload(vcpu);
11099 if (unlikely(r))
11100 return;
11101
11102 if (!vcpu->arch.mmu->direct_map &&
11103 work->arch.cr3 != vcpu->arch.mmu->get_guest_pgd(vcpu))
11104 return;
11105
11106 kvm_mmu_do_page_fault(vcpu, work->cr2_or_gpa, 0, true);
11107 }
11108
kvm_async_pf_hash_fn(gfn_t gfn)11109 static inline u32 kvm_async_pf_hash_fn(gfn_t gfn)
11110 {
11111 BUILD_BUG_ON(!is_power_of_2(ASYNC_PF_PER_VCPU));
11112
11113 return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU));
11114 }
11115
kvm_async_pf_next_probe(u32 key)11116 static inline u32 kvm_async_pf_next_probe(u32 key)
11117 {
11118 return (key + 1) & (ASYNC_PF_PER_VCPU - 1);
11119 }
11120
kvm_add_async_pf_gfn(struct kvm_vcpu * vcpu,gfn_t gfn)11121 static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
11122 {
11123 u32 key = kvm_async_pf_hash_fn(gfn);
11124
11125 while (vcpu->arch.apf.gfns[key] != ~0)
11126 key = kvm_async_pf_next_probe(key);
11127
11128 vcpu->arch.apf.gfns[key] = gfn;
11129 }
11130
kvm_async_pf_gfn_slot(struct kvm_vcpu * vcpu,gfn_t gfn)11131 static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn)
11132 {
11133 int i;
11134 u32 key = kvm_async_pf_hash_fn(gfn);
11135
11136 for (i = 0; i < ASYNC_PF_PER_VCPU &&
11137 (vcpu->arch.apf.gfns[key] != gfn &&
11138 vcpu->arch.apf.gfns[key] != ~0); i++)
11139 key = kvm_async_pf_next_probe(key);
11140
11141 return key;
11142 }
11143
kvm_find_async_pf_gfn(struct kvm_vcpu * vcpu,gfn_t gfn)11144 bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
11145 {
11146 return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn;
11147 }
11148
kvm_del_async_pf_gfn(struct kvm_vcpu * vcpu,gfn_t gfn)11149 static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
11150 {
11151 u32 i, j, k;
11152
11153 i = j = kvm_async_pf_gfn_slot(vcpu, gfn);
11154
11155 if (WARN_ON_ONCE(vcpu->arch.apf.gfns[i] != gfn))
11156 return;
11157
11158 while (true) {
11159 vcpu->arch.apf.gfns[i] = ~0;
11160 do {
11161 j = kvm_async_pf_next_probe(j);
11162 if (vcpu->arch.apf.gfns[j] == ~0)
11163 return;
11164 k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]);
11165 /*
11166 * k lies cyclically in ]i,j]
11167 * | i.k.j |
11168 * |....j i.k.| or |.k..j i...|
11169 */
11170 } while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j));
11171 vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j];
11172 i = j;
11173 }
11174 }
11175
apf_put_user_notpresent(struct kvm_vcpu * vcpu)11176 static inline int apf_put_user_notpresent(struct kvm_vcpu *vcpu)
11177 {
11178 u32 reason = KVM_PV_REASON_PAGE_NOT_PRESENT;
11179
11180 return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, &reason,
11181 sizeof(reason));
11182 }
11183
apf_put_user_ready(struct kvm_vcpu * vcpu,u32 token)11184 static inline int apf_put_user_ready(struct kvm_vcpu *vcpu, u32 token)
11185 {
11186 unsigned int offset = offsetof(struct kvm_vcpu_pv_apf_data, token);
11187
11188 return kvm_write_guest_offset_cached(vcpu->kvm, &vcpu->arch.apf.data,
11189 &token, offset, sizeof(token));
11190 }
11191
apf_pageready_slot_free(struct kvm_vcpu * vcpu)11192 static inline bool apf_pageready_slot_free(struct kvm_vcpu *vcpu)
11193 {
11194 unsigned int offset = offsetof(struct kvm_vcpu_pv_apf_data, token);
11195 u32 val;
11196
11197 if (kvm_read_guest_offset_cached(vcpu->kvm, &vcpu->arch.apf.data,
11198 &val, offset, sizeof(val)))
11199 return false;
11200
11201 return !val;
11202 }
11203
kvm_can_deliver_async_pf(struct kvm_vcpu * vcpu)11204 static bool kvm_can_deliver_async_pf(struct kvm_vcpu *vcpu)
11205 {
11206 if (!vcpu->arch.apf.delivery_as_pf_vmexit && is_guest_mode(vcpu))
11207 return false;
11208
11209 if (!kvm_pv_async_pf_enabled(vcpu) ||
11210 (vcpu->arch.apf.send_user_only && kvm_x86_ops.get_cpl(vcpu) == 0))
11211 return false;
11212
11213 return true;
11214 }
11215
kvm_can_do_async_pf(struct kvm_vcpu * vcpu)11216 bool kvm_can_do_async_pf(struct kvm_vcpu *vcpu)
11217 {
11218 if (unlikely(!lapic_in_kernel(vcpu) ||
11219 kvm_event_needs_reinjection(vcpu) ||
11220 vcpu->arch.exception.pending))
11221 return false;
11222
11223 if (kvm_hlt_in_guest(vcpu->kvm) && !kvm_can_deliver_async_pf(vcpu))
11224 return false;
11225
11226 /*
11227 * If interrupts are off we cannot even use an artificial
11228 * halt state.
11229 */
11230 return kvm_arch_interrupt_allowed(vcpu);
11231 }
11232
kvm_arch_async_page_not_present(struct kvm_vcpu * vcpu,struct kvm_async_pf * work)11233 bool kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
11234 struct kvm_async_pf *work)
11235 {
11236 struct x86_exception fault;
11237
11238 trace_kvm_async_pf_not_present(work->arch.token, work->cr2_or_gpa);
11239 kvm_add_async_pf_gfn(vcpu, work->arch.gfn);
11240
11241 if (kvm_can_deliver_async_pf(vcpu) &&
11242 !apf_put_user_notpresent(vcpu)) {
11243 fault.vector = PF_VECTOR;
11244 fault.error_code_valid = true;
11245 fault.error_code = 0;
11246 fault.nested_page_fault = false;
11247 fault.address = work->arch.token;
11248 fault.async_page_fault = true;
11249 kvm_inject_page_fault(vcpu, &fault);
11250 return true;
11251 } else {
11252 /*
11253 * It is not possible to deliver a paravirtualized asynchronous
11254 * page fault, but putting the guest in an artificial halt state
11255 * can be beneficial nevertheless: if an interrupt arrives, we
11256 * can deliver it timely and perhaps the guest will schedule
11257 * another process. When the instruction that triggered a page
11258 * fault is retried, hopefully the page will be ready in the host.
11259 */
11260 kvm_make_request(KVM_REQ_APF_HALT, vcpu);
11261 return false;
11262 }
11263 }
11264
kvm_arch_async_page_present(struct kvm_vcpu * vcpu,struct kvm_async_pf * work)11265 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
11266 struct kvm_async_pf *work)
11267 {
11268 struct kvm_lapic_irq irq = {
11269 .delivery_mode = APIC_DM_FIXED,
11270 .vector = vcpu->arch.apf.vec
11271 };
11272
11273 if (work->wakeup_all)
11274 work->arch.token = ~0; /* broadcast wakeup */
11275 else
11276 kvm_del_async_pf_gfn(vcpu, work->arch.gfn);
11277 trace_kvm_async_pf_ready(work->arch.token, work->cr2_or_gpa);
11278
11279 if ((work->wakeup_all || work->notpresent_injected) &&
11280 kvm_pv_async_pf_enabled(vcpu) &&
11281 !apf_put_user_ready(vcpu, work->arch.token)) {
11282 vcpu->arch.apf.pageready_pending = true;
11283 kvm_apic_set_irq(vcpu, &irq, NULL);
11284 }
11285
11286 vcpu->arch.apf.halted = false;
11287 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
11288 }
11289
kvm_arch_async_page_present_queued(struct kvm_vcpu * vcpu)11290 void kvm_arch_async_page_present_queued(struct kvm_vcpu *vcpu)
11291 {
11292 kvm_make_request(KVM_REQ_APF_READY, vcpu);
11293 if (!vcpu->arch.apf.pageready_pending)
11294 kvm_vcpu_kick(vcpu);
11295 }
11296
kvm_arch_can_dequeue_async_page_present(struct kvm_vcpu * vcpu)11297 bool kvm_arch_can_dequeue_async_page_present(struct kvm_vcpu *vcpu)
11298 {
11299 if (!kvm_pv_async_pf_enabled(vcpu))
11300 return true;
11301 else
11302 return kvm_lapic_enabled(vcpu) && apf_pageready_slot_free(vcpu);
11303 }
11304
kvm_arch_start_assignment(struct kvm * kvm)11305 void kvm_arch_start_assignment(struct kvm *kvm)
11306 {
11307 atomic_inc(&kvm->arch.assigned_device_count);
11308 }
11309 EXPORT_SYMBOL_GPL(kvm_arch_start_assignment);
11310
kvm_arch_end_assignment(struct kvm * kvm)11311 void kvm_arch_end_assignment(struct kvm *kvm)
11312 {
11313 atomic_dec(&kvm->arch.assigned_device_count);
11314 }
11315 EXPORT_SYMBOL_GPL(kvm_arch_end_assignment);
11316
kvm_arch_has_assigned_device(struct kvm * kvm)11317 bool noinstr kvm_arch_has_assigned_device(struct kvm *kvm)
11318 {
11319 return arch_atomic_read(&kvm->arch.assigned_device_count);
11320 }
11321 EXPORT_SYMBOL_GPL(kvm_arch_has_assigned_device);
11322
kvm_arch_register_noncoherent_dma(struct kvm * kvm)11323 void kvm_arch_register_noncoherent_dma(struct kvm *kvm)
11324 {
11325 atomic_inc(&kvm->arch.noncoherent_dma_count);
11326 }
11327 EXPORT_SYMBOL_GPL(kvm_arch_register_noncoherent_dma);
11328
kvm_arch_unregister_noncoherent_dma(struct kvm * kvm)11329 void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm)
11330 {
11331 atomic_dec(&kvm->arch.noncoherent_dma_count);
11332 }
11333 EXPORT_SYMBOL_GPL(kvm_arch_unregister_noncoherent_dma);
11334
kvm_arch_has_noncoherent_dma(struct kvm * kvm)11335 bool kvm_arch_has_noncoherent_dma(struct kvm *kvm)
11336 {
11337 return atomic_read(&kvm->arch.noncoherent_dma_count);
11338 }
11339 EXPORT_SYMBOL_GPL(kvm_arch_has_noncoherent_dma);
11340
kvm_arch_has_irq_bypass(void)11341 bool kvm_arch_has_irq_bypass(void)
11342 {
11343 return true;
11344 }
11345
kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer * cons,struct irq_bypass_producer * prod)11346 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons,
11347 struct irq_bypass_producer *prod)
11348 {
11349 struct kvm_kernel_irqfd *irqfd =
11350 container_of(cons, struct kvm_kernel_irqfd, consumer);
11351 int ret;
11352
11353 irqfd->producer = prod;
11354 kvm_arch_start_assignment(irqfd->kvm);
11355 ret = kvm_x86_ops.update_pi_irte(irqfd->kvm,
11356 prod->irq, irqfd->gsi, 1);
11357
11358 if (ret)
11359 kvm_arch_end_assignment(irqfd->kvm);
11360
11361 return ret;
11362 }
11363
kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer * cons,struct irq_bypass_producer * prod)11364 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons,
11365 struct irq_bypass_producer *prod)
11366 {
11367 int ret;
11368 struct kvm_kernel_irqfd *irqfd =
11369 container_of(cons, struct kvm_kernel_irqfd, consumer);
11370
11371 WARN_ON(irqfd->producer != prod);
11372 irqfd->producer = NULL;
11373
11374 /*
11375 * When producer of consumer is unregistered, we change back to
11376 * remapped mode, so we can re-use the current implementation
11377 * when the irq is masked/disabled or the consumer side (KVM
11378 * int this case doesn't want to receive the interrupts.
11379 */
11380 ret = kvm_x86_ops.update_pi_irte(irqfd->kvm, prod->irq, irqfd->gsi, 0);
11381 if (ret)
11382 printk(KERN_INFO "irq bypass consumer (token %p) unregistration"
11383 " fails: %d\n", irqfd->consumer.token, ret);
11384
11385 kvm_arch_end_assignment(irqfd->kvm);
11386 }
11387
kvm_arch_update_irqfd_routing(struct kvm * kvm,unsigned int host_irq,uint32_t guest_irq,bool set)11388 int kvm_arch_update_irqfd_routing(struct kvm *kvm, unsigned int host_irq,
11389 uint32_t guest_irq, bool set)
11390 {
11391 return kvm_x86_ops.update_pi_irte(kvm, host_irq, guest_irq, set);
11392 }
11393
kvm_vector_hashing_enabled(void)11394 bool kvm_vector_hashing_enabled(void)
11395 {
11396 return vector_hashing;
11397 }
11398
kvm_arch_no_poll(struct kvm_vcpu * vcpu)11399 bool kvm_arch_no_poll(struct kvm_vcpu *vcpu)
11400 {
11401 return (vcpu->arch.msr_kvm_poll_control & 1) == 0;
11402 }
11403 EXPORT_SYMBOL_GPL(kvm_arch_no_poll);
11404
11405
kvm_spec_ctrl_test_value(u64 value)11406 int kvm_spec_ctrl_test_value(u64 value)
11407 {
11408 /*
11409 * test that setting IA32_SPEC_CTRL to given value
11410 * is allowed by the host processor
11411 */
11412
11413 u64 saved_value;
11414 unsigned long flags;
11415 int ret = 0;
11416
11417 local_irq_save(flags);
11418
11419 if (rdmsrl_safe(MSR_IA32_SPEC_CTRL, &saved_value))
11420 ret = 1;
11421 else if (wrmsrl_safe(MSR_IA32_SPEC_CTRL, value))
11422 ret = 1;
11423 else
11424 wrmsrl(MSR_IA32_SPEC_CTRL, saved_value);
11425
11426 local_irq_restore(flags);
11427
11428 return ret;
11429 }
11430 EXPORT_SYMBOL_GPL(kvm_spec_ctrl_test_value);
11431
kvm_fixup_and_inject_pf_error(struct kvm_vcpu * vcpu,gva_t gva,u16 error_code)11432 void kvm_fixup_and_inject_pf_error(struct kvm_vcpu *vcpu, gva_t gva, u16 error_code)
11433 {
11434 struct x86_exception fault;
11435 u32 access = error_code &
11436 (PFERR_WRITE_MASK | PFERR_FETCH_MASK | PFERR_USER_MASK);
11437
11438 if (!(error_code & PFERR_PRESENT_MASK) ||
11439 vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, &fault) != UNMAPPED_GVA) {
11440 /*
11441 * If vcpu->arch.walk_mmu->gva_to_gpa succeeded, the page
11442 * tables probably do not match the TLB. Just proceed
11443 * with the error code that the processor gave.
11444 */
11445 fault.vector = PF_VECTOR;
11446 fault.error_code_valid = true;
11447 fault.error_code = error_code;
11448 fault.nested_page_fault = false;
11449 fault.address = gva;
11450 }
11451 vcpu->arch.walk_mmu->inject_page_fault(vcpu, &fault);
11452 }
11453 EXPORT_SYMBOL_GPL(kvm_fixup_and_inject_pf_error);
11454
11455 /*
11456 * Handles kvm_read/write_guest_virt*() result and either injects #PF or returns
11457 * KVM_EXIT_INTERNAL_ERROR for cases not currently handled by KVM. Return value
11458 * indicates whether exit to userspace is needed.
11459 */
kvm_handle_memory_failure(struct kvm_vcpu * vcpu,int r,struct x86_exception * e)11460 int kvm_handle_memory_failure(struct kvm_vcpu *vcpu, int r,
11461 struct x86_exception *e)
11462 {
11463 if (r == X86EMUL_PROPAGATE_FAULT) {
11464 kvm_inject_emulated_page_fault(vcpu, e);
11465 return 1;
11466 }
11467
11468 /*
11469 * In case kvm_read/write_guest_virt*() failed with X86EMUL_IO_NEEDED
11470 * while handling a VMX instruction KVM could've handled the request
11471 * correctly by exiting to userspace and performing I/O but there
11472 * doesn't seem to be a real use-case behind such requests, just return
11473 * KVM_EXIT_INTERNAL_ERROR for now.
11474 */
11475 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
11476 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
11477 vcpu->run->internal.ndata = 0;
11478
11479 return 0;
11480 }
11481 EXPORT_SYMBOL_GPL(kvm_handle_memory_failure);
11482
kvm_handle_invpcid(struct kvm_vcpu * vcpu,unsigned long type,gva_t gva)11483 int kvm_handle_invpcid(struct kvm_vcpu *vcpu, unsigned long type, gva_t gva)
11484 {
11485 bool pcid_enabled;
11486 struct x86_exception e;
11487 unsigned i;
11488 unsigned long roots_to_free = 0;
11489 struct {
11490 u64 pcid;
11491 u64 gla;
11492 } operand;
11493 int r;
11494
11495 r = kvm_read_guest_virt(vcpu, gva, &operand, sizeof(operand), &e);
11496 if (r != X86EMUL_CONTINUE)
11497 return kvm_handle_memory_failure(vcpu, r, &e);
11498
11499 if (operand.pcid >> 12 != 0) {
11500 kvm_inject_gp(vcpu, 0);
11501 return 1;
11502 }
11503
11504 pcid_enabled = kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE);
11505
11506 switch (type) {
11507 case INVPCID_TYPE_INDIV_ADDR:
11508 if ((!pcid_enabled && (operand.pcid != 0)) ||
11509 is_noncanonical_address(operand.gla, vcpu)) {
11510 kvm_inject_gp(vcpu, 0);
11511 return 1;
11512 }
11513 kvm_mmu_invpcid_gva(vcpu, operand.gla, operand.pcid);
11514 return kvm_skip_emulated_instruction(vcpu);
11515
11516 case INVPCID_TYPE_SINGLE_CTXT:
11517 if (!pcid_enabled && (operand.pcid != 0)) {
11518 kvm_inject_gp(vcpu, 0);
11519 return 1;
11520 }
11521
11522 if (kvm_get_active_pcid(vcpu) == operand.pcid) {
11523 kvm_mmu_sync_roots(vcpu);
11524 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
11525 }
11526
11527 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
11528 if (kvm_get_pcid(vcpu, vcpu->arch.mmu->prev_roots[i].pgd)
11529 == operand.pcid)
11530 roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i);
11531
11532 kvm_mmu_free_roots(vcpu, vcpu->arch.mmu, roots_to_free);
11533 /*
11534 * If neither the current cr3 nor any of the prev_roots use the
11535 * given PCID, then nothing needs to be done here because a
11536 * resync will happen anyway before switching to any other CR3.
11537 */
11538
11539 return kvm_skip_emulated_instruction(vcpu);
11540
11541 case INVPCID_TYPE_ALL_NON_GLOBAL:
11542 /*
11543 * Currently, KVM doesn't mark global entries in the shadow
11544 * page tables, so a non-global flush just degenerates to a
11545 * global flush. If needed, we could optimize this later by
11546 * keeping track of global entries in shadow page tables.
11547 */
11548
11549 fallthrough;
11550 case INVPCID_TYPE_ALL_INCL_GLOBAL:
11551 kvm_make_request(KVM_REQ_MMU_RELOAD, vcpu);
11552 return kvm_skip_emulated_instruction(vcpu);
11553
11554 default:
11555 BUG(); /* We have already checked above that type <= 3 */
11556 }
11557 }
11558 EXPORT_SYMBOL_GPL(kvm_handle_invpcid);
11559
11560 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit);
11561 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_fast_mmio);
11562 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq);
11563 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault);
11564 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr);
11565 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr);
11566 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmrun);
11567 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit);
11568 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject);
11569 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit);
11570 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmenter_failed);
11571 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga);
11572 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit);
11573 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts);
11574 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_write_tsc_offset);
11575 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ple_window_update);
11576 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pml_full);
11577 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pi_irte_update);
11578 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_unaccelerated_access);
11579 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_incomplete_ipi);
11580 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_ga_log);
11581 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_apicv_update_request);
11582
kvm_x86_init(void)11583 static int __init kvm_x86_init(void)
11584 {
11585 kvm_mmu_x86_module_init();
11586 return 0;
11587 }
11588 module_init(kvm_x86_init);
11589
kvm_x86_exit(void)11590 static void __exit kvm_x86_exit(void)
11591 {
11592 /*
11593 * If module_init() is implemented, module_exit() must also be
11594 * implemented to allow module unload.
11595 */
11596 }
11597 module_exit(kvm_x86_exit);
11598