• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2012,2013 - ARM Ltd
4  * Author: Marc Zyngier <marc.zyngier@arm.com>
5  *
6  * Derived from arch/arm/kvm/coproc.c:
7  * Copyright (C) 2012 - Virtual Open Systems and Columbia University
8  * Authors: Rusty Russell <rusty@rustcorp.com.au>
9  *          Christoffer Dall <c.dall@virtualopensystems.com>
10  */
11 
12 #include <linux/bsearch.h>
13 #include <linux/kvm_host.h>
14 #include <linux/mm.h>
15 #include <linux/printk.h>
16 #include <linux/uaccess.h>
17 
18 #include <asm/cacheflush.h>
19 #include <asm/cputype.h>
20 #include <asm/debug-monitors.h>
21 #include <asm/esr.h>
22 #include <asm/kvm_arm.h>
23 #include <asm/kvm_coproc.h>
24 #include <asm/kvm_emulate.h>
25 #include <asm/kvm_hyp.h>
26 #include <asm/kvm_mmu.h>
27 #include <asm/perf_event.h>
28 #include <asm/sysreg.h>
29 
30 #include <trace/events/kvm.h>
31 
32 #include "sys_regs.h"
33 
34 #include "trace.h"
35 
36 /*
37  * All of this file is extremely similar to the ARM coproc.c, but the
38  * types are different. My gut feeling is that it should be pretty
39  * easy to merge, but that would be an ABI breakage -- again. VFP
40  * would also need to be abstracted.
41  *
42  * For AArch32, we only take care of what is being trapped. Anything
43  * that has to do with init and userspace access has to go via the
44  * 64bit interface.
45  */
46 
read_from_write_only(struct kvm_vcpu * vcpu,struct sys_reg_params * params,const struct sys_reg_desc * r)47 static bool read_from_write_only(struct kvm_vcpu *vcpu,
48 				 struct sys_reg_params *params,
49 				 const struct sys_reg_desc *r)
50 {
51 	WARN_ONCE(1, "Unexpected sys_reg read to write-only register\n");
52 	print_sys_reg_instr(params);
53 	kvm_inject_undefined(vcpu);
54 	return false;
55 }
56 
write_to_read_only(struct kvm_vcpu * vcpu,struct sys_reg_params * params,const struct sys_reg_desc * r)57 static bool write_to_read_only(struct kvm_vcpu *vcpu,
58 			       struct sys_reg_params *params,
59 			       const struct sys_reg_desc *r)
60 {
61 	WARN_ONCE(1, "Unexpected sys_reg write to read-only register\n");
62 	print_sys_reg_instr(params);
63 	kvm_inject_undefined(vcpu);
64 	return false;
65 }
66 
__vcpu_read_sys_reg_from_cpu(int reg,u64 * val)67 static bool __vcpu_read_sys_reg_from_cpu(int reg, u64 *val)
68 {
69 	/*
70 	 * System registers listed in the switch are not saved on every
71 	 * exit from the guest but are only saved on vcpu_put.
72 	 *
73 	 * Note that MPIDR_EL1 for the guest is set by KVM via VMPIDR_EL2 but
74 	 * should never be listed below, because the guest cannot modify its
75 	 * own MPIDR_EL1 and MPIDR_EL1 is accessed for VCPU A from VCPU B's
76 	 * thread when emulating cross-VCPU communication.
77 	 */
78 	switch (reg) {
79 	case CSSELR_EL1:	*val = read_sysreg_s(SYS_CSSELR_EL1);	break;
80 	case SCTLR_EL1:		*val = read_sysreg_s(SYS_SCTLR_EL12);	break;
81 	case CPACR_EL1:		*val = read_sysreg_s(SYS_CPACR_EL12);	break;
82 	case TTBR0_EL1:		*val = read_sysreg_s(SYS_TTBR0_EL12);	break;
83 	case TTBR1_EL1:		*val = read_sysreg_s(SYS_TTBR1_EL12);	break;
84 	case TCR_EL1:		*val = read_sysreg_s(SYS_TCR_EL12);	break;
85 	case ESR_EL1:		*val = read_sysreg_s(SYS_ESR_EL12);	break;
86 	case AFSR0_EL1:		*val = read_sysreg_s(SYS_AFSR0_EL12);	break;
87 	case AFSR1_EL1:		*val = read_sysreg_s(SYS_AFSR1_EL12);	break;
88 	case FAR_EL1:		*val = read_sysreg_s(SYS_FAR_EL12);	break;
89 	case MAIR_EL1:		*val = read_sysreg_s(SYS_MAIR_EL12);	break;
90 	case VBAR_EL1:		*val = read_sysreg_s(SYS_VBAR_EL12);	break;
91 	case CONTEXTIDR_EL1:	*val = read_sysreg_s(SYS_CONTEXTIDR_EL12);break;
92 	case TPIDR_EL0:		*val = read_sysreg_s(SYS_TPIDR_EL0);	break;
93 	case TPIDRRO_EL0:	*val = read_sysreg_s(SYS_TPIDRRO_EL0);	break;
94 	case TPIDR_EL1:		*val = read_sysreg_s(SYS_TPIDR_EL1);	break;
95 	case AMAIR_EL1:		*val = read_sysreg_s(SYS_AMAIR_EL12);	break;
96 	case CNTKCTL_EL1:	*val = read_sysreg_s(SYS_CNTKCTL_EL12);	break;
97 	case ELR_EL1:		*val = read_sysreg_s(SYS_ELR_EL12);	break;
98 	case PAR_EL1:		*val = read_sysreg_par();		break;
99 	case DACR32_EL2:	*val = read_sysreg_s(SYS_DACR32_EL2);	break;
100 	case IFSR32_EL2:	*val = read_sysreg_s(SYS_IFSR32_EL2);	break;
101 	case DBGVCR32_EL2:	*val = read_sysreg_s(SYS_DBGVCR32_EL2);	break;
102 	default:		return false;
103 	}
104 
105 	return true;
106 }
107 
__vcpu_write_sys_reg_to_cpu(u64 val,int reg)108 static bool __vcpu_write_sys_reg_to_cpu(u64 val, int reg)
109 {
110 	/*
111 	 * System registers listed in the switch are not restored on every
112 	 * entry to the guest but are only restored on vcpu_load.
113 	 *
114 	 * Note that MPIDR_EL1 for the guest is set by KVM via VMPIDR_EL2 but
115 	 * should never be listed below, because the MPIDR should only be set
116 	 * once, before running the VCPU, and never changed later.
117 	 */
118 	switch (reg) {
119 	case CSSELR_EL1:	write_sysreg_s(val, SYS_CSSELR_EL1);	break;
120 	case SCTLR_EL1:		write_sysreg_s(val, SYS_SCTLR_EL12);	break;
121 	case CPACR_EL1:		write_sysreg_s(val, SYS_CPACR_EL12);	break;
122 	case TTBR0_EL1:		write_sysreg_s(val, SYS_TTBR0_EL12);	break;
123 	case TTBR1_EL1:		write_sysreg_s(val, SYS_TTBR1_EL12);	break;
124 	case TCR_EL1:		write_sysreg_s(val, SYS_TCR_EL12);	break;
125 	case ESR_EL1:		write_sysreg_s(val, SYS_ESR_EL12);	break;
126 	case AFSR0_EL1:		write_sysreg_s(val, SYS_AFSR0_EL12);	break;
127 	case AFSR1_EL1:		write_sysreg_s(val, SYS_AFSR1_EL12);	break;
128 	case FAR_EL1:		write_sysreg_s(val, SYS_FAR_EL12);	break;
129 	case MAIR_EL1:		write_sysreg_s(val, SYS_MAIR_EL12);	break;
130 	case VBAR_EL1:		write_sysreg_s(val, SYS_VBAR_EL12);	break;
131 	case CONTEXTIDR_EL1:	write_sysreg_s(val, SYS_CONTEXTIDR_EL12);break;
132 	case TPIDR_EL0:		write_sysreg_s(val, SYS_TPIDR_EL0);	break;
133 	case TPIDRRO_EL0:	write_sysreg_s(val, SYS_TPIDRRO_EL0);	break;
134 	case TPIDR_EL1:		write_sysreg_s(val, SYS_TPIDR_EL1);	break;
135 	case AMAIR_EL1:		write_sysreg_s(val, SYS_AMAIR_EL12);	break;
136 	case CNTKCTL_EL1:	write_sysreg_s(val, SYS_CNTKCTL_EL12);	break;
137 	case ELR_EL1:		write_sysreg_s(val, SYS_ELR_EL12);	break;
138 	case PAR_EL1:		write_sysreg_s(val, SYS_PAR_EL1);	break;
139 	case DACR32_EL2:	write_sysreg_s(val, SYS_DACR32_EL2);	break;
140 	case IFSR32_EL2:	write_sysreg_s(val, SYS_IFSR32_EL2);	break;
141 	case DBGVCR32_EL2:	write_sysreg_s(val, SYS_DBGVCR32_EL2);	break;
142 	default:		return false;
143 	}
144 
145 	return true;
146 }
147 
vcpu_read_sys_reg(const struct kvm_vcpu * vcpu,int reg)148 u64 vcpu_read_sys_reg(const struct kvm_vcpu *vcpu, int reg)
149 {
150 	u64 val = 0x8badf00d8badf00d;
151 
152 	if (vcpu->arch.sysregs_loaded_on_cpu &&
153 	    __vcpu_read_sys_reg_from_cpu(reg, &val))
154 		return val;
155 
156 	return __vcpu_sys_reg(vcpu, reg);
157 }
158 
vcpu_write_sys_reg(struct kvm_vcpu * vcpu,u64 val,int reg)159 void vcpu_write_sys_reg(struct kvm_vcpu *vcpu, u64 val, int reg)
160 {
161 	if (vcpu->arch.sysregs_loaded_on_cpu &&
162 	    __vcpu_write_sys_reg_to_cpu(val, reg))
163 		return;
164 
165 	 __vcpu_sys_reg(vcpu, reg) = val;
166 }
167 
168 /* 3 bits per cache level, as per CLIDR, but non-existent caches always 0 */
169 static u32 cache_levels;
170 
171 /* CSSELR values; used to index KVM_REG_ARM_DEMUX_ID_CCSIDR */
172 #define CSSELR_MAX 12
173 
174 /* Which cache CCSIDR represents depends on CSSELR value. */
get_ccsidr(u32 csselr)175 static u32 get_ccsidr(u32 csselr)
176 {
177 	u32 ccsidr;
178 
179 	/* Make sure noone else changes CSSELR during this! */
180 	local_irq_disable();
181 	write_sysreg(csselr, csselr_el1);
182 	isb();
183 	ccsidr = read_sysreg(ccsidr_el1);
184 	local_irq_enable();
185 
186 	return ccsidr;
187 }
188 
189 /*
190  * See note at ARMv7 ARM B1.14.4 (TL;DR: S/W ops are not easily virtualized).
191  */
access_dcsw(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * r)192 static bool access_dcsw(struct kvm_vcpu *vcpu,
193 			struct sys_reg_params *p,
194 			const struct sys_reg_desc *r)
195 {
196 	if (!p->is_write)
197 		return read_from_write_only(vcpu, p, r);
198 
199 	/*
200 	 * Only track S/W ops if we don't have FWB. It still indicates
201 	 * that the guest is a bit broken (S/W operations should only
202 	 * be done by firmware, knowing that there is only a single
203 	 * CPU left in the system, and certainly not from non-secure
204 	 * software).
205 	 */
206 	if (!cpus_have_const_cap(ARM64_HAS_STAGE2_FWB))
207 		kvm_set_way_flush(vcpu);
208 
209 	return true;
210 }
211 
212 /*
213  * Generic accessor for VM registers. Only called as long as HCR_TVM
214  * is set. If the guest enables the MMU, we stop trapping the VM
215  * sys_regs and leave it in complete control of the caches.
216  */
access_vm_reg(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * r)217 static bool access_vm_reg(struct kvm_vcpu *vcpu,
218 			  struct sys_reg_params *p,
219 			  const struct sys_reg_desc *r)
220 {
221 	bool was_enabled = vcpu_has_cache_enabled(vcpu);
222 	u64 val;
223 	int reg = r->reg;
224 
225 	BUG_ON(!p->is_write);
226 
227 	/* See the 32bit mapping in kvm_host.h */
228 	if (p->is_aarch32)
229 		reg = r->reg / 2;
230 
231 	if (!p->is_aarch32 || !p->is_32bit) {
232 		val = p->regval;
233 	} else {
234 		val = vcpu_read_sys_reg(vcpu, reg);
235 		if (r->reg % 2)
236 			val = (p->regval << 32) | (u64)lower_32_bits(val);
237 		else
238 			val = ((u64)upper_32_bits(val) << 32) |
239 				lower_32_bits(p->regval);
240 	}
241 	vcpu_write_sys_reg(vcpu, val, reg);
242 
243 	kvm_toggle_cache(vcpu, was_enabled);
244 	return true;
245 }
246 
access_actlr(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * r)247 static bool access_actlr(struct kvm_vcpu *vcpu,
248 			 struct sys_reg_params *p,
249 			 const struct sys_reg_desc *r)
250 {
251 	if (p->is_write)
252 		return ignore_write(vcpu, p);
253 
254 	p->regval = vcpu_read_sys_reg(vcpu, ACTLR_EL1);
255 
256 	if (p->is_aarch32) {
257 		if (r->Op2 & 2)
258 			p->regval = upper_32_bits(p->regval);
259 		else
260 			p->regval = lower_32_bits(p->regval);
261 	}
262 
263 	return true;
264 }
265 
266 /*
267  * Trap handler for the GICv3 SGI generation system register.
268  * Forward the request to the VGIC emulation.
269  * The cp15_64 code makes sure this automatically works
270  * for both AArch64 and AArch32 accesses.
271  */
access_gic_sgi(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * r)272 static bool access_gic_sgi(struct kvm_vcpu *vcpu,
273 			   struct sys_reg_params *p,
274 			   const struct sys_reg_desc *r)
275 {
276 	bool g1;
277 
278 	if (!p->is_write)
279 		return read_from_write_only(vcpu, p, r);
280 
281 	/*
282 	 * In a system where GICD_CTLR.DS=1, a ICC_SGI0R_EL1 access generates
283 	 * Group0 SGIs only, while ICC_SGI1R_EL1 can generate either group,
284 	 * depending on the SGI configuration. ICC_ASGI1R_EL1 is effectively
285 	 * equivalent to ICC_SGI0R_EL1, as there is no "alternative" secure
286 	 * group.
287 	 */
288 	if (p->is_aarch32) {
289 		switch (p->Op1) {
290 		default:		/* Keep GCC quiet */
291 		case 0:			/* ICC_SGI1R */
292 			g1 = true;
293 			break;
294 		case 1:			/* ICC_ASGI1R */
295 		case 2:			/* ICC_SGI0R */
296 			g1 = false;
297 			break;
298 		}
299 	} else {
300 		switch (p->Op2) {
301 		default:		/* Keep GCC quiet */
302 		case 5:			/* ICC_SGI1R_EL1 */
303 			g1 = true;
304 			break;
305 		case 6:			/* ICC_ASGI1R_EL1 */
306 		case 7:			/* ICC_SGI0R_EL1 */
307 			g1 = false;
308 			break;
309 		}
310 	}
311 
312 	vgic_v3_dispatch_sgi(vcpu, p->regval, g1);
313 
314 	return true;
315 }
316 
access_gic_sre(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * r)317 static bool access_gic_sre(struct kvm_vcpu *vcpu,
318 			   struct sys_reg_params *p,
319 			   const struct sys_reg_desc *r)
320 {
321 	if (p->is_write)
322 		return ignore_write(vcpu, p);
323 
324 	p->regval = vcpu->arch.vgic_cpu.vgic_v3.vgic_sre;
325 	return true;
326 }
327 
trap_raz_wi(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * r)328 static bool trap_raz_wi(struct kvm_vcpu *vcpu,
329 			struct sys_reg_params *p,
330 			const struct sys_reg_desc *r)
331 {
332 	if (p->is_write)
333 		return ignore_write(vcpu, p);
334 	else
335 		return read_zero(vcpu, p);
336 }
337 
338 /*
339  * ARMv8.1 mandates at least a trivial LORegion implementation, where all the
340  * RW registers are RES0 (which we can implement as RAZ/WI). On an ARMv8.0
341  * system, these registers should UNDEF. LORID_EL1 being a RO register, we
342  * treat it separately.
343  */
trap_loregion(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * r)344 static bool trap_loregion(struct kvm_vcpu *vcpu,
345 			  struct sys_reg_params *p,
346 			  const struct sys_reg_desc *r)
347 {
348 	u64 val = read_sanitised_ftr_reg(SYS_ID_AA64MMFR1_EL1);
349 	u32 sr = sys_reg((u32)r->Op0, (u32)r->Op1,
350 			 (u32)r->CRn, (u32)r->CRm, (u32)r->Op2);
351 
352 	if (!(val & (0xfUL << ID_AA64MMFR1_LOR_SHIFT))) {
353 		kvm_inject_undefined(vcpu);
354 		return false;
355 	}
356 
357 	if (p->is_write && sr == SYS_LORID_EL1)
358 		return write_to_read_only(vcpu, p, r);
359 
360 	return trap_raz_wi(vcpu, p, r);
361 }
362 
trap_oslsr_el1(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * r)363 static bool trap_oslsr_el1(struct kvm_vcpu *vcpu,
364 			   struct sys_reg_params *p,
365 			   const struct sys_reg_desc *r)
366 {
367 	if (p->is_write) {
368 		return ignore_write(vcpu, p);
369 	} else {
370 		p->regval = (1 << 3);
371 		return true;
372 	}
373 }
374 
trap_dbgauthstatus_el1(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * r)375 static bool trap_dbgauthstatus_el1(struct kvm_vcpu *vcpu,
376 				   struct sys_reg_params *p,
377 				   const struct sys_reg_desc *r)
378 {
379 	if (p->is_write) {
380 		return ignore_write(vcpu, p);
381 	} else {
382 		p->regval = read_sysreg(dbgauthstatus_el1);
383 		return true;
384 	}
385 }
386 
387 /*
388  * We want to avoid world-switching all the DBG registers all the
389  * time:
390  *
391  * - If we've touched any debug register, it is likely that we're
392  *   going to touch more of them. It then makes sense to disable the
393  *   traps and start doing the save/restore dance
394  * - If debug is active (DBG_MDSCR_KDE or DBG_MDSCR_MDE set), it is
395  *   then mandatory to save/restore the registers, as the guest
396  *   depends on them.
397  *
398  * For this, we use a DIRTY bit, indicating the guest has modified the
399  * debug registers, used as follow:
400  *
401  * On guest entry:
402  * - If the dirty bit is set (because we're coming back from trapping),
403  *   disable the traps, save host registers, restore guest registers.
404  * - If debug is actively in use (DBG_MDSCR_KDE or DBG_MDSCR_MDE set),
405  *   set the dirty bit, disable the traps, save host registers,
406  *   restore guest registers.
407  * - Otherwise, enable the traps
408  *
409  * On guest exit:
410  * - If the dirty bit is set, save guest registers, restore host
411  *   registers and clear the dirty bit. This ensure that the host can
412  *   now use the debug registers.
413  */
trap_debug_regs(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * r)414 static bool trap_debug_regs(struct kvm_vcpu *vcpu,
415 			    struct sys_reg_params *p,
416 			    const struct sys_reg_desc *r)
417 {
418 	if (p->is_write) {
419 		vcpu_write_sys_reg(vcpu, p->regval, r->reg);
420 		vcpu->arch.flags |= KVM_ARM64_DEBUG_DIRTY;
421 	} else {
422 		p->regval = vcpu_read_sys_reg(vcpu, r->reg);
423 	}
424 
425 	trace_trap_reg(__func__, r->reg, p->is_write, p->regval);
426 
427 	return true;
428 }
429 
430 /*
431  * reg_to_dbg/dbg_to_reg
432  *
433  * A 32 bit write to a debug register leave top bits alone
434  * A 32 bit read from a debug register only returns the bottom bits
435  *
436  * All writes will set the KVM_ARM64_DEBUG_DIRTY flag to ensure the
437  * hyp.S code switches between host and guest values in future.
438  */
reg_to_dbg(struct kvm_vcpu * vcpu,struct sys_reg_params * p,u64 * dbg_reg)439 static void reg_to_dbg(struct kvm_vcpu *vcpu,
440 		       struct sys_reg_params *p,
441 		       u64 *dbg_reg)
442 {
443 	u64 val = p->regval;
444 
445 	if (p->is_32bit) {
446 		val &= 0xffffffffUL;
447 		val |= ((*dbg_reg >> 32) << 32);
448 	}
449 
450 	*dbg_reg = val;
451 	vcpu->arch.flags |= KVM_ARM64_DEBUG_DIRTY;
452 }
453 
dbg_to_reg(struct kvm_vcpu * vcpu,struct sys_reg_params * p,u64 * dbg_reg)454 static void dbg_to_reg(struct kvm_vcpu *vcpu,
455 		       struct sys_reg_params *p,
456 		       u64 *dbg_reg)
457 {
458 	p->regval = *dbg_reg;
459 	if (p->is_32bit)
460 		p->regval &= 0xffffffffUL;
461 }
462 
trap_bvr(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * rd)463 static bool trap_bvr(struct kvm_vcpu *vcpu,
464 		     struct sys_reg_params *p,
465 		     const struct sys_reg_desc *rd)
466 {
467 	u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_bvr[rd->CRm];
468 
469 	if (p->is_write)
470 		reg_to_dbg(vcpu, p, dbg_reg);
471 	else
472 		dbg_to_reg(vcpu, p, dbg_reg);
473 
474 	trace_trap_reg(__func__, rd->CRm, p->is_write, *dbg_reg);
475 
476 	return true;
477 }
478 
set_bvr(struct kvm_vcpu * vcpu,const struct sys_reg_desc * rd,const struct kvm_one_reg * reg,void __user * uaddr)479 static int set_bvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
480 		const struct kvm_one_reg *reg, void __user *uaddr)
481 {
482 	__u64 *r = &vcpu->arch.vcpu_debug_state.dbg_bvr[rd->CRm];
483 
484 	if (copy_from_user(r, uaddr, KVM_REG_SIZE(reg->id)) != 0)
485 		return -EFAULT;
486 	return 0;
487 }
488 
get_bvr(struct kvm_vcpu * vcpu,const struct sys_reg_desc * rd,const struct kvm_one_reg * reg,void __user * uaddr)489 static int get_bvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
490 	const struct kvm_one_reg *reg, void __user *uaddr)
491 {
492 	__u64 *r = &vcpu->arch.vcpu_debug_state.dbg_bvr[rd->CRm];
493 
494 	if (copy_to_user(uaddr, r, KVM_REG_SIZE(reg->id)) != 0)
495 		return -EFAULT;
496 	return 0;
497 }
498 
reset_bvr(struct kvm_vcpu * vcpu,const struct sys_reg_desc * rd)499 static void reset_bvr(struct kvm_vcpu *vcpu,
500 		      const struct sys_reg_desc *rd)
501 {
502 	vcpu->arch.vcpu_debug_state.dbg_bvr[rd->CRm] = rd->val;
503 }
504 
trap_bcr(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * rd)505 static bool trap_bcr(struct kvm_vcpu *vcpu,
506 		     struct sys_reg_params *p,
507 		     const struct sys_reg_desc *rd)
508 {
509 	u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_bcr[rd->CRm];
510 
511 	if (p->is_write)
512 		reg_to_dbg(vcpu, p, dbg_reg);
513 	else
514 		dbg_to_reg(vcpu, p, dbg_reg);
515 
516 	trace_trap_reg(__func__, rd->CRm, p->is_write, *dbg_reg);
517 
518 	return true;
519 }
520 
set_bcr(struct kvm_vcpu * vcpu,const struct sys_reg_desc * rd,const struct kvm_one_reg * reg,void __user * uaddr)521 static int set_bcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
522 		const struct kvm_one_reg *reg, void __user *uaddr)
523 {
524 	__u64 *r = &vcpu->arch.vcpu_debug_state.dbg_bcr[rd->CRm];
525 
526 	if (copy_from_user(r, uaddr, KVM_REG_SIZE(reg->id)) != 0)
527 		return -EFAULT;
528 
529 	return 0;
530 }
531 
get_bcr(struct kvm_vcpu * vcpu,const struct sys_reg_desc * rd,const struct kvm_one_reg * reg,void __user * uaddr)532 static int get_bcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
533 	const struct kvm_one_reg *reg, void __user *uaddr)
534 {
535 	__u64 *r = &vcpu->arch.vcpu_debug_state.dbg_bcr[rd->CRm];
536 
537 	if (copy_to_user(uaddr, r, KVM_REG_SIZE(reg->id)) != 0)
538 		return -EFAULT;
539 	return 0;
540 }
541 
reset_bcr(struct kvm_vcpu * vcpu,const struct sys_reg_desc * rd)542 static void reset_bcr(struct kvm_vcpu *vcpu,
543 		      const struct sys_reg_desc *rd)
544 {
545 	vcpu->arch.vcpu_debug_state.dbg_bcr[rd->CRm] = rd->val;
546 }
547 
trap_wvr(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * rd)548 static bool trap_wvr(struct kvm_vcpu *vcpu,
549 		     struct sys_reg_params *p,
550 		     const struct sys_reg_desc *rd)
551 {
552 	u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_wvr[rd->CRm];
553 
554 	if (p->is_write)
555 		reg_to_dbg(vcpu, p, dbg_reg);
556 	else
557 		dbg_to_reg(vcpu, p, dbg_reg);
558 
559 	trace_trap_reg(__func__, rd->CRm, p->is_write,
560 		vcpu->arch.vcpu_debug_state.dbg_wvr[rd->CRm]);
561 
562 	return true;
563 }
564 
set_wvr(struct kvm_vcpu * vcpu,const struct sys_reg_desc * rd,const struct kvm_one_reg * reg,void __user * uaddr)565 static int set_wvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
566 		const struct kvm_one_reg *reg, void __user *uaddr)
567 {
568 	__u64 *r = &vcpu->arch.vcpu_debug_state.dbg_wvr[rd->CRm];
569 
570 	if (copy_from_user(r, uaddr, KVM_REG_SIZE(reg->id)) != 0)
571 		return -EFAULT;
572 	return 0;
573 }
574 
get_wvr(struct kvm_vcpu * vcpu,const struct sys_reg_desc * rd,const struct kvm_one_reg * reg,void __user * uaddr)575 static int get_wvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
576 	const struct kvm_one_reg *reg, void __user *uaddr)
577 {
578 	__u64 *r = &vcpu->arch.vcpu_debug_state.dbg_wvr[rd->CRm];
579 
580 	if (copy_to_user(uaddr, r, KVM_REG_SIZE(reg->id)) != 0)
581 		return -EFAULT;
582 	return 0;
583 }
584 
reset_wvr(struct kvm_vcpu * vcpu,const struct sys_reg_desc * rd)585 static void reset_wvr(struct kvm_vcpu *vcpu,
586 		      const struct sys_reg_desc *rd)
587 {
588 	vcpu->arch.vcpu_debug_state.dbg_wvr[rd->CRm] = rd->val;
589 }
590 
trap_wcr(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * rd)591 static bool trap_wcr(struct kvm_vcpu *vcpu,
592 		     struct sys_reg_params *p,
593 		     const struct sys_reg_desc *rd)
594 {
595 	u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_wcr[rd->CRm];
596 
597 	if (p->is_write)
598 		reg_to_dbg(vcpu, p, dbg_reg);
599 	else
600 		dbg_to_reg(vcpu, p, dbg_reg);
601 
602 	trace_trap_reg(__func__, rd->CRm, p->is_write, *dbg_reg);
603 
604 	return true;
605 }
606 
set_wcr(struct kvm_vcpu * vcpu,const struct sys_reg_desc * rd,const struct kvm_one_reg * reg,void __user * uaddr)607 static int set_wcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
608 		const struct kvm_one_reg *reg, void __user *uaddr)
609 {
610 	__u64 *r = &vcpu->arch.vcpu_debug_state.dbg_wcr[rd->CRm];
611 
612 	if (copy_from_user(r, uaddr, KVM_REG_SIZE(reg->id)) != 0)
613 		return -EFAULT;
614 	return 0;
615 }
616 
get_wcr(struct kvm_vcpu * vcpu,const struct sys_reg_desc * rd,const struct kvm_one_reg * reg,void __user * uaddr)617 static int get_wcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
618 	const struct kvm_one_reg *reg, void __user *uaddr)
619 {
620 	__u64 *r = &vcpu->arch.vcpu_debug_state.dbg_wcr[rd->CRm];
621 
622 	if (copy_to_user(uaddr, r, KVM_REG_SIZE(reg->id)) != 0)
623 		return -EFAULT;
624 	return 0;
625 }
626 
reset_wcr(struct kvm_vcpu * vcpu,const struct sys_reg_desc * rd)627 static void reset_wcr(struct kvm_vcpu *vcpu,
628 		      const struct sys_reg_desc *rd)
629 {
630 	vcpu->arch.vcpu_debug_state.dbg_wcr[rd->CRm] = rd->val;
631 }
632 
reset_amair_el1(struct kvm_vcpu * vcpu,const struct sys_reg_desc * r)633 static void reset_amair_el1(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
634 {
635 	u64 amair = read_sysreg(amair_el1);
636 	vcpu_write_sys_reg(vcpu, amair, AMAIR_EL1);
637 }
638 
reset_actlr(struct kvm_vcpu * vcpu,const struct sys_reg_desc * r)639 static void reset_actlr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
640 {
641 	u64 actlr = read_sysreg(actlr_el1);
642 	vcpu_write_sys_reg(vcpu, actlr, ACTLR_EL1);
643 }
644 
reset_mpidr(struct kvm_vcpu * vcpu,const struct sys_reg_desc * r)645 static void reset_mpidr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
646 {
647 	u64 mpidr;
648 
649 	/*
650 	 * Map the vcpu_id into the first three affinity level fields of
651 	 * the MPIDR. We limit the number of VCPUs in level 0 due to a
652 	 * limitation to 16 CPUs in that level in the ICC_SGIxR registers
653 	 * of the GICv3 to be able to address each CPU directly when
654 	 * sending IPIs.
655 	 */
656 	mpidr = (vcpu->vcpu_id & 0x0f) << MPIDR_LEVEL_SHIFT(0);
657 	mpidr |= ((vcpu->vcpu_id >> 4) & 0xff) << MPIDR_LEVEL_SHIFT(1);
658 	mpidr |= ((vcpu->vcpu_id >> 12) & 0xff) << MPIDR_LEVEL_SHIFT(2);
659 	vcpu_write_sys_reg(vcpu, (1ULL << 31) | mpidr, MPIDR_EL1);
660 }
661 
reset_pmcr(struct kvm_vcpu * vcpu,const struct sys_reg_desc * r)662 static void reset_pmcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
663 {
664 	u64 pmcr, val;
665 
666 	/* No PMU available, PMCR_EL0 may UNDEF... */
667 	if (!kvm_arm_support_pmu_v3())
668 		return;
669 
670 	pmcr = read_sysreg(pmcr_el0);
671 	/*
672 	 * Writable bits of PMCR_EL0 (ARMV8_PMU_PMCR_MASK) are reset to UNKNOWN
673 	 * except PMCR.E resetting to zero.
674 	 */
675 	val = ((pmcr & ~ARMV8_PMU_PMCR_MASK)
676 	       | (ARMV8_PMU_PMCR_MASK & 0xdecafbad)) & (~ARMV8_PMU_PMCR_E);
677 	if (!system_supports_32bit_el0())
678 		val |= ARMV8_PMU_PMCR_LC;
679 	__vcpu_sys_reg(vcpu, r->reg) = val;
680 }
681 
check_pmu_access_disabled(struct kvm_vcpu * vcpu,u64 flags)682 static bool check_pmu_access_disabled(struct kvm_vcpu *vcpu, u64 flags)
683 {
684 	u64 reg = __vcpu_sys_reg(vcpu, PMUSERENR_EL0);
685 	bool enabled = (reg & flags) || vcpu_mode_priv(vcpu);
686 
687 	if (!enabled)
688 		kvm_inject_undefined(vcpu);
689 
690 	return !enabled;
691 }
692 
pmu_access_el0_disabled(struct kvm_vcpu * vcpu)693 static bool pmu_access_el0_disabled(struct kvm_vcpu *vcpu)
694 {
695 	return check_pmu_access_disabled(vcpu, ARMV8_PMU_USERENR_EN);
696 }
697 
pmu_write_swinc_el0_disabled(struct kvm_vcpu * vcpu)698 static bool pmu_write_swinc_el0_disabled(struct kvm_vcpu *vcpu)
699 {
700 	return check_pmu_access_disabled(vcpu, ARMV8_PMU_USERENR_SW | ARMV8_PMU_USERENR_EN);
701 }
702 
pmu_access_cycle_counter_el0_disabled(struct kvm_vcpu * vcpu)703 static bool pmu_access_cycle_counter_el0_disabled(struct kvm_vcpu *vcpu)
704 {
705 	return check_pmu_access_disabled(vcpu, ARMV8_PMU_USERENR_CR | ARMV8_PMU_USERENR_EN);
706 }
707 
pmu_access_event_counter_el0_disabled(struct kvm_vcpu * vcpu)708 static bool pmu_access_event_counter_el0_disabled(struct kvm_vcpu *vcpu)
709 {
710 	return check_pmu_access_disabled(vcpu, ARMV8_PMU_USERENR_ER | ARMV8_PMU_USERENR_EN);
711 }
712 
access_pmcr(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * r)713 static bool access_pmcr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
714 			const struct sys_reg_desc *r)
715 {
716 	u64 val;
717 
718 	if (!kvm_arm_pmu_v3_ready(vcpu))
719 		return trap_raz_wi(vcpu, p, r);
720 
721 	if (pmu_access_el0_disabled(vcpu))
722 		return false;
723 
724 	if (p->is_write) {
725 		/* Only update writeable bits of PMCR */
726 		val = __vcpu_sys_reg(vcpu, PMCR_EL0);
727 		val &= ~ARMV8_PMU_PMCR_MASK;
728 		val |= p->regval & ARMV8_PMU_PMCR_MASK;
729 		if (!system_supports_32bit_el0())
730 			val |= ARMV8_PMU_PMCR_LC;
731 		__vcpu_sys_reg(vcpu, PMCR_EL0) = val;
732 		kvm_pmu_handle_pmcr(vcpu, val);
733 		kvm_vcpu_pmu_restore_guest(vcpu);
734 	} else {
735 		/* PMCR.P & PMCR.C are RAZ */
736 		val = __vcpu_sys_reg(vcpu, PMCR_EL0)
737 		      & ~(ARMV8_PMU_PMCR_P | ARMV8_PMU_PMCR_C);
738 		p->regval = val;
739 	}
740 
741 	return true;
742 }
743 
access_pmselr(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * r)744 static bool access_pmselr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
745 			  const struct sys_reg_desc *r)
746 {
747 	if (!kvm_arm_pmu_v3_ready(vcpu))
748 		return trap_raz_wi(vcpu, p, r);
749 
750 	if (pmu_access_event_counter_el0_disabled(vcpu))
751 		return false;
752 
753 	if (p->is_write)
754 		__vcpu_sys_reg(vcpu, PMSELR_EL0) = p->regval;
755 	else
756 		/* return PMSELR.SEL field */
757 		p->regval = __vcpu_sys_reg(vcpu, PMSELR_EL0)
758 			    & ARMV8_PMU_COUNTER_MASK;
759 
760 	return true;
761 }
762 
access_pmceid(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * r)763 static bool access_pmceid(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
764 			  const struct sys_reg_desc *r)
765 {
766 	u64 pmceid;
767 
768 	if (!kvm_arm_pmu_v3_ready(vcpu))
769 		return trap_raz_wi(vcpu, p, r);
770 
771 	BUG_ON(p->is_write);
772 
773 	if (pmu_access_el0_disabled(vcpu))
774 		return false;
775 
776 	pmceid = kvm_pmu_get_pmceid(vcpu, (p->Op2 & 1));
777 
778 	p->regval = pmceid;
779 
780 	return true;
781 }
782 
pmu_counter_idx_valid(struct kvm_vcpu * vcpu,u64 idx)783 static bool pmu_counter_idx_valid(struct kvm_vcpu *vcpu, u64 idx)
784 {
785 	u64 pmcr, val;
786 
787 	pmcr = __vcpu_sys_reg(vcpu, PMCR_EL0);
788 	val = (pmcr >> ARMV8_PMU_PMCR_N_SHIFT) & ARMV8_PMU_PMCR_N_MASK;
789 	if (idx >= val && idx != ARMV8_PMU_CYCLE_IDX) {
790 		kvm_inject_undefined(vcpu);
791 		return false;
792 	}
793 
794 	return true;
795 }
796 
access_pmu_evcntr(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * r)797 static bool access_pmu_evcntr(struct kvm_vcpu *vcpu,
798 			      struct sys_reg_params *p,
799 			      const struct sys_reg_desc *r)
800 {
801 	u64 idx;
802 
803 	if (!kvm_arm_pmu_v3_ready(vcpu))
804 		return trap_raz_wi(vcpu, p, r);
805 
806 	if (r->CRn == 9 && r->CRm == 13) {
807 		if (r->Op2 == 2) {
808 			/* PMXEVCNTR_EL0 */
809 			if (pmu_access_event_counter_el0_disabled(vcpu))
810 				return false;
811 
812 			idx = __vcpu_sys_reg(vcpu, PMSELR_EL0)
813 			      & ARMV8_PMU_COUNTER_MASK;
814 		} else if (r->Op2 == 0) {
815 			/* PMCCNTR_EL0 */
816 			if (pmu_access_cycle_counter_el0_disabled(vcpu))
817 				return false;
818 
819 			idx = ARMV8_PMU_CYCLE_IDX;
820 		} else {
821 			return false;
822 		}
823 	} else if (r->CRn == 0 && r->CRm == 9) {
824 		/* PMCCNTR */
825 		if (pmu_access_event_counter_el0_disabled(vcpu))
826 			return false;
827 
828 		idx = ARMV8_PMU_CYCLE_IDX;
829 	} else if (r->CRn == 14 && (r->CRm & 12) == 8) {
830 		/* PMEVCNTRn_EL0 */
831 		if (pmu_access_event_counter_el0_disabled(vcpu))
832 			return false;
833 
834 		idx = ((r->CRm & 3) << 3) | (r->Op2 & 7);
835 	} else {
836 		return false;
837 	}
838 
839 	if (!pmu_counter_idx_valid(vcpu, idx))
840 		return false;
841 
842 	if (p->is_write) {
843 		if (pmu_access_el0_disabled(vcpu))
844 			return false;
845 
846 		kvm_pmu_set_counter_value(vcpu, idx, p->regval);
847 	} else {
848 		p->regval = kvm_pmu_get_counter_value(vcpu, idx);
849 	}
850 
851 	return true;
852 }
853 
access_pmu_evtyper(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * r)854 static bool access_pmu_evtyper(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
855 			       const struct sys_reg_desc *r)
856 {
857 	u64 idx, reg;
858 
859 	if (!kvm_arm_pmu_v3_ready(vcpu))
860 		return trap_raz_wi(vcpu, p, r);
861 
862 	if (pmu_access_el0_disabled(vcpu))
863 		return false;
864 
865 	if (r->CRn == 9 && r->CRm == 13 && r->Op2 == 1) {
866 		/* PMXEVTYPER_EL0 */
867 		idx = __vcpu_sys_reg(vcpu, PMSELR_EL0) & ARMV8_PMU_COUNTER_MASK;
868 		reg = PMEVTYPER0_EL0 + idx;
869 	} else if (r->CRn == 14 && (r->CRm & 12) == 12) {
870 		idx = ((r->CRm & 3) << 3) | (r->Op2 & 7);
871 		if (idx == ARMV8_PMU_CYCLE_IDX)
872 			reg = PMCCFILTR_EL0;
873 		else
874 			/* PMEVTYPERn_EL0 */
875 			reg = PMEVTYPER0_EL0 + idx;
876 	} else {
877 		BUG();
878 	}
879 
880 	if (!pmu_counter_idx_valid(vcpu, idx))
881 		return false;
882 
883 	if (p->is_write) {
884 		kvm_pmu_set_counter_event_type(vcpu, p->regval, idx);
885 		__vcpu_sys_reg(vcpu, reg) = p->regval & ARMV8_PMU_EVTYPE_MASK;
886 		kvm_vcpu_pmu_restore_guest(vcpu);
887 	} else {
888 		p->regval = __vcpu_sys_reg(vcpu, reg) & ARMV8_PMU_EVTYPE_MASK;
889 	}
890 
891 	return true;
892 }
893 
access_pmcnten(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * r)894 static bool access_pmcnten(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
895 			   const struct sys_reg_desc *r)
896 {
897 	u64 val, mask;
898 
899 	if (!kvm_arm_pmu_v3_ready(vcpu))
900 		return trap_raz_wi(vcpu, p, r);
901 
902 	if (pmu_access_el0_disabled(vcpu))
903 		return false;
904 
905 	mask = kvm_pmu_valid_counter_mask(vcpu);
906 	if (p->is_write) {
907 		val = p->regval & mask;
908 		if (r->Op2 & 0x1) {
909 			/* accessing PMCNTENSET_EL0 */
910 			__vcpu_sys_reg(vcpu, PMCNTENSET_EL0) |= val;
911 			kvm_pmu_enable_counter_mask(vcpu, val);
912 			kvm_vcpu_pmu_restore_guest(vcpu);
913 		} else {
914 			/* accessing PMCNTENCLR_EL0 */
915 			__vcpu_sys_reg(vcpu, PMCNTENSET_EL0) &= ~val;
916 			kvm_pmu_disable_counter_mask(vcpu, val);
917 		}
918 	} else {
919 		p->regval = __vcpu_sys_reg(vcpu, PMCNTENSET_EL0) & mask;
920 	}
921 
922 	return true;
923 }
924 
access_pminten(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * r)925 static bool access_pminten(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
926 			   const struct sys_reg_desc *r)
927 {
928 	u64 mask = kvm_pmu_valid_counter_mask(vcpu);
929 
930 	if (!kvm_arm_pmu_v3_ready(vcpu))
931 		return trap_raz_wi(vcpu, p, r);
932 
933 	if (!vcpu_mode_priv(vcpu)) {
934 		kvm_inject_undefined(vcpu);
935 		return false;
936 	}
937 
938 	if (p->is_write) {
939 		u64 val = p->regval & mask;
940 
941 		if (r->Op2 & 0x1)
942 			/* accessing PMINTENSET_EL1 */
943 			__vcpu_sys_reg(vcpu, PMINTENSET_EL1) |= val;
944 		else
945 			/* accessing PMINTENCLR_EL1 */
946 			__vcpu_sys_reg(vcpu, PMINTENSET_EL1) &= ~val;
947 	} else {
948 		p->regval = __vcpu_sys_reg(vcpu, PMINTENSET_EL1) & mask;
949 	}
950 
951 	return true;
952 }
953 
access_pmovs(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * r)954 static bool access_pmovs(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
955 			 const struct sys_reg_desc *r)
956 {
957 	u64 mask = kvm_pmu_valid_counter_mask(vcpu);
958 
959 	if (!kvm_arm_pmu_v3_ready(vcpu))
960 		return trap_raz_wi(vcpu, p, r);
961 
962 	if (pmu_access_el0_disabled(vcpu))
963 		return false;
964 
965 	if (p->is_write) {
966 		if (r->CRm & 0x2)
967 			/* accessing PMOVSSET_EL0 */
968 			__vcpu_sys_reg(vcpu, PMOVSSET_EL0) |= (p->regval & mask);
969 		else
970 			/* accessing PMOVSCLR_EL0 */
971 			__vcpu_sys_reg(vcpu, PMOVSSET_EL0) &= ~(p->regval & mask);
972 	} else {
973 		p->regval = __vcpu_sys_reg(vcpu, PMOVSSET_EL0) & mask;
974 	}
975 
976 	return true;
977 }
978 
access_pmswinc(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * r)979 static bool access_pmswinc(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
980 			   const struct sys_reg_desc *r)
981 {
982 	u64 mask;
983 
984 	if (!kvm_arm_pmu_v3_ready(vcpu))
985 		return trap_raz_wi(vcpu, p, r);
986 
987 	if (!p->is_write)
988 		return read_from_write_only(vcpu, p, r);
989 
990 	if (pmu_write_swinc_el0_disabled(vcpu))
991 		return false;
992 
993 	mask = kvm_pmu_valid_counter_mask(vcpu);
994 	kvm_pmu_software_increment(vcpu, p->regval & mask);
995 	return true;
996 }
997 
access_pmuserenr(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * r)998 static bool access_pmuserenr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
999 			     const struct sys_reg_desc *r)
1000 {
1001 	if (!kvm_arm_pmu_v3_ready(vcpu))
1002 		return trap_raz_wi(vcpu, p, r);
1003 
1004 	if (p->is_write) {
1005 		if (!vcpu_mode_priv(vcpu)) {
1006 			kvm_inject_undefined(vcpu);
1007 			return false;
1008 		}
1009 
1010 		__vcpu_sys_reg(vcpu, PMUSERENR_EL0) =
1011 			       p->regval & ARMV8_PMU_USERENR_MASK;
1012 	} else {
1013 		p->regval = __vcpu_sys_reg(vcpu, PMUSERENR_EL0)
1014 			    & ARMV8_PMU_USERENR_MASK;
1015 	}
1016 
1017 	return true;
1018 }
1019 
1020 #define reg_to_encoding(x)						\
1021 	sys_reg((u32)(x)->Op0, (u32)(x)->Op1,				\
1022 		(u32)(x)->CRn, (u32)(x)->CRm, (u32)(x)->Op2);
1023 
1024 /* Silly macro to expand the DBG{BCR,BVR,WVR,WCR}n_EL1 registers in one go */
1025 #define DBG_BCR_BVR_WCR_WVR_EL1(n)					\
1026 	{ SYS_DESC(SYS_DBGBVRn_EL1(n)),					\
1027 	  trap_bvr, reset_bvr, 0, 0, get_bvr, set_bvr },		\
1028 	{ SYS_DESC(SYS_DBGBCRn_EL1(n)),					\
1029 	  trap_bcr, reset_bcr, 0, 0, get_bcr, set_bcr },		\
1030 	{ SYS_DESC(SYS_DBGWVRn_EL1(n)),					\
1031 	  trap_wvr, reset_wvr, 0, 0,  get_wvr, set_wvr },		\
1032 	{ SYS_DESC(SYS_DBGWCRn_EL1(n)),					\
1033 	  trap_wcr, reset_wcr, 0, 0,  get_wcr, set_wcr }
1034 
1035 /* Macro to expand the PMEVCNTRn_EL0 register */
1036 #define PMU_PMEVCNTR_EL0(n)						\
1037 	{ SYS_DESC(SYS_PMEVCNTRn_EL0(n)),					\
1038 	  access_pmu_evcntr, reset_unknown, (PMEVCNTR0_EL0 + n), }
1039 
1040 /* Macro to expand the PMEVTYPERn_EL0 register */
1041 #define PMU_PMEVTYPER_EL0(n)						\
1042 	{ SYS_DESC(SYS_PMEVTYPERn_EL0(n)),					\
1043 	  access_pmu_evtyper, reset_unknown, (PMEVTYPER0_EL0 + n), }
1044 
undef_access(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * r)1045 static bool undef_access(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
1046 			 const struct sys_reg_desc *r)
1047 {
1048 	kvm_inject_undefined(vcpu);
1049 
1050 	return false;
1051 }
1052 
1053 /* Macro to expand the AMU counter and type registers*/
1054 #define AMU_AMEVCNTR0_EL0(n) { SYS_DESC(SYS_AMEVCNTR0_EL0(n)), undef_access }
1055 #define AMU_AMEVTYPER0_EL0(n) { SYS_DESC(SYS_AMEVTYPER0_EL0(n)), undef_access }
1056 #define AMU_AMEVCNTR1_EL0(n) { SYS_DESC(SYS_AMEVCNTR1_EL0(n)), undef_access }
1057 #define AMU_AMEVTYPER1_EL0(n) { SYS_DESC(SYS_AMEVTYPER1_EL0(n)), undef_access }
1058 
ptrauth_visibility(const struct kvm_vcpu * vcpu,const struct sys_reg_desc * rd)1059 static unsigned int ptrauth_visibility(const struct kvm_vcpu *vcpu,
1060 			const struct sys_reg_desc *rd)
1061 {
1062 	return vcpu_has_ptrauth(vcpu) ? 0 : REG_HIDDEN;
1063 }
1064 
1065 /*
1066  * If we land here on a PtrAuth access, that is because we didn't
1067  * fixup the access on exit by allowing the PtrAuth sysregs. The only
1068  * way this happens is when the guest does not have PtrAuth support
1069  * enabled.
1070  */
1071 #define __PTRAUTH_KEY(k)						\
1072 	{ SYS_DESC(SYS_## k), undef_access, reset_unknown, k,		\
1073 	.visibility = ptrauth_visibility}
1074 
1075 #define PTRAUTH_KEY(k)							\
1076 	__PTRAUTH_KEY(k ## KEYLO_EL1),					\
1077 	__PTRAUTH_KEY(k ## KEYHI_EL1)
1078 
access_arch_timer(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * r)1079 static bool access_arch_timer(struct kvm_vcpu *vcpu,
1080 			      struct sys_reg_params *p,
1081 			      const struct sys_reg_desc *r)
1082 {
1083 	enum kvm_arch_timers tmr;
1084 	enum kvm_arch_timer_regs treg;
1085 	u64 reg = reg_to_encoding(r);
1086 
1087 	switch (reg) {
1088 	case SYS_CNTP_TVAL_EL0:
1089 	case SYS_AARCH32_CNTP_TVAL:
1090 		tmr = TIMER_PTIMER;
1091 		treg = TIMER_REG_TVAL;
1092 		break;
1093 	case SYS_CNTP_CTL_EL0:
1094 	case SYS_AARCH32_CNTP_CTL:
1095 		tmr = TIMER_PTIMER;
1096 		treg = TIMER_REG_CTL;
1097 		break;
1098 	case SYS_CNTP_CVAL_EL0:
1099 	case SYS_AARCH32_CNTP_CVAL:
1100 		tmr = TIMER_PTIMER;
1101 		treg = TIMER_REG_CVAL;
1102 		break;
1103 	default:
1104 		BUG();
1105 	}
1106 
1107 	if (p->is_write)
1108 		kvm_arm_timer_write_sysreg(vcpu, tmr, treg, p->regval);
1109 	else
1110 		p->regval = kvm_arm_timer_read_sysreg(vcpu, tmr, treg);
1111 
1112 	return true;
1113 }
1114 
1115 /* Read a sanitised cpufeature ID register by sys_reg_desc */
read_id_reg(const struct kvm_vcpu * vcpu,struct sys_reg_desc const * r,bool raz)1116 static u64 read_id_reg(const struct kvm_vcpu *vcpu,
1117 		struct sys_reg_desc const *r, bool raz)
1118 {
1119 	u32 id = sys_reg((u32)r->Op0, (u32)r->Op1,
1120 			 (u32)r->CRn, (u32)r->CRm, (u32)r->Op2);
1121 	u64 val = raz ? 0 : read_sanitised_ftr_reg(id);
1122 
1123 	if (id == SYS_ID_AA64PFR0_EL1) {
1124 		if (!vcpu_has_sve(vcpu))
1125 			val &= ~(0xfUL << ID_AA64PFR0_SVE_SHIFT);
1126 		val &= ~(0xfUL << ID_AA64PFR0_AMU_SHIFT);
1127 		val &= ~(0xfUL << ID_AA64PFR0_CSV2_SHIFT);
1128 		val |= ((u64)vcpu->kvm->arch.pfr0_csv2 << ID_AA64PFR0_CSV2_SHIFT);
1129 	} else if (id == SYS_ID_AA64PFR1_EL1) {
1130 		val &= ~(0xfUL << ID_AA64PFR1_MTE_SHIFT);
1131 	} else if (id == SYS_ID_AA64ISAR1_EL1 && !vcpu_has_ptrauth(vcpu)) {
1132 		val &= ~((0xfUL << ID_AA64ISAR1_APA_SHIFT) |
1133 			 (0xfUL << ID_AA64ISAR1_API_SHIFT) |
1134 			 (0xfUL << ID_AA64ISAR1_GPA_SHIFT) |
1135 			 (0xfUL << ID_AA64ISAR1_GPI_SHIFT));
1136 	} else if (id == SYS_ID_AA64DFR0_EL1) {
1137 		/* Limit guests to PMUv3 for ARMv8.1 */
1138 		val = cpuid_feature_cap_perfmon_field(val,
1139 						ID_AA64DFR0_PMUVER_SHIFT,
1140 						ID_AA64DFR0_PMUVER_8_1);
1141 	} else if (id == SYS_ID_DFR0_EL1) {
1142 		/* Limit guests to PMUv3 for ARMv8.1 */
1143 		val = cpuid_feature_cap_perfmon_field(val,
1144 						ID_DFR0_PERFMON_SHIFT,
1145 						ID_DFR0_PERFMON_8_1);
1146 	}
1147 
1148 	return val;
1149 }
1150 
id_visibility(const struct kvm_vcpu * vcpu,const struct sys_reg_desc * r)1151 static unsigned int id_visibility(const struct kvm_vcpu *vcpu,
1152 				  const struct sys_reg_desc *r)
1153 {
1154 	u32 id = sys_reg((u32)r->Op0, (u32)r->Op1,
1155 			 (u32)r->CRn, (u32)r->CRm, (u32)r->Op2);
1156 
1157 	switch (id) {
1158 	case SYS_ID_AA64ZFR0_EL1:
1159 		if (!vcpu_has_sve(vcpu))
1160 			return REG_RAZ;
1161 		break;
1162 	}
1163 
1164 	return 0;
1165 }
1166 
1167 /* cpufeature ID register access trap handlers */
1168 
__access_id_reg(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * r,bool raz)1169 static bool __access_id_reg(struct kvm_vcpu *vcpu,
1170 			    struct sys_reg_params *p,
1171 			    const struct sys_reg_desc *r,
1172 			    bool raz)
1173 {
1174 	if (p->is_write)
1175 		return write_to_read_only(vcpu, p, r);
1176 
1177 	p->regval = read_id_reg(vcpu, r, raz);
1178 	return true;
1179 }
1180 
access_id_reg(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * r)1181 static bool access_id_reg(struct kvm_vcpu *vcpu,
1182 			  struct sys_reg_params *p,
1183 			  const struct sys_reg_desc *r)
1184 {
1185 	bool raz = sysreg_visible_as_raz(vcpu, r);
1186 
1187 	return __access_id_reg(vcpu, p, r, raz);
1188 }
1189 
access_raz_id_reg(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * r)1190 static bool access_raz_id_reg(struct kvm_vcpu *vcpu,
1191 			      struct sys_reg_params *p,
1192 			      const struct sys_reg_desc *r)
1193 {
1194 	return __access_id_reg(vcpu, p, r, true);
1195 }
1196 
1197 static int reg_from_user(u64 *val, const void __user *uaddr, u64 id);
1198 static int reg_to_user(void __user *uaddr, const u64 *val, u64 id);
1199 static u64 sys_reg_to_index(const struct sys_reg_desc *reg);
1200 
1201 /* Visibility overrides for SVE-specific control registers */
sve_visibility(const struct kvm_vcpu * vcpu,const struct sys_reg_desc * rd)1202 static unsigned int sve_visibility(const struct kvm_vcpu *vcpu,
1203 				   const struct sys_reg_desc *rd)
1204 {
1205 	if (vcpu_has_sve(vcpu))
1206 		return 0;
1207 
1208 	return REG_HIDDEN;
1209 }
1210 
set_id_aa64pfr0_el1(struct kvm_vcpu * vcpu,const struct sys_reg_desc * rd,const struct kvm_one_reg * reg,void __user * uaddr)1211 static int set_id_aa64pfr0_el1(struct kvm_vcpu *vcpu,
1212 			       const struct sys_reg_desc *rd,
1213 			       const struct kvm_one_reg *reg, void __user *uaddr)
1214 {
1215 	const u64 id = sys_reg_to_index(rd);
1216 	int err;
1217 	u64 val;
1218 	u8 csv2;
1219 
1220 	err = reg_from_user(&val, uaddr, id);
1221 	if (err)
1222 		return err;
1223 
1224 	/*
1225 	 * Allow AA64PFR0_EL1.CSV2 to be set from userspace as long as
1226 	 * it doesn't promise more than what is actually provided (the
1227 	 * guest could otherwise be covered in ectoplasmic residue).
1228 	 */
1229 	csv2 = cpuid_feature_extract_unsigned_field(val, ID_AA64PFR0_CSV2_SHIFT);
1230 	if (csv2 > 1 ||
1231 	    (csv2 && arm64_get_spectre_v2_state() != SPECTRE_UNAFFECTED))
1232 		return -EINVAL;
1233 
1234 	/* We can only differ with CSV2, and anything else is an error */
1235 	val ^= read_id_reg(vcpu, rd, false);
1236 	val &= ~(0xFUL << ID_AA64PFR0_CSV2_SHIFT);
1237 	if (val)
1238 		return -EINVAL;
1239 
1240 	vcpu->kvm->arch.pfr0_csv2 = csv2;
1241 
1242 	return 0;
1243 }
1244 
1245 /*
1246  * cpufeature ID register user accessors
1247  *
1248  * For now, these registers are immutable for userspace, so no values
1249  * are stored, and for set_id_reg() we don't allow the effective value
1250  * to be changed.
1251  */
__get_id_reg(const struct kvm_vcpu * vcpu,const struct sys_reg_desc * rd,void __user * uaddr,bool raz)1252 static int __get_id_reg(const struct kvm_vcpu *vcpu,
1253 			const struct sys_reg_desc *rd, void __user *uaddr,
1254 			bool raz)
1255 {
1256 	const u64 id = sys_reg_to_index(rd);
1257 	const u64 val = read_id_reg(vcpu, rd, raz);
1258 
1259 	return reg_to_user(uaddr, &val, id);
1260 }
1261 
__set_id_reg(const struct kvm_vcpu * vcpu,const struct sys_reg_desc * rd,void __user * uaddr,bool raz)1262 static int __set_id_reg(const struct kvm_vcpu *vcpu,
1263 			const struct sys_reg_desc *rd, void __user *uaddr,
1264 			bool raz)
1265 {
1266 	const u64 id = sys_reg_to_index(rd);
1267 	int err;
1268 	u64 val;
1269 
1270 	err = reg_from_user(&val, uaddr, id);
1271 	if (err)
1272 		return err;
1273 
1274 	/* This is what we mean by invariant: you can't change it. */
1275 	if (val != read_id_reg(vcpu, rd, raz))
1276 		return -EINVAL;
1277 
1278 	return 0;
1279 }
1280 
get_id_reg(struct kvm_vcpu * vcpu,const struct sys_reg_desc * rd,const struct kvm_one_reg * reg,void __user * uaddr)1281 static int get_id_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
1282 		      const struct kvm_one_reg *reg, void __user *uaddr)
1283 {
1284 	bool raz = sysreg_visible_as_raz(vcpu, rd);
1285 
1286 	return __get_id_reg(vcpu, rd, uaddr, raz);
1287 }
1288 
set_id_reg(struct kvm_vcpu * vcpu,const struct sys_reg_desc * rd,const struct kvm_one_reg * reg,void __user * uaddr)1289 static int set_id_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
1290 		      const struct kvm_one_reg *reg, void __user *uaddr)
1291 {
1292 	bool raz = sysreg_visible_as_raz(vcpu, rd);
1293 
1294 	return __set_id_reg(vcpu, rd, uaddr, raz);
1295 }
1296 
get_raz_id_reg(struct kvm_vcpu * vcpu,const struct sys_reg_desc * rd,const struct kvm_one_reg * reg,void __user * uaddr)1297 static int get_raz_id_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
1298 			  const struct kvm_one_reg *reg, void __user *uaddr)
1299 {
1300 	return __get_id_reg(vcpu, rd, uaddr, true);
1301 }
1302 
set_raz_id_reg(struct kvm_vcpu * vcpu,const struct sys_reg_desc * rd,const struct kvm_one_reg * reg,void __user * uaddr)1303 static int set_raz_id_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
1304 			  const struct kvm_one_reg *reg, void __user *uaddr)
1305 {
1306 	return __set_id_reg(vcpu, rd, uaddr, true);
1307 }
1308 
access_ctr(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * r)1309 static bool access_ctr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
1310 		       const struct sys_reg_desc *r)
1311 {
1312 	if (p->is_write)
1313 		return write_to_read_only(vcpu, p, r);
1314 
1315 	p->regval = read_sanitised_ftr_reg(SYS_CTR_EL0);
1316 	return true;
1317 }
1318 
access_clidr(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * r)1319 static bool access_clidr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
1320 			 const struct sys_reg_desc *r)
1321 {
1322 	if (p->is_write)
1323 		return write_to_read_only(vcpu, p, r);
1324 
1325 	p->regval = read_sysreg(clidr_el1);
1326 	return true;
1327 }
1328 
access_csselr(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * r)1329 static bool access_csselr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
1330 			  const struct sys_reg_desc *r)
1331 {
1332 	int reg = r->reg;
1333 
1334 	/* See the 32bit mapping in kvm_host.h */
1335 	if (p->is_aarch32)
1336 		reg = r->reg / 2;
1337 
1338 	if (p->is_write)
1339 		vcpu_write_sys_reg(vcpu, p->regval, reg);
1340 	else
1341 		p->regval = vcpu_read_sys_reg(vcpu, reg);
1342 	return true;
1343 }
1344 
access_ccsidr(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * r)1345 static bool access_ccsidr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
1346 			  const struct sys_reg_desc *r)
1347 {
1348 	u32 csselr;
1349 
1350 	if (p->is_write)
1351 		return write_to_read_only(vcpu, p, r);
1352 
1353 	csselr = vcpu_read_sys_reg(vcpu, CSSELR_EL1);
1354 	p->regval = get_ccsidr(csselr);
1355 
1356 	/*
1357 	 * Guests should not be doing cache operations by set/way at all, and
1358 	 * for this reason, we trap them and attempt to infer the intent, so
1359 	 * that we can flush the entire guest's address space at the appropriate
1360 	 * time.
1361 	 * To prevent this trapping from causing performance problems, let's
1362 	 * expose the geometry of all data and unified caches (which are
1363 	 * guaranteed to be PIPT and thus non-aliasing) as 1 set and 1 way.
1364 	 * [If guests should attempt to infer aliasing properties from the
1365 	 * geometry (which is not permitted by the architecture), they would
1366 	 * only do so for virtually indexed caches.]
1367 	 */
1368 	if (!(csselr & 1)) // data or unified cache
1369 		p->regval &= ~GENMASK(27, 3);
1370 	return true;
1371 }
1372 
1373 /* sys_reg_desc initialiser for known cpufeature ID registers */
1374 #define ID_SANITISED(name) {			\
1375 	SYS_DESC(SYS_##name),			\
1376 	.access	= access_id_reg,		\
1377 	.get_user = get_id_reg,			\
1378 	.set_user = set_id_reg,			\
1379 	.visibility = id_visibility,		\
1380 }
1381 
1382 /*
1383  * sys_reg_desc initialiser for architecturally unallocated cpufeature ID
1384  * register with encoding Op0=3, Op1=0, CRn=0, CRm=crm, Op2=op2
1385  * (1 <= crm < 8, 0 <= Op2 < 8).
1386  */
1387 #define ID_UNALLOCATED(crm, op2) {			\
1388 	Op0(3), Op1(0), CRn(0), CRm(crm), Op2(op2),	\
1389 	.access = access_raz_id_reg,			\
1390 	.get_user = get_raz_id_reg,			\
1391 	.set_user = set_raz_id_reg,			\
1392 }
1393 
1394 /*
1395  * sys_reg_desc initialiser for known ID registers that we hide from guests.
1396  * For now, these are exposed just like unallocated ID regs: they appear
1397  * RAZ for the guest.
1398  */
1399 #define ID_HIDDEN(name) {			\
1400 	SYS_DESC(SYS_##name),			\
1401 	.access = access_raz_id_reg,		\
1402 	.get_user = get_raz_id_reg,		\
1403 	.set_user = set_raz_id_reg,		\
1404 }
1405 
1406 /*
1407  * Architected system registers.
1408  * Important: Must be sorted ascending by Op0, Op1, CRn, CRm, Op2
1409  *
1410  * Debug handling: We do trap most, if not all debug related system
1411  * registers. The implementation is good enough to ensure that a guest
1412  * can use these with minimal performance degradation. The drawback is
1413  * that we don't implement any of the external debug, none of the
1414  * OSlock protocol. This should be revisited if we ever encounter a
1415  * more demanding guest...
1416  */
1417 static const struct sys_reg_desc sys_reg_descs[] = {
1418 	{ SYS_DESC(SYS_DC_ISW), access_dcsw },
1419 	{ SYS_DESC(SYS_DC_CSW), access_dcsw },
1420 	{ SYS_DESC(SYS_DC_CISW), access_dcsw },
1421 
1422 	DBG_BCR_BVR_WCR_WVR_EL1(0),
1423 	DBG_BCR_BVR_WCR_WVR_EL1(1),
1424 	{ SYS_DESC(SYS_MDCCINT_EL1), trap_debug_regs, reset_val, MDCCINT_EL1, 0 },
1425 	{ SYS_DESC(SYS_MDSCR_EL1), trap_debug_regs, reset_val, MDSCR_EL1, 0 },
1426 	DBG_BCR_BVR_WCR_WVR_EL1(2),
1427 	DBG_BCR_BVR_WCR_WVR_EL1(3),
1428 	DBG_BCR_BVR_WCR_WVR_EL1(4),
1429 	DBG_BCR_BVR_WCR_WVR_EL1(5),
1430 	DBG_BCR_BVR_WCR_WVR_EL1(6),
1431 	DBG_BCR_BVR_WCR_WVR_EL1(7),
1432 	DBG_BCR_BVR_WCR_WVR_EL1(8),
1433 	DBG_BCR_BVR_WCR_WVR_EL1(9),
1434 	DBG_BCR_BVR_WCR_WVR_EL1(10),
1435 	DBG_BCR_BVR_WCR_WVR_EL1(11),
1436 	DBG_BCR_BVR_WCR_WVR_EL1(12),
1437 	DBG_BCR_BVR_WCR_WVR_EL1(13),
1438 	DBG_BCR_BVR_WCR_WVR_EL1(14),
1439 	DBG_BCR_BVR_WCR_WVR_EL1(15),
1440 
1441 	{ SYS_DESC(SYS_MDRAR_EL1), trap_raz_wi },
1442 	{ SYS_DESC(SYS_OSLAR_EL1), trap_raz_wi },
1443 	{ SYS_DESC(SYS_OSLSR_EL1), trap_oslsr_el1 },
1444 	{ SYS_DESC(SYS_OSDLR_EL1), trap_raz_wi },
1445 	{ SYS_DESC(SYS_DBGPRCR_EL1), trap_raz_wi },
1446 	{ SYS_DESC(SYS_DBGCLAIMSET_EL1), trap_raz_wi },
1447 	{ SYS_DESC(SYS_DBGCLAIMCLR_EL1), trap_raz_wi },
1448 	{ SYS_DESC(SYS_DBGAUTHSTATUS_EL1), trap_dbgauthstatus_el1 },
1449 
1450 	{ SYS_DESC(SYS_MDCCSR_EL0), trap_raz_wi },
1451 	{ SYS_DESC(SYS_DBGDTR_EL0), trap_raz_wi },
1452 	// DBGDTR[TR]X_EL0 share the same encoding
1453 	{ SYS_DESC(SYS_DBGDTRTX_EL0), trap_raz_wi },
1454 
1455 	{ SYS_DESC(SYS_DBGVCR32_EL2), NULL, reset_val, DBGVCR32_EL2, 0 },
1456 
1457 	{ SYS_DESC(SYS_MPIDR_EL1), NULL, reset_mpidr, MPIDR_EL1 },
1458 
1459 	/*
1460 	 * ID regs: all ID_SANITISED() entries here must have corresponding
1461 	 * entries in arm64_ftr_regs[].
1462 	 */
1463 
1464 	/* AArch64 mappings of the AArch32 ID registers */
1465 	/* CRm=1 */
1466 	ID_SANITISED(ID_PFR0_EL1),
1467 	ID_SANITISED(ID_PFR1_EL1),
1468 	ID_SANITISED(ID_DFR0_EL1),
1469 	ID_HIDDEN(ID_AFR0_EL1),
1470 	ID_SANITISED(ID_MMFR0_EL1),
1471 	ID_SANITISED(ID_MMFR1_EL1),
1472 	ID_SANITISED(ID_MMFR2_EL1),
1473 	ID_SANITISED(ID_MMFR3_EL1),
1474 
1475 	/* CRm=2 */
1476 	ID_SANITISED(ID_ISAR0_EL1),
1477 	ID_SANITISED(ID_ISAR1_EL1),
1478 	ID_SANITISED(ID_ISAR2_EL1),
1479 	ID_SANITISED(ID_ISAR3_EL1),
1480 	ID_SANITISED(ID_ISAR4_EL1),
1481 	ID_SANITISED(ID_ISAR5_EL1),
1482 	ID_SANITISED(ID_MMFR4_EL1),
1483 	ID_SANITISED(ID_ISAR6_EL1),
1484 
1485 	/* CRm=3 */
1486 	ID_SANITISED(MVFR0_EL1),
1487 	ID_SANITISED(MVFR1_EL1),
1488 	ID_SANITISED(MVFR2_EL1),
1489 	ID_UNALLOCATED(3,3),
1490 	ID_SANITISED(ID_PFR2_EL1),
1491 	ID_HIDDEN(ID_DFR1_EL1),
1492 	ID_SANITISED(ID_MMFR5_EL1),
1493 	ID_UNALLOCATED(3,7),
1494 
1495 	/* AArch64 ID registers */
1496 	/* CRm=4 */
1497 	{ SYS_DESC(SYS_ID_AA64PFR0_EL1), .access = access_id_reg,
1498 	  .get_user = get_id_reg, .set_user = set_id_aa64pfr0_el1, },
1499 	ID_SANITISED(ID_AA64PFR1_EL1),
1500 	ID_UNALLOCATED(4,2),
1501 	ID_UNALLOCATED(4,3),
1502 	ID_SANITISED(ID_AA64ZFR0_EL1),
1503 	ID_UNALLOCATED(4,5),
1504 	ID_UNALLOCATED(4,6),
1505 	ID_UNALLOCATED(4,7),
1506 
1507 	/* CRm=5 */
1508 	ID_SANITISED(ID_AA64DFR0_EL1),
1509 	ID_SANITISED(ID_AA64DFR1_EL1),
1510 	ID_UNALLOCATED(5,2),
1511 	ID_UNALLOCATED(5,3),
1512 	ID_HIDDEN(ID_AA64AFR0_EL1),
1513 	ID_HIDDEN(ID_AA64AFR1_EL1),
1514 	ID_UNALLOCATED(5,6),
1515 	ID_UNALLOCATED(5,7),
1516 
1517 	/* CRm=6 */
1518 	ID_SANITISED(ID_AA64ISAR0_EL1),
1519 	ID_SANITISED(ID_AA64ISAR1_EL1),
1520 	ID_SANITISED(ID_AA64ISAR2_EL1),
1521 	ID_UNALLOCATED(6,3),
1522 	ID_UNALLOCATED(6,4),
1523 	ID_UNALLOCATED(6,5),
1524 	ID_UNALLOCATED(6,6),
1525 	ID_UNALLOCATED(6,7),
1526 
1527 	/* CRm=7 */
1528 	ID_SANITISED(ID_AA64MMFR0_EL1),
1529 	ID_SANITISED(ID_AA64MMFR1_EL1),
1530 	ID_SANITISED(ID_AA64MMFR2_EL1),
1531 	ID_UNALLOCATED(7,3),
1532 	ID_UNALLOCATED(7,4),
1533 	ID_UNALLOCATED(7,5),
1534 	ID_UNALLOCATED(7,6),
1535 	ID_UNALLOCATED(7,7),
1536 
1537 	{ SYS_DESC(SYS_SCTLR_EL1), access_vm_reg, reset_val, SCTLR_EL1, 0x00C50078 },
1538 	{ SYS_DESC(SYS_ACTLR_EL1), access_actlr, reset_actlr, ACTLR_EL1 },
1539 	{ SYS_DESC(SYS_CPACR_EL1), NULL, reset_val, CPACR_EL1, 0 },
1540 
1541 	{ SYS_DESC(SYS_RGSR_EL1), undef_access },
1542 	{ SYS_DESC(SYS_GCR_EL1), undef_access },
1543 
1544 	{ SYS_DESC(SYS_ZCR_EL1), NULL, reset_val, ZCR_EL1, 0, .visibility = sve_visibility },
1545 	{ SYS_DESC(SYS_TTBR0_EL1), access_vm_reg, reset_unknown, TTBR0_EL1 },
1546 	{ SYS_DESC(SYS_TTBR1_EL1), access_vm_reg, reset_unknown, TTBR1_EL1 },
1547 	{ SYS_DESC(SYS_TCR_EL1), access_vm_reg, reset_val, TCR_EL1, 0 },
1548 
1549 	PTRAUTH_KEY(APIA),
1550 	PTRAUTH_KEY(APIB),
1551 	PTRAUTH_KEY(APDA),
1552 	PTRAUTH_KEY(APDB),
1553 	PTRAUTH_KEY(APGA),
1554 
1555 	{ SYS_DESC(SYS_AFSR0_EL1), access_vm_reg, reset_unknown, AFSR0_EL1 },
1556 	{ SYS_DESC(SYS_AFSR1_EL1), access_vm_reg, reset_unknown, AFSR1_EL1 },
1557 	{ SYS_DESC(SYS_ESR_EL1), access_vm_reg, reset_unknown, ESR_EL1 },
1558 
1559 	{ SYS_DESC(SYS_ERRIDR_EL1), trap_raz_wi },
1560 	{ SYS_DESC(SYS_ERRSELR_EL1), trap_raz_wi },
1561 	{ SYS_DESC(SYS_ERXFR_EL1), trap_raz_wi },
1562 	{ SYS_DESC(SYS_ERXCTLR_EL1), trap_raz_wi },
1563 	{ SYS_DESC(SYS_ERXSTATUS_EL1), trap_raz_wi },
1564 	{ SYS_DESC(SYS_ERXADDR_EL1), trap_raz_wi },
1565 	{ SYS_DESC(SYS_ERXMISC0_EL1), trap_raz_wi },
1566 	{ SYS_DESC(SYS_ERXMISC1_EL1), trap_raz_wi },
1567 
1568 	{ SYS_DESC(SYS_TFSR_EL1), undef_access },
1569 	{ SYS_DESC(SYS_TFSRE0_EL1), undef_access },
1570 
1571 	{ SYS_DESC(SYS_FAR_EL1), access_vm_reg, reset_unknown, FAR_EL1 },
1572 	{ SYS_DESC(SYS_PAR_EL1), NULL, reset_unknown, PAR_EL1 },
1573 
1574 	{ SYS_DESC(SYS_PMINTENSET_EL1), access_pminten, reset_unknown, PMINTENSET_EL1 },
1575 	{ SYS_DESC(SYS_PMINTENCLR_EL1), access_pminten, reset_unknown, PMINTENSET_EL1 },
1576 
1577 	{ SYS_DESC(SYS_MAIR_EL1), access_vm_reg, reset_unknown, MAIR_EL1 },
1578 	{ SYS_DESC(SYS_AMAIR_EL1), access_vm_reg, reset_amair_el1, AMAIR_EL1 },
1579 
1580 	{ SYS_DESC(SYS_LORSA_EL1), trap_loregion },
1581 	{ SYS_DESC(SYS_LOREA_EL1), trap_loregion },
1582 	{ SYS_DESC(SYS_LORN_EL1), trap_loregion },
1583 	{ SYS_DESC(SYS_LORC_EL1), trap_loregion },
1584 	{ SYS_DESC(SYS_LORID_EL1), trap_loregion },
1585 
1586 	{ SYS_DESC(SYS_VBAR_EL1), NULL, reset_val, VBAR_EL1, 0 },
1587 	{ SYS_DESC(SYS_DISR_EL1), NULL, reset_val, DISR_EL1, 0 },
1588 
1589 	{ SYS_DESC(SYS_ICC_IAR0_EL1), write_to_read_only },
1590 	{ SYS_DESC(SYS_ICC_EOIR0_EL1), read_from_write_only },
1591 	{ SYS_DESC(SYS_ICC_HPPIR0_EL1), write_to_read_only },
1592 	{ SYS_DESC(SYS_ICC_DIR_EL1), read_from_write_only },
1593 	{ SYS_DESC(SYS_ICC_RPR_EL1), write_to_read_only },
1594 	{ SYS_DESC(SYS_ICC_SGI1R_EL1), access_gic_sgi },
1595 	{ SYS_DESC(SYS_ICC_ASGI1R_EL1), access_gic_sgi },
1596 	{ SYS_DESC(SYS_ICC_SGI0R_EL1), access_gic_sgi },
1597 	{ SYS_DESC(SYS_ICC_IAR1_EL1), write_to_read_only },
1598 	{ SYS_DESC(SYS_ICC_EOIR1_EL1), read_from_write_only },
1599 	{ SYS_DESC(SYS_ICC_HPPIR1_EL1), write_to_read_only },
1600 	{ SYS_DESC(SYS_ICC_SRE_EL1), access_gic_sre },
1601 
1602 	{ SYS_DESC(SYS_CONTEXTIDR_EL1), access_vm_reg, reset_val, CONTEXTIDR_EL1, 0 },
1603 	{ SYS_DESC(SYS_TPIDR_EL1), NULL, reset_unknown, TPIDR_EL1 },
1604 
1605 	{ SYS_DESC(SYS_SCXTNUM_EL1), undef_access },
1606 
1607 	{ SYS_DESC(SYS_CNTKCTL_EL1), NULL, reset_val, CNTKCTL_EL1, 0},
1608 
1609 	{ SYS_DESC(SYS_CCSIDR_EL1), access_ccsidr },
1610 	{ SYS_DESC(SYS_CLIDR_EL1), access_clidr },
1611 	{ SYS_DESC(SYS_CSSELR_EL1), access_csselr, reset_unknown, CSSELR_EL1 },
1612 	{ SYS_DESC(SYS_CTR_EL0), access_ctr },
1613 
1614 	{ SYS_DESC(SYS_PMCR_EL0), access_pmcr, reset_pmcr, PMCR_EL0 },
1615 	{ SYS_DESC(SYS_PMCNTENSET_EL0), access_pmcnten, reset_unknown, PMCNTENSET_EL0 },
1616 	{ SYS_DESC(SYS_PMCNTENCLR_EL0), access_pmcnten, reset_unknown, PMCNTENSET_EL0 },
1617 	{ SYS_DESC(SYS_PMOVSCLR_EL0), access_pmovs, reset_unknown, PMOVSSET_EL0 },
1618 	{ SYS_DESC(SYS_PMSWINC_EL0), access_pmswinc, reset_unknown, PMSWINC_EL0 },
1619 	{ SYS_DESC(SYS_PMSELR_EL0), access_pmselr, reset_unknown, PMSELR_EL0 },
1620 	{ SYS_DESC(SYS_PMCEID0_EL0), access_pmceid },
1621 	{ SYS_DESC(SYS_PMCEID1_EL0), access_pmceid },
1622 	{ SYS_DESC(SYS_PMCCNTR_EL0), access_pmu_evcntr, reset_unknown, PMCCNTR_EL0 },
1623 	{ SYS_DESC(SYS_PMXEVTYPER_EL0), access_pmu_evtyper },
1624 	{ SYS_DESC(SYS_PMXEVCNTR_EL0), access_pmu_evcntr },
1625 	/*
1626 	 * PMUSERENR_EL0 resets as unknown in 64bit mode while it resets as zero
1627 	 * in 32bit mode. Here we choose to reset it as zero for consistency.
1628 	 */
1629 	{ SYS_DESC(SYS_PMUSERENR_EL0), access_pmuserenr, reset_val, PMUSERENR_EL0, 0 },
1630 	{ SYS_DESC(SYS_PMOVSSET_EL0), access_pmovs, reset_unknown, PMOVSSET_EL0 },
1631 
1632 	{ SYS_DESC(SYS_TPIDR_EL0), NULL, reset_unknown, TPIDR_EL0 },
1633 	{ SYS_DESC(SYS_TPIDRRO_EL0), NULL, reset_unknown, TPIDRRO_EL0 },
1634 
1635 	{ SYS_DESC(SYS_SCXTNUM_EL0), undef_access },
1636 
1637 	{ SYS_DESC(SYS_AMCR_EL0), undef_access },
1638 	{ SYS_DESC(SYS_AMCFGR_EL0), undef_access },
1639 	{ SYS_DESC(SYS_AMCGCR_EL0), undef_access },
1640 	{ SYS_DESC(SYS_AMUSERENR_EL0), undef_access },
1641 	{ SYS_DESC(SYS_AMCNTENCLR0_EL0), undef_access },
1642 	{ SYS_DESC(SYS_AMCNTENSET0_EL0), undef_access },
1643 	{ SYS_DESC(SYS_AMCNTENCLR1_EL0), undef_access },
1644 	{ SYS_DESC(SYS_AMCNTENSET1_EL0), undef_access },
1645 	AMU_AMEVCNTR0_EL0(0),
1646 	AMU_AMEVCNTR0_EL0(1),
1647 	AMU_AMEVCNTR0_EL0(2),
1648 	AMU_AMEVCNTR0_EL0(3),
1649 	AMU_AMEVCNTR0_EL0(4),
1650 	AMU_AMEVCNTR0_EL0(5),
1651 	AMU_AMEVCNTR0_EL0(6),
1652 	AMU_AMEVCNTR0_EL0(7),
1653 	AMU_AMEVCNTR0_EL0(8),
1654 	AMU_AMEVCNTR0_EL0(9),
1655 	AMU_AMEVCNTR0_EL0(10),
1656 	AMU_AMEVCNTR0_EL0(11),
1657 	AMU_AMEVCNTR0_EL0(12),
1658 	AMU_AMEVCNTR0_EL0(13),
1659 	AMU_AMEVCNTR0_EL0(14),
1660 	AMU_AMEVCNTR0_EL0(15),
1661 	AMU_AMEVTYPER0_EL0(0),
1662 	AMU_AMEVTYPER0_EL0(1),
1663 	AMU_AMEVTYPER0_EL0(2),
1664 	AMU_AMEVTYPER0_EL0(3),
1665 	AMU_AMEVTYPER0_EL0(4),
1666 	AMU_AMEVTYPER0_EL0(5),
1667 	AMU_AMEVTYPER0_EL0(6),
1668 	AMU_AMEVTYPER0_EL0(7),
1669 	AMU_AMEVTYPER0_EL0(8),
1670 	AMU_AMEVTYPER0_EL0(9),
1671 	AMU_AMEVTYPER0_EL0(10),
1672 	AMU_AMEVTYPER0_EL0(11),
1673 	AMU_AMEVTYPER0_EL0(12),
1674 	AMU_AMEVTYPER0_EL0(13),
1675 	AMU_AMEVTYPER0_EL0(14),
1676 	AMU_AMEVTYPER0_EL0(15),
1677 	AMU_AMEVCNTR1_EL0(0),
1678 	AMU_AMEVCNTR1_EL0(1),
1679 	AMU_AMEVCNTR1_EL0(2),
1680 	AMU_AMEVCNTR1_EL0(3),
1681 	AMU_AMEVCNTR1_EL0(4),
1682 	AMU_AMEVCNTR1_EL0(5),
1683 	AMU_AMEVCNTR1_EL0(6),
1684 	AMU_AMEVCNTR1_EL0(7),
1685 	AMU_AMEVCNTR1_EL0(8),
1686 	AMU_AMEVCNTR1_EL0(9),
1687 	AMU_AMEVCNTR1_EL0(10),
1688 	AMU_AMEVCNTR1_EL0(11),
1689 	AMU_AMEVCNTR1_EL0(12),
1690 	AMU_AMEVCNTR1_EL0(13),
1691 	AMU_AMEVCNTR1_EL0(14),
1692 	AMU_AMEVCNTR1_EL0(15),
1693 	AMU_AMEVTYPER1_EL0(0),
1694 	AMU_AMEVTYPER1_EL0(1),
1695 	AMU_AMEVTYPER1_EL0(2),
1696 	AMU_AMEVTYPER1_EL0(3),
1697 	AMU_AMEVTYPER1_EL0(4),
1698 	AMU_AMEVTYPER1_EL0(5),
1699 	AMU_AMEVTYPER1_EL0(6),
1700 	AMU_AMEVTYPER1_EL0(7),
1701 	AMU_AMEVTYPER1_EL0(8),
1702 	AMU_AMEVTYPER1_EL0(9),
1703 	AMU_AMEVTYPER1_EL0(10),
1704 	AMU_AMEVTYPER1_EL0(11),
1705 	AMU_AMEVTYPER1_EL0(12),
1706 	AMU_AMEVTYPER1_EL0(13),
1707 	AMU_AMEVTYPER1_EL0(14),
1708 	AMU_AMEVTYPER1_EL0(15),
1709 
1710 	{ SYS_DESC(SYS_CNTP_TVAL_EL0), access_arch_timer },
1711 	{ SYS_DESC(SYS_CNTP_CTL_EL0), access_arch_timer },
1712 	{ SYS_DESC(SYS_CNTP_CVAL_EL0), access_arch_timer },
1713 
1714 	/* PMEVCNTRn_EL0 */
1715 	PMU_PMEVCNTR_EL0(0),
1716 	PMU_PMEVCNTR_EL0(1),
1717 	PMU_PMEVCNTR_EL0(2),
1718 	PMU_PMEVCNTR_EL0(3),
1719 	PMU_PMEVCNTR_EL0(4),
1720 	PMU_PMEVCNTR_EL0(5),
1721 	PMU_PMEVCNTR_EL0(6),
1722 	PMU_PMEVCNTR_EL0(7),
1723 	PMU_PMEVCNTR_EL0(8),
1724 	PMU_PMEVCNTR_EL0(9),
1725 	PMU_PMEVCNTR_EL0(10),
1726 	PMU_PMEVCNTR_EL0(11),
1727 	PMU_PMEVCNTR_EL0(12),
1728 	PMU_PMEVCNTR_EL0(13),
1729 	PMU_PMEVCNTR_EL0(14),
1730 	PMU_PMEVCNTR_EL0(15),
1731 	PMU_PMEVCNTR_EL0(16),
1732 	PMU_PMEVCNTR_EL0(17),
1733 	PMU_PMEVCNTR_EL0(18),
1734 	PMU_PMEVCNTR_EL0(19),
1735 	PMU_PMEVCNTR_EL0(20),
1736 	PMU_PMEVCNTR_EL0(21),
1737 	PMU_PMEVCNTR_EL0(22),
1738 	PMU_PMEVCNTR_EL0(23),
1739 	PMU_PMEVCNTR_EL0(24),
1740 	PMU_PMEVCNTR_EL0(25),
1741 	PMU_PMEVCNTR_EL0(26),
1742 	PMU_PMEVCNTR_EL0(27),
1743 	PMU_PMEVCNTR_EL0(28),
1744 	PMU_PMEVCNTR_EL0(29),
1745 	PMU_PMEVCNTR_EL0(30),
1746 	/* PMEVTYPERn_EL0 */
1747 	PMU_PMEVTYPER_EL0(0),
1748 	PMU_PMEVTYPER_EL0(1),
1749 	PMU_PMEVTYPER_EL0(2),
1750 	PMU_PMEVTYPER_EL0(3),
1751 	PMU_PMEVTYPER_EL0(4),
1752 	PMU_PMEVTYPER_EL0(5),
1753 	PMU_PMEVTYPER_EL0(6),
1754 	PMU_PMEVTYPER_EL0(7),
1755 	PMU_PMEVTYPER_EL0(8),
1756 	PMU_PMEVTYPER_EL0(9),
1757 	PMU_PMEVTYPER_EL0(10),
1758 	PMU_PMEVTYPER_EL0(11),
1759 	PMU_PMEVTYPER_EL0(12),
1760 	PMU_PMEVTYPER_EL0(13),
1761 	PMU_PMEVTYPER_EL0(14),
1762 	PMU_PMEVTYPER_EL0(15),
1763 	PMU_PMEVTYPER_EL0(16),
1764 	PMU_PMEVTYPER_EL0(17),
1765 	PMU_PMEVTYPER_EL0(18),
1766 	PMU_PMEVTYPER_EL0(19),
1767 	PMU_PMEVTYPER_EL0(20),
1768 	PMU_PMEVTYPER_EL0(21),
1769 	PMU_PMEVTYPER_EL0(22),
1770 	PMU_PMEVTYPER_EL0(23),
1771 	PMU_PMEVTYPER_EL0(24),
1772 	PMU_PMEVTYPER_EL0(25),
1773 	PMU_PMEVTYPER_EL0(26),
1774 	PMU_PMEVTYPER_EL0(27),
1775 	PMU_PMEVTYPER_EL0(28),
1776 	PMU_PMEVTYPER_EL0(29),
1777 	PMU_PMEVTYPER_EL0(30),
1778 	/*
1779 	 * PMCCFILTR_EL0 resets as unknown in 64bit mode while it resets as zero
1780 	 * in 32bit mode. Here we choose to reset it as zero for consistency.
1781 	 */
1782 	{ SYS_DESC(SYS_PMCCFILTR_EL0), access_pmu_evtyper, reset_val, PMCCFILTR_EL0, 0 },
1783 
1784 	{ SYS_DESC(SYS_DACR32_EL2), NULL, reset_unknown, DACR32_EL2 },
1785 	{ SYS_DESC(SYS_IFSR32_EL2), NULL, reset_unknown, IFSR32_EL2 },
1786 	{ SYS_DESC(SYS_FPEXC32_EL2), NULL, reset_val, FPEXC32_EL2, 0x700 },
1787 };
1788 
trap_dbgidr(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * r)1789 static bool trap_dbgidr(struct kvm_vcpu *vcpu,
1790 			struct sys_reg_params *p,
1791 			const struct sys_reg_desc *r)
1792 {
1793 	if (p->is_write) {
1794 		return ignore_write(vcpu, p);
1795 	} else {
1796 		u64 dfr = read_sanitised_ftr_reg(SYS_ID_AA64DFR0_EL1);
1797 		u64 pfr = read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1);
1798 		u32 el3 = !!cpuid_feature_extract_unsigned_field(pfr, ID_AA64PFR0_EL3_SHIFT);
1799 
1800 		p->regval = ((((dfr >> ID_AA64DFR0_WRPS_SHIFT) & 0xf) << 28) |
1801 			     (((dfr >> ID_AA64DFR0_BRPS_SHIFT) & 0xf) << 24) |
1802 			     (((dfr >> ID_AA64DFR0_CTX_CMPS_SHIFT) & 0xf) << 20)
1803 			     | (6 << 16) | (el3 << 14) | (el3 << 12));
1804 		return true;
1805 	}
1806 }
1807 
trap_debug32(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * r)1808 static bool trap_debug32(struct kvm_vcpu *vcpu,
1809 			 struct sys_reg_params *p,
1810 			 const struct sys_reg_desc *r)
1811 {
1812 	if (p->is_write) {
1813 		vcpu_cp14(vcpu, r->reg) = p->regval;
1814 		vcpu->arch.flags |= KVM_ARM64_DEBUG_DIRTY;
1815 	} else {
1816 		p->regval = vcpu_cp14(vcpu, r->reg);
1817 	}
1818 
1819 	return true;
1820 }
1821 
1822 /* AArch32 debug register mappings
1823  *
1824  * AArch32 DBGBVRn is mapped to DBGBVRn_EL1[31:0]
1825  * AArch32 DBGBXVRn is mapped to DBGBVRn_EL1[63:32]
1826  *
1827  * All control registers and watchpoint value registers are mapped to
1828  * the lower 32 bits of their AArch64 equivalents. We share the trap
1829  * handlers with the above AArch64 code which checks what mode the
1830  * system is in.
1831  */
1832 
trap_xvr(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * rd)1833 static bool trap_xvr(struct kvm_vcpu *vcpu,
1834 		     struct sys_reg_params *p,
1835 		     const struct sys_reg_desc *rd)
1836 {
1837 	u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_bvr[rd->reg];
1838 
1839 	if (p->is_write) {
1840 		u64 val = *dbg_reg;
1841 
1842 		val &= 0xffffffffUL;
1843 		val |= p->regval << 32;
1844 		*dbg_reg = val;
1845 
1846 		vcpu->arch.flags |= KVM_ARM64_DEBUG_DIRTY;
1847 	} else {
1848 		p->regval = *dbg_reg >> 32;
1849 	}
1850 
1851 	trace_trap_reg(__func__, rd->reg, p->is_write, *dbg_reg);
1852 
1853 	return true;
1854 }
1855 
1856 #define DBG_BCR_BVR_WCR_WVR(n)						\
1857 	/* DBGBVRn */							\
1858 	{ Op1( 0), CRn( 0), CRm((n)), Op2( 4), trap_bvr, NULL, n }, 	\
1859 	/* DBGBCRn */							\
1860 	{ Op1( 0), CRn( 0), CRm((n)), Op2( 5), trap_bcr, NULL, n },	\
1861 	/* DBGWVRn */							\
1862 	{ Op1( 0), CRn( 0), CRm((n)), Op2( 6), trap_wvr, NULL, n },	\
1863 	/* DBGWCRn */							\
1864 	{ Op1( 0), CRn( 0), CRm((n)), Op2( 7), trap_wcr, NULL, n }
1865 
1866 #define DBGBXVR(n)							\
1867 	{ Op1( 0), CRn( 1), CRm((n)), Op2( 1), trap_xvr, NULL, n }
1868 
1869 /*
1870  * Trapped cp14 registers. We generally ignore most of the external
1871  * debug, on the principle that they don't really make sense to a
1872  * guest. Revisit this one day, would this principle change.
1873  */
1874 static const struct sys_reg_desc cp14_regs[] = {
1875 	/* DBGIDR */
1876 	{ Op1( 0), CRn( 0), CRm( 0), Op2( 0), trap_dbgidr },
1877 	/* DBGDTRRXext */
1878 	{ Op1( 0), CRn( 0), CRm( 0), Op2( 2), trap_raz_wi },
1879 
1880 	DBG_BCR_BVR_WCR_WVR(0),
1881 	/* DBGDSCRint */
1882 	{ Op1( 0), CRn( 0), CRm( 1), Op2( 0), trap_raz_wi },
1883 	DBG_BCR_BVR_WCR_WVR(1),
1884 	/* DBGDCCINT */
1885 	{ Op1( 0), CRn( 0), CRm( 2), Op2( 0), trap_debug32, NULL, cp14_DBGDCCINT },
1886 	/* DBGDSCRext */
1887 	{ Op1( 0), CRn( 0), CRm( 2), Op2( 2), trap_debug32, NULL, cp14_DBGDSCRext },
1888 	DBG_BCR_BVR_WCR_WVR(2),
1889 	/* DBGDTR[RT]Xint */
1890 	{ Op1( 0), CRn( 0), CRm( 3), Op2( 0), trap_raz_wi },
1891 	/* DBGDTR[RT]Xext */
1892 	{ Op1( 0), CRn( 0), CRm( 3), Op2( 2), trap_raz_wi },
1893 	DBG_BCR_BVR_WCR_WVR(3),
1894 	DBG_BCR_BVR_WCR_WVR(4),
1895 	DBG_BCR_BVR_WCR_WVR(5),
1896 	/* DBGWFAR */
1897 	{ Op1( 0), CRn( 0), CRm( 6), Op2( 0), trap_raz_wi },
1898 	/* DBGOSECCR */
1899 	{ Op1( 0), CRn( 0), CRm( 6), Op2( 2), trap_raz_wi },
1900 	DBG_BCR_BVR_WCR_WVR(6),
1901 	/* DBGVCR */
1902 	{ Op1( 0), CRn( 0), CRm( 7), Op2( 0), trap_debug32, NULL, cp14_DBGVCR },
1903 	DBG_BCR_BVR_WCR_WVR(7),
1904 	DBG_BCR_BVR_WCR_WVR(8),
1905 	DBG_BCR_BVR_WCR_WVR(9),
1906 	DBG_BCR_BVR_WCR_WVR(10),
1907 	DBG_BCR_BVR_WCR_WVR(11),
1908 	DBG_BCR_BVR_WCR_WVR(12),
1909 	DBG_BCR_BVR_WCR_WVR(13),
1910 	DBG_BCR_BVR_WCR_WVR(14),
1911 	DBG_BCR_BVR_WCR_WVR(15),
1912 
1913 	/* DBGDRAR (32bit) */
1914 	{ Op1( 0), CRn( 1), CRm( 0), Op2( 0), trap_raz_wi },
1915 
1916 	DBGBXVR(0),
1917 	/* DBGOSLAR */
1918 	{ Op1( 0), CRn( 1), CRm( 0), Op2( 4), trap_raz_wi },
1919 	DBGBXVR(1),
1920 	/* DBGOSLSR */
1921 	{ Op1( 0), CRn( 1), CRm( 1), Op2( 4), trap_oslsr_el1 },
1922 	DBGBXVR(2),
1923 	DBGBXVR(3),
1924 	/* DBGOSDLR */
1925 	{ Op1( 0), CRn( 1), CRm( 3), Op2( 4), trap_raz_wi },
1926 	DBGBXVR(4),
1927 	/* DBGPRCR */
1928 	{ Op1( 0), CRn( 1), CRm( 4), Op2( 4), trap_raz_wi },
1929 	DBGBXVR(5),
1930 	DBGBXVR(6),
1931 	DBGBXVR(7),
1932 	DBGBXVR(8),
1933 	DBGBXVR(9),
1934 	DBGBXVR(10),
1935 	DBGBXVR(11),
1936 	DBGBXVR(12),
1937 	DBGBXVR(13),
1938 	DBGBXVR(14),
1939 	DBGBXVR(15),
1940 
1941 	/* DBGDSAR (32bit) */
1942 	{ Op1( 0), CRn( 2), CRm( 0), Op2( 0), trap_raz_wi },
1943 
1944 	/* DBGDEVID2 */
1945 	{ Op1( 0), CRn( 7), CRm( 0), Op2( 7), trap_raz_wi },
1946 	/* DBGDEVID1 */
1947 	{ Op1( 0), CRn( 7), CRm( 1), Op2( 7), trap_raz_wi },
1948 	/* DBGDEVID */
1949 	{ Op1( 0), CRn( 7), CRm( 2), Op2( 7), trap_raz_wi },
1950 	/* DBGCLAIMSET */
1951 	{ Op1( 0), CRn( 7), CRm( 8), Op2( 6), trap_raz_wi },
1952 	/* DBGCLAIMCLR */
1953 	{ Op1( 0), CRn( 7), CRm( 9), Op2( 6), trap_raz_wi },
1954 	/* DBGAUTHSTATUS */
1955 	{ Op1( 0), CRn( 7), CRm(14), Op2( 6), trap_dbgauthstatus_el1 },
1956 };
1957 
1958 /* Trapped cp14 64bit registers */
1959 static const struct sys_reg_desc cp14_64_regs[] = {
1960 	/* DBGDRAR (64bit) */
1961 	{ Op1( 0), CRm( 1), .access = trap_raz_wi },
1962 
1963 	/* DBGDSAR (64bit) */
1964 	{ Op1( 0), CRm( 2), .access = trap_raz_wi },
1965 };
1966 
1967 /* Macro to expand the PMEVCNTRn register */
1968 #define PMU_PMEVCNTR(n)							\
1969 	/* PMEVCNTRn */							\
1970 	{ Op1(0), CRn(0b1110),						\
1971 	  CRm((0b1000 | (((n) >> 3) & 0x3))), Op2(((n) & 0x7)),		\
1972 	  access_pmu_evcntr }
1973 
1974 /* Macro to expand the PMEVTYPERn register */
1975 #define PMU_PMEVTYPER(n)						\
1976 	/* PMEVTYPERn */						\
1977 	{ Op1(0), CRn(0b1110),						\
1978 	  CRm((0b1100 | (((n) >> 3) & 0x3))), Op2(((n) & 0x7)),		\
1979 	  access_pmu_evtyper }
1980 
1981 /*
1982  * Trapped cp15 registers. TTBR0/TTBR1 get a double encoding,
1983  * depending on the way they are accessed (as a 32bit or a 64bit
1984  * register).
1985  */
1986 static const struct sys_reg_desc cp15_regs[] = {
1987 	{ Op1( 0), CRn( 0), CRm( 0), Op2( 1), access_ctr },
1988 	{ Op1( 0), CRn( 1), CRm( 0), Op2( 0), access_vm_reg, NULL, c1_SCTLR },
1989 	{ Op1( 0), CRn( 1), CRm( 0), Op2( 1), access_actlr },
1990 	{ Op1( 0), CRn( 1), CRm( 0), Op2( 3), access_actlr },
1991 	{ Op1( 0), CRn( 2), CRm( 0), Op2( 0), access_vm_reg, NULL, c2_TTBR0 },
1992 	{ Op1( 0), CRn( 2), CRm( 0), Op2( 1), access_vm_reg, NULL, c2_TTBR1 },
1993 	{ Op1( 0), CRn( 2), CRm( 0), Op2( 2), access_vm_reg, NULL, c2_TTBCR },
1994 	{ Op1( 0), CRn( 2), CRm( 0), Op2( 3), access_vm_reg, NULL, c2_TTBCR2 },
1995 	{ Op1( 0), CRn( 3), CRm( 0), Op2( 0), access_vm_reg, NULL, c3_DACR },
1996 	{ Op1( 0), CRn( 5), CRm( 0), Op2( 0), access_vm_reg, NULL, c5_DFSR },
1997 	{ Op1( 0), CRn( 5), CRm( 0), Op2( 1), access_vm_reg, NULL, c5_IFSR },
1998 	{ Op1( 0), CRn( 5), CRm( 1), Op2( 0), access_vm_reg, NULL, c5_ADFSR },
1999 	{ Op1( 0), CRn( 5), CRm( 1), Op2( 1), access_vm_reg, NULL, c5_AIFSR },
2000 	{ Op1( 0), CRn( 6), CRm( 0), Op2( 0), access_vm_reg, NULL, c6_DFAR },
2001 	{ Op1( 0), CRn( 6), CRm( 0), Op2( 2), access_vm_reg, NULL, c6_IFAR },
2002 
2003 	/*
2004 	 * DC{C,I,CI}SW operations:
2005 	 */
2006 	{ Op1( 0), CRn( 7), CRm( 6), Op2( 2), access_dcsw },
2007 	{ Op1( 0), CRn( 7), CRm(10), Op2( 2), access_dcsw },
2008 	{ Op1( 0), CRn( 7), CRm(14), Op2( 2), access_dcsw },
2009 
2010 	/* PMU */
2011 	{ Op1( 0), CRn( 9), CRm(12), Op2( 0), access_pmcr },
2012 	{ Op1( 0), CRn( 9), CRm(12), Op2( 1), access_pmcnten },
2013 	{ Op1( 0), CRn( 9), CRm(12), Op2( 2), access_pmcnten },
2014 	{ Op1( 0), CRn( 9), CRm(12), Op2( 3), access_pmovs },
2015 	{ Op1( 0), CRn( 9), CRm(12), Op2( 4), access_pmswinc },
2016 	{ Op1( 0), CRn( 9), CRm(12), Op2( 5), access_pmselr },
2017 	{ Op1( 0), CRn( 9), CRm(12), Op2( 6), access_pmceid },
2018 	{ Op1( 0), CRn( 9), CRm(12), Op2( 7), access_pmceid },
2019 	{ Op1( 0), CRn( 9), CRm(13), Op2( 0), access_pmu_evcntr },
2020 	{ Op1( 0), CRn( 9), CRm(13), Op2( 1), access_pmu_evtyper },
2021 	{ Op1( 0), CRn( 9), CRm(13), Op2( 2), access_pmu_evcntr },
2022 	{ Op1( 0), CRn( 9), CRm(14), Op2( 0), access_pmuserenr },
2023 	{ Op1( 0), CRn( 9), CRm(14), Op2( 1), access_pminten },
2024 	{ Op1( 0), CRn( 9), CRm(14), Op2( 2), access_pminten },
2025 	{ Op1( 0), CRn( 9), CRm(14), Op2( 3), access_pmovs },
2026 
2027 	{ Op1( 0), CRn(10), CRm( 2), Op2( 0), access_vm_reg, NULL, c10_PRRR },
2028 	{ Op1( 0), CRn(10), CRm( 2), Op2( 1), access_vm_reg, NULL, c10_NMRR },
2029 	{ Op1( 0), CRn(10), CRm( 3), Op2( 0), access_vm_reg, NULL, c10_AMAIR0 },
2030 	{ Op1( 0), CRn(10), CRm( 3), Op2( 1), access_vm_reg, NULL, c10_AMAIR1 },
2031 
2032 	/* ICC_SRE */
2033 	{ Op1( 0), CRn(12), CRm(12), Op2( 5), access_gic_sre },
2034 
2035 	{ Op1( 0), CRn(13), CRm( 0), Op2( 1), access_vm_reg, NULL, c13_CID },
2036 
2037 	/* Arch Tmers */
2038 	{ SYS_DESC(SYS_AARCH32_CNTP_TVAL), access_arch_timer },
2039 	{ SYS_DESC(SYS_AARCH32_CNTP_CTL), access_arch_timer },
2040 
2041 	/* PMEVCNTRn */
2042 	PMU_PMEVCNTR(0),
2043 	PMU_PMEVCNTR(1),
2044 	PMU_PMEVCNTR(2),
2045 	PMU_PMEVCNTR(3),
2046 	PMU_PMEVCNTR(4),
2047 	PMU_PMEVCNTR(5),
2048 	PMU_PMEVCNTR(6),
2049 	PMU_PMEVCNTR(7),
2050 	PMU_PMEVCNTR(8),
2051 	PMU_PMEVCNTR(9),
2052 	PMU_PMEVCNTR(10),
2053 	PMU_PMEVCNTR(11),
2054 	PMU_PMEVCNTR(12),
2055 	PMU_PMEVCNTR(13),
2056 	PMU_PMEVCNTR(14),
2057 	PMU_PMEVCNTR(15),
2058 	PMU_PMEVCNTR(16),
2059 	PMU_PMEVCNTR(17),
2060 	PMU_PMEVCNTR(18),
2061 	PMU_PMEVCNTR(19),
2062 	PMU_PMEVCNTR(20),
2063 	PMU_PMEVCNTR(21),
2064 	PMU_PMEVCNTR(22),
2065 	PMU_PMEVCNTR(23),
2066 	PMU_PMEVCNTR(24),
2067 	PMU_PMEVCNTR(25),
2068 	PMU_PMEVCNTR(26),
2069 	PMU_PMEVCNTR(27),
2070 	PMU_PMEVCNTR(28),
2071 	PMU_PMEVCNTR(29),
2072 	PMU_PMEVCNTR(30),
2073 	/* PMEVTYPERn */
2074 	PMU_PMEVTYPER(0),
2075 	PMU_PMEVTYPER(1),
2076 	PMU_PMEVTYPER(2),
2077 	PMU_PMEVTYPER(3),
2078 	PMU_PMEVTYPER(4),
2079 	PMU_PMEVTYPER(5),
2080 	PMU_PMEVTYPER(6),
2081 	PMU_PMEVTYPER(7),
2082 	PMU_PMEVTYPER(8),
2083 	PMU_PMEVTYPER(9),
2084 	PMU_PMEVTYPER(10),
2085 	PMU_PMEVTYPER(11),
2086 	PMU_PMEVTYPER(12),
2087 	PMU_PMEVTYPER(13),
2088 	PMU_PMEVTYPER(14),
2089 	PMU_PMEVTYPER(15),
2090 	PMU_PMEVTYPER(16),
2091 	PMU_PMEVTYPER(17),
2092 	PMU_PMEVTYPER(18),
2093 	PMU_PMEVTYPER(19),
2094 	PMU_PMEVTYPER(20),
2095 	PMU_PMEVTYPER(21),
2096 	PMU_PMEVTYPER(22),
2097 	PMU_PMEVTYPER(23),
2098 	PMU_PMEVTYPER(24),
2099 	PMU_PMEVTYPER(25),
2100 	PMU_PMEVTYPER(26),
2101 	PMU_PMEVTYPER(27),
2102 	PMU_PMEVTYPER(28),
2103 	PMU_PMEVTYPER(29),
2104 	PMU_PMEVTYPER(30),
2105 	/* PMCCFILTR */
2106 	{ Op1(0), CRn(14), CRm(15), Op2(7), access_pmu_evtyper },
2107 
2108 	{ Op1(1), CRn( 0), CRm( 0), Op2(0), access_ccsidr },
2109 	{ Op1(1), CRn( 0), CRm( 0), Op2(1), access_clidr },
2110 	{ Op1(2), CRn( 0), CRm( 0), Op2(0), access_csselr, NULL, c0_CSSELR },
2111 };
2112 
2113 static const struct sys_reg_desc cp15_64_regs[] = {
2114 	{ Op1( 0), CRn( 0), CRm( 2), Op2( 0), access_vm_reg, NULL, c2_TTBR0 },
2115 	{ Op1( 0), CRn( 0), CRm( 9), Op2( 0), access_pmu_evcntr },
2116 	{ Op1( 0), CRn( 0), CRm(12), Op2( 0), access_gic_sgi }, /* ICC_SGI1R */
2117 	{ Op1( 1), CRn( 0), CRm( 2), Op2( 0), access_vm_reg, NULL, c2_TTBR1 },
2118 	{ Op1( 1), CRn( 0), CRm(12), Op2( 0), access_gic_sgi }, /* ICC_ASGI1R */
2119 	{ Op1( 2), CRn( 0), CRm(12), Op2( 0), access_gic_sgi }, /* ICC_SGI0R */
2120 	{ SYS_DESC(SYS_AARCH32_CNTP_CVAL),    access_arch_timer },
2121 };
2122 
check_sysreg_table(const struct sys_reg_desc * table,unsigned int n,bool is_32)2123 static int check_sysreg_table(const struct sys_reg_desc *table, unsigned int n,
2124 			      bool is_32)
2125 {
2126 	unsigned int i;
2127 
2128 	for (i = 0; i < n; i++) {
2129 		if (!is_32 && table[i].reg && !table[i].reset) {
2130 			kvm_err("sys_reg table %p entry %d has lacks reset\n",
2131 				table, i);
2132 			return 1;
2133 		}
2134 
2135 		if (i && cmp_sys_reg(&table[i-1], &table[i]) >= 0) {
2136 			kvm_err("sys_reg table %p out of order (%d)\n", table, i - 1);
2137 			return 1;
2138 		}
2139 	}
2140 
2141 	return 0;
2142 }
2143 
match_sys_reg(const void * key,const void * elt)2144 static int match_sys_reg(const void *key, const void *elt)
2145 {
2146 	const unsigned long pval = (unsigned long)key;
2147 	const struct sys_reg_desc *r = elt;
2148 
2149 	return pval - reg_to_encoding(r);
2150 }
2151 
find_reg(const struct sys_reg_params * params,const struct sys_reg_desc table[],unsigned int num)2152 static const struct sys_reg_desc *find_reg(const struct sys_reg_params *params,
2153 					 const struct sys_reg_desc table[],
2154 					 unsigned int num)
2155 {
2156 	unsigned long pval = reg_to_encoding(params);
2157 
2158 	return bsearch((void *)pval, table, num, sizeof(table[0]), match_sys_reg);
2159 }
2160 
kvm_handle_cp14_load_store(struct kvm_vcpu * vcpu)2161 int kvm_handle_cp14_load_store(struct kvm_vcpu *vcpu)
2162 {
2163 	kvm_inject_undefined(vcpu);
2164 	return 1;
2165 }
2166 
perform_access(struct kvm_vcpu * vcpu,struct sys_reg_params * params,const struct sys_reg_desc * r)2167 static void perform_access(struct kvm_vcpu *vcpu,
2168 			   struct sys_reg_params *params,
2169 			   const struct sys_reg_desc *r)
2170 {
2171 	trace_kvm_sys_access(*vcpu_pc(vcpu), params, r);
2172 
2173 	/* Check for regs disabled by runtime config */
2174 	if (sysreg_hidden(vcpu, r)) {
2175 		kvm_inject_undefined(vcpu);
2176 		return;
2177 	}
2178 
2179 	/*
2180 	 * Not having an accessor means that we have configured a trap
2181 	 * that we don't know how to handle. This certainly qualifies
2182 	 * as a gross bug that should be fixed right away.
2183 	 */
2184 	BUG_ON(!r->access);
2185 
2186 	/* Skip instruction if instructed so */
2187 	if (likely(r->access(vcpu, params, r)))
2188 		kvm_skip_instr(vcpu, kvm_vcpu_trap_il_is32bit(vcpu));
2189 }
2190 
2191 /*
2192  * emulate_cp --  tries to match a sys_reg access in a handling table, and
2193  *                call the corresponding trap handler.
2194  *
2195  * @params: pointer to the descriptor of the access
2196  * @table: array of trap descriptors
2197  * @num: size of the trap descriptor array
2198  *
2199  * Return 0 if the access has been handled, and -1 if not.
2200  */
emulate_cp(struct kvm_vcpu * vcpu,struct sys_reg_params * params,const struct sys_reg_desc * table,size_t num)2201 static int emulate_cp(struct kvm_vcpu *vcpu,
2202 		      struct sys_reg_params *params,
2203 		      const struct sys_reg_desc *table,
2204 		      size_t num)
2205 {
2206 	const struct sys_reg_desc *r;
2207 
2208 	if (!table)
2209 		return -1;	/* Not handled */
2210 
2211 	r = find_reg(params, table, num);
2212 
2213 	if (r) {
2214 		perform_access(vcpu, params, r);
2215 		return 0;
2216 	}
2217 
2218 	/* Not handled */
2219 	return -1;
2220 }
2221 
unhandled_cp_access(struct kvm_vcpu * vcpu,struct sys_reg_params * params)2222 static void unhandled_cp_access(struct kvm_vcpu *vcpu,
2223 				struct sys_reg_params *params)
2224 {
2225 	u8 esr_ec = kvm_vcpu_trap_get_class(vcpu);
2226 	int cp = -1;
2227 
2228 	switch (esr_ec) {
2229 	case ESR_ELx_EC_CP15_32:
2230 	case ESR_ELx_EC_CP15_64:
2231 		cp = 15;
2232 		break;
2233 	case ESR_ELx_EC_CP14_MR:
2234 	case ESR_ELx_EC_CP14_64:
2235 		cp = 14;
2236 		break;
2237 	default:
2238 		WARN_ON(1);
2239 	}
2240 
2241 	print_sys_reg_msg(params,
2242 			  "Unsupported guest CP%d access at: %08lx [%08lx]\n",
2243 			  cp, *vcpu_pc(vcpu), *vcpu_cpsr(vcpu));
2244 	kvm_inject_undefined(vcpu);
2245 }
2246 
2247 /**
2248  * kvm_handle_cp_64 -- handles a mrrc/mcrr trap on a guest CP14/CP15 access
2249  * @vcpu: The VCPU pointer
2250  * @run:  The kvm_run struct
2251  */
kvm_handle_cp_64(struct kvm_vcpu * vcpu,const struct sys_reg_desc * global,size_t nr_global)2252 static int kvm_handle_cp_64(struct kvm_vcpu *vcpu,
2253 			    const struct sys_reg_desc *global,
2254 			    size_t nr_global)
2255 {
2256 	struct sys_reg_params params;
2257 	u32 esr = kvm_vcpu_get_esr(vcpu);
2258 	int Rt = kvm_vcpu_sys_get_rt(vcpu);
2259 	int Rt2 = (esr >> 10) & 0x1f;
2260 
2261 	params.is_aarch32 = true;
2262 	params.is_32bit = false;
2263 	params.CRm = (esr >> 1) & 0xf;
2264 	params.is_write = ((esr & 1) == 0);
2265 
2266 	params.Op0 = 0;
2267 	params.Op1 = (esr >> 16) & 0xf;
2268 	params.Op2 = 0;
2269 	params.CRn = 0;
2270 
2271 	/*
2272 	 * Make a 64-bit value out of Rt and Rt2. As we use the same trap
2273 	 * backends between AArch32 and AArch64, we get away with it.
2274 	 */
2275 	if (params.is_write) {
2276 		params.regval = vcpu_get_reg(vcpu, Rt) & 0xffffffff;
2277 		params.regval |= vcpu_get_reg(vcpu, Rt2) << 32;
2278 	}
2279 
2280 	/*
2281 	 * If the table contains a handler, handle the
2282 	 * potential register operation in the case of a read and return
2283 	 * with success.
2284 	 */
2285 	if (!emulate_cp(vcpu, &params, global, nr_global)) {
2286 		/* Split up the value between registers for the read side */
2287 		if (!params.is_write) {
2288 			vcpu_set_reg(vcpu, Rt, lower_32_bits(params.regval));
2289 			vcpu_set_reg(vcpu, Rt2, upper_32_bits(params.regval));
2290 		}
2291 
2292 		return 1;
2293 	}
2294 
2295 	unhandled_cp_access(vcpu, &params);
2296 	return 1;
2297 }
2298 
2299 /**
2300  * kvm_handle_cp_32 -- handles a mrc/mcr trap on a guest CP14/CP15 access
2301  * @vcpu: The VCPU pointer
2302  * @run:  The kvm_run struct
2303  */
kvm_handle_cp_32(struct kvm_vcpu * vcpu,const struct sys_reg_desc * global,size_t nr_global)2304 static int kvm_handle_cp_32(struct kvm_vcpu *vcpu,
2305 			    const struct sys_reg_desc *global,
2306 			    size_t nr_global)
2307 {
2308 	struct sys_reg_params params;
2309 	u32 esr = kvm_vcpu_get_esr(vcpu);
2310 	int Rt  = kvm_vcpu_sys_get_rt(vcpu);
2311 
2312 	params.is_aarch32 = true;
2313 	params.is_32bit = true;
2314 	params.CRm = (esr >> 1) & 0xf;
2315 	params.regval = vcpu_get_reg(vcpu, Rt);
2316 	params.is_write = ((esr & 1) == 0);
2317 	params.CRn = (esr >> 10) & 0xf;
2318 	params.Op0 = 0;
2319 	params.Op1 = (esr >> 14) & 0x7;
2320 	params.Op2 = (esr >> 17) & 0x7;
2321 
2322 	if (!emulate_cp(vcpu, &params, global, nr_global)) {
2323 		if (!params.is_write)
2324 			vcpu_set_reg(vcpu, Rt, params.regval);
2325 		return 1;
2326 	}
2327 
2328 	unhandled_cp_access(vcpu, &params);
2329 	return 1;
2330 }
2331 
kvm_handle_cp15_64(struct kvm_vcpu * vcpu)2332 int kvm_handle_cp15_64(struct kvm_vcpu *vcpu)
2333 {
2334 	return kvm_handle_cp_64(vcpu, cp15_64_regs, ARRAY_SIZE(cp15_64_regs));
2335 }
2336 
kvm_handle_cp15_32(struct kvm_vcpu * vcpu)2337 int kvm_handle_cp15_32(struct kvm_vcpu *vcpu)
2338 {
2339 	return kvm_handle_cp_32(vcpu, cp15_regs, ARRAY_SIZE(cp15_regs));
2340 }
2341 
kvm_handle_cp14_64(struct kvm_vcpu * vcpu)2342 int kvm_handle_cp14_64(struct kvm_vcpu *vcpu)
2343 {
2344 	return kvm_handle_cp_64(vcpu, cp14_64_regs, ARRAY_SIZE(cp14_64_regs));
2345 }
2346 
kvm_handle_cp14_32(struct kvm_vcpu * vcpu)2347 int kvm_handle_cp14_32(struct kvm_vcpu *vcpu)
2348 {
2349 	return kvm_handle_cp_32(vcpu, cp14_regs, ARRAY_SIZE(cp14_regs));
2350 }
2351 
is_imp_def_sys_reg(struct sys_reg_params * params)2352 static bool is_imp_def_sys_reg(struct sys_reg_params *params)
2353 {
2354 	// See ARM DDI 0487E.a, section D12.3.2
2355 	return params->Op0 == 3 && (params->CRn & 0b1011) == 0b1011;
2356 }
2357 
emulate_sys_reg(struct kvm_vcpu * vcpu,struct sys_reg_params * params)2358 static int emulate_sys_reg(struct kvm_vcpu *vcpu,
2359 			   struct sys_reg_params *params)
2360 {
2361 	const struct sys_reg_desc *r;
2362 
2363 	r = find_reg(params, sys_reg_descs, ARRAY_SIZE(sys_reg_descs));
2364 
2365 	if (likely(r)) {
2366 		perform_access(vcpu, params, r);
2367 	} else if (is_imp_def_sys_reg(params)) {
2368 		kvm_inject_undefined(vcpu);
2369 	} else {
2370 		print_sys_reg_msg(params,
2371 				  "Unsupported guest sys_reg access at: %lx [%08lx]\n",
2372 				  *vcpu_pc(vcpu), *vcpu_cpsr(vcpu));
2373 		kvm_inject_undefined(vcpu);
2374 	}
2375 	return 1;
2376 }
2377 
2378 /**
2379  * kvm_reset_sys_regs - sets system registers to reset value
2380  * @vcpu: The VCPU pointer
2381  *
2382  * This function finds the right table above and sets the registers on the
2383  * virtual CPU struct to their architecturally defined reset values.
2384  */
kvm_reset_sys_regs(struct kvm_vcpu * vcpu)2385 void kvm_reset_sys_regs(struct kvm_vcpu *vcpu)
2386 {
2387 	unsigned long i;
2388 
2389 	for (i = 0; i < ARRAY_SIZE(sys_reg_descs); i++)
2390 		if (sys_reg_descs[i].reset)
2391 			sys_reg_descs[i].reset(vcpu, &sys_reg_descs[i]);
2392 }
2393 
2394 /**
2395  * kvm_handle_sys_reg -- handles a mrs/msr trap on a guest sys_reg access
2396  * @vcpu: The VCPU pointer
2397  */
kvm_handle_sys_reg(struct kvm_vcpu * vcpu)2398 int kvm_handle_sys_reg(struct kvm_vcpu *vcpu)
2399 {
2400 	struct sys_reg_params params;
2401 	unsigned long esr = kvm_vcpu_get_esr(vcpu);
2402 	int Rt = kvm_vcpu_sys_get_rt(vcpu);
2403 	int ret;
2404 
2405 	trace_kvm_handle_sys_reg(esr);
2406 
2407 	params.is_aarch32 = false;
2408 	params.is_32bit = false;
2409 	params.Op0 = (esr >> 20) & 3;
2410 	params.Op1 = (esr >> 14) & 0x7;
2411 	params.CRn = (esr >> 10) & 0xf;
2412 	params.CRm = (esr >> 1) & 0xf;
2413 	params.Op2 = (esr >> 17) & 0x7;
2414 	params.regval = vcpu_get_reg(vcpu, Rt);
2415 	params.is_write = !(esr & 1);
2416 
2417 	ret = emulate_sys_reg(vcpu, &params);
2418 
2419 	if (!params.is_write)
2420 		vcpu_set_reg(vcpu, Rt, params.regval);
2421 	return ret;
2422 }
2423 
2424 /******************************************************************************
2425  * Userspace API
2426  *****************************************************************************/
2427 
index_to_params(u64 id,struct sys_reg_params * params)2428 static bool index_to_params(u64 id, struct sys_reg_params *params)
2429 {
2430 	switch (id & KVM_REG_SIZE_MASK) {
2431 	case KVM_REG_SIZE_U64:
2432 		/* Any unused index bits means it's not valid. */
2433 		if (id & ~(KVM_REG_ARCH_MASK | KVM_REG_SIZE_MASK
2434 			      | KVM_REG_ARM_COPROC_MASK
2435 			      | KVM_REG_ARM64_SYSREG_OP0_MASK
2436 			      | KVM_REG_ARM64_SYSREG_OP1_MASK
2437 			      | KVM_REG_ARM64_SYSREG_CRN_MASK
2438 			      | KVM_REG_ARM64_SYSREG_CRM_MASK
2439 			      | KVM_REG_ARM64_SYSREG_OP2_MASK))
2440 			return false;
2441 		params->Op0 = ((id & KVM_REG_ARM64_SYSREG_OP0_MASK)
2442 			       >> KVM_REG_ARM64_SYSREG_OP0_SHIFT);
2443 		params->Op1 = ((id & KVM_REG_ARM64_SYSREG_OP1_MASK)
2444 			       >> KVM_REG_ARM64_SYSREG_OP1_SHIFT);
2445 		params->CRn = ((id & KVM_REG_ARM64_SYSREG_CRN_MASK)
2446 			       >> KVM_REG_ARM64_SYSREG_CRN_SHIFT);
2447 		params->CRm = ((id & KVM_REG_ARM64_SYSREG_CRM_MASK)
2448 			       >> KVM_REG_ARM64_SYSREG_CRM_SHIFT);
2449 		params->Op2 = ((id & KVM_REG_ARM64_SYSREG_OP2_MASK)
2450 			       >> KVM_REG_ARM64_SYSREG_OP2_SHIFT);
2451 		return true;
2452 	default:
2453 		return false;
2454 	}
2455 }
2456 
find_reg_by_id(u64 id,struct sys_reg_params * params,const struct sys_reg_desc table[],unsigned int num)2457 const struct sys_reg_desc *find_reg_by_id(u64 id,
2458 					  struct sys_reg_params *params,
2459 					  const struct sys_reg_desc table[],
2460 					  unsigned int num)
2461 {
2462 	if (!index_to_params(id, params))
2463 		return NULL;
2464 
2465 	return find_reg(params, table, num);
2466 }
2467 
2468 /* Decode an index value, and find the sys_reg_desc entry. */
index_to_sys_reg_desc(struct kvm_vcpu * vcpu,u64 id)2469 static const struct sys_reg_desc *index_to_sys_reg_desc(struct kvm_vcpu *vcpu,
2470 						    u64 id)
2471 {
2472 	const struct sys_reg_desc *r;
2473 	struct sys_reg_params params;
2474 
2475 	/* We only do sys_reg for now. */
2476 	if ((id & KVM_REG_ARM_COPROC_MASK) != KVM_REG_ARM64_SYSREG)
2477 		return NULL;
2478 
2479 	if (!index_to_params(id, &params))
2480 		return NULL;
2481 
2482 	r = find_reg(&params, sys_reg_descs, ARRAY_SIZE(sys_reg_descs));
2483 
2484 	/* Not saved in the sys_reg array and not otherwise accessible? */
2485 	if (r && !(r->reg || r->get_user))
2486 		r = NULL;
2487 
2488 	return r;
2489 }
2490 
2491 /*
2492  * These are the invariant sys_reg registers: we let the guest see the
2493  * host versions of these, so they're part of the guest state.
2494  *
2495  * A future CPU may provide a mechanism to present different values to
2496  * the guest, or a future kvm may trap them.
2497  */
2498 
2499 #define FUNCTION_INVARIANT(reg)						\
2500 	static void get_##reg(struct kvm_vcpu *v,			\
2501 			      const struct sys_reg_desc *r)		\
2502 	{								\
2503 		((struct sys_reg_desc *)r)->val = read_sysreg(reg);	\
2504 	}
2505 
2506 FUNCTION_INVARIANT(midr_el1)
FUNCTION_INVARIANT(revidr_el1)2507 FUNCTION_INVARIANT(revidr_el1)
2508 FUNCTION_INVARIANT(clidr_el1)
2509 FUNCTION_INVARIANT(aidr_el1)
2510 
2511 static void get_ctr_el0(struct kvm_vcpu *v, const struct sys_reg_desc *r)
2512 {
2513 	((struct sys_reg_desc *)r)->val = read_sanitised_ftr_reg(SYS_CTR_EL0);
2514 }
2515 
2516 /* ->val is filled in by kvm_sys_reg_table_init() */
2517 static struct sys_reg_desc invariant_sys_regs[] = {
2518 	{ SYS_DESC(SYS_MIDR_EL1), NULL, get_midr_el1 },
2519 	{ SYS_DESC(SYS_REVIDR_EL1), NULL, get_revidr_el1 },
2520 	{ SYS_DESC(SYS_CLIDR_EL1), NULL, get_clidr_el1 },
2521 	{ SYS_DESC(SYS_AIDR_EL1), NULL, get_aidr_el1 },
2522 	{ SYS_DESC(SYS_CTR_EL0), NULL, get_ctr_el0 },
2523 };
2524 
reg_from_user(u64 * val,const void __user * uaddr,u64 id)2525 static int reg_from_user(u64 *val, const void __user *uaddr, u64 id)
2526 {
2527 	if (copy_from_user(val, uaddr, KVM_REG_SIZE(id)) != 0)
2528 		return -EFAULT;
2529 	return 0;
2530 }
2531 
reg_to_user(void __user * uaddr,const u64 * val,u64 id)2532 static int reg_to_user(void __user *uaddr, const u64 *val, u64 id)
2533 {
2534 	if (copy_to_user(uaddr, val, KVM_REG_SIZE(id)) != 0)
2535 		return -EFAULT;
2536 	return 0;
2537 }
2538 
get_invariant_sys_reg(u64 id,void __user * uaddr)2539 static int get_invariant_sys_reg(u64 id, void __user *uaddr)
2540 {
2541 	struct sys_reg_params params;
2542 	const struct sys_reg_desc *r;
2543 
2544 	r = find_reg_by_id(id, &params, invariant_sys_regs,
2545 			   ARRAY_SIZE(invariant_sys_regs));
2546 	if (!r)
2547 		return -ENOENT;
2548 
2549 	return reg_to_user(uaddr, &r->val, id);
2550 }
2551 
set_invariant_sys_reg(u64 id,void __user * uaddr)2552 static int set_invariant_sys_reg(u64 id, void __user *uaddr)
2553 {
2554 	struct sys_reg_params params;
2555 	const struct sys_reg_desc *r;
2556 	int err;
2557 	u64 val = 0; /* Make sure high bits are 0 for 32-bit regs */
2558 
2559 	r = find_reg_by_id(id, &params, invariant_sys_regs,
2560 			   ARRAY_SIZE(invariant_sys_regs));
2561 	if (!r)
2562 		return -ENOENT;
2563 
2564 	err = reg_from_user(&val, uaddr, id);
2565 	if (err)
2566 		return err;
2567 
2568 	/* This is what we mean by invariant: you can't change it. */
2569 	if (r->val != val)
2570 		return -EINVAL;
2571 
2572 	return 0;
2573 }
2574 
is_valid_cache(u32 val)2575 static bool is_valid_cache(u32 val)
2576 {
2577 	u32 level, ctype;
2578 
2579 	if (val >= CSSELR_MAX)
2580 		return false;
2581 
2582 	/* Bottom bit is Instruction or Data bit.  Next 3 bits are level. */
2583 	level = (val >> 1);
2584 	ctype = (cache_levels >> (level * 3)) & 7;
2585 
2586 	switch (ctype) {
2587 	case 0: /* No cache */
2588 		return false;
2589 	case 1: /* Instruction cache only */
2590 		return (val & 1);
2591 	case 2: /* Data cache only */
2592 	case 4: /* Unified cache */
2593 		return !(val & 1);
2594 	case 3: /* Separate instruction and data caches */
2595 		return true;
2596 	default: /* Reserved: we can't know instruction or data. */
2597 		return false;
2598 	}
2599 }
2600 
demux_c15_get(u64 id,void __user * uaddr)2601 static int demux_c15_get(u64 id, void __user *uaddr)
2602 {
2603 	u32 val;
2604 	u32 __user *uval = uaddr;
2605 
2606 	/* Fail if we have unknown bits set. */
2607 	if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK
2608 		   | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1)))
2609 		return -ENOENT;
2610 
2611 	switch (id & KVM_REG_ARM_DEMUX_ID_MASK) {
2612 	case KVM_REG_ARM_DEMUX_ID_CCSIDR:
2613 		if (KVM_REG_SIZE(id) != 4)
2614 			return -ENOENT;
2615 		val = (id & KVM_REG_ARM_DEMUX_VAL_MASK)
2616 			>> KVM_REG_ARM_DEMUX_VAL_SHIFT;
2617 		if (!is_valid_cache(val))
2618 			return -ENOENT;
2619 
2620 		return put_user(get_ccsidr(val), uval);
2621 	default:
2622 		return -ENOENT;
2623 	}
2624 }
2625 
demux_c15_set(u64 id,void __user * uaddr)2626 static int demux_c15_set(u64 id, void __user *uaddr)
2627 {
2628 	u32 val, newval;
2629 	u32 __user *uval = uaddr;
2630 
2631 	/* Fail if we have unknown bits set. */
2632 	if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK
2633 		   | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1)))
2634 		return -ENOENT;
2635 
2636 	switch (id & KVM_REG_ARM_DEMUX_ID_MASK) {
2637 	case KVM_REG_ARM_DEMUX_ID_CCSIDR:
2638 		if (KVM_REG_SIZE(id) != 4)
2639 			return -ENOENT;
2640 		val = (id & KVM_REG_ARM_DEMUX_VAL_MASK)
2641 			>> KVM_REG_ARM_DEMUX_VAL_SHIFT;
2642 		if (!is_valid_cache(val))
2643 			return -ENOENT;
2644 
2645 		if (get_user(newval, uval))
2646 			return -EFAULT;
2647 
2648 		/* This is also invariant: you can't change it. */
2649 		if (newval != get_ccsidr(val))
2650 			return -EINVAL;
2651 		return 0;
2652 	default:
2653 		return -ENOENT;
2654 	}
2655 }
2656 
kvm_arm_sys_reg_get_reg(struct kvm_vcpu * vcpu,const struct kvm_one_reg * reg)2657 int kvm_arm_sys_reg_get_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
2658 {
2659 	const struct sys_reg_desc *r;
2660 	void __user *uaddr = (void __user *)(unsigned long)reg->addr;
2661 
2662 	if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_DEMUX)
2663 		return demux_c15_get(reg->id, uaddr);
2664 
2665 	if (KVM_REG_SIZE(reg->id) != sizeof(__u64))
2666 		return -ENOENT;
2667 
2668 	r = index_to_sys_reg_desc(vcpu, reg->id);
2669 	if (!r)
2670 		return get_invariant_sys_reg(reg->id, uaddr);
2671 
2672 	/* Check for regs disabled by runtime config */
2673 	if (sysreg_hidden(vcpu, r))
2674 		return -ENOENT;
2675 
2676 	if (r->get_user)
2677 		return (r->get_user)(vcpu, r, reg, uaddr);
2678 
2679 	return reg_to_user(uaddr, &__vcpu_sys_reg(vcpu, r->reg), reg->id);
2680 }
2681 
kvm_arm_sys_reg_set_reg(struct kvm_vcpu * vcpu,const struct kvm_one_reg * reg)2682 int kvm_arm_sys_reg_set_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
2683 {
2684 	const struct sys_reg_desc *r;
2685 	void __user *uaddr = (void __user *)(unsigned long)reg->addr;
2686 
2687 	if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_DEMUX)
2688 		return demux_c15_set(reg->id, uaddr);
2689 
2690 	if (KVM_REG_SIZE(reg->id) != sizeof(__u64))
2691 		return -ENOENT;
2692 
2693 	r = index_to_sys_reg_desc(vcpu, reg->id);
2694 	if (!r)
2695 		return set_invariant_sys_reg(reg->id, uaddr);
2696 
2697 	/* Check for regs disabled by runtime config */
2698 	if (sysreg_hidden(vcpu, r))
2699 		return -ENOENT;
2700 
2701 	if (r->set_user)
2702 		return (r->set_user)(vcpu, r, reg, uaddr);
2703 
2704 	return reg_from_user(&__vcpu_sys_reg(vcpu, r->reg), uaddr, reg->id);
2705 }
2706 
num_demux_regs(void)2707 static unsigned int num_demux_regs(void)
2708 {
2709 	unsigned int i, count = 0;
2710 
2711 	for (i = 0; i < CSSELR_MAX; i++)
2712 		if (is_valid_cache(i))
2713 			count++;
2714 
2715 	return count;
2716 }
2717 
write_demux_regids(u64 __user * uindices)2718 static int write_demux_regids(u64 __user *uindices)
2719 {
2720 	u64 val = KVM_REG_ARM64 | KVM_REG_SIZE_U32 | KVM_REG_ARM_DEMUX;
2721 	unsigned int i;
2722 
2723 	val |= KVM_REG_ARM_DEMUX_ID_CCSIDR;
2724 	for (i = 0; i < CSSELR_MAX; i++) {
2725 		if (!is_valid_cache(i))
2726 			continue;
2727 		if (put_user(val | i, uindices))
2728 			return -EFAULT;
2729 		uindices++;
2730 	}
2731 	return 0;
2732 }
2733 
sys_reg_to_index(const struct sys_reg_desc * reg)2734 static u64 sys_reg_to_index(const struct sys_reg_desc *reg)
2735 {
2736 	return (KVM_REG_ARM64 | KVM_REG_SIZE_U64 |
2737 		KVM_REG_ARM64_SYSREG |
2738 		(reg->Op0 << KVM_REG_ARM64_SYSREG_OP0_SHIFT) |
2739 		(reg->Op1 << KVM_REG_ARM64_SYSREG_OP1_SHIFT) |
2740 		(reg->CRn << KVM_REG_ARM64_SYSREG_CRN_SHIFT) |
2741 		(reg->CRm << KVM_REG_ARM64_SYSREG_CRM_SHIFT) |
2742 		(reg->Op2 << KVM_REG_ARM64_SYSREG_OP2_SHIFT));
2743 }
2744 
copy_reg_to_user(const struct sys_reg_desc * reg,u64 __user ** uind)2745 static bool copy_reg_to_user(const struct sys_reg_desc *reg, u64 __user **uind)
2746 {
2747 	if (!*uind)
2748 		return true;
2749 
2750 	if (put_user(sys_reg_to_index(reg), *uind))
2751 		return false;
2752 
2753 	(*uind)++;
2754 	return true;
2755 }
2756 
walk_one_sys_reg(const struct kvm_vcpu * vcpu,const struct sys_reg_desc * rd,u64 __user ** uind,unsigned int * total)2757 static int walk_one_sys_reg(const struct kvm_vcpu *vcpu,
2758 			    const struct sys_reg_desc *rd,
2759 			    u64 __user **uind,
2760 			    unsigned int *total)
2761 {
2762 	/*
2763 	 * Ignore registers we trap but don't save,
2764 	 * and for which no custom user accessor is provided.
2765 	 */
2766 	if (!(rd->reg || rd->get_user))
2767 		return 0;
2768 
2769 	if (sysreg_hidden(vcpu, rd))
2770 		return 0;
2771 
2772 	if (!copy_reg_to_user(rd, uind))
2773 		return -EFAULT;
2774 
2775 	(*total)++;
2776 	return 0;
2777 }
2778 
2779 /* Assumed ordered tables, see kvm_sys_reg_table_init. */
walk_sys_regs(struct kvm_vcpu * vcpu,u64 __user * uind)2780 static int walk_sys_regs(struct kvm_vcpu *vcpu, u64 __user *uind)
2781 {
2782 	const struct sys_reg_desc *i2, *end2;
2783 	unsigned int total = 0;
2784 	int err;
2785 
2786 	i2 = sys_reg_descs;
2787 	end2 = sys_reg_descs + ARRAY_SIZE(sys_reg_descs);
2788 
2789 	while (i2 != end2) {
2790 		err = walk_one_sys_reg(vcpu, i2++, &uind, &total);
2791 		if (err)
2792 			return err;
2793 	}
2794 	return total;
2795 }
2796 
kvm_arm_num_sys_reg_descs(struct kvm_vcpu * vcpu)2797 unsigned long kvm_arm_num_sys_reg_descs(struct kvm_vcpu *vcpu)
2798 {
2799 	return ARRAY_SIZE(invariant_sys_regs)
2800 		+ num_demux_regs()
2801 		+ walk_sys_regs(vcpu, (u64 __user *)NULL);
2802 }
2803 
kvm_arm_copy_sys_reg_indices(struct kvm_vcpu * vcpu,u64 __user * uindices)2804 int kvm_arm_copy_sys_reg_indices(struct kvm_vcpu *vcpu, u64 __user *uindices)
2805 {
2806 	unsigned int i;
2807 	int err;
2808 
2809 	/* Then give them all the invariant registers' indices. */
2810 	for (i = 0; i < ARRAY_SIZE(invariant_sys_regs); i++) {
2811 		if (put_user(sys_reg_to_index(&invariant_sys_regs[i]), uindices))
2812 			return -EFAULT;
2813 		uindices++;
2814 	}
2815 
2816 	err = walk_sys_regs(vcpu, uindices);
2817 	if (err < 0)
2818 		return err;
2819 	uindices += err;
2820 
2821 	return write_demux_regids(uindices);
2822 }
2823 
kvm_sys_reg_table_init(void)2824 void kvm_sys_reg_table_init(void)
2825 {
2826 	unsigned int i;
2827 	struct sys_reg_desc clidr;
2828 
2829 	/* Make sure tables are unique and in order. */
2830 	BUG_ON(check_sysreg_table(sys_reg_descs, ARRAY_SIZE(sys_reg_descs), false));
2831 	BUG_ON(check_sysreg_table(cp14_regs, ARRAY_SIZE(cp14_regs), true));
2832 	BUG_ON(check_sysreg_table(cp14_64_regs, ARRAY_SIZE(cp14_64_regs), true));
2833 	BUG_ON(check_sysreg_table(cp15_regs, ARRAY_SIZE(cp15_regs), true));
2834 	BUG_ON(check_sysreg_table(cp15_64_regs, ARRAY_SIZE(cp15_64_regs), true));
2835 	BUG_ON(check_sysreg_table(invariant_sys_regs, ARRAY_SIZE(invariant_sys_regs), false));
2836 
2837 	/* We abuse the reset function to overwrite the table itself. */
2838 	for (i = 0; i < ARRAY_SIZE(invariant_sys_regs); i++)
2839 		invariant_sys_regs[i].reset(NULL, &invariant_sys_regs[i]);
2840 
2841 	/*
2842 	 * CLIDR format is awkward, so clean it up.  See ARM B4.1.20:
2843 	 *
2844 	 *   If software reads the Cache Type fields from Ctype1
2845 	 *   upwards, once it has seen a value of 0b000, no caches
2846 	 *   exist at further-out levels of the hierarchy. So, for
2847 	 *   example, if Ctype3 is the first Cache Type field with a
2848 	 *   value of 0b000, the values of Ctype4 to Ctype7 must be
2849 	 *   ignored.
2850 	 */
2851 	get_clidr_el1(NULL, &clidr); /* Ugly... */
2852 	cache_levels = clidr.val;
2853 	for (i = 0; i < 7; i++)
2854 		if (((cache_levels >> (i*3)) & 7) == 0)
2855 			break;
2856 	/* Clear all higher bits. */
2857 	cache_levels &= (1 << (i*3))-1;
2858 }
2859