1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Kernel-based Virtual Machine driver for Linux
4 *
5 * This module enables machines with Intel VT-x extensions to run virtual
6 * machines without emulation or binary translation.
7 *
8 * Copyright (C) 2006 Qumranet, Inc.
9 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
10 *
11 * Authors:
12 * Avi Kivity <avi@qumranet.com>
13 * Yaniv Kamay <yaniv@qumranet.com>
14 */
15
16 #include <kvm/iodev.h>
17
18 #include <linux/kvm_host.h>
19 #include <linux/kvm.h>
20 #include <linux/module.h>
21 #include <linux/errno.h>
22 #include <linux/percpu.h>
23 #include <linux/mm.h>
24 #include <linux/miscdevice.h>
25 #include <linux/vmalloc.h>
26 #include <linux/reboot.h>
27 #include <linux/debugfs.h>
28 #include <linux/highmem.h>
29 #include <linux/file.h>
30 #include <linux/syscore_ops.h>
31 #include <linux/cpu.h>
32 #include <linux/sched/signal.h>
33 #include <linux/sched/mm.h>
34 #include <linux/sched/stat.h>
35 #include <linux/cpumask.h>
36 #include <linux/smp.h>
37 #include <linux/anon_inodes.h>
38 #include <linux/profile.h>
39 #include <linux/kvm_para.h>
40 #include <linux/pagemap.h>
41 #include <linux/mman.h>
42 #include <linux/swap.h>
43 #include <linux/bitops.h>
44 #include <linux/spinlock.h>
45 #include <linux/compat.h>
46 #include <linux/srcu.h>
47 #include <linux/hugetlb.h>
48 #include <linux/slab.h>
49 #include <linux/sort.h>
50 #include <linux/bsearch.h>
51 #include <linux/io.h>
52 #include <linux/lockdep.h>
53 #include <linux/kthread.h>
54
55 #include <asm/processor.h>
56 #include <asm/ioctl.h>
57 #include <linux/uaccess.h>
58
59 #include "coalesced_mmio.h"
60 #include "async_pf.h"
61 #include "vfio.h"
62
63 #define CREATE_TRACE_POINTS
64 #include <trace/events/kvm.h>
65
66 /* Worst case buffer size needed for holding an integer. */
67 #define ITOA_MAX_LEN 12
68
69 MODULE_AUTHOR("Qumranet");
70 MODULE_LICENSE("GPL");
71
72 /* Architectures should define their poll value according to the halt latency */
73 unsigned int halt_poll_ns = KVM_HALT_POLL_NS_DEFAULT;
74 module_param(halt_poll_ns, uint, 0644);
75 EXPORT_SYMBOL_GPL(halt_poll_ns);
76
77 /* Default doubles per-vcpu halt_poll_ns. */
78 unsigned int halt_poll_ns_grow = 2;
79 module_param(halt_poll_ns_grow, uint, 0644);
80 EXPORT_SYMBOL_GPL(halt_poll_ns_grow);
81
82 /* The start value to grow halt_poll_ns from */
83 unsigned int halt_poll_ns_grow_start = 10000; /* 10us */
84 module_param(halt_poll_ns_grow_start, uint, 0644);
85 EXPORT_SYMBOL_GPL(halt_poll_ns_grow_start);
86
87 /* Default resets per-vcpu halt_poll_ns . */
88 unsigned int halt_poll_ns_shrink;
89 module_param(halt_poll_ns_shrink, uint, 0644);
90 EXPORT_SYMBOL_GPL(halt_poll_ns_shrink);
91
92 /*
93 * Ordering of locks:
94 *
95 * kvm->lock --> kvm->slots_lock --> kvm->irq_lock
96 */
97
98 DEFINE_MUTEX(kvm_lock);
99 static DEFINE_RAW_SPINLOCK(kvm_count_lock);
100 LIST_HEAD(vm_list);
101
102 static cpumask_var_t cpus_hardware_enabled;
103 static int kvm_usage_count;
104 static atomic_t hardware_enable_failed;
105
106 static struct kmem_cache *kvm_vcpu_cache;
107
108 static __read_mostly struct preempt_ops kvm_preempt_ops;
109 static DEFINE_PER_CPU(struct kvm_vcpu *, kvm_running_vcpu);
110
111 struct dentry *kvm_debugfs_dir;
112 EXPORT_SYMBOL_GPL(kvm_debugfs_dir);
113
114 static int kvm_debugfs_num_entries;
115 static const struct file_operations stat_fops_per_vm;
116
117 static struct file_operations kvm_chardev_ops;
118
119 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
120 unsigned long arg);
121 #ifdef CONFIG_KVM_COMPAT
122 static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl,
123 unsigned long arg);
124 #define KVM_COMPAT(c) .compat_ioctl = (c)
125 #else
126 /*
127 * For architectures that don't implement a compat infrastructure,
128 * adopt a double line of defense:
129 * - Prevent a compat task from opening /dev/kvm
130 * - If the open has been done by a 64bit task, and the KVM fd
131 * passed to a compat task, let the ioctls fail.
132 */
kvm_no_compat_ioctl(struct file * file,unsigned int ioctl,unsigned long arg)133 static long kvm_no_compat_ioctl(struct file *file, unsigned int ioctl,
134 unsigned long arg) { return -EINVAL; }
135
kvm_no_compat_open(struct inode * inode,struct file * file)136 static int kvm_no_compat_open(struct inode *inode, struct file *file)
137 {
138 return is_compat_task() ? -ENODEV : 0;
139 }
140 #define KVM_COMPAT(c) .compat_ioctl = kvm_no_compat_ioctl, \
141 .open = kvm_no_compat_open
142 #endif
143 static int hardware_enable_all(void);
144 static void hardware_disable_all(void);
145
146 static void kvm_io_bus_destroy(struct kvm_io_bus *bus);
147
148 __visible bool kvm_rebooting;
149 EXPORT_SYMBOL_GPL(kvm_rebooting);
150
151 #define KVM_EVENT_CREATE_VM 0
152 #define KVM_EVENT_DESTROY_VM 1
153 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm);
154 static unsigned long long kvm_createvm_count;
155 static unsigned long long kvm_active_vms;
156
kvm_arch_mmu_notifier_invalidate_range(struct kvm * kvm,unsigned long start,unsigned long end)157 __weak void kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm,
158 unsigned long start, unsigned long end)
159 {
160 }
161
kvm_arch_guest_memory_reclaimed(struct kvm * kvm)162 __weak void kvm_arch_guest_memory_reclaimed(struct kvm *kvm)
163 {
164 }
165
kvm_is_zone_device_pfn(kvm_pfn_t pfn)166 bool kvm_is_zone_device_pfn(kvm_pfn_t pfn)
167 {
168 /*
169 * The metadata used by is_zone_device_page() to determine whether or
170 * not a page is ZONE_DEVICE is guaranteed to be valid if and only if
171 * the device has been pinned, e.g. by get_user_pages(). WARN if the
172 * page_count() is zero to help detect bad usage of this helper.
173 */
174 if (!pfn_valid(pfn) || WARN_ON_ONCE(!page_count(pfn_to_page(pfn))))
175 return false;
176
177 return is_zone_device_page(pfn_to_page(pfn));
178 }
179
kvm_is_reserved_pfn(kvm_pfn_t pfn)180 bool kvm_is_reserved_pfn(kvm_pfn_t pfn)
181 {
182 /*
183 * ZONE_DEVICE pages currently set PG_reserved, but from a refcounting
184 * perspective they are "normal" pages, albeit with slightly different
185 * usage rules.
186 */
187 if (pfn_valid(pfn))
188 return PageReserved(pfn_to_page(pfn)) &&
189 !is_zero_pfn(pfn) &&
190 !kvm_is_zone_device_pfn(pfn);
191
192 return true;
193 }
194
kvm_is_transparent_hugepage(kvm_pfn_t pfn)195 bool kvm_is_transparent_hugepage(kvm_pfn_t pfn)
196 {
197 struct page *page = pfn_to_page(pfn);
198
199 if (!PageTransCompoundMap(page))
200 return false;
201
202 return is_transparent_hugepage(compound_head(page));
203 }
204
205 /*
206 * Switches to specified vcpu, until a matching vcpu_put()
207 */
vcpu_load(struct kvm_vcpu * vcpu)208 void vcpu_load(struct kvm_vcpu *vcpu)
209 {
210 int cpu = get_cpu();
211
212 __this_cpu_write(kvm_running_vcpu, vcpu);
213 preempt_notifier_register(&vcpu->preempt_notifier);
214 kvm_arch_vcpu_load(vcpu, cpu);
215 put_cpu();
216 }
217 EXPORT_SYMBOL_GPL(vcpu_load);
218
vcpu_put(struct kvm_vcpu * vcpu)219 void vcpu_put(struct kvm_vcpu *vcpu)
220 {
221 preempt_disable();
222 kvm_arch_vcpu_put(vcpu);
223 preempt_notifier_unregister(&vcpu->preempt_notifier);
224 __this_cpu_write(kvm_running_vcpu, NULL);
225 preempt_enable();
226 }
227 EXPORT_SYMBOL_GPL(vcpu_put);
228
229 /* TODO: merge with kvm_arch_vcpu_should_kick */
kvm_request_needs_ipi(struct kvm_vcpu * vcpu,unsigned req)230 static bool kvm_request_needs_ipi(struct kvm_vcpu *vcpu, unsigned req)
231 {
232 int mode = kvm_vcpu_exiting_guest_mode(vcpu);
233
234 /*
235 * We need to wait for the VCPU to reenable interrupts and get out of
236 * READING_SHADOW_PAGE_TABLES mode.
237 */
238 if (req & KVM_REQUEST_WAIT)
239 return mode != OUTSIDE_GUEST_MODE;
240
241 /*
242 * Need to kick a running VCPU, but otherwise there is nothing to do.
243 */
244 return mode == IN_GUEST_MODE;
245 }
246
ack_flush(void * _completed)247 static void ack_flush(void *_completed)
248 {
249 }
250
kvm_kick_many_cpus(const struct cpumask * cpus,bool wait)251 static inline bool kvm_kick_many_cpus(const struct cpumask *cpus, bool wait)
252 {
253 if (unlikely(!cpus))
254 cpus = cpu_online_mask;
255
256 if (cpumask_empty(cpus))
257 return false;
258
259 smp_call_function_many(cpus, ack_flush, NULL, wait);
260 return true;
261 }
262
kvm_make_vcpus_request_mask(struct kvm * kvm,unsigned int req,struct kvm_vcpu * except,unsigned long * vcpu_bitmap,cpumask_var_t tmp)263 bool kvm_make_vcpus_request_mask(struct kvm *kvm, unsigned int req,
264 struct kvm_vcpu *except,
265 unsigned long *vcpu_bitmap, cpumask_var_t tmp)
266 {
267 int i, cpu, me;
268 struct kvm_vcpu *vcpu;
269 bool called;
270
271 me = get_cpu();
272
273 kvm_for_each_vcpu(i, vcpu, kvm) {
274 if ((vcpu_bitmap && !test_bit(i, vcpu_bitmap)) ||
275 vcpu == except)
276 continue;
277
278 kvm_make_request(req, vcpu);
279 cpu = vcpu->cpu;
280
281 if (!(req & KVM_REQUEST_NO_WAKEUP) && kvm_vcpu_wake_up(vcpu))
282 continue;
283
284 if (tmp != NULL && cpu != -1 && cpu != me &&
285 kvm_request_needs_ipi(vcpu, req))
286 __cpumask_set_cpu(cpu, tmp);
287 }
288
289 called = kvm_kick_many_cpus(tmp, !!(req & KVM_REQUEST_WAIT));
290 put_cpu();
291
292 return called;
293 }
294
kvm_make_all_cpus_request_except(struct kvm * kvm,unsigned int req,struct kvm_vcpu * except)295 bool kvm_make_all_cpus_request_except(struct kvm *kvm, unsigned int req,
296 struct kvm_vcpu *except)
297 {
298 cpumask_var_t cpus;
299 bool called;
300
301 zalloc_cpumask_var(&cpus, GFP_ATOMIC);
302
303 called = kvm_make_vcpus_request_mask(kvm, req, except, NULL, cpus);
304
305 free_cpumask_var(cpus);
306 return called;
307 }
308
kvm_make_all_cpus_request(struct kvm * kvm,unsigned int req)309 bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req)
310 {
311 return kvm_make_all_cpus_request_except(kvm, req, NULL);
312 }
313
314 #ifndef CONFIG_HAVE_KVM_ARCH_TLB_FLUSH_ALL
kvm_flush_remote_tlbs(struct kvm * kvm)315 void kvm_flush_remote_tlbs(struct kvm *kvm)
316 {
317 /*
318 * Read tlbs_dirty before setting KVM_REQ_TLB_FLUSH in
319 * kvm_make_all_cpus_request.
320 */
321 long dirty_count = smp_load_acquire(&kvm->tlbs_dirty);
322
323 /*
324 * We want to publish modifications to the page tables before reading
325 * mode. Pairs with a memory barrier in arch-specific code.
326 * - x86: smp_mb__after_srcu_read_unlock in vcpu_enter_guest
327 * and smp_mb in walk_shadow_page_lockless_begin/end.
328 * - powerpc: smp_mb in kvmppc_prepare_to_enter.
329 *
330 * There is already an smp_mb__after_atomic() before
331 * kvm_make_all_cpus_request() reads vcpu->mode. We reuse that
332 * barrier here.
333 */
334 if (!kvm_arch_flush_remote_tlb(kvm)
335 || kvm_make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH))
336 ++kvm->stat.remote_tlb_flush;
337 cmpxchg(&kvm->tlbs_dirty, dirty_count, 0);
338 }
339 EXPORT_SYMBOL_GPL(kvm_flush_remote_tlbs);
340 #endif
341
kvm_reload_remote_mmus(struct kvm * kvm)342 void kvm_reload_remote_mmus(struct kvm *kvm)
343 {
344 kvm_make_all_cpus_request(kvm, KVM_REQ_MMU_RELOAD);
345 }
346
kvm_flush_shadow_all(struct kvm * kvm)347 static void kvm_flush_shadow_all(struct kvm *kvm)
348 {
349 kvm_arch_flush_shadow_all(kvm);
350 kvm_arch_guest_memory_reclaimed(kvm);
351 }
352
353 #ifdef KVM_ARCH_NR_OBJS_PER_MEMORY_CACHE
mmu_memory_cache_alloc_obj(struct kvm_mmu_memory_cache * mc,gfp_t gfp_flags)354 static inline void *mmu_memory_cache_alloc_obj(struct kvm_mmu_memory_cache *mc,
355 gfp_t gfp_flags)
356 {
357 gfp_flags |= mc->gfp_zero;
358
359 if (mc->kmem_cache)
360 return kmem_cache_alloc(mc->kmem_cache, gfp_flags);
361 else
362 return (void *)__get_free_page(gfp_flags);
363 }
364
kvm_mmu_topup_memory_cache(struct kvm_mmu_memory_cache * mc,int min)365 int kvm_mmu_topup_memory_cache(struct kvm_mmu_memory_cache *mc, int min)
366 {
367 void *obj;
368
369 if (mc->nobjs >= min)
370 return 0;
371 while (mc->nobjs < ARRAY_SIZE(mc->objects)) {
372 obj = mmu_memory_cache_alloc_obj(mc, GFP_KERNEL_ACCOUNT);
373 if (!obj)
374 return mc->nobjs >= min ? 0 : -ENOMEM;
375 mc->objects[mc->nobjs++] = obj;
376 }
377 return 0;
378 }
379
kvm_mmu_memory_cache_nr_free_objects(struct kvm_mmu_memory_cache * mc)380 int kvm_mmu_memory_cache_nr_free_objects(struct kvm_mmu_memory_cache *mc)
381 {
382 return mc->nobjs;
383 }
384
kvm_mmu_free_memory_cache(struct kvm_mmu_memory_cache * mc)385 void kvm_mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc)
386 {
387 while (mc->nobjs) {
388 if (mc->kmem_cache)
389 kmem_cache_free(mc->kmem_cache, mc->objects[--mc->nobjs]);
390 else
391 free_page((unsigned long)mc->objects[--mc->nobjs]);
392 }
393 }
394
kvm_mmu_memory_cache_alloc(struct kvm_mmu_memory_cache * mc)395 void *kvm_mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc)
396 {
397 void *p;
398
399 if (WARN_ON(!mc->nobjs))
400 p = mmu_memory_cache_alloc_obj(mc, GFP_ATOMIC | __GFP_ACCOUNT);
401 else
402 p = mc->objects[--mc->nobjs];
403 BUG_ON(!p);
404 return p;
405 }
406 #endif
407
kvm_vcpu_init(struct kvm_vcpu * vcpu,struct kvm * kvm,unsigned id)408 static void kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
409 {
410 mutex_init(&vcpu->mutex);
411 vcpu->cpu = -1;
412 vcpu->kvm = kvm;
413 vcpu->vcpu_id = id;
414 vcpu->pid = NULL;
415 rcuwait_init(&vcpu->wait);
416 kvm_async_pf_vcpu_init(vcpu);
417
418 vcpu->pre_pcpu = -1;
419 INIT_LIST_HEAD(&vcpu->blocked_vcpu_list);
420
421 kvm_vcpu_set_in_spin_loop(vcpu, false);
422 kvm_vcpu_set_dy_eligible(vcpu, false);
423 vcpu->preempted = false;
424 vcpu->ready = false;
425 preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
426 }
427
kvm_vcpu_destroy(struct kvm_vcpu * vcpu)428 void kvm_vcpu_destroy(struct kvm_vcpu *vcpu)
429 {
430 kvm_arch_vcpu_destroy(vcpu);
431
432 /*
433 * No need for rcu_read_lock as VCPU_RUN is the only place that changes
434 * the vcpu->pid pointer, and at destruction time all file descriptors
435 * are already gone.
436 */
437 put_pid(rcu_dereference_protected(vcpu->pid, 1));
438
439 free_page((unsigned long)vcpu->run);
440 kmem_cache_free(kvm_vcpu_cache, vcpu);
441 }
442 EXPORT_SYMBOL_GPL(kvm_vcpu_destroy);
443
444 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
mmu_notifier_to_kvm(struct mmu_notifier * mn)445 static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
446 {
447 return container_of(mn, struct kvm, mmu_notifier);
448 }
449
kvm_mmu_notifier_invalidate_range(struct mmu_notifier * mn,struct mm_struct * mm,unsigned long start,unsigned long end)450 static void kvm_mmu_notifier_invalidate_range(struct mmu_notifier *mn,
451 struct mm_struct *mm,
452 unsigned long start, unsigned long end)
453 {
454 struct kvm *kvm = mmu_notifier_to_kvm(mn);
455 int idx;
456
457 idx = srcu_read_lock(&kvm->srcu);
458 kvm_arch_mmu_notifier_invalidate_range(kvm, start, end);
459 srcu_read_unlock(&kvm->srcu, idx);
460 }
461
kvm_mmu_notifier_change_pte(struct mmu_notifier * mn,struct mm_struct * mm,unsigned long address,pte_t pte)462 static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn,
463 struct mm_struct *mm,
464 unsigned long address,
465 pte_t pte)
466 {
467 struct kvm *kvm = mmu_notifier_to_kvm(mn);
468 int idx;
469
470 idx = srcu_read_lock(&kvm->srcu);
471 spin_lock(&kvm->mmu_lock);
472 kvm->mmu_notifier_seq++;
473
474 if (kvm_set_spte_hva(kvm, address, pte))
475 kvm_flush_remote_tlbs(kvm);
476
477 spin_unlock(&kvm->mmu_lock);
478 srcu_read_unlock(&kvm->srcu, idx);
479 }
480
kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier * mn,const struct mmu_notifier_range * range)481 static int kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
482 const struct mmu_notifier_range *range)
483 {
484 struct kvm *kvm = mmu_notifier_to_kvm(mn);
485 int need_tlb_flush = 0, idx;
486
487 idx = srcu_read_lock(&kvm->srcu);
488 spin_lock(&kvm->mmu_lock);
489 /*
490 * The count increase must become visible at unlock time as no
491 * spte can be established without taking the mmu_lock and
492 * count is also read inside the mmu_lock critical section.
493 */
494 kvm->mmu_notifier_count++;
495 need_tlb_flush = kvm_unmap_hva_range(kvm, range->start, range->end,
496 range->flags);
497 /* we've to flush the tlb before the pages can be freed */
498 if (need_tlb_flush || kvm->tlbs_dirty)
499 kvm_flush_remote_tlbs(kvm);
500
501 spin_unlock(&kvm->mmu_lock);
502 kvm_arch_guest_memory_reclaimed(kvm);
503 srcu_read_unlock(&kvm->srcu, idx);
504
505 return 0;
506 }
507
kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier * mn,const struct mmu_notifier_range * range)508 static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
509 const struct mmu_notifier_range *range)
510 {
511 struct kvm *kvm = mmu_notifier_to_kvm(mn);
512
513 spin_lock(&kvm->mmu_lock);
514 /*
515 * This sequence increase will notify the kvm page fault that
516 * the page that is going to be mapped in the spte could have
517 * been freed.
518 */
519 kvm->mmu_notifier_seq++;
520 smp_wmb();
521 /*
522 * The above sequence increase must be visible before the
523 * below count decrease, which is ensured by the smp_wmb above
524 * in conjunction with the smp_rmb in mmu_notifier_retry().
525 */
526 kvm->mmu_notifier_count--;
527 spin_unlock(&kvm->mmu_lock);
528
529 BUG_ON(kvm->mmu_notifier_count < 0);
530 }
531
kvm_mmu_notifier_clear_flush_young(struct mmu_notifier * mn,struct mm_struct * mm,unsigned long start,unsigned long end)532 static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
533 struct mm_struct *mm,
534 unsigned long start,
535 unsigned long end)
536 {
537 struct kvm *kvm = mmu_notifier_to_kvm(mn);
538 int young, idx;
539
540 idx = srcu_read_lock(&kvm->srcu);
541 spin_lock(&kvm->mmu_lock);
542
543 young = kvm_age_hva(kvm, start, end);
544 if (young)
545 kvm_flush_remote_tlbs(kvm);
546
547 spin_unlock(&kvm->mmu_lock);
548 srcu_read_unlock(&kvm->srcu, idx);
549
550 return young;
551 }
552
kvm_mmu_notifier_clear_young(struct mmu_notifier * mn,struct mm_struct * mm,unsigned long start,unsigned long end)553 static int kvm_mmu_notifier_clear_young(struct mmu_notifier *mn,
554 struct mm_struct *mm,
555 unsigned long start,
556 unsigned long end)
557 {
558 struct kvm *kvm = mmu_notifier_to_kvm(mn);
559 int young, idx;
560
561 idx = srcu_read_lock(&kvm->srcu);
562 spin_lock(&kvm->mmu_lock);
563 /*
564 * Even though we do not flush TLB, this will still adversely
565 * affect performance on pre-Haswell Intel EPT, where there is
566 * no EPT Access Bit to clear so that we have to tear down EPT
567 * tables instead. If we find this unacceptable, we can always
568 * add a parameter to kvm_age_hva so that it effectively doesn't
569 * do anything on clear_young.
570 *
571 * Also note that currently we never issue secondary TLB flushes
572 * from clear_young, leaving this job up to the regular system
573 * cadence. If we find this inaccurate, we might come up with a
574 * more sophisticated heuristic later.
575 */
576 young = kvm_age_hva(kvm, start, end);
577 spin_unlock(&kvm->mmu_lock);
578 srcu_read_unlock(&kvm->srcu, idx);
579
580 return young;
581 }
582
kvm_mmu_notifier_test_young(struct mmu_notifier * mn,struct mm_struct * mm,unsigned long address)583 static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn,
584 struct mm_struct *mm,
585 unsigned long address)
586 {
587 struct kvm *kvm = mmu_notifier_to_kvm(mn);
588 int young, idx;
589
590 idx = srcu_read_lock(&kvm->srcu);
591 spin_lock(&kvm->mmu_lock);
592 young = kvm_test_age_hva(kvm, address);
593 spin_unlock(&kvm->mmu_lock);
594 srcu_read_unlock(&kvm->srcu, idx);
595
596 return young;
597 }
598
kvm_mmu_notifier_release(struct mmu_notifier * mn,struct mm_struct * mm)599 static void kvm_mmu_notifier_release(struct mmu_notifier *mn,
600 struct mm_struct *mm)
601 {
602 struct kvm *kvm = mmu_notifier_to_kvm(mn);
603 int idx;
604
605 idx = srcu_read_lock(&kvm->srcu);
606 kvm_flush_shadow_all(kvm);
607 srcu_read_unlock(&kvm->srcu, idx);
608 }
609
610 static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
611 .invalidate_range = kvm_mmu_notifier_invalidate_range,
612 .invalidate_range_start = kvm_mmu_notifier_invalidate_range_start,
613 .invalidate_range_end = kvm_mmu_notifier_invalidate_range_end,
614 .clear_flush_young = kvm_mmu_notifier_clear_flush_young,
615 .clear_young = kvm_mmu_notifier_clear_young,
616 .test_young = kvm_mmu_notifier_test_young,
617 .change_pte = kvm_mmu_notifier_change_pte,
618 .release = kvm_mmu_notifier_release,
619 };
620
kvm_init_mmu_notifier(struct kvm * kvm)621 static int kvm_init_mmu_notifier(struct kvm *kvm)
622 {
623 kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
624 return mmu_notifier_register(&kvm->mmu_notifier, current->mm);
625 }
626
627 #else /* !(CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER) */
628
kvm_init_mmu_notifier(struct kvm * kvm)629 static int kvm_init_mmu_notifier(struct kvm *kvm)
630 {
631 return 0;
632 }
633
634 #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */
635
kvm_alloc_memslots(void)636 static struct kvm_memslots *kvm_alloc_memslots(void)
637 {
638 int i;
639 struct kvm_memslots *slots;
640
641 slots = kvzalloc(sizeof(struct kvm_memslots), GFP_KERNEL_ACCOUNT);
642 if (!slots)
643 return NULL;
644
645 for (i = 0; i < KVM_MEM_SLOTS_NUM; i++)
646 slots->id_to_index[i] = -1;
647
648 return slots;
649 }
650
kvm_destroy_dirty_bitmap(struct kvm_memory_slot * memslot)651 static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot)
652 {
653 if (!memslot->dirty_bitmap)
654 return;
655
656 kvfree(memslot->dirty_bitmap);
657 memslot->dirty_bitmap = NULL;
658 }
659
kvm_free_memslot(struct kvm * kvm,struct kvm_memory_slot * slot)660 static void kvm_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot)
661 {
662 kvm_destroy_dirty_bitmap(slot);
663
664 kvm_arch_free_memslot(kvm, slot);
665
666 slot->flags = 0;
667 slot->npages = 0;
668 }
669
kvm_free_memslots(struct kvm * kvm,struct kvm_memslots * slots)670 static void kvm_free_memslots(struct kvm *kvm, struct kvm_memslots *slots)
671 {
672 struct kvm_memory_slot *memslot;
673
674 if (!slots)
675 return;
676
677 kvm_for_each_memslot(memslot, slots)
678 kvm_free_memslot(kvm, memslot);
679
680 kvfree(slots);
681 }
682
kvm_destroy_vm_debugfs(struct kvm * kvm)683 static void kvm_destroy_vm_debugfs(struct kvm *kvm)
684 {
685 int i;
686
687 if (!kvm->debugfs_dentry)
688 return;
689
690 debugfs_remove_recursive(kvm->debugfs_dentry);
691
692 if (kvm->debugfs_stat_data) {
693 for (i = 0; i < kvm_debugfs_num_entries; i++)
694 kfree(kvm->debugfs_stat_data[i]);
695 kfree(kvm->debugfs_stat_data);
696 }
697 }
698
kvm_create_vm_debugfs(struct kvm * kvm,int fd)699 static int kvm_create_vm_debugfs(struct kvm *kvm, int fd)
700 {
701 static DEFINE_MUTEX(kvm_debugfs_lock);
702 struct dentry *dent;
703 char dir_name[ITOA_MAX_LEN * 2];
704 struct kvm_stat_data *stat_data;
705 struct kvm_stats_debugfs_item *p;
706
707 if (!debugfs_initialized())
708 return 0;
709
710 snprintf(dir_name, sizeof(dir_name), "%d-%d", task_pid_nr(current), fd);
711 mutex_lock(&kvm_debugfs_lock);
712 dent = debugfs_lookup(dir_name, kvm_debugfs_dir);
713 if (dent) {
714 pr_warn_ratelimited("KVM: debugfs: duplicate directory %s\n", dir_name);
715 dput(dent);
716 mutex_unlock(&kvm_debugfs_lock);
717 return 0;
718 }
719 dent = debugfs_create_dir(dir_name, kvm_debugfs_dir);
720 mutex_unlock(&kvm_debugfs_lock);
721 if (IS_ERR(dent))
722 return 0;
723
724 kvm->debugfs_dentry = dent;
725 kvm->debugfs_stat_data = kcalloc(kvm_debugfs_num_entries,
726 sizeof(*kvm->debugfs_stat_data),
727 GFP_KERNEL_ACCOUNT);
728 if (!kvm->debugfs_stat_data)
729 return -ENOMEM;
730
731 for (p = debugfs_entries; p->name; p++) {
732 stat_data = kzalloc(sizeof(*stat_data), GFP_KERNEL_ACCOUNT);
733 if (!stat_data)
734 return -ENOMEM;
735
736 stat_data->kvm = kvm;
737 stat_data->dbgfs_item = p;
738 kvm->debugfs_stat_data[p - debugfs_entries] = stat_data;
739 debugfs_create_file(p->name, KVM_DBGFS_GET_MODE(p),
740 kvm->debugfs_dentry, stat_data,
741 &stat_fops_per_vm);
742 }
743 return 0;
744 }
745
746 /*
747 * Called after the VM is otherwise initialized, but just before adding it to
748 * the vm_list.
749 */
kvm_arch_post_init_vm(struct kvm * kvm)750 int __weak kvm_arch_post_init_vm(struct kvm *kvm)
751 {
752 return 0;
753 }
754
755 /*
756 * Called just after removing the VM from the vm_list, but before doing any
757 * other destruction.
758 */
kvm_arch_pre_destroy_vm(struct kvm * kvm)759 void __weak kvm_arch_pre_destroy_vm(struct kvm *kvm)
760 {
761 }
762
kvm_create_vm(unsigned long type)763 static struct kvm *kvm_create_vm(unsigned long type)
764 {
765 struct kvm *kvm = kvm_arch_alloc_vm();
766 int r = -ENOMEM;
767 int i;
768
769 if (!kvm)
770 return ERR_PTR(-ENOMEM);
771
772 spin_lock_init(&kvm->mmu_lock);
773 mmgrab(current->mm);
774 kvm->mm = current->mm;
775 kvm_eventfd_init(kvm);
776 mutex_init(&kvm->lock);
777 mutex_init(&kvm->irq_lock);
778 mutex_init(&kvm->slots_lock);
779 INIT_LIST_HEAD(&kvm->devices);
780
781 BUILD_BUG_ON(KVM_MEM_SLOTS_NUM > SHRT_MAX);
782
783 if (init_srcu_struct(&kvm->srcu))
784 goto out_err_no_srcu;
785 if (init_srcu_struct(&kvm->irq_srcu))
786 goto out_err_no_irq_srcu;
787
788 refcount_set(&kvm->users_count, 1);
789 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
790 struct kvm_memslots *slots = kvm_alloc_memslots();
791
792 if (!slots)
793 goto out_err_no_arch_destroy_vm;
794 /* Generations must be different for each address space. */
795 slots->generation = i;
796 rcu_assign_pointer(kvm->memslots[i], slots);
797 }
798
799 for (i = 0; i < KVM_NR_BUSES; i++) {
800 rcu_assign_pointer(kvm->buses[i],
801 kzalloc(sizeof(struct kvm_io_bus), GFP_KERNEL_ACCOUNT));
802 if (!kvm->buses[i])
803 goto out_err_no_arch_destroy_vm;
804 }
805
806 kvm->max_halt_poll_ns = halt_poll_ns;
807
808 r = kvm_arch_init_vm(kvm, type);
809 if (r)
810 goto out_err_no_arch_destroy_vm;
811
812 r = hardware_enable_all();
813 if (r)
814 goto out_err_no_disable;
815
816 #ifdef CONFIG_HAVE_KVM_IRQFD
817 INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list);
818 #endif
819
820 r = kvm_init_mmu_notifier(kvm);
821 if (r)
822 goto out_err_no_mmu_notifier;
823
824 r = kvm_arch_post_init_vm(kvm);
825 if (r)
826 goto out_err;
827
828 mutex_lock(&kvm_lock);
829 list_add(&kvm->vm_list, &vm_list);
830 mutex_unlock(&kvm_lock);
831
832 preempt_notifier_inc();
833
834 /*
835 * When the fd passed to this ioctl() is opened it pins the module,
836 * but try_module_get() also prevents getting a reference if the module
837 * is in MODULE_STATE_GOING (e.g. if someone ran "rmmod --wait").
838 */
839 if (!try_module_get(kvm_chardev_ops.owner)) {
840 r = -ENODEV;
841 goto out_err;
842 }
843
844 return kvm;
845
846 out_err:
847 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
848 if (kvm->mmu_notifier.ops)
849 mmu_notifier_unregister(&kvm->mmu_notifier, current->mm);
850 #endif
851 out_err_no_mmu_notifier:
852 hardware_disable_all();
853 out_err_no_disable:
854 kvm_arch_destroy_vm(kvm);
855 out_err_no_arch_destroy_vm:
856 WARN_ON_ONCE(!refcount_dec_and_test(&kvm->users_count));
857 for (i = 0; i < KVM_NR_BUSES; i++)
858 kfree(kvm_get_bus(kvm, i));
859 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
860 kvm_free_memslots(kvm, __kvm_memslots(kvm, i));
861 cleanup_srcu_struct(&kvm->irq_srcu);
862 out_err_no_irq_srcu:
863 cleanup_srcu_struct(&kvm->srcu);
864 out_err_no_srcu:
865 kvm_arch_free_vm(kvm);
866 mmdrop(current->mm);
867 return ERR_PTR(r);
868 }
869
kvm_destroy_devices(struct kvm * kvm)870 static void kvm_destroy_devices(struct kvm *kvm)
871 {
872 struct kvm_device *dev, *tmp;
873
874 /*
875 * We do not need to take the kvm->lock here, because nobody else
876 * has a reference to the struct kvm at this point and therefore
877 * cannot access the devices list anyhow.
878 */
879 list_for_each_entry_safe(dev, tmp, &kvm->devices, vm_node) {
880 list_del(&dev->vm_node);
881 dev->ops->destroy(dev);
882 }
883 }
884
kvm_destroy_vm(struct kvm * kvm)885 static void kvm_destroy_vm(struct kvm *kvm)
886 {
887 int i;
888 struct mm_struct *mm = kvm->mm;
889
890 kvm_uevent_notify_change(KVM_EVENT_DESTROY_VM, kvm);
891 kvm_destroy_vm_debugfs(kvm);
892 kvm_arch_sync_events(kvm);
893 mutex_lock(&kvm_lock);
894 list_del(&kvm->vm_list);
895 mutex_unlock(&kvm_lock);
896 kvm_arch_pre_destroy_vm(kvm);
897
898 kvm_free_irq_routing(kvm);
899 for (i = 0; i < KVM_NR_BUSES; i++) {
900 struct kvm_io_bus *bus = kvm_get_bus(kvm, i);
901
902 if (bus)
903 kvm_io_bus_destroy(bus);
904 kvm->buses[i] = NULL;
905 }
906 kvm_coalesced_mmio_free(kvm);
907 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
908 mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
909 #else
910 kvm_flush_shadow_all(kvm);
911 #endif
912 kvm_arch_destroy_vm(kvm);
913 kvm_destroy_devices(kvm);
914 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
915 kvm_free_memslots(kvm, __kvm_memslots(kvm, i));
916 cleanup_srcu_struct(&kvm->irq_srcu);
917 cleanup_srcu_struct(&kvm->srcu);
918 kvm_arch_free_vm(kvm);
919 preempt_notifier_dec();
920 hardware_disable_all();
921 mmdrop(mm);
922 module_put(kvm_chardev_ops.owner);
923 }
924
kvm_get_kvm(struct kvm * kvm)925 void kvm_get_kvm(struct kvm *kvm)
926 {
927 refcount_inc(&kvm->users_count);
928 }
929 EXPORT_SYMBOL_GPL(kvm_get_kvm);
930
kvm_put_kvm(struct kvm * kvm)931 void kvm_put_kvm(struct kvm *kvm)
932 {
933 if (refcount_dec_and_test(&kvm->users_count))
934 kvm_destroy_vm(kvm);
935 }
936 EXPORT_SYMBOL_GPL(kvm_put_kvm);
937
938 /*
939 * Used to put a reference that was taken on behalf of an object associated
940 * with a user-visible file descriptor, e.g. a vcpu or device, if installation
941 * of the new file descriptor fails and the reference cannot be transferred to
942 * its final owner. In such cases, the caller is still actively using @kvm and
943 * will fail miserably if the refcount unexpectedly hits zero.
944 */
kvm_put_kvm_no_destroy(struct kvm * kvm)945 void kvm_put_kvm_no_destroy(struct kvm *kvm)
946 {
947 WARN_ON(refcount_dec_and_test(&kvm->users_count));
948 }
949 EXPORT_SYMBOL_GPL(kvm_put_kvm_no_destroy);
950
kvm_vm_release(struct inode * inode,struct file * filp)951 static int kvm_vm_release(struct inode *inode, struct file *filp)
952 {
953 struct kvm *kvm = filp->private_data;
954
955 kvm_irqfd_release(kvm);
956
957 kvm_put_kvm(kvm);
958 return 0;
959 }
960
961 /*
962 * Allocation size is twice as large as the actual dirty bitmap size.
963 * See kvm_vm_ioctl_get_dirty_log() why this is needed.
964 */
kvm_alloc_dirty_bitmap(struct kvm_memory_slot * memslot)965 static int kvm_alloc_dirty_bitmap(struct kvm_memory_slot *memslot)
966 {
967 unsigned long dirty_bytes = 2 * kvm_dirty_bitmap_bytes(memslot);
968
969 memslot->dirty_bitmap = kvzalloc(dirty_bytes, GFP_KERNEL_ACCOUNT);
970 if (!memslot->dirty_bitmap)
971 return -ENOMEM;
972
973 return 0;
974 }
975
976 /*
977 * Delete a memslot by decrementing the number of used slots and shifting all
978 * other entries in the array forward one spot.
979 */
kvm_memslot_delete(struct kvm_memslots * slots,struct kvm_memory_slot * memslot)980 static inline void kvm_memslot_delete(struct kvm_memslots *slots,
981 struct kvm_memory_slot *memslot)
982 {
983 struct kvm_memory_slot *mslots = slots->memslots;
984 int i;
985
986 if (WARN_ON(slots->id_to_index[memslot->id] == -1))
987 return;
988
989 slots->used_slots--;
990
991 if (atomic_read(&slots->lru_slot) >= slots->used_slots)
992 atomic_set(&slots->lru_slot, 0);
993
994 for (i = slots->id_to_index[memslot->id]; i < slots->used_slots; i++) {
995 mslots[i] = mslots[i + 1];
996 slots->id_to_index[mslots[i].id] = i;
997 }
998 mslots[i] = *memslot;
999 slots->id_to_index[memslot->id] = -1;
1000 }
1001
1002 /*
1003 * "Insert" a new memslot by incrementing the number of used slots. Returns
1004 * the new slot's initial index into the memslots array.
1005 */
kvm_memslot_insert_back(struct kvm_memslots * slots)1006 static inline int kvm_memslot_insert_back(struct kvm_memslots *slots)
1007 {
1008 return slots->used_slots++;
1009 }
1010
1011 /*
1012 * Move a changed memslot backwards in the array by shifting existing slots
1013 * with a higher GFN toward the front of the array. Note, the changed memslot
1014 * itself is not preserved in the array, i.e. not swapped at this time, only
1015 * its new index into the array is tracked. Returns the changed memslot's
1016 * current index into the memslots array.
1017 */
kvm_memslot_move_backward(struct kvm_memslots * slots,struct kvm_memory_slot * memslot)1018 static inline int kvm_memslot_move_backward(struct kvm_memslots *slots,
1019 struct kvm_memory_slot *memslot)
1020 {
1021 struct kvm_memory_slot *mslots = slots->memslots;
1022 int i;
1023
1024 if (WARN_ON_ONCE(slots->id_to_index[memslot->id] == -1) ||
1025 WARN_ON_ONCE(!slots->used_slots))
1026 return -1;
1027
1028 /*
1029 * Move the target memslot backward in the array by shifting existing
1030 * memslots with a higher GFN (than the target memslot) towards the
1031 * front of the array.
1032 */
1033 for (i = slots->id_to_index[memslot->id]; i < slots->used_slots - 1; i++) {
1034 if (memslot->base_gfn > mslots[i + 1].base_gfn)
1035 break;
1036
1037 WARN_ON_ONCE(memslot->base_gfn == mslots[i + 1].base_gfn);
1038
1039 /* Shift the next memslot forward one and update its index. */
1040 mslots[i] = mslots[i + 1];
1041 slots->id_to_index[mslots[i].id] = i;
1042 }
1043 return i;
1044 }
1045
1046 /*
1047 * Move a changed memslot forwards in the array by shifting existing slots with
1048 * a lower GFN toward the back of the array. Note, the changed memslot itself
1049 * is not preserved in the array, i.e. not swapped at this time, only its new
1050 * index into the array is tracked. Returns the changed memslot's final index
1051 * into the memslots array.
1052 */
kvm_memslot_move_forward(struct kvm_memslots * slots,struct kvm_memory_slot * memslot,int start)1053 static inline int kvm_memslot_move_forward(struct kvm_memslots *slots,
1054 struct kvm_memory_slot *memslot,
1055 int start)
1056 {
1057 struct kvm_memory_slot *mslots = slots->memslots;
1058 int i;
1059
1060 for (i = start; i > 0; i--) {
1061 if (memslot->base_gfn < mslots[i - 1].base_gfn)
1062 break;
1063
1064 WARN_ON_ONCE(memslot->base_gfn == mslots[i - 1].base_gfn);
1065
1066 /* Shift the next memslot back one and update its index. */
1067 mslots[i] = mslots[i - 1];
1068 slots->id_to_index[mslots[i].id] = i;
1069 }
1070 return i;
1071 }
1072
1073 /*
1074 * Re-sort memslots based on their GFN to account for an added, deleted, or
1075 * moved memslot. Sorting memslots by GFN allows using a binary search during
1076 * memslot lookup.
1077 *
1078 * IMPORTANT: Slots are sorted from highest GFN to lowest GFN! I.e. the entry
1079 * at memslots[0] has the highest GFN.
1080 *
1081 * The sorting algorithm takes advantage of having initially sorted memslots
1082 * and knowing the position of the changed memslot. Sorting is also optimized
1083 * by not swapping the updated memslot and instead only shifting other memslots
1084 * and tracking the new index for the update memslot. Only once its final
1085 * index is known is the updated memslot copied into its position in the array.
1086 *
1087 * - When deleting a memslot, the deleted memslot simply needs to be moved to
1088 * the end of the array.
1089 *
1090 * - When creating a memslot, the algorithm "inserts" the new memslot at the
1091 * end of the array and then it forward to its correct location.
1092 *
1093 * - When moving a memslot, the algorithm first moves the updated memslot
1094 * backward to handle the scenario where the memslot's GFN was changed to a
1095 * lower value. update_memslots() then falls through and runs the same flow
1096 * as creating a memslot to move the memslot forward to handle the scenario
1097 * where its GFN was changed to a higher value.
1098 *
1099 * Note, slots are sorted from highest->lowest instead of lowest->highest for
1100 * historical reasons. Originally, invalid memslots where denoted by having
1101 * GFN=0, thus sorting from highest->lowest naturally sorted invalid memslots
1102 * to the end of the array. The current algorithm uses dedicated logic to
1103 * delete a memslot and thus does not rely on invalid memslots having GFN=0.
1104 *
1105 * The other historical motiviation for highest->lowest was to improve the
1106 * performance of memslot lookup. KVM originally used a linear search starting
1107 * at memslots[0]. On x86, the largest memslot usually has one of the highest,
1108 * if not *the* highest, GFN, as the bulk of the guest's RAM is located in a
1109 * single memslot above the 4gb boundary. As the largest memslot is also the
1110 * most likely to be referenced, sorting it to the front of the array was
1111 * advantageous. The current binary search starts from the middle of the array
1112 * and uses an LRU pointer to improve performance for all memslots and GFNs.
1113 */
update_memslots(struct kvm_memslots * slots,struct kvm_memory_slot * memslot,enum kvm_mr_change change)1114 static void update_memslots(struct kvm_memslots *slots,
1115 struct kvm_memory_slot *memslot,
1116 enum kvm_mr_change change)
1117 {
1118 int i;
1119
1120 if (change == KVM_MR_DELETE) {
1121 kvm_memslot_delete(slots, memslot);
1122 } else {
1123 if (change == KVM_MR_CREATE)
1124 i = kvm_memslot_insert_back(slots);
1125 else
1126 i = kvm_memslot_move_backward(slots, memslot);
1127 i = kvm_memslot_move_forward(slots, memslot, i);
1128
1129 /*
1130 * Copy the memslot to its new position in memslots and update
1131 * its index accordingly.
1132 */
1133 slots->memslots[i] = *memslot;
1134 slots->id_to_index[memslot->id] = i;
1135 }
1136 }
1137
check_memory_region_flags(const struct kvm_userspace_memory_region * mem)1138 static int check_memory_region_flags(const struct kvm_userspace_memory_region *mem)
1139 {
1140 u32 valid_flags = KVM_MEM_LOG_DIRTY_PAGES;
1141
1142 #ifdef __KVM_HAVE_READONLY_MEM
1143 valid_flags |= KVM_MEM_READONLY;
1144 #endif
1145
1146 if (mem->flags & ~valid_flags)
1147 return -EINVAL;
1148
1149 return 0;
1150 }
1151
install_new_memslots(struct kvm * kvm,int as_id,struct kvm_memslots * slots)1152 static struct kvm_memslots *install_new_memslots(struct kvm *kvm,
1153 int as_id, struct kvm_memslots *slots)
1154 {
1155 struct kvm_memslots *old_memslots = __kvm_memslots(kvm, as_id);
1156 u64 gen = old_memslots->generation;
1157
1158 WARN_ON(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS);
1159 slots->generation = gen | KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS;
1160
1161 rcu_assign_pointer(kvm->memslots[as_id], slots);
1162 synchronize_srcu_expedited(&kvm->srcu);
1163
1164 /*
1165 * Increment the new memslot generation a second time, dropping the
1166 * update in-progress flag and incrementing the generation based on
1167 * the number of address spaces. This provides a unique and easily
1168 * identifiable generation number while the memslots are in flux.
1169 */
1170 gen = slots->generation & ~KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS;
1171
1172 /*
1173 * Generations must be unique even across address spaces. We do not need
1174 * a global counter for that, instead the generation space is evenly split
1175 * across address spaces. For example, with two address spaces, address
1176 * space 0 will use generations 0, 2, 4, ... while address space 1 will
1177 * use generations 1, 3, 5, ...
1178 */
1179 gen += KVM_ADDRESS_SPACE_NUM;
1180
1181 kvm_arch_memslots_updated(kvm, gen);
1182
1183 slots->generation = gen;
1184
1185 return old_memslots;
1186 }
1187
1188 /*
1189 * Note, at a minimum, the current number of used slots must be allocated, even
1190 * when deleting a memslot, as we need a complete duplicate of the memslots for
1191 * use when invalidating a memslot prior to deleting/moving the memslot.
1192 */
kvm_dup_memslots(struct kvm_memslots * old,enum kvm_mr_change change)1193 static struct kvm_memslots *kvm_dup_memslots(struct kvm_memslots *old,
1194 enum kvm_mr_change change)
1195 {
1196 struct kvm_memslots *slots;
1197 size_t old_size, new_size;
1198
1199 old_size = sizeof(struct kvm_memslots) +
1200 (sizeof(struct kvm_memory_slot) * old->used_slots);
1201
1202 if (change == KVM_MR_CREATE)
1203 new_size = old_size + sizeof(struct kvm_memory_slot);
1204 else
1205 new_size = old_size;
1206
1207 slots = kvzalloc(new_size, GFP_KERNEL_ACCOUNT);
1208 if (likely(slots))
1209 memcpy(slots, old, old_size);
1210
1211 return slots;
1212 }
1213
kvm_set_memslot(struct kvm * kvm,const struct kvm_userspace_memory_region * mem,struct kvm_memory_slot * old,struct kvm_memory_slot * new,int as_id,enum kvm_mr_change change)1214 static int kvm_set_memslot(struct kvm *kvm,
1215 const struct kvm_userspace_memory_region *mem,
1216 struct kvm_memory_slot *old,
1217 struct kvm_memory_slot *new, int as_id,
1218 enum kvm_mr_change change)
1219 {
1220 struct kvm_memory_slot *slot;
1221 struct kvm_memslots *slots;
1222 int r;
1223
1224 slots = kvm_dup_memslots(__kvm_memslots(kvm, as_id), change);
1225 if (!slots)
1226 return -ENOMEM;
1227
1228 if (change == KVM_MR_DELETE || change == KVM_MR_MOVE) {
1229 /*
1230 * Note, the INVALID flag needs to be in the appropriate entry
1231 * in the freshly allocated memslots, not in @old or @new.
1232 */
1233 slot = id_to_memslot(slots, old->id);
1234 slot->flags |= KVM_MEMSLOT_INVALID;
1235
1236 /*
1237 * We can re-use the old memslots, the only difference from the
1238 * newly installed memslots is the invalid flag, which will get
1239 * dropped by update_memslots anyway. We'll also revert to the
1240 * old memslots if preparing the new memory region fails.
1241 */
1242 slots = install_new_memslots(kvm, as_id, slots);
1243
1244 /* From this point no new shadow pages pointing to a deleted,
1245 * or moved, memslot will be created.
1246 *
1247 * validation of sp->gfn happens in:
1248 * - gfn_to_hva (kvm_read_guest, gfn_to_pfn)
1249 * - kvm_is_visible_gfn (mmu_check_root)
1250 */
1251 kvm_arch_flush_shadow_memslot(kvm, slot);
1252 kvm_arch_guest_memory_reclaimed(kvm);
1253 }
1254
1255 r = kvm_arch_prepare_memory_region(kvm, new, mem, change);
1256 if (r)
1257 goto out_slots;
1258
1259 update_memslots(slots, new, change);
1260 slots = install_new_memslots(kvm, as_id, slots);
1261
1262 kvm_arch_commit_memory_region(kvm, mem, old, new, change);
1263
1264 kvfree(slots);
1265 return 0;
1266
1267 out_slots:
1268 if (change == KVM_MR_DELETE || change == KVM_MR_MOVE)
1269 slots = install_new_memslots(kvm, as_id, slots);
1270 kvfree(slots);
1271 return r;
1272 }
1273
kvm_delete_memslot(struct kvm * kvm,const struct kvm_userspace_memory_region * mem,struct kvm_memory_slot * old,int as_id)1274 static int kvm_delete_memslot(struct kvm *kvm,
1275 const struct kvm_userspace_memory_region *mem,
1276 struct kvm_memory_slot *old, int as_id)
1277 {
1278 struct kvm_memory_slot new;
1279 int r;
1280
1281 if (!old->npages)
1282 return -EINVAL;
1283
1284 memset(&new, 0, sizeof(new));
1285 new.id = old->id;
1286 /*
1287 * This is only for debugging purpose; it should never be referenced
1288 * for a removed memslot.
1289 */
1290 new.as_id = as_id;
1291
1292 r = kvm_set_memslot(kvm, mem, old, &new, as_id, KVM_MR_DELETE);
1293 if (r)
1294 return r;
1295
1296 kvm_free_memslot(kvm, old);
1297 return 0;
1298 }
1299
1300 /*
1301 * Allocate some memory and give it an address in the guest physical address
1302 * space.
1303 *
1304 * Discontiguous memory is allowed, mostly for framebuffers.
1305 *
1306 * Must be called holding kvm->slots_lock for write.
1307 */
__kvm_set_memory_region(struct kvm * kvm,const struct kvm_userspace_memory_region * mem)1308 int __kvm_set_memory_region(struct kvm *kvm,
1309 const struct kvm_userspace_memory_region *mem)
1310 {
1311 struct kvm_memory_slot old, new;
1312 struct kvm_memory_slot *tmp;
1313 enum kvm_mr_change change;
1314 int as_id, id;
1315 int r;
1316
1317 r = check_memory_region_flags(mem);
1318 if (r)
1319 return r;
1320
1321 as_id = mem->slot >> 16;
1322 id = (u16)mem->slot;
1323
1324 /* General sanity checks */
1325 if ((mem->memory_size & (PAGE_SIZE - 1)) ||
1326 (mem->memory_size != (unsigned long)mem->memory_size))
1327 return -EINVAL;
1328 if (mem->guest_phys_addr & (PAGE_SIZE - 1))
1329 return -EINVAL;
1330 /* We can read the guest memory with __xxx_user() later on. */
1331 if ((mem->userspace_addr & (PAGE_SIZE - 1)) ||
1332 (mem->userspace_addr != untagged_addr(mem->userspace_addr)) ||
1333 !access_ok((void __user *)(unsigned long)mem->userspace_addr,
1334 mem->memory_size))
1335 return -EINVAL;
1336 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_MEM_SLOTS_NUM)
1337 return -EINVAL;
1338 if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
1339 return -EINVAL;
1340
1341 /*
1342 * Make a full copy of the old memslot, the pointer will become stale
1343 * when the memslots are re-sorted by update_memslots(), and the old
1344 * memslot needs to be referenced after calling update_memslots(), e.g.
1345 * to free its resources and for arch specific behavior.
1346 */
1347 tmp = id_to_memslot(__kvm_memslots(kvm, as_id), id);
1348 if (tmp) {
1349 old = *tmp;
1350 tmp = NULL;
1351 } else {
1352 memset(&old, 0, sizeof(old));
1353 old.id = id;
1354 }
1355
1356 if (!mem->memory_size)
1357 return kvm_delete_memslot(kvm, mem, &old, as_id);
1358
1359 new.as_id = as_id;
1360 new.id = id;
1361 new.base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
1362 new.npages = mem->memory_size >> PAGE_SHIFT;
1363 new.flags = mem->flags;
1364 new.userspace_addr = mem->userspace_addr;
1365
1366 if (new.npages > KVM_MEM_MAX_NR_PAGES)
1367 return -EINVAL;
1368
1369 if (!old.npages) {
1370 change = KVM_MR_CREATE;
1371 new.dirty_bitmap = NULL;
1372 memset(&new.arch, 0, sizeof(new.arch));
1373 } else { /* Modify an existing slot. */
1374 if ((new.userspace_addr != old.userspace_addr) ||
1375 (new.npages != old.npages) ||
1376 ((new.flags ^ old.flags) & KVM_MEM_READONLY))
1377 return -EINVAL;
1378
1379 if (new.base_gfn != old.base_gfn)
1380 change = KVM_MR_MOVE;
1381 else if (new.flags != old.flags)
1382 change = KVM_MR_FLAGS_ONLY;
1383 else /* Nothing to change. */
1384 return 0;
1385
1386 /* Copy dirty_bitmap and arch from the current memslot. */
1387 new.dirty_bitmap = old.dirty_bitmap;
1388 memcpy(&new.arch, &old.arch, sizeof(new.arch));
1389 }
1390
1391 if ((change == KVM_MR_CREATE) || (change == KVM_MR_MOVE)) {
1392 /* Check for overlaps */
1393 kvm_for_each_memslot(tmp, __kvm_memslots(kvm, as_id)) {
1394 if (tmp->id == id)
1395 continue;
1396 if (!((new.base_gfn + new.npages <= tmp->base_gfn) ||
1397 (new.base_gfn >= tmp->base_gfn + tmp->npages)))
1398 return -EEXIST;
1399 }
1400 }
1401
1402 /* Allocate/free page dirty bitmap as needed */
1403 if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
1404 new.dirty_bitmap = NULL;
1405 else if (!new.dirty_bitmap) {
1406 r = kvm_alloc_dirty_bitmap(&new);
1407 if (r)
1408 return r;
1409
1410 if (kvm_dirty_log_manual_protect_and_init_set(kvm))
1411 bitmap_set(new.dirty_bitmap, 0, new.npages);
1412 }
1413
1414 r = kvm_set_memslot(kvm, mem, &old, &new, as_id, change);
1415 if (r)
1416 goto out_bitmap;
1417
1418 if (old.dirty_bitmap && !new.dirty_bitmap)
1419 kvm_destroy_dirty_bitmap(&old);
1420 return 0;
1421
1422 out_bitmap:
1423 if (new.dirty_bitmap && !old.dirty_bitmap)
1424 kvm_destroy_dirty_bitmap(&new);
1425 return r;
1426 }
1427 EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
1428
kvm_set_memory_region(struct kvm * kvm,const struct kvm_userspace_memory_region * mem)1429 int kvm_set_memory_region(struct kvm *kvm,
1430 const struct kvm_userspace_memory_region *mem)
1431 {
1432 int r;
1433
1434 mutex_lock(&kvm->slots_lock);
1435 r = __kvm_set_memory_region(kvm, mem);
1436 mutex_unlock(&kvm->slots_lock);
1437 return r;
1438 }
1439 EXPORT_SYMBOL_GPL(kvm_set_memory_region);
1440
kvm_vm_ioctl_set_memory_region(struct kvm * kvm,struct kvm_userspace_memory_region * mem)1441 static int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
1442 struct kvm_userspace_memory_region *mem)
1443 {
1444 if ((u16)mem->slot >= KVM_USER_MEM_SLOTS)
1445 return -EINVAL;
1446
1447 return kvm_set_memory_region(kvm, mem);
1448 }
1449
1450 #ifndef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
1451 /**
1452 * kvm_get_dirty_log - get a snapshot of dirty pages
1453 * @kvm: pointer to kvm instance
1454 * @log: slot id and address to which we copy the log
1455 * @is_dirty: set to '1' if any dirty pages were found
1456 * @memslot: set to the associated memslot, always valid on success
1457 */
kvm_get_dirty_log(struct kvm * kvm,struct kvm_dirty_log * log,int * is_dirty,struct kvm_memory_slot ** memslot)1458 int kvm_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log,
1459 int *is_dirty, struct kvm_memory_slot **memslot)
1460 {
1461 struct kvm_memslots *slots;
1462 int i, as_id, id;
1463 unsigned long n;
1464 unsigned long any = 0;
1465
1466 *memslot = NULL;
1467 *is_dirty = 0;
1468
1469 as_id = log->slot >> 16;
1470 id = (u16)log->slot;
1471 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1472 return -EINVAL;
1473
1474 slots = __kvm_memslots(kvm, as_id);
1475 *memslot = id_to_memslot(slots, id);
1476 if (!(*memslot) || !(*memslot)->dirty_bitmap)
1477 return -ENOENT;
1478
1479 kvm_arch_sync_dirty_log(kvm, *memslot);
1480
1481 n = kvm_dirty_bitmap_bytes(*memslot);
1482
1483 for (i = 0; !any && i < n/sizeof(long); ++i)
1484 any = (*memslot)->dirty_bitmap[i];
1485
1486 if (copy_to_user(log->dirty_bitmap, (*memslot)->dirty_bitmap, n))
1487 return -EFAULT;
1488
1489 if (any)
1490 *is_dirty = 1;
1491 return 0;
1492 }
1493 EXPORT_SYMBOL_GPL(kvm_get_dirty_log);
1494
1495 #else /* CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT */
1496 /**
1497 * kvm_get_dirty_log_protect - get a snapshot of dirty pages
1498 * and reenable dirty page tracking for the corresponding pages.
1499 * @kvm: pointer to kvm instance
1500 * @log: slot id and address to which we copy the log
1501 *
1502 * We need to keep it in mind that VCPU threads can write to the bitmap
1503 * concurrently. So, to avoid losing track of dirty pages we keep the
1504 * following order:
1505 *
1506 * 1. Take a snapshot of the bit and clear it if needed.
1507 * 2. Write protect the corresponding page.
1508 * 3. Copy the snapshot to the userspace.
1509 * 4. Upon return caller flushes TLB's if needed.
1510 *
1511 * Between 2 and 4, the guest may write to the page using the remaining TLB
1512 * entry. This is not a problem because the page is reported dirty using
1513 * the snapshot taken before and step 4 ensures that writes done after
1514 * exiting to userspace will be logged for the next call.
1515 *
1516 */
kvm_get_dirty_log_protect(struct kvm * kvm,struct kvm_dirty_log * log)1517 static int kvm_get_dirty_log_protect(struct kvm *kvm, struct kvm_dirty_log *log)
1518 {
1519 struct kvm_memslots *slots;
1520 struct kvm_memory_slot *memslot;
1521 int i, as_id, id;
1522 unsigned long n;
1523 unsigned long *dirty_bitmap;
1524 unsigned long *dirty_bitmap_buffer;
1525 bool flush;
1526
1527 as_id = log->slot >> 16;
1528 id = (u16)log->slot;
1529 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1530 return -EINVAL;
1531
1532 slots = __kvm_memslots(kvm, as_id);
1533 memslot = id_to_memslot(slots, id);
1534 if (!memslot || !memslot->dirty_bitmap)
1535 return -ENOENT;
1536
1537 dirty_bitmap = memslot->dirty_bitmap;
1538
1539 kvm_arch_sync_dirty_log(kvm, memslot);
1540
1541 n = kvm_dirty_bitmap_bytes(memslot);
1542 flush = false;
1543 if (kvm->manual_dirty_log_protect) {
1544 /*
1545 * Unlike kvm_get_dirty_log, we always return false in *flush,
1546 * because no flush is needed until KVM_CLEAR_DIRTY_LOG. There
1547 * is some code duplication between this function and
1548 * kvm_get_dirty_log, but hopefully all architecture
1549 * transition to kvm_get_dirty_log_protect and kvm_get_dirty_log
1550 * can be eliminated.
1551 */
1552 dirty_bitmap_buffer = dirty_bitmap;
1553 } else {
1554 dirty_bitmap_buffer = kvm_second_dirty_bitmap(memslot);
1555 memset(dirty_bitmap_buffer, 0, n);
1556
1557 spin_lock(&kvm->mmu_lock);
1558 for (i = 0; i < n / sizeof(long); i++) {
1559 unsigned long mask;
1560 gfn_t offset;
1561
1562 if (!dirty_bitmap[i])
1563 continue;
1564
1565 flush = true;
1566 mask = xchg(&dirty_bitmap[i], 0);
1567 dirty_bitmap_buffer[i] = mask;
1568
1569 offset = i * BITS_PER_LONG;
1570 kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot,
1571 offset, mask);
1572 }
1573 spin_unlock(&kvm->mmu_lock);
1574 }
1575
1576 if (flush)
1577 kvm_arch_flush_remote_tlbs_memslot(kvm, memslot);
1578
1579 if (copy_to_user(log->dirty_bitmap, dirty_bitmap_buffer, n))
1580 return -EFAULT;
1581 return 0;
1582 }
1583
1584
1585 /**
1586 * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
1587 * @kvm: kvm instance
1588 * @log: slot id and address to which we copy the log
1589 *
1590 * Steps 1-4 below provide general overview of dirty page logging. See
1591 * kvm_get_dirty_log_protect() function description for additional details.
1592 *
1593 * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we
1594 * always flush the TLB (step 4) even if previous step failed and the dirty
1595 * bitmap may be corrupt. Regardless of previous outcome the KVM logging API
1596 * does not preclude user space subsequent dirty log read. Flushing TLB ensures
1597 * writes will be marked dirty for next log read.
1598 *
1599 * 1. Take a snapshot of the bit and clear it if needed.
1600 * 2. Write protect the corresponding page.
1601 * 3. Copy the snapshot to the userspace.
1602 * 4. Flush TLB's if needed.
1603 */
kvm_vm_ioctl_get_dirty_log(struct kvm * kvm,struct kvm_dirty_log * log)1604 static int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
1605 struct kvm_dirty_log *log)
1606 {
1607 int r;
1608
1609 mutex_lock(&kvm->slots_lock);
1610
1611 r = kvm_get_dirty_log_protect(kvm, log);
1612
1613 mutex_unlock(&kvm->slots_lock);
1614 return r;
1615 }
1616
1617 /**
1618 * kvm_clear_dirty_log_protect - clear dirty bits in the bitmap
1619 * and reenable dirty page tracking for the corresponding pages.
1620 * @kvm: pointer to kvm instance
1621 * @log: slot id and address from which to fetch the bitmap of dirty pages
1622 */
kvm_clear_dirty_log_protect(struct kvm * kvm,struct kvm_clear_dirty_log * log)1623 static int kvm_clear_dirty_log_protect(struct kvm *kvm,
1624 struct kvm_clear_dirty_log *log)
1625 {
1626 struct kvm_memslots *slots;
1627 struct kvm_memory_slot *memslot;
1628 int as_id, id;
1629 gfn_t offset;
1630 unsigned long i, n;
1631 unsigned long *dirty_bitmap;
1632 unsigned long *dirty_bitmap_buffer;
1633 bool flush;
1634
1635 as_id = log->slot >> 16;
1636 id = (u16)log->slot;
1637 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1638 return -EINVAL;
1639
1640 if (log->first_page & 63)
1641 return -EINVAL;
1642
1643 slots = __kvm_memslots(kvm, as_id);
1644 memslot = id_to_memslot(slots, id);
1645 if (!memslot || !memslot->dirty_bitmap)
1646 return -ENOENT;
1647
1648 dirty_bitmap = memslot->dirty_bitmap;
1649
1650 n = ALIGN(log->num_pages, BITS_PER_LONG) / 8;
1651
1652 if (log->first_page > memslot->npages ||
1653 log->num_pages > memslot->npages - log->first_page ||
1654 (log->num_pages < memslot->npages - log->first_page && (log->num_pages & 63)))
1655 return -EINVAL;
1656
1657 kvm_arch_sync_dirty_log(kvm, memslot);
1658
1659 flush = false;
1660 dirty_bitmap_buffer = kvm_second_dirty_bitmap(memslot);
1661 if (copy_from_user(dirty_bitmap_buffer, log->dirty_bitmap, n))
1662 return -EFAULT;
1663
1664 spin_lock(&kvm->mmu_lock);
1665 for (offset = log->first_page, i = offset / BITS_PER_LONG,
1666 n = DIV_ROUND_UP(log->num_pages, BITS_PER_LONG); n--;
1667 i++, offset += BITS_PER_LONG) {
1668 unsigned long mask = *dirty_bitmap_buffer++;
1669 atomic_long_t *p = (atomic_long_t *) &dirty_bitmap[i];
1670 if (!mask)
1671 continue;
1672
1673 mask &= atomic_long_fetch_andnot(mask, p);
1674
1675 /*
1676 * mask contains the bits that really have been cleared. This
1677 * never includes any bits beyond the length of the memslot (if
1678 * the length is not aligned to 64 pages), therefore it is not
1679 * a problem if userspace sets them in log->dirty_bitmap.
1680 */
1681 if (mask) {
1682 flush = true;
1683 kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot,
1684 offset, mask);
1685 }
1686 }
1687 spin_unlock(&kvm->mmu_lock);
1688
1689 if (flush)
1690 kvm_arch_flush_remote_tlbs_memslot(kvm, memslot);
1691
1692 return 0;
1693 }
1694
kvm_vm_ioctl_clear_dirty_log(struct kvm * kvm,struct kvm_clear_dirty_log * log)1695 static int kvm_vm_ioctl_clear_dirty_log(struct kvm *kvm,
1696 struct kvm_clear_dirty_log *log)
1697 {
1698 int r;
1699
1700 mutex_lock(&kvm->slots_lock);
1701
1702 r = kvm_clear_dirty_log_protect(kvm, log);
1703
1704 mutex_unlock(&kvm->slots_lock);
1705 return r;
1706 }
1707 #endif /* CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT */
1708
gfn_to_memslot(struct kvm * kvm,gfn_t gfn)1709 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
1710 {
1711 return __gfn_to_memslot(kvm_memslots(kvm), gfn);
1712 }
1713 EXPORT_SYMBOL_GPL(gfn_to_memslot);
1714
kvm_vcpu_gfn_to_memslot(struct kvm_vcpu * vcpu,gfn_t gfn)1715 struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn)
1716 {
1717 return __gfn_to_memslot(kvm_vcpu_memslots(vcpu), gfn);
1718 }
1719
kvm_is_visible_gfn(struct kvm * kvm,gfn_t gfn)1720 bool kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
1721 {
1722 struct kvm_memory_slot *memslot = gfn_to_memslot(kvm, gfn);
1723
1724 return kvm_is_visible_memslot(memslot);
1725 }
1726 EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
1727
kvm_vcpu_is_visible_gfn(struct kvm_vcpu * vcpu,gfn_t gfn)1728 bool kvm_vcpu_is_visible_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
1729 {
1730 struct kvm_memory_slot *memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1731
1732 return kvm_is_visible_memslot(memslot);
1733 }
1734 EXPORT_SYMBOL_GPL(kvm_vcpu_is_visible_gfn);
1735
kvm_host_page_size(struct kvm_vcpu * vcpu,gfn_t gfn)1736 unsigned long kvm_host_page_size(struct kvm_vcpu *vcpu, gfn_t gfn)
1737 {
1738 struct vm_area_struct *vma;
1739 unsigned long addr, size;
1740
1741 size = PAGE_SIZE;
1742
1743 addr = kvm_vcpu_gfn_to_hva_prot(vcpu, gfn, NULL);
1744 if (kvm_is_error_hva(addr))
1745 return PAGE_SIZE;
1746
1747 mmap_read_lock(current->mm);
1748 vma = find_vma(current->mm, addr);
1749 if (!vma)
1750 goto out;
1751
1752 size = vma_kernel_pagesize(vma);
1753
1754 out:
1755 mmap_read_unlock(current->mm);
1756
1757 return size;
1758 }
1759
memslot_is_readonly(struct kvm_memory_slot * slot)1760 static bool memslot_is_readonly(struct kvm_memory_slot *slot)
1761 {
1762 return slot->flags & KVM_MEM_READONLY;
1763 }
1764
__gfn_to_hva_many(struct kvm_memory_slot * slot,gfn_t gfn,gfn_t * nr_pages,bool write)1765 static unsigned long __gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1766 gfn_t *nr_pages, bool write)
1767 {
1768 if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
1769 return KVM_HVA_ERR_BAD;
1770
1771 if (memslot_is_readonly(slot) && write)
1772 return KVM_HVA_ERR_RO_BAD;
1773
1774 if (nr_pages)
1775 *nr_pages = slot->npages - (gfn - slot->base_gfn);
1776
1777 return __gfn_to_hva_memslot(slot, gfn);
1778 }
1779
gfn_to_hva_many(struct kvm_memory_slot * slot,gfn_t gfn,gfn_t * nr_pages)1780 static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1781 gfn_t *nr_pages)
1782 {
1783 return __gfn_to_hva_many(slot, gfn, nr_pages, true);
1784 }
1785
gfn_to_hva_memslot(struct kvm_memory_slot * slot,gfn_t gfn)1786 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot,
1787 gfn_t gfn)
1788 {
1789 return gfn_to_hva_many(slot, gfn, NULL);
1790 }
1791 EXPORT_SYMBOL_GPL(gfn_to_hva_memslot);
1792
gfn_to_hva(struct kvm * kvm,gfn_t gfn)1793 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
1794 {
1795 return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL);
1796 }
1797 EXPORT_SYMBOL_GPL(gfn_to_hva);
1798
kvm_vcpu_gfn_to_hva(struct kvm_vcpu * vcpu,gfn_t gfn)1799 unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn)
1800 {
1801 return gfn_to_hva_many(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn, NULL);
1802 }
1803 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_hva);
1804
1805 /*
1806 * Return the hva of a @gfn and the R/W attribute if possible.
1807 *
1808 * @slot: the kvm_memory_slot which contains @gfn
1809 * @gfn: the gfn to be translated
1810 * @writable: used to return the read/write attribute of the @slot if the hva
1811 * is valid and @writable is not NULL
1812 */
gfn_to_hva_memslot_prot(struct kvm_memory_slot * slot,gfn_t gfn,bool * writable)1813 unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot,
1814 gfn_t gfn, bool *writable)
1815 {
1816 unsigned long hva = __gfn_to_hva_many(slot, gfn, NULL, false);
1817
1818 if (!kvm_is_error_hva(hva) && writable)
1819 *writable = !memslot_is_readonly(slot);
1820
1821 return hva;
1822 }
1823
gfn_to_hva_prot(struct kvm * kvm,gfn_t gfn,bool * writable)1824 unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable)
1825 {
1826 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1827
1828 return gfn_to_hva_memslot_prot(slot, gfn, writable);
1829 }
1830
kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu * vcpu,gfn_t gfn,bool * writable)1831 unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable)
1832 {
1833 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1834
1835 return gfn_to_hva_memslot_prot(slot, gfn, writable);
1836 }
1837
check_user_page_hwpoison(unsigned long addr)1838 static inline int check_user_page_hwpoison(unsigned long addr)
1839 {
1840 int rc, flags = FOLL_HWPOISON | FOLL_WRITE;
1841
1842 rc = get_user_pages(addr, 1, flags, NULL, NULL);
1843 return rc == -EHWPOISON;
1844 }
1845
1846 /*
1847 * The fast path to get the writable pfn which will be stored in @pfn,
1848 * true indicates success, otherwise false is returned. It's also the
1849 * only part that runs if we can in atomic context.
1850 */
hva_to_pfn_fast(unsigned long addr,bool write_fault,bool * writable,kvm_pfn_t * pfn)1851 static bool hva_to_pfn_fast(unsigned long addr, bool write_fault,
1852 bool *writable, kvm_pfn_t *pfn)
1853 {
1854 struct page *page[1];
1855
1856 /*
1857 * Fast pin a writable pfn only if it is a write fault request
1858 * or the caller allows to map a writable pfn for a read fault
1859 * request.
1860 */
1861 if (!(write_fault || writable))
1862 return false;
1863
1864 if (get_user_page_fast_only(addr, FOLL_WRITE, page)) {
1865 *pfn = page_to_pfn(page[0]);
1866
1867 if (writable)
1868 *writable = true;
1869 return true;
1870 }
1871
1872 return false;
1873 }
1874
1875 /*
1876 * The slow path to get the pfn of the specified host virtual address,
1877 * 1 indicates success, -errno is returned if error is detected.
1878 */
hva_to_pfn_slow(unsigned long addr,bool * async,bool write_fault,bool * writable,kvm_pfn_t * pfn)1879 static int hva_to_pfn_slow(unsigned long addr, bool *async, bool write_fault,
1880 bool *writable, kvm_pfn_t *pfn)
1881 {
1882 unsigned int flags = FOLL_HWPOISON;
1883 struct page *page;
1884 int npages = 0;
1885
1886 might_sleep();
1887
1888 if (writable)
1889 *writable = write_fault;
1890
1891 if (write_fault)
1892 flags |= FOLL_WRITE;
1893 if (async)
1894 flags |= FOLL_NOWAIT;
1895
1896 npages = get_user_pages_unlocked(addr, 1, &page, flags);
1897 if (npages != 1)
1898 return npages;
1899
1900 /* map read fault as writable if possible */
1901 if (unlikely(!write_fault) && writable) {
1902 struct page *wpage;
1903
1904 if (get_user_page_fast_only(addr, FOLL_WRITE, &wpage)) {
1905 *writable = true;
1906 put_page(page);
1907 page = wpage;
1908 }
1909 }
1910 *pfn = page_to_pfn(page);
1911 return npages;
1912 }
1913
vma_is_valid(struct vm_area_struct * vma,bool write_fault)1914 static bool vma_is_valid(struct vm_area_struct *vma, bool write_fault)
1915 {
1916 if (unlikely(!(vma->vm_flags & VM_READ)))
1917 return false;
1918
1919 if (write_fault && (unlikely(!(vma->vm_flags & VM_WRITE))))
1920 return false;
1921
1922 return true;
1923 }
1924
kvm_try_get_pfn(kvm_pfn_t pfn)1925 static int kvm_try_get_pfn(kvm_pfn_t pfn)
1926 {
1927 if (kvm_is_reserved_pfn(pfn))
1928 return 1;
1929 return get_page_unless_zero(pfn_to_page(pfn));
1930 }
1931
hva_to_pfn_remapped(struct vm_area_struct * vma,unsigned long addr,bool * async,bool write_fault,bool * writable,kvm_pfn_t * p_pfn)1932 static int hva_to_pfn_remapped(struct vm_area_struct *vma,
1933 unsigned long addr, bool *async,
1934 bool write_fault, bool *writable,
1935 kvm_pfn_t *p_pfn)
1936 {
1937 kvm_pfn_t pfn;
1938 pte_t *ptep;
1939 spinlock_t *ptl;
1940 int r;
1941
1942 r = follow_pte(vma->vm_mm, addr, &ptep, &ptl);
1943 if (r) {
1944 /*
1945 * get_user_pages fails for VM_IO and VM_PFNMAP vmas and does
1946 * not call the fault handler, so do it here.
1947 */
1948 bool unlocked = false;
1949 r = fixup_user_fault(current->mm, addr,
1950 (write_fault ? FAULT_FLAG_WRITE : 0),
1951 &unlocked);
1952 if (unlocked)
1953 return -EAGAIN;
1954 if (r)
1955 return r;
1956
1957 r = follow_pte(vma->vm_mm, addr, &ptep, &ptl);
1958 if (r)
1959 return r;
1960 }
1961
1962 if (write_fault && !pte_write(*ptep)) {
1963 pfn = KVM_PFN_ERR_RO_FAULT;
1964 goto out;
1965 }
1966
1967 if (writable)
1968 *writable = pte_write(*ptep);
1969 pfn = pte_pfn(*ptep);
1970
1971 /*
1972 * Get a reference here because callers of *hva_to_pfn* and
1973 * *gfn_to_pfn* ultimately call kvm_release_pfn_clean on the
1974 * returned pfn. This is only needed if the VMA has VM_MIXEDMAP
1975 * set, but the kvm_get_pfn/kvm_release_pfn_clean pair will
1976 * simply do nothing for reserved pfns.
1977 *
1978 * Whoever called remap_pfn_range is also going to call e.g.
1979 * unmap_mapping_range before the underlying pages are freed,
1980 * causing a call to our MMU notifier.
1981 *
1982 * Certain IO or PFNMAP mappings can be backed with valid
1983 * struct pages, but be allocated without refcounting e.g.,
1984 * tail pages of non-compound higher order allocations, which
1985 * would then underflow the refcount when the caller does the
1986 * required put_page. Don't allow those pages here.
1987 */
1988 if (!kvm_try_get_pfn(pfn))
1989 r = -EFAULT;
1990
1991 out:
1992 pte_unmap_unlock(ptep, ptl);
1993 *p_pfn = pfn;
1994
1995 return r;
1996 }
1997
1998 /*
1999 * Pin guest page in memory and return its pfn.
2000 * @addr: host virtual address which maps memory to the guest
2001 * @atomic: whether this function can sleep
2002 * @async: whether this function need to wait IO complete if the
2003 * host page is not in the memory
2004 * @write_fault: whether we should get a writable host page
2005 * @writable: whether it allows to map a writable host page for !@write_fault
2006 *
2007 * The function will map a writable host page for these two cases:
2008 * 1): @write_fault = true
2009 * 2): @write_fault = false && @writable, @writable will tell the caller
2010 * whether the mapping is writable.
2011 */
hva_to_pfn(unsigned long addr,bool atomic,bool * async,bool write_fault,bool * writable)2012 static kvm_pfn_t hva_to_pfn(unsigned long addr, bool atomic, bool *async,
2013 bool write_fault, bool *writable)
2014 {
2015 struct vm_area_struct *vma;
2016 kvm_pfn_t pfn = 0;
2017 int npages, r;
2018
2019 /* we can do it either atomically or asynchronously, not both */
2020 BUG_ON(atomic && async);
2021
2022 if (hva_to_pfn_fast(addr, write_fault, writable, &pfn))
2023 return pfn;
2024
2025 if (atomic)
2026 return KVM_PFN_ERR_FAULT;
2027
2028 npages = hva_to_pfn_slow(addr, async, write_fault, writable, &pfn);
2029 if (npages == 1)
2030 return pfn;
2031
2032 mmap_read_lock(current->mm);
2033 if (npages == -EHWPOISON ||
2034 (!async && check_user_page_hwpoison(addr))) {
2035 pfn = KVM_PFN_ERR_HWPOISON;
2036 goto exit;
2037 }
2038
2039 retry:
2040 vma = find_vma_intersection(current->mm, addr, addr + 1);
2041
2042 if (vma == NULL)
2043 pfn = KVM_PFN_ERR_FAULT;
2044 else if (vma->vm_flags & (VM_IO | VM_PFNMAP)) {
2045 r = hva_to_pfn_remapped(vma, addr, async, write_fault, writable, &pfn);
2046 if (r == -EAGAIN)
2047 goto retry;
2048 if (r < 0)
2049 pfn = KVM_PFN_ERR_FAULT;
2050 } else {
2051 if (async && vma_is_valid(vma, write_fault))
2052 *async = true;
2053 pfn = KVM_PFN_ERR_FAULT;
2054 }
2055 exit:
2056 mmap_read_unlock(current->mm);
2057 return pfn;
2058 }
2059
__gfn_to_pfn_memslot(struct kvm_memory_slot * slot,gfn_t gfn,bool atomic,bool * async,bool write_fault,bool * writable)2060 kvm_pfn_t __gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn,
2061 bool atomic, bool *async, bool write_fault,
2062 bool *writable)
2063 {
2064 unsigned long addr = __gfn_to_hva_many(slot, gfn, NULL, write_fault);
2065
2066 if (addr == KVM_HVA_ERR_RO_BAD) {
2067 if (writable)
2068 *writable = false;
2069 return KVM_PFN_ERR_RO_FAULT;
2070 }
2071
2072 if (kvm_is_error_hva(addr)) {
2073 if (writable)
2074 *writable = false;
2075 return KVM_PFN_NOSLOT;
2076 }
2077
2078 /* Do not map writable pfn in the readonly memslot. */
2079 if (writable && memslot_is_readonly(slot)) {
2080 *writable = false;
2081 writable = NULL;
2082 }
2083
2084 return hva_to_pfn(addr, atomic, async, write_fault,
2085 writable);
2086 }
2087 EXPORT_SYMBOL_GPL(__gfn_to_pfn_memslot);
2088
gfn_to_pfn_prot(struct kvm * kvm,gfn_t gfn,bool write_fault,bool * writable)2089 kvm_pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault,
2090 bool *writable)
2091 {
2092 return __gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn, false, NULL,
2093 write_fault, writable);
2094 }
2095 EXPORT_SYMBOL_GPL(gfn_to_pfn_prot);
2096
gfn_to_pfn_memslot(struct kvm_memory_slot * slot,gfn_t gfn)2097 kvm_pfn_t gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn)
2098 {
2099 return __gfn_to_pfn_memslot(slot, gfn, false, NULL, true, NULL);
2100 }
2101 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot);
2102
gfn_to_pfn_memslot_atomic(struct kvm_memory_slot * slot,gfn_t gfn)2103 kvm_pfn_t gfn_to_pfn_memslot_atomic(struct kvm_memory_slot *slot, gfn_t gfn)
2104 {
2105 return __gfn_to_pfn_memslot(slot, gfn, true, NULL, true, NULL);
2106 }
2107 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot_atomic);
2108
kvm_vcpu_gfn_to_pfn_atomic(struct kvm_vcpu * vcpu,gfn_t gfn)2109 kvm_pfn_t kvm_vcpu_gfn_to_pfn_atomic(struct kvm_vcpu *vcpu, gfn_t gfn)
2110 {
2111 return gfn_to_pfn_memslot_atomic(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
2112 }
2113 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn_atomic);
2114
gfn_to_pfn(struct kvm * kvm,gfn_t gfn)2115 kvm_pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn)
2116 {
2117 return gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn);
2118 }
2119 EXPORT_SYMBOL_GPL(gfn_to_pfn);
2120
kvm_vcpu_gfn_to_pfn(struct kvm_vcpu * vcpu,gfn_t gfn)2121 kvm_pfn_t kvm_vcpu_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn)
2122 {
2123 return gfn_to_pfn_memslot(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
2124 }
2125 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn);
2126
gfn_to_page_many_atomic(struct kvm_memory_slot * slot,gfn_t gfn,struct page ** pages,int nr_pages)2127 int gfn_to_page_many_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
2128 struct page **pages, int nr_pages)
2129 {
2130 unsigned long addr;
2131 gfn_t entry = 0;
2132
2133 addr = gfn_to_hva_many(slot, gfn, &entry);
2134 if (kvm_is_error_hva(addr))
2135 return -1;
2136
2137 if (entry < nr_pages)
2138 return 0;
2139
2140 return get_user_pages_fast_only(addr, nr_pages, FOLL_WRITE, pages);
2141 }
2142 EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic);
2143
kvm_pfn_to_page(kvm_pfn_t pfn)2144 static struct page *kvm_pfn_to_page(kvm_pfn_t pfn)
2145 {
2146 if (is_error_noslot_pfn(pfn))
2147 return KVM_ERR_PTR_BAD_PAGE;
2148
2149 if (kvm_is_reserved_pfn(pfn)) {
2150 WARN_ON(1);
2151 return KVM_ERR_PTR_BAD_PAGE;
2152 }
2153
2154 return pfn_to_page(pfn);
2155 }
2156
gfn_to_page(struct kvm * kvm,gfn_t gfn)2157 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
2158 {
2159 kvm_pfn_t pfn;
2160
2161 pfn = gfn_to_pfn(kvm, gfn);
2162
2163 return kvm_pfn_to_page(pfn);
2164 }
2165 EXPORT_SYMBOL_GPL(gfn_to_page);
2166
kvm_release_pfn(kvm_pfn_t pfn,bool dirty,struct gfn_to_pfn_cache * cache)2167 void kvm_release_pfn(kvm_pfn_t pfn, bool dirty, struct gfn_to_pfn_cache *cache)
2168 {
2169 if (pfn == 0)
2170 return;
2171
2172 if (cache)
2173 cache->pfn = cache->gfn = 0;
2174
2175 if (dirty)
2176 kvm_release_pfn_dirty(pfn);
2177 else
2178 kvm_release_pfn_clean(pfn);
2179 }
2180
kvm_cache_gfn_to_pfn(struct kvm_memory_slot * slot,gfn_t gfn,struct gfn_to_pfn_cache * cache,u64 gen)2181 static void kvm_cache_gfn_to_pfn(struct kvm_memory_slot *slot, gfn_t gfn,
2182 struct gfn_to_pfn_cache *cache, u64 gen)
2183 {
2184 kvm_release_pfn(cache->pfn, cache->dirty, cache);
2185
2186 cache->pfn = gfn_to_pfn_memslot(slot, gfn);
2187 cache->gfn = gfn;
2188 cache->dirty = false;
2189 cache->generation = gen;
2190 }
2191
__kvm_map_gfn(struct kvm_memslots * slots,gfn_t gfn,struct kvm_host_map * map,struct gfn_to_pfn_cache * cache,bool atomic)2192 static int __kvm_map_gfn(struct kvm_memslots *slots, gfn_t gfn,
2193 struct kvm_host_map *map,
2194 struct gfn_to_pfn_cache *cache,
2195 bool atomic)
2196 {
2197 kvm_pfn_t pfn;
2198 void *hva = NULL;
2199 struct page *page = KVM_UNMAPPED_PAGE;
2200 struct kvm_memory_slot *slot = __gfn_to_memslot(slots, gfn);
2201 u64 gen = slots->generation;
2202
2203 if (!map)
2204 return -EINVAL;
2205
2206 if (cache) {
2207 if (!cache->pfn || cache->gfn != gfn ||
2208 cache->generation != gen) {
2209 if (atomic)
2210 return -EAGAIN;
2211 kvm_cache_gfn_to_pfn(slot, gfn, cache, gen);
2212 }
2213 pfn = cache->pfn;
2214 } else {
2215 if (atomic)
2216 return -EAGAIN;
2217 pfn = gfn_to_pfn_memslot(slot, gfn);
2218 }
2219 if (is_error_noslot_pfn(pfn))
2220 return -EINVAL;
2221
2222 if (pfn_valid(pfn)) {
2223 page = pfn_to_page(pfn);
2224 if (atomic)
2225 hva = kmap_atomic(page);
2226 else
2227 hva = kmap(page);
2228 #ifdef CONFIG_HAS_IOMEM
2229 } else if (!atomic) {
2230 hva = memremap(pfn_to_hpa(pfn), PAGE_SIZE, MEMREMAP_WB);
2231 } else {
2232 return -EINVAL;
2233 #endif
2234 }
2235
2236 if (!hva)
2237 return -EFAULT;
2238
2239 map->page = page;
2240 map->hva = hva;
2241 map->pfn = pfn;
2242 map->gfn = gfn;
2243
2244 return 0;
2245 }
2246
kvm_map_gfn(struct kvm_vcpu * vcpu,gfn_t gfn,struct kvm_host_map * map,struct gfn_to_pfn_cache * cache,bool atomic)2247 int kvm_map_gfn(struct kvm_vcpu *vcpu, gfn_t gfn, struct kvm_host_map *map,
2248 struct gfn_to_pfn_cache *cache, bool atomic)
2249 {
2250 return __kvm_map_gfn(kvm_memslots(vcpu->kvm), gfn, map,
2251 cache, atomic);
2252 }
2253 EXPORT_SYMBOL_GPL(kvm_map_gfn);
2254
kvm_vcpu_map(struct kvm_vcpu * vcpu,gfn_t gfn,struct kvm_host_map * map)2255 int kvm_vcpu_map(struct kvm_vcpu *vcpu, gfn_t gfn, struct kvm_host_map *map)
2256 {
2257 return __kvm_map_gfn(kvm_vcpu_memslots(vcpu), gfn, map,
2258 NULL, false);
2259 }
2260 EXPORT_SYMBOL_GPL(kvm_vcpu_map);
2261
__kvm_unmap_gfn(struct kvm_memory_slot * memslot,struct kvm_host_map * map,struct gfn_to_pfn_cache * cache,bool dirty,bool atomic)2262 static void __kvm_unmap_gfn(struct kvm_memory_slot *memslot,
2263 struct kvm_host_map *map,
2264 struct gfn_to_pfn_cache *cache,
2265 bool dirty, bool atomic)
2266 {
2267 if (!map)
2268 return;
2269
2270 if (!map->hva)
2271 return;
2272
2273 if (map->page != KVM_UNMAPPED_PAGE) {
2274 if (atomic)
2275 kunmap_atomic(map->hva);
2276 else
2277 kunmap(map->page);
2278 }
2279 #ifdef CONFIG_HAS_IOMEM
2280 else if (!atomic)
2281 memunmap(map->hva);
2282 else
2283 WARN_ONCE(1, "Unexpected unmapping in atomic context");
2284 #endif
2285
2286 if (dirty)
2287 mark_page_dirty_in_slot(memslot, map->gfn);
2288
2289 if (cache)
2290 cache->dirty |= dirty;
2291 else
2292 kvm_release_pfn(map->pfn, dirty, NULL);
2293
2294 map->hva = NULL;
2295 map->page = NULL;
2296 }
2297
kvm_unmap_gfn(struct kvm_vcpu * vcpu,struct kvm_host_map * map,struct gfn_to_pfn_cache * cache,bool dirty,bool atomic)2298 int kvm_unmap_gfn(struct kvm_vcpu *vcpu, struct kvm_host_map *map,
2299 struct gfn_to_pfn_cache *cache, bool dirty, bool atomic)
2300 {
2301 __kvm_unmap_gfn(gfn_to_memslot(vcpu->kvm, map->gfn), map,
2302 cache, dirty, atomic);
2303 return 0;
2304 }
2305 EXPORT_SYMBOL_GPL(kvm_unmap_gfn);
2306
kvm_vcpu_unmap(struct kvm_vcpu * vcpu,struct kvm_host_map * map,bool dirty)2307 void kvm_vcpu_unmap(struct kvm_vcpu *vcpu, struct kvm_host_map *map, bool dirty)
2308 {
2309 __kvm_unmap_gfn(kvm_vcpu_gfn_to_memslot(vcpu, map->gfn), map, NULL,
2310 dirty, false);
2311 }
2312 EXPORT_SYMBOL_GPL(kvm_vcpu_unmap);
2313
kvm_vcpu_gfn_to_page(struct kvm_vcpu * vcpu,gfn_t gfn)2314 struct page *kvm_vcpu_gfn_to_page(struct kvm_vcpu *vcpu, gfn_t gfn)
2315 {
2316 kvm_pfn_t pfn;
2317
2318 pfn = kvm_vcpu_gfn_to_pfn(vcpu, gfn);
2319
2320 return kvm_pfn_to_page(pfn);
2321 }
2322 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_page);
2323
kvm_release_page_clean(struct page * page)2324 void kvm_release_page_clean(struct page *page)
2325 {
2326 WARN_ON(is_error_page(page));
2327
2328 kvm_release_pfn_clean(page_to_pfn(page));
2329 }
2330 EXPORT_SYMBOL_GPL(kvm_release_page_clean);
2331
kvm_release_pfn_clean(kvm_pfn_t pfn)2332 void kvm_release_pfn_clean(kvm_pfn_t pfn)
2333 {
2334 if (!is_error_noslot_pfn(pfn) && !kvm_is_reserved_pfn(pfn))
2335 put_page(pfn_to_page(pfn));
2336 }
2337 EXPORT_SYMBOL_GPL(kvm_release_pfn_clean);
2338
kvm_release_page_dirty(struct page * page)2339 void kvm_release_page_dirty(struct page *page)
2340 {
2341 WARN_ON(is_error_page(page));
2342
2343 kvm_release_pfn_dirty(page_to_pfn(page));
2344 }
2345 EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
2346
kvm_release_pfn_dirty(kvm_pfn_t pfn)2347 void kvm_release_pfn_dirty(kvm_pfn_t pfn)
2348 {
2349 kvm_set_pfn_dirty(pfn);
2350 kvm_release_pfn_clean(pfn);
2351 }
2352 EXPORT_SYMBOL_GPL(kvm_release_pfn_dirty);
2353
kvm_is_ad_tracked_pfn(kvm_pfn_t pfn)2354 static bool kvm_is_ad_tracked_pfn(kvm_pfn_t pfn)
2355 {
2356 if (!pfn_valid(pfn))
2357 return false;
2358
2359 /*
2360 * Per page-flags.h, pages tagged PG_reserved "should in general not be
2361 * touched (e.g. set dirty) except by its owner".
2362 */
2363 return !PageReserved(pfn_to_page(pfn));
2364 }
2365
kvm_set_pfn_dirty(kvm_pfn_t pfn)2366 void kvm_set_pfn_dirty(kvm_pfn_t pfn)
2367 {
2368 if (kvm_is_ad_tracked_pfn(pfn))
2369 SetPageDirty(pfn_to_page(pfn));
2370 }
2371 EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty);
2372
kvm_set_pfn_accessed(kvm_pfn_t pfn)2373 void kvm_set_pfn_accessed(kvm_pfn_t pfn)
2374 {
2375 if (kvm_is_ad_tracked_pfn(pfn))
2376 mark_page_accessed(pfn_to_page(pfn));
2377 }
2378 EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed);
2379
kvm_get_pfn(kvm_pfn_t pfn)2380 void kvm_get_pfn(kvm_pfn_t pfn)
2381 {
2382 if (!kvm_is_reserved_pfn(pfn))
2383 get_page(pfn_to_page(pfn));
2384 }
2385 EXPORT_SYMBOL_GPL(kvm_get_pfn);
2386
next_segment(unsigned long len,int offset)2387 static int next_segment(unsigned long len, int offset)
2388 {
2389 if (len > PAGE_SIZE - offset)
2390 return PAGE_SIZE - offset;
2391 else
2392 return len;
2393 }
2394
__kvm_read_guest_page(struct kvm_memory_slot * slot,gfn_t gfn,void * data,int offset,int len)2395 static int __kvm_read_guest_page(struct kvm_memory_slot *slot, gfn_t gfn,
2396 void *data, int offset, int len)
2397 {
2398 int r;
2399 unsigned long addr;
2400
2401 addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
2402 if (kvm_is_error_hva(addr))
2403 return -EFAULT;
2404 r = __copy_from_user(data, (void __user *)addr + offset, len);
2405 if (r)
2406 return -EFAULT;
2407 return 0;
2408 }
2409
kvm_read_guest_page(struct kvm * kvm,gfn_t gfn,void * data,int offset,int len)2410 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
2411 int len)
2412 {
2413 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
2414
2415 return __kvm_read_guest_page(slot, gfn, data, offset, len);
2416 }
2417 EXPORT_SYMBOL_GPL(kvm_read_guest_page);
2418
kvm_vcpu_read_guest_page(struct kvm_vcpu * vcpu,gfn_t gfn,void * data,int offset,int len)2419 int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data,
2420 int offset, int len)
2421 {
2422 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2423
2424 return __kvm_read_guest_page(slot, gfn, data, offset, len);
2425 }
2426 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_page);
2427
kvm_read_guest(struct kvm * kvm,gpa_t gpa,void * data,unsigned long len)2428 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
2429 {
2430 gfn_t gfn = gpa >> PAGE_SHIFT;
2431 int seg;
2432 int offset = offset_in_page(gpa);
2433 int ret;
2434
2435 while ((seg = next_segment(len, offset)) != 0) {
2436 ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
2437 if (ret < 0)
2438 return ret;
2439 offset = 0;
2440 len -= seg;
2441 data += seg;
2442 ++gfn;
2443 }
2444 return 0;
2445 }
2446 EXPORT_SYMBOL_GPL(kvm_read_guest);
2447
kvm_vcpu_read_guest(struct kvm_vcpu * vcpu,gpa_t gpa,void * data,unsigned long len)2448 int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data, unsigned long len)
2449 {
2450 gfn_t gfn = gpa >> PAGE_SHIFT;
2451 int seg;
2452 int offset = offset_in_page(gpa);
2453 int ret;
2454
2455 while ((seg = next_segment(len, offset)) != 0) {
2456 ret = kvm_vcpu_read_guest_page(vcpu, gfn, data, offset, seg);
2457 if (ret < 0)
2458 return ret;
2459 offset = 0;
2460 len -= seg;
2461 data += seg;
2462 ++gfn;
2463 }
2464 return 0;
2465 }
2466 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest);
2467
__kvm_read_guest_atomic(struct kvm_memory_slot * slot,gfn_t gfn,void * data,int offset,unsigned long len)2468 static int __kvm_read_guest_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
2469 void *data, int offset, unsigned long len)
2470 {
2471 int r;
2472 unsigned long addr;
2473
2474 addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
2475 if (kvm_is_error_hva(addr))
2476 return -EFAULT;
2477 pagefault_disable();
2478 r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len);
2479 pagefault_enable();
2480 if (r)
2481 return -EFAULT;
2482 return 0;
2483 }
2484
kvm_vcpu_read_guest_atomic(struct kvm_vcpu * vcpu,gpa_t gpa,void * data,unsigned long len)2485 int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa,
2486 void *data, unsigned long len)
2487 {
2488 gfn_t gfn = gpa >> PAGE_SHIFT;
2489 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2490 int offset = offset_in_page(gpa);
2491
2492 return __kvm_read_guest_atomic(slot, gfn, data, offset, len);
2493 }
2494 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_atomic);
2495
__kvm_write_guest_page(struct kvm_memory_slot * memslot,gfn_t gfn,const void * data,int offset,int len)2496 static int __kvm_write_guest_page(struct kvm_memory_slot *memslot, gfn_t gfn,
2497 const void *data, int offset, int len)
2498 {
2499 int r;
2500 unsigned long addr;
2501
2502 addr = gfn_to_hva_memslot(memslot, gfn);
2503 if (kvm_is_error_hva(addr))
2504 return -EFAULT;
2505 r = __copy_to_user((void __user *)addr + offset, data, len);
2506 if (r)
2507 return -EFAULT;
2508 mark_page_dirty_in_slot(memslot, gfn);
2509 return 0;
2510 }
2511
kvm_write_guest_page(struct kvm * kvm,gfn_t gfn,const void * data,int offset,int len)2512 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn,
2513 const void *data, int offset, int len)
2514 {
2515 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
2516
2517 return __kvm_write_guest_page(slot, gfn, data, offset, len);
2518 }
2519 EXPORT_SYMBOL_GPL(kvm_write_guest_page);
2520
kvm_vcpu_write_guest_page(struct kvm_vcpu * vcpu,gfn_t gfn,const void * data,int offset,int len)2521 int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
2522 const void *data, int offset, int len)
2523 {
2524 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2525
2526 return __kvm_write_guest_page(slot, gfn, data, offset, len);
2527 }
2528 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest_page);
2529
kvm_write_guest(struct kvm * kvm,gpa_t gpa,const void * data,unsigned long len)2530 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
2531 unsigned long len)
2532 {
2533 gfn_t gfn = gpa >> PAGE_SHIFT;
2534 int seg;
2535 int offset = offset_in_page(gpa);
2536 int ret;
2537
2538 while ((seg = next_segment(len, offset)) != 0) {
2539 ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
2540 if (ret < 0)
2541 return ret;
2542 offset = 0;
2543 len -= seg;
2544 data += seg;
2545 ++gfn;
2546 }
2547 return 0;
2548 }
2549 EXPORT_SYMBOL_GPL(kvm_write_guest);
2550
kvm_vcpu_write_guest(struct kvm_vcpu * vcpu,gpa_t gpa,const void * data,unsigned long len)2551 int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data,
2552 unsigned long len)
2553 {
2554 gfn_t gfn = gpa >> PAGE_SHIFT;
2555 int seg;
2556 int offset = offset_in_page(gpa);
2557 int ret;
2558
2559 while ((seg = next_segment(len, offset)) != 0) {
2560 ret = kvm_vcpu_write_guest_page(vcpu, gfn, data, offset, seg);
2561 if (ret < 0)
2562 return ret;
2563 offset = 0;
2564 len -= seg;
2565 data += seg;
2566 ++gfn;
2567 }
2568 return 0;
2569 }
2570 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest);
2571
__kvm_gfn_to_hva_cache_init(struct kvm_memslots * slots,struct gfn_to_hva_cache * ghc,gpa_t gpa,unsigned long len)2572 static int __kvm_gfn_to_hva_cache_init(struct kvm_memslots *slots,
2573 struct gfn_to_hva_cache *ghc,
2574 gpa_t gpa, unsigned long len)
2575 {
2576 int offset = offset_in_page(gpa);
2577 gfn_t start_gfn = gpa >> PAGE_SHIFT;
2578 gfn_t end_gfn = (gpa + len - 1) >> PAGE_SHIFT;
2579 gfn_t nr_pages_needed = end_gfn - start_gfn + 1;
2580 gfn_t nr_pages_avail;
2581
2582 /* Update ghc->generation before performing any error checks. */
2583 ghc->generation = slots->generation;
2584
2585 if (start_gfn > end_gfn) {
2586 ghc->hva = KVM_HVA_ERR_BAD;
2587 return -EINVAL;
2588 }
2589
2590 /*
2591 * If the requested region crosses two memslots, we still
2592 * verify that the entire region is valid here.
2593 */
2594 for ( ; start_gfn <= end_gfn; start_gfn += nr_pages_avail) {
2595 ghc->memslot = __gfn_to_memslot(slots, start_gfn);
2596 ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn,
2597 &nr_pages_avail);
2598 if (kvm_is_error_hva(ghc->hva))
2599 return -EFAULT;
2600 }
2601
2602 /* Use the slow path for cross page reads and writes. */
2603 if (nr_pages_needed == 1)
2604 ghc->hva += offset;
2605 else
2606 ghc->memslot = NULL;
2607
2608 ghc->gpa = gpa;
2609 ghc->len = len;
2610 return 0;
2611 }
2612
kvm_gfn_to_hva_cache_init(struct kvm * kvm,struct gfn_to_hva_cache * ghc,gpa_t gpa,unsigned long len)2613 int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
2614 gpa_t gpa, unsigned long len)
2615 {
2616 struct kvm_memslots *slots = kvm_memslots(kvm);
2617 return __kvm_gfn_to_hva_cache_init(slots, ghc, gpa, len);
2618 }
2619 EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init);
2620
kvm_write_guest_offset_cached(struct kvm * kvm,struct gfn_to_hva_cache * ghc,void * data,unsigned int offset,unsigned long len)2621 int kvm_write_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
2622 void *data, unsigned int offset,
2623 unsigned long len)
2624 {
2625 struct kvm_memslots *slots = kvm_memslots(kvm);
2626 int r;
2627 gpa_t gpa = ghc->gpa + offset;
2628
2629 if (WARN_ON_ONCE(len + offset > ghc->len))
2630 return -EINVAL;
2631
2632 if (slots->generation != ghc->generation) {
2633 if (__kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len))
2634 return -EFAULT;
2635 }
2636
2637 if (kvm_is_error_hva(ghc->hva))
2638 return -EFAULT;
2639
2640 if (unlikely(!ghc->memslot))
2641 return kvm_write_guest(kvm, gpa, data, len);
2642
2643 r = __copy_to_user((void __user *)ghc->hva + offset, data, len);
2644 if (r)
2645 return -EFAULT;
2646 mark_page_dirty_in_slot(ghc->memslot, gpa >> PAGE_SHIFT);
2647
2648 return 0;
2649 }
2650 EXPORT_SYMBOL_GPL(kvm_write_guest_offset_cached);
2651
kvm_write_guest_cached(struct kvm * kvm,struct gfn_to_hva_cache * ghc,void * data,unsigned long len)2652 int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
2653 void *data, unsigned long len)
2654 {
2655 return kvm_write_guest_offset_cached(kvm, ghc, data, 0, len);
2656 }
2657 EXPORT_SYMBOL_GPL(kvm_write_guest_cached);
2658
kvm_read_guest_offset_cached(struct kvm * kvm,struct gfn_to_hva_cache * ghc,void * data,unsigned int offset,unsigned long len)2659 int kvm_read_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
2660 void *data, unsigned int offset,
2661 unsigned long len)
2662 {
2663 struct kvm_memslots *slots = kvm_memslots(kvm);
2664 int r;
2665 gpa_t gpa = ghc->gpa + offset;
2666
2667 if (WARN_ON_ONCE(len + offset > ghc->len))
2668 return -EINVAL;
2669
2670 if (slots->generation != ghc->generation) {
2671 if (__kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len))
2672 return -EFAULT;
2673 }
2674
2675 if (kvm_is_error_hva(ghc->hva))
2676 return -EFAULT;
2677
2678 if (unlikely(!ghc->memslot))
2679 return kvm_read_guest(kvm, gpa, data, len);
2680
2681 r = __copy_from_user(data, (void __user *)ghc->hva + offset, len);
2682 if (r)
2683 return -EFAULT;
2684
2685 return 0;
2686 }
2687 EXPORT_SYMBOL_GPL(kvm_read_guest_offset_cached);
2688
kvm_read_guest_cached(struct kvm * kvm,struct gfn_to_hva_cache * ghc,void * data,unsigned long len)2689 int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
2690 void *data, unsigned long len)
2691 {
2692 return kvm_read_guest_offset_cached(kvm, ghc, data, 0, len);
2693 }
2694 EXPORT_SYMBOL_GPL(kvm_read_guest_cached);
2695
kvm_clear_guest_page(struct kvm * kvm,gfn_t gfn,int offset,int len)2696 int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len)
2697 {
2698 const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0)));
2699
2700 return kvm_write_guest_page(kvm, gfn, zero_page, offset, len);
2701 }
2702 EXPORT_SYMBOL_GPL(kvm_clear_guest_page);
2703
kvm_clear_guest(struct kvm * kvm,gpa_t gpa,unsigned long len)2704 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
2705 {
2706 gfn_t gfn = gpa >> PAGE_SHIFT;
2707 int seg;
2708 int offset = offset_in_page(gpa);
2709 int ret;
2710
2711 while ((seg = next_segment(len, offset)) != 0) {
2712 ret = kvm_clear_guest_page(kvm, gfn, offset, seg);
2713 if (ret < 0)
2714 return ret;
2715 offset = 0;
2716 len -= seg;
2717 ++gfn;
2718 }
2719 return 0;
2720 }
2721 EXPORT_SYMBOL_GPL(kvm_clear_guest);
2722
mark_page_dirty_in_slot(struct kvm_memory_slot * memslot,gfn_t gfn)2723 void mark_page_dirty_in_slot(struct kvm_memory_slot *memslot, gfn_t gfn)
2724 {
2725 if (memslot && memslot->dirty_bitmap) {
2726 unsigned long rel_gfn = gfn - memslot->base_gfn;
2727
2728 set_bit_le(rel_gfn, memslot->dirty_bitmap);
2729 }
2730 }
2731 EXPORT_SYMBOL_GPL(mark_page_dirty_in_slot);
2732
mark_page_dirty(struct kvm * kvm,gfn_t gfn)2733 void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
2734 {
2735 struct kvm_memory_slot *memslot;
2736
2737 memslot = gfn_to_memslot(kvm, gfn);
2738 mark_page_dirty_in_slot(memslot, gfn);
2739 }
2740 EXPORT_SYMBOL_GPL(mark_page_dirty);
2741
kvm_vcpu_mark_page_dirty(struct kvm_vcpu * vcpu,gfn_t gfn)2742 void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn)
2743 {
2744 struct kvm_memory_slot *memslot;
2745
2746 memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2747 mark_page_dirty_in_slot(memslot, gfn);
2748 }
2749 EXPORT_SYMBOL_GPL(kvm_vcpu_mark_page_dirty);
2750
kvm_sigset_activate(struct kvm_vcpu * vcpu)2751 void kvm_sigset_activate(struct kvm_vcpu *vcpu)
2752 {
2753 if (!vcpu->sigset_active)
2754 return;
2755
2756 /*
2757 * This does a lockless modification of ->real_blocked, which is fine
2758 * because, only current can change ->real_blocked and all readers of
2759 * ->real_blocked don't care as long ->real_blocked is always a subset
2760 * of ->blocked.
2761 */
2762 sigprocmask(SIG_SETMASK, &vcpu->sigset, ¤t->real_blocked);
2763 }
2764
kvm_sigset_deactivate(struct kvm_vcpu * vcpu)2765 void kvm_sigset_deactivate(struct kvm_vcpu *vcpu)
2766 {
2767 if (!vcpu->sigset_active)
2768 return;
2769
2770 sigprocmask(SIG_SETMASK, ¤t->real_blocked, NULL);
2771 sigemptyset(¤t->real_blocked);
2772 }
2773
grow_halt_poll_ns(struct kvm_vcpu * vcpu)2774 static void grow_halt_poll_ns(struct kvm_vcpu *vcpu)
2775 {
2776 unsigned int old, val, grow, grow_start;
2777
2778 old = val = vcpu->halt_poll_ns;
2779 grow_start = READ_ONCE(halt_poll_ns_grow_start);
2780 grow = READ_ONCE(halt_poll_ns_grow);
2781 if (!grow)
2782 goto out;
2783
2784 val *= grow;
2785 if (val < grow_start)
2786 val = grow_start;
2787
2788 if (val > vcpu->kvm->max_halt_poll_ns)
2789 val = vcpu->kvm->max_halt_poll_ns;
2790
2791 vcpu->halt_poll_ns = val;
2792 out:
2793 trace_kvm_halt_poll_ns_grow(vcpu->vcpu_id, val, old);
2794 }
2795
shrink_halt_poll_ns(struct kvm_vcpu * vcpu)2796 static void shrink_halt_poll_ns(struct kvm_vcpu *vcpu)
2797 {
2798 unsigned int old, val, shrink, grow_start;
2799
2800 old = val = vcpu->halt_poll_ns;
2801 shrink = READ_ONCE(halt_poll_ns_shrink);
2802 grow_start = READ_ONCE(halt_poll_ns_grow_start);
2803 if (shrink == 0)
2804 val = 0;
2805 else
2806 val /= shrink;
2807
2808 if (val < grow_start)
2809 val = 0;
2810
2811 vcpu->halt_poll_ns = val;
2812 trace_kvm_halt_poll_ns_shrink(vcpu->vcpu_id, val, old);
2813 }
2814
kvm_vcpu_check_block(struct kvm_vcpu * vcpu)2815 static int kvm_vcpu_check_block(struct kvm_vcpu *vcpu)
2816 {
2817 int ret = -EINTR;
2818 int idx = srcu_read_lock(&vcpu->kvm->srcu);
2819
2820 if (kvm_arch_vcpu_runnable(vcpu)) {
2821 kvm_make_request(KVM_REQ_UNHALT, vcpu);
2822 goto out;
2823 }
2824 if (kvm_cpu_has_pending_timer(vcpu))
2825 goto out;
2826 if (signal_pending(current))
2827 goto out;
2828
2829 ret = 0;
2830 out:
2831 srcu_read_unlock(&vcpu->kvm->srcu, idx);
2832 return ret;
2833 }
2834
2835 static inline void
update_halt_poll_stats(struct kvm_vcpu * vcpu,u64 poll_ns,bool waited)2836 update_halt_poll_stats(struct kvm_vcpu *vcpu, u64 poll_ns, bool waited)
2837 {
2838 if (waited)
2839 vcpu->stat.halt_poll_fail_ns += poll_ns;
2840 else
2841 vcpu->stat.halt_poll_success_ns += poll_ns;
2842 }
2843
2844 /*
2845 * The vCPU has executed a HLT instruction with in-kernel mode enabled.
2846 */
kvm_vcpu_block(struct kvm_vcpu * vcpu)2847 void kvm_vcpu_block(struct kvm_vcpu *vcpu)
2848 {
2849 ktime_t start, cur, poll_end;
2850 bool waited = false;
2851 u64 block_ns;
2852
2853 kvm_arch_vcpu_blocking(vcpu);
2854
2855 start = cur = poll_end = ktime_get();
2856 if (vcpu->halt_poll_ns && !kvm_arch_no_poll(vcpu)) {
2857 ktime_t stop = ktime_add_ns(ktime_get(), vcpu->halt_poll_ns);
2858
2859 ++vcpu->stat.halt_attempted_poll;
2860 do {
2861 /*
2862 * This sets KVM_REQ_UNHALT if an interrupt
2863 * arrives.
2864 */
2865 if (kvm_vcpu_check_block(vcpu) < 0) {
2866 ++vcpu->stat.halt_successful_poll;
2867 if (!vcpu_valid_wakeup(vcpu))
2868 ++vcpu->stat.halt_poll_invalid;
2869 goto out;
2870 }
2871 poll_end = cur = ktime_get();
2872 } while (single_task_running() && !need_resched() &&
2873 ktime_before(cur, stop));
2874 }
2875
2876 prepare_to_rcuwait(&vcpu->wait);
2877 for (;;) {
2878 set_current_state(TASK_INTERRUPTIBLE);
2879
2880 if (kvm_vcpu_check_block(vcpu) < 0)
2881 break;
2882
2883 waited = true;
2884 schedule();
2885 }
2886 finish_rcuwait(&vcpu->wait);
2887 cur = ktime_get();
2888 out:
2889 kvm_arch_vcpu_unblocking(vcpu);
2890 block_ns = ktime_to_ns(cur) - ktime_to_ns(start);
2891
2892 update_halt_poll_stats(
2893 vcpu, ktime_to_ns(ktime_sub(poll_end, start)), waited);
2894
2895 if (!kvm_arch_no_poll(vcpu)) {
2896 if (!vcpu_valid_wakeup(vcpu)) {
2897 shrink_halt_poll_ns(vcpu);
2898 } else if (vcpu->kvm->max_halt_poll_ns) {
2899 if (block_ns <= vcpu->halt_poll_ns)
2900 ;
2901 /* we had a long block, shrink polling */
2902 else if (vcpu->halt_poll_ns &&
2903 block_ns > vcpu->kvm->max_halt_poll_ns)
2904 shrink_halt_poll_ns(vcpu);
2905 /* we had a short halt and our poll time is too small */
2906 else if (vcpu->halt_poll_ns < vcpu->kvm->max_halt_poll_ns &&
2907 block_ns < vcpu->kvm->max_halt_poll_ns)
2908 grow_halt_poll_ns(vcpu);
2909 } else {
2910 vcpu->halt_poll_ns = 0;
2911 }
2912 }
2913
2914 trace_kvm_vcpu_wakeup(block_ns, waited, vcpu_valid_wakeup(vcpu));
2915 kvm_arch_vcpu_block_finish(vcpu);
2916 }
2917 EXPORT_SYMBOL_GPL(kvm_vcpu_block);
2918
kvm_vcpu_wake_up(struct kvm_vcpu * vcpu)2919 bool kvm_vcpu_wake_up(struct kvm_vcpu *vcpu)
2920 {
2921 struct rcuwait *waitp;
2922
2923 waitp = kvm_arch_vcpu_get_wait(vcpu);
2924 if (rcuwait_wake_up(waitp)) {
2925 WRITE_ONCE(vcpu->ready, true);
2926 ++vcpu->stat.halt_wakeup;
2927 return true;
2928 }
2929
2930 return false;
2931 }
2932 EXPORT_SYMBOL_GPL(kvm_vcpu_wake_up);
2933
2934 #ifndef CONFIG_S390
2935 /*
2936 * Kick a sleeping VCPU, or a guest VCPU in guest mode, into host kernel mode.
2937 */
kvm_vcpu_kick(struct kvm_vcpu * vcpu)2938 void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
2939 {
2940 int me;
2941 int cpu = vcpu->cpu;
2942
2943 if (kvm_vcpu_wake_up(vcpu))
2944 return;
2945
2946 me = get_cpu();
2947 if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
2948 if (kvm_arch_vcpu_should_kick(vcpu))
2949 smp_send_reschedule(cpu);
2950 put_cpu();
2951 }
2952 EXPORT_SYMBOL_GPL(kvm_vcpu_kick);
2953 #endif /* !CONFIG_S390 */
2954
kvm_vcpu_yield_to(struct kvm_vcpu * target)2955 int kvm_vcpu_yield_to(struct kvm_vcpu *target)
2956 {
2957 struct pid *pid;
2958 struct task_struct *task = NULL;
2959 int ret = 0;
2960
2961 rcu_read_lock();
2962 pid = rcu_dereference(target->pid);
2963 if (pid)
2964 task = get_pid_task(pid, PIDTYPE_PID);
2965 rcu_read_unlock();
2966 if (!task)
2967 return ret;
2968 ret = yield_to(task, 1);
2969 put_task_struct(task);
2970
2971 return ret;
2972 }
2973 EXPORT_SYMBOL_GPL(kvm_vcpu_yield_to);
2974
2975 /*
2976 * Helper that checks whether a VCPU is eligible for directed yield.
2977 * Most eligible candidate to yield is decided by following heuristics:
2978 *
2979 * (a) VCPU which has not done pl-exit or cpu relax intercepted recently
2980 * (preempted lock holder), indicated by @in_spin_loop.
2981 * Set at the beginning and cleared at the end of interception/PLE handler.
2982 *
2983 * (b) VCPU which has done pl-exit/ cpu relax intercepted but did not get
2984 * chance last time (mostly it has become eligible now since we have probably
2985 * yielded to lockholder in last iteration. This is done by toggling
2986 * @dy_eligible each time a VCPU checked for eligibility.)
2987 *
2988 * Yielding to a recently pl-exited/cpu relax intercepted VCPU before yielding
2989 * to preempted lock-holder could result in wrong VCPU selection and CPU
2990 * burning. Giving priority for a potential lock-holder increases lock
2991 * progress.
2992 *
2993 * Since algorithm is based on heuristics, accessing another VCPU data without
2994 * locking does not harm. It may result in trying to yield to same VCPU, fail
2995 * and continue with next VCPU and so on.
2996 */
kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu * vcpu)2997 static bool kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu *vcpu)
2998 {
2999 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
3000 bool eligible;
3001
3002 eligible = !vcpu->spin_loop.in_spin_loop ||
3003 vcpu->spin_loop.dy_eligible;
3004
3005 if (vcpu->spin_loop.in_spin_loop)
3006 kvm_vcpu_set_dy_eligible(vcpu, !vcpu->spin_loop.dy_eligible);
3007
3008 return eligible;
3009 #else
3010 return true;
3011 #endif
3012 }
3013
3014 /*
3015 * Unlike kvm_arch_vcpu_runnable, this function is called outside
3016 * a vcpu_load/vcpu_put pair. However, for most architectures
3017 * kvm_arch_vcpu_runnable does not require vcpu_load.
3018 */
kvm_arch_dy_runnable(struct kvm_vcpu * vcpu)3019 bool __weak kvm_arch_dy_runnable(struct kvm_vcpu *vcpu)
3020 {
3021 return kvm_arch_vcpu_runnable(vcpu);
3022 }
3023
vcpu_dy_runnable(struct kvm_vcpu * vcpu)3024 static bool vcpu_dy_runnable(struct kvm_vcpu *vcpu)
3025 {
3026 if (kvm_arch_dy_runnable(vcpu))
3027 return true;
3028
3029 #ifdef CONFIG_KVM_ASYNC_PF
3030 if (!list_empty_careful(&vcpu->async_pf.done))
3031 return true;
3032 #endif
3033
3034 return false;
3035 }
3036
kvm_vcpu_on_spin(struct kvm_vcpu * me,bool yield_to_kernel_mode)3037 void kvm_vcpu_on_spin(struct kvm_vcpu *me, bool yield_to_kernel_mode)
3038 {
3039 struct kvm *kvm = me->kvm;
3040 struct kvm_vcpu *vcpu;
3041 int last_boosted_vcpu = me->kvm->last_boosted_vcpu;
3042 int yielded = 0;
3043 int try = 3;
3044 int pass;
3045 int i;
3046
3047 kvm_vcpu_set_in_spin_loop(me, true);
3048 /*
3049 * We boost the priority of a VCPU that is runnable but not
3050 * currently running, because it got preempted by something
3051 * else and called schedule in __vcpu_run. Hopefully that
3052 * VCPU is holding the lock that we need and will release it.
3053 * We approximate round-robin by starting at the last boosted VCPU.
3054 */
3055 for (pass = 0; pass < 2 && !yielded && try; pass++) {
3056 kvm_for_each_vcpu(i, vcpu, kvm) {
3057 if (!pass && i <= last_boosted_vcpu) {
3058 i = last_boosted_vcpu;
3059 continue;
3060 } else if (pass && i > last_boosted_vcpu)
3061 break;
3062 if (!READ_ONCE(vcpu->ready))
3063 continue;
3064 if (vcpu == me)
3065 continue;
3066 if (rcuwait_active(&vcpu->wait) &&
3067 !vcpu_dy_runnable(vcpu))
3068 continue;
3069 if (READ_ONCE(vcpu->preempted) && yield_to_kernel_mode &&
3070 !kvm_arch_vcpu_in_kernel(vcpu))
3071 continue;
3072 if (!kvm_vcpu_eligible_for_directed_yield(vcpu))
3073 continue;
3074
3075 yielded = kvm_vcpu_yield_to(vcpu);
3076 if (yielded > 0) {
3077 kvm->last_boosted_vcpu = i;
3078 break;
3079 } else if (yielded < 0) {
3080 try--;
3081 if (!try)
3082 break;
3083 }
3084 }
3085 }
3086 kvm_vcpu_set_in_spin_loop(me, false);
3087
3088 /* Ensure vcpu is not eligible during next spinloop */
3089 kvm_vcpu_set_dy_eligible(me, false);
3090 }
3091 EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin);
3092
kvm_vcpu_fault(struct vm_fault * vmf)3093 static vm_fault_t kvm_vcpu_fault(struct vm_fault *vmf)
3094 {
3095 struct kvm_vcpu *vcpu = vmf->vma->vm_file->private_data;
3096 struct page *page;
3097
3098 if (vmf->pgoff == 0)
3099 page = virt_to_page(vcpu->run);
3100 #ifdef CONFIG_X86
3101 else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
3102 page = virt_to_page(vcpu->arch.pio_data);
3103 #endif
3104 #ifdef CONFIG_KVM_MMIO
3105 else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
3106 page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
3107 #endif
3108 else
3109 return kvm_arch_vcpu_fault(vcpu, vmf);
3110 get_page(page);
3111 vmf->page = page;
3112 return 0;
3113 }
3114
3115 static const struct vm_operations_struct kvm_vcpu_vm_ops = {
3116 .fault = kvm_vcpu_fault,
3117 };
3118
kvm_vcpu_mmap(struct file * file,struct vm_area_struct * vma)3119 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
3120 {
3121 vma->vm_ops = &kvm_vcpu_vm_ops;
3122 return 0;
3123 }
3124
kvm_vcpu_release(struct inode * inode,struct file * filp)3125 static int kvm_vcpu_release(struct inode *inode, struct file *filp)
3126 {
3127 struct kvm_vcpu *vcpu = filp->private_data;
3128
3129 kvm_put_kvm(vcpu->kvm);
3130 return 0;
3131 }
3132
3133 static struct file_operations kvm_vcpu_fops = {
3134 .release = kvm_vcpu_release,
3135 .unlocked_ioctl = kvm_vcpu_ioctl,
3136 .mmap = kvm_vcpu_mmap,
3137 .llseek = noop_llseek,
3138 KVM_COMPAT(kvm_vcpu_compat_ioctl),
3139 };
3140
3141 /*
3142 * Allocates an inode for the vcpu.
3143 */
create_vcpu_fd(struct kvm_vcpu * vcpu)3144 static int create_vcpu_fd(struct kvm_vcpu *vcpu)
3145 {
3146 char name[8 + 1 + ITOA_MAX_LEN + 1];
3147
3148 snprintf(name, sizeof(name), "kvm-vcpu:%d", vcpu->vcpu_id);
3149 return anon_inode_getfd(name, &kvm_vcpu_fops, vcpu, O_RDWR | O_CLOEXEC);
3150 }
3151
kvm_create_vcpu_debugfs(struct kvm_vcpu * vcpu)3152 static void kvm_create_vcpu_debugfs(struct kvm_vcpu *vcpu)
3153 {
3154 #ifdef __KVM_HAVE_ARCH_VCPU_DEBUGFS
3155 struct dentry *debugfs_dentry;
3156 char dir_name[ITOA_MAX_LEN * 2];
3157
3158 if (!debugfs_initialized())
3159 return;
3160
3161 snprintf(dir_name, sizeof(dir_name), "vcpu%d", vcpu->vcpu_id);
3162 debugfs_dentry = debugfs_create_dir(dir_name,
3163 vcpu->kvm->debugfs_dentry);
3164
3165 kvm_arch_create_vcpu_debugfs(vcpu, debugfs_dentry);
3166 #endif
3167 }
3168
3169 /*
3170 * Creates some virtual cpus. Good luck creating more than one.
3171 */
kvm_vm_ioctl_create_vcpu(struct kvm * kvm,u32 id)3172 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id)
3173 {
3174 int r;
3175 struct kvm_vcpu *vcpu;
3176 struct page *page;
3177
3178 if (id >= KVM_MAX_VCPU_ID)
3179 return -EINVAL;
3180
3181 mutex_lock(&kvm->lock);
3182 if (kvm->created_vcpus == KVM_MAX_VCPUS) {
3183 mutex_unlock(&kvm->lock);
3184 return -EINVAL;
3185 }
3186
3187 kvm->created_vcpus++;
3188 mutex_unlock(&kvm->lock);
3189
3190 r = kvm_arch_vcpu_precreate(kvm, id);
3191 if (r)
3192 goto vcpu_decrement;
3193
3194 vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
3195 if (!vcpu) {
3196 r = -ENOMEM;
3197 goto vcpu_decrement;
3198 }
3199
3200 BUILD_BUG_ON(sizeof(struct kvm_run) > PAGE_SIZE);
3201 page = alloc_page(GFP_KERNEL | __GFP_ZERO);
3202 if (!page) {
3203 r = -ENOMEM;
3204 goto vcpu_free;
3205 }
3206 vcpu->run = page_address(page);
3207
3208 kvm_vcpu_init(vcpu, kvm, id);
3209
3210 r = kvm_arch_vcpu_create(vcpu);
3211 if (r)
3212 goto vcpu_free_run_page;
3213
3214 mutex_lock(&kvm->lock);
3215 if (kvm_get_vcpu_by_id(kvm, id)) {
3216 r = -EEXIST;
3217 goto unlock_vcpu_destroy;
3218 }
3219
3220 vcpu->vcpu_idx = atomic_read(&kvm->online_vcpus);
3221 BUG_ON(kvm->vcpus[vcpu->vcpu_idx]);
3222
3223 /* Now it's all set up, let userspace reach it */
3224 kvm_get_kvm(kvm);
3225 r = create_vcpu_fd(vcpu);
3226 if (r < 0) {
3227 kvm_put_kvm_no_destroy(kvm);
3228 goto unlock_vcpu_destroy;
3229 }
3230
3231 kvm->vcpus[vcpu->vcpu_idx] = vcpu;
3232
3233 /*
3234 * Pairs with smp_rmb() in kvm_get_vcpu. Write kvm->vcpus
3235 * before kvm->online_vcpu's incremented value.
3236 */
3237 smp_wmb();
3238 atomic_inc(&kvm->online_vcpus);
3239
3240 mutex_unlock(&kvm->lock);
3241 kvm_arch_vcpu_postcreate(vcpu);
3242 kvm_create_vcpu_debugfs(vcpu);
3243 return r;
3244
3245 unlock_vcpu_destroy:
3246 mutex_unlock(&kvm->lock);
3247 kvm_arch_vcpu_destroy(vcpu);
3248 vcpu_free_run_page:
3249 free_page((unsigned long)vcpu->run);
3250 vcpu_free:
3251 kmem_cache_free(kvm_vcpu_cache, vcpu);
3252 vcpu_decrement:
3253 mutex_lock(&kvm->lock);
3254 kvm->created_vcpus--;
3255 mutex_unlock(&kvm->lock);
3256 return r;
3257 }
3258
kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu * vcpu,sigset_t * sigset)3259 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
3260 {
3261 if (sigset) {
3262 sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
3263 vcpu->sigset_active = 1;
3264 vcpu->sigset = *sigset;
3265 } else
3266 vcpu->sigset_active = 0;
3267 return 0;
3268 }
3269
kvm_vcpu_ioctl(struct file * filp,unsigned int ioctl,unsigned long arg)3270 static long kvm_vcpu_ioctl(struct file *filp,
3271 unsigned int ioctl, unsigned long arg)
3272 {
3273 struct kvm_vcpu *vcpu = filp->private_data;
3274 void __user *argp = (void __user *)arg;
3275 int r;
3276 struct kvm_fpu *fpu = NULL;
3277 struct kvm_sregs *kvm_sregs = NULL;
3278
3279 if (vcpu->kvm->mm != current->mm || vcpu->kvm->vm_bugged)
3280 return -EIO;
3281
3282 if (unlikely(_IOC_TYPE(ioctl) != KVMIO))
3283 return -EINVAL;
3284
3285 /*
3286 * Some architectures have vcpu ioctls that are asynchronous to vcpu
3287 * execution; mutex_lock() would break them.
3288 */
3289 r = kvm_arch_vcpu_async_ioctl(filp, ioctl, arg);
3290 if (r != -ENOIOCTLCMD)
3291 return r;
3292
3293 if (mutex_lock_killable(&vcpu->mutex))
3294 return -EINTR;
3295 switch (ioctl) {
3296 case KVM_RUN: {
3297 struct pid *oldpid;
3298 r = -EINVAL;
3299 if (arg)
3300 goto out;
3301 oldpid = rcu_access_pointer(vcpu->pid);
3302 if (unlikely(oldpid != task_pid(current))) {
3303 /* The thread running this VCPU changed. */
3304 struct pid *newpid;
3305
3306 r = kvm_arch_vcpu_run_pid_change(vcpu);
3307 if (r)
3308 break;
3309
3310 newpid = get_task_pid(current, PIDTYPE_PID);
3311 rcu_assign_pointer(vcpu->pid, newpid);
3312 if (oldpid)
3313 synchronize_rcu();
3314 put_pid(oldpid);
3315 }
3316 r = kvm_arch_vcpu_ioctl_run(vcpu);
3317 trace_kvm_userspace_exit(vcpu->run->exit_reason, r);
3318 break;
3319 }
3320 case KVM_GET_REGS: {
3321 struct kvm_regs *kvm_regs;
3322
3323 r = -ENOMEM;
3324 kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL_ACCOUNT);
3325 if (!kvm_regs)
3326 goto out;
3327 r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
3328 if (r)
3329 goto out_free1;
3330 r = -EFAULT;
3331 if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
3332 goto out_free1;
3333 r = 0;
3334 out_free1:
3335 kfree(kvm_regs);
3336 break;
3337 }
3338 case KVM_SET_REGS: {
3339 struct kvm_regs *kvm_regs;
3340
3341 kvm_regs = memdup_user(argp, sizeof(*kvm_regs));
3342 if (IS_ERR(kvm_regs)) {
3343 r = PTR_ERR(kvm_regs);
3344 goto out;
3345 }
3346 r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
3347 kfree(kvm_regs);
3348 break;
3349 }
3350 case KVM_GET_SREGS: {
3351 kvm_sregs = kzalloc(sizeof(struct kvm_sregs),
3352 GFP_KERNEL_ACCOUNT);
3353 r = -ENOMEM;
3354 if (!kvm_sregs)
3355 goto out;
3356 r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs);
3357 if (r)
3358 goto out;
3359 r = -EFAULT;
3360 if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs)))
3361 goto out;
3362 r = 0;
3363 break;
3364 }
3365 case KVM_SET_SREGS: {
3366 kvm_sregs = memdup_user(argp, sizeof(*kvm_sregs));
3367 if (IS_ERR(kvm_sregs)) {
3368 r = PTR_ERR(kvm_sregs);
3369 kvm_sregs = NULL;
3370 goto out;
3371 }
3372 r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs);
3373 break;
3374 }
3375 case KVM_GET_MP_STATE: {
3376 struct kvm_mp_state mp_state;
3377
3378 r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
3379 if (r)
3380 goto out;
3381 r = -EFAULT;
3382 if (copy_to_user(argp, &mp_state, sizeof(mp_state)))
3383 goto out;
3384 r = 0;
3385 break;
3386 }
3387 case KVM_SET_MP_STATE: {
3388 struct kvm_mp_state mp_state;
3389
3390 r = -EFAULT;
3391 if (copy_from_user(&mp_state, argp, sizeof(mp_state)))
3392 goto out;
3393 r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
3394 break;
3395 }
3396 case KVM_TRANSLATE: {
3397 struct kvm_translation tr;
3398
3399 r = -EFAULT;
3400 if (copy_from_user(&tr, argp, sizeof(tr)))
3401 goto out;
3402 r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
3403 if (r)
3404 goto out;
3405 r = -EFAULT;
3406 if (copy_to_user(argp, &tr, sizeof(tr)))
3407 goto out;
3408 r = 0;
3409 break;
3410 }
3411 case KVM_SET_GUEST_DEBUG: {
3412 struct kvm_guest_debug dbg;
3413
3414 r = -EFAULT;
3415 if (copy_from_user(&dbg, argp, sizeof(dbg)))
3416 goto out;
3417 r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg);
3418 break;
3419 }
3420 case KVM_SET_SIGNAL_MASK: {
3421 struct kvm_signal_mask __user *sigmask_arg = argp;
3422 struct kvm_signal_mask kvm_sigmask;
3423 sigset_t sigset, *p;
3424
3425 p = NULL;
3426 if (argp) {
3427 r = -EFAULT;
3428 if (copy_from_user(&kvm_sigmask, argp,
3429 sizeof(kvm_sigmask)))
3430 goto out;
3431 r = -EINVAL;
3432 if (kvm_sigmask.len != sizeof(sigset))
3433 goto out;
3434 r = -EFAULT;
3435 if (copy_from_user(&sigset, sigmask_arg->sigset,
3436 sizeof(sigset)))
3437 goto out;
3438 p = &sigset;
3439 }
3440 r = kvm_vcpu_ioctl_set_sigmask(vcpu, p);
3441 break;
3442 }
3443 case KVM_GET_FPU: {
3444 fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL_ACCOUNT);
3445 r = -ENOMEM;
3446 if (!fpu)
3447 goto out;
3448 r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu);
3449 if (r)
3450 goto out;
3451 r = -EFAULT;
3452 if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu)))
3453 goto out;
3454 r = 0;
3455 break;
3456 }
3457 case KVM_SET_FPU: {
3458 fpu = memdup_user(argp, sizeof(*fpu));
3459 if (IS_ERR(fpu)) {
3460 r = PTR_ERR(fpu);
3461 fpu = NULL;
3462 goto out;
3463 }
3464 r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu);
3465 break;
3466 }
3467 default:
3468 r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
3469 }
3470 out:
3471 mutex_unlock(&vcpu->mutex);
3472 kfree(fpu);
3473 kfree(kvm_sregs);
3474 return r;
3475 }
3476
3477 #ifdef CONFIG_KVM_COMPAT
kvm_vcpu_compat_ioctl(struct file * filp,unsigned int ioctl,unsigned long arg)3478 static long kvm_vcpu_compat_ioctl(struct file *filp,
3479 unsigned int ioctl, unsigned long arg)
3480 {
3481 struct kvm_vcpu *vcpu = filp->private_data;
3482 void __user *argp = compat_ptr(arg);
3483 int r;
3484
3485 if (vcpu->kvm->mm != current->mm || vcpu->kvm->vm_bugged)
3486 return -EIO;
3487
3488 switch (ioctl) {
3489 case KVM_SET_SIGNAL_MASK: {
3490 struct kvm_signal_mask __user *sigmask_arg = argp;
3491 struct kvm_signal_mask kvm_sigmask;
3492 sigset_t sigset;
3493
3494 if (argp) {
3495 r = -EFAULT;
3496 if (copy_from_user(&kvm_sigmask, argp,
3497 sizeof(kvm_sigmask)))
3498 goto out;
3499 r = -EINVAL;
3500 if (kvm_sigmask.len != sizeof(compat_sigset_t))
3501 goto out;
3502 r = -EFAULT;
3503 if (get_compat_sigset(&sigset,
3504 (compat_sigset_t __user *)sigmask_arg->sigset))
3505 goto out;
3506 r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
3507 } else
3508 r = kvm_vcpu_ioctl_set_sigmask(vcpu, NULL);
3509 break;
3510 }
3511 default:
3512 r = kvm_vcpu_ioctl(filp, ioctl, arg);
3513 }
3514
3515 out:
3516 return r;
3517 }
3518 #endif
3519
kvm_device_mmap(struct file * filp,struct vm_area_struct * vma)3520 static int kvm_device_mmap(struct file *filp, struct vm_area_struct *vma)
3521 {
3522 struct kvm_device *dev = filp->private_data;
3523
3524 if (dev->ops->mmap)
3525 return dev->ops->mmap(dev, vma);
3526
3527 return -ENODEV;
3528 }
3529
kvm_device_ioctl_attr(struct kvm_device * dev,int (* accessor)(struct kvm_device * dev,struct kvm_device_attr * attr),unsigned long arg)3530 static int kvm_device_ioctl_attr(struct kvm_device *dev,
3531 int (*accessor)(struct kvm_device *dev,
3532 struct kvm_device_attr *attr),
3533 unsigned long arg)
3534 {
3535 struct kvm_device_attr attr;
3536
3537 if (!accessor)
3538 return -EPERM;
3539
3540 if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
3541 return -EFAULT;
3542
3543 return accessor(dev, &attr);
3544 }
3545
kvm_device_ioctl(struct file * filp,unsigned int ioctl,unsigned long arg)3546 static long kvm_device_ioctl(struct file *filp, unsigned int ioctl,
3547 unsigned long arg)
3548 {
3549 struct kvm_device *dev = filp->private_data;
3550
3551 if (dev->kvm->mm != current->mm || dev->kvm->vm_bugged)
3552 return -EIO;
3553
3554 switch (ioctl) {
3555 case KVM_SET_DEVICE_ATTR:
3556 return kvm_device_ioctl_attr(dev, dev->ops->set_attr, arg);
3557 case KVM_GET_DEVICE_ATTR:
3558 return kvm_device_ioctl_attr(dev, dev->ops->get_attr, arg);
3559 case KVM_HAS_DEVICE_ATTR:
3560 return kvm_device_ioctl_attr(dev, dev->ops->has_attr, arg);
3561 default:
3562 if (dev->ops->ioctl)
3563 return dev->ops->ioctl(dev, ioctl, arg);
3564
3565 return -ENOTTY;
3566 }
3567 }
3568
kvm_device_release(struct inode * inode,struct file * filp)3569 static int kvm_device_release(struct inode *inode, struct file *filp)
3570 {
3571 struct kvm_device *dev = filp->private_data;
3572 struct kvm *kvm = dev->kvm;
3573
3574 if (dev->ops->release) {
3575 mutex_lock(&kvm->lock);
3576 list_del(&dev->vm_node);
3577 dev->ops->release(dev);
3578 mutex_unlock(&kvm->lock);
3579 }
3580
3581 kvm_put_kvm(kvm);
3582 return 0;
3583 }
3584
3585 static const struct file_operations kvm_device_fops = {
3586 .unlocked_ioctl = kvm_device_ioctl,
3587 .release = kvm_device_release,
3588 KVM_COMPAT(kvm_device_ioctl),
3589 .mmap = kvm_device_mmap,
3590 };
3591
kvm_device_from_filp(struct file * filp)3592 struct kvm_device *kvm_device_from_filp(struct file *filp)
3593 {
3594 if (filp->f_op != &kvm_device_fops)
3595 return NULL;
3596
3597 return filp->private_data;
3598 }
3599
3600 static const struct kvm_device_ops *kvm_device_ops_table[KVM_DEV_TYPE_MAX] = {
3601 #ifdef CONFIG_KVM_MPIC
3602 [KVM_DEV_TYPE_FSL_MPIC_20] = &kvm_mpic_ops,
3603 [KVM_DEV_TYPE_FSL_MPIC_42] = &kvm_mpic_ops,
3604 #endif
3605 };
3606
kvm_register_device_ops(const struct kvm_device_ops * ops,u32 type)3607 int kvm_register_device_ops(const struct kvm_device_ops *ops, u32 type)
3608 {
3609 if (type >= ARRAY_SIZE(kvm_device_ops_table))
3610 return -ENOSPC;
3611
3612 if (kvm_device_ops_table[type] != NULL)
3613 return -EEXIST;
3614
3615 kvm_device_ops_table[type] = ops;
3616 return 0;
3617 }
3618
kvm_unregister_device_ops(u32 type)3619 void kvm_unregister_device_ops(u32 type)
3620 {
3621 if (kvm_device_ops_table[type] != NULL)
3622 kvm_device_ops_table[type] = NULL;
3623 }
3624
kvm_ioctl_create_device(struct kvm * kvm,struct kvm_create_device * cd)3625 static int kvm_ioctl_create_device(struct kvm *kvm,
3626 struct kvm_create_device *cd)
3627 {
3628 const struct kvm_device_ops *ops = NULL;
3629 struct kvm_device *dev;
3630 bool test = cd->flags & KVM_CREATE_DEVICE_TEST;
3631 int type;
3632 int ret;
3633
3634 if (cd->type >= ARRAY_SIZE(kvm_device_ops_table))
3635 return -ENODEV;
3636
3637 type = array_index_nospec(cd->type, ARRAY_SIZE(kvm_device_ops_table));
3638 ops = kvm_device_ops_table[type];
3639 if (ops == NULL)
3640 return -ENODEV;
3641
3642 if (test)
3643 return 0;
3644
3645 dev = kzalloc(sizeof(*dev), GFP_KERNEL_ACCOUNT);
3646 if (!dev)
3647 return -ENOMEM;
3648
3649 dev->ops = ops;
3650 dev->kvm = kvm;
3651
3652 mutex_lock(&kvm->lock);
3653 ret = ops->create(dev, type);
3654 if (ret < 0) {
3655 mutex_unlock(&kvm->lock);
3656 kfree(dev);
3657 return ret;
3658 }
3659 list_add(&dev->vm_node, &kvm->devices);
3660 mutex_unlock(&kvm->lock);
3661
3662 if (ops->init)
3663 ops->init(dev);
3664
3665 kvm_get_kvm(kvm);
3666 ret = anon_inode_getfd(ops->name, &kvm_device_fops, dev, O_RDWR | O_CLOEXEC);
3667 if (ret < 0) {
3668 kvm_put_kvm_no_destroy(kvm);
3669 mutex_lock(&kvm->lock);
3670 list_del(&dev->vm_node);
3671 if (ops->release)
3672 ops->release(dev);
3673 mutex_unlock(&kvm->lock);
3674 if (ops->destroy)
3675 ops->destroy(dev);
3676 return ret;
3677 }
3678
3679 cd->fd = ret;
3680 return 0;
3681 }
3682
kvm_vm_ioctl_check_extension_generic(struct kvm * kvm,long arg)3683 static long kvm_vm_ioctl_check_extension_generic(struct kvm *kvm, long arg)
3684 {
3685 switch (arg) {
3686 case KVM_CAP_USER_MEMORY:
3687 case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
3688 case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS:
3689 case KVM_CAP_INTERNAL_ERROR_DATA:
3690 #ifdef CONFIG_HAVE_KVM_MSI
3691 case KVM_CAP_SIGNAL_MSI:
3692 #endif
3693 #ifdef CONFIG_HAVE_KVM_IRQFD
3694 case KVM_CAP_IRQFD:
3695 case KVM_CAP_IRQFD_RESAMPLE:
3696 #endif
3697 case KVM_CAP_IOEVENTFD_ANY_LENGTH:
3698 case KVM_CAP_CHECK_EXTENSION_VM:
3699 case KVM_CAP_ENABLE_CAP_VM:
3700 case KVM_CAP_HALT_POLL:
3701 return 1;
3702 #ifdef CONFIG_KVM_MMIO
3703 case KVM_CAP_COALESCED_MMIO:
3704 return KVM_COALESCED_MMIO_PAGE_OFFSET;
3705 case KVM_CAP_COALESCED_PIO:
3706 return 1;
3707 #endif
3708 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
3709 case KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2:
3710 return KVM_DIRTY_LOG_MANUAL_CAPS;
3711 #endif
3712 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
3713 case KVM_CAP_IRQ_ROUTING:
3714 return KVM_MAX_IRQ_ROUTES;
3715 #endif
3716 #if KVM_ADDRESS_SPACE_NUM > 1
3717 case KVM_CAP_MULTI_ADDRESS_SPACE:
3718 return KVM_ADDRESS_SPACE_NUM;
3719 #endif
3720 case KVM_CAP_NR_MEMSLOTS:
3721 return KVM_USER_MEM_SLOTS;
3722 default:
3723 break;
3724 }
3725 return kvm_vm_ioctl_check_extension(kvm, arg);
3726 }
3727
kvm_vm_ioctl_enable_cap(struct kvm * kvm,struct kvm_enable_cap * cap)3728 int __attribute__((weak)) kvm_vm_ioctl_enable_cap(struct kvm *kvm,
3729 struct kvm_enable_cap *cap)
3730 {
3731 return -EINVAL;
3732 }
3733
kvm_vm_ioctl_enable_cap_generic(struct kvm * kvm,struct kvm_enable_cap * cap)3734 static int kvm_vm_ioctl_enable_cap_generic(struct kvm *kvm,
3735 struct kvm_enable_cap *cap)
3736 {
3737 switch (cap->cap) {
3738 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
3739 case KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2: {
3740 u64 allowed_options = KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE;
3741
3742 if (cap->args[0] & KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE)
3743 allowed_options = KVM_DIRTY_LOG_MANUAL_CAPS;
3744
3745 if (cap->flags || (cap->args[0] & ~allowed_options))
3746 return -EINVAL;
3747 kvm->manual_dirty_log_protect = cap->args[0];
3748 return 0;
3749 }
3750 #endif
3751 case KVM_CAP_HALT_POLL: {
3752 if (cap->flags || cap->args[0] != (unsigned int)cap->args[0])
3753 return -EINVAL;
3754
3755 kvm->max_halt_poll_ns = cap->args[0];
3756 return 0;
3757 }
3758 default:
3759 return kvm_vm_ioctl_enable_cap(kvm, cap);
3760 }
3761 }
3762
kvm_vm_ioctl(struct file * filp,unsigned int ioctl,unsigned long arg)3763 static long kvm_vm_ioctl(struct file *filp,
3764 unsigned int ioctl, unsigned long arg)
3765 {
3766 struct kvm *kvm = filp->private_data;
3767 void __user *argp = (void __user *)arg;
3768 int r;
3769
3770 if (kvm->mm != current->mm || kvm->vm_bugged)
3771 return -EIO;
3772 switch (ioctl) {
3773 case KVM_CREATE_VCPU:
3774 r = kvm_vm_ioctl_create_vcpu(kvm, arg);
3775 break;
3776 case KVM_ENABLE_CAP: {
3777 struct kvm_enable_cap cap;
3778
3779 r = -EFAULT;
3780 if (copy_from_user(&cap, argp, sizeof(cap)))
3781 goto out;
3782 r = kvm_vm_ioctl_enable_cap_generic(kvm, &cap);
3783 break;
3784 }
3785 case KVM_SET_USER_MEMORY_REGION: {
3786 struct kvm_userspace_memory_region kvm_userspace_mem;
3787
3788 r = -EFAULT;
3789 if (copy_from_user(&kvm_userspace_mem, argp,
3790 sizeof(kvm_userspace_mem)))
3791 goto out;
3792
3793 r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem);
3794 break;
3795 }
3796 case KVM_GET_DIRTY_LOG: {
3797 struct kvm_dirty_log log;
3798
3799 r = -EFAULT;
3800 if (copy_from_user(&log, argp, sizeof(log)))
3801 goto out;
3802 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
3803 break;
3804 }
3805 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
3806 case KVM_CLEAR_DIRTY_LOG: {
3807 struct kvm_clear_dirty_log log;
3808
3809 r = -EFAULT;
3810 if (copy_from_user(&log, argp, sizeof(log)))
3811 goto out;
3812 r = kvm_vm_ioctl_clear_dirty_log(kvm, &log);
3813 break;
3814 }
3815 #endif
3816 #ifdef CONFIG_KVM_MMIO
3817 case KVM_REGISTER_COALESCED_MMIO: {
3818 struct kvm_coalesced_mmio_zone zone;
3819
3820 r = -EFAULT;
3821 if (copy_from_user(&zone, argp, sizeof(zone)))
3822 goto out;
3823 r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
3824 break;
3825 }
3826 case KVM_UNREGISTER_COALESCED_MMIO: {
3827 struct kvm_coalesced_mmio_zone zone;
3828
3829 r = -EFAULT;
3830 if (copy_from_user(&zone, argp, sizeof(zone)))
3831 goto out;
3832 r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
3833 break;
3834 }
3835 #endif
3836 case KVM_IRQFD: {
3837 struct kvm_irqfd data;
3838
3839 r = -EFAULT;
3840 if (copy_from_user(&data, argp, sizeof(data)))
3841 goto out;
3842 r = kvm_irqfd(kvm, &data);
3843 break;
3844 }
3845 case KVM_IOEVENTFD: {
3846 struct kvm_ioeventfd data;
3847
3848 r = -EFAULT;
3849 if (copy_from_user(&data, argp, sizeof(data)))
3850 goto out;
3851 r = kvm_ioeventfd(kvm, &data);
3852 break;
3853 }
3854 #ifdef CONFIG_HAVE_KVM_MSI
3855 case KVM_SIGNAL_MSI: {
3856 struct kvm_msi msi;
3857
3858 r = -EFAULT;
3859 if (copy_from_user(&msi, argp, sizeof(msi)))
3860 goto out;
3861 r = kvm_send_userspace_msi(kvm, &msi);
3862 break;
3863 }
3864 #endif
3865 #ifdef __KVM_HAVE_IRQ_LINE
3866 case KVM_IRQ_LINE_STATUS:
3867 case KVM_IRQ_LINE: {
3868 struct kvm_irq_level irq_event;
3869
3870 r = -EFAULT;
3871 if (copy_from_user(&irq_event, argp, sizeof(irq_event)))
3872 goto out;
3873
3874 r = kvm_vm_ioctl_irq_line(kvm, &irq_event,
3875 ioctl == KVM_IRQ_LINE_STATUS);
3876 if (r)
3877 goto out;
3878
3879 r = -EFAULT;
3880 if (ioctl == KVM_IRQ_LINE_STATUS) {
3881 if (copy_to_user(argp, &irq_event, sizeof(irq_event)))
3882 goto out;
3883 }
3884
3885 r = 0;
3886 break;
3887 }
3888 #endif
3889 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
3890 case KVM_SET_GSI_ROUTING: {
3891 struct kvm_irq_routing routing;
3892 struct kvm_irq_routing __user *urouting;
3893 struct kvm_irq_routing_entry *entries = NULL;
3894
3895 r = -EFAULT;
3896 if (copy_from_user(&routing, argp, sizeof(routing)))
3897 goto out;
3898 r = -EINVAL;
3899 if (!kvm_arch_can_set_irq_routing(kvm))
3900 goto out;
3901 if (routing.nr > KVM_MAX_IRQ_ROUTES)
3902 goto out;
3903 if (routing.flags)
3904 goto out;
3905 if (routing.nr) {
3906 urouting = argp;
3907 entries = vmemdup_user(urouting->entries,
3908 array_size(sizeof(*entries),
3909 routing.nr));
3910 if (IS_ERR(entries)) {
3911 r = PTR_ERR(entries);
3912 goto out;
3913 }
3914 }
3915 r = kvm_set_irq_routing(kvm, entries, routing.nr,
3916 routing.flags);
3917 kvfree(entries);
3918 break;
3919 }
3920 #endif /* CONFIG_HAVE_KVM_IRQ_ROUTING */
3921 case KVM_CREATE_DEVICE: {
3922 struct kvm_create_device cd;
3923
3924 r = -EFAULT;
3925 if (copy_from_user(&cd, argp, sizeof(cd)))
3926 goto out;
3927
3928 r = kvm_ioctl_create_device(kvm, &cd);
3929 if (r)
3930 goto out;
3931
3932 r = -EFAULT;
3933 if (copy_to_user(argp, &cd, sizeof(cd)))
3934 goto out;
3935
3936 r = 0;
3937 break;
3938 }
3939 case KVM_CHECK_EXTENSION:
3940 r = kvm_vm_ioctl_check_extension_generic(kvm, arg);
3941 break;
3942 default:
3943 r = kvm_arch_vm_ioctl(filp, ioctl, arg);
3944 }
3945 out:
3946 return r;
3947 }
3948
3949 #ifdef CONFIG_KVM_COMPAT
3950 struct compat_kvm_dirty_log {
3951 __u32 slot;
3952 __u32 padding1;
3953 union {
3954 compat_uptr_t dirty_bitmap; /* one bit per page */
3955 __u64 padding2;
3956 };
3957 };
3958
3959 struct compat_kvm_clear_dirty_log {
3960 __u32 slot;
3961 __u32 num_pages;
3962 __u64 first_page;
3963 union {
3964 compat_uptr_t dirty_bitmap; /* one bit per page */
3965 __u64 padding2;
3966 };
3967 };
3968
kvm_arch_vm_compat_ioctl(struct file * filp,unsigned int ioctl,unsigned long arg)3969 long __weak kvm_arch_vm_compat_ioctl(struct file *filp, unsigned int ioctl,
3970 unsigned long arg)
3971 {
3972 return -ENOTTY;
3973 }
3974
kvm_vm_compat_ioctl(struct file * filp,unsigned int ioctl,unsigned long arg)3975 static long kvm_vm_compat_ioctl(struct file *filp,
3976 unsigned int ioctl, unsigned long arg)
3977 {
3978 struct kvm *kvm = filp->private_data;
3979 int r;
3980
3981 if (kvm->mm != current->mm || kvm->vm_bugged)
3982 return -EIO;
3983
3984 r = kvm_arch_vm_compat_ioctl(filp, ioctl, arg);
3985 if (r != -ENOTTY)
3986 return r;
3987
3988 switch (ioctl) {
3989 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
3990 case KVM_CLEAR_DIRTY_LOG: {
3991 struct compat_kvm_clear_dirty_log compat_log;
3992 struct kvm_clear_dirty_log log;
3993
3994 if (copy_from_user(&compat_log, (void __user *)arg,
3995 sizeof(compat_log)))
3996 return -EFAULT;
3997 log.slot = compat_log.slot;
3998 log.num_pages = compat_log.num_pages;
3999 log.first_page = compat_log.first_page;
4000 log.padding2 = compat_log.padding2;
4001 log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
4002
4003 r = kvm_vm_ioctl_clear_dirty_log(kvm, &log);
4004 break;
4005 }
4006 #endif
4007 case KVM_GET_DIRTY_LOG: {
4008 struct compat_kvm_dirty_log compat_log;
4009 struct kvm_dirty_log log;
4010
4011 if (copy_from_user(&compat_log, (void __user *)arg,
4012 sizeof(compat_log)))
4013 return -EFAULT;
4014 log.slot = compat_log.slot;
4015 log.padding1 = compat_log.padding1;
4016 log.padding2 = compat_log.padding2;
4017 log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
4018
4019 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
4020 break;
4021 }
4022 default:
4023 r = kvm_vm_ioctl(filp, ioctl, arg);
4024 }
4025 return r;
4026 }
4027 #endif
4028
4029 static struct file_operations kvm_vm_fops = {
4030 .release = kvm_vm_release,
4031 .unlocked_ioctl = kvm_vm_ioctl,
4032 .llseek = noop_llseek,
4033 KVM_COMPAT(kvm_vm_compat_ioctl),
4034 };
4035
kvm_dev_ioctl_create_vm(unsigned long type)4036 static int kvm_dev_ioctl_create_vm(unsigned long type)
4037 {
4038 int r;
4039 struct kvm *kvm;
4040 struct file *file;
4041
4042 kvm = kvm_create_vm(type);
4043 if (IS_ERR(kvm))
4044 return PTR_ERR(kvm);
4045 #ifdef CONFIG_KVM_MMIO
4046 r = kvm_coalesced_mmio_init(kvm);
4047 if (r < 0)
4048 goto put_kvm;
4049 #endif
4050 r = get_unused_fd_flags(O_CLOEXEC);
4051 if (r < 0)
4052 goto put_kvm;
4053
4054 file = anon_inode_getfile("kvm-vm", &kvm_vm_fops, kvm, O_RDWR);
4055 if (IS_ERR(file)) {
4056 put_unused_fd(r);
4057 r = PTR_ERR(file);
4058 goto put_kvm;
4059 }
4060
4061 /*
4062 * Don't call kvm_put_kvm anymore at this point; file->f_op is
4063 * already set, with ->release() being kvm_vm_release(). In error
4064 * cases it will be called by the final fput(file) and will take
4065 * care of doing kvm_put_kvm(kvm).
4066 */
4067 if (kvm_create_vm_debugfs(kvm, r) < 0) {
4068 put_unused_fd(r);
4069 fput(file);
4070 return -ENOMEM;
4071 }
4072 kvm_uevent_notify_change(KVM_EVENT_CREATE_VM, kvm);
4073
4074 fd_install(r, file);
4075 return r;
4076
4077 put_kvm:
4078 kvm_put_kvm(kvm);
4079 return r;
4080 }
4081
kvm_dev_ioctl(struct file * filp,unsigned int ioctl,unsigned long arg)4082 static long kvm_dev_ioctl(struct file *filp,
4083 unsigned int ioctl, unsigned long arg)
4084 {
4085 long r = -EINVAL;
4086
4087 switch (ioctl) {
4088 case KVM_GET_API_VERSION:
4089 if (arg)
4090 goto out;
4091 r = KVM_API_VERSION;
4092 break;
4093 case KVM_CREATE_VM:
4094 r = kvm_dev_ioctl_create_vm(arg);
4095 break;
4096 case KVM_CHECK_EXTENSION:
4097 r = kvm_vm_ioctl_check_extension_generic(NULL, arg);
4098 break;
4099 case KVM_GET_VCPU_MMAP_SIZE:
4100 if (arg)
4101 goto out;
4102 r = PAGE_SIZE; /* struct kvm_run */
4103 #ifdef CONFIG_X86
4104 r += PAGE_SIZE; /* pio data page */
4105 #endif
4106 #ifdef CONFIG_KVM_MMIO
4107 r += PAGE_SIZE; /* coalesced mmio ring page */
4108 #endif
4109 break;
4110 case KVM_TRACE_ENABLE:
4111 case KVM_TRACE_PAUSE:
4112 case KVM_TRACE_DISABLE:
4113 r = -EOPNOTSUPP;
4114 break;
4115 default:
4116 return kvm_arch_dev_ioctl(filp, ioctl, arg);
4117 }
4118 out:
4119 return r;
4120 }
4121
4122 static struct file_operations kvm_chardev_ops = {
4123 .unlocked_ioctl = kvm_dev_ioctl,
4124 .llseek = noop_llseek,
4125 KVM_COMPAT(kvm_dev_ioctl),
4126 };
4127
4128 static struct miscdevice kvm_dev = {
4129 KVM_MINOR,
4130 "kvm",
4131 &kvm_chardev_ops,
4132 };
4133
hardware_enable_nolock(void * junk)4134 static void hardware_enable_nolock(void *junk)
4135 {
4136 int cpu = raw_smp_processor_id();
4137 int r;
4138
4139 if (cpumask_test_cpu(cpu, cpus_hardware_enabled))
4140 return;
4141
4142 cpumask_set_cpu(cpu, cpus_hardware_enabled);
4143
4144 r = kvm_arch_hardware_enable();
4145
4146 if (r) {
4147 cpumask_clear_cpu(cpu, cpus_hardware_enabled);
4148 atomic_inc(&hardware_enable_failed);
4149 pr_info("kvm: enabling virtualization on CPU%d failed\n", cpu);
4150 }
4151 }
4152
kvm_starting_cpu(unsigned int cpu)4153 static int kvm_starting_cpu(unsigned int cpu)
4154 {
4155 raw_spin_lock(&kvm_count_lock);
4156 if (kvm_usage_count)
4157 hardware_enable_nolock(NULL);
4158 raw_spin_unlock(&kvm_count_lock);
4159 return 0;
4160 }
4161
hardware_disable_nolock(void * junk)4162 static void hardware_disable_nolock(void *junk)
4163 {
4164 int cpu = raw_smp_processor_id();
4165
4166 if (!cpumask_test_cpu(cpu, cpus_hardware_enabled))
4167 return;
4168 cpumask_clear_cpu(cpu, cpus_hardware_enabled);
4169 kvm_arch_hardware_disable();
4170 }
4171
kvm_dying_cpu(unsigned int cpu)4172 static int kvm_dying_cpu(unsigned int cpu)
4173 {
4174 raw_spin_lock(&kvm_count_lock);
4175 if (kvm_usage_count)
4176 hardware_disable_nolock(NULL);
4177 raw_spin_unlock(&kvm_count_lock);
4178 return 0;
4179 }
4180
hardware_disable_all_nolock(void)4181 static void hardware_disable_all_nolock(void)
4182 {
4183 BUG_ON(!kvm_usage_count);
4184
4185 kvm_usage_count--;
4186 if (!kvm_usage_count)
4187 on_each_cpu(hardware_disable_nolock, NULL, 1);
4188 }
4189
hardware_disable_all(void)4190 static void hardware_disable_all(void)
4191 {
4192 raw_spin_lock(&kvm_count_lock);
4193 hardware_disable_all_nolock();
4194 raw_spin_unlock(&kvm_count_lock);
4195 }
4196
hardware_enable_all(void)4197 static int hardware_enable_all(void)
4198 {
4199 int r = 0;
4200
4201 raw_spin_lock(&kvm_count_lock);
4202
4203 kvm_usage_count++;
4204 if (kvm_usage_count == 1) {
4205 atomic_set(&hardware_enable_failed, 0);
4206 on_each_cpu(hardware_enable_nolock, NULL, 1);
4207
4208 if (atomic_read(&hardware_enable_failed)) {
4209 hardware_disable_all_nolock();
4210 r = -EBUSY;
4211 }
4212 }
4213
4214 raw_spin_unlock(&kvm_count_lock);
4215
4216 return r;
4217 }
4218
kvm_reboot(struct notifier_block * notifier,unsigned long val,void * v)4219 static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
4220 void *v)
4221 {
4222 /*
4223 * Some (well, at least mine) BIOSes hang on reboot if
4224 * in vmx root mode.
4225 *
4226 * And Intel TXT required VMX off for all cpu when system shutdown.
4227 */
4228 pr_info("kvm: exiting hardware virtualization\n");
4229 kvm_rebooting = true;
4230 on_each_cpu(hardware_disable_nolock, NULL, 1);
4231 return NOTIFY_OK;
4232 }
4233
4234 static struct notifier_block kvm_reboot_notifier = {
4235 .notifier_call = kvm_reboot,
4236 .priority = 0,
4237 };
4238
kvm_io_bus_destroy(struct kvm_io_bus * bus)4239 static void kvm_io_bus_destroy(struct kvm_io_bus *bus)
4240 {
4241 int i;
4242
4243 for (i = 0; i < bus->dev_count; i++) {
4244 struct kvm_io_device *pos = bus->range[i].dev;
4245
4246 kvm_iodevice_destructor(pos);
4247 }
4248 kfree(bus);
4249 }
4250
kvm_io_bus_cmp(const struct kvm_io_range * r1,const struct kvm_io_range * r2)4251 static inline int kvm_io_bus_cmp(const struct kvm_io_range *r1,
4252 const struct kvm_io_range *r2)
4253 {
4254 gpa_t addr1 = r1->addr;
4255 gpa_t addr2 = r2->addr;
4256
4257 if (addr1 < addr2)
4258 return -1;
4259
4260 /* If r2->len == 0, match the exact address. If r2->len != 0,
4261 * accept any overlapping write. Any order is acceptable for
4262 * overlapping ranges, because kvm_io_bus_get_first_dev ensures
4263 * we process all of them.
4264 */
4265 if (r2->len) {
4266 addr1 += r1->len;
4267 addr2 += r2->len;
4268 }
4269
4270 if (addr1 > addr2)
4271 return 1;
4272
4273 return 0;
4274 }
4275
kvm_io_bus_sort_cmp(const void * p1,const void * p2)4276 static int kvm_io_bus_sort_cmp(const void *p1, const void *p2)
4277 {
4278 return kvm_io_bus_cmp(p1, p2);
4279 }
4280
kvm_io_bus_get_first_dev(struct kvm_io_bus * bus,gpa_t addr,int len)4281 static int kvm_io_bus_get_first_dev(struct kvm_io_bus *bus,
4282 gpa_t addr, int len)
4283 {
4284 struct kvm_io_range *range, key;
4285 int off;
4286
4287 key = (struct kvm_io_range) {
4288 .addr = addr,
4289 .len = len,
4290 };
4291
4292 range = bsearch(&key, bus->range, bus->dev_count,
4293 sizeof(struct kvm_io_range), kvm_io_bus_sort_cmp);
4294 if (range == NULL)
4295 return -ENOENT;
4296
4297 off = range - bus->range;
4298
4299 while (off > 0 && kvm_io_bus_cmp(&key, &bus->range[off-1]) == 0)
4300 off--;
4301
4302 return off;
4303 }
4304
__kvm_io_bus_write(struct kvm_vcpu * vcpu,struct kvm_io_bus * bus,struct kvm_io_range * range,const void * val)4305 static int __kvm_io_bus_write(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
4306 struct kvm_io_range *range, const void *val)
4307 {
4308 int idx;
4309
4310 idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
4311 if (idx < 0)
4312 return -EOPNOTSUPP;
4313
4314 while (idx < bus->dev_count &&
4315 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
4316 if (!kvm_iodevice_write(vcpu, bus->range[idx].dev, range->addr,
4317 range->len, val))
4318 return idx;
4319 idx++;
4320 }
4321
4322 return -EOPNOTSUPP;
4323 }
4324
4325 /* kvm_io_bus_write - called under kvm->slots_lock */
kvm_io_bus_write(struct kvm_vcpu * vcpu,enum kvm_bus bus_idx,gpa_t addr,int len,const void * val)4326 int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
4327 int len, const void *val)
4328 {
4329 struct kvm_io_bus *bus;
4330 struct kvm_io_range range;
4331 int r;
4332
4333 range = (struct kvm_io_range) {
4334 .addr = addr,
4335 .len = len,
4336 };
4337
4338 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
4339 if (!bus)
4340 return -ENOMEM;
4341 r = __kvm_io_bus_write(vcpu, bus, &range, val);
4342 return r < 0 ? r : 0;
4343 }
4344 EXPORT_SYMBOL_GPL(kvm_io_bus_write);
4345
4346 /* kvm_io_bus_write_cookie - called under kvm->slots_lock */
kvm_io_bus_write_cookie(struct kvm_vcpu * vcpu,enum kvm_bus bus_idx,gpa_t addr,int len,const void * val,long cookie)4347 int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx,
4348 gpa_t addr, int len, const void *val, long cookie)
4349 {
4350 struct kvm_io_bus *bus;
4351 struct kvm_io_range range;
4352
4353 range = (struct kvm_io_range) {
4354 .addr = addr,
4355 .len = len,
4356 };
4357
4358 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
4359 if (!bus)
4360 return -ENOMEM;
4361
4362 /* First try the device referenced by cookie. */
4363 if ((cookie >= 0) && (cookie < bus->dev_count) &&
4364 (kvm_io_bus_cmp(&range, &bus->range[cookie]) == 0))
4365 if (!kvm_iodevice_write(vcpu, bus->range[cookie].dev, addr, len,
4366 val))
4367 return cookie;
4368
4369 /*
4370 * cookie contained garbage; fall back to search and return the
4371 * correct cookie value.
4372 */
4373 return __kvm_io_bus_write(vcpu, bus, &range, val);
4374 }
4375
__kvm_io_bus_read(struct kvm_vcpu * vcpu,struct kvm_io_bus * bus,struct kvm_io_range * range,void * val)4376 static int __kvm_io_bus_read(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
4377 struct kvm_io_range *range, void *val)
4378 {
4379 int idx;
4380
4381 idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
4382 if (idx < 0)
4383 return -EOPNOTSUPP;
4384
4385 while (idx < bus->dev_count &&
4386 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
4387 if (!kvm_iodevice_read(vcpu, bus->range[idx].dev, range->addr,
4388 range->len, val))
4389 return idx;
4390 idx++;
4391 }
4392
4393 return -EOPNOTSUPP;
4394 }
4395
4396 /* kvm_io_bus_read - called under kvm->slots_lock */
kvm_io_bus_read(struct kvm_vcpu * vcpu,enum kvm_bus bus_idx,gpa_t addr,int len,void * val)4397 int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
4398 int len, void *val)
4399 {
4400 struct kvm_io_bus *bus;
4401 struct kvm_io_range range;
4402 int r;
4403
4404 range = (struct kvm_io_range) {
4405 .addr = addr,
4406 .len = len,
4407 };
4408
4409 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
4410 if (!bus)
4411 return -ENOMEM;
4412 r = __kvm_io_bus_read(vcpu, bus, &range, val);
4413 return r < 0 ? r : 0;
4414 }
4415
4416 /* Caller must hold slots_lock. */
kvm_io_bus_register_dev(struct kvm * kvm,enum kvm_bus bus_idx,gpa_t addr,int len,struct kvm_io_device * dev)4417 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
4418 int len, struct kvm_io_device *dev)
4419 {
4420 int i;
4421 struct kvm_io_bus *new_bus, *bus;
4422 struct kvm_io_range range;
4423
4424 bus = kvm_get_bus(kvm, bus_idx);
4425 if (!bus)
4426 return -ENOMEM;
4427
4428 /* exclude ioeventfd which is limited by maximum fd */
4429 if (bus->dev_count - bus->ioeventfd_count > NR_IOBUS_DEVS - 1)
4430 return -ENOSPC;
4431
4432 new_bus = kmalloc(struct_size(bus, range, bus->dev_count + 1),
4433 GFP_KERNEL_ACCOUNT);
4434 if (!new_bus)
4435 return -ENOMEM;
4436
4437 range = (struct kvm_io_range) {
4438 .addr = addr,
4439 .len = len,
4440 .dev = dev,
4441 };
4442
4443 for (i = 0; i < bus->dev_count; i++)
4444 if (kvm_io_bus_cmp(&bus->range[i], &range) > 0)
4445 break;
4446
4447 memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range));
4448 new_bus->dev_count++;
4449 new_bus->range[i] = range;
4450 memcpy(new_bus->range + i + 1, bus->range + i,
4451 (bus->dev_count - i) * sizeof(struct kvm_io_range));
4452 rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
4453 synchronize_srcu_expedited(&kvm->srcu);
4454 kfree(bus);
4455
4456 return 0;
4457 }
4458
4459 /* Caller must hold slots_lock. */
kvm_io_bus_unregister_dev(struct kvm * kvm,enum kvm_bus bus_idx,struct kvm_io_device * dev)4460 int kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
4461 struct kvm_io_device *dev)
4462 {
4463 int i, j;
4464 struct kvm_io_bus *new_bus, *bus;
4465
4466 bus = kvm_get_bus(kvm, bus_idx);
4467 if (!bus)
4468 return 0;
4469
4470 for (i = 0; i < bus->dev_count; i++)
4471 if (bus->range[i].dev == dev) {
4472 break;
4473 }
4474
4475 if (i == bus->dev_count)
4476 return 0;
4477
4478 new_bus = kmalloc(struct_size(bus, range, bus->dev_count - 1),
4479 GFP_KERNEL_ACCOUNT);
4480 if (new_bus) {
4481 memcpy(new_bus, bus, struct_size(bus, range, i));
4482 new_bus->dev_count--;
4483 memcpy(new_bus->range + i, bus->range + i + 1,
4484 flex_array_size(new_bus, range, new_bus->dev_count - i));
4485 }
4486
4487 rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
4488 synchronize_srcu_expedited(&kvm->srcu);
4489
4490 /* Destroy the old bus _after_ installing the (null) bus. */
4491 if (!new_bus) {
4492 pr_err("kvm: failed to shrink bus, removing it completely\n");
4493 for (j = 0; j < bus->dev_count; j++) {
4494 if (j == i)
4495 continue;
4496 kvm_iodevice_destructor(bus->range[j].dev);
4497 }
4498 }
4499
4500 kfree(bus);
4501 return new_bus ? 0 : -ENOMEM;
4502 }
4503
kvm_io_bus_get_dev(struct kvm * kvm,enum kvm_bus bus_idx,gpa_t addr)4504 struct kvm_io_device *kvm_io_bus_get_dev(struct kvm *kvm, enum kvm_bus bus_idx,
4505 gpa_t addr)
4506 {
4507 struct kvm_io_bus *bus;
4508 int dev_idx, srcu_idx;
4509 struct kvm_io_device *iodev = NULL;
4510
4511 srcu_idx = srcu_read_lock(&kvm->srcu);
4512
4513 bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
4514 if (!bus)
4515 goto out_unlock;
4516
4517 dev_idx = kvm_io_bus_get_first_dev(bus, addr, 1);
4518 if (dev_idx < 0)
4519 goto out_unlock;
4520
4521 iodev = bus->range[dev_idx].dev;
4522
4523 out_unlock:
4524 srcu_read_unlock(&kvm->srcu, srcu_idx);
4525
4526 return iodev;
4527 }
4528 EXPORT_SYMBOL_GPL(kvm_io_bus_get_dev);
4529
kvm_debugfs_open(struct inode * inode,struct file * file,int (* get)(void *,u64 *),int (* set)(void *,u64),const char * fmt)4530 static int kvm_debugfs_open(struct inode *inode, struct file *file,
4531 int (*get)(void *, u64 *), int (*set)(void *, u64),
4532 const char *fmt)
4533 {
4534 struct kvm_stat_data *stat_data = (struct kvm_stat_data *)
4535 inode->i_private;
4536
4537 /* The debugfs files are a reference to the kvm struct which
4538 * is still valid when kvm_destroy_vm is called.
4539 * To avoid the race between open and the removal of the debugfs
4540 * directory we test against the users count.
4541 */
4542 if (!refcount_inc_not_zero(&stat_data->kvm->users_count))
4543 return -ENOENT;
4544
4545 if (simple_attr_open(inode, file, get,
4546 KVM_DBGFS_GET_MODE(stat_data->dbgfs_item) & 0222
4547 ? set : NULL,
4548 fmt)) {
4549 kvm_put_kvm(stat_data->kvm);
4550 return -ENOMEM;
4551 }
4552
4553 return 0;
4554 }
4555
kvm_debugfs_release(struct inode * inode,struct file * file)4556 static int kvm_debugfs_release(struct inode *inode, struct file *file)
4557 {
4558 struct kvm_stat_data *stat_data = (struct kvm_stat_data *)
4559 inode->i_private;
4560
4561 simple_attr_release(inode, file);
4562 kvm_put_kvm(stat_data->kvm);
4563
4564 return 0;
4565 }
4566
kvm_get_stat_per_vm(struct kvm * kvm,size_t offset,u64 * val)4567 static int kvm_get_stat_per_vm(struct kvm *kvm, size_t offset, u64 *val)
4568 {
4569 *val = *(ulong *)((void *)kvm + offset);
4570
4571 return 0;
4572 }
4573
kvm_clear_stat_per_vm(struct kvm * kvm,size_t offset)4574 static int kvm_clear_stat_per_vm(struct kvm *kvm, size_t offset)
4575 {
4576 *(ulong *)((void *)kvm + offset) = 0;
4577
4578 return 0;
4579 }
4580
kvm_get_stat_per_vcpu(struct kvm * kvm,size_t offset,u64 * val)4581 static int kvm_get_stat_per_vcpu(struct kvm *kvm, size_t offset, u64 *val)
4582 {
4583 int i;
4584 struct kvm_vcpu *vcpu;
4585
4586 *val = 0;
4587
4588 kvm_for_each_vcpu(i, vcpu, kvm)
4589 *val += *(u64 *)((void *)vcpu + offset);
4590
4591 return 0;
4592 }
4593
kvm_clear_stat_per_vcpu(struct kvm * kvm,size_t offset)4594 static int kvm_clear_stat_per_vcpu(struct kvm *kvm, size_t offset)
4595 {
4596 int i;
4597 struct kvm_vcpu *vcpu;
4598
4599 kvm_for_each_vcpu(i, vcpu, kvm)
4600 *(u64 *)((void *)vcpu + offset) = 0;
4601
4602 return 0;
4603 }
4604
kvm_stat_data_get(void * data,u64 * val)4605 static int kvm_stat_data_get(void *data, u64 *val)
4606 {
4607 int r = -EFAULT;
4608 struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
4609
4610 switch (stat_data->dbgfs_item->kind) {
4611 case KVM_STAT_VM:
4612 r = kvm_get_stat_per_vm(stat_data->kvm,
4613 stat_data->dbgfs_item->offset, val);
4614 break;
4615 case KVM_STAT_VCPU:
4616 r = kvm_get_stat_per_vcpu(stat_data->kvm,
4617 stat_data->dbgfs_item->offset, val);
4618 break;
4619 }
4620
4621 return r;
4622 }
4623
kvm_stat_data_clear(void * data,u64 val)4624 static int kvm_stat_data_clear(void *data, u64 val)
4625 {
4626 int r = -EFAULT;
4627 struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
4628
4629 if (val)
4630 return -EINVAL;
4631
4632 switch (stat_data->dbgfs_item->kind) {
4633 case KVM_STAT_VM:
4634 r = kvm_clear_stat_per_vm(stat_data->kvm,
4635 stat_data->dbgfs_item->offset);
4636 break;
4637 case KVM_STAT_VCPU:
4638 r = kvm_clear_stat_per_vcpu(stat_data->kvm,
4639 stat_data->dbgfs_item->offset);
4640 break;
4641 }
4642
4643 return r;
4644 }
4645
kvm_stat_data_open(struct inode * inode,struct file * file)4646 static int kvm_stat_data_open(struct inode *inode, struct file *file)
4647 {
4648 __simple_attr_check_format("%llu\n", 0ull);
4649 return kvm_debugfs_open(inode, file, kvm_stat_data_get,
4650 kvm_stat_data_clear, "%llu\n");
4651 }
4652
4653 static const struct file_operations stat_fops_per_vm = {
4654 .owner = THIS_MODULE,
4655 .open = kvm_stat_data_open,
4656 .release = kvm_debugfs_release,
4657 .read = simple_attr_read,
4658 .write = simple_attr_write,
4659 .llseek = no_llseek,
4660 };
4661
vm_stat_get(void * _offset,u64 * val)4662 static int vm_stat_get(void *_offset, u64 *val)
4663 {
4664 unsigned offset = (long)_offset;
4665 struct kvm *kvm;
4666 u64 tmp_val;
4667
4668 *val = 0;
4669 mutex_lock(&kvm_lock);
4670 list_for_each_entry(kvm, &vm_list, vm_list) {
4671 kvm_get_stat_per_vm(kvm, offset, &tmp_val);
4672 *val += tmp_val;
4673 }
4674 mutex_unlock(&kvm_lock);
4675 return 0;
4676 }
4677
vm_stat_clear(void * _offset,u64 val)4678 static int vm_stat_clear(void *_offset, u64 val)
4679 {
4680 unsigned offset = (long)_offset;
4681 struct kvm *kvm;
4682
4683 if (val)
4684 return -EINVAL;
4685
4686 mutex_lock(&kvm_lock);
4687 list_for_each_entry(kvm, &vm_list, vm_list) {
4688 kvm_clear_stat_per_vm(kvm, offset);
4689 }
4690 mutex_unlock(&kvm_lock);
4691
4692 return 0;
4693 }
4694
4695 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, vm_stat_clear, "%llu\n");
4696
vcpu_stat_get(void * _offset,u64 * val)4697 static int vcpu_stat_get(void *_offset, u64 *val)
4698 {
4699 unsigned offset = (long)_offset;
4700 struct kvm *kvm;
4701 u64 tmp_val;
4702
4703 *val = 0;
4704 mutex_lock(&kvm_lock);
4705 list_for_each_entry(kvm, &vm_list, vm_list) {
4706 kvm_get_stat_per_vcpu(kvm, offset, &tmp_val);
4707 *val += tmp_val;
4708 }
4709 mutex_unlock(&kvm_lock);
4710 return 0;
4711 }
4712
vcpu_stat_clear(void * _offset,u64 val)4713 static int vcpu_stat_clear(void *_offset, u64 val)
4714 {
4715 unsigned offset = (long)_offset;
4716 struct kvm *kvm;
4717
4718 if (val)
4719 return -EINVAL;
4720
4721 mutex_lock(&kvm_lock);
4722 list_for_each_entry(kvm, &vm_list, vm_list) {
4723 kvm_clear_stat_per_vcpu(kvm, offset);
4724 }
4725 mutex_unlock(&kvm_lock);
4726
4727 return 0;
4728 }
4729
4730 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, vcpu_stat_clear,
4731 "%llu\n");
4732
4733 static const struct file_operations *stat_fops[] = {
4734 [KVM_STAT_VCPU] = &vcpu_stat_fops,
4735 [KVM_STAT_VM] = &vm_stat_fops,
4736 };
4737
kvm_uevent_notify_change(unsigned int type,struct kvm * kvm)4738 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm)
4739 {
4740 struct kobj_uevent_env *env;
4741 unsigned long long created, active;
4742
4743 if (!kvm_dev.this_device || !kvm)
4744 return;
4745
4746 mutex_lock(&kvm_lock);
4747 if (type == KVM_EVENT_CREATE_VM) {
4748 kvm_createvm_count++;
4749 kvm_active_vms++;
4750 } else if (type == KVM_EVENT_DESTROY_VM) {
4751 kvm_active_vms--;
4752 }
4753 created = kvm_createvm_count;
4754 active = kvm_active_vms;
4755 mutex_unlock(&kvm_lock);
4756
4757 env = kzalloc(sizeof(*env), GFP_KERNEL_ACCOUNT);
4758 if (!env)
4759 return;
4760
4761 add_uevent_var(env, "CREATED=%llu", created);
4762 add_uevent_var(env, "COUNT=%llu", active);
4763
4764 if (type == KVM_EVENT_CREATE_VM) {
4765 add_uevent_var(env, "EVENT=create");
4766 kvm->userspace_pid = task_pid_nr(current);
4767 } else if (type == KVM_EVENT_DESTROY_VM) {
4768 add_uevent_var(env, "EVENT=destroy");
4769 }
4770 add_uevent_var(env, "PID=%d", kvm->userspace_pid);
4771
4772 if (kvm->debugfs_dentry) {
4773 char *tmp, *p = kmalloc(PATH_MAX, GFP_KERNEL_ACCOUNT);
4774
4775 if (p) {
4776 tmp = dentry_path_raw(kvm->debugfs_dentry, p, PATH_MAX);
4777 if (!IS_ERR(tmp))
4778 add_uevent_var(env, "STATS_PATH=%s", tmp);
4779 kfree(p);
4780 }
4781 }
4782 /* no need for checks, since we are adding at most only 5 keys */
4783 env->envp[env->envp_idx++] = NULL;
4784 kobject_uevent_env(&kvm_dev.this_device->kobj, KOBJ_CHANGE, env->envp);
4785 kfree(env);
4786 }
4787
kvm_init_debug(void)4788 static void kvm_init_debug(void)
4789 {
4790 struct kvm_stats_debugfs_item *p;
4791
4792 kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
4793
4794 kvm_debugfs_num_entries = 0;
4795 for (p = debugfs_entries; p->name; ++p, kvm_debugfs_num_entries++) {
4796 debugfs_create_file(p->name, KVM_DBGFS_GET_MODE(p),
4797 kvm_debugfs_dir, (void *)(long)p->offset,
4798 stat_fops[p->kind]);
4799 }
4800 }
4801
kvm_suspend(void)4802 static int kvm_suspend(void)
4803 {
4804 if (kvm_usage_count)
4805 hardware_disable_nolock(NULL);
4806 return 0;
4807 }
4808
kvm_resume(void)4809 static void kvm_resume(void)
4810 {
4811 if (kvm_usage_count) {
4812 #ifdef CONFIG_LOCKDEP
4813 WARN_ON(lockdep_is_held(&kvm_count_lock));
4814 #endif
4815 hardware_enable_nolock(NULL);
4816 }
4817 }
4818
4819 static struct syscore_ops kvm_syscore_ops = {
4820 .suspend = kvm_suspend,
4821 .resume = kvm_resume,
4822 };
4823
4824 static inline
preempt_notifier_to_vcpu(struct preempt_notifier * pn)4825 struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
4826 {
4827 return container_of(pn, struct kvm_vcpu, preempt_notifier);
4828 }
4829
kvm_sched_in(struct preempt_notifier * pn,int cpu)4830 static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
4831 {
4832 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
4833
4834 WRITE_ONCE(vcpu->preempted, false);
4835 WRITE_ONCE(vcpu->ready, false);
4836
4837 __this_cpu_write(kvm_running_vcpu, vcpu);
4838 kvm_arch_sched_in(vcpu, cpu);
4839 kvm_arch_vcpu_load(vcpu, cpu);
4840 }
4841
kvm_sched_out(struct preempt_notifier * pn,struct task_struct * next)4842 static void kvm_sched_out(struct preempt_notifier *pn,
4843 struct task_struct *next)
4844 {
4845 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
4846
4847 if (current->state == TASK_RUNNING) {
4848 WRITE_ONCE(vcpu->preempted, true);
4849 WRITE_ONCE(vcpu->ready, true);
4850 }
4851 kvm_arch_vcpu_put(vcpu);
4852 __this_cpu_write(kvm_running_vcpu, NULL);
4853 }
4854
4855 /**
4856 * kvm_get_running_vcpu - get the vcpu running on the current CPU.
4857 *
4858 * We can disable preemption locally around accessing the per-CPU variable,
4859 * and use the resolved vcpu pointer after enabling preemption again,
4860 * because even if the current thread is migrated to another CPU, reading
4861 * the per-CPU value later will give us the same value as we update the
4862 * per-CPU variable in the preempt notifier handlers.
4863 */
kvm_get_running_vcpu(void)4864 struct kvm_vcpu *kvm_get_running_vcpu(void)
4865 {
4866 struct kvm_vcpu *vcpu;
4867
4868 preempt_disable();
4869 vcpu = __this_cpu_read(kvm_running_vcpu);
4870 preempt_enable();
4871
4872 return vcpu;
4873 }
4874 EXPORT_SYMBOL_GPL(kvm_get_running_vcpu);
4875
4876 /**
4877 * kvm_get_running_vcpus - get the per-CPU array of currently running vcpus.
4878 */
kvm_get_running_vcpus(void)4879 struct kvm_vcpu * __percpu *kvm_get_running_vcpus(void)
4880 {
4881 return &kvm_running_vcpu;
4882 }
4883
4884 struct kvm_cpu_compat_check {
4885 void *opaque;
4886 int *ret;
4887 };
4888
check_processor_compat(void * data)4889 static void check_processor_compat(void *data)
4890 {
4891 struct kvm_cpu_compat_check *c = data;
4892
4893 *c->ret = kvm_arch_check_processor_compat(c->opaque);
4894 }
4895
kvm_init(void * opaque,unsigned vcpu_size,unsigned vcpu_align,struct module * module)4896 int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align,
4897 struct module *module)
4898 {
4899 struct kvm_cpu_compat_check c;
4900 int r;
4901 int cpu;
4902
4903 r = kvm_arch_init(opaque);
4904 if (r)
4905 goto out_fail;
4906
4907 /*
4908 * kvm_arch_init makes sure there's at most one caller
4909 * for architectures that support multiple implementations,
4910 * like intel and amd on x86.
4911 * kvm_arch_init must be called before kvm_irqfd_init to avoid creating
4912 * conflicts in case kvm is already setup for another implementation.
4913 */
4914 r = kvm_irqfd_init();
4915 if (r)
4916 goto out_irqfd;
4917
4918 if (!zalloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) {
4919 r = -ENOMEM;
4920 goto out_free_0;
4921 }
4922
4923 r = kvm_arch_hardware_setup(opaque);
4924 if (r < 0)
4925 goto out_free_1;
4926
4927 c.ret = &r;
4928 c.opaque = opaque;
4929 for_each_online_cpu(cpu) {
4930 smp_call_function_single(cpu, check_processor_compat, &c, 1);
4931 if (r < 0)
4932 goto out_free_2;
4933 }
4934
4935 r = cpuhp_setup_state_nocalls(CPUHP_AP_KVM_STARTING, "kvm/cpu:starting",
4936 kvm_starting_cpu, kvm_dying_cpu);
4937 if (r)
4938 goto out_free_2;
4939 register_reboot_notifier(&kvm_reboot_notifier);
4940
4941 /* A kmem cache lets us meet the alignment requirements of fx_save. */
4942 if (!vcpu_align)
4943 vcpu_align = __alignof__(struct kvm_vcpu);
4944 kvm_vcpu_cache =
4945 kmem_cache_create_usercopy("kvm_vcpu", vcpu_size, vcpu_align,
4946 SLAB_ACCOUNT,
4947 offsetof(struct kvm_vcpu, arch),
4948 sizeof_field(struct kvm_vcpu, arch),
4949 NULL);
4950 if (!kvm_vcpu_cache) {
4951 r = -ENOMEM;
4952 goto out_free_3;
4953 }
4954
4955 r = kvm_async_pf_init();
4956 if (r)
4957 goto out_free;
4958
4959 kvm_chardev_ops.owner = module;
4960 kvm_vm_fops.owner = module;
4961 kvm_vcpu_fops.owner = module;
4962
4963 r = misc_register(&kvm_dev);
4964 if (r) {
4965 pr_err("kvm: misc device register failed\n");
4966 goto out_unreg;
4967 }
4968
4969 register_syscore_ops(&kvm_syscore_ops);
4970
4971 kvm_preempt_ops.sched_in = kvm_sched_in;
4972 kvm_preempt_ops.sched_out = kvm_sched_out;
4973
4974 kvm_init_debug();
4975
4976 r = kvm_vfio_ops_init();
4977 WARN_ON(r);
4978
4979 return 0;
4980
4981 out_unreg:
4982 kvm_async_pf_deinit();
4983 out_free:
4984 kmem_cache_destroy(kvm_vcpu_cache);
4985 out_free_3:
4986 unregister_reboot_notifier(&kvm_reboot_notifier);
4987 cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING);
4988 out_free_2:
4989 kvm_arch_hardware_unsetup();
4990 out_free_1:
4991 free_cpumask_var(cpus_hardware_enabled);
4992 out_free_0:
4993 kvm_irqfd_exit();
4994 out_irqfd:
4995 kvm_arch_exit();
4996 out_fail:
4997 return r;
4998 }
4999 EXPORT_SYMBOL_GPL(kvm_init);
5000
kvm_exit(void)5001 void kvm_exit(void)
5002 {
5003 debugfs_remove_recursive(kvm_debugfs_dir);
5004 misc_deregister(&kvm_dev);
5005 kmem_cache_destroy(kvm_vcpu_cache);
5006 kvm_async_pf_deinit();
5007 unregister_syscore_ops(&kvm_syscore_ops);
5008 unregister_reboot_notifier(&kvm_reboot_notifier);
5009 cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING);
5010 on_each_cpu(hardware_disable_nolock, NULL, 1);
5011 kvm_arch_hardware_unsetup();
5012 kvm_arch_exit();
5013 kvm_irqfd_exit();
5014 free_cpumask_var(cpus_hardware_enabled);
5015 kvm_vfio_ops_exit();
5016 }
5017 EXPORT_SYMBOL_GPL(kvm_exit);
5018
5019 struct kvm_vm_worker_thread_context {
5020 struct kvm *kvm;
5021 struct task_struct *parent;
5022 struct completion init_done;
5023 kvm_vm_thread_fn_t thread_fn;
5024 uintptr_t data;
5025 int err;
5026 };
5027
kvm_vm_worker_thread(void * context)5028 static int kvm_vm_worker_thread(void *context)
5029 {
5030 /*
5031 * The init_context is allocated on the stack of the parent thread, so
5032 * we have to locally copy anything that is needed beyond initialization
5033 */
5034 struct kvm_vm_worker_thread_context *init_context = context;
5035 struct kvm *kvm = init_context->kvm;
5036 kvm_vm_thread_fn_t thread_fn = init_context->thread_fn;
5037 uintptr_t data = init_context->data;
5038 int err;
5039
5040 err = kthread_park(current);
5041 /* kthread_park(current) is never supposed to return an error */
5042 WARN_ON(err != 0);
5043 if (err)
5044 goto init_complete;
5045
5046 err = cgroup_attach_task_all(init_context->parent, current);
5047 if (err) {
5048 kvm_err("%s: cgroup_attach_task_all failed with err %d\n",
5049 __func__, err);
5050 goto init_complete;
5051 }
5052
5053 set_user_nice(current, task_nice(init_context->parent));
5054
5055 init_complete:
5056 init_context->err = err;
5057 complete(&init_context->init_done);
5058 init_context = NULL;
5059
5060 if (err)
5061 return err;
5062
5063 /* Wait to be woken up by the spawner before proceeding. */
5064 kthread_parkme();
5065
5066 if (!kthread_should_stop())
5067 err = thread_fn(kvm, data);
5068
5069 return err;
5070 }
5071
kvm_vm_create_worker_thread(struct kvm * kvm,kvm_vm_thread_fn_t thread_fn,uintptr_t data,const char * name,struct task_struct ** thread_ptr)5072 int kvm_vm_create_worker_thread(struct kvm *kvm, kvm_vm_thread_fn_t thread_fn,
5073 uintptr_t data, const char *name,
5074 struct task_struct **thread_ptr)
5075 {
5076 struct kvm_vm_worker_thread_context init_context = {};
5077 struct task_struct *thread;
5078
5079 *thread_ptr = NULL;
5080 init_context.kvm = kvm;
5081 init_context.parent = current;
5082 init_context.thread_fn = thread_fn;
5083 init_context.data = data;
5084 init_completion(&init_context.init_done);
5085
5086 thread = kthread_run(kvm_vm_worker_thread, &init_context,
5087 "%s-%d", name, task_pid_nr(current));
5088 if (IS_ERR(thread))
5089 return PTR_ERR(thread);
5090
5091 /* kthread_run is never supposed to return NULL */
5092 WARN_ON(thread == NULL);
5093
5094 wait_for_completion(&init_context.init_done);
5095
5096 if (!init_context.err)
5097 *thread_ptr = thread;
5098
5099 return init_context.err;
5100 }
5101