1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright (C) 2015, 2016 ARM Ltd.
4 */
5
6 #include <linux/interrupt.h>
7 #include <linux/irq.h>
8 #include <linux/kvm.h>
9 #include <linux/kvm_host.h>
10 #include <linux/list_sort.h>
11 #include <linux/nospec.h>
12
13 #include <asm/kvm_hyp.h>
14
15 #include "vgic.h"
16
17 #define CREATE_TRACE_POINTS
18 #include "trace.h"
19
20 struct vgic_global kvm_vgic_global_state __ro_after_init = {
21 .gicv3_cpuif = STATIC_KEY_FALSE_INIT,
22 };
23
24 /*
25 * Locking order is always:
26 * kvm->lock (mutex)
27 * its->cmd_lock (mutex)
28 * its->its_lock (mutex)
29 * vgic_cpu->ap_list_lock must be taken with IRQs disabled
30 * kvm->lpi_list_lock must be taken with IRQs disabled
31 * vgic_irq->irq_lock must be taken with IRQs disabled
32 *
33 * As the ap_list_lock might be taken from the timer interrupt handler,
34 * we have to disable IRQs before taking this lock and everything lower
35 * than it.
36 *
37 * If you need to take multiple locks, always take the upper lock first,
38 * then the lower ones, e.g. first take the its_lock, then the irq_lock.
39 * If you are already holding a lock and need to take a higher one, you
40 * have to drop the lower ranking lock first and re-aquire it after having
41 * taken the upper one.
42 *
43 * When taking more than one ap_list_lock at the same time, always take the
44 * lowest numbered VCPU's ap_list_lock first, so:
45 * vcpuX->vcpu_id < vcpuY->vcpu_id:
46 * raw_spin_lock(vcpuX->arch.vgic_cpu.ap_list_lock);
47 * raw_spin_lock(vcpuY->arch.vgic_cpu.ap_list_lock);
48 *
49 * Since the VGIC must support injecting virtual interrupts from ISRs, we have
50 * to use the raw_spin_lock_irqsave/raw_spin_unlock_irqrestore versions of outer
51 * spinlocks for any lock that may be taken while injecting an interrupt.
52 */
53
54 /*
55 * Iterate over the VM's list of mapped LPIs to find the one with a
56 * matching interrupt ID and return a reference to the IRQ structure.
57 */
vgic_get_lpi(struct kvm * kvm,u32 intid)58 static struct vgic_irq *vgic_get_lpi(struct kvm *kvm, u32 intid)
59 {
60 struct vgic_dist *dist = &kvm->arch.vgic;
61 struct vgic_irq *irq = NULL;
62 unsigned long flags;
63
64 raw_spin_lock_irqsave(&dist->lpi_list_lock, flags);
65
66 list_for_each_entry(irq, &dist->lpi_list_head, lpi_list) {
67 if (irq->intid != intid)
68 continue;
69
70 /*
71 * This increases the refcount, the caller is expected to
72 * call vgic_put_irq() later once it's finished with the IRQ.
73 */
74 vgic_get_irq_kref(irq);
75 goto out_unlock;
76 }
77 irq = NULL;
78
79 out_unlock:
80 raw_spin_unlock_irqrestore(&dist->lpi_list_lock, flags);
81
82 return irq;
83 }
84
85 /*
86 * This looks up the virtual interrupt ID to get the corresponding
87 * struct vgic_irq. It also increases the refcount, so any caller is expected
88 * to call vgic_put_irq() once it's finished with this IRQ.
89 */
vgic_get_irq(struct kvm * kvm,struct kvm_vcpu * vcpu,u32 intid)90 struct vgic_irq *vgic_get_irq(struct kvm *kvm, struct kvm_vcpu *vcpu,
91 u32 intid)
92 {
93 /* SGIs and PPIs */
94 if (intid <= VGIC_MAX_PRIVATE) {
95 intid = array_index_nospec(intid, VGIC_MAX_PRIVATE + 1);
96 return &vcpu->arch.vgic_cpu.private_irqs[intid];
97 }
98
99 /* SPIs */
100 if (intid < (kvm->arch.vgic.nr_spis + VGIC_NR_PRIVATE_IRQS)) {
101 intid = array_index_nospec(intid, kvm->arch.vgic.nr_spis + VGIC_NR_PRIVATE_IRQS);
102 return &kvm->arch.vgic.spis[intid - VGIC_NR_PRIVATE_IRQS];
103 }
104
105 /* LPIs */
106 if (intid >= VGIC_MIN_LPI)
107 return vgic_get_lpi(kvm, intid);
108
109 WARN(1, "Looking up struct vgic_irq for reserved INTID");
110 return NULL;
111 }
112
113 /*
114 * We can't do anything in here, because we lack the kvm pointer to
115 * lock and remove the item from the lpi_list. So we keep this function
116 * empty and use the return value of kref_put() to trigger the freeing.
117 */
vgic_irq_release(struct kref * ref)118 static void vgic_irq_release(struct kref *ref)
119 {
120 }
121
122 /*
123 * Drop the refcount on the LPI. Must be called with lpi_list_lock held.
124 */
__vgic_put_lpi_locked(struct kvm * kvm,struct vgic_irq * irq)125 void __vgic_put_lpi_locked(struct kvm *kvm, struct vgic_irq *irq)
126 {
127 struct vgic_dist *dist = &kvm->arch.vgic;
128
129 if (!kref_put(&irq->refcount, vgic_irq_release))
130 return;
131
132 list_del(&irq->lpi_list);
133 dist->lpi_list_count--;
134
135 kfree(irq);
136 }
137
vgic_put_irq(struct kvm * kvm,struct vgic_irq * irq)138 void vgic_put_irq(struct kvm *kvm, struct vgic_irq *irq)
139 {
140 struct vgic_dist *dist = &kvm->arch.vgic;
141 unsigned long flags;
142
143 if (irq->intid < VGIC_MIN_LPI)
144 return;
145
146 raw_spin_lock_irqsave(&dist->lpi_list_lock, flags);
147 __vgic_put_lpi_locked(kvm, irq);
148 raw_spin_unlock_irqrestore(&dist->lpi_list_lock, flags);
149 }
150
vgic_flush_pending_lpis(struct kvm_vcpu * vcpu)151 void vgic_flush_pending_lpis(struct kvm_vcpu *vcpu)
152 {
153 struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
154 struct vgic_irq *irq, *tmp;
155 unsigned long flags;
156
157 raw_spin_lock_irqsave(&vgic_cpu->ap_list_lock, flags);
158
159 list_for_each_entry_safe(irq, tmp, &vgic_cpu->ap_list_head, ap_list) {
160 if (irq->intid >= VGIC_MIN_LPI) {
161 raw_spin_lock(&irq->irq_lock);
162 list_del(&irq->ap_list);
163 irq->vcpu = NULL;
164 raw_spin_unlock(&irq->irq_lock);
165 vgic_put_irq(vcpu->kvm, irq);
166 }
167 }
168
169 raw_spin_unlock_irqrestore(&vgic_cpu->ap_list_lock, flags);
170 }
171
vgic_irq_set_phys_pending(struct vgic_irq * irq,bool pending)172 void vgic_irq_set_phys_pending(struct vgic_irq *irq, bool pending)
173 {
174 WARN_ON(irq_set_irqchip_state(irq->host_irq,
175 IRQCHIP_STATE_PENDING,
176 pending));
177 }
178
vgic_get_phys_line_level(struct vgic_irq * irq)179 bool vgic_get_phys_line_level(struct vgic_irq *irq)
180 {
181 bool line_level;
182
183 BUG_ON(!irq->hw);
184
185 if (irq->get_input_level)
186 return irq->get_input_level(irq->intid);
187
188 WARN_ON(irq_get_irqchip_state(irq->host_irq,
189 IRQCHIP_STATE_PENDING,
190 &line_level));
191 return line_level;
192 }
193
194 /* Set/Clear the physical active state */
vgic_irq_set_phys_active(struct vgic_irq * irq,bool active)195 void vgic_irq_set_phys_active(struct vgic_irq *irq, bool active)
196 {
197
198 BUG_ON(!irq->hw);
199 WARN_ON(irq_set_irqchip_state(irq->host_irq,
200 IRQCHIP_STATE_ACTIVE,
201 active));
202 }
203
204 /**
205 * kvm_vgic_target_oracle - compute the target vcpu for an irq
206 *
207 * @irq: The irq to route. Must be already locked.
208 *
209 * Based on the current state of the interrupt (enabled, pending,
210 * active, vcpu and target_vcpu), compute the next vcpu this should be
211 * given to. Return NULL if this shouldn't be injected at all.
212 *
213 * Requires the IRQ lock to be held.
214 */
vgic_target_oracle(struct vgic_irq * irq)215 static struct kvm_vcpu *vgic_target_oracle(struct vgic_irq *irq)
216 {
217 lockdep_assert_held(&irq->irq_lock);
218
219 /* If the interrupt is active, it must stay on the current vcpu */
220 if (irq->active)
221 return irq->vcpu ? : irq->target_vcpu;
222
223 /*
224 * If the IRQ is not active but enabled and pending, we should direct
225 * it to its configured target VCPU.
226 * If the distributor is disabled, pending interrupts shouldn't be
227 * forwarded.
228 */
229 if (irq->enabled && irq_is_pending(irq)) {
230 if (unlikely(irq->target_vcpu &&
231 !irq->target_vcpu->kvm->arch.vgic.enabled))
232 return NULL;
233
234 return irq->target_vcpu;
235 }
236
237 /* If neither active nor pending and enabled, then this IRQ should not
238 * be queued to any VCPU.
239 */
240 return NULL;
241 }
242
243 /*
244 * The order of items in the ap_lists defines how we'll pack things in LRs as
245 * well, the first items in the list being the first things populated in the
246 * LRs.
247 *
248 * A hard rule is that active interrupts can never be pushed out of the LRs
249 * (and therefore take priority) since we cannot reliably trap on deactivation
250 * of IRQs and therefore they have to be present in the LRs.
251 *
252 * Otherwise things should be sorted by the priority field and the GIC
253 * hardware support will take care of preemption of priority groups etc.
254 *
255 * Return negative if "a" sorts before "b", 0 to preserve order, and positive
256 * to sort "b" before "a".
257 */
vgic_irq_cmp(void * priv,const struct list_head * a,const struct list_head * b)258 static int vgic_irq_cmp(void *priv, const struct list_head *a,
259 const struct list_head *b)
260 {
261 struct vgic_irq *irqa = container_of(a, struct vgic_irq, ap_list);
262 struct vgic_irq *irqb = container_of(b, struct vgic_irq, ap_list);
263 bool penda, pendb;
264 int ret;
265
266 /*
267 * list_sort may call this function with the same element when
268 * the list is fairly long.
269 */
270 if (unlikely(irqa == irqb))
271 return 0;
272
273 raw_spin_lock(&irqa->irq_lock);
274 raw_spin_lock_nested(&irqb->irq_lock, SINGLE_DEPTH_NESTING);
275
276 if (irqa->active || irqb->active) {
277 ret = (int)irqb->active - (int)irqa->active;
278 goto out;
279 }
280
281 penda = irqa->enabled && irq_is_pending(irqa);
282 pendb = irqb->enabled && irq_is_pending(irqb);
283
284 if (!penda || !pendb) {
285 ret = (int)pendb - (int)penda;
286 goto out;
287 }
288
289 /* Both pending and enabled, sort by priority */
290 ret = irqa->priority - irqb->priority;
291 out:
292 raw_spin_unlock(&irqb->irq_lock);
293 raw_spin_unlock(&irqa->irq_lock);
294 return ret;
295 }
296
297 /* Must be called with the ap_list_lock held */
vgic_sort_ap_list(struct kvm_vcpu * vcpu)298 static void vgic_sort_ap_list(struct kvm_vcpu *vcpu)
299 {
300 struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
301
302 lockdep_assert_held(&vgic_cpu->ap_list_lock);
303
304 list_sort(NULL, &vgic_cpu->ap_list_head, vgic_irq_cmp);
305 }
306
307 /*
308 * Only valid injection if changing level for level-triggered IRQs or for a
309 * rising edge, and in-kernel connected IRQ lines can only be controlled by
310 * their owner.
311 */
vgic_validate_injection(struct vgic_irq * irq,bool level,void * owner)312 static bool vgic_validate_injection(struct vgic_irq *irq, bool level, void *owner)
313 {
314 if (irq->owner != owner)
315 return false;
316
317 switch (irq->config) {
318 case VGIC_CONFIG_LEVEL:
319 return irq->line_level != level;
320 case VGIC_CONFIG_EDGE:
321 return level;
322 }
323
324 return false;
325 }
326
327 /*
328 * Check whether an IRQ needs to (and can) be queued to a VCPU's ap list.
329 * Do the queuing if necessary, taking the right locks in the right order.
330 * Returns true when the IRQ was queued, false otherwise.
331 *
332 * Needs to be entered with the IRQ lock already held, but will return
333 * with all locks dropped.
334 */
vgic_queue_irq_unlock(struct kvm * kvm,struct vgic_irq * irq,unsigned long flags)335 bool vgic_queue_irq_unlock(struct kvm *kvm, struct vgic_irq *irq,
336 unsigned long flags)
337 {
338 struct kvm_vcpu *vcpu;
339
340 lockdep_assert_held(&irq->irq_lock);
341
342 retry:
343 vcpu = vgic_target_oracle(irq);
344 if (irq->vcpu || !vcpu) {
345 /*
346 * If this IRQ is already on a VCPU's ap_list, then it
347 * cannot be moved or modified and there is no more work for
348 * us to do.
349 *
350 * Otherwise, if the irq is not pending and enabled, it does
351 * not need to be inserted into an ap_list and there is also
352 * no more work for us to do.
353 */
354 raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
355
356 /*
357 * We have to kick the VCPU here, because we could be
358 * queueing an edge-triggered interrupt for which we
359 * get no EOI maintenance interrupt. In that case,
360 * while the IRQ is already on the VCPU's AP list, the
361 * VCPU could have EOI'ed the original interrupt and
362 * won't see this one until it exits for some other
363 * reason.
364 */
365 if (vcpu) {
366 kvm_make_request(KVM_REQ_IRQ_PENDING, vcpu);
367 kvm_vcpu_kick(vcpu);
368 }
369 return false;
370 }
371
372 /*
373 * We must unlock the irq lock to take the ap_list_lock where
374 * we are going to insert this new pending interrupt.
375 */
376 raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
377
378 /* someone can do stuff here, which we re-check below */
379
380 raw_spin_lock_irqsave(&vcpu->arch.vgic_cpu.ap_list_lock, flags);
381 raw_spin_lock(&irq->irq_lock);
382
383 /*
384 * Did something change behind our backs?
385 *
386 * There are two cases:
387 * 1) The irq lost its pending state or was disabled behind our
388 * backs and/or it was queued to another VCPU's ap_list.
389 * 2) Someone changed the affinity on this irq behind our
390 * backs and we are now holding the wrong ap_list_lock.
391 *
392 * In both cases, drop the locks and retry.
393 */
394
395 if (unlikely(irq->vcpu || vcpu != vgic_target_oracle(irq))) {
396 raw_spin_unlock(&irq->irq_lock);
397 raw_spin_unlock_irqrestore(&vcpu->arch.vgic_cpu.ap_list_lock,
398 flags);
399
400 raw_spin_lock_irqsave(&irq->irq_lock, flags);
401 goto retry;
402 }
403
404 /*
405 * Grab a reference to the irq to reflect the fact that it is
406 * now in the ap_list.
407 */
408 vgic_get_irq_kref(irq);
409 list_add_tail(&irq->ap_list, &vcpu->arch.vgic_cpu.ap_list_head);
410 irq->vcpu = vcpu;
411
412 raw_spin_unlock(&irq->irq_lock);
413 raw_spin_unlock_irqrestore(&vcpu->arch.vgic_cpu.ap_list_lock, flags);
414
415 kvm_make_request(KVM_REQ_IRQ_PENDING, vcpu);
416 kvm_vcpu_kick(vcpu);
417
418 return true;
419 }
420
421 /**
422 * kvm_vgic_inject_irq - Inject an IRQ from a device to the vgic
423 * @kvm: The VM structure pointer
424 * @cpuid: The CPU for PPIs
425 * @intid: The INTID to inject a new state to.
426 * @level: Edge-triggered: true: to trigger the interrupt
427 * false: to ignore the call
428 * Level-sensitive true: raise the input signal
429 * false: lower the input signal
430 * @owner: The opaque pointer to the owner of the IRQ being raised to verify
431 * that the caller is allowed to inject this IRQ. Userspace
432 * injections will have owner == NULL.
433 *
434 * The VGIC is not concerned with devices being active-LOW or active-HIGH for
435 * level-sensitive interrupts. You can think of the level parameter as 1
436 * being HIGH and 0 being LOW and all devices being active-HIGH.
437 */
kvm_vgic_inject_irq(struct kvm * kvm,int cpuid,unsigned int intid,bool level,void * owner)438 int kvm_vgic_inject_irq(struct kvm *kvm, int cpuid, unsigned int intid,
439 bool level, void *owner)
440 {
441 struct kvm_vcpu *vcpu;
442 struct vgic_irq *irq;
443 unsigned long flags;
444 int ret;
445
446 trace_vgic_update_irq_pending(cpuid, intid, level);
447
448 ret = vgic_lazy_init(kvm);
449 if (ret)
450 return ret;
451
452 vcpu = kvm_get_vcpu(kvm, cpuid);
453 if (!vcpu && intid < VGIC_NR_PRIVATE_IRQS)
454 return -EINVAL;
455
456 irq = vgic_get_irq(kvm, vcpu, intid);
457 if (!irq)
458 return -EINVAL;
459
460 raw_spin_lock_irqsave(&irq->irq_lock, flags);
461
462 if (!vgic_validate_injection(irq, level, owner)) {
463 /* Nothing to see here, move along... */
464 raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
465 vgic_put_irq(kvm, irq);
466 return 0;
467 }
468
469 if (irq->config == VGIC_CONFIG_LEVEL)
470 irq->line_level = level;
471 else
472 irq->pending_latch = true;
473
474 vgic_queue_irq_unlock(kvm, irq, flags);
475 vgic_put_irq(kvm, irq);
476
477 return 0;
478 }
479
480 /* @irq->irq_lock must be held */
kvm_vgic_map_irq(struct kvm_vcpu * vcpu,struct vgic_irq * irq,unsigned int host_irq,bool (* get_input_level)(int vindid))481 static int kvm_vgic_map_irq(struct kvm_vcpu *vcpu, struct vgic_irq *irq,
482 unsigned int host_irq,
483 bool (*get_input_level)(int vindid))
484 {
485 struct irq_desc *desc;
486 struct irq_data *data;
487
488 /*
489 * Find the physical IRQ number corresponding to @host_irq
490 */
491 desc = irq_to_desc(host_irq);
492 if (!desc) {
493 kvm_err("%s: no interrupt descriptor\n", __func__);
494 return -EINVAL;
495 }
496 data = irq_desc_get_irq_data(desc);
497 while (data->parent_data)
498 data = data->parent_data;
499
500 irq->hw = true;
501 irq->host_irq = host_irq;
502 irq->hwintid = data->hwirq;
503 irq->get_input_level = get_input_level;
504 return 0;
505 }
506
507 /* @irq->irq_lock must be held */
kvm_vgic_unmap_irq(struct vgic_irq * irq)508 static inline void kvm_vgic_unmap_irq(struct vgic_irq *irq)
509 {
510 irq->hw = false;
511 irq->hwintid = 0;
512 irq->get_input_level = NULL;
513 }
514
kvm_vgic_map_phys_irq(struct kvm_vcpu * vcpu,unsigned int host_irq,u32 vintid,bool (* get_input_level)(int vindid))515 int kvm_vgic_map_phys_irq(struct kvm_vcpu *vcpu, unsigned int host_irq,
516 u32 vintid, bool (*get_input_level)(int vindid))
517 {
518 struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, vintid);
519 unsigned long flags;
520 int ret;
521
522 BUG_ON(!irq);
523
524 raw_spin_lock_irqsave(&irq->irq_lock, flags);
525 ret = kvm_vgic_map_irq(vcpu, irq, host_irq, get_input_level);
526 raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
527 vgic_put_irq(vcpu->kvm, irq);
528
529 return ret;
530 }
531
532 /**
533 * kvm_vgic_reset_mapped_irq - Reset a mapped IRQ
534 * @vcpu: The VCPU pointer
535 * @vintid: The INTID of the interrupt
536 *
537 * Reset the active and pending states of a mapped interrupt. Kernel
538 * subsystems injecting mapped interrupts should reset their interrupt lines
539 * when we are doing a reset of the VM.
540 */
kvm_vgic_reset_mapped_irq(struct kvm_vcpu * vcpu,u32 vintid)541 void kvm_vgic_reset_mapped_irq(struct kvm_vcpu *vcpu, u32 vintid)
542 {
543 struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, vintid);
544 unsigned long flags;
545
546 if (!irq->hw)
547 goto out;
548
549 raw_spin_lock_irqsave(&irq->irq_lock, flags);
550 irq->active = false;
551 irq->pending_latch = false;
552 irq->line_level = false;
553 raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
554 out:
555 vgic_put_irq(vcpu->kvm, irq);
556 }
557
kvm_vgic_unmap_phys_irq(struct kvm_vcpu * vcpu,unsigned int vintid)558 int kvm_vgic_unmap_phys_irq(struct kvm_vcpu *vcpu, unsigned int vintid)
559 {
560 struct vgic_irq *irq;
561 unsigned long flags;
562
563 if (!vgic_initialized(vcpu->kvm))
564 return -EAGAIN;
565
566 irq = vgic_get_irq(vcpu->kvm, vcpu, vintid);
567 BUG_ON(!irq);
568
569 raw_spin_lock_irqsave(&irq->irq_lock, flags);
570 kvm_vgic_unmap_irq(irq);
571 raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
572 vgic_put_irq(vcpu->kvm, irq);
573
574 return 0;
575 }
576
577 /**
578 * kvm_vgic_set_owner - Set the owner of an interrupt for a VM
579 *
580 * @vcpu: Pointer to the VCPU (used for PPIs)
581 * @intid: The virtual INTID identifying the interrupt (PPI or SPI)
582 * @owner: Opaque pointer to the owner
583 *
584 * Returns 0 if intid is not already used by another in-kernel device and the
585 * owner is set, otherwise returns an error code.
586 */
kvm_vgic_set_owner(struct kvm_vcpu * vcpu,unsigned int intid,void * owner)587 int kvm_vgic_set_owner(struct kvm_vcpu *vcpu, unsigned int intid, void *owner)
588 {
589 struct vgic_irq *irq;
590 unsigned long flags;
591 int ret = 0;
592
593 if (!vgic_initialized(vcpu->kvm))
594 return -EAGAIN;
595
596 /* SGIs and LPIs cannot be wired up to any device */
597 if (!irq_is_ppi(intid) && !vgic_valid_spi(vcpu->kvm, intid))
598 return -EINVAL;
599
600 irq = vgic_get_irq(vcpu->kvm, vcpu, intid);
601 raw_spin_lock_irqsave(&irq->irq_lock, flags);
602 if (irq->owner && irq->owner != owner)
603 ret = -EEXIST;
604 else
605 irq->owner = owner;
606 raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
607
608 return ret;
609 }
610
611 /**
612 * vgic_prune_ap_list - Remove non-relevant interrupts from the list
613 *
614 * @vcpu: The VCPU pointer
615 *
616 * Go over the list of "interesting" interrupts, and prune those that we
617 * won't have to consider in the near future.
618 */
vgic_prune_ap_list(struct kvm_vcpu * vcpu)619 static void vgic_prune_ap_list(struct kvm_vcpu *vcpu)
620 {
621 struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
622 struct vgic_irq *irq, *tmp;
623
624 DEBUG_SPINLOCK_BUG_ON(!irqs_disabled());
625
626 retry:
627 raw_spin_lock(&vgic_cpu->ap_list_lock);
628
629 list_for_each_entry_safe(irq, tmp, &vgic_cpu->ap_list_head, ap_list) {
630 struct kvm_vcpu *target_vcpu, *vcpuA, *vcpuB;
631 bool target_vcpu_needs_kick = false;
632
633 raw_spin_lock(&irq->irq_lock);
634
635 BUG_ON(vcpu != irq->vcpu);
636
637 target_vcpu = vgic_target_oracle(irq);
638
639 if (!target_vcpu) {
640 /*
641 * We don't need to process this interrupt any
642 * further, move it off the list.
643 */
644 list_del(&irq->ap_list);
645 irq->vcpu = NULL;
646 raw_spin_unlock(&irq->irq_lock);
647
648 /*
649 * This vgic_put_irq call matches the
650 * vgic_get_irq_kref in vgic_queue_irq_unlock,
651 * where we added the LPI to the ap_list. As
652 * we remove the irq from the list, we drop
653 * also drop the refcount.
654 */
655 vgic_put_irq(vcpu->kvm, irq);
656 continue;
657 }
658
659 if (target_vcpu == vcpu) {
660 /* We're on the right CPU */
661 raw_spin_unlock(&irq->irq_lock);
662 continue;
663 }
664
665 /* This interrupt looks like it has to be migrated. */
666
667 raw_spin_unlock(&irq->irq_lock);
668 raw_spin_unlock(&vgic_cpu->ap_list_lock);
669
670 /*
671 * Ensure locking order by always locking the smallest
672 * ID first.
673 */
674 if (vcpu->vcpu_id < target_vcpu->vcpu_id) {
675 vcpuA = vcpu;
676 vcpuB = target_vcpu;
677 } else {
678 vcpuA = target_vcpu;
679 vcpuB = vcpu;
680 }
681
682 raw_spin_lock(&vcpuA->arch.vgic_cpu.ap_list_lock);
683 raw_spin_lock_nested(&vcpuB->arch.vgic_cpu.ap_list_lock,
684 SINGLE_DEPTH_NESTING);
685 raw_spin_lock(&irq->irq_lock);
686
687 /*
688 * If the affinity has been preserved, move the
689 * interrupt around. Otherwise, it means things have
690 * changed while the interrupt was unlocked, and we
691 * need to replay this.
692 *
693 * In all cases, we cannot trust the list not to have
694 * changed, so we restart from the beginning.
695 */
696 if (target_vcpu == vgic_target_oracle(irq)) {
697 struct vgic_cpu *new_cpu = &target_vcpu->arch.vgic_cpu;
698
699 list_del(&irq->ap_list);
700 irq->vcpu = target_vcpu;
701 list_add_tail(&irq->ap_list, &new_cpu->ap_list_head);
702 target_vcpu_needs_kick = true;
703 }
704
705 raw_spin_unlock(&irq->irq_lock);
706 raw_spin_unlock(&vcpuB->arch.vgic_cpu.ap_list_lock);
707 raw_spin_unlock(&vcpuA->arch.vgic_cpu.ap_list_lock);
708
709 if (target_vcpu_needs_kick) {
710 kvm_make_request(KVM_REQ_IRQ_PENDING, target_vcpu);
711 kvm_vcpu_kick(target_vcpu);
712 }
713
714 goto retry;
715 }
716
717 raw_spin_unlock(&vgic_cpu->ap_list_lock);
718 }
719
vgic_fold_lr_state(struct kvm_vcpu * vcpu)720 static inline void vgic_fold_lr_state(struct kvm_vcpu *vcpu)
721 {
722 if (kvm_vgic_global_state.type == VGIC_V2)
723 vgic_v2_fold_lr_state(vcpu);
724 else
725 vgic_v3_fold_lr_state(vcpu);
726 }
727
728 /* Requires the irq_lock to be held. */
vgic_populate_lr(struct kvm_vcpu * vcpu,struct vgic_irq * irq,int lr)729 static inline void vgic_populate_lr(struct kvm_vcpu *vcpu,
730 struct vgic_irq *irq, int lr)
731 {
732 lockdep_assert_held(&irq->irq_lock);
733
734 if (kvm_vgic_global_state.type == VGIC_V2)
735 vgic_v2_populate_lr(vcpu, irq, lr);
736 else
737 vgic_v3_populate_lr(vcpu, irq, lr);
738 }
739
vgic_clear_lr(struct kvm_vcpu * vcpu,int lr)740 static inline void vgic_clear_lr(struct kvm_vcpu *vcpu, int lr)
741 {
742 if (kvm_vgic_global_state.type == VGIC_V2)
743 vgic_v2_clear_lr(vcpu, lr);
744 else
745 vgic_v3_clear_lr(vcpu, lr);
746 }
747
vgic_set_underflow(struct kvm_vcpu * vcpu)748 static inline void vgic_set_underflow(struct kvm_vcpu *vcpu)
749 {
750 if (kvm_vgic_global_state.type == VGIC_V2)
751 vgic_v2_set_underflow(vcpu);
752 else
753 vgic_v3_set_underflow(vcpu);
754 }
755
756 /* Requires the ap_list_lock to be held. */
compute_ap_list_depth(struct kvm_vcpu * vcpu,bool * multi_sgi)757 static int compute_ap_list_depth(struct kvm_vcpu *vcpu,
758 bool *multi_sgi)
759 {
760 struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
761 struct vgic_irq *irq;
762 int count = 0;
763
764 *multi_sgi = false;
765
766 lockdep_assert_held(&vgic_cpu->ap_list_lock);
767
768 list_for_each_entry(irq, &vgic_cpu->ap_list_head, ap_list) {
769 int w;
770
771 raw_spin_lock(&irq->irq_lock);
772 /* GICv2 SGIs can count for more than one... */
773 w = vgic_irq_get_lr_count(irq);
774 raw_spin_unlock(&irq->irq_lock);
775
776 count += w;
777 *multi_sgi |= (w > 1);
778 }
779 return count;
780 }
781
782 /* Requires the VCPU's ap_list_lock to be held. */
vgic_flush_lr_state(struct kvm_vcpu * vcpu)783 static void vgic_flush_lr_state(struct kvm_vcpu *vcpu)
784 {
785 struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
786 struct vgic_irq *irq;
787 int count;
788 bool multi_sgi;
789 u8 prio = 0xff;
790 int i = 0;
791
792 lockdep_assert_held(&vgic_cpu->ap_list_lock);
793
794 count = compute_ap_list_depth(vcpu, &multi_sgi);
795 if (count > kvm_vgic_global_state.nr_lr || multi_sgi)
796 vgic_sort_ap_list(vcpu);
797
798 count = 0;
799
800 list_for_each_entry(irq, &vgic_cpu->ap_list_head, ap_list) {
801 raw_spin_lock(&irq->irq_lock);
802
803 /*
804 * If we have multi-SGIs in the pipeline, we need to
805 * guarantee that they are all seen before any IRQ of
806 * lower priority. In that case, we need to filter out
807 * these interrupts by exiting early. This is easy as
808 * the AP list has been sorted already.
809 */
810 if (multi_sgi && irq->priority > prio) {
811 _raw_spin_unlock(&irq->irq_lock);
812 break;
813 }
814
815 if (likely(vgic_target_oracle(irq) == vcpu)) {
816 vgic_populate_lr(vcpu, irq, count++);
817
818 if (irq->source)
819 prio = irq->priority;
820 }
821
822 raw_spin_unlock(&irq->irq_lock);
823
824 if (count == kvm_vgic_global_state.nr_lr) {
825 if (!list_is_last(&irq->ap_list,
826 &vgic_cpu->ap_list_head))
827 vgic_set_underflow(vcpu);
828 break;
829 }
830 }
831
832 /* Nuke remaining LRs */
833 for (i = count ; i < kvm_vgic_global_state.nr_lr; i++)
834 vgic_clear_lr(vcpu, i);
835
836 if (!static_branch_unlikely(&kvm_vgic_global_state.gicv3_cpuif))
837 vcpu->arch.vgic_cpu.vgic_v2.used_lrs = count;
838 else
839 vcpu->arch.vgic_cpu.vgic_v3.used_lrs = count;
840 }
841
can_access_vgic_from_kernel(void)842 static inline bool can_access_vgic_from_kernel(void)
843 {
844 /*
845 * GICv2 can always be accessed from the kernel because it is
846 * memory-mapped, and VHE systems can access GICv3 EL2 system
847 * registers.
848 */
849 return !static_branch_unlikely(&kvm_vgic_global_state.gicv3_cpuif) || has_vhe();
850 }
851
vgic_save_state(struct kvm_vcpu * vcpu)852 static inline void vgic_save_state(struct kvm_vcpu *vcpu)
853 {
854 if (!static_branch_unlikely(&kvm_vgic_global_state.gicv3_cpuif))
855 vgic_v2_save_state(vcpu);
856 else
857 __vgic_v3_save_state(&vcpu->arch.vgic_cpu.vgic_v3);
858 }
859
860 /* Sync back the hardware VGIC state into our emulation after a guest's run. */
kvm_vgic_sync_hwstate(struct kvm_vcpu * vcpu)861 void kvm_vgic_sync_hwstate(struct kvm_vcpu *vcpu)
862 {
863 int used_lrs;
864
865 /* An empty ap_list_head implies used_lrs == 0 */
866 if (list_empty(&vcpu->arch.vgic_cpu.ap_list_head))
867 return;
868
869 if (can_access_vgic_from_kernel())
870 vgic_save_state(vcpu);
871
872 if (!static_branch_unlikely(&kvm_vgic_global_state.gicv3_cpuif))
873 used_lrs = vcpu->arch.vgic_cpu.vgic_v2.used_lrs;
874 else
875 used_lrs = vcpu->arch.vgic_cpu.vgic_v3.used_lrs;
876
877 if (used_lrs)
878 vgic_fold_lr_state(vcpu);
879 vgic_prune_ap_list(vcpu);
880 }
881
vgic_restore_state(struct kvm_vcpu * vcpu)882 static inline void vgic_restore_state(struct kvm_vcpu *vcpu)
883 {
884 if (!static_branch_unlikely(&kvm_vgic_global_state.gicv3_cpuif))
885 vgic_v2_restore_state(vcpu);
886 else
887 __vgic_v3_restore_state(&vcpu->arch.vgic_cpu.vgic_v3);
888 }
889
890 /* Flush our emulation state into the GIC hardware before entering the guest. */
kvm_vgic_flush_hwstate(struct kvm_vcpu * vcpu)891 void kvm_vgic_flush_hwstate(struct kvm_vcpu *vcpu)
892 {
893 /*
894 * If there are no virtual interrupts active or pending for this
895 * VCPU, then there is no work to do and we can bail out without
896 * taking any lock. There is a potential race with someone injecting
897 * interrupts to the VCPU, but it is a benign race as the VCPU will
898 * either observe the new interrupt before or after doing this check,
899 * and introducing additional synchronization mechanism doesn't change
900 * this.
901 *
902 * Note that we still need to go through the whole thing if anything
903 * can be directly injected (GICv4).
904 */
905 if (list_empty(&vcpu->arch.vgic_cpu.ap_list_head) &&
906 !vgic_supports_direct_msis(vcpu->kvm))
907 return;
908
909 DEBUG_SPINLOCK_BUG_ON(!irqs_disabled());
910
911 if (!list_empty(&vcpu->arch.vgic_cpu.ap_list_head)) {
912 raw_spin_lock(&vcpu->arch.vgic_cpu.ap_list_lock);
913 vgic_flush_lr_state(vcpu);
914 raw_spin_unlock(&vcpu->arch.vgic_cpu.ap_list_lock);
915 }
916
917 if (can_access_vgic_from_kernel())
918 vgic_restore_state(vcpu);
919 }
920
kvm_vgic_load(struct kvm_vcpu * vcpu)921 void kvm_vgic_load(struct kvm_vcpu *vcpu)
922 {
923 if (unlikely(!vgic_initialized(vcpu->kvm)))
924 return;
925
926 if (kvm_vgic_global_state.type == VGIC_V2)
927 vgic_v2_load(vcpu);
928 else
929 vgic_v3_load(vcpu);
930 }
931
kvm_vgic_put(struct kvm_vcpu * vcpu)932 void kvm_vgic_put(struct kvm_vcpu *vcpu)
933 {
934 if (unlikely(!vgic_initialized(vcpu->kvm)))
935 return;
936
937 if (kvm_vgic_global_state.type == VGIC_V2)
938 vgic_v2_put(vcpu);
939 else
940 vgic_v3_put(vcpu);
941 }
942
kvm_vgic_vmcr_sync(struct kvm_vcpu * vcpu)943 void kvm_vgic_vmcr_sync(struct kvm_vcpu *vcpu)
944 {
945 if (unlikely(!irqchip_in_kernel(vcpu->kvm)))
946 return;
947
948 if (kvm_vgic_global_state.type == VGIC_V2)
949 vgic_v2_vmcr_sync(vcpu);
950 else
951 vgic_v3_vmcr_sync(vcpu);
952 }
953
kvm_vgic_vcpu_pending_irq(struct kvm_vcpu * vcpu)954 int kvm_vgic_vcpu_pending_irq(struct kvm_vcpu *vcpu)
955 {
956 struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
957 struct vgic_irq *irq;
958 bool pending = false;
959 unsigned long flags;
960 struct vgic_vmcr vmcr;
961
962 if (!vcpu->kvm->arch.vgic.enabled)
963 return false;
964
965 if (vcpu->arch.vgic_cpu.vgic_v3.its_vpe.pending_last)
966 return true;
967
968 vgic_get_vmcr(vcpu, &vmcr);
969
970 raw_spin_lock_irqsave(&vgic_cpu->ap_list_lock, flags);
971
972 list_for_each_entry(irq, &vgic_cpu->ap_list_head, ap_list) {
973 raw_spin_lock(&irq->irq_lock);
974 pending = irq_is_pending(irq) && irq->enabled &&
975 !irq->active &&
976 irq->priority < vmcr.pmr;
977 raw_spin_unlock(&irq->irq_lock);
978
979 if (pending)
980 break;
981 }
982
983 raw_spin_unlock_irqrestore(&vgic_cpu->ap_list_lock, flags);
984
985 return pending;
986 }
987
vgic_kick_vcpus(struct kvm * kvm)988 void vgic_kick_vcpus(struct kvm *kvm)
989 {
990 struct kvm_vcpu *vcpu;
991 int c;
992
993 /*
994 * We've injected an interrupt, time to find out who deserves
995 * a good kick...
996 */
997 kvm_for_each_vcpu(c, vcpu, kvm) {
998 if (kvm_vgic_vcpu_pending_irq(vcpu)) {
999 kvm_make_request(KVM_REQ_IRQ_PENDING, vcpu);
1000 kvm_vcpu_kick(vcpu);
1001 }
1002 }
1003 }
1004
kvm_vgic_map_is_active(struct kvm_vcpu * vcpu,unsigned int vintid)1005 bool kvm_vgic_map_is_active(struct kvm_vcpu *vcpu, unsigned int vintid)
1006 {
1007 struct vgic_irq *irq;
1008 bool map_is_active;
1009 unsigned long flags;
1010
1011 if (!vgic_initialized(vcpu->kvm))
1012 return false;
1013
1014 irq = vgic_get_irq(vcpu->kvm, vcpu, vintid);
1015 raw_spin_lock_irqsave(&irq->irq_lock, flags);
1016 map_is_active = irq->hw && irq->active;
1017 raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
1018 vgic_put_irq(vcpu->kvm, irq);
1019
1020 return map_is_active;
1021 }
1022