• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright IBM Corporation, 2018
4  * Authors Suraj Jitindar Singh <sjitindarsingh@gmail.com>
5  *	   Paul Mackerras <paulus@ozlabs.org>
6  *
7  * Description: KVM functions specific to running nested KVM-HV guests
8  * on Book3S processors (specifically POWER9 and later).
9  */
10 
11 #include <linux/kernel.h>
12 #include <linux/kvm_host.h>
13 #include <linux/llist.h>
14 #include <linux/pgtable.h>
15 
16 #include <asm/kvm_ppc.h>
17 #include <asm/kvm_book3s.h>
18 #include <asm/mmu.h>
19 #include <asm/pgalloc.h>
20 #include <asm/pte-walk.h>
21 #include <asm/reg.h>
22 
23 static struct patb_entry *pseries_partition_tb;
24 
25 static void kvmhv_update_ptbl_cache(struct kvm_nested_guest *gp);
26 static void kvmhv_free_memslot_nest_rmap(struct kvm_memory_slot *free);
27 
kvmhv_save_hv_regs(struct kvm_vcpu * vcpu,struct hv_guest_state * hr)28 void kvmhv_save_hv_regs(struct kvm_vcpu *vcpu, struct hv_guest_state *hr)
29 {
30 	struct kvmppc_vcore *vc = vcpu->arch.vcore;
31 
32 	hr->pcr = vc->pcr | PCR_MASK;
33 	hr->dpdes = vc->dpdes;
34 	hr->hfscr = vcpu->arch.hfscr;
35 	hr->tb_offset = vc->tb_offset;
36 	hr->dawr0 = vcpu->arch.dawr;
37 	hr->dawrx0 = vcpu->arch.dawrx;
38 	hr->ciabr = vcpu->arch.ciabr;
39 	hr->purr = vcpu->arch.purr;
40 	hr->spurr = vcpu->arch.spurr;
41 	hr->ic = vcpu->arch.ic;
42 	hr->vtb = vc->vtb;
43 	hr->srr0 = vcpu->arch.shregs.srr0;
44 	hr->srr1 = vcpu->arch.shregs.srr1;
45 	hr->sprg[0] = vcpu->arch.shregs.sprg0;
46 	hr->sprg[1] = vcpu->arch.shregs.sprg1;
47 	hr->sprg[2] = vcpu->arch.shregs.sprg2;
48 	hr->sprg[3] = vcpu->arch.shregs.sprg3;
49 	hr->pidr = vcpu->arch.pid;
50 	hr->cfar = vcpu->arch.cfar;
51 	hr->ppr = vcpu->arch.ppr;
52 }
53 
54 /* Use noinline_for_stack due to https://bugs.llvm.org/show_bug.cgi?id=49610 */
byteswap_pt_regs(struct pt_regs * regs)55 static noinline_for_stack void byteswap_pt_regs(struct pt_regs *regs)
56 {
57 	unsigned long *addr = (unsigned long *) regs;
58 
59 	for (; addr < ((unsigned long *) (regs + 1)); addr++)
60 		*addr = swab64(*addr);
61 }
62 
byteswap_hv_regs(struct hv_guest_state * hr)63 static void byteswap_hv_regs(struct hv_guest_state *hr)
64 {
65 	hr->version = swab64(hr->version);
66 	hr->lpid = swab32(hr->lpid);
67 	hr->vcpu_token = swab32(hr->vcpu_token);
68 	hr->lpcr = swab64(hr->lpcr);
69 	hr->pcr = swab64(hr->pcr) | PCR_MASK;
70 	hr->amor = swab64(hr->amor);
71 	hr->dpdes = swab64(hr->dpdes);
72 	hr->hfscr = swab64(hr->hfscr);
73 	hr->tb_offset = swab64(hr->tb_offset);
74 	hr->dawr0 = swab64(hr->dawr0);
75 	hr->dawrx0 = swab64(hr->dawrx0);
76 	hr->ciabr = swab64(hr->ciabr);
77 	hr->hdec_expiry = swab64(hr->hdec_expiry);
78 	hr->purr = swab64(hr->purr);
79 	hr->spurr = swab64(hr->spurr);
80 	hr->ic = swab64(hr->ic);
81 	hr->vtb = swab64(hr->vtb);
82 	hr->hdar = swab64(hr->hdar);
83 	hr->hdsisr = swab64(hr->hdsisr);
84 	hr->heir = swab64(hr->heir);
85 	hr->asdr = swab64(hr->asdr);
86 	hr->srr0 = swab64(hr->srr0);
87 	hr->srr1 = swab64(hr->srr1);
88 	hr->sprg[0] = swab64(hr->sprg[0]);
89 	hr->sprg[1] = swab64(hr->sprg[1]);
90 	hr->sprg[2] = swab64(hr->sprg[2]);
91 	hr->sprg[3] = swab64(hr->sprg[3]);
92 	hr->pidr = swab64(hr->pidr);
93 	hr->cfar = swab64(hr->cfar);
94 	hr->ppr = swab64(hr->ppr);
95 }
96 
save_hv_return_state(struct kvm_vcpu * vcpu,int trap,struct hv_guest_state * hr)97 static void save_hv_return_state(struct kvm_vcpu *vcpu, int trap,
98 				 struct hv_guest_state *hr)
99 {
100 	struct kvmppc_vcore *vc = vcpu->arch.vcore;
101 
102 	hr->dpdes = vc->dpdes;
103 	hr->hfscr = vcpu->arch.hfscr;
104 	hr->purr = vcpu->arch.purr;
105 	hr->spurr = vcpu->arch.spurr;
106 	hr->ic = vcpu->arch.ic;
107 	hr->vtb = vc->vtb;
108 	hr->srr0 = vcpu->arch.shregs.srr0;
109 	hr->srr1 = vcpu->arch.shregs.srr1;
110 	hr->sprg[0] = vcpu->arch.shregs.sprg0;
111 	hr->sprg[1] = vcpu->arch.shregs.sprg1;
112 	hr->sprg[2] = vcpu->arch.shregs.sprg2;
113 	hr->sprg[3] = vcpu->arch.shregs.sprg3;
114 	hr->pidr = vcpu->arch.pid;
115 	hr->cfar = vcpu->arch.cfar;
116 	hr->ppr = vcpu->arch.ppr;
117 	switch (trap) {
118 	case BOOK3S_INTERRUPT_H_DATA_STORAGE:
119 		hr->hdar = vcpu->arch.fault_dar;
120 		hr->hdsisr = vcpu->arch.fault_dsisr;
121 		hr->asdr = vcpu->arch.fault_gpa;
122 		break;
123 	case BOOK3S_INTERRUPT_H_INST_STORAGE:
124 		hr->asdr = vcpu->arch.fault_gpa;
125 		break;
126 	case BOOK3S_INTERRUPT_H_EMUL_ASSIST:
127 		hr->heir = vcpu->arch.emul_inst;
128 		break;
129 	}
130 }
131 
sanitise_hv_regs(struct kvm_vcpu * vcpu,struct hv_guest_state * hr)132 static void sanitise_hv_regs(struct kvm_vcpu *vcpu, struct hv_guest_state *hr)
133 {
134 	/*
135 	 * Don't let L1 enable features for L2 which we've disabled for L1,
136 	 * but preserve the interrupt cause field.
137 	 */
138 	hr->hfscr &= (HFSCR_INTR_CAUSE | vcpu->arch.hfscr);
139 
140 	/* Don't let data address watchpoint match in hypervisor state */
141 	hr->dawrx0 &= ~DAWRX_HYP;
142 
143 	/* Don't let completed instruction address breakpt match in HV state */
144 	if ((hr->ciabr & CIABR_PRIV) == CIABR_PRIV_HYPER)
145 		hr->ciabr &= ~CIABR_PRIV;
146 }
147 
restore_hv_regs(struct kvm_vcpu * vcpu,struct hv_guest_state * hr)148 static void restore_hv_regs(struct kvm_vcpu *vcpu, struct hv_guest_state *hr)
149 {
150 	struct kvmppc_vcore *vc = vcpu->arch.vcore;
151 
152 	vc->pcr = hr->pcr | PCR_MASK;
153 	vc->dpdes = hr->dpdes;
154 	vcpu->arch.hfscr = hr->hfscr;
155 	vcpu->arch.dawr = hr->dawr0;
156 	vcpu->arch.dawrx = hr->dawrx0;
157 	vcpu->arch.ciabr = hr->ciabr;
158 	vcpu->arch.purr = hr->purr;
159 	vcpu->arch.spurr = hr->spurr;
160 	vcpu->arch.ic = hr->ic;
161 	vc->vtb = hr->vtb;
162 	vcpu->arch.shregs.srr0 = hr->srr0;
163 	vcpu->arch.shregs.srr1 = hr->srr1;
164 	vcpu->arch.shregs.sprg0 = hr->sprg[0];
165 	vcpu->arch.shregs.sprg1 = hr->sprg[1];
166 	vcpu->arch.shregs.sprg2 = hr->sprg[2];
167 	vcpu->arch.shregs.sprg3 = hr->sprg[3];
168 	vcpu->arch.pid = hr->pidr;
169 	vcpu->arch.cfar = hr->cfar;
170 	vcpu->arch.ppr = hr->ppr;
171 }
172 
kvmhv_restore_hv_return_state(struct kvm_vcpu * vcpu,struct hv_guest_state * hr)173 void kvmhv_restore_hv_return_state(struct kvm_vcpu *vcpu,
174 				   struct hv_guest_state *hr)
175 {
176 	struct kvmppc_vcore *vc = vcpu->arch.vcore;
177 
178 	vc->dpdes = hr->dpdes;
179 	vcpu->arch.hfscr = hr->hfscr;
180 	vcpu->arch.purr = hr->purr;
181 	vcpu->arch.spurr = hr->spurr;
182 	vcpu->arch.ic = hr->ic;
183 	vc->vtb = hr->vtb;
184 	vcpu->arch.fault_dar = hr->hdar;
185 	vcpu->arch.fault_dsisr = hr->hdsisr;
186 	vcpu->arch.fault_gpa = hr->asdr;
187 	vcpu->arch.emul_inst = hr->heir;
188 	vcpu->arch.shregs.srr0 = hr->srr0;
189 	vcpu->arch.shregs.srr1 = hr->srr1;
190 	vcpu->arch.shregs.sprg0 = hr->sprg[0];
191 	vcpu->arch.shregs.sprg1 = hr->sprg[1];
192 	vcpu->arch.shregs.sprg2 = hr->sprg[2];
193 	vcpu->arch.shregs.sprg3 = hr->sprg[3];
194 	vcpu->arch.pid = hr->pidr;
195 	vcpu->arch.cfar = hr->cfar;
196 	vcpu->arch.ppr = hr->ppr;
197 }
198 
kvmhv_nested_mmio_needed(struct kvm_vcpu * vcpu,u64 regs_ptr)199 static void kvmhv_nested_mmio_needed(struct kvm_vcpu *vcpu, u64 regs_ptr)
200 {
201 	/* No need to reflect the page fault to L1, we've handled it */
202 	vcpu->arch.trap = 0;
203 
204 	/*
205 	 * Since the L2 gprs have already been written back into L1 memory when
206 	 * we complete the mmio, store the L1 memory location of the L2 gpr
207 	 * being loaded into by the mmio so that the loaded value can be
208 	 * written there in kvmppc_complete_mmio_load()
209 	 */
210 	if (((vcpu->arch.io_gpr & KVM_MMIO_REG_EXT_MASK) == KVM_MMIO_REG_GPR)
211 	    && (vcpu->mmio_is_write == 0)) {
212 		vcpu->arch.nested_io_gpr = (gpa_t) regs_ptr +
213 					   offsetof(struct pt_regs,
214 						    gpr[vcpu->arch.io_gpr]);
215 		vcpu->arch.io_gpr = KVM_MMIO_REG_NESTED_GPR;
216 	}
217 }
218 
kvmhv_enter_nested_guest(struct kvm_vcpu * vcpu)219 long kvmhv_enter_nested_guest(struct kvm_vcpu *vcpu)
220 {
221 	long int err, r;
222 	struct kvm_nested_guest *l2;
223 	struct pt_regs l2_regs, saved_l1_regs;
224 	struct hv_guest_state l2_hv, saved_l1_hv;
225 	struct kvmppc_vcore *vc = vcpu->arch.vcore;
226 	u64 hv_ptr, regs_ptr;
227 	u64 hdec_exp;
228 	s64 delta_purr, delta_spurr, delta_ic, delta_vtb;
229 	u64 mask;
230 	unsigned long lpcr;
231 
232 	if (vcpu->kvm->arch.l1_ptcr == 0)
233 		return H_NOT_AVAILABLE;
234 
235 	if (MSR_TM_TRANSACTIONAL(vcpu->arch.shregs.msr))
236 		return H_BAD_MODE;
237 
238 	/* copy parameters in */
239 	hv_ptr = kvmppc_get_gpr(vcpu, 4);
240 	regs_ptr = kvmppc_get_gpr(vcpu, 5);
241 	vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
242 	err = kvm_vcpu_read_guest(vcpu, hv_ptr, &l2_hv,
243 				  sizeof(struct hv_guest_state)) ||
244 		kvm_vcpu_read_guest(vcpu, regs_ptr, &l2_regs,
245 				    sizeof(struct pt_regs));
246 	srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
247 	if (err)
248 		return H_PARAMETER;
249 
250 	if (kvmppc_need_byteswap(vcpu))
251 		byteswap_hv_regs(&l2_hv);
252 	if (l2_hv.version != HV_GUEST_STATE_VERSION)
253 		return H_P2;
254 
255 	if (kvmppc_need_byteswap(vcpu))
256 		byteswap_pt_regs(&l2_regs);
257 	if (l2_hv.vcpu_token >= NR_CPUS)
258 		return H_PARAMETER;
259 
260 	/*
261 	 * L1 must have set up a suspended state to enter the L2 in a
262 	 * transactional state, and only in that case. These have to be
263 	 * filtered out here to prevent causing a TM Bad Thing in the
264 	 * host HRFID. We could synthesize a TM Bad Thing back to the L1
265 	 * here but there doesn't seem like much point.
266 	 */
267 	if (MSR_TM_SUSPENDED(vcpu->arch.shregs.msr)) {
268 		if (!MSR_TM_ACTIVE(l2_regs.msr))
269 			return H_BAD_MODE;
270 	} else {
271 		if (l2_regs.msr & MSR_TS_MASK)
272 			return H_BAD_MODE;
273 		if (WARN_ON_ONCE(vcpu->arch.shregs.msr & MSR_TS_MASK))
274 			return H_BAD_MODE;
275 	}
276 
277 	/* translate lpid */
278 	l2 = kvmhv_get_nested(vcpu->kvm, l2_hv.lpid, true);
279 	if (!l2)
280 		return H_PARAMETER;
281 	if (!l2->l1_gr_to_hr) {
282 		mutex_lock(&l2->tlb_lock);
283 		kvmhv_update_ptbl_cache(l2);
284 		mutex_unlock(&l2->tlb_lock);
285 	}
286 
287 	/* save l1 values of things */
288 	vcpu->arch.regs.msr = vcpu->arch.shregs.msr;
289 	saved_l1_regs = vcpu->arch.regs;
290 	kvmhv_save_hv_regs(vcpu, &saved_l1_hv);
291 
292 	/* convert TB values/offsets to host (L0) values */
293 	hdec_exp = l2_hv.hdec_expiry - vc->tb_offset;
294 	vc->tb_offset += l2_hv.tb_offset;
295 
296 	/* set L1 state to L2 state */
297 	vcpu->arch.nested = l2;
298 	vcpu->arch.nested_vcpu_id = l2_hv.vcpu_token;
299 	vcpu->arch.regs = l2_regs;
300 	vcpu->arch.shregs.msr = vcpu->arch.regs.msr;
301 	mask = LPCR_DPFD | LPCR_ILE | LPCR_TC | LPCR_AIL | LPCR_LD |
302 		LPCR_LPES | LPCR_MER;
303 	lpcr = (vc->lpcr & ~mask) | (l2_hv.lpcr & mask);
304 	sanitise_hv_regs(vcpu, &l2_hv);
305 	restore_hv_regs(vcpu, &l2_hv);
306 
307 	vcpu->arch.ret = RESUME_GUEST;
308 	vcpu->arch.trap = 0;
309 	do {
310 		if (mftb() >= hdec_exp) {
311 			vcpu->arch.trap = BOOK3S_INTERRUPT_HV_DECREMENTER;
312 			r = RESUME_HOST;
313 			break;
314 		}
315 		r = kvmhv_run_single_vcpu(vcpu, hdec_exp, lpcr);
316 	} while (is_kvmppc_resume_guest(r));
317 
318 	/* save L2 state for return */
319 	l2_regs = vcpu->arch.regs;
320 	l2_regs.msr = vcpu->arch.shregs.msr;
321 	delta_purr = vcpu->arch.purr - l2_hv.purr;
322 	delta_spurr = vcpu->arch.spurr - l2_hv.spurr;
323 	delta_ic = vcpu->arch.ic - l2_hv.ic;
324 	delta_vtb = vc->vtb - l2_hv.vtb;
325 	save_hv_return_state(vcpu, vcpu->arch.trap, &l2_hv);
326 
327 	/* restore L1 state */
328 	vcpu->arch.nested = NULL;
329 	vcpu->arch.regs = saved_l1_regs;
330 	vcpu->arch.shregs.msr = saved_l1_regs.msr & ~MSR_TS_MASK;
331 	/* set L1 MSR TS field according to L2 transaction state */
332 	if (l2_regs.msr & MSR_TS_MASK)
333 		vcpu->arch.shregs.msr |= MSR_TS_S;
334 	vc->tb_offset = saved_l1_hv.tb_offset;
335 	restore_hv_regs(vcpu, &saved_l1_hv);
336 	vcpu->arch.purr += delta_purr;
337 	vcpu->arch.spurr += delta_spurr;
338 	vcpu->arch.ic += delta_ic;
339 	vc->vtb += delta_vtb;
340 
341 	kvmhv_put_nested(l2);
342 
343 	/* copy l2_hv_state and regs back to guest */
344 	if (kvmppc_need_byteswap(vcpu)) {
345 		byteswap_hv_regs(&l2_hv);
346 		byteswap_pt_regs(&l2_regs);
347 	}
348 	vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
349 	err = kvm_vcpu_write_guest(vcpu, hv_ptr, &l2_hv,
350 				   sizeof(struct hv_guest_state)) ||
351 		kvm_vcpu_write_guest(vcpu, regs_ptr, &l2_regs,
352 				   sizeof(struct pt_regs));
353 	srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
354 	if (err)
355 		return H_AUTHORITY;
356 
357 	if (r == -EINTR)
358 		return H_INTERRUPT;
359 
360 	if (vcpu->mmio_needed) {
361 		kvmhv_nested_mmio_needed(vcpu, regs_ptr);
362 		return H_TOO_HARD;
363 	}
364 
365 	return vcpu->arch.trap;
366 }
367 
kvmhv_nested_init(void)368 long kvmhv_nested_init(void)
369 {
370 	long int ptb_order;
371 	unsigned long ptcr;
372 	long rc;
373 
374 	if (!kvmhv_on_pseries())
375 		return 0;
376 	if (!radix_enabled())
377 		return -ENODEV;
378 
379 	/* find log base 2 of KVMPPC_NR_LPIDS, rounding up */
380 	ptb_order = __ilog2(KVMPPC_NR_LPIDS - 1) + 1;
381 	if (ptb_order < 8)
382 		ptb_order = 8;
383 	pseries_partition_tb = kmalloc(sizeof(struct patb_entry) << ptb_order,
384 				       GFP_KERNEL);
385 	if (!pseries_partition_tb) {
386 		pr_err("kvm-hv: failed to allocated nested partition table\n");
387 		return -ENOMEM;
388 	}
389 
390 	ptcr = __pa(pseries_partition_tb) | (ptb_order - 8);
391 	rc = plpar_hcall_norets(H_SET_PARTITION_TABLE, ptcr);
392 	if (rc != H_SUCCESS) {
393 		pr_err("kvm-hv: Parent hypervisor does not support nesting (rc=%ld)\n",
394 		       rc);
395 		kfree(pseries_partition_tb);
396 		pseries_partition_tb = NULL;
397 		return -ENODEV;
398 	}
399 
400 	return 0;
401 }
402 
kvmhv_nested_exit(void)403 void kvmhv_nested_exit(void)
404 {
405 	/*
406 	 * N.B. the kvmhv_on_pseries() test is there because it enables
407 	 * the compiler to remove the call to plpar_hcall_norets()
408 	 * when CONFIG_PPC_PSERIES=n.
409 	 */
410 	if (kvmhv_on_pseries() && pseries_partition_tb) {
411 		plpar_hcall_norets(H_SET_PARTITION_TABLE, 0);
412 		kfree(pseries_partition_tb);
413 		pseries_partition_tb = NULL;
414 	}
415 }
416 
kvmhv_flush_lpid(unsigned int lpid)417 static void kvmhv_flush_lpid(unsigned int lpid)
418 {
419 	long rc;
420 
421 	if (!kvmhv_on_pseries()) {
422 		radix__flush_all_lpid(lpid);
423 		return;
424 	}
425 
426 	rc = plpar_hcall_norets(H_TLB_INVALIDATE, H_TLBIE_P1_ENC(2, 0, 1),
427 				lpid, TLBIEL_INVAL_SET_LPID);
428 	if (rc)
429 		pr_err("KVM: TLB LPID invalidation hcall failed, rc=%ld\n", rc);
430 }
431 
kvmhv_set_ptbl_entry(unsigned int lpid,u64 dw0,u64 dw1)432 void kvmhv_set_ptbl_entry(unsigned int lpid, u64 dw0, u64 dw1)
433 {
434 	if (!kvmhv_on_pseries()) {
435 		mmu_partition_table_set_entry(lpid, dw0, dw1, true);
436 		return;
437 	}
438 
439 	pseries_partition_tb[lpid].patb0 = cpu_to_be64(dw0);
440 	pseries_partition_tb[lpid].patb1 = cpu_to_be64(dw1);
441 	/* L0 will do the necessary barriers */
442 	kvmhv_flush_lpid(lpid);
443 }
444 
kvmhv_set_nested_ptbl(struct kvm_nested_guest * gp)445 static void kvmhv_set_nested_ptbl(struct kvm_nested_guest *gp)
446 {
447 	unsigned long dw0;
448 
449 	dw0 = PATB_HR | radix__get_tree_size() |
450 		__pa(gp->shadow_pgtable) | RADIX_PGD_INDEX_SIZE;
451 	kvmhv_set_ptbl_entry(gp->shadow_lpid, dw0, gp->process_table);
452 }
453 
kvmhv_vm_nested_init(struct kvm * kvm)454 void kvmhv_vm_nested_init(struct kvm *kvm)
455 {
456 	kvm->arch.max_nested_lpid = -1;
457 }
458 
459 /*
460  * Handle the H_SET_PARTITION_TABLE hcall.
461  * r4 = guest real address of partition table + log_2(size) - 12
462  * (formatted as for the PTCR).
463  */
kvmhv_set_partition_table(struct kvm_vcpu * vcpu)464 long kvmhv_set_partition_table(struct kvm_vcpu *vcpu)
465 {
466 	struct kvm *kvm = vcpu->kvm;
467 	unsigned long ptcr = kvmppc_get_gpr(vcpu, 4);
468 	int srcu_idx;
469 	long ret = H_SUCCESS;
470 
471 	srcu_idx = srcu_read_lock(&kvm->srcu);
472 	/*
473 	 * Limit the partition table to 4096 entries (because that's what
474 	 * hardware supports), and check the base address.
475 	 */
476 	if ((ptcr & PRTS_MASK) > 12 - 8 ||
477 	    !kvm_is_visible_gfn(vcpu->kvm, (ptcr & PRTB_MASK) >> PAGE_SHIFT))
478 		ret = H_PARAMETER;
479 	srcu_read_unlock(&kvm->srcu, srcu_idx);
480 	if (ret == H_SUCCESS)
481 		kvm->arch.l1_ptcr = ptcr;
482 	return ret;
483 }
484 
485 /*
486  * Handle the H_COPY_TOFROM_GUEST hcall.
487  * r4 = L1 lpid of nested guest
488  * r5 = pid
489  * r6 = eaddr to access
490  * r7 = to buffer (L1 gpa)
491  * r8 = from buffer (L1 gpa)
492  * r9 = n bytes to copy
493  */
kvmhv_copy_tofrom_guest_nested(struct kvm_vcpu * vcpu)494 long kvmhv_copy_tofrom_guest_nested(struct kvm_vcpu *vcpu)
495 {
496 	struct kvm_nested_guest *gp;
497 	int l1_lpid = kvmppc_get_gpr(vcpu, 4);
498 	int pid = kvmppc_get_gpr(vcpu, 5);
499 	gva_t eaddr = kvmppc_get_gpr(vcpu, 6);
500 	gpa_t gp_to = (gpa_t) kvmppc_get_gpr(vcpu, 7);
501 	gpa_t gp_from = (gpa_t) kvmppc_get_gpr(vcpu, 8);
502 	void *buf;
503 	unsigned long n = kvmppc_get_gpr(vcpu, 9);
504 	bool is_load = !!gp_to;
505 	long rc;
506 
507 	if (gp_to && gp_from) /* One must be NULL to determine the direction */
508 		return H_PARAMETER;
509 
510 	if (eaddr & (0xFFFUL << 52))
511 		return H_PARAMETER;
512 
513 	buf = kzalloc(n, GFP_KERNEL | __GFP_NOWARN);
514 	if (!buf)
515 		return H_NO_MEM;
516 
517 	gp = kvmhv_get_nested(vcpu->kvm, l1_lpid, false);
518 	if (!gp) {
519 		rc = H_PARAMETER;
520 		goto out_free;
521 	}
522 
523 	mutex_lock(&gp->tlb_lock);
524 
525 	if (is_load) {
526 		/* Load from the nested guest into our buffer */
527 		rc = __kvmhv_copy_tofrom_guest_radix(gp->shadow_lpid, pid,
528 						     eaddr, buf, NULL, n);
529 		if (rc)
530 			goto not_found;
531 
532 		/* Write what was loaded into our buffer back to the L1 guest */
533 		vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
534 		rc = kvm_vcpu_write_guest(vcpu, gp_to, buf, n);
535 		srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
536 		if (rc)
537 			goto not_found;
538 	} else {
539 		/* Load the data to be stored from the L1 guest into our buf */
540 		vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
541 		rc = kvm_vcpu_read_guest(vcpu, gp_from, buf, n);
542 		srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
543 		if (rc)
544 			goto not_found;
545 
546 		/* Store from our buffer into the nested guest */
547 		rc = __kvmhv_copy_tofrom_guest_radix(gp->shadow_lpid, pid,
548 						     eaddr, NULL, buf, n);
549 		if (rc)
550 			goto not_found;
551 	}
552 
553 out_unlock:
554 	mutex_unlock(&gp->tlb_lock);
555 	kvmhv_put_nested(gp);
556 out_free:
557 	kfree(buf);
558 	return rc;
559 not_found:
560 	rc = H_NOT_FOUND;
561 	goto out_unlock;
562 }
563 
564 /*
565  * Reload the partition table entry for a guest.
566  * Caller must hold gp->tlb_lock.
567  */
kvmhv_update_ptbl_cache(struct kvm_nested_guest * gp)568 static void kvmhv_update_ptbl_cache(struct kvm_nested_guest *gp)
569 {
570 	int ret;
571 	struct patb_entry ptbl_entry;
572 	unsigned long ptbl_addr;
573 	struct kvm *kvm = gp->l1_host;
574 
575 	ret = -EFAULT;
576 	ptbl_addr = (kvm->arch.l1_ptcr & PRTB_MASK) + (gp->l1_lpid << 4);
577 	if (gp->l1_lpid < (1ul << ((kvm->arch.l1_ptcr & PRTS_MASK) + 8))) {
578 		int srcu_idx = srcu_read_lock(&kvm->srcu);
579 		ret = kvm_read_guest(kvm, ptbl_addr,
580 				     &ptbl_entry, sizeof(ptbl_entry));
581 		srcu_read_unlock(&kvm->srcu, srcu_idx);
582 	}
583 	if (ret) {
584 		gp->l1_gr_to_hr = 0;
585 		gp->process_table = 0;
586 	} else {
587 		gp->l1_gr_to_hr = be64_to_cpu(ptbl_entry.patb0);
588 		gp->process_table = be64_to_cpu(ptbl_entry.patb1);
589 	}
590 	kvmhv_set_nested_ptbl(gp);
591 }
592 
kvmhv_alloc_nested(struct kvm * kvm,unsigned int lpid)593 static struct kvm_nested_guest *kvmhv_alloc_nested(struct kvm *kvm, unsigned int lpid)
594 {
595 	struct kvm_nested_guest *gp;
596 	long shadow_lpid;
597 
598 	gp = kzalloc(sizeof(*gp), GFP_KERNEL);
599 	if (!gp)
600 		return NULL;
601 	gp->l1_host = kvm;
602 	gp->l1_lpid = lpid;
603 	mutex_init(&gp->tlb_lock);
604 	gp->shadow_pgtable = pgd_alloc(kvm->mm);
605 	if (!gp->shadow_pgtable)
606 		goto out_free;
607 	shadow_lpid = kvmppc_alloc_lpid();
608 	if (shadow_lpid < 0)
609 		goto out_free2;
610 	gp->shadow_lpid = shadow_lpid;
611 	gp->radix = 1;
612 
613 	memset(gp->prev_cpu, -1, sizeof(gp->prev_cpu));
614 
615 	return gp;
616 
617  out_free2:
618 	pgd_free(kvm->mm, gp->shadow_pgtable);
619  out_free:
620 	kfree(gp);
621 	return NULL;
622 }
623 
624 /*
625  * Free up any resources allocated for a nested guest.
626  */
kvmhv_release_nested(struct kvm_nested_guest * gp)627 static void kvmhv_release_nested(struct kvm_nested_guest *gp)
628 {
629 	struct kvm *kvm = gp->l1_host;
630 
631 	if (gp->shadow_pgtable) {
632 		/*
633 		 * No vcpu is using this struct and no call to
634 		 * kvmhv_get_nested can find this struct,
635 		 * so we don't need to hold kvm->mmu_lock.
636 		 */
637 		kvmppc_free_pgtable_radix(kvm, gp->shadow_pgtable,
638 					  gp->shadow_lpid);
639 		pgd_free(kvm->mm, gp->shadow_pgtable);
640 	}
641 	kvmhv_set_ptbl_entry(gp->shadow_lpid, 0, 0);
642 	kvmppc_free_lpid(gp->shadow_lpid);
643 	kfree(gp);
644 }
645 
kvmhv_remove_nested(struct kvm_nested_guest * gp)646 static void kvmhv_remove_nested(struct kvm_nested_guest *gp)
647 {
648 	struct kvm *kvm = gp->l1_host;
649 	int lpid = gp->l1_lpid;
650 	long ref;
651 
652 	spin_lock(&kvm->mmu_lock);
653 	if (gp == kvm->arch.nested_guests[lpid]) {
654 		kvm->arch.nested_guests[lpid] = NULL;
655 		if (lpid == kvm->arch.max_nested_lpid) {
656 			while (--lpid >= 0 && !kvm->arch.nested_guests[lpid])
657 				;
658 			kvm->arch.max_nested_lpid = lpid;
659 		}
660 		--gp->refcnt;
661 	}
662 	ref = gp->refcnt;
663 	spin_unlock(&kvm->mmu_lock);
664 	if (ref == 0)
665 		kvmhv_release_nested(gp);
666 }
667 
668 /*
669  * Free up all nested resources allocated for this guest.
670  * This is called with no vcpus of the guest running, when
671  * switching the guest to HPT mode or when destroying the
672  * guest.
673  */
kvmhv_release_all_nested(struct kvm * kvm)674 void kvmhv_release_all_nested(struct kvm *kvm)
675 {
676 	int i;
677 	struct kvm_nested_guest *gp;
678 	struct kvm_nested_guest *freelist = NULL;
679 	struct kvm_memory_slot *memslot;
680 	int srcu_idx;
681 
682 	spin_lock(&kvm->mmu_lock);
683 	for (i = 0; i <= kvm->arch.max_nested_lpid; i++) {
684 		gp = kvm->arch.nested_guests[i];
685 		if (!gp)
686 			continue;
687 		kvm->arch.nested_guests[i] = NULL;
688 		if (--gp->refcnt == 0) {
689 			gp->next = freelist;
690 			freelist = gp;
691 		}
692 	}
693 	kvm->arch.max_nested_lpid = -1;
694 	spin_unlock(&kvm->mmu_lock);
695 	while ((gp = freelist) != NULL) {
696 		freelist = gp->next;
697 		kvmhv_release_nested(gp);
698 	}
699 
700 	srcu_idx = srcu_read_lock(&kvm->srcu);
701 	kvm_for_each_memslot(memslot, kvm_memslots(kvm))
702 		kvmhv_free_memslot_nest_rmap(memslot);
703 	srcu_read_unlock(&kvm->srcu, srcu_idx);
704 }
705 
706 /* caller must hold gp->tlb_lock */
kvmhv_flush_nested(struct kvm_nested_guest * gp)707 static void kvmhv_flush_nested(struct kvm_nested_guest *gp)
708 {
709 	struct kvm *kvm = gp->l1_host;
710 
711 	spin_lock(&kvm->mmu_lock);
712 	kvmppc_free_pgtable_radix(kvm, gp->shadow_pgtable, gp->shadow_lpid);
713 	spin_unlock(&kvm->mmu_lock);
714 	kvmhv_flush_lpid(gp->shadow_lpid);
715 	kvmhv_update_ptbl_cache(gp);
716 	if (gp->l1_gr_to_hr == 0)
717 		kvmhv_remove_nested(gp);
718 }
719 
kvmhv_get_nested(struct kvm * kvm,int l1_lpid,bool create)720 struct kvm_nested_guest *kvmhv_get_nested(struct kvm *kvm, int l1_lpid,
721 					  bool create)
722 {
723 	struct kvm_nested_guest *gp, *newgp;
724 
725 	if (l1_lpid >= KVM_MAX_NESTED_GUESTS ||
726 	    l1_lpid >= (1ul << ((kvm->arch.l1_ptcr & PRTS_MASK) + 12 - 4)))
727 		return NULL;
728 
729 	spin_lock(&kvm->mmu_lock);
730 	gp = kvm->arch.nested_guests[l1_lpid];
731 	if (gp)
732 		++gp->refcnt;
733 	spin_unlock(&kvm->mmu_lock);
734 
735 	if (gp || !create)
736 		return gp;
737 
738 	newgp = kvmhv_alloc_nested(kvm, l1_lpid);
739 	if (!newgp)
740 		return NULL;
741 	spin_lock(&kvm->mmu_lock);
742 	if (kvm->arch.nested_guests[l1_lpid]) {
743 		/* someone else beat us to it */
744 		gp = kvm->arch.nested_guests[l1_lpid];
745 	} else {
746 		kvm->arch.nested_guests[l1_lpid] = newgp;
747 		++newgp->refcnt;
748 		gp = newgp;
749 		newgp = NULL;
750 		if (l1_lpid > kvm->arch.max_nested_lpid)
751 			kvm->arch.max_nested_lpid = l1_lpid;
752 	}
753 	++gp->refcnt;
754 	spin_unlock(&kvm->mmu_lock);
755 
756 	if (newgp)
757 		kvmhv_release_nested(newgp);
758 
759 	return gp;
760 }
761 
kvmhv_put_nested(struct kvm_nested_guest * gp)762 void kvmhv_put_nested(struct kvm_nested_guest *gp)
763 {
764 	struct kvm *kvm = gp->l1_host;
765 	long ref;
766 
767 	spin_lock(&kvm->mmu_lock);
768 	ref = --gp->refcnt;
769 	spin_unlock(&kvm->mmu_lock);
770 	if (ref == 0)
771 		kvmhv_release_nested(gp);
772 }
773 
kvmhv_find_nested(struct kvm * kvm,int lpid)774 static struct kvm_nested_guest *kvmhv_find_nested(struct kvm *kvm, int lpid)
775 {
776 	if (lpid > kvm->arch.max_nested_lpid)
777 		return NULL;
778 	return kvm->arch.nested_guests[lpid];
779 }
780 
find_kvm_nested_guest_pte(struct kvm * kvm,unsigned long lpid,unsigned long ea,unsigned * hshift)781 pte_t *find_kvm_nested_guest_pte(struct kvm *kvm, unsigned long lpid,
782 				 unsigned long ea, unsigned *hshift)
783 {
784 	struct kvm_nested_guest *gp;
785 	pte_t *pte;
786 
787 	gp = kvmhv_find_nested(kvm, lpid);
788 	if (!gp)
789 		return NULL;
790 
791 	VM_WARN(!spin_is_locked(&kvm->mmu_lock),
792 		"%s called with kvm mmu_lock not held \n", __func__);
793 	pte = __find_linux_pte(gp->shadow_pgtable, ea, NULL, hshift);
794 
795 	return pte;
796 }
797 
kvmhv_n_rmap_is_equal(u64 rmap_1,u64 rmap_2)798 static inline bool kvmhv_n_rmap_is_equal(u64 rmap_1, u64 rmap_2)
799 {
800 	return !((rmap_1 ^ rmap_2) & (RMAP_NESTED_LPID_MASK |
801 				       RMAP_NESTED_GPA_MASK));
802 }
803 
kvmhv_insert_nest_rmap(struct kvm * kvm,unsigned long * rmapp,struct rmap_nested ** n_rmap)804 void kvmhv_insert_nest_rmap(struct kvm *kvm, unsigned long *rmapp,
805 			    struct rmap_nested **n_rmap)
806 {
807 	struct llist_node *entry = ((struct llist_head *) rmapp)->first;
808 	struct rmap_nested *cursor;
809 	u64 rmap, new_rmap = (*n_rmap)->rmap;
810 
811 	/* Are there any existing entries? */
812 	if (!(*rmapp)) {
813 		/* No -> use the rmap as a single entry */
814 		*rmapp = new_rmap | RMAP_NESTED_IS_SINGLE_ENTRY;
815 		return;
816 	}
817 
818 	/* Do any entries match what we're trying to insert? */
819 	for_each_nest_rmap_safe(cursor, entry, &rmap) {
820 		if (kvmhv_n_rmap_is_equal(rmap, new_rmap))
821 			return;
822 	}
823 
824 	/* Do we need to create a list or just add the new entry? */
825 	rmap = *rmapp;
826 	if (rmap & RMAP_NESTED_IS_SINGLE_ENTRY) /* Not previously a list */
827 		*rmapp = 0UL;
828 	llist_add(&((*n_rmap)->list), (struct llist_head *) rmapp);
829 	if (rmap & RMAP_NESTED_IS_SINGLE_ENTRY) /* Not previously a list */
830 		(*n_rmap)->list.next = (struct llist_node *) rmap;
831 
832 	/* Set NULL so not freed by caller */
833 	*n_rmap = NULL;
834 }
835 
kvmhv_update_nest_rmap_rc(struct kvm * kvm,u64 n_rmap,unsigned long clr,unsigned long set,unsigned long hpa,unsigned long mask)836 static void kvmhv_update_nest_rmap_rc(struct kvm *kvm, u64 n_rmap,
837 				      unsigned long clr, unsigned long set,
838 				      unsigned long hpa, unsigned long mask)
839 {
840 	unsigned long gpa;
841 	unsigned int shift, lpid;
842 	pte_t *ptep;
843 
844 	gpa = n_rmap & RMAP_NESTED_GPA_MASK;
845 	lpid = (n_rmap & RMAP_NESTED_LPID_MASK) >> RMAP_NESTED_LPID_SHIFT;
846 
847 	/* Find the pte */
848 	ptep = find_kvm_nested_guest_pte(kvm, lpid, gpa, &shift);
849 	/*
850 	 * If the pte is present and the pfn is still the same, update the pte.
851 	 * If the pfn has changed then this is a stale rmap entry, the nested
852 	 * gpa actually points somewhere else now, and there is nothing to do.
853 	 * XXX A future optimisation would be to remove the rmap entry here.
854 	 */
855 	if (ptep && pte_present(*ptep) && ((pte_val(*ptep) & mask) == hpa)) {
856 		__radix_pte_update(ptep, clr, set);
857 		kvmppc_radix_tlbie_page(kvm, gpa, shift, lpid);
858 	}
859 }
860 
861 /*
862  * For a given list of rmap entries, update the rc bits in all ptes in shadow
863  * page tables for nested guests which are referenced by the rmap list.
864  */
kvmhv_update_nest_rmap_rc_list(struct kvm * kvm,unsigned long * rmapp,unsigned long clr,unsigned long set,unsigned long hpa,unsigned long nbytes)865 void kvmhv_update_nest_rmap_rc_list(struct kvm *kvm, unsigned long *rmapp,
866 				    unsigned long clr, unsigned long set,
867 				    unsigned long hpa, unsigned long nbytes)
868 {
869 	struct llist_node *entry = ((struct llist_head *) rmapp)->first;
870 	struct rmap_nested *cursor;
871 	unsigned long rmap, mask;
872 
873 	if ((clr | set) & ~(_PAGE_DIRTY | _PAGE_ACCESSED))
874 		return;
875 
876 	mask = PTE_RPN_MASK & ~(nbytes - 1);
877 	hpa &= mask;
878 
879 	for_each_nest_rmap_safe(cursor, entry, &rmap)
880 		kvmhv_update_nest_rmap_rc(kvm, rmap, clr, set, hpa, mask);
881 }
882 
kvmhv_remove_nest_rmap(struct kvm * kvm,u64 n_rmap,unsigned long hpa,unsigned long mask)883 static void kvmhv_remove_nest_rmap(struct kvm *kvm, u64 n_rmap,
884 				   unsigned long hpa, unsigned long mask)
885 {
886 	struct kvm_nested_guest *gp;
887 	unsigned long gpa;
888 	unsigned int shift, lpid;
889 	pte_t *ptep;
890 
891 	gpa = n_rmap & RMAP_NESTED_GPA_MASK;
892 	lpid = (n_rmap & RMAP_NESTED_LPID_MASK) >> RMAP_NESTED_LPID_SHIFT;
893 	gp = kvmhv_find_nested(kvm, lpid);
894 	if (!gp)
895 		return;
896 
897 	/* Find and invalidate the pte */
898 	ptep = find_kvm_nested_guest_pte(kvm, lpid, gpa, &shift);
899 	/* Don't spuriously invalidate ptes if the pfn has changed */
900 	if (ptep && pte_present(*ptep) && ((pte_val(*ptep) & mask) == hpa))
901 		kvmppc_unmap_pte(kvm, ptep, gpa, shift, NULL, gp->shadow_lpid);
902 }
903 
kvmhv_remove_nest_rmap_list(struct kvm * kvm,unsigned long * rmapp,unsigned long hpa,unsigned long mask)904 static void kvmhv_remove_nest_rmap_list(struct kvm *kvm, unsigned long *rmapp,
905 					unsigned long hpa, unsigned long mask)
906 {
907 	struct llist_node *entry = llist_del_all((struct llist_head *) rmapp);
908 	struct rmap_nested *cursor;
909 	unsigned long rmap;
910 
911 	for_each_nest_rmap_safe(cursor, entry, &rmap) {
912 		kvmhv_remove_nest_rmap(kvm, rmap, hpa, mask);
913 		kfree(cursor);
914 	}
915 }
916 
917 /* called with kvm->mmu_lock held */
kvmhv_remove_nest_rmap_range(struct kvm * kvm,const struct kvm_memory_slot * memslot,unsigned long gpa,unsigned long hpa,unsigned long nbytes)918 void kvmhv_remove_nest_rmap_range(struct kvm *kvm,
919 				  const struct kvm_memory_slot *memslot,
920 				  unsigned long gpa, unsigned long hpa,
921 				  unsigned long nbytes)
922 {
923 	unsigned long gfn, end_gfn;
924 	unsigned long addr_mask;
925 
926 	if (!memslot)
927 		return;
928 	gfn = (gpa >> PAGE_SHIFT) - memslot->base_gfn;
929 	end_gfn = gfn + (nbytes >> PAGE_SHIFT);
930 
931 	addr_mask = PTE_RPN_MASK & ~(nbytes - 1);
932 	hpa &= addr_mask;
933 
934 	for (; gfn < end_gfn; gfn++) {
935 		unsigned long *rmap = &memslot->arch.rmap[gfn];
936 		kvmhv_remove_nest_rmap_list(kvm, rmap, hpa, addr_mask);
937 	}
938 }
939 
kvmhv_free_memslot_nest_rmap(struct kvm_memory_slot * free)940 static void kvmhv_free_memslot_nest_rmap(struct kvm_memory_slot *free)
941 {
942 	unsigned long page;
943 
944 	for (page = 0; page < free->npages; page++) {
945 		unsigned long rmap, *rmapp = &free->arch.rmap[page];
946 		struct rmap_nested *cursor;
947 		struct llist_node *entry;
948 
949 		entry = llist_del_all((struct llist_head *) rmapp);
950 		for_each_nest_rmap_safe(cursor, entry, &rmap)
951 			kfree(cursor);
952 	}
953 }
954 
kvmhv_invalidate_shadow_pte(struct kvm_vcpu * vcpu,struct kvm_nested_guest * gp,long gpa,int * shift_ret)955 static bool kvmhv_invalidate_shadow_pte(struct kvm_vcpu *vcpu,
956 					struct kvm_nested_guest *gp,
957 					long gpa, int *shift_ret)
958 {
959 	struct kvm *kvm = vcpu->kvm;
960 	bool ret = false;
961 	pte_t *ptep;
962 	int shift;
963 
964 	spin_lock(&kvm->mmu_lock);
965 	ptep = find_kvm_nested_guest_pte(kvm, gp->l1_lpid, gpa, &shift);
966 	if (!shift)
967 		shift = PAGE_SHIFT;
968 	if (ptep && pte_present(*ptep)) {
969 		kvmppc_unmap_pte(kvm, ptep, gpa, shift, NULL, gp->shadow_lpid);
970 		ret = true;
971 	}
972 	spin_unlock(&kvm->mmu_lock);
973 
974 	if (shift_ret)
975 		*shift_ret = shift;
976 	return ret;
977 }
978 
get_ric(unsigned int instr)979 static inline int get_ric(unsigned int instr)
980 {
981 	return (instr >> 18) & 0x3;
982 }
983 
get_prs(unsigned int instr)984 static inline int get_prs(unsigned int instr)
985 {
986 	return (instr >> 17) & 0x1;
987 }
988 
get_r(unsigned int instr)989 static inline int get_r(unsigned int instr)
990 {
991 	return (instr >> 16) & 0x1;
992 }
993 
get_lpid(unsigned long r_val)994 static inline int get_lpid(unsigned long r_val)
995 {
996 	return r_val & 0xffffffff;
997 }
998 
get_is(unsigned long r_val)999 static inline int get_is(unsigned long r_val)
1000 {
1001 	return (r_val >> 10) & 0x3;
1002 }
1003 
get_ap(unsigned long r_val)1004 static inline int get_ap(unsigned long r_val)
1005 {
1006 	return (r_val >> 5) & 0x7;
1007 }
1008 
get_epn(unsigned long r_val)1009 static inline long get_epn(unsigned long r_val)
1010 {
1011 	return r_val >> 12;
1012 }
1013 
kvmhv_emulate_tlbie_tlb_addr(struct kvm_vcpu * vcpu,int lpid,int ap,long epn)1014 static int kvmhv_emulate_tlbie_tlb_addr(struct kvm_vcpu *vcpu, int lpid,
1015 					int ap, long epn)
1016 {
1017 	struct kvm *kvm = vcpu->kvm;
1018 	struct kvm_nested_guest *gp;
1019 	long npages;
1020 	int shift, shadow_shift;
1021 	unsigned long addr;
1022 
1023 	shift = ap_to_shift(ap);
1024 	addr = epn << 12;
1025 	if (shift < 0)
1026 		/* Invalid ap encoding */
1027 		return -EINVAL;
1028 
1029 	addr &= ~((1UL << shift) - 1);
1030 	npages = 1UL << (shift - PAGE_SHIFT);
1031 
1032 	gp = kvmhv_get_nested(kvm, lpid, false);
1033 	if (!gp) /* No such guest -> nothing to do */
1034 		return 0;
1035 	mutex_lock(&gp->tlb_lock);
1036 
1037 	/* There may be more than one host page backing this single guest pte */
1038 	do {
1039 		kvmhv_invalidate_shadow_pte(vcpu, gp, addr, &shadow_shift);
1040 
1041 		npages -= 1UL << (shadow_shift - PAGE_SHIFT);
1042 		addr += 1UL << shadow_shift;
1043 	} while (npages > 0);
1044 
1045 	mutex_unlock(&gp->tlb_lock);
1046 	kvmhv_put_nested(gp);
1047 	return 0;
1048 }
1049 
kvmhv_emulate_tlbie_lpid(struct kvm_vcpu * vcpu,struct kvm_nested_guest * gp,int ric)1050 static void kvmhv_emulate_tlbie_lpid(struct kvm_vcpu *vcpu,
1051 				     struct kvm_nested_guest *gp, int ric)
1052 {
1053 	struct kvm *kvm = vcpu->kvm;
1054 
1055 	mutex_lock(&gp->tlb_lock);
1056 	switch (ric) {
1057 	case 0:
1058 		/* Invalidate TLB */
1059 		spin_lock(&kvm->mmu_lock);
1060 		kvmppc_free_pgtable_radix(kvm, gp->shadow_pgtable,
1061 					  gp->shadow_lpid);
1062 		kvmhv_flush_lpid(gp->shadow_lpid);
1063 		spin_unlock(&kvm->mmu_lock);
1064 		break;
1065 	case 1:
1066 		/*
1067 		 * Invalidate PWC
1068 		 * We don't cache this -> nothing to do
1069 		 */
1070 		break;
1071 	case 2:
1072 		/* Invalidate TLB, PWC and caching of partition table entries */
1073 		kvmhv_flush_nested(gp);
1074 		break;
1075 	default:
1076 		break;
1077 	}
1078 	mutex_unlock(&gp->tlb_lock);
1079 }
1080 
kvmhv_emulate_tlbie_all_lpid(struct kvm_vcpu * vcpu,int ric)1081 static void kvmhv_emulate_tlbie_all_lpid(struct kvm_vcpu *vcpu, int ric)
1082 {
1083 	struct kvm *kvm = vcpu->kvm;
1084 	struct kvm_nested_guest *gp;
1085 	int i;
1086 
1087 	spin_lock(&kvm->mmu_lock);
1088 	for (i = 0; i <= kvm->arch.max_nested_lpid; i++) {
1089 		gp = kvm->arch.nested_guests[i];
1090 		if (gp) {
1091 			spin_unlock(&kvm->mmu_lock);
1092 			kvmhv_emulate_tlbie_lpid(vcpu, gp, ric);
1093 			spin_lock(&kvm->mmu_lock);
1094 		}
1095 	}
1096 	spin_unlock(&kvm->mmu_lock);
1097 }
1098 
kvmhv_emulate_priv_tlbie(struct kvm_vcpu * vcpu,unsigned int instr,unsigned long rsval,unsigned long rbval)1099 static int kvmhv_emulate_priv_tlbie(struct kvm_vcpu *vcpu, unsigned int instr,
1100 				    unsigned long rsval, unsigned long rbval)
1101 {
1102 	struct kvm *kvm = vcpu->kvm;
1103 	struct kvm_nested_guest *gp;
1104 	int r, ric, prs, is, ap;
1105 	int lpid;
1106 	long epn;
1107 	int ret = 0;
1108 
1109 	ric = get_ric(instr);
1110 	prs = get_prs(instr);
1111 	r = get_r(instr);
1112 	lpid = get_lpid(rsval);
1113 	is = get_is(rbval);
1114 
1115 	/*
1116 	 * These cases are invalid and are not handled:
1117 	 * r   != 1 -> Only radix supported
1118 	 * prs == 1 -> Not HV privileged
1119 	 * ric == 3 -> No cluster bombs for radix
1120 	 * is  == 1 -> Partition scoped translations not associated with pid
1121 	 * (!is) && (ric == 1 || ric == 2) -> Not supported by ISA
1122 	 */
1123 	if ((!r) || (prs) || (ric == 3) || (is == 1) ||
1124 	    ((!is) && (ric == 1 || ric == 2)))
1125 		return -EINVAL;
1126 
1127 	switch (is) {
1128 	case 0:
1129 		/*
1130 		 * We know ric == 0
1131 		 * Invalidate TLB for a given target address
1132 		 */
1133 		epn = get_epn(rbval);
1134 		ap = get_ap(rbval);
1135 		ret = kvmhv_emulate_tlbie_tlb_addr(vcpu, lpid, ap, epn);
1136 		break;
1137 	case 2:
1138 		/* Invalidate matching LPID */
1139 		gp = kvmhv_get_nested(kvm, lpid, false);
1140 		if (gp) {
1141 			kvmhv_emulate_tlbie_lpid(vcpu, gp, ric);
1142 			kvmhv_put_nested(gp);
1143 		}
1144 		break;
1145 	case 3:
1146 		/* Invalidate ALL LPIDs */
1147 		kvmhv_emulate_tlbie_all_lpid(vcpu, ric);
1148 		break;
1149 	default:
1150 		ret = -EINVAL;
1151 		break;
1152 	}
1153 
1154 	return ret;
1155 }
1156 
1157 /*
1158  * This handles the H_TLB_INVALIDATE hcall.
1159  * Parameters are (r4) tlbie instruction code, (r5) rS contents,
1160  * (r6) rB contents.
1161  */
kvmhv_do_nested_tlbie(struct kvm_vcpu * vcpu)1162 long kvmhv_do_nested_tlbie(struct kvm_vcpu *vcpu)
1163 {
1164 	int ret;
1165 
1166 	ret = kvmhv_emulate_priv_tlbie(vcpu, kvmppc_get_gpr(vcpu, 4),
1167 			kvmppc_get_gpr(vcpu, 5), kvmppc_get_gpr(vcpu, 6));
1168 	if (ret)
1169 		return H_PARAMETER;
1170 	return H_SUCCESS;
1171 }
1172 
1173 /* Used to convert a nested guest real address to a L1 guest real address */
kvmhv_translate_addr_nested(struct kvm_vcpu * vcpu,struct kvm_nested_guest * gp,unsigned long n_gpa,unsigned long dsisr,struct kvmppc_pte * gpte_p)1174 static int kvmhv_translate_addr_nested(struct kvm_vcpu *vcpu,
1175 				       struct kvm_nested_guest *gp,
1176 				       unsigned long n_gpa, unsigned long dsisr,
1177 				       struct kvmppc_pte *gpte_p)
1178 {
1179 	u64 fault_addr, flags = dsisr & DSISR_ISSTORE;
1180 	int ret;
1181 
1182 	ret = kvmppc_mmu_walk_radix_tree(vcpu, n_gpa, gpte_p, gp->l1_gr_to_hr,
1183 					 &fault_addr);
1184 
1185 	if (ret) {
1186 		/* We didn't find a pte */
1187 		if (ret == -EINVAL) {
1188 			/* Unsupported mmu config */
1189 			flags |= DSISR_UNSUPP_MMU;
1190 		} else if (ret == -ENOENT) {
1191 			/* No translation found */
1192 			flags |= DSISR_NOHPTE;
1193 		} else if (ret == -EFAULT) {
1194 			/* Couldn't access L1 real address */
1195 			flags |= DSISR_PRTABLE_FAULT;
1196 			vcpu->arch.fault_gpa = fault_addr;
1197 		} else {
1198 			/* Unknown error */
1199 			return ret;
1200 		}
1201 		goto forward_to_l1;
1202 	} else {
1203 		/* We found a pte -> check permissions */
1204 		if (dsisr & DSISR_ISSTORE) {
1205 			/* Can we write? */
1206 			if (!gpte_p->may_write) {
1207 				flags |= DSISR_PROTFAULT;
1208 				goto forward_to_l1;
1209 			}
1210 		} else if (vcpu->arch.trap == BOOK3S_INTERRUPT_H_INST_STORAGE) {
1211 			/* Can we execute? */
1212 			if (!gpte_p->may_execute) {
1213 				flags |= SRR1_ISI_N_G_OR_CIP;
1214 				goto forward_to_l1;
1215 			}
1216 		} else {
1217 			/* Can we read? */
1218 			if (!gpte_p->may_read && !gpte_p->may_write) {
1219 				flags |= DSISR_PROTFAULT;
1220 				goto forward_to_l1;
1221 			}
1222 		}
1223 	}
1224 
1225 	return 0;
1226 
1227 forward_to_l1:
1228 	vcpu->arch.fault_dsisr = flags;
1229 	if (vcpu->arch.trap == BOOK3S_INTERRUPT_H_INST_STORAGE) {
1230 		vcpu->arch.shregs.msr &= SRR1_MSR_BITS;
1231 		vcpu->arch.shregs.msr |= flags;
1232 	}
1233 	return RESUME_HOST;
1234 }
1235 
kvmhv_handle_nested_set_rc(struct kvm_vcpu * vcpu,struct kvm_nested_guest * gp,unsigned long n_gpa,struct kvmppc_pte gpte,unsigned long dsisr)1236 static long kvmhv_handle_nested_set_rc(struct kvm_vcpu *vcpu,
1237 				       struct kvm_nested_guest *gp,
1238 				       unsigned long n_gpa,
1239 				       struct kvmppc_pte gpte,
1240 				       unsigned long dsisr)
1241 {
1242 	struct kvm *kvm = vcpu->kvm;
1243 	bool writing = !!(dsisr & DSISR_ISSTORE);
1244 	u64 pgflags;
1245 	long ret;
1246 
1247 	/* Are the rc bits set in the L1 partition scoped pte? */
1248 	pgflags = _PAGE_ACCESSED;
1249 	if (writing)
1250 		pgflags |= _PAGE_DIRTY;
1251 	if (pgflags & ~gpte.rc)
1252 		return RESUME_HOST;
1253 
1254 	spin_lock(&kvm->mmu_lock);
1255 	/* Set the rc bit in the pte of our (L0) pgtable for the L1 guest */
1256 	ret = kvmppc_hv_handle_set_rc(kvm, false, writing,
1257 				      gpte.raddr, kvm->arch.lpid);
1258 	if (!ret) {
1259 		ret = -EINVAL;
1260 		goto out_unlock;
1261 	}
1262 
1263 	/* Set the rc bit in the pte of the shadow_pgtable for the nest guest */
1264 	ret = kvmppc_hv_handle_set_rc(kvm, true, writing,
1265 				      n_gpa, gp->l1_lpid);
1266 	if (!ret)
1267 		ret = -EINVAL;
1268 	else
1269 		ret = 0;
1270 
1271 out_unlock:
1272 	spin_unlock(&kvm->mmu_lock);
1273 	return ret;
1274 }
1275 
kvmppc_radix_level_to_shift(int level)1276 static inline int kvmppc_radix_level_to_shift(int level)
1277 {
1278 	switch (level) {
1279 	case 2:
1280 		return PUD_SHIFT;
1281 	case 1:
1282 		return PMD_SHIFT;
1283 	default:
1284 		return PAGE_SHIFT;
1285 	}
1286 }
1287 
kvmppc_radix_shift_to_level(int shift)1288 static inline int kvmppc_radix_shift_to_level(int shift)
1289 {
1290 	if (shift == PUD_SHIFT)
1291 		return 2;
1292 	if (shift == PMD_SHIFT)
1293 		return 1;
1294 	if (shift == PAGE_SHIFT)
1295 		return 0;
1296 	WARN_ON_ONCE(1);
1297 	return 0;
1298 }
1299 
1300 /* called with gp->tlb_lock held */
__kvmhv_nested_page_fault(struct kvm_vcpu * vcpu,struct kvm_nested_guest * gp)1301 static long int __kvmhv_nested_page_fault(struct kvm_vcpu *vcpu,
1302 					  struct kvm_nested_guest *gp)
1303 {
1304 	struct kvm *kvm = vcpu->kvm;
1305 	struct kvm_memory_slot *memslot;
1306 	struct rmap_nested *n_rmap;
1307 	struct kvmppc_pte gpte;
1308 	pte_t pte, *pte_p;
1309 	unsigned long mmu_seq;
1310 	unsigned long dsisr = vcpu->arch.fault_dsisr;
1311 	unsigned long ea = vcpu->arch.fault_dar;
1312 	unsigned long *rmapp;
1313 	unsigned long n_gpa, gpa, gfn, perm = 0UL;
1314 	unsigned int shift, l1_shift, level;
1315 	bool writing = !!(dsisr & DSISR_ISSTORE);
1316 	bool kvm_ro = false;
1317 	long int ret;
1318 
1319 	if (!gp->l1_gr_to_hr) {
1320 		kvmhv_update_ptbl_cache(gp);
1321 		if (!gp->l1_gr_to_hr)
1322 			return RESUME_HOST;
1323 	}
1324 
1325 	/* Convert the nested guest real address into a L1 guest real address */
1326 
1327 	n_gpa = vcpu->arch.fault_gpa & ~0xF000000000000FFFULL;
1328 	if (!(dsisr & DSISR_PRTABLE_FAULT))
1329 		n_gpa |= ea & 0xFFF;
1330 	ret = kvmhv_translate_addr_nested(vcpu, gp, n_gpa, dsisr, &gpte);
1331 
1332 	/*
1333 	 * If the hardware found a translation but we don't now have a usable
1334 	 * translation in the l1 partition-scoped tree, remove the shadow pte
1335 	 * and let the guest retry.
1336 	 */
1337 	if (ret == RESUME_HOST &&
1338 	    (dsisr & (DSISR_PROTFAULT | DSISR_BADACCESS | DSISR_NOEXEC_OR_G |
1339 		      DSISR_BAD_COPYPASTE)))
1340 		goto inval;
1341 	if (ret)
1342 		return ret;
1343 
1344 	/* Failed to set the reference/change bits */
1345 	if (dsisr & DSISR_SET_RC) {
1346 		ret = kvmhv_handle_nested_set_rc(vcpu, gp, n_gpa, gpte, dsisr);
1347 		if (ret == RESUME_HOST)
1348 			return ret;
1349 		if (ret)
1350 			goto inval;
1351 		dsisr &= ~DSISR_SET_RC;
1352 		if (!(dsisr & (DSISR_BAD_FAULT_64S | DSISR_NOHPTE |
1353 			       DSISR_PROTFAULT)))
1354 			return RESUME_GUEST;
1355 	}
1356 
1357 	/*
1358 	 * We took an HISI or HDSI while we were running a nested guest which
1359 	 * means we have no partition scoped translation for that. This means
1360 	 * we need to insert a pte for the mapping into our shadow_pgtable.
1361 	 */
1362 
1363 	l1_shift = gpte.page_shift;
1364 	if (l1_shift < PAGE_SHIFT) {
1365 		/* We don't support l1 using a page size smaller than our own */
1366 		pr_err("KVM: L1 guest page shift (%d) less than our own (%d)\n",
1367 			l1_shift, PAGE_SHIFT);
1368 		return -EINVAL;
1369 	}
1370 	gpa = gpte.raddr;
1371 	gfn = gpa >> PAGE_SHIFT;
1372 
1373 	/* 1. Get the corresponding host memslot */
1374 
1375 	memslot = gfn_to_memslot(kvm, gfn);
1376 	if (!memslot || (memslot->flags & KVM_MEMSLOT_INVALID)) {
1377 		if (dsisr & (DSISR_PRTABLE_FAULT | DSISR_BADACCESS)) {
1378 			/* unusual error -> reflect to the guest as a DSI */
1379 			kvmppc_core_queue_data_storage(vcpu, ea, dsisr);
1380 			return RESUME_GUEST;
1381 		}
1382 
1383 		/* passthrough of emulated MMIO case */
1384 		return kvmppc_hv_emulate_mmio(vcpu, gpa, ea, writing);
1385 	}
1386 	if (memslot->flags & KVM_MEM_READONLY) {
1387 		if (writing) {
1388 			/* Give the guest a DSI */
1389 			kvmppc_core_queue_data_storage(vcpu, ea,
1390 					DSISR_ISSTORE | DSISR_PROTFAULT);
1391 			return RESUME_GUEST;
1392 		}
1393 		kvm_ro = true;
1394 	}
1395 
1396 	/* 2. Find the host pte for this L1 guest real address */
1397 
1398 	/* Used to check for invalidations in progress */
1399 	mmu_seq = kvm->mmu_notifier_seq;
1400 	smp_rmb();
1401 
1402 	/* See if can find translation in our partition scoped tables for L1 */
1403 	pte = __pte(0);
1404 	spin_lock(&kvm->mmu_lock);
1405 	pte_p = find_kvm_secondary_pte(kvm, gpa, &shift);
1406 	if (!shift)
1407 		shift = PAGE_SHIFT;
1408 	if (pte_p)
1409 		pte = *pte_p;
1410 	spin_unlock(&kvm->mmu_lock);
1411 
1412 	if (!pte_present(pte) || (writing && !(pte_val(pte) & _PAGE_WRITE))) {
1413 		/* No suitable pte found -> try to insert a mapping */
1414 		ret = kvmppc_book3s_instantiate_page(vcpu, gpa, memslot,
1415 					writing, kvm_ro, &pte, &level);
1416 		if (ret == -EAGAIN)
1417 			return RESUME_GUEST;
1418 		else if (ret)
1419 			return ret;
1420 		shift = kvmppc_radix_level_to_shift(level);
1421 	}
1422 	/* Align gfn to the start of the page */
1423 	gfn = (gpa & ~((1UL << shift) - 1)) >> PAGE_SHIFT;
1424 
1425 	/* 3. Compute the pte we need to insert for nest_gpa -> host r_addr */
1426 
1427 	/* The permissions is the combination of the host and l1 guest ptes */
1428 	perm |= gpte.may_read ? 0UL : _PAGE_READ;
1429 	perm |= gpte.may_write ? 0UL : _PAGE_WRITE;
1430 	perm |= gpte.may_execute ? 0UL : _PAGE_EXEC;
1431 	/* Only set accessed/dirty (rc) bits if set in host and l1 guest ptes */
1432 	perm |= (gpte.rc & _PAGE_ACCESSED) ? 0UL : _PAGE_ACCESSED;
1433 	perm |= ((gpte.rc & _PAGE_DIRTY) && writing) ? 0UL : _PAGE_DIRTY;
1434 	pte = __pte(pte_val(pte) & ~perm);
1435 
1436 	/* What size pte can we insert? */
1437 	if (shift > l1_shift) {
1438 		u64 mask;
1439 		unsigned int actual_shift = PAGE_SHIFT;
1440 		if (PMD_SHIFT < l1_shift)
1441 			actual_shift = PMD_SHIFT;
1442 		mask = (1UL << shift) - (1UL << actual_shift);
1443 		pte = __pte(pte_val(pte) | (gpa & mask));
1444 		shift = actual_shift;
1445 	}
1446 	level = kvmppc_radix_shift_to_level(shift);
1447 	n_gpa &= ~((1UL << shift) - 1);
1448 
1449 	/* 4. Insert the pte into our shadow_pgtable */
1450 
1451 	n_rmap = kzalloc(sizeof(*n_rmap), GFP_KERNEL);
1452 	if (!n_rmap)
1453 		return RESUME_GUEST; /* Let the guest try again */
1454 	n_rmap->rmap = (n_gpa & RMAP_NESTED_GPA_MASK) |
1455 		(((unsigned long) gp->l1_lpid) << RMAP_NESTED_LPID_SHIFT);
1456 	rmapp = &memslot->arch.rmap[gfn - memslot->base_gfn];
1457 	ret = kvmppc_create_pte(kvm, gp->shadow_pgtable, pte, n_gpa, level,
1458 				mmu_seq, gp->shadow_lpid, rmapp, &n_rmap);
1459 	kfree(n_rmap);
1460 	if (ret == -EAGAIN)
1461 		ret = RESUME_GUEST;	/* Let the guest try again */
1462 
1463 	return ret;
1464 
1465  inval:
1466 	kvmhv_invalidate_shadow_pte(vcpu, gp, n_gpa, NULL);
1467 	return RESUME_GUEST;
1468 }
1469 
kvmhv_nested_page_fault(struct kvm_vcpu * vcpu)1470 long int kvmhv_nested_page_fault(struct kvm_vcpu *vcpu)
1471 {
1472 	struct kvm_nested_guest *gp = vcpu->arch.nested;
1473 	long int ret;
1474 
1475 	mutex_lock(&gp->tlb_lock);
1476 	ret = __kvmhv_nested_page_fault(vcpu, gp);
1477 	mutex_unlock(&gp->tlb_lock);
1478 	return ret;
1479 }
1480 
kvmhv_nested_next_lpid(struct kvm * kvm,int lpid)1481 int kvmhv_nested_next_lpid(struct kvm *kvm, int lpid)
1482 {
1483 	int ret = -1;
1484 
1485 	spin_lock(&kvm->mmu_lock);
1486 	while (++lpid <= kvm->arch.max_nested_lpid) {
1487 		if (kvm->arch.nested_guests[lpid]) {
1488 			ret = lpid;
1489 			break;
1490 		}
1491 	}
1492 	spin_unlock(&kvm->mmu_lock);
1493 	return ret;
1494 }
1495