1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * mm/page-writeback.c
4 *
5 * Copyright (C) 2002, Linus Torvalds.
6 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra
7 *
8 * Contains functions related to writing back dirty pages at the
9 * address_space level.
10 *
11 * 10Apr2002 Andrew Morton
12 * Initial version
13 */
14
15 #include <linux/kernel.h>
16 #include <linux/export.h>
17 #include <linux/spinlock.h>
18 #include <linux/fs.h>
19 #include <linux/mm.h>
20 #include <linux/swap.h>
21 #include <linux/slab.h>
22 #include <linux/pagemap.h>
23 #include <linux/writeback.h>
24 #include <linux/init.h>
25 #include <linux/backing-dev.h>
26 #include <linux/task_io_accounting_ops.h>
27 #include <linux/blkdev.h>
28 #include <linux/mpage.h>
29 #include <linux/rmap.h>
30 #include <linux/percpu.h>
31 #include <linux/smp.h>
32 #include <linux/sysctl.h>
33 #include <linux/cpu.h>
34 #include <linux/syscalls.h>
35 #include <linux/buffer_head.h> /* __set_page_dirty_buffers */
36 #include <linux/pagevec.h>
37 #include <linux/timer.h>
38 #include <linux/sched/rt.h>
39 #include <linux/sched/signal.h>
40 #include <linux/mm_inline.h>
41 #include <trace/events/writeback.h>
42
43 #include "internal.h"
44
45 /*
46 * Sleep at most 200ms at a time in balance_dirty_pages().
47 */
48 #define MAX_PAUSE max(HZ/5, 1)
49
50 /*
51 * Try to keep balance_dirty_pages() call intervals higher than this many pages
52 * by raising pause time to max_pause when falls below it.
53 */
54 #define DIRTY_POLL_THRESH (128 >> (PAGE_SHIFT - 10))
55
56 /*
57 * Estimate write bandwidth at 200ms intervals.
58 */
59 #define BANDWIDTH_INTERVAL max(HZ/5, 1)
60
61 #define RATELIMIT_CALC_SHIFT 10
62
63 /*
64 * After a CPU has dirtied this many pages, balance_dirty_pages_ratelimited
65 * will look to see if it needs to force writeback or throttling.
66 */
67 static long ratelimit_pages = 32;
68
69 /* The following parameters are exported via /proc/sys/vm */
70
71 /*
72 * Start background writeback (via writeback threads) at this percentage
73 */
74 int dirty_background_ratio = 10;
75
76 /*
77 * dirty_background_bytes starts at 0 (disabled) so that it is a function of
78 * dirty_background_ratio * the amount of dirtyable memory
79 */
80 unsigned long dirty_background_bytes;
81
82 /*
83 * free highmem will not be subtracted from the total free memory
84 * for calculating free ratios if vm_highmem_is_dirtyable is true
85 */
86 int vm_highmem_is_dirtyable;
87
88 /*
89 * The generator of dirty data starts writeback at this percentage
90 */
91 int vm_dirty_ratio = 20;
92
93 /*
94 * vm_dirty_bytes starts at 0 (disabled) so that it is a function of
95 * vm_dirty_ratio * the amount of dirtyable memory
96 */
97 unsigned long vm_dirty_bytes;
98
99 /*
100 * The interval between `kupdate'-style writebacks
101 */
102 unsigned int dirty_writeback_interval = 5 * 100; /* centiseconds */
103
104 EXPORT_SYMBOL_GPL(dirty_writeback_interval);
105
106 /*
107 * The longest time for which data is allowed to remain dirty
108 */
109 unsigned int dirty_expire_interval = 30 * 100; /* centiseconds */
110
111 /*
112 * Flag that puts the machine in "laptop mode". Doubles as a timeout in jiffies:
113 * a full sync is triggered after this time elapses without any disk activity.
114 */
115 int laptop_mode;
116
117 EXPORT_SYMBOL(laptop_mode);
118
119 /* End of sysctl-exported parameters */
120
121 struct wb_domain global_wb_domain;
122
123 /* consolidated parameters for balance_dirty_pages() and its subroutines */
124 struct dirty_throttle_control {
125 #ifdef CONFIG_CGROUP_WRITEBACK
126 struct wb_domain *dom;
127 struct dirty_throttle_control *gdtc; /* only set in memcg dtc's */
128 #endif
129 struct bdi_writeback *wb;
130 struct fprop_local_percpu *wb_completions;
131
132 unsigned long avail; /* dirtyable */
133 unsigned long dirty; /* file_dirty + write + nfs */
134 unsigned long thresh; /* dirty threshold */
135 unsigned long bg_thresh; /* dirty background threshold */
136
137 unsigned long wb_dirty; /* per-wb counterparts */
138 unsigned long wb_thresh;
139 unsigned long wb_bg_thresh;
140
141 unsigned long pos_ratio;
142 };
143
144 /*
145 * Length of period for aging writeout fractions of bdis. This is an
146 * arbitrarily chosen number. The longer the period, the slower fractions will
147 * reflect changes in current writeout rate.
148 */
149 #define VM_COMPLETIONS_PERIOD_LEN (3*HZ)
150
151 #ifdef CONFIG_CGROUP_WRITEBACK
152
153 #define GDTC_INIT(__wb) .wb = (__wb), \
154 .dom = &global_wb_domain, \
155 .wb_completions = &(__wb)->completions
156
157 #define GDTC_INIT_NO_WB .dom = &global_wb_domain
158
159 #define MDTC_INIT(__wb, __gdtc) .wb = (__wb), \
160 .dom = mem_cgroup_wb_domain(__wb), \
161 .wb_completions = &(__wb)->memcg_completions, \
162 .gdtc = __gdtc
163
mdtc_valid(struct dirty_throttle_control * dtc)164 static bool mdtc_valid(struct dirty_throttle_control *dtc)
165 {
166 return dtc->dom;
167 }
168
dtc_dom(struct dirty_throttle_control * dtc)169 static struct wb_domain *dtc_dom(struct dirty_throttle_control *dtc)
170 {
171 return dtc->dom;
172 }
173
mdtc_gdtc(struct dirty_throttle_control * mdtc)174 static struct dirty_throttle_control *mdtc_gdtc(struct dirty_throttle_control *mdtc)
175 {
176 return mdtc->gdtc;
177 }
178
wb_memcg_completions(struct bdi_writeback * wb)179 static struct fprop_local_percpu *wb_memcg_completions(struct bdi_writeback *wb)
180 {
181 return &wb->memcg_completions;
182 }
183
wb_min_max_ratio(struct bdi_writeback * wb,unsigned long * minp,unsigned long * maxp)184 static void wb_min_max_ratio(struct bdi_writeback *wb,
185 unsigned long *minp, unsigned long *maxp)
186 {
187 unsigned long this_bw = wb->avg_write_bandwidth;
188 unsigned long tot_bw = atomic_long_read(&wb->bdi->tot_write_bandwidth);
189 unsigned long long min = wb->bdi->min_ratio;
190 unsigned long long max = wb->bdi->max_ratio;
191
192 /*
193 * @wb may already be clean by the time control reaches here and
194 * the total may not include its bw.
195 */
196 if (this_bw < tot_bw) {
197 if (min) {
198 min *= this_bw;
199 min = div64_ul(min, tot_bw);
200 }
201 if (max < 100) {
202 max *= this_bw;
203 max = div64_ul(max, tot_bw);
204 }
205 }
206
207 *minp = min;
208 *maxp = max;
209 }
210
211 #else /* CONFIG_CGROUP_WRITEBACK */
212
213 #define GDTC_INIT(__wb) .wb = (__wb), \
214 .wb_completions = &(__wb)->completions
215 #define GDTC_INIT_NO_WB
216 #define MDTC_INIT(__wb, __gdtc)
217
mdtc_valid(struct dirty_throttle_control * dtc)218 static bool mdtc_valid(struct dirty_throttle_control *dtc)
219 {
220 return false;
221 }
222
dtc_dom(struct dirty_throttle_control * dtc)223 static struct wb_domain *dtc_dom(struct dirty_throttle_control *dtc)
224 {
225 return &global_wb_domain;
226 }
227
mdtc_gdtc(struct dirty_throttle_control * mdtc)228 static struct dirty_throttle_control *mdtc_gdtc(struct dirty_throttle_control *mdtc)
229 {
230 return NULL;
231 }
232
wb_memcg_completions(struct bdi_writeback * wb)233 static struct fprop_local_percpu *wb_memcg_completions(struct bdi_writeback *wb)
234 {
235 return NULL;
236 }
237
wb_min_max_ratio(struct bdi_writeback * wb,unsigned long * minp,unsigned long * maxp)238 static void wb_min_max_ratio(struct bdi_writeback *wb,
239 unsigned long *minp, unsigned long *maxp)
240 {
241 *minp = wb->bdi->min_ratio;
242 *maxp = wb->bdi->max_ratio;
243 }
244
245 #endif /* CONFIG_CGROUP_WRITEBACK */
246
247 /*
248 * In a memory zone, there is a certain amount of pages we consider
249 * available for the page cache, which is essentially the number of
250 * free and reclaimable pages, minus some zone reserves to protect
251 * lowmem and the ability to uphold the zone's watermarks without
252 * requiring writeback.
253 *
254 * This number of dirtyable pages is the base value of which the
255 * user-configurable dirty ratio is the effective number of pages that
256 * are allowed to be actually dirtied. Per individual zone, or
257 * globally by using the sum of dirtyable pages over all zones.
258 *
259 * Because the user is allowed to specify the dirty limit globally as
260 * absolute number of bytes, calculating the per-zone dirty limit can
261 * require translating the configured limit into a percentage of
262 * global dirtyable memory first.
263 */
264
265 /**
266 * node_dirtyable_memory - number of dirtyable pages in a node
267 * @pgdat: the node
268 *
269 * Return: the node's number of pages potentially available for dirty
270 * page cache. This is the base value for the per-node dirty limits.
271 */
node_dirtyable_memory(struct pglist_data * pgdat)272 static unsigned long node_dirtyable_memory(struct pglist_data *pgdat)
273 {
274 unsigned long nr_pages = 0;
275 int z;
276
277 for (z = 0; z < MAX_NR_ZONES; z++) {
278 struct zone *zone = pgdat->node_zones + z;
279
280 if (!populated_zone(zone))
281 continue;
282
283 nr_pages += zone_page_state(zone, NR_FREE_PAGES);
284 }
285
286 /*
287 * Pages reserved for the kernel should not be considered
288 * dirtyable, to prevent a situation where reclaim has to
289 * clean pages in order to balance the zones.
290 */
291 nr_pages -= min(nr_pages, pgdat->totalreserve_pages);
292
293 nr_pages += node_page_state(pgdat, NR_INACTIVE_FILE);
294 nr_pages += node_page_state(pgdat, NR_ACTIVE_FILE);
295
296 return nr_pages;
297 }
298
highmem_dirtyable_memory(unsigned long total)299 static unsigned long highmem_dirtyable_memory(unsigned long total)
300 {
301 #ifdef CONFIG_HIGHMEM
302 int node;
303 unsigned long x = 0;
304 int i;
305
306 for_each_node_state(node, N_HIGH_MEMORY) {
307 for (i = ZONE_NORMAL + 1; i < MAX_NR_ZONES; i++) {
308 struct zone *z;
309 unsigned long nr_pages;
310
311 if (!is_highmem_idx(i))
312 continue;
313
314 z = &NODE_DATA(node)->node_zones[i];
315 if (!populated_zone(z))
316 continue;
317
318 nr_pages = zone_page_state(z, NR_FREE_PAGES);
319 /* watch for underflows */
320 nr_pages -= min(nr_pages, high_wmark_pages(z));
321 nr_pages += zone_page_state(z, NR_ZONE_INACTIVE_FILE);
322 nr_pages += zone_page_state(z, NR_ZONE_ACTIVE_FILE);
323 x += nr_pages;
324 }
325 }
326
327 /*
328 * Unreclaimable memory (kernel memory or anonymous memory
329 * without swap) can bring down the dirtyable pages below
330 * the zone's dirty balance reserve and the above calculation
331 * will underflow. However we still want to add in nodes
332 * which are below threshold (negative values) to get a more
333 * accurate calculation but make sure that the total never
334 * underflows.
335 */
336 if ((long)x < 0)
337 x = 0;
338
339 /*
340 * Make sure that the number of highmem pages is never larger
341 * than the number of the total dirtyable memory. This can only
342 * occur in very strange VM situations but we want to make sure
343 * that this does not occur.
344 */
345 return min(x, total);
346 #else
347 return 0;
348 #endif
349 }
350
351 /**
352 * global_dirtyable_memory - number of globally dirtyable pages
353 *
354 * Return: the global number of pages potentially available for dirty
355 * page cache. This is the base value for the global dirty limits.
356 */
global_dirtyable_memory(void)357 static unsigned long global_dirtyable_memory(void)
358 {
359 unsigned long x;
360
361 x = global_zone_page_state(NR_FREE_PAGES);
362 /*
363 * Pages reserved for the kernel should not be considered
364 * dirtyable, to prevent a situation where reclaim has to
365 * clean pages in order to balance the zones.
366 */
367 x -= min(x, totalreserve_pages);
368
369 x += global_node_page_state(NR_INACTIVE_FILE);
370 x += global_node_page_state(NR_ACTIVE_FILE);
371
372 if (!vm_highmem_is_dirtyable)
373 x -= highmem_dirtyable_memory(x);
374
375 return x + 1; /* Ensure that we never return 0 */
376 }
377
378 /**
379 * domain_dirty_limits - calculate thresh and bg_thresh for a wb_domain
380 * @dtc: dirty_throttle_control of interest
381 *
382 * Calculate @dtc->thresh and ->bg_thresh considering
383 * vm_dirty_{bytes|ratio} and dirty_background_{bytes|ratio}. The caller
384 * must ensure that @dtc->avail is set before calling this function. The
385 * dirty limits will be lifted by 1/4 for real-time tasks.
386 */
domain_dirty_limits(struct dirty_throttle_control * dtc)387 static void domain_dirty_limits(struct dirty_throttle_control *dtc)
388 {
389 const unsigned long available_memory = dtc->avail;
390 struct dirty_throttle_control *gdtc = mdtc_gdtc(dtc);
391 unsigned long bytes = vm_dirty_bytes;
392 unsigned long bg_bytes = dirty_background_bytes;
393 /* convert ratios to per-PAGE_SIZE for higher precision */
394 unsigned long ratio = (vm_dirty_ratio * PAGE_SIZE) / 100;
395 unsigned long bg_ratio = (dirty_background_ratio * PAGE_SIZE) / 100;
396 unsigned long thresh;
397 unsigned long bg_thresh;
398 struct task_struct *tsk;
399
400 /* gdtc is !NULL iff @dtc is for memcg domain */
401 if (gdtc) {
402 unsigned long global_avail = gdtc->avail;
403
404 /*
405 * The byte settings can't be applied directly to memcg
406 * domains. Convert them to ratios by scaling against
407 * globally available memory. As the ratios are in
408 * per-PAGE_SIZE, they can be obtained by dividing bytes by
409 * number of pages.
410 */
411 if (bytes)
412 ratio = min(DIV_ROUND_UP(bytes, global_avail),
413 PAGE_SIZE);
414 if (bg_bytes)
415 bg_ratio = min(DIV_ROUND_UP(bg_bytes, global_avail),
416 PAGE_SIZE);
417 bytes = bg_bytes = 0;
418 }
419
420 if (bytes)
421 thresh = DIV_ROUND_UP(bytes, PAGE_SIZE);
422 else
423 thresh = (ratio * available_memory) / PAGE_SIZE;
424
425 if (bg_bytes)
426 bg_thresh = DIV_ROUND_UP(bg_bytes, PAGE_SIZE);
427 else
428 bg_thresh = (bg_ratio * available_memory) / PAGE_SIZE;
429
430 if (bg_thresh >= thresh)
431 bg_thresh = thresh / 2;
432 tsk = current;
433 if (rt_task(tsk)) {
434 bg_thresh += bg_thresh / 4 + global_wb_domain.dirty_limit / 32;
435 thresh += thresh / 4 + global_wb_domain.dirty_limit / 32;
436 }
437 dtc->thresh = thresh;
438 dtc->bg_thresh = bg_thresh;
439
440 /* we should eventually report the domain in the TP */
441 if (!gdtc)
442 trace_global_dirty_state(bg_thresh, thresh);
443 }
444
445 /**
446 * global_dirty_limits - background-writeback and dirty-throttling thresholds
447 * @pbackground: out parameter for bg_thresh
448 * @pdirty: out parameter for thresh
449 *
450 * Calculate bg_thresh and thresh for global_wb_domain. See
451 * domain_dirty_limits() for details.
452 */
global_dirty_limits(unsigned long * pbackground,unsigned long * pdirty)453 void global_dirty_limits(unsigned long *pbackground, unsigned long *pdirty)
454 {
455 struct dirty_throttle_control gdtc = { GDTC_INIT_NO_WB };
456
457 gdtc.avail = global_dirtyable_memory();
458 domain_dirty_limits(&gdtc);
459
460 *pbackground = gdtc.bg_thresh;
461 *pdirty = gdtc.thresh;
462 }
463
464 /**
465 * node_dirty_limit - maximum number of dirty pages allowed in a node
466 * @pgdat: the node
467 *
468 * Return: the maximum number of dirty pages allowed in a node, based
469 * on the node's dirtyable memory.
470 */
node_dirty_limit(struct pglist_data * pgdat)471 static unsigned long node_dirty_limit(struct pglist_data *pgdat)
472 {
473 unsigned long node_memory = node_dirtyable_memory(pgdat);
474 struct task_struct *tsk = current;
475 unsigned long dirty;
476
477 if (vm_dirty_bytes)
478 dirty = DIV_ROUND_UP(vm_dirty_bytes, PAGE_SIZE) *
479 node_memory / global_dirtyable_memory();
480 else
481 dirty = vm_dirty_ratio * node_memory / 100;
482
483 if (rt_task(tsk))
484 dirty += dirty / 4;
485
486 return dirty;
487 }
488
489 /**
490 * node_dirty_ok - tells whether a node is within its dirty limits
491 * @pgdat: the node to check
492 *
493 * Return: %true when the dirty pages in @pgdat are within the node's
494 * dirty limit, %false if the limit is exceeded.
495 */
node_dirty_ok(struct pglist_data * pgdat)496 bool node_dirty_ok(struct pglist_data *pgdat)
497 {
498 unsigned long limit = node_dirty_limit(pgdat);
499 unsigned long nr_pages = 0;
500
501 nr_pages += node_page_state(pgdat, NR_FILE_DIRTY);
502 nr_pages += node_page_state(pgdat, NR_WRITEBACK);
503
504 return nr_pages <= limit;
505 }
506
dirty_background_ratio_handler(struct ctl_table * table,int write,void * buffer,size_t * lenp,loff_t * ppos)507 int dirty_background_ratio_handler(struct ctl_table *table, int write,
508 void *buffer, size_t *lenp, loff_t *ppos)
509 {
510 int ret;
511
512 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
513 if (ret == 0 && write)
514 dirty_background_bytes = 0;
515 return ret;
516 }
517
dirty_background_bytes_handler(struct ctl_table * table,int write,void * buffer,size_t * lenp,loff_t * ppos)518 int dirty_background_bytes_handler(struct ctl_table *table, int write,
519 void *buffer, size_t *lenp, loff_t *ppos)
520 {
521 int ret;
522
523 ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
524 if (ret == 0 && write)
525 dirty_background_ratio = 0;
526 return ret;
527 }
528
dirty_ratio_handler(struct ctl_table * table,int write,void * buffer,size_t * lenp,loff_t * ppos)529 int dirty_ratio_handler(struct ctl_table *table, int write, void *buffer,
530 size_t *lenp, loff_t *ppos)
531 {
532 int old_ratio = vm_dirty_ratio;
533 int ret;
534
535 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
536 if (ret == 0 && write && vm_dirty_ratio != old_ratio) {
537 writeback_set_ratelimit();
538 vm_dirty_bytes = 0;
539 }
540 return ret;
541 }
542
dirty_bytes_handler(struct ctl_table * table,int write,void * buffer,size_t * lenp,loff_t * ppos)543 int dirty_bytes_handler(struct ctl_table *table, int write,
544 void *buffer, size_t *lenp, loff_t *ppos)
545 {
546 unsigned long old_bytes = vm_dirty_bytes;
547 int ret;
548
549 ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
550 if (ret == 0 && write && vm_dirty_bytes != old_bytes) {
551 writeback_set_ratelimit();
552 vm_dirty_ratio = 0;
553 }
554 return ret;
555 }
556
wp_next_time(unsigned long cur_time)557 static unsigned long wp_next_time(unsigned long cur_time)
558 {
559 cur_time += VM_COMPLETIONS_PERIOD_LEN;
560 /* 0 has a special meaning... */
561 if (!cur_time)
562 return 1;
563 return cur_time;
564 }
565
wb_domain_writeout_inc(struct wb_domain * dom,struct fprop_local_percpu * completions,unsigned int max_prop_frac)566 static void wb_domain_writeout_inc(struct wb_domain *dom,
567 struct fprop_local_percpu *completions,
568 unsigned int max_prop_frac)
569 {
570 __fprop_inc_percpu_max(&dom->completions, completions,
571 max_prop_frac);
572 /* First event after period switching was turned off? */
573 if (unlikely(!dom->period_time)) {
574 /*
575 * We can race with other __bdi_writeout_inc calls here but
576 * it does not cause any harm since the resulting time when
577 * timer will fire and what is in writeout_period_time will be
578 * roughly the same.
579 */
580 dom->period_time = wp_next_time(jiffies);
581 mod_timer(&dom->period_timer, dom->period_time);
582 }
583 }
584
585 /*
586 * Increment @wb's writeout completion count and the global writeout
587 * completion count. Called from test_clear_page_writeback().
588 */
__wb_writeout_inc(struct bdi_writeback * wb)589 static inline void __wb_writeout_inc(struct bdi_writeback *wb)
590 {
591 struct wb_domain *cgdom;
592
593 inc_wb_stat(wb, WB_WRITTEN);
594 wb_domain_writeout_inc(&global_wb_domain, &wb->completions,
595 wb->bdi->max_prop_frac);
596
597 cgdom = mem_cgroup_wb_domain(wb);
598 if (cgdom)
599 wb_domain_writeout_inc(cgdom, wb_memcg_completions(wb),
600 wb->bdi->max_prop_frac);
601 }
602
wb_writeout_inc(struct bdi_writeback * wb)603 void wb_writeout_inc(struct bdi_writeback *wb)
604 {
605 unsigned long flags;
606
607 local_irq_save(flags);
608 __wb_writeout_inc(wb);
609 local_irq_restore(flags);
610 }
611 EXPORT_SYMBOL_GPL(wb_writeout_inc);
612
613 /*
614 * On idle system, we can be called long after we scheduled because we use
615 * deferred timers so count with missed periods.
616 */
writeout_period(struct timer_list * t)617 static void writeout_period(struct timer_list *t)
618 {
619 struct wb_domain *dom = from_timer(dom, t, period_timer);
620 int miss_periods = (jiffies - dom->period_time) /
621 VM_COMPLETIONS_PERIOD_LEN;
622
623 if (fprop_new_period(&dom->completions, miss_periods + 1)) {
624 dom->period_time = wp_next_time(dom->period_time +
625 miss_periods * VM_COMPLETIONS_PERIOD_LEN);
626 mod_timer(&dom->period_timer, dom->period_time);
627 } else {
628 /*
629 * Aging has zeroed all fractions. Stop wasting CPU on period
630 * updates.
631 */
632 dom->period_time = 0;
633 }
634 }
635
wb_domain_init(struct wb_domain * dom,gfp_t gfp)636 int wb_domain_init(struct wb_domain *dom, gfp_t gfp)
637 {
638 memset(dom, 0, sizeof(*dom));
639
640 spin_lock_init(&dom->lock);
641
642 timer_setup(&dom->period_timer, writeout_period, TIMER_DEFERRABLE);
643
644 dom->dirty_limit_tstamp = jiffies;
645
646 return fprop_global_init(&dom->completions, gfp);
647 }
648
649 #ifdef CONFIG_CGROUP_WRITEBACK
wb_domain_exit(struct wb_domain * dom)650 void wb_domain_exit(struct wb_domain *dom)
651 {
652 del_timer_sync(&dom->period_timer);
653 fprop_global_destroy(&dom->completions);
654 }
655 #endif
656
657 /*
658 * bdi_min_ratio keeps the sum of the minimum dirty shares of all
659 * registered backing devices, which, for obvious reasons, can not
660 * exceed 100%.
661 */
662 static unsigned int bdi_min_ratio;
663
bdi_set_min_ratio(struct backing_dev_info * bdi,unsigned int min_ratio)664 int bdi_set_min_ratio(struct backing_dev_info *bdi, unsigned int min_ratio)
665 {
666 int ret = 0;
667
668 spin_lock_bh(&bdi_lock);
669 if (min_ratio > bdi->max_ratio) {
670 ret = -EINVAL;
671 } else {
672 min_ratio -= bdi->min_ratio;
673 if (bdi_min_ratio + min_ratio < 100) {
674 bdi_min_ratio += min_ratio;
675 bdi->min_ratio += min_ratio;
676 } else {
677 ret = -EINVAL;
678 }
679 }
680 spin_unlock_bh(&bdi_lock);
681
682 return ret;
683 }
684
bdi_set_max_ratio(struct backing_dev_info * bdi,unsigned max_ratio)685 int bdi_set_max_ratio(struct backing_dev_info *bdi, unsigned max_ratio)
686 {
687 int ret = 0;
688
689 if (max_ratio > 100)
690 return -EINVAL;
691
692 spin_lock_bh(&bdi_lock);
693 if (bdi->min_ratio > max_ratio) {
694 ret = -EINVAL;
695 } else {
696 bdi->max_ratio = max_ratio;
697 bdi->max_prop_frac = (FPROP_FRAC_BASE * max_ratio) / 100;
698 }
699 spin_unlock_bh(&bdi_lock);
700
701 return ret;
702 }
703 EXPORT_SYMBOL(bdi_set_max_ratio);
704
dirty_freerun_ceiling(unsigned long thresh,unsigned long bg_thresh)705 static unsigned long dirty_freerun_ceiling(unsigned long thresh,
706 unsigned long bg_thresh)
707 {
708 return (thresh + bg_thresh) / 2;
709 }
710
hard_dirty_limit(struct wb_domain * dom,unsigned long thresh)711 static unsigned long hard_dirty_limit(struct wb_domain *dom,
712 unsigned long thresh)
713 {
714 return max(thresh, dom->dirty_limit);
715 }
716
717 /*
718 * Memory which can be further allocated to a memcg domain is capped by
719 * system-wide clean memory excluding the amount being used in the domain.
720 */
mdtc_calc_avail(struct dirty_throttle_control * mdtc,unsigned long filepages,unsigned long headroom)721 static void mdtc_calc_avail(struct dirty_throttle_control *mdtc,
722 unsigned long filepages, unsigned long headroom)
723 {
724 struct dirty_throttle_control *gdtc = mdtc_gdtc(mdtc);
725 unsigned long clean = filepages - min(filepages, mdtc->dirty);
726 unsigned long global_clean = gdtc->avail - min(gdtc->avail, gdtc->dirty);
727 unsigned long other_clean = global_clean - min(global_clean, clean);
728
729 mdtc->avail = filepages + min(headroom, other_clean);
730 }
731
732 /**
733 * __wb_calc_thresh - @wb's share of dirty throttling threshold
734 * @dtc: dirty_throttle_context of interest
735 *
736 * Note that balance_dirty_pages() will only seriously take it as a hard limit
737 * when sleeping max_pause per page is not enough to keep the dirty pages under
738 * control. For example, when the device is completely stalled due to some error
739 * conditions, or when there are 1000 dd tasks writing to a slow 10MB/s USB key.
740 * In the other normal situations, it acts more gently by throttling the tasks
741 * more (rather than completely block them) when the wb dirty pages go high.
742 *
743 * It allocates high/low dirty limits to fast/slow devices, in order to prevent
744 * - starving fast devices
745 * - piling up dirty pages (that will take long time to sync) on slow devices
746 *
747 * The wb's share of dirty limit will be adapting to its throughput and
748 * bounded by the bdi->min_ratio and/or bdi->max_ratio parameters, if set.
749 *
750 * Return: @wb's dirty limit in pages. The term "dirty" in the context of
751 * dirty balancing includes all PG_dirty and PG_writeback pages.
752 */
__wb_calc_thresh(struct dirty_throttle_control * dtc)753 static unsigned long __wb_calc_thresh(struct dirty_throttle_control *dtc)
754 {
755 struct wb_domain *dom = dtc_dom(dtc);
756 unsigned long thresh = dtc->thresh;
757 u64 wb_thresh;
758 unsigned long numerator, denominator;
759 unsigned long wb_min_ratio, wb_max_ratio;
760
761 /*
762 * Calculate this BDI's share of the thresh ratio.
763 */
764 fprop_fraction_percpu(&dom->completions, dtc->wb_completions,
765 &numerator, &denominator);
766
767 wb_thresh = (thresh * (100 - bdi_min_ratio)) / 100;
768 wb_thresh *= numerator;
769 wb_thresh = div64_ul(wb_thresh, denominator);
770
771 wb_min_max_ratio(dtc->wb, &wb_min_ratio, &wb_max_ratio);
772
773 wb_thresh += (thresh * wb_min_ratio) / 100;
774 if (wb_thresh > (thresh * wb_max_ratio) / 100)
775 wb_thresh = thresh * wb_max_ratio / 100;
776
777 return wb_thresh;
778 }
779
wb_calc_thresh(struct bdi_writeback * wb,unsigned long thresh)780 unsigned long wb_calc_thresh(struct bdi_writeback *wb, unsigned long thresh)
781 {
782 struct dirty_throttle_control gdtc = { GDTC_INIT(wb),
783 .thresh = thresh };
784 return __wb_calc_thresh(&gdtc);
785 }
786
787 /*
788 * setpoint - dirty 3
789 * f(dirty) := 1.0 + (----------------)
790 * limit - setpoint
791 *
792 * it's a 3rd order polynomial that subjects to
793 *
794 * (1) f(freerun) = 2.0 => rampup dirty_ratelimit reasonably fast
795 * (2) f(setpoint) = 1.0 => the balance point
796 * (3) f(limit) = 0 => the hard limit
797 * (4) df/dx <= 0 => negative feedback control
798 * (5) the closer to setpoint, the smaller |df/dx| (and the reverse)
799 * => fast response on large errors; small oscillation near setpoint
800 */
pos_ratio_polynom(unsigned long setpoint,unsigned long dirty,unsigned long limit)801 static long long pos_ratio_polynom(unsigned long setpoint,
802 unsigned long dirty,
803 unsigned long limit)
804 {
805 long long pos_ratio;
806 long x;
807
808 x = div64_s64(((s64)setpoint - (s64)dirty) << RATELIMIT_CALC_SHIFT,
809 (limit - setpoint) | 1);
810 pos_ratio = x;
811 pos_ratio = pos_ratio * x >> RATELIMIT_CALC_SHIFT;
812 pos_ratio = pos_ratio * x >> RATELIMIT_CALC_SHIFT;
813 pos_ratio += 1 << RATELIMIT_CALC_SHIFT;
814
815 return clamp(pos_ratio, 0LL, 2LL << RATELIMIT_CALC_SHIFT);
816 }
817
818 /*
819 * Dirty position control.
820 *
821 * (o) global/bdi setpoints
822 *
823 * We want the dirty pages be balanced around the global/wb setpoints.
824 * When the number of dirty pages is higher/lower than the setpoint, the
825 * dirty position control ratio (and hence task dirty ratelimit) will be
826 * decreased/increased to bring the dirty pages back to the setpoint.
827 *
828 * pos_ratio = 1 << RATELIMIT_CALC_SHIFT
829 *
830 * if (dirty < setpoint) scale up pos_ratio
831 * if (dirty > setpoint) scale down pos_ratio
832 *
833 * if (wb_dirty < wb_setpoint) scale up pos_ratio
834 * if (wb_dirty > wb_setpoint) scale down pos_ratio
835 *
836 * task_ratelimit = dirty_ratelimit * pos_ratio >> RATELIMIT_CALC_SHIFT
837 *
838 * (o) global control line
839 *
840 * ^ pos_ratio
841 * |
842 * | |<===== global dirty control scope ======>|
843 * 2.0 .............*
844 * | .*
845 * | . *
846 * | . *
847 * | . *
848 * | . *
849 * | . *
850 * 1.0 ................................*
851 * | . . *
852 * | . . *
853 * | . . *
854 * | . . *
855 * | . . *
856 * 0 +------------.------------------.----------------------*------------->
857 * freerun^ setpoint^ limit^ dirty pages
858 *
859 * (o) wb control line
860 *
861 * ^ pos_ratio
862 * |
863 * | *
864 * | *
865 * | *
866 * | *
867 * | * |<=========== span ============>|
868 * 1.0 .......................*
869 * | . *
870 * | . *
871 * | . *
872 * | . *
873 * | . *
874 * | . *
875 * | . *
876 * | . *
877 * | . *
878 * | . *
879 * | . *
880 * 1/4 ...............................................* * * * * * * * * * * *
881 * | . .
882 * | . .
883 * | . .
884 * 0 +----------------------.-------------------------------.------------->
885 * wb_setpoint^ x_intercept^
886 *
887 * The wb control line won't drop below pos_ratio=1/4, so that wb_dirty can
888 * be smoothly throttled down to normal if it starts high in situations like
889 * - start writing to a slow SD card and a fast disk at the same time. The SD
890 * card's wb_dirty may rush to many times higher than wb_setpoint.
891 * - the wb dirty thresh drops quickly due to change of JBOD workload
892 */
wb_position_ratio(struct dirty_throttle_control * dtc)893 static void wb_position_ratio(struct dirty_throttle_control *dtc)
894 {
895 struct bdi_writeback *wb = dtc->wb;
896 unsigned long write_bw = wb->avg_write_bandwidth;
897 unsigned long freerun = dirty_freerun_ceiling(dtc->thresh, dtc->bg_thresh);
898 unsigned long limit = hard_dirty_limit(dtc_dom(dtc), dtc->thresh);
899 unsigned long wb_thresh = dtc->wb_thresh;
900 unsigned long x_intercept;
901 unsigned long setpoint; /* dirty pages' target balance point */
902 unsigned long wb_setpoint;
903 unsigned long span;
904 long long pos_ratio; /* for scaling up/down the rate limit */
905 long x;
906
907 dtc->pos_ratio = 0;
908
909 if (unlikely(dtc->dirty >= limit))
910 return;
911
912 /*
913 * global setpoint
914 *
915 * See comment for pos_ratio_polynom().
916 */
917 setpoint = (freerun + limit) / 2;
918 pos_ratio = pos_ratio_polynom(setpoint, dtc->dirty, limit);
919
920 /*
921 * The strictlimit feature is a tool preventing mistrusted filesystems
922 * from growing a large number of dirty pages before throttling. For
923 * such filesystems balance_dirty_pages always checks wb counters
924 * against wb limits. Even if global "nr_dirty" is under "freerun".
925 * This is especially important for fuse which sets bdi->max_ratio to
926 * 1% by default. Without strictlimit feature, fuse writeback may
927 * consume arbitrary amount of RAM because it is accounted in
928 * NR_WRITEBACK_TEMP which is not involved in calculating "nr_dirty".
929 *
930 * Here, in wb_position_ratio(), we calculate pos_ratio based on
931 * two values: wb_dirty and wb_thresh. Let's consider an example:
932 * total amount of RAM is 16GB, bdi->max_ratio is equal to 1%, global
933 * limits are set by default to 10% and 20% (background and throttle).
934 * Then wb_thresh is 1% of 20% of 16GB. This amounts to ~8K pages.
935 * wb_calc_thresh(wb, bg_thresh) is about ~4K pages. wb_setpoint is
936 * about ~6K pages (as the average of background and throttle wb
937 * limits). The 3rd order polynomial will provide positive feedback if
938 * wb_dirty is under wb_setpoint and vice versa.
939 *
940 * Note, that we cannot use global counters in these calculations
941 * because we want to throttle process writing to a strictlimit wb
942 * much earlier than global "freerun" is reached (~23MB vs. ~2.3GB
943 * in the example above).
944 */
945 if (unlikely(wb->bdi->capabilities & BDI_CAP_STRICTLIMIT)) {
946 long long wb_pos_ratio;
947
948 if (dtc->wb_dirty < 8) {
949 dtc->pos_ratio = min_t(long long, pos_ratio * 2,
950 2 << RATELIMIT_CALC_SHIFT);
951 return;
952 }
953
954 if (dtc->wb_dirty >= wb_thresh)
955 return;
956
957 wb_setpoint = dirty_freerun_ceiling(wb_thresh,
958 dtc->wb_bg_thresh);
959
960 if (wb_setpoint == 0 || wb_setpoint == wb_thresh)
961 return;
962
963 wb_pos_ratio = pos_ratio_polynom(wb_setpoint, dtc->wb_dirty,
964 wb_thresh);
965
966 /*
967 * Typically, for strictlimit case, wb_setpoint << setpoint
968 * and pos_ratio >> wb_pos_ratio. In the other words global
969 * state ("dirty") is not limiting factor and we have to
970 * make decision based on wb counters. But there is an
971 * important case when global pos_ratio should get precedence:
972 * global limits are exceeded (e.g. due to activities on other
973 * wb's) while given strictlimit wb is below limit.
974 *
975 * "pos_ratio * wb_pos_ratio" would work for the case above,
976 * but it would look too non-natural for the case of all
977 * activity in the system coming from a single strictlimit wb
978 * with bdi->max_ratio == 100%.
979 *
980 * Note that min() below somewhat changes the dynamics of the
981 * control system. Normally, pos_ratio value can be well over 3
982 * (when globally we are at freerun and wb is well below wb
983 * setpoint). Now the maximum pos_ratio in the same situation
984 * is 2. We might want to tweak this if we observe the control
985 * system is too slow to adapt.
986 */
987 dtc->pos_ratio = min(pos_ratio, wb_pos_ratio);
988 return;
989 }
990
991 /*
992 * We have computed basic pos_ratio above based on global situation. If
993 * the wb is over/under its share of dirty pages, we want to scale
994 * pos_ratio further down/up. That is done by the following mechanism.
995 */
996
997 /*
998 * wb setpoint
999 *
1000 * f(wb_dirty) := 1.0 + k * (wb_dirty - wb_setpoint)
1001 *
1002 * x_intercept - wb_dirty
1003 * := --------------------------
1004 * x_intercept - wb_setpoint
1005 *
1006 * The main wb control line is a linear function that subjects to
1007 *
1008 * (1) f(wb_setpoint) = 1.0
1009 * (2) k = - 1 / (8 * write_bw) (in single wb case)
1010 * or equally: x_intercept = wb_setpoint + 8 * write_bw
1011 *
1012 * For single wb case, the dirty pages are observed to fluctuate
1013 * regularly within range
1014 * [wb_setpoint - write_bw/2, wb_setpoint + write_bw/2]
1015 * for various filesystems, where (2) can yield in a reasonable 12.5%
1016 * fluctuation range for pos_ratio.
1017 *
1018 * For JBOD case, wb_thresh (not wb_dirty!) could fluctuate up to its
1019 * own size, so move the slope over accordingly and choose a slope that
1020 * yields 100% pos_ratio fluctuation on suddenly doubled wb_thresh.
1021 */
1022 if (unlikely(wb_thresh > dtc->thresh))
1023 wb_thresh = dtc->thresh;
1024 /*
1025 * It's very possible that wb_thresh is close to 0 not because the
1026 * device is slow, but that it has remained inactive for long time.
1027 * Honour such devices a reasonable good (hopefully IO efficient)
1028 * threshold, so that the occasional writes won't be blocked and active
1029 * writes can rampup the threshold quickly.
1030 */
1031 wb_thresh = max(wb_thresh, (limit - dtc->dirty) / 8);
1032 /*
1033 * scale global setpoint to wb's:
1034 * wb_setpoint = setpoint * wb_thresh / thresh
1035 */
1036 x = div_u64((u64)wb_thresh << 16, dtc->thresh | 1);
1037 wb_setpoint = setpoint * (u64)x >> 16;
1038 /*
1039 * Use span=(8*write_bw) in single wb case as indicated by
1040 * (thresh - wb_thresh ~= 0) and transit to wb_thresh in JBOD case.
1041 *
1042 * wb_thresh thresh - wb_thresh
1043 * span = --------- * (8 * write_bw) + ------------------ * wb_thresh
1044 * thresh thresh
1045 */
1046 span = (dtc->thresh - wb_thresh + 8 * write_bw) * (u64)x >> 16;
1047 x_intercept = wb_setpoint + span;
1048
1049 if (dtc->wb_dirty < x_intercept - span / 4) {
1050 pos_ratio = div64_u64(pos_ratio * (x_intercept - dtc->wb_dirty),
1051 (x_intercept - wb_setpoint) | 1);
1052 } else
1053 pos_ratio /= 4;
1054
1055 /*
1056 * wb reserve area, safeguard against dirty pool underrun and disk idle
1057 * It may push the desired control point of global dirty pages higher
1058 * than setpoint.
1059 */
1060 x_intercept = wb_thresh / 2;
1061 if (dtc->wb_dirty < x_intercept) {
1062 if (dtc->wb_dirty > x_intercept / 8)
1063 pos_ratio = div_u64(pos_ratio * x_intercept,
1064 dtc->wb_dirty);
1065 else
1066 pos_ratio *= 8;
1067 }
1068
1069 dtc->pos_ratio = pos_ratio;
1070 }
1071
wb_update_write_bandwidth(struct bdi_writeback * wb,unsigned long elapsed,unsigned long written)1072 static void wb_update_write_bandwidth(struct bdi_writeback *wb,
1073 unsigned long elapsed,
1074 unsigned long written)
1075 {
1076 const unsigned long period = roundup_pow_of_two(3 * HZ);
1077 unsigned long avg = wb->avg_write_bandwidth;
1078 unsigned long old = wb->write_bandwidth;
1079 u64 bw;
1080
1081 /*
1082 * bw = written * HZ / elapsed
1083 *
1084 * bw * elapsed + write_bandwidth * (period - elapsed)
1085 * write_bandwidth = ---------------------------------------------------
1086 * period
1087 *
1088 * @written may have decreased due to account_page_redirty().
1089 * Avoid underflowing @bw calculation.
1090 */
1091 bw = written - min(written, wb->written_stamp);
1092 bw *= HZ;
1093 if (unlikely(elapsed > period)) {
1094 bw = div64_ul(bw, elapsed);
1095 avg = bw;
1096 goto out;
1097 }
1098 bw += (u64)wb->write_bandwidth * (period - elapsed);
1099 bw >>= ilog2(period);
1100
1101 /*
1102 * one more level of smoothing, for filtering out sudden spikes
1103 */
1104 if (avg > old && old >= (unsigned long)bw)
1105 avg -= (avg - old) >> 3;
1106
1107 if (avg < old && old <= (unsigned long)bw)
1108 avg += (old - avg) >> 3;
1109
1110 out:
1111 /* keep avg > 0 to guarantee that tot > 0 if there are dirty wbs */
1112 avg = max(avg, 1LU);
1113 if (wb_has_dirty_io(wb)) {
1114 long delta = avg - wb->avg_write_bandwidth;
1115 WARN_ON_ONCE(atomic_long_add_return(delta,
1116 &wb->bdi->tot_write_bandwidth) <= 0);
1117 }
1118 wb->write_bandwidth = bw;
1119 wb->avg_write_bandwidth = avg;
1120 }
1121
update_dirty_limit(struct dirty_throttle_control * dtc)1122 static void update_dirty_limit(struct dirty_throttle_control *dtc)
1123 {
1124 struct wb_domain *dom = dtc_dom(dtc);
1125 unsigned long thresh = dtc->thresh;
1126 unsigned long limit = dom->dirty_limit;
1127
1128 /*
1129 * Follow up in one step.
1130 */
1131 if (limit < thresh) {
1132 limit = thresh;
1133 goto update;
1134 }
1135
1136 /*
1137 * Follow down slowly. Use the higher one as the target, because thresh
1138 * may drop below dirty. This is exactly the reason to introduce
1139 * dom->dirty_limit which is guaranteed to lie above the dirty pages.
1140 */
1141 thresh = max(thresh, dtc->dirty);
1142 if (limit > thresh) {
1143 limit -= (limit - thresh) >> 5;
1144 goto update;
1145 }
1146 return;
1147 update:
1148 dom->dirty_limit = limit;
1149 }
1150
domain_update_bandwidth(struct dirty_throttle_control * dtc,unsigned long now)1151 static void domain_update_bandwidth(struct dirty_throttle_control *dtc,
1152 unsigned long now)
1153 {
1154 struct wb_domain *dom = dtc_dom(dtc);
1155
1156 /*
1157 * check locklessly first to optimize away locking for the most time
1158 */
1159 if (time_before(now, dom->dirty_limit_tstamp + BANDWIDTH_INTERVAL))
1160 return;
1161
1162 spin_lock(&dom->lock);
1163 if (time_after_eq(now, dom->dirty_limit_tstamp + BANDWIDTH_INTERVAL)) {
1164 update_dirty_limit(dtc);
1165 dom->dirty_limit_tstamp = now;
1166 }
1167 spin_unlock(&dom->lock);
1168 }
1169
1170 /*
1171 * Maintain wb->dirty_ratelimit, the base dirty throttle rate.
1172 *
1173 * Normal wb tasks will be curbed at or below it in long term.
1174 * Obviously it should be around (write_bw / N) when there are N dd tasks.
1175 */
wb_update_dirty_ratelimit(struct dirty_throttle_control * dtc,unsigned long dirtied,unsigned long elapsed)1176 static void wb_update_dirty_ratelimit(struct dirty_throttle_control *dtc,
1177 unsigned long dirtied,
1178 unsigned long elapsed)
1179 {
1180 struct bdi_writeback *wb = dtc->wb;
1181 unsigned long dirty = dtc->dirty;
1182 unsigned long freerun = dirty_freerun_ceiling(dtc->thresh, dtc->bg_thresh);
1183 unsigned long limit = hard_dirty_limit(dtc_dom(dtc), dtc->thresh);
1184 unsigned long setpoint = (freerun + limit) / 2;
1185 unsigned long write_bw = wb->avg_write_bandwidth;
1186 unsigned long dirty_ratelimit = wb->dirty_ratelimit;
1187 unsigned long dirty_rate;
1188 unsigned long task_ratelimit;
1189 unsigned long balanced_dirty_ratelimit;
1190 unsigned long step;
1191 unsigned long x;
1192 unsigned long shift;
1193
1194 /*
1195 * The dirty rate will match the writeout rate in long term, except
1196 * when dirty pages are truncated by userspace or re-dirtied by FS.
1197 */
1198 dirty_rate = (dirtied - wb->dirtied_stamp) * HZ / elapsed;
1199
1200 /*
1201 * task_ratelimit reflects each dd's dirty rate for the past 200ms.
1202 */
1203 task_ratelimit = (u64)dirty_ratelimit *
1204 dtc->pos_ratio >> RATELIMIT_CALC_SHIFT;
1205 task_ratelimit++; /* it helps rampup dirty_ratelimit from tiny values */
1206
1207 /*
1208 * A linear estimation of the "balanced" throttle rate. The theory is,
1209 * if there are N dd tasks, each throttled at task_ratelimit, the wb's
1210 * dirty_rate will be measured to be (N * task_ratelimit). So the below
1211 * formula will yield the balanced rate limit (write_bw / N).
1212 *
1213 * Note that the expanded form is not a pure rate feedback:
1214 * rate_(i+1) = rate_(i) * (write_bw / dirty_rate) (1)
1215 * but also takes pos_ratio into account:
1216 * rate_(i+1) = rate_(i) * (write_bw / dirty_rate) * pos_ratio (2)
1217 *
1218 * (1) is not realistic because pos_ratio also takes part in balancing
1219 * the dirty rate. Consider the state
1220 * pos_ratio = 0.5 (3)
1221 * rate = 2 * (write_bw / N) (4)
1222 * If (1) is used, it will stuck in that state! Because each dd will
1223 * be throttled at
1224 * task_ratelimit = pos_ratio * rate = (write_bw / N) (5)
1225 * yielding
1226 * dirty_rate = N * task_ratelimit = write_bw (6)
1227 * put (6) into (1) we get
1228 * rate_(i+1) = rate_(i) (7)
1229 *
1230 * So we end up using (2) to always keep
1231 * rate_(i+1) ~= (write_bw / N) (8)
1232 * regardless of the value of pos_ratio. As long as (8) is satisfied,
1233 * pos_ratio is able to drive itself to 1.0, which is not only where
1234 * the dirty count meet the setpoint, but also where the slope of
1235 * pos_ratio is most flat and hence task_ratelimit is least fluctuated.
1236 */
1237 balanced_dirty_ratelimit = div_u64((u64)task_ratelimit * write_bw,
1238 dirty_rate | 1);
1239 /*
1240 * balanced_dirty_ratelimit ~= (write_bw / N) <= write_bw
1241 */
1242 if (unlikely(balanced_dirty_ratelimit > write_bw))
1243 balanced_dirty_ratelimit = write_bw;
1244
1245 /*
1246 * We could safely do this and return immediately:
1247 *
1248 * wb->dirty_ratelimit = balanced_dirty_ratelimit;
1249 *
1250 * However to get a more stable dirty_ratelimit, the below elaborated
1251 * code makes use of task_ratelimit to filter out singular points and
1252 * limit the step size.
1253 *
1254 * The below code essentially only uses the relative value of
1255 *
1256 * task_ratelimit - dirty_ratelimit
1257 * = (pos_ratio - 1) * dirty_ratelimit
1258 *
1259 * which reflects the direction and size of dirty position error.
1260 */
1261
1262 /*
1263 * dirty_ratelimit will follow balanced_dirty_ratelimit iff
1264 * task_ratelimit is on the same side of dirty_ratelimit, too.
1265 * For example, when
1266 * - dirty_ratelimit > balanced_dirty_ratelimit
1267 * - dirty_ratelimit > task_ratelimit (dirty pages are above setpoint)
1268 * lowering dirty_ratelimit will help meet both the position and rate
1269 * control targets. Otherwise, don't update dirty_ratelimit if it will
1270 * only help meet the rate target. After all, what the users ultimately
1271 * feel and care are stable dirty rate and small position error.
1272 *
1273 * |task_ratelimit - dirty_ratelimit| is used to limit the step size
1274 * and filter out the singular points of balanced_dirty_ratelimit. Which
1275 * keeps jumping around randomly and can even leap far away at times
1276 * due to the small 200ms estimation period of dirty_rate (we want to
1277 * keep that period small to reduce time lags).
1278 */
1279 step = 0;
1280
1281 /*
1282 * For strictlimit case, calculations above were based on wb counters
1283 * and limits (starting from pos_ratio = wb_position_ratio() and up to
1284 * balanced_dirty_ratelimit = task_ratelimit * write_bw / dirty_rate).
1285 * Hence, to calculate "step" properly, we have to use wb_dirty as
1286 * "dirty" and wb_setpoint as "setpoint".
1287 *
1288 * We rampup dirty_ratelimit forcibly if wb_dirty is low because
1289 * it's possible that wb_thresh is close to zero due to inactivity
1290 * of backing device.
1291 */
1292 if (unlikely(wb->bdi->capabilities & BDI_CAP_STRICTLIMIT)) {
1293 dirty = dtc->wb_dirty;
1294 if (dtc->wb_dirty < 8)
1295 setpoint = dtc->wb_dirty + 1;
1296 else
1297 setpoint = (dtc->wb_thresh + dtc->wb_bg_thresh) / 2;
1298 }
1299
1300 if (dirty < setpoint) {
1301 x = min3(wb->balanced_dirty_ratelimit,
1302 balanced_dirty_ratelimit, task_ratelimit);
1303 if (dirty_ratelimit < x)
1304 step = x - dirty_ratelimit;
1305 } else {
1306 x = max3(wb->balanced_dirty_ratelimit,
1307 balanced_dirty_ratelimit, task_ratelimit);
1308 if (dirty_ratelimit > x)
1309 step = dirty_ratelimit - x;
1310 }
1311
1312 /*
1313 * Don't pursue 100% rate matching. It's impossible since the balanced
1314 * rate itself is constantly fluctuating. So decrease the track speed
1315 * when it gets close to the target. Helps eliminate pointless tremors.
1316 */
1317 shift = dirty_ratelimit / (2 * step + 1);
1318 if (shift < BITS_PER_LONG)
1319 step = DIV_ROUND_UP(step >> shift, 8);
1320 else
1321 step = 0;
1322
1323 if (dirty_ratelimit < balanced_dirty_ratelimit)
1324 dirty_ratelimit += step;
1325 else
1326 dirty_ratelimit -= step;
1327
1328 wb->dirty_ratelimit = max(dirty_ratelimit, 1UL);
1329 wb->balanced_dirty_ratelimit = balanced_dirty_ratelimit;
1330
1331 trace_bdi_dirty_ratelimit(wb, dirty_rate, task_ratelimit);
1332 }
1333
__wb_update_bandwidth(struct dirty_throttle_control * gdtc,struct dirty_throttle_control * mdtc,unsigned long start_time,bool update_ratelimit)1334 static void __wb_update_bandwidth(struct dirty_throttle_control *gdtc,
1335 struct dirty_throttle_control *mdtc,
1336 unsigned long start_time,
1337 bool update_ratelimit)
1338 {
1339 struct bdi_writeback *wb = gdtc->wb;
1340 unsigned long now = jiffies;
1341 unsigned long elapsed = now - wb->bw_time_stamp;
1342 unsigned long dirtied;
1343 unsigned long written;
1344
1345 lockdep_assert_held(&wb->list_lock);
1346
1347 /*
1348 * rate-limit, only update once every 200ms.
1349 */
1350 if (elapsed < BANDWIDTH_INTERVAL)
1351 return;
1352
1353 dirtied = percpu_counter_read(&wb->stat[WB_DIRTIED]);
1354 written = percpu_counter_read(&wb->stat[WB_WRITTEN]);
1355
1356 /*
1357 * Skip quiet periods when disk bandwidth is under-utilized.
1358 * (at least 1s idle time between two flusher runs)
1359 */
1360 if (elapsed > HZ && time_before(wb->bw_time_stamp, start_time))
1361 goto snapshot;
1362
1363 if (update_ratelimit) {
1364 domain_update_bandwidth(gdtc, now);
1365 wb_update_dirty_ratelimit(gdtc, dirtied, elapsed);
1366
1367 /*
1368 * @mdtc is always NULL if !CGROUP_WRITEBACK but the
1369 * compiler has no way to figure that out. Help it.
1370 */
1371 if (IS_ENABLED(CONFIG_CGROUP_WRITEBACK) && mdtc) {
1372 domain_update_bandwidth(mdtc, now);
1373 wb_update_dirty_ratelimit(mdtc, dirtied, elapsed);
1374 }
1375 }
1376 wb_update_write_bandwidth(wb, elapsed, written);
1377
1378 snapshot:
1379 wb->dirtied_stamp = dirtied;
1380 wb->written_stamp = written;
1381 wb->bw_time_stamp = now;
1382 }
1383
wb_update_bandwidth(struct bdi_writeback * wb,unsigned long start_time)1384 void wb_update_bandwidth(struct bdi_writeback *wb, unsigned long start_time)
1385 {
1386 struct dirty_throttle_control gdtc = { GDTC_INIT(wb) };
1387
1388 __wb_update_bandwidth(&gdtc, NULL, start_time, false);
1389 }
1390
1391 /*
1392 * After a task dirtied this many pages, balance_dirty_pages_ratelimited()
1393 * will look to see if it needs to start dirty throttling.
1394 *
1395 * If dirty_poll_interval is too low, big NUMA machines will call the expensive
1396 * global_zone_page_state() too often. So scale it near-sqrt to the safety margin
1397 * (the number of pages we may dirty without exceeding the dirty limits).
1398 */
dirty_poll_interval(unsigned long dirty,unsigned long thresh)1399 static unsigned long dirty_poll_interval(unsigned long dirty,
1400 unsigned long thresh)
1401 {
1402 if (thresh > dirty)
1403 return 1UL << (ilog2(thresh - dirty) >> 1);
1404
1405 return 1;
1406 }
1407
wb_max_pause(struct bdi_writeback * wb,unsigned long wb_dirty)1408 static unsigned long wb_max_pause(struct bdi_writeback *wb,
1409 unsigned long wb_dirty)
1410 {
1411 unsigned long bw = wb->avg_write_bandwidth;
1412 unsigned long t;
1413
1414 /*
1415 * Limit pause time for small memory systems. If sleeping for too long
1416 * time, a small pool of dirty/writeback pages may go empty and disk go
1417 * idle.
1418 *
1419 * 8 serves as the safety ratio.
1420 */
1421 t = wb_dirty / (1 + bw / roundup_pow_of_two(1 + HZ / 8));
1422 t++;
1423
1424 return min_t(unsigned long, t, MAX_PAUSE);
1425 }
1426
wb_min_pause(struct bdi_writeback * wb,long max_pause,unsigned long task_ratelimit,unsigned long dirty_ratelimit,int * nr_dirtied_pause)1427 static long wb_min_pause(struct bdi_writeback *wb,
1428 long max_pause,
1429 unsigned long task_ratelimit,
1430 unsigned long dirty_ratelimit,
1431 int *nr_dirtied_pause)
1432 {
1433 long hi = ilog2(wb->avg_write_bandwidth);
1434 long lo = ilog2(wb->dirty_ratelimit);
1435 long t; /* target pause */
1436 long pause; /* estimated next pause */
1437 int pages; /* target nr_dirtied_pause */
1438
1439 /* target for 10ms pause on 1-dd case */
1440 t = max(1, HZ / 100);
1441
1442 /*
1443 * Scale up pause time for concurrent dirtiers in order to reduce CPU
1444 * overheads.
1445 *
1446 * (N * 10ms) on 2^N concurrent tasks.
1447 */
1448 if (hi > lo)
1449 t += (hi - lo) * (10 * HZ) / 1024;
1450
1451 /*
1452 * This is a bit convoluted. We try to base the next nr_dirtied_pause
1453 * on the much more stable dirty_ratelimit. However the next pause time
1454 * will be computed based on task_ratelimit and the two rate limits may
1455 * depart considerably at some time. Especially if task_ratelimit goes
1456 * below dirty_ratelimit/2 and the target pause is max_pause, the next
1457 * pause time will be max_pause*2 _trimmed down_ to max_pause. As a
1458 * result task_ratelimit won't be executed faithfully, which could
1459 * eventually bring down dirty_ratelimit.
1460 *
1461 * We apply two rules to fix it up:
1462 * 1) try to estimate the next pause time and if necessary, use a lower
1463 * nr_dirtied_pause so as not to exceed max_pause. When this happens,
1464 * nr_dirtied_pause will be "dancing" with task_ratelimit.
1465 * 2) limit the target pause time to max_pause/2, so that the normal
1466 * small fluctuations of task_ratelimit won't trigger rule (1) and
1467 * nr_dirtied_pause will remain as stable as dirty_ratelimit.
1468 */
1469 t = min(t, 1 + max_pause / 2);
1470 pages = dirty_ratelimit * t / roundup_pow_of_two(HZ);
1471
1472 /*
1473 * Tiny nr_dirtied_pause is found to hurt I/O performance in the test
1474 * case fio-mmap-randwrite-64k, which does 16*{sync read, async write}.
1475 * When the 16 consecutive reads are often interrupted by some dirty
1476 * throttling pause during the async writes, cfq will go into idles
1477 * (deadline is fine). So push nr_dirtied_pause as high as possible
1478 * until reaches DIRTY_POLL_THRESH=32 pages.
1479 */
1480 if (pages < DIRTY_POLL_THRESH) {
1481 t = max_pause;
1482 pages = dirty_ratelimit * t / roundup_pow_of_two(HZ);
1483 if (pages > DIRTY_POLL_THRESH) {
1484 pages = DIRTY_POLL_THRESH;
1485 t = HZ * DIRTY_POLL_THRESH / dirty_ratelimit;
1486 }
1487 }
1488
1489 pause = HZ * pages / (task_ratelimit + 1);
1490 if (pause > max_pause) {
1491 t = max_pause;
1492 pages = task_ratelimit * t / roundup_pow_of_two(HZ);
1493 }
1494
1495 *nr_dirtied_pause = pages;
1496 /*
1497 * The minimal pause time will normally be half the target pause time.
1498 */
1499 return pages >= DIRTY_POLL_THRESH ? 1 + t / 2 : t;
1500 }
1501
wb_dirty_limits(struct dirty_throttle_control * dtc)1502 static inline void wb_dirty_limits(struct dirty_throttle_control *dtc)
1503 {
1504 struct bdi_writeback *wb = dtc->wb;
1505 unsigned long wb_reclaimable;
1506
1507 /*
1508 * wb_thresh is not treated as some limiting factor as
1509 * dirty_thresh, due to reasons
1510 * - in JBOD setup, wb_thresh can fluctuate a lot
1511 * - in a system with HDD and USB key, the USB key may somehow
1512 * go into state (wb_dirty >> wb_thresh) either because
1513 * wb_dirty starts high, or because wb_thresh drops low.
1514 * In this case we don't want to hard throttle the USB key
1515 * dirtiers for 100 seconds until wb_dirty drops under
1516 * wb_thresh. Instead the auxiliary wb control line in
1517 * wb_position_ratio() will let the dirtier task progress
1518 * at some rate <= (write_bw / 2) for bringing down wb_dirty.
1519 */
1520 dtc->wb_thresh = __wb_calc_thresh(dtc);
1521 dtc->wb_bg_thresh = dtc->thresh ?
1522 div_u64((u64)dtc->wb_thresh * dtc->bg_thresh, dtc->thresh) : 0;
1523
1524 /*
1525 * In order to avoid the stacked BDI deadlock we need
1526 * to ensure we accurately count the 'dirty' pages when
1527 * the threshold is low.
1528 *
1529 * Otherwise it would be possible to get thresh+n pages
1530 * reported dirty, even though there are thresh-m pages
1531 * actually dirty; with m+n sitting in the percpu
1532 * deltas.
1533 */
1534 if (dtc->wb_thresh < 2 * wb_stat_error()) {
1535 wb_reclaimable = wb_stat_sum(wb, WB_RECLAIMABLE);
1536 dtc->wb_dirty = wb_reclaimable + wb_stat_sum(wb, WB_WRITEBACK);
1537 } else {
1538 wb_reclaimable = wb_stat(wb, WB_RECLAIMABLE);
1539 dtc->wb_dirty = wb_reclaimable + wb_stat(wb, WB_WRITEBACK);
1540 }
1541 }
1542
1543 /*
1544 * balance_dirty_pages() must be called by processes which are generating dirty
1545 * data. It looks at the number of dirty pages in the machine and will force
1546 * the caller to wait once crossing the (background_thresh + dirty_thresh) / 2.
1547 * If we're over `background_thresh' then the writeback threads are woken to
1548 * perform some writeout.
1549 */
balance_dirty_pages(struct bdi_writeback * wb,unsigned long pages_dirtied)1550 static void balance_dirty_pages(struct bdi_writeback *wb,
1551 unsigned long pages_dirtied)
1552 {
1553 struct dirty_throttle_control gdtc_stor = { GDTC_INIT(wb) };
1554 struct dirty_throttle_control mdtc_stor = { MDTC_INIT(wb, &gdtc_stor) };
1555 struct dirty_throttle_control * const gdtc = &gdtc_stor;
1556 struct dirty_throttle_control * const mdtc = mdtc_valid(&mdtc_stor) ?
1557 &mdtc_stor : NULL;
1558 struct dirty_throttle_control *sdtc;
1559 unsigned long nr_reclaimable; /* = file_dirty */
1560 long period;
1561 long pause;
1562 long max_pause;
1563 long min_pause;
1564 int nr_dirtied_pause;
1565 bool dirty_exceeded = false;
1566 unsigned long task_ratelimit;
1567 unsigned long dirty_ratelimit;
1568 struct backing_dev_info *bdi = wb->bdi;
1569 bool strictlimit = bdi->capabilities & BDI_CAP_STRICTLIMIT;
1570 unsigned long start_time = jiffies;
1571
1572 for (;;) {
1573 unsigned long now = jiffies;
1574 unsigned long dirty, thresh, bg_thresh;
1575 unsigned long m_dirty = 0; /* stop bogus uninit warnings */
1576 unsigned long m_thresh = 0;
1577 unsigned long m_bg_thresh = 0;
1578
1579 nr_reclaimable = global_node_page_state(NR_FILE_DIRTY);
1580 gdtc->avail = global_dirtyable_memory();
1581 gdtc->dirty = nr_reclaimable + global_node_page_state(NR_WRITEBACK);
1582
1583 domain_dirty_limits(gdtc);
1584
1585 if (unlikely(strictlimit)) {
1586 wb_dirty_limits(gdtc);
1587
1588 dirty = gdtc->wb_dirty;
1589 thresh = gdtc->wb_thresh;
1590 bg_thresh = gdtc->wb_bg_thresh;
1591 } else {
1592 dirty = gdtc->dirty;
1593 thresh = gdtc->thresh;
1594 bg_thresh = gdtc->bg_thresh;
1595 }
1596
1597 if (mdtc) {
1598 unsigned long filepages, headroom, writeback;
1599
1600 /*
1601 * If @wb belongs to !root memcg, repeat the same
1602 * basic calculations for the memcg domain.
1603 */
1604 mem_cgroup_wb_stats(wb, &filepages, &headroom,
1605 &mdtc->dirty, &writeback);
1606 mdtc->dirty += writeback;
1607 mdtc_calc_avail(mdtc, filepages, headroom);
1608
1609 domain_dirty_limits(mdtc);
1610
1611 if (unlikely(strictlimit)) {
1612 wb_dirty_limits(mdtc);
1613 m_dirty = mdtc->wb_dirty;
1614 m_thresh = mdtc->wb_thresh;
1615 m_bg_thresh = mdtc->wb_bg_thresh;
1616 } else {
1617 m_dirty = mdtc->dirty;
1618 m_thresh = mdtc->thresh;
1619 m_bg_thresh = mdtc->bg_thresh;
1620 }
1621 }
1622
1623 /*
1624 * Throttle it only when the background writeback cannot
1625 * catch-up. This avoids (excessively) small writeouts
1626 * when the wb limits are ramping up in case of !strictlimit.
1627 *
1628 * In strictlimit case make decision based on the wb counters
1629 * and limits. Small writeouts when the wb limits are ramping
1630 * up are the price we consciously pay for strictlimit-ing.
1631 *
1632 * If memcg domain is in effect, @dirty should be under
1633 * both global and memcg freerun ceilings.
1634 */
1635 if (dirty <= dirty_freerun_ceiling(thresh, bg_thresh) &&
1636 (!mdtc ||
1637 m_dirty <= dirty_freerun_ceiling(m_thresh, m_bg_thresh))) {
1638 unsigned long intv;
1639 unsigned long m_intv;
1640
1641 free_running:
1642 intv = dirty_poll_interval(dirty, thresh);
1643 m_intv = ULONG_MAX;
1644
1645 current->dirty_paused_when = now;
1646 current->nr_dirtied = 0;
1647 if (mdtc)
1648 m_intv = dirty_poll_interval(m_dirty, m_thresh);
1649 current->nr_dirtied_pause = min(intv, m_intv);
1650 break;
1651 }
1652
1653 if (unlikely(!writeback_in_progress(wb)))
1654 wb_start_background_writeback(wb);
1655
1656 mem_cgroup_flush_foreign(wb);
1657
1658 /*
1659 * Calculate global domain's pos_ratio and select the
1660 * global dtc by default.
1661 */
1662 if (!strictlimit) {
1663 wb_dirty_limits(gdtc);
1664
1665 if ((current->flags & PF_LOCAL_THROTTLE) &&
1666 gdtc->wb_dirty <
1667 dirty_freerun_ceiling(gdtc->wb_thresh,
1668 gdtc->wb_bg_thresh))
1669 /*
1670 * LOCAL_THROTTLE tasks must not be throttled
1671 * when below the per-wb freerun ceiling.
1672 */
1673 goto free_running;
1674 }
1675
1676 dirty_exceeded = (gdtc->wb_dirty > gdtc->wb_thresh) &&
1677 ((gdtc->dirty > gdtc->thresh) || strictlimit);
1678
1679 wb_position_ratio(gdtc);
1680 sdtc = gdtc;
1681
1682 if (mdtc) {
1683 /*
1684 * If memcg domain is in effect, calculate its
1685 * pos_ratio. @wb should satisfy constraints from
1686 * both global and memcg domains. Choose the one
1687 * w/ lower pos_ratio.
1688 */
1689 if (!strictlimit) {
1690 wb_dirty_limits(mdtc);
1691
1692 if ((current->flags & PF_LOCAL_THROTTLE) &&
1693 mdtc->wb_dirty <
1694 dirty_freerun_ceiling(mdtc->wb_thresh,
1695 mdtc->wb_bg_thresh))
1696 /*
1697 * LOCAL_THROTTLE tasks must not be
1698 * throttled when below the per-wb
1699 * freerun ceiling.
1700 */
1701 goto free_running;
1702 }
1703 dirty_exceeded |= (mdtc->wb_dirty > mdtc->wb_thresh) &&
1704 ((mdtc->dirty > mdtc->thresh) || strictlimit);
1705
1706 wb_position_ratio(mdtc);
1707 if (mdtc->pos_ratio < gdtc->pos_ratio)
1708 sdtc = mdtc;
1709 }
1710
1711 if (dirty_exceeded && !wb->dirty_exceeded)
1712 wb->dirty_exceeded = 1;
1713
1714 if (time_is_before_jiffies(wb->bw_time_stamp +
1715 BANDWIDTH_INTERVAL)) {
1716 spin_lock(&wb->list_lock);
1717 __wb_update_bandwidth(gdtc, mdtc, start_time, true);
1718 spin_unlock(&wb->list_lock);
1719 }
1720
1721 /* throttle according to the chosen dtc */
1722 dirty_ratelimit = wb->dirty_ratelimit;
1723 task_ratelimit = ((u64)dirty_ratelimit * sdtc->pos_ratio) >>
1724 RATELIMIT_CALC_SHIFT;
1725 max_pause = wb_max_pause(wb, sdtc->wb_dirty);
1726 min_pause = wb_min_pause(wb, max_pause,
1727 task_ratelimit, dirty_ratelimit,
1728 &nr_dirtied_pause);
1729
1730 if (unlikely(task_ratelimit == 0)) {
1731 period = max_pause;
1732 pause = max_pause;
1733 goto pause;
1734 }
1735 period = HZ * pages_dirtied / task_ratelimit;
1736 pause = period;
1737 if (current->dirty_paused_when)
1738 pause -= now - current->dirty_paused_when;
1739 /*
1740 * For less than 1s think time (ext3/4 may block the dirtier
1741 * for up to 800ms from time to time on 1-HDD; so does xfs,
1742 * however at much less frequency), try to compensate it in
1743 * future periods by updating the virtual time; otherwise just
1744 * do a reset, as it may be a light dirtier.
1745 */
1746 if (pause < min_pause) {
1747 trace_balance_dirty_pages(wb,
1748 sdtc->thresh,
1749 sdtc->bg_thresh,
1750 sdtc->dirty,
1751 sdtc->wb_thresh,
1752 sdtc->wb_dirty,
1753 dirty_ratelimit,
1754 task_ratelimit,
1755 pages_dirtied,
1756 period,
1757 min(pause, 0L),
1758 start_time);
1759 if (pause < -HZ) {
1760 current->dirty_paused_when = now;
1761 current->nr_dirtied = 0;
1762 } else if (period) {
1763 current->dirty_paused_when += period;
1764 current->nr_dirtied = 0;
1765 } else if (current->nr_dirtied_pause <= pages_dirtied)
1766 current->nr_dirtied_pause += pages_dirtied;
1767 break;
1768 }
1769 if (unlikely(pause > max_pause)) {
1770 /* for occasional dropped task_ratelimit */
1771 now += min(pause - max_pause, max_pause);
1772 pause = max_pause;
1773 }
1774
1775 pause:
1776 trace_balance_dirty_pages(wb,
1777 sdtc->thresh,
1778 sdtc->bg_thresh,
1779 sdtc->dirty,
1780 sdtc->wb_thresh,
1781 sdtc->wb_dirty,
1782 dirty_ratelimit,
1783 task_ratelimit,
1784 pages_dirtied,
1785 period,
1786 pause,
1787 start_time);
1788 __set_current_state(TASK_KILLABLE);
1789 wb->dirty_sleep = now;
1790 io_schedule_timeout(pause);
1791
1792 current->dirty_paused_when = now + pause;
1793 current->nr_dirtied = 0;
1794 current->nr_dirtied_pause = nr_dirtied_pause;
1795
1796 /*
1797 * This is typically equal to (dirty < thresh) and can also
1798 * keep "1000+ dd on a slow USB stick" under control.
1799 */
1800 if (task_ratelimit)
1801 break;
1802
1803 /*
1804 * In the case of an unresponding NFS server and the NFS dirty
1805 * pages exceeds dirty_thresh, give the other good wb's a pipe
1806 * to go through, so that tasks on them still remain responsive.
1807 *
1808 * In theory 1 page is enough to keep the consumer-producer
1809 * pipe going: the flusher cleans 1 page => the task dirties 1
1810 * more page. However wb_dirty has accounting errors. So use
1811 * the larger and more IO friendly wb_stat_error.
1812 */
1813 if (sdtc->wb_dirty <= wb_stat_error())
1814 break;
1815
1816 if (fatal_signal_pending(current))
1817 break;
1818 }
1819
1820 if (!dirty_exceeded && wb->dirty_exceeded)
1821 wb->dirty_exceeded = 0;
1822
1823 if (writeback_in_progress(wb))
1824 return;
1825
1826 /*
1827 * In laptop mode, we wait until hitting the higher threshold before
1828 * starting background writeout, and then write out all the way down
1829 * to the lower threshold. So slow writers cause minimal disk activity.
1830 *
1831 * In normal mode, we start background writeout at the lower
1832 * background_thresh, to keep the amount of dirty memory low.
1833 */
1834 if (laptop_mode)
1835 return;
1836
1837 if (nr_reclaimable > gdtc->bg_thresh)
1838 wb_start_background_writeback(wb);
1839 }
1840
1841 static DEFINE_PER_CPU(int, bdp_ratelimits);
1842
1843 /*
1844 * Normal tasks are throttled by
1845 * loop {
1846 * dirty tsk->nr_dirtied_pause pages;
1847 * take a snap in balance_dirty_pages();
1848 * }
1849 * However there is a worst case. If every task exit immediately when dirtied
1850 * (tsk->nr_dirtied_pause - 1) pages, balance_dirty_pages() will never be
1851 * called to throttle the page dirties. The solution is to save the not yet
1852 * throttled page dirties in dirty_throttle_leaks on task exit and charge them
1853 * randomly into the running tasks. This works well for the above worst case,
1854 * as the new task will pick up and accumulate the old task's leaked dirty
1855 * count and eventually get throttled.
1856 */
1857 DEFINE_PER_CPU(int, dirty_throttle_leaks) = 0;
1858
1859 /**
1860 * balance_dirty_pages_ratelimited - balance dirty memory state
1861 * @mapping: address_space which was dirtied
1862 *
1863 * Processes which are dirtying memory should call in here once for each page
1864 * which was newly dirtied. The function will periodically check the system's
1865 * dirty state and will initiate writeback if needed.
1866 *
1867 * On really big machines, get_writeback_state is expensive, so try to avoid
1868 * calling it too often (ratelimiting). But once we're over the dirty memory
1869 * limit we decrease the ratelimiting by a lot, to prevent individual processes
1870 * from overshooting the limit by (ratelimit_pages) each.
1871 */
balance_dirty_pages_ratelimited(struct address_space * mapping)1872 void balance_dirty_pages_ratelimited(struct address_space *mapping)
1873 {
1874 struct inode *inode = mapping->host;
1875 struct backing_dev_info *bdi = inode_to_bdi(inode);
1876 struct bdi_writeback *wb = NULL;
1877 int ratelimit;
1878 int *p;
1879
1880 if (!(bdi->capabilities & BDI_CAP_WRITEBACK))
1881 return;
1882
1883 if (inode_cgwb_enabled(inode))
1884 wb = wb_get_create_current(bdi, GFP_KERNEL);
1885 if (!wb)
1886 wb = &bdi->wb;
1887
1888 ratelimit = current->nr_dirtied_pause;
1889 if (wb->dirty_exceeded)
1890 ratelimit = min(ratelimit, 32 >> (PAGE_SHIFT - 10));
1891
1892 preempt_disable();
1893 /*
1894 * This prevents one CPU to accumulate too many dirtied pages without
1895 * calling into balance_dirty_pages(), which can happen when there are
1896 * 1000+ tasks, all of them start dirtying pages at exactly the same
1897 * time, hence all honoured too large initial task->nr_dirtied_pause.
1898 */
1899 p = this_cpu_ptr(&bdp_ratelimits);
1900 if (unlikely(current->nr_dirtied >= ratelimit))
1901 *p = 0;
1902 else if (unlikely(*p >= ratelimit_pages)) {
1903 *p = 0;
1904 ratelimit = 0;
1905 }
1906 /*
1907 * Pick up the dirtied pages by the exited tasks. This avoids lots of
1908 * short-lived tasks (eg. gcc invocations in a kernel build) escaping
1909 * the dirty throttling and livelock other long-run dirtiers.
1910 */
1911 p = this_cpu_ptr(&dirty_throttle_leaks);
1912 if (*p > 0 && current->nr_dirtied < ratelimit) {
1913 unsigned long nr_pages_dirtied;
1914 nr_pages_dirtied = min(*p, ratelimit - current->nr_dirtied);
1915 *p -= nr_pages_dirtied;
1916 current->nr_dirtied += nr_pages_dirtied;
1917 }
1918 preempt_enable();
1919
1920 if (unlikely(current->nr_dirtied >= ratelimit))
1921 balance_dirty_pages(wb, current->nr_dirtied);
1922
1923 wb_put(wb);
1924 }
1925 EXPORT_SYMBOL(balance_dirty_pages_ratelimited);
1926
1927 /**
1928 * wb_over_bg_thresh - does @wb need to be written back?
1929 * @wb: bdi_writeback of interest
1930 *
1931 * Determines whether background writeback should keep writing @wb or it's
1932 * clean enough.
1933 *
1934 * Return: %true if writeback should continue.
1935 */
wb_over_bg_thresh(struct bdi_writeback * wb)1936 bool wb_over_bg_thresh(struct bdi_writeback *wb)
1937 {
1938 struct dirty_throttle_control gdtc_stor = { GDTC_INIT(wb) };
1939 struct dirty_throttle_control mdtc_stor = { MDTC_INIT(wb, &gdtc_stor) };
1940 struct dirty_throttle_control * const gdtc = &gdtc_stor;
1941 struct dirty_throttle_control * const mdtc = mdtc_valid(&mdtc_stor) ?
1942 &mdtc_stor : NULL;
1943
1944 /*
1945 * Similar to balance_dirty_pages() but ignores pages being written
1946 * as we're trying to decide whether to put more under writeback.
1947 */
1948 gdtc->avail = global_dirtyable_memory();
1949 gdtc->dirty = global_node_page_state(NR_FILE_DIRTY);
1950 domain_dirty_limits(gdtc);
1951
1952 if (gdtc->dirty > gdtc->bg_thresh)
1953 return true;
1954
1955 if (wb_stat(wb, WB_RECLAIMABLE) >
1956 wb_calc_thresh(gdtc->wb, gdtc->bg_thresh))
1957 return true;
1958
1959 if (mdtc) {
1960 unsigned long filepages, headroom, writeback;
1961
1962 mem_cgroup_wb_stats(wb, &filepages, &headroom, &mdtc->dirty,
1963 &writeback);
1964 mdtc_calc_avail(mdtc, filepages, headroom);
1965 domain_dirty_limits(mdtc); /* ditto, ignore writeback */
1966
1967 if (mdtc->dirty > mdtc->bg_thresh)
1968 return true;
1969
1970 if (wb_stat(wb, WB_RECLAIMABLE) >
1971 wb_calc_thresh(mdtc->wb, mdtc->bg_thresh))
1972 return true;
1973 }
1974
1975 return false;
1976 }
1977
1978 /*
1979 * sysctl handler for /proc/sys/vm/dirty_writeback_centisecs
1980 */
dirty_writeback_centisecs_handler(struct ctl_table * table,int write,void * buffer,size_t * length,loff_t * ppos)1981 int dirty_writeback_centisecs_handler(struct ctl_table *table, int write,
1982 void *buffer, size_t *length, loff_t *ppos)
1983 {
1984 unsigned int old_interval = dirty_writeback_interval;
1985 int ret;
1986
1987 ret = proc_dointvec(table, write, buffer, length, ppos);
1988
1989 /*
1990 * Writing 0 to dirty_writeback_interval will disable periodic writeback
1991 * and a different non-zero value will wakeup the writeback threads.
1992 * wb_wakeup_delayed() would be more appropriate, but it's a pain to
1993 * iterate over all bdis and wbs.
1994 * The reason we do this is to make the change take effect immediately.
1995 */
1996 if (!ret && write && dirty_writeback_interval &&
1997 dirty_writeback_interval != old_interval)
1998 wakeup_flusher_threads(WB_REASON_PERIODIC);
1999
2000 return ret;
2001 }
2002
2003 #ifdef CONFIG_BLOCK
laptop_mode_timer_fn(struct timer_list * t)2004 void laptop_mode_timer_fn(struct timer_list *t)
2005 {
2006 struct backing_dev_info *backing_dev_info =
2007 from_timer(backing_dev_info, t, laptop_mode_wb_timer);
2008
2009 wakeup_flusher_threads_bdi(backing_dev_info, WB_REASON_LAPTOP_TIMER);
2010 }
2011
2012 /*
2013 * We've spun up the disk and we're in laptop mode: schedule writeback
2014 * of all dirty data a few seconds from now. If the flush is already scheduled
2015 * then push it back - the user is still using the disk.
2016 */
laptop_io_completion(struct backing_dev_info * info)2017 void laptop_io_completion(struct backing_dev_info *info)
2018 {
2019 mod_timer(&info->laptop_mode_wb_timer, jiffies + laptop_mode);
2020 }
2021
2022 /*
2023 * We're in laptop mode and we've just synced. The sync's writes will have
2024 * caused another writeback to be scheduled by laptop_io_completion.
2025 * Nothing needs to be written back anymore, so we unschedule the writeback.
2026 */
laptop_sync_completion(void)2027 void laptop_sync_completion(void)
2028 {
2029 struct backing_dev_info *bdi;
2030
2031 rcu_read_lock();
2032
2033 list_for_each_entry_rcu(bdi, &bdi_list, bdi_list)
2034 del_timer(&bdi->laptop_mode_wb_timer);
2035
2036 rcu_read_unlock();
2037 }
2038 #endif
2039
2040 /*
2041 * If ratelimit_pages is too high then we can get into dirty-data overload
2042 * if a large number of processes all perform writes at the same time.
2043 * If it is too low then SMP machines will call the (expensive)
2044 * get_writeback_state too often.
2045 *
2046 * Here we set ratelimit_pages to a level which ensures that when all CPUs are
2047 * dirtying in parallel, we cannot go more than 3% (1/32) over the dirty memory
2048 * thresholds.
2049 */
2050
writeback_set_ratelimit(void)2051 void writeback_set_ratelimit(void)
2052 {
2053 struct wb_domain *dom = &global_wb_domain;
2054 unsigned long background_thresh;
2055 unsigned long dirty_thresh;
2056
2057 global_dirty_limits(&background_thresh, &dirty_thresh);
2058 dom->dirty_limit = dirty_thresh;
2059 ratelimit_pages = dirty_thresh / (num_online_cpus() * 32);
2060 if (ratelimit_pages < 16)
2061 ratelimit_pages = 16;
2062 }
2063
page_writeback_cpu_online(unsigned int cpu)2064 static int page_writeback_cpu_online(unsigned int cpu)
2065 {
2066 writeback_set_ratelimit();
2067 return 0;
2068 }
2069
2070 /*
2071 * Called early on to tune the page writeback dirty limits.
2072 *
2073 * We used to scale dirty pages according to how total memory
2074 * related to pages that could be allocated for buffers.
2075 *
2076 * However, that was when we used "dirty_ratio" to scale with
2077 * all memory, and we don't do that any more. "dirty_ratio"
2078 * is now applied to total non-HIGHPAGE memory, and as such we can't
2079 * get into the old insane situation any more where we had
2080 * large amounts of dirty pages compared to a small amount of
2081 * non-HIGHMEM memory.
2082 *
2083 * But we might still want to scale the dirty_ratio by how
2084 * much memory the box has..
2085 */
page_writeback_init(void)2086 void __init page_writeback_init(void)
2087 {
2088 BUG_ON(wb_domain_init(&global_wb_domain, GFP_KERNEL));
2089
2090 cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "mm/writeback:online",
2091 page_writeback_cpu_online, NULL);
2092 cpuhp_setup_state(CPUHP_MM_WRITEBACK_DEAD, "mm/writeback:dead", NULL,
2093 page_writeback_cpu_online);
2094 }
2095
2096 /**
2097 * tag_pages_for_writeback - tag pages to be written by write_cache_pages
2098 * @mapping: address space structure to write
2099 * @start: starting page index
2100 * @end: ending page index (inclusive)
2101 *
2102 * This function scans the page range from @start to @end (inclusive) and tags
2103 * all pages that have DIRTY tag set with a special TOWRITE tag. The idea is
2104 * that write_cache_pages (or whoever calls this function) will then use
2105 * TOWRITE tag to identify pages eligible for writeback. This mechanism is
2106 * used to avoid livelocking of writeback by a process steadily creating new
2107 * dirty pages in the file (thus it is important for this function to be quick
2108 * so that it can tag pages faster than a dirtying process can create them).
2109 */
tag_pages_for_writeback(struct address_space * mapping,pgoff_t start,pgoff_t end)2110 void tag_pages_for_writeback(struct address_space *mapping,
2111 pgoff_t start, pgoff_t end)
2112 {
2113 XA_STATE(xas, &mapping->i_pages, start);
2114 unsigned int tagged = 0;
2115 void *page;
2116
2117 xas_lock_irq(&xas);
2118 xas_for_each_marked(&xas, page, end, PAGECACHE_TAG_DIRTY) {
2119 xas_set_mark(&xas, PAGECACHE_TAG_TOWRITE);
2120 if (++tagged % XA_CHECK_SCHED)
2121 continue;
2122
2123 xas_pause(&xas);
2124 xas_unlock_irq(&xas);
2125 cond_resched();
2126 xas_lock_irq(&xas);
2127 }
2128 xas_unlock_irq(&xas);
2129 }
2130 EXPORT_SYMBOL(tag_pages_for_writeback);
2131
2132 /**
2133 * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
2134 * @mapping: address space structure to write
2135 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
2136 * @writepage: function called for each page
2137 * @data: data passed to writepage function
2138 *
2139 * If a page is already under I/O, write_cache_pages() skips it, even
2140 * if it's dirty. This is desirable behaviour for memory-cleaning writeback,
2141 * but it is INCORRECT for data-integrity system calls such as fsync(). fsync()
2142 * and msync() need to guarantee that all the data which was dirty at the time
2143 * the call was made get new I/O started against them. If wbc->sync_mode is
2144 * WB_SYNC_ALL then we were called for data integrity and we must wait for
2145 * existing IO to complete.
2146 *
2147 * To avoid livelocks (when other process dirties new pages), we first tag
2148 * pages which should be written back with TOWRITE tag and only then start
2149 * writing them. For data-integrity sync we have to be careful so that we do
2150 * not miss some pages (e.g., because some other process has cleared TOWRITE
2151 * tag we set). The rule we follow is that TOWRITE tag can be cleared only
2152 * by the process clearing the DIRTY tag (and submitting the page for IO).
2153 *
2154 * To avoid deadlocks between range_cyclic writeback and callers that hold
2155 * pages in PageWriteback to aggregate IO until write_cache_pages() returns,
2156 * we do not loop back to the start of the file. Doing so causes a page
2157 * lock/page writeback access order inversion - we should only ever lock
2158 * multiple pages in ascending page->index order, and looping back to the start
2159 * of the file violates that rule and causes deadlocks.
2160 *
2161 * Return: %0 on success, negative error code otherwise
2162 */
write_cache_pages(struct address_space * mapping,struct writeback_control * wbc,writepage_t writepage,void * data)2163 int write_cache_pages(struct address_space *mapping,
2164 struct writeback_control *wbc, writepage_t writepage,
2165 void *data)
2166 {
2167 int ret = 0;
2168 int done = 0;
2169 int error;
2170 struct pagevec pvec;
2171 int nr_pages;
2172 pgoff_t index;
2173 pgoff_t end; /* Inclusive */
2174 pgoff_t done_index;
2175 int range_whole = 0;
2176 xa_mark_t tag;
2177
2178 pagevec_init(&pvec);
2179 if (wbc->range_cyclic) {
2180 index = mapping->writeback_index; /* prev offset */
2181 end = -1;
2182 } else {
2183 index = wbc->range_start >> PAGE_SHIFT;
2184 end = wbc->range_end >> PAGE_SHIFT;
2185 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2186 range_whole = 1;
2187 }
2188 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages) {
2189 tag_pages_for_writeback(mapping, index, end);
2190 tag = PAGECACHE_TAG_TOWRITE;
2191 } else {
2192 tag = PAGECACHE_TAG_DIRTY;
2193 }
2194 done_index = index;
2195 while (!done && (index <= end)) {
2196 int i;
2197
2198 nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, end,
2199 tag);
2200 if (nr_pages == 0)
2201 break;
2202
2203 for (i = 0; i < nr_pages; i++) {
2204 struct page *page = pvec.pages[i];
2205
2206 done_index = page->index;
2207
2208 lock_page(page);
2209
2210 /*
2211 * Page truncated or invalidated. We can freely skip it
2212 * then, even for data integrity operations: the page
2213 * has disappeared concurrently, so there could be no
2214 * real expectation of this data interity operation
2215 * even if there is now a new, dirty page at the same
2216 * pagecache address.
2217 */
2218 if (unlikely(page->mapping != mapping)) {
2219 continue_unlock:
2220 unlock_page(page);
2221 continue;
2222 }
2223
2224 if (!PageDirty(page)) {
2225 /* someone wrote it for us */
2226 goto continue_unlock;
2227 }
2228
2229 if (PageWriteback(page)) {
2230 if (wbc->sync_mode != WB_SYNC_NONE)
2231 wait_on_page_writeback(page);
2232 else
2233 goto continue_unlock;
2234 }
2235
2236 BUG_ON(PageWriteback(page));
2237 if (!clear_page_dirty_for_io(page))
2238 goto continue_unlock;
2239
2240 trace_wbc_writepage(wbc, inode_to_bdi(mapping->host));
2241 error = (*writepage)(page, wbc, data);
2242 if (unlikely(error)) {
2243 /*
2244 * Handle errors according to the type of
2245 * writeback. There's no need to continue for
2246 * background writeback. Just push done_index
2247 * past this page so media errors won't choke
2248 * writeout for the entire file. For integrity
2249 * writeback, we must process the entire dirty
2250 * set regardless of errors because the fs may
2251 * still have state to clear for each page. In
2252 * that case we continue processing and return
2253 * the first error.
2254 */
2255 if (error == AOP_WRITEPAGE_ACTIVATE) {
2256 unlock_page(page);
2257 error = 0;
2258 } else if (wbc->sync_mode != WB_SYNC_ALL) {
2259 ret = error;
2260 done_index = page->index + 1;
2261 done = 1;
2262 break;
2263 }
2264 if (!ret)
2265 ret = error;
2266 }
2267
2268 /*
2269 * We stop writing back only if we are not doing
2270 * integrity sync. In case of integrity sync we have to
2271 * keep going until we have written all the pages
2272 * we tagged for writeback prior to entering this loop.
2273 */
2274 if (--wbc->nr_to_write <= 0 &&
2275 wbc->sync_mode == WB_SYNC_NONE) {
2276 done = 1;
2277 break;
2278 }
2279 }
2280 pagevec_release(&pvec);
2281 cond_resched();
2282 }
2283
2284 /*
2285 * If we hit the last page and there is more work to be done: wrap
2286 * back the index back to the start of the file for the next
2287 * time we are called.
2288 */
2289 if (wbc->range_cyclic && !done)
2290 done_index = 0;
2291 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2292 mapping->writeback_index = done_index;
2293
2294 return ret;
2295 }
2296 EXPORT_SYMBOL(write_cache_pages);
2297
2298 /*
2299 * Function used by generic_writepages to call the real writepage
2300 * function and set the mapping flags on error
2301 */
__writepage(struct page * page,struct writeback_control * wbc,void * data)2302 static int __writepage(struct page *page, struct writeback_control *wbc,
2303 void *data)
2304 {
2305 struct address_space *mapping = data;
2306 int ret = mapping->a_ops->writepage(page, wbc);
2307 mapping_set_error(mapping, ret);
2308 return ret;
2309 }
2310
2311 /**
2312 * generic_writepages - walk the list of dirty pages of the given address space and writepage() all of them.
2313 * @mapping: address space structure to write
2314 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
2315 *
2316 * This is a library function, which implements the writepages()
2317 * address_space_operation.
2318 *
2319 * Return: %0 on success, negative error code otherwise
2320 */
generic_writepages(struct address_space * mapping,struct writeback_control * wbc)2321 int generic_writepages(struct address_space *mapping,
2322 struct writeback_control *wbc)
2323 {
2324 struct blk_plug plug;
2325 int ret;
2326
2327 /* deal with chardevs and other special file */
2328 if (!mapping->a_ops->writepage)
2329 return 0;
2330
2331 blk_start_plug(&plug);
2332 ret = write_cache_pages(mapping, wbc, __writepage, mapping);
2333 blk_finish_plug(&plug);
2334 return ret;
2335 }
2336
2337 EXPORT_SYMBOL(generic_writepages);
2338
do_writepages(struct address_space * mapping,struct writeback_control * wbc)2339 int do_writepages(struct address_space *mapping, struct writeback_control *wbc)
2340 {
2341 int ret;
2342
2343 if (wbc->nr_to_write <= 0)
2344 return 0;
2345 while (1) {
2346 if (mapping->a_ops->writepages)
2347 ret = mapping->a_ops->writepages(mapping, wbc);
2348 else
2349 ret = generic_writepages(mapping, wbc);
2350 if ((ret != -ENOMEM) || (wbc->sync_mode != WB_SYNC_ALL))
2351 break;
2352 cond_resched();
2353 congestion_wait(BLK_RW_ASYNC, HZ/50);
2354 }
2355 return ret;
2356 }
2357
2358 /**
2359 * write_one_page - write out a single page and wait on I/O
2360 * @page: the page to write
2361 *
2362 * The page must be locked by the caller and will be unlocked upon return.
2363 *
2364 * Note that the mapping's AS_EIO/AS_ENOSPC flags will be cleared when this
2365 * function returns.
2366 *
2367 * Return: %0 on success, negative error code otherwise
2368 */
write_one_page(struct page * page)2369 int write_one_page(struct page *page)
2370 {
2371 struct address_space *mapping = page->mapping;
2372 int ret = 0;
2373 struct writeback_control wbc = {
2374 .sync_mode = WB_SYNC_ALL,
2375 .nr_to_write = 1,
2376 };
2377
2378 BUG_ON(!PageLocked(page));
2379
2380 wait_on_page_writeback(page);
2381
2382 if (clear_page_dirty_for_io(page)) {
2383 get_page(page);
2384 ret = mapping->a_ops->writepage(page, &wbc);
2385 if (ret == 0)
2386 wait_on_page_writeback(page);
2387 put_page(page);
2388 } else {
2389 unlock_page(page);
2390 }
2391
2392 if (!ret)
2393 ret = filemap_check_errors(mapping);
2394 return ret;
2395 }
2396 EXPORT_SYMBOL(write_one_page);
2397
2398 /*
2399 * For address_spaces which do not use buffers nor write back.
2400 */
__set_page_dirty_no_writeback(struct page * page)2401 int __set_page_dirty_no_writeback(struct page *page)
2402 {
2403 if (!PageDirty(page))
2404 return !TestSetPageDirty(page);
2405 return 0;
2406 }
2407
2408 /*
2409 * Helper function for set_page_dirty family.
2410 *
2411 * Caller must hold lock_page_memcg().
2412 *
2413 * NOTE: This relies on being atomic wrt interrupts.
2414 */
account_page_dirtied(struct page * page,struct address_space * mapping)2415 void account_page_dirtied(struct page *page, struct address_space *mapping)
2416 {
2417 struct inode *inode = mapping->host;
2418
2419 trace_writeback_dirty_page(page, mapping);
2420
2421 if (mapping_can_writeback(mapping)) {
2422 struct bdi_writeback *wb;
2423
2424 inode_attach_wb(inode, page);
2425 wb = inode_to_wb(inode);
2426
2427 __inc_lruvec_page_state(page, NR_FILE_DIRTY);
2428 __inc_zone_page_state(page, NR_ZONE_WRITE_PENDING);
2429 __inc_node_page_state(page, NR_DIRTIED);
2430 inc_wb_stat(wb, WB_RECLAIMABLE);
2431 inc_wb_stat(wb, WB_DIRTIED);
2432 task_io_account_write(PAGE_SIZE);
2433 current->nr_dirtied++;
2434 this_cpu_inc(bdp_ratelimits);
2435
2436 mem_cgroup_track_foreign_dirty(page, wb);
2437 }
2438 }
2439
2440 /*
2441 * Helper function for deaccounting dirty page without writeback.
2442 *
2443 * Caller must hold lock_page_memcg().
2444 */
account_page_cleaned(struct page * page,struct address_space * mapping,struct bdi_writeback * wb)2445 void account_page_cleaned(struct page *page, struct address_space *mapping,
2446 struct bdi_writeback *wb)
2447 {
2448 if (mapping_can_writeback(mapping)) {
2449 dec_lruvec_page_state(page, NR_FILE_DIRTY);
2450 dec_zone_page_state(page, NR_ZONE_WRITE_PENDING);
2451 dec_wb_stat(wb, WB_RECLAIMABLE);
2452 task_io_account_cancelled_write(PAGE_SIZE);
2453 }
2454 }
2455
2456 /*
2457 * For address_spaces which do not use buffers. Just tag the page as dirty in
2458 * the xarray.
2459 *
2460 * This is also used when a single buffer is being dirtied: we want to set the
2461 * page dirty in that case, but not all the buffers. This is a "bottom-up"
2462 * dirtying, whereas __set_page_dirty_buffers() is a "top-down" dirtying.
2463 *
2464 * The caller must ensure this doesn't race with truncation. Most will simply
2465 * hold the page lock, but e.g. zap_pte_range() calls with the page mapped and
2466 * the pte lock held, which also locks out truncation.
2467 */
__set_page_dirty_nobuffers(struct page * page)2468 int __set_page_dirty_nobuffers(struct page *page)
2469 {
2470 lock_page_memcg(page);
2471 if (!TestSetPageDirty(page)) {
2472 struct address_space *mapping = page_mapping(page);
2473 unsigned long flags;
2474
2475 if (!mapping) {
2476 unlock_page_memcg(page);
2477 return 1;
2478 }
2479
2480 xa_lock_irqsave(&mapping->i_pages, flags);
2481 BUG_ON(page_mapping(page) != mapping);
2482 WARN_ON_ONCE(!PagePrivate(page) && !PageUptodate(page));
2483 account_page_dirtied(page, mapping);
2484 __xa_set_mark(&mapping->i_pages, page_index(page),
2485 PAGECACHE_TAG_DIRTY);
2486 xa_unlock_irqrestore(&mapping->i_pages, flags);
2487 unlock_page_memcg(page);
2488
2489 if (mapping->host) {
2490 /* !PageAnon && !swapper_space */
2491 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
2492 }
2493 return 1;
2494 }
2495 unlock_page_memcg(page);
2496 return 0;
2497 }
2498 EXPORT_SYMBOL(__set_page_dirty_nobuffers);
2499
2500 /*
2501 * Call this whenever redirtying a page, to de-account the dirty counters
2502 * (NR_DIRTIED, WB_DIRTIED, tsk->nr_dirtied), so that they match the written
2503 * counters (NR_WRITTEN, WB_WRITTEN) in long term. The mismatches will lead to
2504 * systematic errors in balanced_dirty_ratelimit and the dirty pages position
2505 * control.
2506 */
account_page_redirty(struct page * page)2507 void account_page_redirty(struct page *page)
2508 {
2509 struct address_space *mapping = page->mapping;
2510
2511 if (mapping && mapping_can_writeback(mapping)) {
2512 struct inode *inode = mapping->host;
2513 struct bdi_writeback *wb;
2514 struct wb_lock_cookie cookie = {};
2515
2516 wb = unlocked_inode_to_wb_begin(inode, &cookie);
2517 current->nr_dirtied--;
2518 dec_node_page_state(page, NR_DIRTIED);
2519 dec_wb_stat(wb, WB_DIRTIED);
2520 unlocked_inode_to_wb_end(inode, &cookie);
2521 }
2522 }
2523 EXPORT_SYMBOL(account_page_redirty);
2524
2525 /*
2526 * When a writepage implementation decides that it doesn't want to write this
2527 * page for some reason, it should redirty the locked page via
2528 * redirty_page_for_writepage() and it should then unlock the page and return 0
2529 */
redirty_page_for_writepage(struct writeback_control * wbc,struct page * page)2530 int redirty_page_for_writepage(struct writeback_control *wbc, struct page *page)
2531 {
2532 int ret;
2533
2534 wbc->pages_skipped++;
2535 ret = __set_page_dirty_nobuffers(page);
2536 account_page_redirty(page);
2537 return ret;
2538 }
2539 EXPORT_SYMBOL(redirty_page_for_writepage);
2540
2541 /*
2542 * Dirty a page.
2543 *
2544 * For pages with a mapping this should be done under the page lock
2545 * for the benefit of asynchronous memory errors who prefer a consistent
2546 * dirty state. This rule can be broken in some special cases,
2547 * but should be better not to.
2548 *
2549 * If the mapping doesn't provide a set_page_dirty a_op, then
2550 * just fall through and assume that it wants buffer_heads.
2551 */
set_page_dirty(struct page * page)2552 int set_page_dirty(struct page *page)
2553 {
2554 struct address_space *mapping = page_mapping(page);
2555
2556 page = compound_head(page);
2557 if (likely(mapping)) {
2558 int (*spd)(struct page *) = mapping->a_ops->set_page_dirty;
2559 /*
2560 * readahead/lru_deactivate_page could remain
2561 * PG_readahead/PG_reclaim due to race with end_page_writeback
2562 * About readahead, if the page is written, the flags would be
2563 * reset. So no problem.
2564 * About lru_deactivate_page, if the page is redirty, the flag
2565 * will be reset. So no problem. but if the page is used by readahead
2566 * it will confuse readahead and make it restart the size rampup
2567 * process. But it's a trivial problem.
2568 */
2569 if (PageReclaim(page))
2570 ClearPageReclaim(page);
2571 #ifdef CONFIG_BLOCK
2572 if (!spd)
2573 spd = __set_page_dirty_buffers;
2574 #endif
2575 return (*spd)(page);
2576 }
2577 if (!PageDirty(page)) {
2578 if (!TestSetPageDirty(page))
2579 return 1;
2580 }
2581 return 0;
2582 }
2583 EXPORT_SYMBOL(set_page_dirty);
2584
2585 /*
2586 * set_page_dirty() is racy if the caller has no reference against
2587 * page->mapping->host, and if the page is unlocked. This is because another
2588 * CPU could truncate the page off the mapping and then free the mapping.
2589 *
2590 * Usually, the page _is_ locked, or the caller is a user-space process which
2591 * holds a reference on the inode by having an open file.
2592 *
2593 * In other cases, the page should be locked before running set_page_dirty().
2594 */
set_page_dirty_lock(struct page * page)2595 int set_page_dirty_lock(struct page *page)
2596 {
2597 int ret;
2598
2599 lock_page(page);
2600 ret = set_page_dirty(page);
2601 unlock_page(page);
2602 return ret;
2603 }
2604 EXPORT_SYMBOL(set_page_dirty_lock);
2605
2606 /*
2607 * This cancels just the dirty bit on the kernel page itself, it does NOT
2608 * actually remove dirty bits on any mmap's that may be around. It also
2609 * leaves the page tagged dirty, so any sync activity will still find it on
2610 * the dirty lists, and in particular, clear_page_dirty_for_io() will still
2611 * look at the dirty bits in the VM.
2612 *
2613 * Doing this should *normally* only ever be done when a page is truncated,
2614 * and is not actually mapped anywhere at all. However, fs/buffer.c does
2615 * this when it notices that somebody has cleaned out all the buffers on a
2616 * page without actually doing it through the VM. Can you say "ext3 is
2617 * horribly ugly"? Thought you could.
2618 */
__cancel_dirty_page(struct page * page)2619 void __cancel_dirty_page(struct page *page)
2620 {
2621 struct address_space *mapping = page_mapping(page);
2622
2623 if (mapping_can_writeback(mapping)) {
2624 struct inode *inode = mapping->host;
2625 struct bdi_writeback *wb;
2626 struct wb_lock_cookie cookie = {};
2627
2628 lock_page_memcg(page);
2629 wb = unlocked_inode_to_wb_begin(inode, &cookie);
2630
2631 if (TestClearPageDirty(page))
2632 account_page_cleaned(page, mapping, wb);
2633
2634 unlocked_inode_to_wb_end(inode, &cookie);
2635 unlock_page_memcg(page);
2636 } else {
2637 ClearPageDirty(page);
2638 }
2639 }
2640 EXPORT_SYMBOL(__cancel_dirty_page);
2641
2642 /*
2643 * Clear a page's dirty flag, while caring for dirty memory accounting.
2644 * Returns true if the page was previously dirty.
2645 *
2646 * This is for preparing to put the page under writeout. We leave the page
2647 * tagged as dirty in the xarray so that a concurrent write-for-sync
2648 * can discover it via a PAGECACHE_TAG_DIRTY walk. The ->writepage
2649 * implementation will run either set_page_writeback() or set_page_dirty(),
2650 * at which stage we bring the page's dirty flag and xarray dirty tag
2651 * back into sync.
2652 *
2653 * This incoherency between the page's dirty flag and xarray tag is
2654 * unfortunate, but it only exists while the page is locked.
2655 */
clear_page_dirty_for_io(struct page * page)2656 int clear_page_dirty_for_io(struct page *page)
2657 {
2658 struct address_space *mapping = page_mapping(page);
2659 int ret = 0;
2660
2661 VM_BUG_ON_PAGE(!PageLocked(page), page);
2662
2663 if (mapping && mapping_can_writeback(mapping)) {
2664 struct inode *inode = mapping->host;
2665 struct bdi_writeback *wb;
2666 struct wb_lock_cookie cookie = {};
2667
2668 /*
2669 * Yes, Virginia, this is indeed insane.
2670 *
2671 * We use this sequence to make sure that
2672 * (a) we account for dirty stats properly
2673 * (b) we tell the low-level filesystem to
2674 * mark the whole page dirty if it was
2675 * dirty in a pagetable. Only to then
2676 * (c) clean the page again and return 1 to
2677 * cause the writeback.
2678 *
2679 * This way we avoid all nasty races with the
2680 * dirty bit in multiple places and clearing
2681 * them concurrently from different threads.
2682 *
2683 * Note! Normally the "set_page_dirty(page)"
2684 * has no effect on the actual dirty bit - since
2685 * that will already usually be set. But we
2686 * need the side effects, and it can help us
2687 * avoid races.
2688 *
2689 * We basically use the page "master dirty bit"
2690 * as a serialization point for all the different
2691 * threads doing their things.
2692 */
2693 if (page_mkclean(page))
2694 set_page_dirty(page);
2695 /*
2696 * We carefully synchronise fault handlers against
2697 * installing a dirty pte and marking the page dirty
2698 * at this point. We do this by having them hold the
2699 * page lock while dirtying the page, and pages are
2700 * always locked coming in here, so we get the desired
2701 * exclusion.
2702 */
2703 wb = unlocked_inode_to_wb_begin(inode, &cookie);
2704 if (TestClearPageDirty(page)) {
2705 dec_lruvec_page_state(page, NR_FILE_DIRTY);
2706 dec_zone_page_state(page, NR_ZONE_WRITE_PENDING);
2707 dec_wb_stat(wb, WB_RECLAIMABLE);
2708 ret = 1;
2709 }
2710 unlocked_inode_to_wb_end(inode, &cookie);
2711 return ret;
2712 }
2713 return TestClearPageDirty(page);
2714 }
2715 EXPORT_SYMBOL(clear_page_dirty_for_io);
2716
test_clear_page_writeback(struct page * page)2717 int test_clear_page_writeback(struct page *page)
2718 {
2719 struct address_space *mapping = page_mapping(page);
2720 struct mem_cgroup *memcg;
2721 struct lruvec *lruvec;
2722 int ret;
2723
2724 memcg = lock_page_memcg(page);
2725 lruvec = mem_cgroup_page_lruvec(page, page_pgdat(page));
2726 if (mapping && mapping_use_writeback_tags(mapping)) {
2727 struct inode *inode = mapping->host;
2728 struct backing_dev_info *bdi = inode_to_bdi(inode);
2729 unsigned long flags;
2730
2731 xa_lock_irqsave(&mapping->i_pages, flags);
2732 ret = TestClearPageWriteback(page);
2733 if (ret) {
2734 __xa_clear_mark(&mapping->i_pages, page_index(page),
2735 PAGECACHE_TAG_WRITEBACK);
2736 if (bdi->capabilities & BDI_CAP_WRITEBACK_ACCT) {
2737 struct bdi_writeback *wb = inode_to_wb(inode);
2738
2739 dec_wb_stat(wb, WB_WRITEBACK);
2740 __wb_writeout_inc(wb);
2741 }
2742 }
2743
2744 if (mapping->host && !mapping_tagged(mapping,
2745 PAGECACHE_TAG_WRITEBACK))
2746 sb_clear_inode_writeback(mapping->host);
2747
2748 xa_unlock_irqrestore(&mapping->i_pages, flags);
2749 } else {
2750 ret = TestClearPageWriteback(page);
2751 }
2752 if (ret) {
2753 dec_lruvec_state(lruvec, NR_WRITEBACK);
2754 dec_zone_page_state(page, NR_ZONE_WRITE_PENDING);
2755 inc_node_page_state(page, NR_WRITTEN);
2756 }
2757 __unlock_page_memcg(memcg);
2758 return ret;
2759 }
2760
__test_set_page_writeback(struct page * page,bool keep_write)2761 int __test_set_page_writeback(struct page *page, bool keep_write)
2762 {
2763 struct address_space *mapping = page_mapping(page);
2764 int ret, access_ret;
2765
2766 lock_page_memcg(page);
2767 if (mapping && mapping_use_writeback_tags(mapping)) {
2768 XA_STATE(xas, &mapping->i_pages, page_index(page));
2769 struct inode *inode = mapping->host;
2770 struct backing_dev_info *bdi = inode_to_bdi(inode);
2771 unsigned long flags;
2772
2773 xas_lock_irqsave(&xas, flags);
2774 xas_load(&xas);
2775 ret = TestSetPageWriteback(page);
2776 if (!ret) {
2777 bool on_wblist;
2778
2779 on_wblist = mapping_tagged(mapping,
2780 PAGECACHE_TAG_WRITEBACK);
2781
2782 xas_set_mark(&xas, PAGECACHE_TAG_WRITEBACK);
2783 if (bdi->capabilities & BDI_CAP_WRITEBACK_ACCT)
2784 inc_wb_stat(inode_to_wb(inode), WB_WRITEBACK);
2785
2786 /*
2787 * We can come through here when swapping anonymous
2788 * pages, so we don't necessarily have an inode to track
2789 * for sync.
2790 */
2791 if (mapping->host && !on_wblist)
2792 sb_mark_inode_writeback(mapping->host);
2793 }
2794 if (!PageDirty(page))
2795 xas_clear_mark(&xas, PAGECACHE_TAG_DIRTY);
2796 if (!keep_write)
2797 xas_clear_mark(&xas, PAGECACHE_TAG_TOWRITE);
2798 xas_unlock_irqrestore(&xas, flags);
2799 } else {
2800 ret = TestSetPageWriteback(page);
2801 }
2802 if (!ret) {
2803 inc_lruvec_page_state(page, NR_WRITEBACK);
2804 inc_zone_page_state(page, NR_ZONE_WRITE_PENDING);
2805 }
2806 unlock_page_memcg(page);
2807 access_ret = arch_make_page_accessible(page);
2808 /*
2809 * If writeback has been triggered on a page that cannot be made
2810 * accessible, it is too late to recover here.
2811 */
2812 VM_BUG_ON_PAGE(access_ret != 0, page);
2813
2814 return ret;
2815
2816 }
2817 EXPORT_SYMBOL(__test_set_page_writeback);
2818
2819 /*
2820 * Wait for a page to complete writeback
2821 */
wait_on_page_writeback(struct page * page)2822 void wait_on_page_writeback(struct page *page)
2823 {
2824 while (PageWriteback(page)) {
2825 trace_wait_on_page_writeback(page, page_mapping(page));
2826 wait_on_page_bit(page, PG_writeback);
2827 }
2828 }
2829 EXPORT_SYMBOL_GPL(wait_on_page_writeback);
2830
2831 /**
2832 * wait_for_stable_page() - wait for writeback to finish, if necessary.
2833 * @page: The page to wait on.
2834 *
2835 * This function determines if the given page is related to a backing device
2836 * that requires page contents to be held stable during writeback. If so, then
2837 * it will wait for any pending writeback to complete.
2838 */
wait_for_stable_page(struct page * page)2839 void wait_for_stable_page(struct page *page)
2840 {
2841 page = thp_head(page);
2842 if (page->mapping->host->i_sb->s_iflags & SB_I_STABLE_WRITES)
2843 wait_on_page_writeback(page);
2844 }
2845 EXPORT_SYMBOL_GPL(wait_for_stable_page);
2846