1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * linux/mm/page_alloc.c
4 *
5 * Manages the free list, the system allocates free pages here.
6 * Note that kmalloc() lives in slab.c
7 *
8 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
9 * Swap reorganised 29.12.95, Stephen Tweedie
10 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
11 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
12 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
13 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
14 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
15 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
16 */
17
18 #include <linux/stddef.h>
19 #include <linux/mm.h>
20 #include <linux/highmem.h>
21 #include <linux/swap.h>
22 #include <linux/interrupt.h>
23 #include <linux/pagemap.h>
24 #include <linux/jiffies.h>
25 #include <linux/memblock.h>
26 #include <linux/compiler.h>
27 #include <linux/kernel.h>
28 #include <linux/kasan.h>
29 #include <linux/module.h>
30 #include <linux/suspend.h>
31 #include <linux/pagevec.h>
32 #include <linux/blkdev.h>
33 #include <linux/slab.h>
34 #include <linux/ratelimit.h>
35 #include <linux/oom.h>
36 #include <linux/topology.h>
37 #include <linux/sysctl.h>
38 #include <linux/cpu.h>
39 #include <linux/cpuset.h>
40 #include <linux/memory_hotplug.h>
41 #include <linux/nodemask.h>
42 #include <linux/vmalloc.h>
43 #include <linux/vmstat.h>
44 #include <linux/mempolicy.h>
45 #include <linux/memremap.h>
46 #include <linux/stop_machine.h>
47 #include <linux/random.h>
48 #include <linux/sort.h>
49 #include <linux/pfn.h>
50 #include <linux/backing-dev.h>
51 #include <linux/fault-inject.h>
52 #include <linux/page-isolation.h>
53 #include <linux/debugobjects.h>
54 #include <linux/kmemleak.h>
55 #include <linux/compaction.h>
56 #include <trace/events/kmem.h>
57 #include <trace/events/oom.h>
58 #include <linux/prefetch.h>
59 #include <linux/mm_inline.h>
60 #include <linux/migrate.h>
61 #include <linux/hugetlb.h>
62 #include <linux/sched/rt.h>
63 #include <linux/sched/mm.h>
64 #include <linux/page_owner.h>
65 #include <linux/kthread.h>
66 #include <linux/memcontrol.h>
67 #include <linux/ftrace.h>
68 #include <linux/lockdep.h>
69 #include <linux/nmi.h>
70 #include <linux/psi.h>
71 #include <linux/padata.h>
72 #include <linux/khugepaged.h>
73 #include <linux/zswapd.h>
74 #ifdef CONFIG_RECLAIM_ACCT
75 #include <linux/reclaim_acct.h>
76 #endif
77
78 #include <asm/sections.h>
79 #include <asm/tlbflush.h>
80 #include <asm/div64.h>
81 #include "internal.h"
82 #include "shuffle.h"
83 #include "page_reporting.h"
84
85 /* Free Page Internal flags: for internal, non-pcp variants of free_pages(). */
86 typedef int __bitwise fpi_t;
87
88 /* No special request */
89 #define FPI_NONE ((__force fpi_t)0)
90
91 /*
92 * Skip free page reporting notification for the (possibly merged) page.
93 * This does not hinder free page reporting from grabbing the page,
94 * reporting it and marking it "reported" - it only skips notifying
95 * the free page reporting infrastructure about a newly freed page. For
96 * example, used when temporarily pulling a page from a freelist and
97 * putting it back unmodified.
98 */
99 #define FPI_SKIP_REPORT_NOTIFY ((__force fpi_t)BIT(0))
100
101 /*
102 * Place the (possibly merged) page to the tail of the freelist. Will ignore
103 * page shuffling (relevant code - e.g., memory onlining - is expected to
104 * shuffle the whole zone).
105 *
106 * Note: No code should rely on this flag for correctness - it's purely
107 * to allow for optimizations when handing back either fresh pages
108 * (memory onlining) or untouched pages (page isolation, free page
109 * reporting).
110 */
111 #define FPI_TO_TAIL ((__force fpi_t)BIT(1))
112
113 /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
114 static DEFINE_MUTEX(pcp_batch_high_lock);
115 #define MIN_PERCPU_PAGELIST_FRACTION (8)
116
117 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
118 DEFINE_PER_CPU(int, numa_node);
119 EXPORT_PER_CPU_SYMBOL(numa_node);
120 #endif
121
122 DEFINE_STATIC_KEY_TRUE(vm_numa_stat_key);
123
124 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
125 /*
126 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
127 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
128 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
129 * defined in <linux/topology.h>.
130 */
131 DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
132 EXPORT_PER_CPU_SYMBOL(_numa_mem_);
133 #endif
134
135 /* work_structs for global per-cpu drains */
136 struct pcpu_drain {
137 struct zone *zone;
138 struct work_struct work;
139 };
140 static DEFINE_MUTEX(pcpu_drain_mutex);
141 static DEFINE_PER_CPU(struct pcpu_drain, pcpu_drain);
142
143 #ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY
144 volatile unsigned long latent_entropy __latent_entropy;
145 EXPORT_SYMBOL(latent_entropy);
146 #endif
147
148 /*
149 * Array of node states.
150 */
151 nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
152 [N_POSSIBLE] = NODE_MASK_ALL,
153 [N_ONLINE] = { { [0] = 1UL } },
154 #ifndef CONFIG_NUMA
155 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
156 #ifdef CONFIG_HIGHMEM
157 [N_HIGH_MEMORY] = { { [0] = 1UL } },
158 #endif
159 [N_MEMORY] = { { [0] = 1UL } },
160 [N_CPU] = { { [0] = 1UL } },
161 #endif /* NUMA */
162 };
163 EXPORT_SYMBOL(node_states);
164
165 atomic_long_t _totalram_pages __read_mostly;
166 EXPORT_SYMBOL(_totalram_pages);
167 unsigned long totalreserve_pages __read_mostly;
168 unsigned long totalcma_pages __read_mostly;
169
170 int percpu_pagelist_fraction;
171 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
172 #ifdef CONFIG_INIT_ON_ALLOC_DEFAULT_ON
173 DEFINE_STATIC_KEY_TRUE(init_on_alloc);
174 #else
175 DEFINE_STATIC_KEY_FALSE(init_on_alloc);
176 #endif
177 EXPORT_SYMBOL(init_on_alloc);
178
179 #ifdef CONFIG_INIT_ON_FREE_DEFAULT_ON
180 DEFINE_STATIC_KEY_TRUE(init_on_free);
181 #else
182 DEFINE_STATIC_KEY_FALSE(init_on_free);
183 #endif
184 EXPORT_SYMBOL(init_on_free);
185
early_init_on_alloc(char * buf)186 static int __init early_init_on_alloc(char *buf)
187 {
188 int ret;
189 bool bool_result;
190
191 ret = kstrtobool(buf, &bool_result);
192 if (ret)
193 return ret;
194 if (bool_result && page_poisoning_enabled())
195 pr_info("mem auto-init: CONFIG_PAGE_POISONING is on, will take precedence over init_on_alloc\n");
196 if (bool_result)
197 static_branch_enable(&init_on_alloc);
198 else
199 static_branch_disable(&init_on_alloc);
200 return 0;
201 }
202 early_param("init_on_alloc", early_init_on_alloc);
203
early_init_on_free(char * buf)204 static int __init early_init_on_free(char *buf)
205 {
206 int ret;
207 bool bool_result;
208
209 ret = kstrtobool(buf, &bool_result);
210 if (ret)
211 return ret;
212 if (bool_result && page_poisoning_enabled())
213 pr_info("mem auto-init: CONFIG_PAGE_POISONING is on, will take precedence over init_on_free\n");
214 if (bool_result)
215 static_branch_enable(&init_on_free);
216 else
217 static_branch_disable(&init_on_free);
218 return 0;
219 }
220 early_param("init_on_free", early_init_on_free);
221
222 /*
223 * A cached value of the page's pageblock's migratetype, used when the page is
224 * put on a pcplist. Used to avoid the pageblock migratetype lookup when
225 * freeing from pcplists in most cases, at the cost of possibly becoming stale.
226 * Also the migratetype set in the page does not necessarily match the pcplist
227 * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any
228 * other index - this ensures that it will be put on the correct CMA freelist.
229 */
get_pcppage_migratetype(struct page * page)230 static inline int get_pcppage_migratetype(struct page *page)
231 {
232 return page->index;
233 }
234
set_pcppage_migratetype(struct page * page,int migratetype)235 static inline void set_pcppage_migratetype(struct page *page, int migratetype)
236 {
237 page->index = migratetype;
238 }
239
240 #ifdef CONFIG_PM_SLEEP
241 /*
242 * The following functions are used by the suspend/hibernate code to temporarily
243 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
244 * while devices are suspended. To avoid races with the suspend/hibernate code,
245 * they should always be called with system_transition_mutex held
246 * (gfp_allowed_mask also should only be modified with system_transition_mutex
247 * held, unless the suspend/hibernate code is guaranteed not to run in parallel
248 * with that modification).
249 */
250
251 static gfp_t saved_gfp_mask;
252
pm_restore_gfp_mask(void)253 void pm_restore_gfp_mask(void)
254 {
255 WARN_ON(!mutex_is_locked(&system_transition_mutex));
256 if (saved_gfp_mask) {
257 gfp_allowed_mask = saved_gfp_mask;
258 saved_gfp_mask = 0;
259 }
260 }
261
pm_restrict_gfp_mask(void)262 void pm_restrict_gfp_mask(void)
263 {
264 WARN_ON(!mutex_is_locked(&system_transition_mutex));
265 WARN_ON(saved_gfp_mask);
266 saved_gfp_mask = gfp_allowed_mask;
267 gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS);
268 }
269
pm_suspended_storage(void)270 bool pm_suspended_storage(void)
271 {
272 if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
273 return false;
274 return true;
275 }
276 #endif /* CONFIG_PM_SLEEP */
277
278 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
279 unsigned int pageblock_order __read_mostly;
280 #endif
281
282 static void __free_pages_ok(struct page *page, unsigned int order,
283 fpi_t fpi_flags);
284
285 /*
286 * results with 256, 32 in the lowmem_reserve sysctl:
287 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
288 * 1G machine -> (16M dma, 784M normal, 224M high)
289 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
290 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
291 * HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
292 *
293 * TBD: should special case ZONE_DMA32 machines here - in those we normally
294 * don't need any ZONE_NORMAL reservation
295 */
296 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES] = {
297 #ifdef CONFIG_ZONE_DMA
298 [ZONE_DMA] = 256,
299 #endif
300 #ifdef CONFIG_ZONE_DMA32
301 [ZONE_DMA32] = 256,
302 #endif
303 [ZONE_NORMAL] = 32,
304 #ifdef CONFIG_HIGHMEM
305 [ZONE_HIGHMEM] = 0,
306 #endif
307 [ZONE_MOVABLE] = 0,
308 };
309
310 static char * const zone_names[MAX_NR_ZONES] = {
311 #ifdef CONFIG_ZONE_DMA
312 "DMA",
313 #endif
314 #ifdef CONFIG_ZONE_DMA32
315 "DMA32",
316 #endif
317 "Normal",
318 #ifdef CONFIG_HIGHMEM
319 "HighMem",
320 #endif
321 "Movable",
322 #ifdef CONFIG_ZONE_DEVICE
323 "Device",
324 #endif
325 };
326
327 const char * const migratetype_names[MIGRATE_TYPES] = {
328 "Unmovable",
329 "Movable",
330 "Reclaimable",
331 #ifdef CONFIG_CMA_REUSE
332 "CMA",
333 #endif
334 "HighAtomic",
335 #if defined(CONFIG_CMA) && !defined(CONFIG_CMA_REUSE)
336 "CMA",
337 #endif
338 #ifdef CONFIG_MEMORY_ISOLATION
339 "Isolate",
340 #endif
341 };
342
343 compound_page_dtor * const compound_page_dtors[NR_COMPOUND_DTORS] = {
344 [NULL_COMPOUND_DTOR] = NULL,
345 [COMPOUND_PAGE_DTOR] = free_compound_page,
346 #ifdef CONFIG_HUGETLB_PAGE
347 [HUGETLB_PAGE_DTOR] = free_huge_page,
348 #endif
349 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
350 [TRANSHUGE_PAGE_DTOR] = free_transhuge_page,
351 #endif
352 };
353
354 int min_free_kbytes = 1024;
355 int user_min_free_kbytes = -1;
356 #ifdef CONFIG_DISCONTIGMEM
357 /*
358 * DiscontigMem defines memory ranges as separate pg_data_t even if the ranges
359 * are not on separate NUMA nodes. Functionally this works but with
360 * watermark_boost_factor, it can reclaim prematurely as the ranges can be
361 * quite small. By default, do not boost watermarks on discontigmem as in
362 * many cases very high-order allocations like THP are likely to be
363 * unsupported and the premature reclaim offsets the advantage of long-term
364 * fragmentation avoidance.
365 */
366 int watermark_boost_factor __read_mostly;
367 #else
368 int watermark_boost_factor __read_mostly = 15000;
369 #endif
370 int watermark_scale_factor = 10;
371
372 static unsigned long nr_kernel_pages __initdata;
373 static unsigned long nr_all_pages __initdata;
374 static unsigned long dma_reserve __initdata;
375
376 static unsigned long arch_zone_lowest_possible_pfn[MAX_NR_ZONES] __initdata;
377 static unsigned long arch_zone_highest_possible_pfn[MAX_NR_ZONES] __initdata;
378 static unsigned long required_kernelcore __initdata;
379 static unsigned long required_kernelcore_percent __initdata;
380 static unsigned long required_movablecore __initdata;
381 static unsigned long required_movablecore_percent __initdata;
382 static unsigned long zone_movable_pfn[MAX_NUMNODES] __initdata;
383 static bool mirrored_kernelcore __meminitdata;
384
385 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
386 int movable_zone;
387 EXPORT_SYMBOL(movable_zone);
388
389 #if MAX_NUMNODES > 1
390 unsigned int nr_node_ids __read_mostly = MAX_NUMNODES;
391 unsigned int nr_online_nodes __read_mostly = 1;
392 EXPORT_SYMBOL(nr_node_ids);
393 EXPORT_SYMBOL(nr_online_nodes);
394 #endif
395
396 int page_group_by_mobility_disabled __read_mostly;
397
398 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
399 /*
400 * During boot we initialize deferred pages on-demand, as needed, but once
401 * page_alloc_init_late() has finished, the deferred pages are all initialized,
402 * and we can permanently disable that path.
403 */
404 static DEFINE_STATIC_KEY_TRUE(deferred_pages);
405
406 /*
407 * Calling kasan_free_pages() only after deferred memory initialization
408 * has completed. Poisoning pages during deferred memory init will greatly
409 * lengthen the process and cause problem in large memory systems as the
410 * deferred pages initialization is done with interrupt disabled.
411 *
412 * Assuming that there will be no reference to those newly initialized
413 * pages before they are ever allocated, this should have no effect on
414 * KASAN memory tracking as the poison will be properly inserted at page
415 * allocation time. The only corner case is when pages are allocated by
416 * on-demand allocation and then freed again before the deferred pages
417 * initialization is done, but this is not likely to happen.
418 */
kasan_free_nondeferred_pages(struct page * page,int order)419 static inline void kasan_free_nondeferred_pages(struct page *page, int order)
420 {
421 if (!static_branch_unlikely(&deferred_pages))
422 kasan_free_pages(page, order);
423 }
424
425 /* Returns true if the struct page for the pfn is uninitialised */
early_page_uninitialised(unsigned long pfn)426 static inline bool __meminit early_page_uninitialised(unsigned long pfn)
427 {
428 int nid = early_pfn_to_nid(pfn);
429
430 if (node_online(nid) && pfn >= NODE_DATA(nid)->first_deferred_pfn)
431 return true;
432
433 return false;
434 }
435
436 /*
437 * Returns true when the remaining initialisation should be deferred until
438 * later in the boot cycle when it can be parallelised.
439 */
440 static bool __meminit
defer_init(int nid,unsigned long pfn,unsigned long end_pfn)441 defer_init(int nid, unsigned long pfn, unsigned long end_pfn)
442 {
443 static unsigned long prev_end_pfn, nr_initialised;
444
445 /*
446 * prev_end_pfn static that contains the end of previous zone
447 * No need to protect because called very early in boot before smp_init.
448 */
449 if (prev_end_pfn != end_pfn) {
450 prev_end_pfn = end_pfn;
451 nr_initialised = 0;
452 }
453
454 /* Always populate low zones for address-constrained allocations */
455 if (end_pfn < pgdat_end_pfn(NODE_DATA(nid)))
456 return false;
457
458 if (NODE_DATA(nid)->first_deferred_pfn != ULONG_MAX)
459 return true;
460 /*
461 * We start only with one section of pages, more pages are added as
462 * needed until the rest of deferred pages are initialized.
463 */
464 nr_initialised++;
465 if ((nr_initialised > PAGES_PER_SECTION) &&
466 (pfn & (PAGES_PER_SECTION - 1)) == 0) {
467 NODE_DATA(nid)->first_deferred_pfn = pfn;
468 return true;
469 }
470 return false;
471 }
472 #else
473 #define kasan_free_nondeferred_pages(p, o) kasan_free_pages(p, o)
474
early_page_uninitialised(unsigned long pfn)475 static inline bool early_page_uninitialised(unsigned long pfn)
476 {
477 return false;
478 }
479
defer_init(int nid,unsigned long pfn,unsigned long end_pfn)480 static inline bool defer_init(int nid, unsigned long pfn, unsigned long end_pfn)
481 {
482 return false;
483 }
484 #endif
485
486 /* Return a pointer to the bitmap storing bits affecting a block of pages */
get_pageblock_bitmap(struct page * page,unsigned long pfn)487 static inline unsigned long *get_pageblock_bitmap(struct page *page,
488 unsigned long pfn)
489 {
490 #ifdef CONFIG_SPARSEMEM
491 return section_to_usemap(__pfn_to_section(pfn));
492 #else
493 return page_zone(page)->pageblock_flags;
494 #endif /* CONFIG_SPARSEMEM */
495 }
496
pfn_to_bitidx(struct page * page,unsigned long pfn)497 static inline int pfn_to_bitidx(struct page *page, unsigned long pfn)
498 {
499 #ifdef CONFIG_SPARSEMEM
500 pfn &= (PAGES_PER_SECTION-1);
501 #else
502 pfn = pfn - round_down(page_zone(page)->zone_start_pfn, pageblock_nr_pages);
503 #endif /* CONFIG_SPARSEMEM */
504 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
505 }
506
507 /**
508 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
509 * @page: The page within the block of interest
510 * @pfn: The target page frame number
511 * @mask: mask of bits that the caller is interested in
512 *
513 * Return: pageblock_bits flags
514 */
515 static __always_inline
__get_pfnblock_flags_mask(struct page * page,unsigned long pfn,unsigned long mask)516 unsigned long __get_pfnblock_flags_mask(struct page *page,
517 unsigned long pfn,
518 unsigned long mask)
519 {
520 unsigned long *bitmap;
521 unsigned long bitidx, word_bitidx;
522 unsigned long word;
523
524 bitmap = get_pageblock_bitmap(page, pfn);
525 bitidx = pfn_to_bitidx(page, pfn);
526 word_bitidx = bitidx / BITS_PER_LONG;
527 bitidx &= (BITS_PER_LONG-1);
528
529 word = bitmap[word_bitidx];
530 return (word >> bitidx) & mask;
531 }
532
get_pfnblock_flags_mask(struct page * page,unsigned long pfn,unsigned long mask)533 unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn,
534 unsigned long mask)
535 {
536 return __get_pfnblock_flags_mask(page, pfn, mask);
537 }
538
get_pfnblock_migratetype(struct page * page,unsigned long pfn)539 static __always_inline int get_pfnblock_migratetype(struct page *page, unsigned long pfn)
540 {
541 return __get_pfnblock_flags_mask(page, pfn, MIGRATETYPE_MASK);
542 }
543
544 /**
545 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
546 * @page: The page within the block of interest
547 * @flags: The flags to set
548 * @pfn: The target page frame number
549 * @mask: mask of bits that the caller is interested in
550 */
set_pfnblock_flags_mask(struct page * page,unsigned long flags,unsigned long pfn,unsigned long mask)551 void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
552 unsigned long pfn,
553 unsigned long mask)
554 {
555 unsigned long *bitmap;
556 unsigned long bitidx, word_bitidx;
557 unsigned long old_word, word;
558
559 BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
560 BUILD_BUG_ON(MIGRATE_TYPES > (1 << PB_migratetype_bits));
561
562 bitmap = get_pageblock_bitmap(page, pfn);
563 bitidx = pfn_to_bitidx(page, pfn);
564 word_bitidx = bitidx / BITS_PER_LONG;
565 bitidx &= (BITS_PER_LONG-1);
566
567 VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page);
568
569 mask <<= bitidx;
570 flags <<= bitidx;
571
572 word = READ_ONCE(bitmap[word_bitidx]);
573 for (;;) {
574 old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags);
575 if (word == old_word)
576 break;
577 word = old_word;
578 }
579 }
580
set_pageblock_migratetype(struct page * page,int migratetype)581 void set_pageblock_migratetype(struct page *page, int migratetype)
582 {
583 if (unlikely(page_group_by_mobility_disabled &&
584 migratetype < MIGRATE_PCPTYPES))
585 migratetype = MIGRATE_UNMOVABLE;
586
587 set_pfnblock_flags_mask(page, (unsigned long)migratetype,
588 page_to_pfn(page), MIGRATETYPE_MASK);
589 }
590
591 #ifdef CONFIG_DEBUG_VM
page_outside_zone_boundaries(struct zone * zone,struct page * page)592 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
593 {
594 int ret = 0;
595 unsigned seq;
596 unsigned long pfn = page_to_pfn(page);
597 unsigned long sp, start_pfn;
598
599 do {
600 seq = zone_span_seqbegin(zone);
601 start_pfn = zone->zone_start_pfn;
602 sp = zone->spanned_pages;
603 if (!zone_spans_pfn(zone, pfn))
604 ret = 1;
605 } while (zone_span_seqretry(zone, seq));
606
607 if (ret)
608 pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
609 pfn, zone_to_nid(zone), zone->name,
610 start_pfn, start_pfn + sp);
611
612 return ret;
613 }
614
page_is_consistent(struct zone * zone,struct page * page)615 static int page_is_consistent(struct zone *zone, struct page *page)
616 {
617 if (!pfn_valid_within(page_to_pfn(page)))
618 return 0;
619 if (zone != page_zone(page))
620 return 0;
621
622 return 1;
623 }
624 /*
625 * Temporary debugging check for pages not lying within a given zone.
626 */
bad_range(struct zone * zone,struct page * page)627 static int __maybe_unused bad_range(struct zone *zone, struct page *page)
628 {
629 if (page_outside_zone_boundaries(zone, page))
630 return 1;
631 if (!page_is_consistent(zone, page))
632 return 1;
633
634 return 0;
635 }
636 #else
bad_range(struct zone * zone,struct page * page)637 static inline int __maybe_unused bad_range(struct zone *zone, struct page *page)
638 {
639 return 0;
640 }
641 #endif
642
bad_page(struct page * page,const char * reason)643 static void bad_page(struct page *page, const char *reason)
644 {
645 static unsigned long resume;
646 static unsigned long nr_shown;
647 static unsigned long nr_unshown;
648
649 /*
650 * Allow a burst of 60 reports, then keep quiet for that minute;
651 * or allow a steady drip of one report per second.
652 */
653 if (nr_shown == 60) {
654 if (time_before(jiffies, resume)) {
655 nr_unshown++;
656 goto out;
657 }
658 if (nr_unshown) {
659 pr_alert(
660 "BUG: Bad page state: %lu messages suppressed\n",
661 nr_unshown);
662 nr_unshown = 0;
663 }
664 nr_shown = 0;
665 }
666 if (nr_shown++ == 0)
667 resume = jiffies + 60 * HZ;
668
669 pr_alert("BUG: Bad page state in process %s pfn:%05lx\n",
670 current->comm, page_to_pfn(page));
671 __dump_page(page, reason);
672 dump_page_owner(page);
673
674 print_modules();
675 dump_stack();
676 out:
677 /* Leave bad fields for debug, except PageBuddy could make trouble */
678 page_mapcount_reset(page); /* remove PageBuddy */
679 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
680 }
681
682 /*
683 * Higher-order pages are called "compound pages". They are structured thusly:
684 *
685 * The first PAGE_SIZE page is called the "head page" and have PG_head set.
686 *
687 * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
688 * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
689 *
690 * The first tail page's ->compound_dtor holds the offset in array of compound
691 * page destructors. See compound_page_dtors.
692 *
693 * The first tail page's ->compound_order holds the order of allocation.
694 * This usage means that zero-order pages may not be compound.
695 */
696
free_compound_page(struct page * page)697 void free_compound_page(struct page *page)
698 {
699 mem_cgroup_uncharge(page);
700 __free_pages_ok(page, compound_order(page), FPI_NONE);
701 }
702
prep_compound_page(struct page * page,unsigned int order)703 void prep_compound_page(struct page *page, unsigned int order)
704 {
705 int i;
706 int nr_pages = 1 << order;
707
708 __SetPageHead(page);
709 for (i = 1; i < nr_pages; i++) {
710 struct page *p = page + i;
711 set_page_count(p, 0);
712 p->mapping = TAIL_MAPPING;
713 set_compound_head(p, page);
714 }
715
716 set_compound_page_dtor(page, COMPOUND_PAGE_DTOR);
717 set_compound_order(page, order);
718 atomic_set(compound_mapcount_ptr(page), -1);
719 if (hpage_pincount_available(page))
720 atomic_set(compound_pincount_ptr(page), 0);
721 }
722
723 #ifdef CONFIG_DEBUG_PAGEALLOC
724 unsigned int _debug_guardpage_minorder;
725
726 bool _debug_pagealloc_enabled_early __read_mostly
727 = IS_ENABLED(CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT);
728 EXPORT_SYMBOL(_debug_pagealloc_enabled_early);
729 DEFINE_STATIC_KEY_FALSE(_debug_pagealloc_enabled);
730 EXPORT_SYMBOL(_debug_pagealloc_enabled);
731
732 DEFINE_STATIC_KEY_FALSE(_debug_guardpage_enabled);
733
early_debug_pagealloc(char * buf)734 static int __init early_debug_pagealloc(char *buf)
735 {
736 return kstrtobool(buf, &_debug_pagealloc_enabled_early);
737 }
738 early_param("debug_pagealloc", early_debug_pagealloc);
739
init_debug_pagealloc(void)740 void init_debug_pagealloc(void)
741 {
742 if (!debug_pagealloc_enabled())
743 return;
744
745 static_branch_enable(&_debug_pagealloc_enabled);
746
747 if (!debug_guardpage_minorder())
748 return;
749
750 static_branch_enable(&_debug_guardpage_enabled);
751 }
752
debug_guardpage_minorder_setup(char * buf)753 static int __init debug_guardpage_minorder_setup(char *buf)
754 {
755 unsigned long res;
756
757 if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) {
758 pr_err("Bad debug_guardpage_minorder value\n");
759 return 0;
760 }
761 _debug_guardpage_minorder = res;
762 pr_info("Setting debug_guardpage_minorder to %lu\n", res);
763 return 0;
764 }
765 early_param("debug_guardpage_minorder", debug_guardpage_minorder_setup);
766
set_page_guard(struct zone * zone,struct page * page,unsigned int order,int migratetype)767 static inline bool set_page_guard(struct zone *zone, struct page *page,
768 unsigned int order, int migratetype)
769 {
770 if (!debug_guardpage_enabled())
771 return false;
772
773 if (order >= debug_guardpage_minorder())
774 return false;
775
776 __SetPageGuard(page);
777 INIT_LIST_HEAD(&page->lru);
778 set_page_private(page, order);
779 /* Guard pages are not available for any usage */
780 __mod_zone_freepage_state(zone, -(1 << order), migratetype);
781
782 return true;
783 }
784
clear_page_guard(struct zone * zone,struct page * page,unsigned int order,int migratetype)785 static inline void clear_page_guard(struct zone *zone, struct page *page,
786 unsigned int order, int migratetype)
787 {
788 if (!debug_guardpage_enabled())
789 return;
790
791 __ClearPageGuard(page);
792
793 set_page_private(page, 0);
794 if (!is_migrate_isolate(migratetype))
795 __mod_zone_freepage_state(zone, (1 << order), migratetype);
796 }
797 #else
set_page_guard(struct zone * zone,struct page * page,unsigned int order,int migratetype)798 static inline bool set_page_guard(struct zone *zone, struct page *page,
799 unsigned int order, int migratetype) { return false; }
clear_page_guard(struct zone * zone,struct page * page,unsigned int order,int migratetype)800 static inline void clear_page_guard(struct zone *zone, struct page *page,
801 unsigned int order, int migratetype) {}
802 #endif
803
set_buddy_order(struct page * page,unsigned int order)804 static inline void set_buddy_order(struct page *page, unsigned int order)
805 {
806 set_page_private(page, order);
807 __SetPageBuddy(page);
808 }
809
810 /*
811 * This function checks whether a page is free && is the buddy
812 * we can coalesce a page and its buddy if
813 * (a) the buddy is not in a hole (check before calling!) &&
814 * (b) the buddy is in the buddy system &&
815 * (c) a page and its buddy have the same order &&
816 * (d) a page and its buddy are in the same zone.
817 *
818 * For recording whether a page is in the buddy system, we set PageBuddy.
819 * Setting, clearing, and testing PageBuddy is serialized by zone->lock.
820 *
821 * For recording page's order, we use page_private(page).
822 */
page_is_buddy(struct page * page,struct page * buddy,unsigned int order)823 static inline bool page_is_buddy(struct page *page, struct page *buddy,
824 unsigned int order)
825 {
826 if (!page_is_guard(buddy) && !PageBuddy(buddy))
827 return false;
828
829 if (buddy_order(buddy) != order)
830 return false;
831
832 /*
833 * zone check is done late to avoid uselessly calculating
834 * zone/node ids for pages that could never merge.
835 */
836 if (page_zone_id(page) != page_zone_id(buddy))
837 return false;
838
839 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
840
841 return true;
842 }
843
844 #ifdef CONFIG_COMPACTION
task_capc(struct zone * zone)845 static inline struct capture_control *task_capc(struct zone *zone)
846 {
847 struct capture_control *capc = current->capture_control;
848
849 return unlikely(capc) &&
850 !(current->flags & PF_KTHREAD) &&
851 !capc->page &&
852 capc->cc->zone == zone ? capc : NULL;
853 }
854
855 static inline bool
compaction_capture(struct capture_control * capc,struct page * page,int order,int migratetype)856 compaction_capture(struct capture_control *capc, struct page *page,
857 int order, int migratetype)
858 {
859 if (!capc || order != capc->cc->order)
860 return false;
861
862 /* Do not accidentally pollute CMA or isolated regions*/
863 if (is_migrate_cma(migratetype) ||
864 is_migrate_isolate(migratetype))
865 return false;
866
867 /*
868 * Do not let lower order allocations polluate a movable pageblock.
869 * This might let an unmovable request use a reclaimable pageblock
870 * and vice-versa but no more than normal fallback logic which can
871 * have trouble finding a high-order free page.
872 */
873 if (order < pageblock_order && migratetype == MIGRATE_MOVABLE)
874 return false;
875
876 capc->page = page;
877 return true;
878 }
879
880 #else
task_capc(struct zone * zone)881 static inline struct capture_control *task_capc(struct zone *zone)
882 {
883 return NULL;
884 }
885
886 static inline bool
compaction_capture(struct capture_control * capc,struct page * page,int order,int migratetype)887 compaction_capture(struct capture_control *capc, struct page *page,
888 int order, int migratetype)
889 {
890 return false;
891 }
892 #endif /* CONFIG_COMPACTION */
893
894 /* Used for pages not on another list */
add_to_free_list(struct page * page,struct zone * zone,unsigned int order,int migratetype)895 static inline void add_to_free_list(struct page *page, struct zone *zone,
896 unsigned int order, int migratetype)
897 {
898 struct free_area *area = &zone->free_area[order];
899
900 list_add(&page->lru, &area->free_list[migratetype]);
901 area->nr_free++;
902 }
903
904 /* Used for pages not on another list */
add_to_free_list_tail(struct page * page,struct zone * zone,unsigned int order,int migratetype)905 static inline void add_to_free_list_tail(struct page *page, struct zone *zone,
906 unsigned int order, int migratetype)
907 {
908 struct free_area *area = &zone->free_area[order];
909
910 list_add_tail(&page->lru, &area->free_list[migratetype]);
911 area->nr_free++;
912 }
913
914 /*
915 * Used for pages which are on another list. Move the pages to the tail
916 * of the list - so the moved pages won't immediately be considered for
917 * allocation again (e.g., optimization for memory onlining).
918 */
move_to_free_list(struct page * page,struct zone * zone,unsigned int order,int migratetype)919 static inline void move_to_free_list(struct page *page, struct zone *zone,
920 unsigned int order, int migratetype)
921 {
922 struct free_area *area = &zone->free_area[order];
923
924 list_move_tail(&page->lru, &area->free_list[migratetype]);
925 }
926
del_page_from_free_list(struct page * page,struct zone * zone,unsigned int order)927 static inline void del_page_from_free_list(struct page *page, struct zone *zone,
928 unsigned int order)
929 {
930 /* clear reported state and update reported page count */
931 if (page_reported(page))
932 __ClearPageReported(page);
933
934 list_del(&page->lru);
935 __ClearPageBuddy(page);
936 set_page_private(page, 0);
937 zone->free_area[order].nr_free--;
938 }
939
940 /*
941 * If this is not the largest possible page, check if the buddy
942 * of the next-highest order is free. If it is, it's possible
943 * that pages are being freed that will coalesce soon. In case,
944 * that is happening, add the free page to the tail of the list
945 * so it's less likely to be used soon and more likely to be merged
946 * as a higher order page
947 */
948 static inline bool
buddy_merge_likely(unsigned long pfn,unsigned long buddy_pfn,struct page * page,unsigned int order)949 buddy_merge_likely(unsigned long pfn, unsigned long buddy_pfn,
950 struct page *page, unsigned int order)
951 {
952 struct page *higher_page, *higher_buddy;
953 unsigned long combined_pfn;
954
955 if (order >= MAX_ORDER - 2)
956 return false;
957
958 if (!pfn_valid_within(buddy_pfn))
959 return false;
960
961 combined_pfn = buddy_pfn & pfn;
962 higher_page = page + (combined_pfn - pfn);
963 buddy_pfn = __find_buddy_pfn(combined_pfn, order + 1);
964 higher_buddy = higher_page + (buddy_pfn - combined_pfn);
965
966 return pfn_valid_within(buddy_pfn) &&
967 page_is_buddy(higher_page, higher_buddy, order + 1);
968 }
969
970 /*
971 * Freeing function for a buddy system allocator.
972 *
973 * The concept of a buddy system is to maintain direct-mapped table
974 * (containing bit values) for memory blocks of various "orders".
975 * The bottom level table contains the map for the smallest allocatable
976 * units of memory (here, pages), and each level above it describes
977 * pairs of units from the levels below, hence, "buddies".
978 * At a high level, all that happens here is marking the table entry
979 * at the bottom level available, and propagating the changes upward
980 * as necessary, plus some accounting needed to play nicely with other
981 * parts of the VM system.
982 * At each level, we keep a list of pages, which are heads of continuous
983 * free pages of length of (1 << order) and marked with PageBuddy.
984 * Page's order is recorded in page_private(page) field.
985 * So when we are allocating or freeing one, we can derive the state of the
986 * other. That is, if we allocate a small block, and both were
987 * free, the remainder of the region must be split into blocks.
988 * If a block is freed, and its buddy is also free, then this
989 * triggers coalescing into a block of larger size.
990 *
991 * -- nyc
992 */
993
__free_one_page(struct page * page,unsigned long pfn,struct zone * zone,unsigned int order,int migratetype,fpi_t fpi_flags)994 static inline void __free_one_page(struct page *page,
995 unsigned long pfn,
996 struct zone *zone, unsigned int order,
997 int migratetype, fpi_t fpi_flags)
998 {
999 struct capture_control *capc = task_capc(zone);
1000 unsigned long buddy_pfn;
1001 unsigned long combined_pfn;
1002 unsigned int max_order;
1003 struct page *buddy;
1004 bool to_tail;
1005
1006 max_order = min_t(unsigned int, MAX_ORDER - 1, pageblock_order);
1007
1008 VM_BUG_ON(!zone_is_initialized(zone));
1009 VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
1010
1011 VM_BUG_ON(migratetype == -1);
1012 if (likely(!is_migrate_isolate(migratetype)))
1013 __mod_zone_freepage_state(zone, 1 << order, migratetype);
1014
1015 VM_BUG_ON_PAGE(pfn & ((1 << order) - 1), page);
1016 VM_BUG_ON_PAGE(bad_range(zone, page), page);
1017
1018 continue_merging:
1019 while (order < max_order) {
1020 if (compaction_capture(capc, page, order, migratetype)) {
1021 __mod_zone_freepage_state(zone, -(1 << order),
1022 migratetype);
1023 return;
1024 }
1025 buddy_pfn = __find_buddy_pfn(pfn, order);
1026 buddy = page + (buddy_pfn - pfn);
1027
1028 if (!pfn_valid_within(buddy_pfn))
1029 goto done_merging;
1030 if (!page_is_buddy(page, buddy, order))
1031 goto done_merging;
1032 /*
1033 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
1034 * merge with it and move up one order.
1035 */
1036 if (page_is_guard(buddy))
1037 clear_page_guard(zone, buddy, order, migratetype);
1038 else
1039 del_page_from_free_list(buddy, zone, order);
1040 combined_pfn = buddy_pfn & pfn;
1041 page = page + (combined_pfn - pfn);
1042 pfn = combined_pfn;
1043 order++;
1044 }
1045 if (order < MAX_ORDER - 1) {
1046 /* If we are here, it means order is >= pageblock_order.
1047 * We want to prevent merge between freepages on isolate
1048 * pageblock and normal pageblock. Without this, pageblock
1049 * isolation could cause incorrect freepage or CMA accounting.
1050 *
1051 * We don't want to hit this code for the more frequent
1052 * low-order merging.
1053 */
1054 if (unlikely(has_isolate_pageblock(zone))) {
1055 int buddy_mt;
1056
1057 buddy_pfn = __find_buddy_pfn(pfn, order);
1058 buddy = page + (buddy_pfn - pfn);
1059 buddy_mt = get_pageblock_migratetype(buddy);
1060
1061 if (migratetype != buddy_mt
1062 && (is_migrate_isolate(migratetype) ||
1063 is_migrate_isolate(buddy_mt)))
1064 goto done_merging;
1065 }
1066 max_order = order + 1;
1067 goto continue_merging;
1068 }
1069
1070 done_merging:
1071 set_buddy_order(page, order);
1072
1073 if (fpi_flags & FPI_TO_TAIL)
1074 to_tail = true;
1075 else if (is_shuffle_order(order))
1076 to_tail = shuffle_pick_tail();
1077 else
1078 to_tail = buddy_merge_likely(pfn, buddy_pfn, page, order);
1079
1080 if (to_tail)
1081 add_to_free_list_tail(page, zone, order, migratetype);
1082 else
1083 add_to_free_list(page, zone, order, migratetype);
1084
1085 /* Notify page reporting subsystem of freed page */
1086 if (!(fpi_flags & FPI_SKIP_REPORT_NOTIFY))
1087 page_reporting_notify_free(order);
1088 }
1089
1090 /*
1091 * A bad page could be due to a number of fields. Instead of multiple branches,
1092 * try and check multiple fields with one check. The caller must do a detailed
1093 * check if necessary.
1094 */
page_expected_state(struct page * page,unsigned long check_flags)1095 static inline bool page_expected_state(struct page *page,
1096 unsigned long check_flags)
1097 {
1098 if (unlikely(atomic_read(&page->_mapcount) != -1))
1099 return false;
1100
1101 if (unlikely((unsigned long)page->mapping |
1102 page_ref_count(page) |
1103 #ifdef CONFIG_MEMCG
1104 (unsigned long)page->mem_cgroup |
1105 #endif
1106 (page->flags & check_flags)))
1107 return false;
1108
1109 return true;
1110 }
1111
page_bad_reason(struct page * page,unsigned long flags)1112 static const char *page_bad_reason(struct page *page, unsigned long flags)
1113 {
1114 const char *bad_reason = NULL;
1115
1116 if (unlikely(atomic_read(&page->_mapcount) != -1))
1117 bad_reason = "nonzero mapcount";
1118 if (unlikely(page->mapping != NULL))
1119 bad_reason = "non-NULL mapping";
1120 if (unlikely(page_ref_count(page) != 0))
1121 bad_reason = "nonzero _refcount";
1122 if (unlikely(page->flags & flags)) {
1123 if (flags == PAGE_FLAGS_CHECK_AT_PREP)
1124 bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag(s) set";
1125 else
1126 bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
1127 }
1128 #ifdef CONFIG_MEMCG
1129 if (unlikely(page->mem_cgroup))
1130 bad_reason = "page still charged to cgroup";
1131 #endif
1132 return bad_reason;
1133 }
1134
check_free_page_bad(struct page * page)1135 static void check_free_page_bad(struct page *page)
1136 {
1137 bad_page(page,
1138 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_FREE));
1139 }
1140
check_free_page(struct page * page)1141 static inline int check_free_page(struct page *page)
1142 {
1143 if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE)))
1144 return 0;
1145
1146 /* Something has gone sideways, find it */
1147 check_free_page_bad(page);
1148 return 1;
1149 }
1150
free_tail_pages_check(struct page * head_page,struct page * page)1151 static int free_tail_pages_check(struct page *head_page, struct page *page)
1152 {
1153 int ret = 1;
1154
1155 /*
1156 * We rely page->lru.next never has bit 0 set, unless the page
1157 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
1158 */
1159 BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);
1160
1161 if (!IS_ENABLED(CONFIG_DEBUG_VM)) {
1162 ret = 0;
1163 goto out;
1164 }
1165 switch (page - head_page) {
1166 case 1:
1167 /* the first tail page: ->mapping may be compound_mapcount() */
1168 if (unlikely(compound_mapcount(page))) {
1169 bad_page(page, "nonzero compound_mapcount");
1170 goto out;
1171 }
1172 break;
1173 case 2:
1174 /*
1175 * the second tail page: ->mapping is
1176 * deferred_list.next -- ignore value.
1177 */
1178 break;
1179 default:
1180 if (page->mapping != TAIL_MAPPING) {
1181 bad_page(page, "corrupted mapping in tail page");
1182 goto out;
1183 }
1184 break;
1185 }
1186 if (unlikely(!PageTail(page))) {
1187 bad_page(page, "PageTail not set");
1188 goto out;
1189 }
1190 if (unlikely(compound_head(page) != head_page)) {
1191 bad_page(page, "compound_head not consistent");
1192 goto out;
1193 }
1194 ret = 0;
1195 out:
1196 page->mapping = NULL;
1197 clear_compound_head(page);
1198 return ret;
1199 }
1200
kernel_init_free_pages(struct page * page,int numpages)1201 static void kernel_init_free_pages(struct page *page, int numpages)
1202 {
1203 int i;
1204
1205 /* s390's use of memset() could override KASAN redzones. */
1206 kasan_disable_current();
1207 for (i = 0; i < numpages; i++)
1208 clear_highpage(page + i);
1209 kasan_enable_current();
1210 }
1211
free_pages_prepare(struct page * page,unsigned int order,bool check_free)1212 static __always_inline bool free_pages_prepare(struct page *page,
1213 unsigned int order, bool check_free)
1214 {
1215 int bad = 0;
1216
1217 VM_BUG_ON_PAGE(PageTail(page), page);
1218
1219 trace_mm_page_free(page, order);
1220
1221 if (unlikely(PageHWPoison(page)) && !order) {
1222 /*
1223 * Do not let hwpoison pages hit pcplists/buddy
1224 * Untie memcg state and reset page's owner
1225 */
1226 if (memcg_kmem_enabled() && PageKmemcg(page))
1227 __memcg_kmem_uncharge_page(page, order);
1228 reset_page_owner(page, order);
1229 return false;
1230 }
1231
1232 /*
1233 * Check tail pages before head page information is cleared to
1234 * avoid checking PageCompound for order-0 pages.
1235 */
1236 if (unlikely(order)) {
1237 bool compound = PageCompound(page);
1238 int i;
1239
1240 VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
1241
1242 if (compound)
1243 ClearPageDoubleMap(page);
1244 for (i = 1; i < (1 << order); i++) {
1245 if (compound)
1246 bad += free_tail_pages_check(page, page + i);
1247 if (unlikely(check_free_page(page + i))) {
1248 bad++;
1249 continue;
1250 }
1251 (page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1252 }
1253 }
1254 if (PageMappingFlags(page))
1255 page->mapping = NULL;
1256 if (memcg_kmem_enabled() && PageKmemcg(page))
1257 __memcg_kmem_uncharge_page(page, order);
1258 if (check_free)
1259 bad += check_free_page(page);
1260 if (bad)
1261 return false;
1262
1263 page_cpupid_reset_last(page);
1264 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1265 reset_page_owner(page, order);
1266
1267 if (!PageHighMem(page)) {
1268 debug_check_no_locks_freed(page_address(page),
1269 PAGE_SIZE << order);
1270 debug_check_no_obj_freed(page_address(page),
1271 PAGE_SIZE << order);
1272 }
1273 if (want_init_on_free())
1274 kernel_init_free_pages(page, 1 << order);
1275
1276 kernel_poison_pages(page, 1 << order, 0);
1277 /*
1278 * arch_free_page() can make the page's contents inaccessible. s390
1279 * does this. So nothing which can access the page's contents should
1280 * happen after this.
1281 */
1282 arch_free_page(page, order);
1283
1284 if (debug_pagealloc_enabled_static())
1285 kernel_map_pages(page, 1 << order, 0);
1286
1287 kasan_free_nondeferred_pages(page, order);
1288
1289 return true;
1290 }
1291
1292 #ifdef CONFIG_DEBUG_VM
1293 /*
1294 * With DEBUG_VM enabled, order-0 pages are checked immediately when being freed
1295 * to pcp lists. With debug_pagealloc also enabled, they are also rechecked when
1296 * moved from pcp lists to free lists.
1297 */
free_pcp_prepare(struct page * page)1298 static bool free_pcp_prepare(struct page *page)
1299 {
1300 return free_pages_prepare(page, 0, true);
1301 }
1302
bulkfree_pcp_prepare(struct page * page)1303 static bool bulkfree_pcp_prepare(struct page *page)
1304 {
1305 if (debug_pagealloc_enabled_static())
1306 return check_free_page(page);
1307 else
1308 return false;
1309 }
1310 #else
1311 /*
1312 * With DEBUG_VM disabled, order-0 pages being freed are checked only when
1313 * moving from pcp lists to free list in order to reduce overhead. With
1314 * debug_pagealloc enabled, they are checked also immediately when being freed
1315 * to the pcp lists.
1316 */
free_pcp_prepare(struct page * page)1317 static bool free_pcp_prepare(struct page *page)
1318 {
1319 if (debug_pagealloc_enabled_static())
1320 return free_pages_prepare(page, 0, true);
1321 else
1322 return free_pages_prepare(page, 0, false);
1323 }
1324
bulkfree_pcp_prepare(struct page * page)1325 static bool bulkfree_pcp_prepare(struct page *page)
1326 {
1327 return check_free_page(page);
1328 }
1329 #endif /* CONFIG_DEBUG_VM */
1330
prefetch_buddy(struct page * page)1331 static inline void prefetch_buddy(struct page *page)
1332 {
1333 unsigned long pfn = page_to_pfn(page);
1334 unsigned long buddy_pfn = __find_buddy_pfn(pfn, 0);
1335 struct page *buddy = page + (buddy_pfn - pfn);
1336
1337 prefetch(buddy);
1338 }
1339
1340 /*
1341 * Frees a number of pages from the PCP lists
1342 * Assumes all pages on list are in same zone, and of same order.
1343 * count is the number of pages to free.
1344 *
1345 * If the zone was previously in an "all pages pinned" state then look to
1346 * see if this freeing clears that state.
1347 *
1348 * And clear the zone's pages_scanned counter, to hold off the "all pages are
1349 * pinned" detection logic.
1350 */
free_pcppages_bulk(struct zone * zone,int count,struct per_cpu_pages * pcp)1351 static void free_pcppages_bulk(struct zone *zone, int count,
1352 struct per_cpu_pages *pcp)
1353 {
1354 int migratetype = 0;
1355 int batch_free = 0;
1356 int prefetch_nr = 0;
1357 bool isolated_pageblocks;
1358 struct page *page, *tmp;
1359 LIST_HEAD(head);
1360
1361 /*
1362 * Ensure proper count is passed which otherwise would stuck in the
1363 * below while (list_empty(list)) loop.
1364 */
1365 count = min(pcp->count, count);
1366 while (count) {
1367 struct list_head *list;
1368
1369 /*
1370 * Remove pages from lists in a round-robin fashion. A
1371 * batch_free count is maintained that is incremented when an
1372 * empty list is encountered. This is so more pages are freed
1373 * off fuller lists instead of spinning excessively around empty
1374 * lists
1375 */
1376 do {
1377 batch_free++;
1378 if (++migratetype == MIGRATE_PCPTYPES)
1379 migratetype = 0;
1380 list = &pcp->lists[migratetype];
1381 } while (list_empty(list));
1382
1383 /* This is the only non-empty list. Free them all. */
1384 if (batch_free == MIGRATE_PCPTYPES)
1385 batch_free = count;
1386
1387 do {
1388 page = list_last_entry(list, struct page, lru);
1389 /* must delete to avoid corrupting pcp list */
1390 list_del(&page->lru);
1391 pcp->count--;
1392
1393 if (bulkfree_pcp_prepare(page))
1394 continue;
1395
1396 list_add_tail(&page->lru, &head);
1397
1398 /*
1399 * We are going to put the page back to the global
1400 * pool, prefetch its buddy to speed up later access
1401 * under zone->lock. It is believed the overhead of
1402 * an additional test and calculating buddy_pfn here
1403 * can be offset by reduced memory latency later. To
1404 * avoid excessive prefetching due to large count, only
1405 * prefetch buddy for the first pcp->batch nr of pages.
1406 */
1407 if (prefetch_nr++ < pcp->batch)
1408 prefetch_buddy(page);
1409 } while (--count && --batch_free && !list_empty(list));
1410 }
1411
1412 spin_lock(&zone->lock);
1413 isolated_pageblocks = has_isolate_pageblock(zone);
1414
1415 /*
1416 * Use safe version since after __free_one_page(),
1417 * page->lru.next will not point to original list.
1418 */
1419 list_for_each_entry_safe(page, tmp, &head, lru) {
1420 int mt = get_pcppage_migratetype(page);
1421 /* MIGRATE_ISOLATE page should not go to pcplists */
1422 VM_BUG_ON_PAGE(is_migrate_isolate(mt), page);
1423 /* Pageblock could have been isolated meanwhile */
1424 if (unlikely(isolated_pageblocks))
1425 mt = get_pageblock_migratetype(page);
1426
1427 __free_one_page(page, page_to_pfn(page), zone, 0, mt, FPI_NONE);
1428 trace_mm_page_pcpu_drain(page, 0, mt);
1429 }
1430 spin_unlock(&zone->lock);
1431 }
1432
free_one_page(struct zone * zone,struct page * page,unsigned long pfn,unsigned int order,int migratetype,fpi_t fpi_flags)1433 static void free_one_page(struct zone *zone,
1434 struct page *page, unsigned long pfn,
1435 unsigned int order,
1436 int migratetype, fpi_t fpi_flags)
1437 {
1438 spin_lock(&zone->lock);
1439 if (unlikely(has_isolate_pageblock(zone) ||
1440 is_migrate_isolate(migratetype))) {
1441 migratetype = get_pfnblock_migratetype(page, pfn);
1442 }
1443 __free_one_page(page, pfn, zone, order, migratetype, fpi_flags);
1444 spin_unlock(&zone->lock);
1445 }
1446
__init_single_page(struct page * page,unsigned long pfn,unsigned long zone,int nid)1447 static void __meminit __init_single_page(struct page *page, unsigned long pfn,
1448 unsigned long zone, int nid)
1449 {
1450 mm_zero_struct_page(page);
1451 set_page_links(page, zone, nid, pfn);
1452 init_page_count(page);
1453 page_mapcount_reset(page);
1454 page_cpupid_reset_last(page);
1455 page_kasan_tag_reset(page);
1456
1457 INIT_LIST_HEAD(&page->lru);
1458 #ifdef WANT_PAGE_VIRTUAL
1459 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
1460 if (!is_highmem_idx(zone))
1461 set_page_address(page, __va(pfn << PAGE_SHIFT));
1462 #endif
1463 }
1464
1465 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
init_reserved_page(unsigned long pfn)1466 static void __meminit init_reserved_page(unsigned long pfn)
1467 {
1468 pg_data_t *pgdat;
1469 int nid, zid;
1470
1471 if (!early_page_uninitialised(pfn))
1472 return;
1473
1474 nid = early_pfn_to_nid(pfn);
1475 pgdat = NODE_DATA(nid);
1476
1477 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1478 struct zone *zone = &pgdat->node_zones[zid];
1479
1480 if (pfn >= zone->zone_start_pfn && pfn < zone_end_pfn(zone))
1481 break;
1482 }
1483 __init_single_page(pfn_to_page(pfn), pfn, zid, nid);
1484 }
1485 #else
init_reserved_page(unsigned long pfn)1486 static inline void init_reserved_page(unsigned long pfn)
1487 {
1488 }
1489 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1490
1491 /*
1492 * Initialised pages do not have PageReserved set. This function is
1493 * called for each range allocated by the bootmem allocator and
1494 * marks the pages PageReserved. The remaining valid pages are later
1495 * sent to the buddy page allocator.
1496 */
reserve_bootmem_region(phys_addr_t start,phys_addr_t end)1497 void __meminit reserve_bootmem_region(phys_addr_t start, phys_addr_t end)
1498 {
1499 unsigned long start_pfn = PFN_DOWN(start);
1500 unsigned long end_pfn = PFN_UP(end);
1501
1502 for (; start_pfn < end_pfn; start_pfn++) {
1503 if (pfn_valid(start_pfn)) {
1504 struct page *page = pfn_to_page(start_pfn);
1505
1506 init_reserved_page(start_pfn);
1507
1508 /* Avoid false-positive PageTail() */
1509 INIT_LIST_HEAD(&page->lru);
1510
1511 /*
1512 * no need for atomic set_bit because the struct
1513 * page is not visible yet so nobody should
1514 * access it yet.
1515 */
1516 __SetPageReserved(page);
1517 }
1518 }
1519 }
1520
__free_pages_ok(struct page * page,unsigned int order,fpi_t fpi_flags)1521 static void __free_pages_ok(struct page *page, unsigned int order,
1522 fpi_t fpi_flags)
1523 {
1524 unsigned long flags;
1525 int migratetype;
1526 unsigned long pfn = page_to_pfn(page);
1527
1528 if (!free_pages_prepare(page, order, true))
1529 return;
1530
1531 migratetype = get_pfnblock_migratetype(page, pfn);
1532 local_irq_save(flags);
1533 __count_vm_events(PGFREE, 1 << order);
1534 free_one_page(page_zone(page), page, pfn, order, migratetype,
1535 fpi_flags);
1536 local_irq_restore(flags);
1537 }
1538
__free_pages_core(struct page * page,unsigned int order)1539 void __free_pages_core(struct page *page, unsigned int order)
1540 {
1541 unsigned int nr_pages = 1 << order;
1542 struct page *p = page;
1543 unsigned int loop;
1544
1545 /*
1546 * When initializing the memmap, __init_single_page() sets the refcount
1547 * of all pages to 1 ("allocated"/"not free"). We have to set the
1548 * refcount of all involved pages to 0.
1549 */
1550 prefetchw(p);
1551 for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
1552 prefetchw(p + 1);
1553 __ClearPageReserved(p);
1554 set_page_count(p, 0);
1555 }
1556 __ClearPageReserved(p);
1557 set_page_count(p, 0);
1558
1559 atomic_long_add(nr_pages, &page_zone(page)->managed_pages);
1560
1561 /*
1562 * Bypass PCP and place fresh pages right to the tail, primarily
1563 * relevant for memory onlining.
1564 */
1565 __free_pages_ok(page, order, FPI_TO_TAIL);
1566 }
1567
1568 #ifdef CONFIG_NEED_MULTIPLE_NODES
1569
1570 static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata;
1571
1572 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
1573
1574 /*
1575 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
1576 */
__early_pfn_to_nid(unsigned long pfn,struct mminit_pfnnid_cache * state)1577 int __meminit __early_pfn_to_nid(unsigned long pfn,
1578 struct mminit_pfnnid_cache *state)
1579 {
1580 unsigned long start_pfn, end_pfn;
1581 int nid;
1582
1583 if (state->last_start <= pfn && pfn < state->last_end)
1584 return state->last_nid;
1585
1586 nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
1587 if (nid != NUMA_NO_NODE) {
1588 state->last_start = start_pfn;
1589 state->last_end = end_pfn;
1590 state->last_nid = nid;
1591 }
1592
1593 return nid;
1594 }
1595 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
1596
early_pfn_to_nid(unsigned long pfn)1597 int __meminit early_pfn_to_nid(unsigned long pfn)
1598 {
1599 static DEFINE_SPINLOCK(early_pfn_lock);
1600 int nid;
1601
1602 spin_lock(&early_pfn_lock);
1603 nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
1604 if (nid < 0)
1605 nid = first_online_node;
1606 spin_unlock(&early_pfn_lock);
1607
1608 return nid;
1609 }
1610 #endif /* CONFIG_NEED_MULTIPLE_NODES */
1611
memblock_free_pages(struct page * page,unsigned long pfn,unsigned int order)1612 void __init memblock_free_pages(struct page *page, unsigned long pfn,
1613 unsigned int order)
1614 {
1615 if (early_page_uninitialised(pfn))
1616 return;
1617 __free_pages_core(page, order);
1618 }
1619
1620 /*
1621 * Check that the whole (or subset of) a pageblock given by the interval of
1622 * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
1623 * with the migration of free compaction scanner. The scanners then need to
1624 * use only pfn_valid_within() check for arches that allow holes within
1625 * pageblocks.
1626 *
1627 * Return struct page pointer of start_pfn, or NULL if checks were not passed.
1628 *
1629 * It's possible on some configurations to have a setup like node0 node1 node0
1630 * i.e. it's possible that all pages within a zones range of pages do not
1631 * belong to a single zone. We assume that a border between node0 and node1
1632 * can occur within a single pageblock, but not a node0 node1 node0
1633 * interleaving within a single pageblock. It is therefore sufficient to check
1634 * the first and last page of a pageblock and avoid checking each individual
1635 * page in a pageblock.
1636 */
__pageblock_pfn_to_page(unsigned long start_pfn,unsigned long end_pfn,struct zone * zone)1637 struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
1638 unsigned long end_pfn, struct zone *zone)
1639 {
1640 struct page *start_page;
1641 struct page *end_page;
1642
1643 /* end_pfn is one past the range we are checking */
1644 end_pfn--;
1645
1646 if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn))
1647 return NULL;
1648
1649 start_page = pfn_to_online_page(start_pfn);
1650 if (!start_page)
1651 return NULL;
1652
1653 if (page_zone(start_page) != zone)
1654 return NULL;
1655
1656 end_page = pfn_to_page(end_pfn);
1657
1658 /* This gives a shorter code than deriving page_zone(end_page) */
1659 if (page_zone_id(start_page) != page_zone_id(end_page))
1660 return NULL;
1661
1662 return start_page;
1663 }
1664
set_zone_contiguous(struct zone * zone)1665 void set_zone_contiguous(struct zone *zone)
1666 {
1667 unsigned long block_start_pfn = zone->zone_start_pfn;
1668 unsigned long block_end_pfn;
1669
1670 block_end_pfn = ALIGN(block_start_pfn + 1, pageblock_nr_pages);
1671 for (; block_start_pfn < zone_end_pfn(zone);
1672 block_start_pfn = block_end_pfn,
1673 block_end_pfn += pageblock_nr_pages) {
1674
1675 block_end_pfn = min(block_end_pfn, zone_end_pfn(zone));
1676
1677 if (!__pageblock_pfn_to_page(block_start_pfn,
1678 block_end_pfn, zone))
1679 return;
1680 cond_resched();
1681 }
1682
1683 /* We confirm that there is no hole */
1684 zone->contiguous = true;
1685 }
1686
clear_zone_contiguous(struct zone * zone)1687 void clear_zone_contiguous(struct zone *zone)
1688 {
1689 zone->contiguous = false;
1690 }
1691
1692 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
deferred_free_range(unsigned long pfn,unsigned long nr_pages)1693 static void __init deferred_free_range(unsigned long pfn,
1694 unsigned long nr_pages)
1695 {
1696 struct page *page;
1697 unsigned long i;
1698
1699 if (!nr_pages)
1700 return;
1701
1702 page = pfn_to_page(pfn);
1703
1704 /* Free a large naturally-aligned chunk if possible */
1705 if (nr_pages == pageblock_nr_pages &&
1706 (pfn & (pageblock_nr_pages - 1)) == 0) {
1707 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1708 __free_pages_core(page, pageblock_order);
1709 return;
1710 }
1711
1712 for (i = 0; i < nr_pages; i++, page++, pfn++) {
1713 if ((pfn & (pageblock_nr_pages - 1)) == 0)
1714 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1715 __free_pages_core(page, 0);
1716 }
1717 }
1718
1719 /* Completion tracking for deferred_init_memmap() threads */
1720 static atomic_t pgdat_init_n_undone __initdata;
1721 static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp);
1722
pgdat_init_report_one_done(void)1723 static inline void __init pgdat_init_report_one_done(void)
1724 {
1725 if (atomic_dec_and_test(&pgdat_init_n_undone))
1726 complete(&pgdat_init_all_done_comp);
1727 }
1728
1729 /*
1730 * Returns true if page needs to be initialized or freed to buddy allocator.
1731 *
1732 * First we check if pfn is valid on architectures where it is possible to have
1733 * holes within pageblock_nr_pages. On systems where it is not possible, this
1734 * function is optimized out.
1735 *
1736 * Then, we check if a current large page is valid by only checking the validity
1737 * of the head pfn.
1738 */
deferred_pfn_valid(unsigned long pfn)1739 static inline bool __init deferred_pfn_valid(unsigned long pfn)
1740 {
1741 if (!pfn_valid_within(pfn))
1742 return false;
1743 if (!(pfn & (pageblock_nr_pages - 1)) && !pfn_valid(pfn))
1744 return false;
1745 return true;
1746 }
1747
1748 /*
1749 * Free pages to buddy allocator. Try to free aligned pages in
1750 * pageblock_nr_pages sizes.
1751 */
deferred_free_pages(unsigned long pfn,unsigned long end_pfn)1752 static void __init deferred_free_pages(unsigned long pfn,
1753 unsigned long end_pfn)
1754 {
1755 unsigned long nr_pgmask = pageblock_nr_pages - 1;
1756 unsigned long nr_free = 0;
1757
1758 for (; pfn < end_pfn; pfn++) {
1759 if (!deferred_pfn_valid(pfn)) {
1760 deferred_free_range(pfn - nr_free, nr_free);
1761 nr_free = 0;
1762 } else if (!(pfn & nr_pgmask)) {
1763 deferred_free_range(pfn - nr_free, nr_free);
1764 nr_free = 1;
1765 } else {
1766 nr_free++;
1767 }
1768 }
1769 /* Free the last block of pages to allocator */
1770 deferred_free_range(pfn - nr_free, nr_free);
1771 }
1772
1773 /*
1774 * Initialize struct pages. We minimize pfn page lookups and scheduler checks
1775 * by performing it only once every pageblock_nr_pages.
1776 * Return number of pages initialized.
1777 */
deferred_init_pages(struct zone * zone,unsigned long pfn,unsigned long end_pfn)1778 static unsigned long __init deferred_init_pages(struct zone *zone,
1779 unsigned long pfn,
1780 unsigned long end_pfn)
1781 {
1782 unsigned long nr_pgmask = pageblock_nr_pages - 1;
1783 int nid = zone_to_nid(zone);
1784 unsigned long nr_pages = 0;
1785 int zid = zone_idx(zone);
1786 struct page *page = NULL;
1787
1788 for (; pfn < end_pfn; pfn++) {
1789 if (!deferred_pfn_valid(pfn)) {
1790 page = NULL;
1791 continue;
1792 } else if (!page || !(pfn & nr_pgmask)) {
1793 page = pfn_to_page(pfn);
1794 } else {
1795 page++;
1796 }
1797 __init_single_page(page, pfn, zid, nid);
1798 nr_pages++;
1799 }
1800 return (nr_pages);
1801 }
1802
1803 /*
1804 * This function is meant to pre-load the iterator for the zone init.
1805 * Specifically it walks through the ranges until we are caught up to the
1806 * first_init_pfn value and exits there. If we never encounter the value we
1807 * return false indicating there are no valid ranges left.
1808 */
1809 static bool __init
deferred_init_mem_pfn_range_in_zone(u64 * i,struct zone * zone,unsigned long * spfn,unsigned long * epfn,unsigned long first_init_pfn)1810 deferred_init_mem_pfn_range_in_zone(u64 *i, struct zone *zone,
1811 unsigned long *spfn, unsigned long *epfn,
1812 unsigned long first_init_pfn)
1813 {
1814 u64 j;
1815
1816 /*
1817 * Start out by walking through the ranges in this zone that have
1818 * already been initialized. We don't need to do anything with them
1819 * so we just need to flush them out of the system.
1820 */
1821 for_each_free_mem_pfn_range_in_zone(j, zone, spfn, epfn) {
1822 if (*epfn <= first_init_pfn)
1823 continue;
1824 if (*spfn < first_init_pfn)
1825 *spfn = first_init_pfn;
1826 *i = j;
1827 return true;
1828 }
1829
1830 return false;
1831 }
1832
1833 /*
1834 * Initialize and free pages. We do it in two loops: first we initialize
1835 * struct page, then free to buddy allocator, because while we are
1836 * freeing pages we can access pages that are ahead (computing buddy
1837 * page in __free_one_page()).
1838 *
1839 * In order to try and keep some memory in the cache we have the loop
1840 * broken along max page order boundaries. This way we will not cause
1841 * any issues with the buddy page computation.
1842 */
1843 static unsigned long __init
deferred_init_maxorder(u64 * i,struct zone * zone,unsigned long * start_pfn,unsigned long * end_pfn)1844 deferred_init_maxorder(u64 *i, struct zone *zone, unsigned long *start_pfn,
1845 unsigned long *end_pfn)
1846 {
1847 unsigned long mo_pfn = ALIGN(*start_pfn + 1, MAX_ORDER_NR_PAGES);
1848 unsigned long spfn = *start_pfn, epfn = *end_pfn;
1849 unsigned long nr_pages = 0;
1850 u64 j = *i;
1851
1852 /* First we loop through and initialize the page values */
1853 for_each_free_mem_pfn_range_in_zone_from(j, zone, start_pfn, end_pfn) {
1854 unsigned long t;
1855
1856 if (mo_pfn <= *start_pfn)
1857 break;
1858
1859 t = min(mo_pfn, *end_pfn);
1860 nr_pages += deferred_init_pages(zone, *start_pfn, t);
1861
1862 if (mo_pfn < *end_pfn) {
1863 *start_pfn = mo_pfn;
1864 break;
1865 }
1866 }
1867
1868 /* Reset values and now loop through freeing pages as needed */
1869 swap(j, *i);
1870
1871 for_each_free_mem_pfn_range_in_zone_from(j, zone, &spfn, &epfn) {
1872 unsigned long t;
1873
1874 if (mo_pfn <= spfn)
1875 break;
1876
1877 t = min(mo_pfn, epfn);
1878 deferred_free_pages(spfn, t);
1879
1880 if (mo_pfn <= epfn)
1881 break;
1882 }
1883
1884 return nr_pages;
1885 }
1886
1887 static void __init
deferred_init_memmap_chunk(unsigned long start_pfn,unsigned long end_pfn,void * arg)1888 deferred_init_memmap_chunk(unsigned long start_pfn, unsigned long end_pfn,
1889 void *arg)
1890 {
1891 unsigned long spfn, epfn;
1892 struct zone *zone = arg;
1893 u64 i;
1894
1895 deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn, start_pfn);
1896
1897 /*
1898 * Initialize and free pages in MAX_ORDER sized increments so that we
1899 * can avoid introducing any issues with the buddy allocator.
1900 */
1901 while (spfn < end_pfn) {
1902 deferred_init_maxorder(&i, zone, &spfn, &epfn);
1903 cond_resched();
1904 }
1905 }
1906
1907 /* An arch may override for more concurrency. */
1908 __weak int __init
deferred_page_init_max_threads(const struct cpumask * node_cpumask)1909 deferred_page_init_max_threads(const struct cpumask *node_cpumask)
1910 {
1911 return 1;
1912 }
1913
1914 /* Initialise remaining memory on a node */
deferred_init_memmap(void * data)1915 static int __init deferred_init_memmap(void *data)
1916 {
1917 pg_data_t *pgdat = data;
1918 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
1919 unsigned long spfn = 0, epfn = 0;
1920 unsigned long first_init_pfn, flags;
1921 unsigned long start = jiffies;
1922 struct zone *zone;
1923 int zid, max_threads;
1924 u64 i;
1925
1926 /* Bind memory initialisation thread to a local node if possible */
1927 if (!cpumask_empty(cpumask))
1928 set_cpus_allowed_ptr(current, cpumask);
1929
1930 pgdat_resize_lock(pgdat, &flags);
1931 first_init_pfn = pgdat->first_deferred_pfn;
1932 if (first_init_pfn == ULONG_MAX) {
1933 pgdat_resize_unlock(pgdat, &flags);
1934 pgdat_init_report_one_done();
1935 return 0;
1936 }
1937
1938 /* Sanity check boundaries */
1939 BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn);
1940 BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat));
1941 pgdat->first_deferred_pfn = ULONG_MAX;
1942
1943 /*
1944 * Once we unlock here, the zone cannot be grown anymore, thus if an
1945 * interrupt thread must allocate this early in boot, zone must be
1946 * pre-grown prior to start of deferred page initialization.
1947 */
1948 pgdat_resize_unlock(pgdat, &flags);
1949
1950 /* Only the highest zone is deferred so find it */
1951 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1952 zone = pgdat->node_zones + zid;
1953 if (first_init_pfn < zone_end_pfn(zone))
1954 break;
1955 }
1956
1957 /* If the zone is empty somebody else may have cleared out the zone */
1958 if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
1959 first_init_pfn))
1960 goto zone_empty;
1961
1962 max_threads = deferred_page_init_max_threads(cpumask);
1963
1964 while (spfn < epfn) {
1965 unsigned long epfn_align = ALIGN(epfn, PAGES_PER_SECTION);
1966 struct padata_mt_job job = {
1967 .thread_fn = deferred_init_memmap_chunk,
1968 .fn_arg = zone,
1969 .start = spfn,
1970 .size = epfn_align - spfn,
1971 .align = PAGES_PER_SECTION,
1972 .min_chunk = PAGES_PER_SECTION,
1973 .max_threads = max_threads,
1974 };
1975
1976 padata_do_multithreaded(&job);
1977 deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
1978 epfn_align);
1979 }
1980 zone_empty:
1981 /* Sanity check that the next zone really is unpopulated */
1982 WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone));
1983
1984 pr_info("node %d deferred pages initialised in %ums\n",
1985 pgdat->node_id, jiffies_to_msecs(jiffies - start));
1986
1987 pgdat_init_report_one_done();
1988 return 0;
1989 }
1990
1991 /*
1992 * If this zone has deferred pages, try to grow it by initializing enough
1993 * deferred pages to satisfy the allocation specified by order, rounded up to
1994 * the nearest PAGES_PER_SECTION boundary. So we're adding memory in increments
1995 * of SECTION_SIZE bytes by initializing struct pages in increments of
1996 * PAGES_PER_SECTION * sizeof(struct page) bytes.
1997 *
1998 * Return true when zone was grown, otherwise return false. We return true even
1999 * when we grow less than requested, to let the caller decide if there are
2000 * enough pages to satisfy the allocation.
2001 *
2002 * Note: We use noinline because this function is needed only during boot, and
2003 * it is called from a __ref function _deferred_grow_zone. This way we are
2004 * making sure that it is not inlined into permanent text section.
2005 */
2006 static noinline bool __init
deferred_grow_zone(struct zone * zone,unsigned int order)2007 deferred_grow_zone(struct zone *zone, unsigned int order)
2008 {
2009 unsigned long nr_pages_needed = ALIGN(1 << order, PAGES_PER_SECTION);
2010 pg_data_t *pgdat = zone->zone_pgdat;
2011 unsigned long first_deferred_pfn = pgdat->first_deferred_pfn;
2012 unsigned long spfn, epfn, flags;
2013 unsigned long nr_pages = 0;
2014 u64 i;
2015
2016 /* Only the last zone may have deferred pages */
2017 if (zone_end_pfn(zone) != pgdat_end_pfn(pgdat))
2018 return false;
2019
2020 pgdat_resize_lock(pgdat, &flags);
2021
2022 /*
2023 * If someone grew this zone while we were waiting for spinlock, return
2024 * true, as there might be enough pages already.
2025 */
2026 if (first_deferred_pfn != pgdat->first_deferred_pfn) {
2027 pgdat_resize_unlock(pgdat, &flags);
2028 return true;
2029 }
2030
2031 /* If the zone is empty somebody else may have cleared out the zone */
2032 if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
2033 first_deferred_pfn)) {
2034 pgdat->first_deferred_pfn = ULONG_MAX;
2035 pgdat_resize_unlock(pgdat, &flags);
2036 /* Retry only once. */
2037 return first_deferred_pfn != ULONG_MAX;
2038 }
2039
2040 /*
2041 * Initialize and free pages in MAX_ORDER sized increments so
2042 * that we can avoid introducing any issues with the buddy
2043 * allocator.
2044 */
2045 while (spfn < epfn) {
2046 /* update our first deferred PFN for this section */
2047 first_deferred_pfn = spfn;
2048
2049 nr_pages += deferred_init_maxorder(&i, zone, &spfn, &epfn);
2050 touch_nmi_watchdog();
2051
2052 /* We should only stop along section boundaries */
2053 if ((first_deferred_pfn ^ spfn) < PAGES_PER_SECTION)
2054 continue;
2055
2056 /* If our quota has been met we can stop here */
2057 if (nr_pages >= nr_pages_needed)
2058 break;
2059 }
2060
2061 pgdat->first_deferred_pfn = spfn;
2062 pgdat_resize_unlock(pgdat, &flags);
2063
2064 return nr_pages > 0;
2065 }
2066
2067 /*
2068 * deferred_grow_zone() is __init, but it is called from
2069 * get_page_from_freelist() during early boot until deferred_pages permanently
2070 * disables this call. This is why we have refdata wrapper to avoid warning,
2071 * and to ensure that the function body gets unloaded.
2072 */
2073 static bool __ref
_deferred_grow_zone(struct zone * zone,unsigned int order)2074 _deferred_grow_zone(struct zone *zone, unsigned int order)
2075 {
2076 return deferred_grow_zone(zone, order);
2077 }
2078
2079 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
2080
page_alloc_init_late(void)2081 void __init page_alloc_init_late(void)
2082 {
2083 struct zone *zone;
2084 int nid;
2085
2086 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
2087
2088 /* There will be num_node_state(N_MEMORY) threads */
2089 atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY));
2090 for_each_node_state(nid, N_MEMORY) {
2091 kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid);
2092 }
2093
2094 /* Block until all are initialised */
2095 wait_for_completion(&pgdat_init_all_done_comp);
2096
2097 /*
2098 * The number of managed pages has changed due to the initialisation
2099 * so the pcpu batch and high limits needs to be updated or the limits
2100 * will be artificially small.
2101 */
2102 for_each_populated_zone(zone)
2103 zone_pcp_update(zone);
2104
2105 /*
2106 * We initialized the rest of the deferred pages. Permanently disable
2107 * on-demand struct page initialization.
2108 */
2109 static_branch_disable(&deferred_pages);
2110
2111 /* Reinit limits that are based on free pages after the kernel is up */
2112 files_maxfiles_init();
2113 #endif
2114
2115 /* Discard memblock private memory */
2116 memblock_discard();
2117
2118 for_each_node_state(nid, N_MEMORY)
2119 shuffle_free_memory(NODE_DATA(nid));
2120
2121 for_each_populated_zone(zone)
2122 set_zone_contiguous(zone);
2123 }
2124
2125 #ifdef CONFIG_CMA
2126 /* Free whole pageblock and set its migration type to MIGRATE_CMA. */
init_cma_reserved_pageblock(struct page * page)2127 void __init init_cma_reserved_pageblock(struct page *page)
2128 {
2129 unsigned i = pageblock_nr_pages;
2130 struct page *p = page;
2131
2132 do {
2133 __ClearPageReserved(p);
2134 set_page_count(p, 0);
2135 } while (++p, --i);
2136
2137 set_pageblock_migratetype(page, MIGRATE_CMA);
2138
2139 if (pageblock_order >= MAX_ORDER) {
2140 i = pageblock_nr_pages;
2141 p = page;
2142 do {
2143 set_page_refcounted(p);
2144 __free_pages(p, MAX_ORDER - 1);
2145 p += MAX_ORDER_NR_PAGES;
2146 } while (i -= MAX_ORDER_NR_PAGES);
2147 } else {
2148 set_page_refcounted(page);
2149 __free_pages(page, pageblock_order);
2150 }
2151
2152 adjust_managed_page_count(page, pageblock_nr_pages);
2153 }
2154 #endif
2155
2156 /*
2157 * The order of subdivision here is critical for the IO subsystem.
2158 * Please do not alter this order without good reasons and regression
2159 * testing. Specifically, as large blocks of memory are subdivided,
2160 * the order in which smaller blocks are delivered depends on the order
2161 * they're subdivided in this function. This is the primary factor
2162 * influencing the order in which pages are delivered to the IO
2163 * subsystem according to empirical testing, and this is also justified
2164 * by considering the behavior of a buddy system containing a single
2165 * large block of memory acted on by a series of small allocations.
2166 * This behavior is a critical factor in sglist merging's success.
2167 *
2168 * -- nyc
2169 */
expand(struct zone * zone,struct page * page,int low,int high,int migratetype)2170 static inline void expand(struct zone *zone, struct page *page,
2171 int low, int high, int migratetype)
2172 {
2173 unsigned long size = 1 << high;
2174
2175 while (high > low) {
2176 high--;
2177 size >>= 1;
2178 VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
2179
2180 /*
2181 * Mark as guard pages (or page), that will allow to
2182 * merge back to allocator when buddy will be freed.
2183 * Corresponding page table entries will not be touched,
2184 * pages will stay not present in virtual address space
2185 */
2186 if (set_page_guard(zone, &page[size], high, migratetype))
2187 continue;
2188
2189 add_to_free_list(&page[size], zone, high, migratetype);
2190 set_buddy_order(&page[size], high);
2191 }
2192 }
2193
check_new_page_bad(struct page * page)2194 static void check_new_page_bad(struct page *page)
2195 {
2196 if (unlikely(page->flags & __PG_HWPOISON)) {
2197 /* Don't complain about hwpoisoned pages */
2198 page_mapcount_reset(page); /* remove PageBuddy */
2199 return;
2200 }
2201
2202 bad_page(page,
2203 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_PREP));
2204 }
2205
2206 /*
2207 * This page is about to be returned from the page allocator
2208 */
check_new_page(struct page * page)2209 static inline int check_new_page(struct page *page)
2210 {
2211 if (likely(page_expected_state(page,
2212 PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON)))
2213 return 0;
2214
2215 check_new_page_bad(page);
2216 return 1;
2217 }
2218
free_pages_prezeroed(void)2219 static inline bool free_pages_prezeroed(void)
2220 {
2221 return (IS_ENABLED(CONFIG_PAGE_POISONING_ZERO) &&
2222 page_poisoning_enabled()) || want_init_on_free();
2223 }
2224
2225 #ifdef CONFIG_DEBUG_VM
2226 /*
2227 * With DEBUG_VM enabled, order-0 pages are checked for expected state when
2228 * being allocated from pcp lists. With debug_pagealloc also enabled, they are
2229 * also checked when pcp lists are refilled from the free lists.
2230 */
check_pcp_refill(struct page * page)2231 static inline bool check_pcp_refill(struct page *page)
2232 {
2233 if (debug_pagealloc_enabled_static())
2234 return check_new_page(page);
2235 else
2236 return false;
2237 }
2238
check_new_pcp(struct page * page)2239 static inline bool check_new_pcp(struct page *page)
2240 {
2241 return check_new_page(page);
2242 }
2243 #else
2244 /*
2245 * With DEBUG_VM disabled, free order-0 pages are checked for expected state
2246 * when pcp lists are being refilled from the free lists. With debug_pagealloc
2247 * enabled, they are also checked when being allocated from the pcp lists.
2248 */
check_pcp_refill(struct page * page)2249 static inline bool check_pcp_refill(struct page *page)
2250 {
2251 return check_new_page(page);
2252 }
check_new_pcp(struct page * page)2253 static inline bool check_new_pcp(struct page *page)
2254 {
2255 if (debug_pagealloc_enabled_static())
2256 return check_new_page(page);
2257 else
2258 return false;
2259 }
2260 #endif /* CONFIG_DEBUG_VM */
2261
check_new_pages(struct page * page,unsigned int order)2262 static bool check_new_pages(struct page *page, unsigned int order)
2263 {
2264 int i;
2265 for (i = 0; i < (1 << order); i++) {
2266 struct page *p = page + i;
2267
2268 if (unlikely(check_new_page(p)))
2269 return true;
2270 }
2271
2272 return false;
2273 }
2274
post_alloc_hook(struct page * page,unsigned int order,gfp_t gfp_flags)2275 inline void post_alloc_hook(struct page *page, unsigned int order,
2276 gfp_t gfp_flags)
2277 {
2278 set_page_private(page, 0);
2279 set_page_refcounted(page);
2280
2281 arch_alloc_page(page, order);
2282 if (debug_pagealloc_enabled_static())
2283 kernel_map_pages(page, 1 << order, 1);
2284 kasan_alloc_pages(page, order);
2285 kernel_poison_pages(page, 1 << order, 1);
2286 set_page_owner(page, order, gfp_flags);
2287 }
2288
prep_new_page(struct page * page,unsigned int order,gfp_t gfp_flags,unsigned int alloc_flags)2289 static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
2290 unsigned int alloc_flags)
2291 {
2292 post_alloc_hook(page, order, gfp_flags);
2293
2294 if (!free_pages_prezeroed() && want_init_on_alloc(gfp_flags))
2295 kernel_init_free_pages(page, 1 << order);
2296
2297 if (order && (gfp_flags & __GFP_COMP))
2298 prep_compound_page(page, order);
2299
2300 /*
2301 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
2302 * allocate the page. The expectation is that the caller is taking
2303 * steps that will free more memory. The caller should avoid the page
2304 * being used for !PFMEMALLOC purposes.
2305 */
2306 if (alloc_flags & ALLOC_NO_WATERMARKS)
2307 set_page_pfmemalloc(page);
2308 else
2309 clear_page_pfmemalloc(page);
2310 }
2311
2312 /*
2313 * Go through the free lists for the given migratetype and remove
2314 * the smallest available page from the freelists
2315 */
2316 static __always_inline
__rmqueue_smallest(struct zone * zone,unsigned int order,int migratetype)2317 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
2318 int migratetype)
2319 {
2320 unsigned int current_order;
2321 struct free_area *area;
2322 struct page *page;
2323
2324 /* Find a page of the appropriate size in the preferred list */
2325 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
2326 area = &(zone->free_area[current_order]);
2327 page = get_page_from_free_area(area, migratetype);
2328 if (!page)
2329 continue;
2330 del_page_from_free_list(page, zone, current_order);
2331 expand(zone, page, order, current_order, migratetype);
2332 set_pcppage_migratetype(page, migratetype);
2333 return page;
2334 }
2335
2336 return NULL;
2337 }
2338
2339
2340 /*
2341 * This array describes the order lists are fallen back to when
2342 * the free lists for the desirable migrate type are depleted
2343 */
2344 static int fallbacks[MIGRATE_TYPES][3] = {
2345 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
2346 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_TYPES },
2347 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
2348 #ifdef CONFIG_CMA
2349 [MIGRATE_CMA] = { MIGRATE_TYPES }, /* Never used */
2350 #endif
2351 #ifdef CONFIG_MEMORY_ISOLATION
2352 [MIGRATE_ISOLATE] = { MIGRATE_TYPES }, /* Never used */
2353 #endif
2354 };
2355
2356 #ifdef CONFIG_CMA
__rmqueue_cma_fallback(struct zone * zone,unsigned int order)2357 static __always_inline struct page *__rmqueue_cma_fallback(struct zone *zone,
2358 unsigned int order)
2359 {
2360 return __rmqueue_smallest(zone, order, MIGRATE_CMA);
2361 }
2362 #else
__rmqueue_cma_fallback(struct zone * zone,unsigned int order)2363 static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
2364 unsigned int order) { return NULL; }
2365 #endif
2366
2367 /*
2368 * Move the free pages in a range to the freelist tail of the requested type.
2369 * Note that start_page and end_pages are not aligned on a pageblock
2370 * boundary. If alignment is required, use move_freepages_block()
2371 */
move_freepages(struct zone * zone,unsigned long start_pfn,unsigned long end_pfn,int migratetype,int * num_movable)2372 static int move_freepages(struct zone *zone,
2373 unsigned long start_pfn, unsigned long end_pfn,
2374 int migratetype, int *num_movable)
2375 {
2376 struct page *page;
2377 unsigned long pfn;
2378 unsigned int order;
2379 int pages_moved = 0;
2380
2381 for (pfn = start_pfn; pfn <= end_pfn;) {
2382 if (!pfn_valid_within(pfn)) {
2383 pfn++;
2384 continue;
2385 }
2386
2387 page = pfn_to_page(pfn);
2388 if (!PageBuddy(page)) {
2389 /*
2390 * We assume that pages that could be isolated for
2391 * migration are movable. But we don't actually try
2392 * isolating, as that would be expensive.
2393 */
2394 if (num_movable &&
2395 (PageLRU(page) || __PageMovable(page)))
2396 (*num_movable)++;
2397 pfn++;
2398 continue;
2399 }
2400
2401 /* Make sure we are not inadvertently changing nodes */
2402 VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
2403 VM_BUG_ON_PAGE(page_zone(page) != zone, page);
2404
2405 order = buddy_order(page);
2406 move_to_free_list(page, zone, order, migratetype);
2407 pfn += 1 << order;
2408 pages_moved += 1 << order;
2409 }
2410
2411 return pages_moved;
2412 }
2413
move_freepages_block(struct zone * zone,struct page * page,int migratetype,int * num_movable)2414 int move_freepages_block(struct zone *zone, struct page *page,
2415 int migratetype, int *num_movable)
2416 {
2417 unsigned long start_pfn, end_pfn, pfn;
2418
2419 if (num_movable)
2420 *num_movable = 0;
2421
2422 pfn = page_to_pfn(page);
2423 start_pfn = pfn & ~(pageblock_nr_pages - 1);
2424 end_pfn = start_pfn + pageblock_nr_pages - 1;
2425
2426 /* Do not cross zone boundaries */
2427 if (!zone_spans_pfn(zone, start_pfn))
2428 start_pfn = pfn;
2429 if (!zone_spans_pfn(zone, end_pfn))
2430 return 0;
2431
2432 return move_freepages(zone, start_pfn, end_pfn, migratetype,
2433 num_movable);
2434 }
2435
change_pageblock_range(struct page * pageblock_page,int start_order,int migratetype)2436 static void change_pageblock_range(struct page *pageblock_page,
2437 int start_order, int migratetype)
2438 {
2439 int nr_pageblocks = 1 << (start_order - pageblock_order);
2440
2441 while (nr_pageblocks--) {
2442 set_pageblock_migratetype(pageblock_page, migratetype);
2443 pageblock_page += pageblock_nr_pages;
2444 }
2445 }
2446
2447 /*
2448 * When we are falling back to another migratetype during allocation, try to
2449 * steal extra free pages from the same pageblocks to satisfy further
2450 * allocations, instead of polluting multiple pageblocks.
2451 *
2452 * If we are stealing a relatively large buddy page, it is likely there will
2453 * be more free pages in the pageblock, so try to steal them all. For
2454 * reclaimable and unmovable allocations, we steal regardless of page size,
2455 * as fragmentation caused by those allocations polluting movable pageblocks
2456 * is worse than movable allocations stealing from unmovable and reclaimable
2457 * pageblocks.
2458 */
can_steal_fallback(unsigned int order,int start_mt)2459 static bool can_steal_fallback(unsigned int order, int start_mt)
2460 {
2461 /*
2462 * Leaving this order check is intended, although there is
2463 * relaxed order check in next check. The reason is that
2464 * we can actually steal whole pageblock if this condition met,
2465 * but, below check doesn't guarantee it and that is just heuristic
2466 * so could be changed anytime.
2467 */
2468 if (order >= pageblock_order)
2469 return true;
2470
2471 if (order >= pageblock_order / 2 ||
2472 start_mt == MIGRATE_RECLAIMABLE ||
2473 start_mt == MIGRATE_UNMOVABLE ||
2474 page_group_by_mobility_disabled)
2475 return true;
2476
2477 return false;
2478 }
2479
boost_watermark(struct zone * zone)2480 static inline bool boost_watermark(struct zone *zone)
2481 {
2482 unsigned long max_boost;
2483
2484 if (!watermark_boost_factor)
2485 return false;
2486 /*
2487 * Don't bother in zones that are unlikely to produce results.
2488 * On small machines, including kdump capture kernels running
2489 * in a small area, boosting the watermark can cause an out of
2490 * memory situation immediately.
2491 */
2492 if ((pageblock_nr_pages * 4) > zone_managed_pages(zone))
2493 return false;
2494
2495 max_boost = mult_frac(zone->_watermark[WMARK_HIGH],
2496 watermark_boost_factor, 10000);
2497
2498 /*
2499 * high watermark may be uninitialised if fragmentation occurs
2500 * very early in boot so do not boost. We do not fall
2501 * through and boost by pageblock_nr_pages as failing
2502 * allocations that early means that reclaim is not going
2503 * to help and it may even be impossible to reclaim the
2504 * boosted watermark resulting in a hang.
2505 */
2506 if (!max_boost)
2507 return false;
2508
2509 max_boost = max(pageblock_nr_pages, max_boost);
2510
2511 zone->watermark_boost = min(zone->watermark_boost + pageblock_nr_pages,
2512 max_boost);
2513
2514 return true;
2515 }
2516
2517 /*
2518 * This function implements actual steal behaviour. If order is large enough,
2519 * we can steal whole pageblock. If not, we first move freepages in this
2520 * pageblock to our migratetype and determine how many already-allocated pages
2521 * are there in the pageblock with a compatible migratetype. If at least half
2522 * of pages are free or compatible, we can change migratetype of the pageblock
2523 * itself, so pages freed in the future will be put on the correct free list.
2524 */
steal_suitable_fallback(struct zone * zone,struct page * page,unsigned int alloc_flags,int start_type,bool whole_block)2525 static void steal_suitable_fallback(struct zone *zone, struct page *page,
2526 unsigned int alloc_flags, int start_type, bool whole_block)
2527 {
2528 unsigned int current_order = buddy_order(page);
2529 int free_pages, movable_pages, alike_pages;
2530 int old_block_type;
2531
2532 old_block_type = get_pageblock_migratetype(page);
2533
2534 /*
2535 * This can happen due to races and we want to prevent broken
2536 * highatomic accounting.
2537 */
2538 if (is_migrate_highatomic(old_block_type))
2539 goto single_page;
2540
2541 /* Take ownership for orders >= pageblock_order */
2542 if (current_order >= pageblock_order) {
2543 change_pageblock_range(page, current_order, start_type);
2544 goto single_page;
2545 }
2546
2547 /*
2548 * Boost watermarks to increase reclaim pressure to reduce the
2549 * likelihood of future fallbacks. Wake kswapd now as the node
2550 * may be balanced overall and kswapd will not wake naturally.
2551 */
2552 if (boost_watermark(zone) && (alloc_flags & ALLOC_KSWAPD))
2553 set_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
2554
2555 /* We are not allowed to try stealing from the whole block */
2556 if (!whole_block)
2557 goto single_page;
2558
2559 free_pages = move_freepages_block(zone, page, start_type,
2560 &movable_pages);
2561 /*
2562 * Determine how many pages are compatible with our allocation.
2563 * For movable allocation, it's the number of movable pages which
2564 * we just obtained. For other types it's a bit more tricky.
2565 */
2566 if (start_type == MIGRATE_MOVABLE) {
2567 alike_pages = movable_pages;
2568 } else {
2569 /*
2570 * If we are falling back a RECLAIMABLE or UNMOVABLE allocation
2571 * to MOVABLE pageblock, consider all non-movable pages as
2572 * compatible. If it's UNMOVABLE falling back to RECLAIMABLE or
2573 * vice versa, be conservative since we can't distinguish the
2574 * exact migratetype of non-movable pages.
2575 */
2576 if (old_block_type == MIGRATE_MOVABLE)
2577 alike_pages = pageblock_nr_pages
2578 - (free_pages + movable_pages);
2579 else
2580 alike_pages = 0;
2581 }
2582
2583 /* moving whole block can fail due to zone boundary conditions */
2584 if (!free_pages)
2585 goto single_page;
2586
2587 /*
2588 * If a sufficient number of pages in the block are either free or of
2589 * comparable migratability as our allocation, claim the whole block.
2590 */
2591 if (free_pages + alike_pages >= (1 << (pageblock_order-1)) ||
2592 page_group_by_mobility_disabled)
2593 set_pageblock_migratetype(page, start_type);
2594
2595 return;
2596
2597 single_page:
2598 move_to_free_list(page, zone, current_order, start_type);
2599 }
2600
2601 /*
2602 * Check whether there is a suitable fallback freepage with requested order.
2603 * If only_stealable is true, this function returns fallback_mt only if
2604 * we can steal other freepages all together. This would help to reduce
2605 * fragmentation due to mixed migratetype pages in one pageblock.
2606 */
find_suitable_fallback(struct free_area * area,unsigned int order,int migratetype,bool only_stealable,bool * can_steal)2607 int find_suitable_fallback(struct free_area *area, unsigned int order,
2608 int migratetype, bool only_stealable, bool *can_steal)
2609 {
2610 int i;
2611 int fallback_mt;
2612
2613 if (area->nr_free == 0)
2614 return -1;
2615
2616 *can_steal = false;
2617 for (i = 0;; i++) {
2618 fallback_mt = fallbacks[migratetype][i];
2619 if (fallback_mt == MIGRATE_TYPES)
2620 break;
2621
2622 if (free_area_empty(area, fallback_mt))
2623 continue;
2624
2625 if (can_steal_fallback(order, migratetype))
2626 *can_steal = true;
2627
2628 if (!only_stealable)
2629 return fallback_mt;
2630
2631 if (*can_steal)
2632 return fallback_mt;
2633 }
2634
2635 return -1;
2636 }
2637
2638 /*
2639 * Reserve a pageblock for exclusive use of high-order atomic allocations if
2640 * there are no empty page blocks that contain a page with a suitable order
2641 */
reserve_highatomic_pageblock(struct page * page,struct zone * zone,unsigned int alloc_order)2642 static void reserve_highatomic_pageblock(struct page *page, struct zone *zone,
2643 unsigned int alloc_order)
2644 {
2645 int mt;
2646 unsigned long max_managed, flags;
2647
2648 /*
2649 * Limit the number reserved to 1 pageblock or roughly 1% of a zone.
2650 * Check is race-prone but harmless.
2651 */
2652 max_managed = (zone_managed_pages(zone) / 100) + pageblock_nr_pages;
2653 if (zone->nr_reserved_highatomic >= max_managed)
2654 return;
2655
2656 spin_lock_irqsave(&zone->lock, flags);
2657
2658 /* Recheck the nr_reserved_highatomic limit under the lock */
2659 if (zone->nr_reserved_highatomic >= max_managed)
2660 goto out_unlock;
2661
2662 /* Yoink! */
2663 mt = get_pageblock_migratetype(page);
2664 if (!is_migrate_highatomic(mt) && !is_migrate_isolate(mt)
2665 && !is_migrate_cma(mt)) {
2666 zone->nr_reserved_highatomic += pageblock_nr_pages;
2667 set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC);
2668 move_freepages_block(zone, page, MIGRATE_HIGHATOMIC, NULL);
2669 }
2670
2671 out_unlock:
2672 spin_unlock_irqrestore(&zone->lock, flags);
2673 }
2674
2675 /*
2676 * Used when an allocation is about to fail under memory pressure. This
2677 * potentially hurts the reliability of high-order allocations when under
2678 * intense memory pressure but failed atomic allocations should be easier
2679 * to recover from than an OOM.
2680 *
2681 * If @force is true, try to unreserve a pageblock even though highatomic
2682 * pageblock is exhausted.
2683 */
unreserve_highatomic_pageblock(const struct alloc_context * ac,bool force)2684 static bool unreserve_highatomic_pageblock(const struct alloc_context *ac,
2685 bool force)
2686 {
2687 struct zonelist *zonelist = ac->zonelist;
2688 unsigned long flags;
2689 struct zoneref *z;
2690 struct zone *zone;
2691 struct page *page;
2692 int order;
2693 bool ret;
2694
2695 for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->highest_zoneidx,
2696 ac->nodemask) {
2697 /*
2698 * Preserve at least one pageblock unless memory pressure
2699 * is really high.
2700 */
2701 if (!force && zone->nr_reserved_highatomic <=
2702 pageblock_nr_pages)
2703 continue;
2704
2705 spin_lock_irqsave(&zone->lock, flags);
2706 for (order = 0; order < MAX_ORDER; order++) {
2707 struct free_area *area = &(zone->free_area[order]);
2708
2709 page = get_page_from_free_area(area, MIGRATE_HIGHATOMIC);
2710 if (!page)
2711 continue;
2712
2713 /*
2714 * In page freeing path, migratetype change is racy so
2715 * we can counter several free pages in a pageblock
2716 * in this loop althoug we changed the pageblock type
2717 * from highatomic to ac->migratetype. So we should
2718 * adjust the count once.
2719 */
2720 if (is_migrate_highatomic_page(page)) {
2721 /*
2722 * It should never happen but changes to
2723 * locking could inadvertently allow a per-cpu
2724 * drain to add pages to MIGRATE_HIGHATOMIC
2725 * while unreserving so be safe and watch for
2726 * underflows.
2727 */
2728 zone->nr_reserved_highatomic -= min(
2729 pageblock_nr_pages,
2730 zone->nr_reserved_highatomic);
2731 }
2732
2733 /*
2734 * Convert to ac->migratetype and avoid the normal
2735 * pageblock stealing heuristics. Minimally, the caller
2736 * is doing the work and needs the pages. More
2737 * importantly, if the block was always converted to
2738 * MIGRATE_UNMOVABLE or another type then the number
2739 * of pageblocks that cannot be completely freed
2740 * may increase.
2741 */
2742 set_pageblock_migratetype(page, ac->migratetype);
2743 ret = move_freepages_block(zone, page, ac->migratetype,
2744 NULL);
2745 if (ret) {
2746 spin_unlock_irqrestore(&zone->lock, flags);
2747 return ret;
2748 }
2749 }
2750 spin_unlock_irqrestore(&zone->lock, flags);
2751 }
2752
2753 return false;
2754 }
2755
2756 /*
2757 * Try finding a free buddy page on the fallback list and put it on the free
2758 * list of requested migratetype, possibly along with other pages from the same
2759 * block, depending on fragmentation avoidance heuristics. Returns true if
2760 * fallback was found so that __rmqueue_smallest() can grab it.
2761 *
2762 * The use of signed ints for order and current_order is a deliberate
2763 * deviation from the rest of this file, to make the for loop
2764 * condition simpler.
2765 */
2766 static __always_inline bool
__rmqueue_fallback(struct zone * zone,int order,int start_migratetype,unsigned int alloc_flags)2767 __rmqueue_fallback(struct zone *zone, int order, int start_migratetype,
2768 unsigned int alloc_flags)
2769 {
2770 struct free_area *area;
2771 int current_order;
2772 int min_order = order;
2773 struct page *page;
2774 int fallback_mt;
2775 bool can_steal;
2776
2777 /*
2778 * Do not steal pages from freelists belonging to other pageblocks
2779 * i.e. orders < pageblock_order. If there are no local zones free,
2780 * the zonelists will be reiterated without ALLOC_NOFRAGMENT.
2781 */
2782 if (alloc_flags & ALLOC_NOFRAGMENT)
2783 min_order = pageblock_order;
2784
2785 /*
2786 * Find the largest available free page in the other list. This roughly
2787 * approximates finding the pageblock with the most free pages, which
2788 * would be too costly to do exactly.
2789 */
2790 for (current_order = MAX_ORDER - 1; current_order >= min_order;
2791 --current_order) {
2792 area = &(zone->free_area[current_order]);
2793 fallback_mt = find_suitable_fallback(area, current_order,
2794 start_migratetype, false, &can_steal);
2795 if (fallback_mt == -1)
2796 continue;
2797
2798 /*
2799 * We cannot steal all free pages from the pageblock and the
2800 * requested migratetype is movable. In that case it's better to
2801 * steal and split the smallest available page instead of the
2802 * largest available page, because even if the next movable
2803 * allocation falls back into a different pageblock than this
2804 * one, it won't cause permanent fragmentation.
2805 */
2806 if (!can_steal && start_migratetype == MIGRATE_MOVABLE
2807 && current_order > order)
2808 goto find_smallest;
2809
2810 goto do_steal;
2811 }
2812
2813 return false;
2814
2815 find_smallest:
2816 for (current_order = order; current_order < MAX_ORDER;
2817 current_order++) {
2818 area = &(zone->free_area[current_order]);
2819 fallback_mt = find_suitable_fallback(area, current_order,
2820 start_migratetype, false, &can_steal);
2821 if (fallback_mt != -1)
2822 break;
2823 }
2824
2825 /*
2826 * This should not happen - we already found a suitable fallback
2827 * when looking for the largest page.
2828 */
2829 VM_BUG_ON(current_order == MAX_ORDER);
2830
2831 do_steal:
2832 page = get_page_from_free_area(area, fallback_mt);
2833
2834 steal_suitable_fallback(zone, page, alloc_flags, start_migratetype,
2835 can_steal);
2836
2837 trace_mm_page_alloc_extfrag(page, order, current_order,
2838 start_migratetype, fallback_mt);
2839
2840 return true;
2841
2842 }
2843
2844 static __always_inline struct page *
__rmqueue_with_cma_reuse(struct zone * zone,unsigned int order,int migratetype,unsigned int alloc_flags)2845 __rmqueue_with_cma_reuse(struct zone *zone, unsigned int order,
2846 int migratetype, unsigned int alloc_flags)
2847 {
2848 struct page *page = NULL;
2849 retry:
2850 page = __rmqueue_smallest(zone, order, migratetype);
2851
2852 if (unlikely(!page) && is_migrate_cma(migratetype)) {
2853 migratetype = MIGRATE_MOVABLE;
2854 alloc_flags &= ~ALLOC_CMA;
2855 page = __rmqueue_smallest(zone, order, migratetype);
2856 }
2857
2858 if (unlikely(!page) &&
2859 __rmqueue_fallback(zone, order, migratetype, alloc_flags))
2860 goto retry;
2861
2862 return page;
2863 }
2864
2865 /*
2866 * Do the hard work of removing an element from the buddy allocator.
2867 * Call me with the zone->lock already held.
2868 */
2869 static __always_inline struct page *
__rmqueue(struct zone * zone,unsigned int order,int migratetype,unsigned int alloc_flags)2870 __rmqueue(struct zone *zone, unsigned int order, int migratetype,
2871 unsigned int alloc_flags)
2872 {
2873 struct page *page;
2874
2875 #ifdef CONFIG_CMA_REUSE
2876 page = __rmqueue_with_cma_reuse(zone, order, migratetype, alloc_flags);
2877 goto out;
2878 #endif
2879
2880 if (IS_ENABLED(CONFIG_CMA)) {
2881 /*
2882 * Balance movable allocations between regular and CMA areas by
2883 * allocating from CMA when over half of the zone's free memory
2884 * is in the CMA area.
2885 */
2886 if (alloc_flags & ALLOC_CMA &&
2887 zone_page_state(zone, NR_FREE_CMA_PAGES) >
2888 zone_page_state(zone, NR_FREE_PAGES) / 2) {
2889 page = __rmqueue_cma_fallback(zone, order);
2890 if (page)
2891 goto out;
2892 }
2893 }
2894 retry:
2895 page = __rmqueue_smallest(zone, order, migratetype);
2896 if (unlikely(!page)) {
2897 if (alloc_flags & ALLOC_CMA)
2898 page = __rmqueue_cma_fallback(zone, order);
2899
2900 if (!page && __rmqueue_fallback(zone, order, migratetype,
2901 alloc_flags))
2902 goto retry;
2903 }
2904 out:
2905 if (page)
2906 trace_mm_page_alloc_zone_locked(page, order, migratetype);
2907 return page;
2908 }
2909
2910 /*
2911 * Obtain a specified number of elements from the buddy allocator, all under
2912 * a single hold of the lock, for efficiency. Add them to the supplied list.
2913 * Returns the number of new pages which were placed at *list.
2914 */
rmqueue_bulk(struct zone * zone,unsigned int order,unsigned long count,struct list_head * list,int migratetype,unsigned int alloc_flags)2915 static int rmqueue_bulk(struct zone *zone, unsigned int order,
2916 unsigned long count, struct list_head *list,
2917 int migratetype, unsigned int alloc_flags)
2918 {
2919 int i, alloced = 0;
2920
2921 spin_lock(&zone->lock);
2922 for (i = 0; i < count; ++i) {
2923 struct page *page = __rmqueue(zone, order, migratetype,
2924 alloc_flags);
2925 if (unlikely(page == NULL))
2926 break;
2927
2928 if (unlikely(check_pcp_refill(page)))
2929 continue;
2930
2931 /*
2932 * Split buddy pages returned by expand() are received here in
2933 * physical page order. The page is added to the tail of
2934 * caller's list. From the callers perspective, the linked list
2935 * is ordered by page number under some conditions. This is
2936 * useful for IO devices that can forward direction from the
2937 * head, thus also in the physical page order. This is useful
2938 * for IO devices that can merge IO requests if the physical
2939 * pages are ordered properly.
2940 */
2941 list_add_tail(&page->lru, list);
2942 alloced++;
2943 if (is_migrate_cma(get_pcppage_migratetype(page)))
2944 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
2945 -(1 << order));
2946 }
2947
2948 /*
2949 * i pages were removed from the buddy list even if some leak due
2950 * to check_pcp_refill failing so adjust NR_FREE_PAGES based
2951 * on i. Do not confuse with 'alloced' which is the number of
2952 * pages added to the pcp list.
2953 */
2954 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
2955 spin_unlock(&zone->lock);
2956 return alloced;
2957 }
2958
2959 #ifdef CONFIG_NUMA
2960 /*
2961 * Called from the vmstat counter updater to drain pagesets of this
2962 * currently executing processor on remote nodes after they have
2963 * expired.
2964 *
2965 * Note that this function must be called with the thread pinned to
2966 * a single processor.
2967 */
drain_zone_pages(struct zone * zone,struct per_cpu_pages * pcp)2968 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
2969 {
2970 unsigned long flags;
2971 int to_drain, batch;
2972
2973 local_irq_save(flags);
2974 batch = READ_ONCE(pcp->batch);
2975 to_drain = min(pcp->count, batch);
2976 if (to_drain > 0)
2977 free_pcppages_bulk(zone, to_drain, pcp);
2978 local_irq_restore(flags);
2979 }
2980 #endif
2981
2982 /*
2983 * Drain pcplists of the indicated processor and zone.
2984 *
2985 * The processor must either be the current processor and the
2986 * thread pinned to the current processor or a processor that
2987 * is not online.
2988 */
drain_pages_zone(unsigned int cpu,struct zone * zone)2989 static void drain_pages_zone(unsigned int cpu, struct zone *zone)
2990 {
2991 unsigned long flags;
2992 struct per_cpu_pageset *pset;
2993 struct per_cpu_pages *pcp;
2994
2995 local_irq_save(flags);
2996 pset = per_cpu_ptr(zone->pageset, cpu);
2997
2998 pcp = &pset->pcp;
2999 if (pcp->count)
3000 free_pcppages_bulk(zone, pcp->count, pcp);
3001 local_irq_restore(flags);
3002 }
3003
3004 /*
3005 * Drain pcplists of all zones on the indicated processor.
3006 *
3007 * The processor must either be the current processor and the
3008 * thread pinned to the current processor or a processor that
3009 * is not online.
3010 */
drain_pages(unsigned int cpu)3011 static void drain_pages(unsigned int cpu)
3012 {
3013 struct zone *zone;
3014
3015 for_each_populated_zone(zone) {
3016 drain_pages_zone(cpu, zone);
3017 }
3018 }
3019
3020 /*
3021 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
3022 *
3023 * The CPU has to be pinned. When zone parameter is non-NULL, spill just
3024 * the single zone's pages.
3025 */
drain_local_pages(struct zone * zone)3026 void drain_local_pages(struct zone *zone)
3027 {
3028 int cpu = smp_processor_id();
3029
3030 if (zone)
3031 drain_pages_zone(cpu, zone);
3032 else
3033 drain_pages(cpu);
3034 }
3035
drain_local_pages_wq(struct work_struct * work)3036 static void drain_local_pages_wq(struct work_struct *work)
3037 {
3038 struct pcpu_drain *drain;
3039
3040 drain = container_of(work, struct pcpu_drain, work);
3041
3042 /*
3043 * drain_all_pages doesn't use proper cpu hotplug protection so
3044 * we can race with cpu offline when the WQ can move this from
3045 * a cpu pinned worker to an unbound one. We can operate on a different
3046 * cpu which is allright but we also have to make sure to not move to
3047 * a different one.
3048 */
3049 preempt_disable();
3050 drain_local_pages(drain->zone);
3051 preempt_enable();
3052 }
3053
3054 /*
3055 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
3056 *
3057 * When zone parameter is non-NULL, spill just the single zone's pages.
3058 *
3059 * Note that this can be extremely slow as the draining happens in a workqueue.
3060 */
drain_all_pages(struct zone * zone)3061 void drain_all_pages(struct zone *zone)
3062 {
3063 int cpu;
3064
3065 /*
3066 * Allocate in the BSS so we wont require allocation in
3067 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
3068 */
3069 static cpumask_t cpus_with_pcps;
3070
3071 /*
3072 * Make sure nobody triggers this path before mm_percpu_wq is fully
3073 * initialized.
3074 */
3075 if (WARN_ON_ONCE(!mm_percpu_wq))
3076 return;
3077
3078 /*
3079 * Do not drain if one is already in progress unless it's specific to
3080 * a zone. Such callers are primarily CMA and memory hotplug and need
3081 * the drain to be complete when the call returns.
3082 */
3083 if (unlikely(!mutex_trylock(&pcpu_drain_mutex))) {
3084 if (!zone)
3085 return;
3086 mutex_lock(&pcpu_drain_mutex);
3087 }
3088
3089 /*
3090 * We don't care about racing with CPU hotplug event
3091 * as offline notification will cause the notified
3092 * cpu to drain that CPU pcps and on_each_cpu_mask
3093 * disables preemption as part of its processing
3094 */
3095 for_each_online_cpu(cpu) {
3096 struct per_cpu_pageset *pcp;
3097 struct zone *z;
3098 bool has_pcps = false;
3099
3100 if (zone) {
3101 pcp = per_cpu_ptr(zone->pageset, cpu);
3102 if (pcp->pcp.count)
3103 has_pcps = true;
3104 } else {
3105 for_each_populated_zone(z) {
3106 pcp = per_cpu_ptr(z->pageset, cpu);
3107 if (pcp->pcp.count) {
3108 has_pcps = true;
3109 break;
3110 }
3111 }
3112 }
3113
3114 if (has_pcps)
3115 cpumask_set_cpu(cpu, &cpus_with_pcps);
3116 else
3117 cpumask_clear_cpu(cpu, &cpus_with_pcps);
3118 }
3119
3120 for_each_cpu(cpu, &cpus_with_pcps) {
3121 struct pcpu_drain *drain = per_cpu_ptr(&pcpu_drain, cpu);
3122
3123 drain->zone = zone;
3124 INIT_WORK(&drain->work, drain_local_pages_wq);
3125 queue_work_on(cpu, mm_percpu_wq, &drain->work);
3126 }
3127 for_each_cpu(cpu, &cpus_with_pcps)
3128 flush_work(&per_cpu_ptr(&pcpu_drain, cpu)->work);
3129
3130 mutex_unlock(&pcpu_drain_mutex);
3131 }
3132
3133 #ifdef CONFIG_HIBERNATION
3134
3135 /*
3136 * Touch the watchdog for every WD_PAGE_COUNT pages.
3137 */
3138 #define WD_PAGE_COUNT (128*1024)
3139
mark_free_pages(struct zone * zone)3140 void mark_free_pages(struct zone *zone)
3141 {
3142 unsigned long pfn, max_zone_pfn, page_count = WD_PAGE_COUNT;
3143 unsigned long flags;
3144 unsigned int order, t;
3145 struct page *page;
3146
3147 if (zone_is_empty(zone))
3148 return;
3149
3150 spin_lock_irqsave(&zone->lock, flags);
3151
3152 max_zone_pfn = zone_end_pfn(zone);
3153 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
3154 if (pfn_valid(pfn)) {
3155 page = pfn_to_page(pfn);
3156
3157 if (!--page_count) {
3158 touch_nmi_watchdog();
3159 page_count = WD_PAGE_COUNT;
3160 }
3161
3162 if (page_zone(page) != zone)
3163 continue;
3164
3165 if (!swsusp_page_is_forbidden(page))
3166 swsusp_unset_page_free(page);
3167 }
3168
3169 for_each_migratetype_order(order, t) {
3170 list_for_each_entry(page,
3171 &zone->free_area[order].free_list[t], lru) {
3172 unsigned long i;
3173
3174 pfn = page_to_pfn(page);
3175 for (i = 0; i < (1UL << order); i++) {
3176 if (!--page_count) {
3177 touch_nmi_watchdog();
3178 page_count = WD_PAGE_COUNT;
3179 }
3180 swsusp_set_page_free(pfn_to_page(pfn + i));
3181 }
3182 }
3183 }
3184 spin_unlock_irqrestore(&zone->lock, flags);
3185 }
3186 #endif /* CONFIG_PM */
3187
free_unref_page_prepare(struct page * page,unsigned long pfn)3188 static bool free_unref_page_prepare(struct page *page, unsigned long pfn)
3189 {
3190 int migratetype;
3191
3192 if (!free_pcp_prepare(page))
3193 return false;
3194
3195 migratetype = get_pfnblock_migratetype(page, pfn);
3196 set_pcppage_migratetype(page, migratetype);
3197 return true;
3198 }
3199
free_unref_page_commit(struct page * page,unsigned long pfn)3200 static void free_unref_page_commit(struct page *page, unsigned long pfn)
3201 {
3202 struct zone *zone = page_zone(page);
3203 struct per_cpu_pages *pcp;
3204 int migratetype;
3205
3206 migratetype = get_pcppage_migratetype(page);
3207 __count_vm_event(PGFREE);
3208
3209 /*
3210 * We only track unmovable, reclaimable and movable on pcp lists.
3211 * Free ISOLATE pages back to the allocator because they are being
3212 * offlined but treat HIGHATOMIC as movable pages so we can get those
3213 * areas back if necessary. Otherwise, we may have to free
3214 * excessively into the page allocator
3215 */
3216 if (migratetype >= MIGRATE_PCPTYPES) {
3217 if (unlikely(is_migrate_isolate(migratetype))) {
3218 free_one_page(zone, page, pfn, 0, migratetype,
3219 FPI_NONE);
3220 return;
3221 }
3222 migratetype = MIGRATE_MOVABLE;
3223 }
3224
3225 pcp = &this_cpu_ptr(zone->pageset)->pcp;
3226 list_add(&page->lru, &pcp->lists[migratetype]);
3227 pcp->count++;
3228 if (pcp->count >= pcp->high) {
3229 unsigned long batch = READ_ONCE(pcp->batch);
3230 free_pcppages_bulk(zone, batch, pcp);
3231 }
3232 }
3233
3234 /*
3235 * Free a 0-order page
3236 */
free_unref_page(struct page * page)3237 void free_unref_page(struct page *page)
3238 {
3239 unsigned long flags;
3240 unsigned long pfn = page_to_pfn(page);
3241
3242 if (!free_unref_page_prepare(page, pfn))
3243 return;
3244
3245 local_irq_save(flags);
3246 free_unref_page_commit(page, pfn);
3247 local_irq_restore(flags);
3248 }
3249
3250 /*
3251 * Free a list of 0-order pages
3252 */
free_unref_page_list(struct list_head * list)3253 void free_unref_page_list(struct list_head *list)
3254 {
3255 struct page *page, *next;
3256 unsigned long flags, pfn;
3257 int batch_count = 0;
3258
3259 /* Prepare pages for freeing */
3260 list_for_each_entry_safe(page, next, list, lru) {
3261 pfn = page_to_pfn(page);
3262 if (!free_unref_page_prepare(page, pfn))
3263 list_del(&page->lru);
3264 set_page_private(page, pfn);
3265 }
3266
3267 local_irq_save(flags);
3268 list_for_each_entry_safe(page, next, list, lru) {
3269 unsigned long pfn = page_private(page);
3270
3271 set_page_private(page, 0);
3272 trace_mm_page_free_batched(page);
3273 free_unref_page_commit(page, pfn);
3274
3275 /*
3276 * Guard against excessive IRQ disabled times when we get
3277 * a large list of pages to free.
3278 */
3279 if (++batch_count == SWAP_CLUSTER_MAX) {
3280 local_irq_restore(flags);
3281 batch_count = 0;
3282 local_irq_save(flags);
3283 }
3284 }
3285 local_irq_restore(flags);
3286 }
3287
3288 /*
3289 * split_page takes a non-compound higher-order page, and splits it into
3290 * n (1<<order) sub-pages: page[0..n]
3291 * Each sub-page must be freed individually.
3292 *
3293 * Note: this is probably too low level an operation for use in drivers.
3294 * Please consult with lkml before using this in your driver.
3295 */
split_page(struct page * page,unsigned int order)3296 void split_page(struct page *page, unsigned int order)
3297 {
3298 int i;
3299
3300 VM_BUG_ON_PAGE(PageCompound(page), page);
3301 VM_BUG_ON_PAGE(!page_count(page), page);
3302
3303 for (i = 1; i < (1 << order); i++)
3304 set_page_refcounted(page + i);
3305 split_page_owner(page, 1 << order);
3306 split_page_memcg(page, 1 << order);
3307 }
3308 EXPORT_SYMBOL_GPL(split_page);
3309
__isolate_free_page(struct page * page,unsigned int order)3310 int __isolate_free_page(struct page *page, unsigned int order)
3311 {
3312 unsigned long watermark;
3313 struct zone *zone;
3314 int mt;
3315
3316 BUG_ON(!PageBuddy(page));
3317
3318 zone = page_zone(page);
3319 mt = get_pageblock_migratetype(page);
3320
3321 if (!is_migrate_isolate(mt)) {
3322 /*
3323 * Obey watermarks as if the page was being allocated. We can
3324 * emulate a high-order watermark check with a raised order-0
3325 * watermark, because we already know our high-order page
3326 * exists.
3327 */
3328 watermark = zone->_watermark[WMARK_MIN] + (1UL << order);
3329 if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA))
3330 return 0;
3331
3332 __mod_zone_freepage_state(zone, -(1UL << order), mt);
3333 }
3334
3335 /* Remove page from free list */
3336
3337 del_page_from_free_list(page, zone, order);
3338
3339 /*
3340 * Set the pageblock if the isolated page is at least half of a
3341 * pageblock
3342 */
3343 if (order >= pageblock_order - 1) {
3344 struct page *endpage = page + (1 << order) - 1;
3345 for (; page < endpage; page += pageblock_nr_pages) {
3346 int mt = get_pageblock_migratetype(page);
3347 if (!is_migrate_isolate(mt) && !is_migrate_cma(mt)
3348 && !is_migrate_highatomic(mt))
3349 set_pageblock_migratetype(page,
3350 MIGRATE_MOVABLE);
3351 }
3352 }
3353
3354
3355 return 1UL << order;
3356 }
3357
3358 /**
3359 * __putback_isolated_page - Return a now-isolated page back where we got it
3360 * @page: Page that was isolated
3361 * @order: Order of the isolated page
3362 * @mt: The page's pageblock's migratetype
3363 *
3364 * This function is meant to return a page pulled from the free lists via
3365 * __isolate_free_page back to the free lists they were pulled from.
3366 */
__putback_isolated_page(struct page * page,unsigned int order,int mt)3367 void __putback_isolated_page(struct page *page, unsigned int order, int mt)
3368 {
3369 struct zone *zone = page_zone(page);
3370
3371 /* zone lock should be held when this function is called */
3372 lockdep_assert_held(&zone->lock);
3373
3374 /* Return isolated page to tail of freelist. */
3375 __free_one_page(page, page_to_pfn(page), zone, order, mt,
3376 FPI_SKIP_REPORT_NOTIFY | FPI_TO_TAIL);
3377 }
3378
3379 /*
3380 * Update NUMA hit/miss statistics
3381 *
3382 * Must be called with interrupts disabled.
3383 */
zone_statistics(struct zone * preferred_zone,struct zone * z)3384 static inline void zone_statistics(struct zone *preferred_zone, struct zone *z)
3385 {
3386 #ifdef CONFIG_NUMA
3387 enum numa_stat_item local_stat = NUMA_LOCAL;
3388
3389 /* skip numa counters update if numa stats is disabled */
3390 if (!static_branch_likely(&vm_numa_stat_key))
3391 return;
3392
3393 if (zone_to_nid(z) != numa_node_id())
3394 local_stat = NUMA_OTHER;
3395
3396 if (zone_to_nid(z) == zone_to_nid(preferred_zone))
3397 __inc_numa_state(z, NUMA_HIT);
3398 else {
3399 __inc_numa_state(z, NUMA_MISS);
3400 __inc_numa_state(preferred_zone, NUMA_FOREIGN);
3401 }
3402 __inc_numa_state(z, local_stat);
3403 #endif
3404 }
3405
3406 /* Remove page from the per-cpu list, caller must protect the list */
__rmqueue_pcplist(struct zone * zone,int migratetype,unsigned int alloc_flags,struct per_cpu_pages * pcp,struct list_head * list)3407 static struct page *__rmqueue_pcplist(struct zone *zone, int migratetype,
3408 unsigned int alloc_flags,
3409 struct per_cpu_pages *pcp,
3410 struct list_head *list)
3411 {
3412 struct page *page;
3413
3414 do {
3415 if (list_empty(list)) {
3416 pcp->count += rmqueue_bulk(zone, 0,
3417 pcp->batch, list,
3418 migratetype, alloc_flags);
3419 if (unlikely(list_empty(list)))
3420 return NULL;
3421 }
3422
3423 page = list_first_entry(list, struct page, lru);
3424 list_del(&page->lru);
3425 pcp->count--;
3426 } while (check_new_pcp(page));
3427
3428 return page;
3429 }
3430
3431 /* Lock and remove page from the per-cpu list */
rmqueue_pcplist(struct zone * preferred_zone,struct zone * zone,gfp_t gfp_flags,int migratetype,unsigned int alloc_flags)3432 static struct page *rmqueue_pcplist(struct zone *preferred_zone,
3433 struct zone *zone, gfp_t gfp_flags,
3434 int migratetype, unsigned int alloc_flags)
3435 {
3436 struct per_cpu_pages *pcp;
3437 struct list_head *list;
3438 struct page *page;
3439 unsigned long flags;
3440
3441 local_irq_save(flags);
3442 pcp = &this_cpu_ptr(zone->pageset)->pcp;
3443 list = &pcp->lists[migratetype];
3444 page = __rmqueue_pcplist(zone, migratetype, alloc_flags, pcp, list);
3445 if (page) {
3446 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1);
3447 zone_statistics(preferred_zone, zone);
3448 }
3449 local_irq_restore(flags);
3450 return page;
3451 }
3452
3453 /*
3454 * Allocate a page from the given zone. Use pcplists for order-0 allocations.
3455 */
3456 static inline
rmqueue(struct zone * preferred_zone,struct zone * zone,unsigned int order,gfp_t gfp_flags,unsigned int alloc_flags,int migratetype)3457 struct page *rmqueue(struct zone *preferred_zone,
3458 struct zone *zone, unsigned int order,
3459 gfp_t gfp_flags, unsigned int alloc_flags,
3460 int migratetype)
3461 {
3462 unsigned long flags;
3463 struct page *page;
3464
3465 if (likely(order == 0)) {
3466 /*
3467 * MIGRATE_MOVABLE pcplist could have the pages on CMA area and
3468 * we need to skip it when CMA area isn't allowed.
3469 */
3470 if (!IS_ENABLED(CONFIG_CMA) || alloc_flags & ALLOC_CMA ||
3471 migratetype != MIGRATE_MOVABLE ||
3472 IS_ENABLED(CONFIG_CMA_REUSE)) {
3473 page = rmqueue_pcplist(preferred_zone, zone, gfp_flags,
3474 migratetype, alloc_flags);
3475 goto out;
3476 }
3477 }
3478
3479 /*
3480 * We most definitely don't want callers attempting to
3481 * allocate greater than order-1 page units with __GFP_NOFAIL.
3482 */
3483 WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1));
3484 spin_lock_irqsave(&zone->lock, flags);
3485
3486 do {
3487 page = NULL;
3488 /*
3489 * order-0 request can reach here when the pcplist is skipped
3490 * due to non-CMA allocation context. HIGHATOMIC area is
3491 * reserved for high-order atomic allocation, so order-0
3492 * request should skip it.
3493 */
3494 if (order > 0 && alloc_flags & ALLOC_HARDER) {
3495 page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
3496 if (page)
3497 trace_mm_page_alloc_zone_locked(page, order, migratetype);
3498 }
3499 if (!page)
3500 page = __rmqueue(zone, order, migratetype, alloc_flags);
3501 } while (page && check_new_pages(page, order));
3502 spin_unlock(&zone->lock);
3503 if (!page)
3504 goto failed;
3505 __mod_zone_freepage_state(zone, -(1 << order),
3506 get_pcppage_migratetype(page));
3507
3508 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
3509 zone_statistics(preferred_zone, zone);
3510 local_irq_restore(flags);
3511
3512 out:
3513 /* Separate test+clear to avoid unnecessary atomics */
3514 if (test_bit(ZONE_BOOSTED_WATERMARK, &zone->flags)) {
3515 clear_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
3516 wakeup_kswapd(zone, 0, 0, zone_idx(zone));
3517 }
3518
3519 VM_BUG_ON_PAGE(page && bad_range(zone, page), page);
3520 return page;
3521
3522 failed:
3523 local_irq_restore(flags);
3524 return NULL;
3525 }
3526
3527 #ifdef CONFIG_FAIL_PAGE_ALLOC
3528
3529 static struct {
3530 struct fault_attr attr;
3531
3532 bool ignore_gfp_highmem;
3533 bool ignore_gfp_reclaim;
3534 u32 min_order;
3535 } fail_page_alloc = {
3536 .attr = FAULT_ATTR_INITIALIZER,
3537 .ignore_gfp_reclaim = true,
3538 .ignore_gfp_highmem = true,
3539 .min_order = 1,
3540 };
3541
setup_fail_page_alloc(char * str)3542 static int __init setup_fail_page_alloc(char *str)
3543 {
3544 return setup_fault_attr(&fail_page_alloc.attr, str);
3545 }
3546 __setup("fail_page_alloc=", setup_fail_page_alloc);
3547
__should_fail_alloc_page(gfp_t gfp_mask,unsigned int order)3548 static bool __should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3549 {
3550 if (order < fail_page_alloc.min_order)
3551 return false;
3552 if (gfp_mask & __GFP_NOFAIL)
3553 return false;
3554 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
3555 return false;
3556 if (fail_page_alloc.ignore_gfp_reclaim &&
3557 (gfp_mask & __GFP_DIRECT_RECLAIM))
3558 return false;
3559
3560 return should_fail(&fail_page_alloc.attr, 1 << order);
3561 }
3562
3563 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
3564
fail_page_alloc_debugfs(void)3565 static int __init fail_page_alloc_debugfs(void)
3566 {
3567 umode_t mode = S_IFREG | 0600;
3568 struct dentry *dir;
3569
3570 dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
3571 &fail_page_alloc.attr);
3572
3573 debugfs_create_bool("ignore-gfp-wait", mode, dir,
3574 &fail_page_alloc.ignore_gfp_reclaim);
3575 debugfs_create_bool("ignore-gfp-highmem", mode, dir,
3576 &fail_page_alloc.ignore_gfp_highmem);
3577 debugfs_create_u32("min-order", mode, dir, &fail_page_alloc.min_order);
3578
3579 return 0;
3580 }
3581
3582 late_initcall(fail_page_alloc_debugfs);
3583
3584 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
3585
3586 #else /* CONFIG_FAIL_PAGE_ALLOC */
3587
__should_fail_alloc_page(gfp_t gfp_mask,unsigned int order)3588 static inline bool __should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3589 {
3590 return false;
3591 }
3592
3593 #endif /* CONFIG_FAIL_PAGE_ALLOC */
3594
should_fail_alloc_page(gfp_t gfp_mask,unsigned int order)3595 noinline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3596 {
3597 return __should_fail_alloc_page(gfp_mask, order);
3598 }
3599 ALLOW_ERROR_INJECTION(should_fail_alloc_page, TRUE);
3600
__zone_watermark_unusable_free(struct zone * z,unsigned int order,unsigned int alloc_flags)3601 static inline long __zone_watermark_unusable_free(struct zone *z,
3602 unsigned int order, unsigned int alloc_flags)
3603 {
3604 const bool alloc_harder = (alloc_flags & (ALLOC_HARDER|ALLOC_OOM));
3605 long unusable_free = (1 << order) - 1;
3606
3607 /*
3608 * If the caller does not have rights to ALLOC_HARDER then subtract
3609 * the high-atomic reserves. This will over-estimate the size of the
3610 * atomic reserve but it avoids a search.
3611 */
3612 if (likely(!alloc_harder))
3613 unusable_free += z->nr_reserved_highatomic;
3614
3615 #ifdef CONFIG_CMA
3616 /* If allocation can't use CMA areas don't use free CMA pages */
3617 if (!(alloc_flags & ALLOC_CMA))
3618 unusable_free += zone_page_state(z, NR_FREE_CMA_PAGES);
3619 #endif
3620
3621 return unusable_free;
3622 }
3623
3624 /*
3625 * Return true if free base pages are above 'mark'. For high-order checks it
3626 * will return true of the order-0 watermark is reached and there is at least
3627 * one free page of a suitable size. Checking now avoids taking the zone lock
3628 * to check in the allocation paths if no pages are free.
3629 */
__zone_watermark_ok(struct zone * z,unsigned int order,unsigned long mark,int highest_zoneidx,unsigned int alloc_flags,long free_pages)3630 bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
3631 int highest_zoneidx, unsigned int alloc_flags,
3632 long free_pages)
3633 {
3634 long min = mark;
3635 int o;
3636 const bool alloc_harder = (alloc_flags & (ALLOC_HARDER|ALLOC_OOM));
3637
3638 /* free_pages may go negative - that's OK */
3639 free_pages -= __zone_watermark_unusable_free(z, order, alloc_flags);
3640
3641 if (alloc_flags & ALLOC_HIGH)
3642 min -= min / 2;
3643
3644 if (unlikely(alloc_harder)) {
3645 /*
3646 * OOM victims can try even harder than normal ALLOC_HARDER
3647 * users on the grounds that it's definitely going to be in
3648 * the exit path shortly and free memory. Any allocation it
3649 * makes during the free path will be small and short-lived.
3650 */
3651 if (alloc_flags & ALLOC_OOM)
3652 min -= min / 2;
3653 else
3654 min -= min / 4;
3655 }
3656
3657 /*
3658 * Check watermarks for an order-0 allocation request. If these
3659 * are not met, then a high-order request also cannot go ahead
3660 * even if a suitable page happened to be free.
3661 */
3662 if (free_pages <= min + z->lowmem_reserve[highest_zoneidx])
3663 return false;
3664
3665 /* If this is an order-0 request then the watermark is fine */
3666 if (!order)
3667 return true;
3668
3669 /* For a high-order request, check at least one suitable page is free */
3670 for (o = order; o < MAX_ORDER; o++) {
3671 struct free_area *area = &z->free_area[o];
3672 int mt;
3673
3674 if (!area->nr_free)
3675 continue;
3676
3677 for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
3678 if (!free_area_empty(area, mt))
3679 return true;
3680 }
3681
3682 #ifdef CONFIG_CMA
3683 if ((alloc_flags & ALLOC_CMA) &&
3684 !free_area_empty(area, MIGRATE_CMA)) {
3685 return true;
3686 }
3687 #endif
3688 if (alloc_harder && !free_area_empty(area, MIGRATE_HIGHATOMIC))
3689 return true;
3690 }
3691 return false;
3692 }
3693
zone_watermark_ok(struct zone * z,unsigned int order,unsigned long mark,int highest_zoneidx,unsigned int alloc_flags)3694 bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
3695 int highest_zoneidx, unsigned int alloc_flags)
3696 {
3697 return __zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags,
3698 zone_page_state(z, NR_FREE_PAGES));
3699 }
3700
zone_watermark_fast(struct zone * z,unsigned int order,unsigned long mark,int highest_zoneidx,unsigned int alloc_flags,gfp_t gfp_mask)3701 static inline bool zone_watermark_fast(struct zone *z, unsigned int order,
3702 unsigned long mark, int highest_zoneidx,
3703 unsigned int alloc_flags, gfp_t gfp_mask)
3704 {
3705 long free_pages;
3706
3707 free_pages = zone_page_state(z, NR_FREE_PAGES);
3708
3709 /*
3710 * Fast check for order-0 only. If this fails then the reserves
3711 * need to be calculated.
3712 */
3713 if (!order) {
3714 long usable_free;
3715 long reserved;
3716
3717 usable_free = free_pages;
3718 reserved = __zone_watermark_unusable_free(z, 0, alloc_flags);
3719
3720 /* reserved may over estimate high-atomic reserves. */
3721 usable_free -= min(usable_free, reserved);
3722 if (usable_free > mark + z->lowmem_reserve[highest_zoneidx])
3723 return true;
3724 }
3725
3726 if (__zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags,
3727 free_pages))
3728 return true;
3729 /*
3730 * Ignore watermark boosting for GFP_ATOMIC order-0 allocations
3731 * when checking the min watermark. The min watermark is the
3732 * point where boosting is ignored so that kswapd is woken up
3733 * when below the low watermark.
3734 */
3735 if (unlikely(!order && (gfp_mask & __GFP_ATOMIC) && z->watermark_boost
3736 && ((alloc_flags & ALLOC_WMARK_MASK) == WMARK_MIN))) {
3737 mark = z->_watermark[WMARK_MIN];
3738 return __zone_watermark_ok(z, order, mark, highest_zoneidx,
3739 alloc_flags, free_pages);
3740 }
3741
3742 return false;
3743 }
3744
zone_watermark_ok_safe(struct zone * z,unsigned int order,unsigned long mark,int highest_zoneidx)3745 bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
3746 unsigned long mark, int highest_zoneidx)
3747 {
3748 long free_pages = zone_page_state(z, NR_FREE_PAGES);
3749
3750 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
3751 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
3752
3753 return __zone_watermark_ok(z, order, mark, highest_zoneidx, 0,
3754 free_pages);
3755 }
3756
3757 #ifdef CONFIG_NUMA
zone_allows_reclaim(struct zone * local_zone,struct zone * zone)3758 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3759 {
3760 return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <=
3761 node_reclaim_distance;
3762 }
3763 #else /* CONFIG_NUMA */
zone_allows_reclaim(struct zone * local_zone,struct zone * zone)3764 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3765 {
3766 return true;
3767 }
3768 #endif /* CONFIG_NUMA */
3769
3770 /*
3771 * The restriction on ZONE_DMA32 as being a suitable zone to use to avoid
3772 * fragmentation is subtle. If the preferred zone was HIGHMEM then
3773 * premature use of a lower zone may cause lowmem pressure problems that
3774 * are worse than fragmentation. If the next zone is ZONE_DMA then it is
3775 * probably too small. It only makes sense to spread allocations to avoid
3776 * fragmentation between the Normal and DMA32 zones.
3777 */
3778 static inline unsigned int
alloc_flags_nofragment(struct zone * zone,gfp_t gfp_mask)3779 alloc_flags_nofragment(struct zone *zone, gfp_t gfp_mask)
3780 {
3781 unsigned int alloc_flags;
3782
3783 /*
3784 * __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD
3785 * to save a branch.
3786 */
3787 alloc_flags = (__force int) (gfp_mask & __GFP_KSWAPD_RECLAIM);
3788
3789 #ifdef CONFIG_ZONE_DMA32
3790 if (!zone)
3791 return alloc_flags;
3792
3793 if (zone_idx(zone) != ZONE_NORMAL)
3794 return alloc_flags;
3795
3796 /*
3797 * If ZONE_DMA32 exists, assume it is the one after ZONE_NORMAL and
3798 * the pointer is within zone->zone_pgdat->node_zones[]. Also assume
3799 * on UMA that if Normal is populated then so is DMA32.
3800 */
3801 BUILD_BUG_ON(ZONE_NORMAL - ZONE_DMA32 != 1);
3802 if (nr_online_nodes > 1 && !populated_zone(--zone))
3803 return alloc_flags;
3804
3805 alloc_flags |= ALLOC_NOFRAGMENT;
3806 #endif /* CONFIG_ZONE_DMA32 */
3807 return alloc_flags;
3808 }
3809
current_alloc_flags(gfp_t gfp_mask,unsigned int alloc_flags)3810 static inline unsigned int current_alloc_flags(gfp_t gfp_mask,
3811 unsigned int alloc_flags)
3812 {
3813 #ifdef CONFIG_CMA
3814 unsigned int pflags = current->flags;
3815
3816 if (!(pflags & PF_MEMALLOC_NOCMA) &&
3817 gfp_migratetype(gfp_mask) == get_cma_migratetype())
3818 alloc_flags |= ALLOC_CMA;
3819
3820 #endif
3821 return alloc_flags;
3822 }
3823
3824 /*
3825 * get_page_from_freelist goes through the zonelist trying to allocate
3826 * a page.
3827 */
3828 static struct page *
get_page_from_freelist(gfp_t gfp_mask,unsigned int order,int alloc_flags,const struct alloc_context * ac)3829 get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
3830 const struct alloc_context *ac)
3831 {
3832 struct zoneref *z;
3833 struct zone *zone;
3834 struct pglist_data *last_pgdat_dirty_limit = NULL;
3835 bool no_fallback;
3836
3837 retry:
3838 /*
3839 * Scan zonelist, looking for a zone with enough free.
3840 * See also __cpuset_node_allowed() comment in kernel/cpuset.c.
3841 */
3842 no_fallback = alloc_flags & ALLOC_NOFRAGMENT;
3843 z = ac->preferred_zoneref;
3844 for_next_zone_zonelist_nodemask(zone, z, ac->highest_zoneidx,
3845 ac->nodemask) {
3846 struct page *page;
3847 unsigned long mark;
3848
3849 if (cpusets_enabled() &&
3850 (alloc_flags & ALLOC_CPUSET) &&
3851 !__cpuset_zone_allowed(zone, gfp_mask))
3852 continue;
3853 /*
3854 * When allocating a page cache page for writing, we
3855 * want to get it from a node that is within its dirty
3856 * limit, such that no single node holds more than its
3857 * proportional share of globally allowed dirty pages.
3858 * The dirty limits take into account the node's
3859 * lowmem reserves and high watermark so that kswapd
3860 * should be able to balance it without having to
3861 * write pages from its LRU list.
3862 *
3863 * XXX: For now, allow allocations to potentially
3864 * exceed the per-node dirty limit in the slowpath
3865 * (spread_dirty_pages unset) before going into reclaim,
3866 * which is important when on a NUMA setup the allowed
3867 * nodes are together not big enough to reach the
3868 * global limit. The proper fix for these situations
3869 * will require awareness of nodes in the
3870 * dirty-throttling and the flusher threads.
3871 */
3872 if (ac->spread_dirty_pages) {
3873 if (last_pgdat_dirty_limit == zone->zone_pgdat)
3874 continue;
3875
3876 if (!node_dirty_ok(zone->zone_pgdat)) {
3877 last_pgdat_dirty_limit = zone->zone_pgdat;
3878 continue;
3879 }
3880 }
3881
3882 if (no_fallback && nr_online_nodes > 1 &&
3883 zone != ac->preferred_zoneref->zone) {
3884 int local_nid;
3885
3886 /*
3887 * If moving to a remote node, retry but allow
3888 * fragmenting fallbacks. Locality is more important
3889 * than fragmentation avoidance.
3890 */
3891 local_nid = zone_to_nid(ac->preferred_zoneref->zone);
3892 if (zone_to_nid(zone) != local_nid) {
3893 alloc_flags &= ~ALLOC_NOFRAGMENT;
3894 goto retry;
3895 }
3896 }
3897
3898 mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK);
3899 if (!zone_watermark_fast(zone, order, mark,
3900 ac->highest_zoneidx, alloc_flags,
3901 gfp_mask)) {
3902 int ret;
3903
3904 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
3905 /*
3906 * Watermark failed for this zone, but see if we can
3907 * grow this zone if it contains deferred pages.
3908 */
3909 if (static_branch_unlikely(&deferred_pages)) {
3910 if (_deferred_grow_zone(zone, order))
3911 goto try_this_zone;
3912 }
3913 #endif
3914 /* Checked here to keep the fast path fast */
3915 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
3916 if (alloc_flags & ALLOC_NO_WATERMARKS)
3917 goto try_this_zone;
3918
3919 if (node_reclaim_mode == 0 ||
3920 !zone_allows_reclaim(ac->preferred_zoneref->zone, zone))
3921 continue;
3922
3923 ret = node_reclaim(zone->zone_pgdat, gfp_mask, order);
3924 switch (ret) {
3925 case NODE_RECLAIM_NOSCAN:
3926 /* did not scan */
3927 continue;
3928 case NODE_RECLAIM_FULL:
3929 /* scanned but unreclaimable */
3930 continue;
3931 default:
3932 /* did we reclaim enough */
3933 if (zone_watermark_ok(zone, order, mark,
3934 ac->highest_zoneidx, alloc_flags))
3935 goto try_this_zone;
3936
3937 continue;
3938 }
3939 }
3940
3941 try_this_zone:
3942 page = rmqueue(ac->preferred_zoneref->zone, zone, order,
3943 gfp_mask, alloc_flags, ac->migratetype);
3944 if (page) {
3945 prep_new_page(page, order, gfp_mask, alloc_flags);
3946
3947 /*
3948 * If this is a high-order atomic allocation then check
3949 * if the pageblock should be reserved for the future
3950 */
3951 if (unlikely(order && (alloc_flags & ALLOC_HARDER)))
3952 reserve_highatomic_pageblock(page, zone, order);
3953
3954 return page;
3955 } else {
3956 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
3957 /* Try again if zone has deferred pages */
3958 if (static_branch_unlikely(&deferred_pages)) {
3959 if (_deferred_grow_zone(zone, order))
3960 goto try_this_zone;
3961 }
3962 #endif
3963 }
3964 }
3965
3966 /*
3967 * It's possible on a UMA machine to get through all zones that are
3968 * fragmented. If avoiding fragmentation, reset and try again.
3969 */
3970 if (no_fallback) {
3971 alloc_flags &= ~ALLOC_NOFRAGMENT;
3972 goto retry;
3973 }
3974
3975 return NULL;
3976 }
3977
warn_alloc_show_mem(gfp_t gfp_mask,nodemask_t * nodemask)3978 static void warn_alloc_show_mem(gfp_t gfp_mask, nodemask_t *nodemask)
3979 {
3980 unsigned int filter = SHOW_MEM_FILTER_NODES;
3981
3982 /*
3983 * This documents exceptions given to allocations in certain
3984 * contexts that are allowed to allocate outside current's set
3985 * of allowed nodes.
3986 */
3987 if (!(gfp_mask & __GFP_NOMEMALLOC))
3988 if (tsk_is_oom_victim(current) ||
3989 (current->flags & (PF_MEMALLOC | PF_EXITING)))
3990 filter &= ~SHOW_MEM_FILTER_NODES;
3991 if (in_interrupt() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
3992 filter &= ~SHOW_MEM_FILTER_NODES;
3993
3994 show_mem(filter, nodemask);
3995 }
3996
warn_alloc(gfp_t gfp_mask,nodemask_t * nodemask,const char * fmt,...)3997 void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...)
3998 {
3999 struct va_format vaf;
4000 va_list args;
4001 static DEFINE_RATELIMIT_STATE(nopage_rs, 10*HZ, 1);
4002
4003 if ((gfp_mask & __GFP_NOWARN) ||
4004 !__ratelimit(&nopage_rs) ||
4005 ((gfp_mask & __GFP_DMA) && !has_managed_dma()))
4006 return;
4007
4008 va_start(args, fmt);
4009 vaf.fmt = fmt;
4010 vaf.va = &args;
4011 pr_warn("%s: %pV, mode:%#x(%pGg), nodemask=%*pbl",
4012 current->comm, &vaf, gfp_mask, &gfp_mask,
4013 nodemask_pr_args(nodemask));
4014 va_end(args);
4015
4016 cpuset_print_current_mems_allowed();
4017 pr_cont("\n");
4018 dump_stack();
4019 warn_alloc_show_mem(gfp_mask, nodemask);
4020 }
4021
4022 static inline struct page *
__alloc_pages_cpuset_fallback(gfp_t gfp_mask,unsigned int order,unsigned int alloc_flags,const struct alloc_context * ac)4023 __alloc_pages_cpuset_fallback(gfp_t gfp_mask, unsigned int order,
4024 unsigned int alloc_flags,
4025 const struct alloc_context *ac)
4026 {
4027 struct page *page;
4028
4029 page = get_page_from_freelist(gfp_mask, order,
4030 alloc_flags|ALLOC_CPUSET, ac);
4031 /*
4032 * fallback to ignore cpuset restriction if our nodes
4033 * are depleted
4034 */
4035 if (!page)
4036 page = get_page_from_freelist(gfp_mask, order,
4037 alloc_flags, ac);
4038
4039 return page;
4040 }
4041
4042 static inline struct page *
__alloc_pages_may_oom(gfp_t gfp_mask,unsigned int order,const struct alloc_context * ac,unsigned long * did_some_progress)4043 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
4044 const struct alloc_context *ac, unsigned long *did_some_progress)
4045 {
4046 struct oom_control oc = {
4047 .zonelist = ac->zonelist,
4048 .nodemask = ac->nodemask,
4049 .memcg = NULL,
4050 .gfp_mask = gfp_mask,
4051 .order = order,
4052 };
4053 struct page *page;
4054
4055 *did_some_progress = 0;
4056
4057 /*
4058 * Acquire the oom lock. If that fails, somebody else is
4059 * making progress for us.
4060 */
4061 if (!mutex_trylock(&oom_lock)) {
4062 *did_some_progress = 1;
4063 schedule_timeout_uninterruptible(1);
4064 return NULL;
4065 }
4066
4067 /*
4068 * Go through the zonelist yet one more time, keep very high watermark
4069 * here, this is only to catch a parallel oom killing, we must fail if
4070 * we're still under heavy pressure. But make sure that this reclaim
4071 * attempt shall not depend on __GFP_DIRECT_RECLAIM && !__GFP_NORETRY
4072 * allocation which will never fail due to oom_lock already held.
4073 */
4074 page = get_page_from_freelist((gfp_mask | __GFP_HARDWALL) &
4075 ~__GFP_DIRECT_RECLAIM, order,
4076 ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
4077 if (page)
4078 goto out;
4079
4080 /* Coredumps can quickly deplete all memory reserves */
4081 if (current->flags & PF_DUMPCORE)
4082 goto out;
4083 /* The OOM killer will not help higher order allocs */
4084 if (order > PAGE_ALLOC_COSTLY_ORDER)
4085 goto out;
4086 /*
4087 * We have already exhausted all our reclaim opportunities without any
4088 * success so it is time to admit defeat. We will skip the OOM killer
4089 * because it is very likely that the caller has a more reasonable
4090 * fallback than shooting a random task.
4091 *
4092 * The OOM killer may not free memory on a specific node.
4093 */
4094 if (gfp_mask & (__GFP_RETRY_MAYFAIL | __GFP_THISNODE))
4095 goto out;
4096 /* The OOM killer does not needlessly kill tasks for lowmem */
4097 if (ac->highest_zoneidx < ZONE_NORMAL)
4098 goto out;
4099 if (pm_suspended_storage())
4100 goto out;
4101 /*
4102 * XXX: GFP_NOFS allocations should rather fail than rely on
4103 * other request to make a forward progress.
4104 * We are in an unfortunate situation where out_of_memory cannot
4105 * do much for this context but let's try it to at least get
4106 * access to memory reserved if the current task is killed (see
4107 * out_of_memory). Once filesystems are ready to handle allocation
4108 * failures more gracefully we should just bail out here.
4109 */
4110
4111 /* Exhausted what can be done so it's blame time */
4112 if (out_of_memory(&oc) || WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) {
4113 *did_some_progress = 1;
4114
4115 /*
4116 * Help non-failing allocations by giving them access to memory
4117 * reserves
4118 */
4119 if (gfp_mask & __GFP_NOFAIL)
4120 page = __alloc_pages_cpuset_fallback(gfp_mask, order,
4121 ALLOC_NO_WATERMARKS, ac);
4122 }
4123 out:
4124 mutex_unlock(&oom_lock);
4125 return page;
4126 }
4127
4128 /*
4129 * Maximum number of compaction retries wit a progress before OOM
4130 * killer is consider as the only way to move forward.
4131 */
4132 #define MAX_COMPACT_RETRIES 16
4133
4134 #ifdef CONFIG_COMPACTION
4135 /* Try memory compaction for high-order allocations before reclaim */
4136 static struct page *
__alloc_pages_direct_compact(gfp_t gfp_mask,unsigned int order,unsigned int alloc_flags,const struct alloc_context * ac,enum compact_priority prio,enum compact_result * compact_result)4137 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
4138 unsigned int alloc_flags, const struct alloc_context *ac,
4139 enum compact_priority prio, enum compact_result *compact_result)
4140 {
4141 struct page *page = NULL;
4142 unsigned long pflags;
4143 unsigned int noreclaim_flag;
4144
4145 if (!order)
4146 return NULL;
4147
4148 psi_memstall_enter(&pflags);
4149 noreclaim_flag = memalloc_noreclaim_save();
4150
4151 *compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
4152 prio, &page);
4153
4154 memalloc_noreclaim_restore(noreclaim_flag);
4155 psi_memstall_leave(&pflags);
4156
4157 /*
4158 * At least in one zone compaction wasn't deferred or skipped, so let's
4159 * count a compaction stall
4160 */
4161 count_vm_event(COMPACTSTALL);
4162
4163 /* Prep a captured page if available */
4164 if (page)
4165 prep_new_page(page, order, gfp_mask, alloc_flags);
4166
4167 /* Try get a page from the freelist if available */
4168 if (!page)
4169 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4170
4171 if (page) {
4172 struct zone *zone = page_zone(page);
4173
4174 zone->compact_blockskip_flush = false;
4175 compaction_defer_reset(zone, order, true);
4176 count_vm_event(COMPACTSUCCESS);
4177 return page;
4178 }
4179
4180 /*
4181 * It's bad if compaction run occurs and fails. The most likely reason
4182 * is that pages exist, but not enough to satisfy watermarks.
4183 */
4184 count_vm_event(COMPACTFAIL);
4185
4186 cond_resched();
4187
4188 return NULL;
4189 }
4190
4191 static inline bool
should_compact_retry(struct alloc_context * ac,int order,int alloc_flags,enum compact_result compact_result,enum compact_priority * compact_priority,int * compaction_retries)4192 should_compact_retry(struct alloc_context *ac, int order, int alloc_flags,
4193 enum compact_result compact_result,
4194 enum compact_priority *compact_priority,
4195 int *compaction_retries)
4196 {
4197 int max_retries = MAX_COMPACT_RETRIES;
4198 int min_priority;
4199 bool ret = false;
4200 int retries = *compaction_retries;
4201 enum compact_priority priority = *compact_priority;
4202
4203 if (!order)
4204 return false;
4205
4206 if (compaction_made_progress(compact_result))
4207 (*compaction_retries)++;
4208
4209 /*
4210 * compaction considers all the zone as desperately out of memory
4211 * so it doesn't really make much sense to retry except when the
4212 * failure could be caused by insufficient priority
4213 */
4214 if (compaction_failed(compact_result))
4215 goto check_priority;
4216
4217 /*
4218 * compaction was skipped because there are not enough order-0 pages
4219 * to work with, so we retry only if it looks like reclaim can help.
4220 */
4221 if (compaction_needs_reclaim(compact_result)) {
4222 ret = compaction_zonelist_suitable(ac, order, alloc_flags);
4223 goto out;
4224 }
4225
4226 /*
4227 * make sure the compaction wasn't deferred or didn't bail out early
4228 * due to locks contention before we declare that we should give up.
4229 * But the next retry should use a higher priority if allowed, so
4230 * we don't just keep bailing out endlessly.
4231 */
4232 if (compaction_withdrawn(compact_result)) {
4233 goto check_priority;
4234 }
4235
4236 /*
4237 * !costly requests are much more important than __GFP_RETRY_MAYFAIL
4238 * costly ones because they are de facto nofail and invoke OOM
4239 * killer to move on while costly can fail and users are ready
4240 * to cope with that. 1/4 retries is rather arbitrary but we
4241 * would need much more detailed feedback from compaction to
4242 * make a better decision.
4243 */
4244 if (order > PAGE_ALLOC_COSTLY_ORDER)
4245 max_retries /= 4;
4246 if (*compaction_retries <= max_retries) {
4247 ret = true;
4248 goto out;
4249 }
4250
4251 /*
4252 * Make sure there are attempts at the highest priority if we exhausted
4253 * all retries or failed at the lower priorities.
4254 */
4255 check_priority:
4256 min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ?
4257 MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY;
4258
4259 if (*compact_priority > min_priority) {
4260 (*compact_priority)--;
4261 *compaction_retries = 0;
4262 ret = true;
4263 }
4264 out:
4265 trace_compact_retry(order, priority, compact_result, retries, max_retries, ret);
4266 return ret;
4267 }
4268 #else
4269 static inline struct page *
__alloc_pages_direct_compact(gfp_t gfp_mask,unsigned int order,unsigned int alloc_flags,const struct alloc_context * ac,enum compact_priority prio,enum compact_result * compact_result)4270 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
4271 unsigned int alloc_flags, const struct alloc_context *ac,
4272 enum compact_priority prio, enum compact_result *compact_result)
4273 {
4274 *compact_result = COMPACT_SKIPPED;
4275 return NULL;
4276 }
4277
4278 static inline bool
should_compact_retry(struct alloc_context * ac,unsigned int order,int alloc_flags,enum compact_result compact_result,enum compact_priority * compact_priority,int * compaction_retries)4279 should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags,
4280 enum compact_result compact_result,
4281 enum compact_priority *compact_priority,
4282 int *compaction_retries)
4283 {
4284 struct zone *zone;
4285 struct zoneref *z;
4286
4287 if (!order || order > PAGE_ALLOC_COSTLY_ORDER)
4288 return false;
4289
4290 /*
4291 * There are setups with compaction disabled which would prefer to loop
4292 * inside the allocator rather than hit the oom killer prematurely.
4293 * Let's give them a good hope and keep retrying while the order-0
4294 * watermarks are OK.
4295 */
4296 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
4297 ac->highest_zoneidx, ac->nodemask) {
4298 if (zone_watermark_ok(zone, 0, min_wmark_pages(zone),
4299 ac->highest_zoneidx, alloc_flags))
4300 return true;
4301 }
4302 return false;
4303 }
4304 #endif /* CONFIG_COMPACTION */
4305
4306 #ifdef CONFIG_LOCKDEP
4307 static struct lockdep_map __fs_reclaim_map =
4308 STATIC_LOCKDEP_MAP_INIT("fs_reclaim", &__fs_reclaim_map);
4309
__need_fs_reclaim(gfp_t gfp_mask)4310 static bool __need_fs_reclaim(gfp_t gfp_mask)
4311 {
4312 gfp_mask = current_gfp_context(gfp_mask);
4313
4314 /* no reclaim without waiting on it */
4315 if (!(gfp_mask & __GFP_DIRECT_RECLAIM))
4316 return false;
4317
4318 /* this guy won't enter reclaim */
4319 if (current->flags & PF_MEMALLOC)
4320 return false;
4321
4322 /* We're only interested __GFP_FS allocations for now */
4323 if (!(gfp_mask & __GFP_FS))
4324 return false;
4325
4326 if (gfp_mask & __GFP_NOLOCKDEP)
4327 return false;
4328
4329 return true;
4330 }
4331
__fs_reclaim_acquire(void)4332 void __fs_reclaim_acquire(void)
4333 {
4334 lock_map_acquire(&__fs_reclaim_map);
4335 }
4336
__fs_reclaim_release(void)4337 void __fs_reclaim_release(void)
4338 {
4339 lock_map_release(&__fs_reclaim_map);
4340 }
4341
fs_reclaim_acquire(gfp_t gfp_mask)4342 void fs_reclaim_acquire(gfp_t gfp_mask)
4343 {
4344 if (__need_fs_reclaim(gfp_mask))
4345 __fs_reclaim_acquire();
4346 }
4347 EXPORT_SYMBOL_GPL(fs_reclaim_acquire);
4348
fs_reclaim_release(gfp_t gfp_mask)4349 void fs_reclaim_release(gfp_t gfp_mask)
4350 {
4351 if (__need_fs_reclaim(gfp_mask))
4352 __fs_reclaim_release();
4353 }
4354 EXPORT_SYMBOL_GPL(fs_reclaim_release);
4355 #endif
4356
4357 /*
4358 * Zonelists may change due to hotplug during allocation. Detect when zonelists
4359 * have been rebuilt so allocation retries. Reader side does not lock and
4360 * retries the allocation if zonelist changes. Writer side is protected by the
4361 * embedded spin_lock.
4362 */
4363 static DEFINE_SEQLOCK(zonelist_update_seq);
4364
zonelist_iter_begin(void)4365 static unsigned int zonelist_iter_begin(void)
4366 {
4367 if (IS_ENABLED(CONFIG_MEMORY_HOTREMOVE))
4368 return read_seqbegin(&zonelist_update_seq);
4369
4370 return 0;
4371 }
4372
check_retry_zonelist(unsigned int seq)4373 static unsigned int check_retry_zonelist(unsigned int seq)
4374 {
4375 if (IS_ENABLED(CONFIG_MEMORY_HOTREMOVE))
4376 return read_seqretry(&zonelist_update_seq, seq);
4377
4378 return seq;
4379 }
4380
4381 /* Perform direct synchronous page reclaim */
4382 static unsigned long
__perform_reclaim(gfp_t gfp_mask,unsigned int order,const struct alloc_context * ac)4383 __perform_reclaim(gfp_t gfp_mask, unsigned int order,
4384 const struct alloc_context *ac)
4385 {
4386 unsigned int noreclaim_flag;
4387 unsigned long pflags, progress;
4388
4389 cond_resched();
4390
4391 /* We now go into synchronous reclaim */
4392 cpuset_memory_pressure_bump();
4393 psi_memstall_enter(&pflags);
4394 fs_reclaim_acquire(gfp_mask);
4395 noreclaim_flag = memalloc_noreclaim_save();
4396
4397 progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
4398 ac->nodemask);
4399
4400 memalloc_noreclaim_restore(noreclaim_flag);
4401 fs_reclaim_release(gfp_mask);
4402 psi_memstall_leave(&pflags);
4403
4404 cond_resched();
4405
4406 return progress;
4407 }
4408
4409 /* The really slow allocator path where we enter direct reclaim */
4410 static inline struct page *
__alloc_pages_direct_reclaim(gfp_t gfp_mask,unsigned int order,unsigned int alloc_flags,const struct alloc_context * ac,unsigned long * did_some_progress)4411 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
4412 unsigned int alloc_flags, const struct alloc_context *ac,
4413 unsigned long *did_some_progress)
4414 {
4415 struct page *page = NULL;
4416 bool drained = false;
4417
4418 *did_some_progress = __perform_reclaim(gfp_mask, order, ac);
4419 if (unlikely(!(*did_some_progress)))
4420 return NULL;
4421
4422 retry:
4423 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4424
4425 /*
4426 * If an allocation failed after direct reclaim, it could be because
4427 * pages are pinned on the per-cpu lists or in high alloc reserves.
4428 * Shrink them and try again
4429 */
4430 if (!page && !drained) {
4431 unreserve_highatomic_pageblock(ac, false);
4432 #ifdef CONFIG_RECLAIM_ACCT
4433 reclaimacct_substage_start(RA_DRAINALLPAGES);
4434 #endif
4435 drain_all_pages(NULL);
4436 #ifdef CONFIG_RECLAIM_ACCT
4437 reclaimacct_substage_end(RA_DRAINALLPAGES, 0, NULL);
4438 #endif
4439 drained = true;
4440 goto retry;
4441 }
4442
4443 return page;
4444 }
4445
wake_all_kswapds(unsigned int order,gfp_t gfp_mask,const struct alloc_context * ac)4446 static void wake_all_kswapds(unsigned int order, gfp_t gfp_mask,
4447 const struct alloc_context *ac)
4448 {
4449 struct zoneref *z;
4450 struct zone *zone;
4451 pg_data_t *last_pgdat = NULL;
4452 enum zone_type highest_zoneidx = ac->highest_zoneidx;
4453
4454 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, highest_zoneidx,
4455 ac->nodemask) {
4456 if (last_pgdat != zone->zone_pgdat)
4457 wakeup_kswapd(zone, gfp_mask, order, highest_zoneidx);
4458 last_pgdat = zone->zone_pgdat;
4459 }
4460 }
4461
4462 static inline unsigned int
gfp_to_alloc_flags(gfp_t gfp_mask)4463 gfp_to_alloc_flags(gfp_t gfp_mask)
4464 {
4465 unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
4466
4467 /*
4468 * __GFP_HIGH is assumed to be the same as ALLOC_HIGH
4469 * and __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD
4470 * to save two branches.
4471 */
4472 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
4473 BUILD_BUG_ON(__GFP_KSWAPD_RECLAIM != (__force gfp_t) ALLOC_KSWAPD);
4474
4475 /*
4476 * The caller may dip into page reserves a bit more if the caller
4477 * cannot run direct reclaim, or if the caller has realtime scheduling
4478 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
4479 * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH).
4480 */
4481 alloc_flags |= (__force int)
4482 (gfp_mask & (__GFP_HIGH | __GFP_KSWAPD_RECLAIM));
4483
4484 if (gfp_mask & __GFP_ATOMIC) {
4485 /*
4486 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
4487 * if it can't schedule.
4488 */
4489 if (!(gfp_mask & __GFP_NOMEMALLOC))
4490 alloc_flags |= ALLOC_HARDER;
4491 /*
4492 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
4493 * comment for __cpuset_node_allowed().
4494 */
4495 alloc_flags &= ~ALLOC_CPUSET;
4496 } else if (unlikely(rt_task(current)) && !in_interrupt())
4497 alloc_flags |= ALLOC_HARDER;
4498
4499 alloc_flags = current_alloc_flags(gfp_mask, alloc_flags);
4500
4501 return alloc_flags;
4502 }
4503
oom_reserves_allowed(struct task_struct * tsk)4504 static bool oom_reserves_allowed(struct task_struct *tsk)
4505 {
4506 if (!tsk_is_oom_victim(tsk))
4507 return false;
4508
4509 /*
4510 * !MMU doesn't have oom reaper so give access to memory reserves
4511 * only to the thread with TIF_MEMDIE set
4512 */
4513 if (!IS_ENABLED(CONFIG_MMU) && !test_thread_flag(TIF_MEMDIE))
4514 return false;
4515
4516 return true;
4517 }
4518
4519 /*
4520 * Distinguish requests which really need access to full memory
4521 * reserves from oom victims which can live with a portion of it
4522 */
__gfp_pfmemalloc_flags(gfp_t gfp_mask)4523 static inline int __gfp_pfmemalloc_flags(gfp_t gfp_mask)
4524 {
4525 if (unlikely(gfp_mask & __GFP_NOMEMALLOC))
4526 return 0;
4527 if (gfp_mask & __GFP_MEMALLOC)
4528 return ALLOC_NO_WATERMARKS;
4529 if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
4530 return ALLOC_NO_WATERMARKS;
4531 if (!in_interrupt()) {
4532 if (current->flags & PF_MEMALLOC)
4533 return ALLOC_NO_WATERMARKS;
4534 else if (oom_reserves_allowed(current))
4535 return ALLOC_OOM;
4536 }
4537
4538 return 0;
4539 }
4540
gfp_pfmemalloc_allowed(gfp_t gfp_mask)4541 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
4542 {
4543 return !!__gfp_pfmemalloc_flags(gfp_mask);
4544 }
4545
4546 /*
4547 * Checks whether it makes sense to retry the reclaim to make a forward progress
4548 * for the given allocation request.
4549 *
4550 * We give up when we either have tried MAX_RECLAIM_RETRIES in a row
4551 * without success, or when we couldn't even meet the watermark if we
4552 * reclaimed all remaining pages on the LRU lists.
4553 *
4554 * Returns true if a retry is viable or false to enter the oom path.
4555 */
4556 static inline bool
should_reclaim_retry(gfp_t gfp_mask,unsigned order,struct alloc_context * ac,int alloc_flags,bool did_some_progress,int * no_progress_loops)4557 should_reclaim_retry(gfp_t gfp_mask, unsigned order,
4558 struct alloc_context *ac, int alloc_flags,
4559 bool did_some_progress, int *no_progress_loops)
4560 {
4561 struct zone *zone;
4562 struct zoneref *z;
4563 bool ret = false;
4564
4565 /*
4566 * Costly allocations might have made a progress but this doesn't mean
4567 * their order will become available due to high fragmentation so
4568 * always increment the no progress counter for them
4569 */
4570 if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER)
4571 *no_progress_loops = 0;
4572 else
4573 (*no_progress_loops)++;
4574
4575 /*
4576 * Make sure we converge to OOM if we cannot make any progress
4577 * several times in the row.
4578 */
4579 if (*no_progress_loops > MAX_RECLAIM_RETRIES) {
4580 /* Before OOM, exhaust highatomic_reserve */
4581 return unreserve_highatomic_pageblock(ac, true);
4582 }
4583
4584 /*
4585 * Keep reclaiming pages while there is a chance this will lead
4586 * somewhere. If none of the target zones can satisfy our allocation
4587 * request even if all reclaimable pages are considered then we are
4588 * screwed and have to go OOM.
4589 */
4590 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
4591 ac->highest_zoneidx, ac->nodemask) {
4592 unsigned long available;
4593 unsigned long reclaimable;
4594 unsigned long min_wmark = min_wmark_pages(zone);
4595 bool wmark;
4596
4597 available = reclaimable = zone_reclaimable_pages(zone);
4598 available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
4599
4600 /*
4601 * Would the allocation succeed if we reclaimed all
4602 * reclaimable pages?
4603 */
4604 wmark = __zone_watermark_ok(zone, order, min_wmark,
4605 ac->highest_zoneidx, alloc_flags, available);
4606 trace_reclaim_retry_zone(z, order, reclaimable,
4607 available, min_wmark, *no_progress_loops, wmark);
4608 if (wmark) {
4609 /*
4610 * If we didn't make any progress and have a lot of
4611 * dirty + writeback pages then we should wait for
4612 * an IO to complete to slow down the reclaim and
4613 * prevent from pre mature OOM
4614 */
4615 if (!did_some_progress) {
4616 unsigned long write_pending;
4617
4618 write_pending = zone_page_state_snapshot(zone,
4619 NR_ZONE_WRITE_PENDING);
4620
4621 if (2 * write_pending > reclaimable) {
4622 congestion_wait(BLK_RW_ASYNC, HZ/10);
4623 return true;
4624 }
4625 }
4626
4627 ret = true;
4628 goto out;
4629 }
4630 }
4631
4632 out:
4633 /*
4634 * Memory allocation/reclaim might be called from a WQ context and the
4635 * current implementation of the WQ concurrency control doesn't
4636 * recognize that a particular WQ is congested if the worker thread is
4637 * looping without ever sleeping. Therefore we have to do a short sleep
4638 * here rather than calling cond_resched().
4639 */
4640 if (current->flags & PF_WQ_WORKER)
4641 schedule_timeout_uninterruptible(1);
4642 else
4643 cond_resched();
4644 return ret;
4645 }
4646
4647 static inline bool
check_retry_cpuset(int cpuset_mems_cookie,struct alloc_context * ac)4648 check_retry_cpuset(int cpuset_mems_cookie, struct alloc_context *ac)
4649 {
4650 /*
4651 * It's possible that cpuset's mems_allowed and the nodemask from
4652 * mempolicy don't intersect. This should be normally dealt with by
4653 * policy_nodemask(), but it's possible to race with cpuset update in
4654 * such a way the check therein was true, and then it became false
4655 * before we got our cpuset_mems_cookie here.
4656 * This assumes that for all allocations, ac->nodemask can come only
4657 * from MPOL_BIND mempolicy (whose documented semantics is to be ignored
4658 * when it does not intersect with the cpuset restrictions) or the
4659 * caller can deal with a violated nodemask.
4660 */
4661 if (cpusets_enabled() && ac->nodemask &&
4662 !cpuset_nodemask_valid_mems_allowed(ac->nodemask)) {
4663 ac->nodemask = NULL;
4664 return true;
4665 }
4666
4667 /*
4668 * When updating a task's mems_allowed or mempolicy nodemask, it is
4669 * possible to race with parallel threads in such a way that our
4670 * allocation can fail while the mask is being updated. If we are about
4671 * to fail, check if the cpuset changed during allocation and if so,
4672 * retry.
4673 */
4674 if (read_mems_allowed_retry(cpuset_mems_cookie))
4675 return true;
4676
4677 return false;
4678 }
4679
4680 static inline struct page *
__alloc_pages_slowpath(gfp_t gfp_mask,unsigned int order,struct alloc_context * ac)4681 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
4682 struct alloc_context *ac)
4683 {
4684 bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
4685 const bool costly_order = order > PAGE_ALLOC_COSTLY_ORDER;
4686 struct page *page = NULL;
4687 unsigned int alloc_flags;
4688 unsigned long did_some_progress;
4689 enum compact_priority compact_priority;
4690 enum compact_result compact_result;
4691 int compaction_retries;
4692 int no_progress_loops;
4693 unsigned int cpuset_mems_cookie;
4694 unsigned int zonelist_iter_cookie;
4695 int reserve_flags;
4696 #ifdef CONFIG_RECLAIM_ACCT
4697 struct reclaim_acct ra = {0};
4698 #endif
4699
4700 /*
4701 * We also sanity check to catch abuse of atomic reserves being used by
4702 * callers that are not in atomic context.
4703 */
4704 if (WARN_ON_ONCE((gfp_mask & (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)) ==
4705 (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)))
4706 gfp_mask &= ~__GFP_ATOMIC;
4707
4708 restart:
4709 compaction_retries = 0;
4710 no_progress_loops = 0;
4711 compact_priority = DEF_COMPACT_PRIORITY;
4712 cpuset_mems_cookie = read_mems_allowed_begin();
4713 zonelist_iter_cookie = zonelist_iter_begin();
4714
4715 /*
4716 * The fast path uses conservative alloc_flags to succeed only until
4717 * kswapd needs to be woken up, and to avoid the cost of setting up
4718 * alloc_flags precisely. So we do that now.
4719 */
4720 alloc_flags = gfp_to_alloc_flags(gfp_mask);
4721
4722 /*
4723 * We need to recalculate the starting point for the zonelist iterator
4724 * because we might have used different nodemask in the fast path, or
4725 * there was a cpuset modification and we are retrying - otherwise we
4726 * could end up iterating over non-eligible zones endlessly.
4727 */
4728 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4729 ac->highest_zoneidx, ac->nodemask);
4730 if (!ac->preferred_zoneref->zone)
4731 goto nopage;
4732
4733 if (alloc_flags & ALLOC_KSWAPD)
4734 wake_all_kswapds(order, gfp_mask, ac);
4735
4736 /*
4737 * The adjusted alloc_flags might result in immediate success, so try
4738 * that first
4739 */
4740 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4741 if (page)
4742 goto got_pg;
4743
4744 /*
4745 * For costly allocations, try direct compaction first, as it's likely
4746 * that we have enough base pages and don't need to reclaim. For non-
4747 * movable high-order allocations, do that as well, as compaction will
4748 * try prevent permanent fragmentation by migrating from blocks of the
4749 * same migratetype.
4750 * Don't try this for allocations that are allowed to ignore
4751 * watermarks, as the ALLOC_NO_WATERMARKS attempt didn't yet happen.
4752 */
4753 if (can_direct_reclaim &&
4754 (costly_order ||
4755 (order > 0 && ac->migratetype != MIGRATE_MOVABLE))
4756 && !gfp_pfmemalloc_allowed(gfp_mask)) {
4757 page = __alloc_pages_direct_compact(gfp_mask, order,
4758 alloc_flags, ac,
4759 INIT_COMPACT_PRIORITY,
4760 &compact_result);
4761 if (page)
4762 goto got_pg;
4763
4764 /*
4765 * Checks for costly allocations with __GFP_NORETRY, which
4766 * includes some THP page fault allocations
4767 */
4768 if (costly_order && (gfp_mask & __GFP_NORETRY)) {
4769 /*
4770 * If allocating entire pageblock(s) and compaction
4771 * failed because all zones are below low watermarks
4772 * or is prohibited because it recently failed at this
4773 * order, fail immediately unless the allocator has
4774 * requested compaction and reclaim retry.
4775 *
4776 * Reclaim is
4777 * - potentially very expensive because zones are far
4778 * below their low watermarks or this is part of very
4779 * bursty high order allocations,
4780 * - not guaranteed to help because isolate_freepages()
4781 * may not iterate over freed pages as part of its
4782 * linear scan, and
4783 * - unlikely to make entire pageblocks free on its
4784 * own.
4785 */
4786 if (compact_result == COMPACT_SKIPPED ||
4787 compact_result == COMPACT_DEFERRED)
4788 goto nopage;
4789
4790 /*
4791 * Looks like reclaim/compaction is worth trying, but
4792 * sync compaction could be very expensive, so keep
4793 * using async compaction.
4794 */
4795 compact_priority = INIT_COMPACT_PRIORITY;
4796 }
4797 }
4798
4799 retry:
4800 /* Ensure kswapd doesn't accidentally go to sleep as long as we loop */
4801 if (alloc_flags & ALLOC_KSWAPD)
4802 wake_all_kswapds(order, gfp_mask, ac);
4803
4804 reserve_flags = __gfp_pfmemalloc_flags(gfp_mask);
4805 if (reserve_flags)
4806 alloc_flags = current_alloc_flags(gfp_mask, reserve_flags);
4807
4808 /*
4809 * Reset the nodemask and zonelist iterators if memory policies can be
4810 * ignored. These allocations are high priority and system rather than
4811 * user oriented.
4812 */
4813 if (!(alloc_flags & ALLOC_CPUSET) || reserve_flags) {
4814 ac->nodemask = NULL;
4815 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4816 ac->highest_zoneidx, ac->nodemask);
4817 }
4818
4819 /* Attempt with potentially adjusted zonelist and alloc_flags */
4820 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4821 if (page)
4822 goto got_pg;
4823
4824 /* Caller is not willing to reclaim, we can't balance anything */
4825 if (!can_direct_reclaim)
4826 goto nopage;
4827
4828 /* Avoid recursion of direct reclaim */
4829 if (current->flags & PF_MEMALLOC)
4830 goto nopage;
4831
4832 /* Try direct reclaim and then allocating */
4833 #ifdef CONFIG_RECLAIM_ACCT
4834 reclaimacct_start(DIRECT_RECLAIMS, &ra);
4835 #endif
4836 page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
4837 &did_some_progress);
4838 #ifdef CONFIG_RECLAIM_ACCT
4839 reclaimacct_end(DIRECT_RECLAIMS);
4840 #endif
4841 if (page)
4842 goto got_pg;
4843
4844 /* Try direct compaction and then allocating */
4845 page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
4846 compact_priority, &compact_result);
4847 if (page)
4848 goto got_pg;
4849
4850 /* Do not loop if specifically requested */
4851 if (gfp_mask & __GFP_NORETRY)
4852 goto nopage;
4853
4854 /*
4855 * Do not retry costly high order allocations unless they are
4856 * __GFP_RETRY_MAYFAIL
4857 */
4858 if (costly_order && !(gfp_mask & __GFP_RETRY_MAYFAIL))
4859 goto nopage;
4860
4861 if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags,
4862 did_some_progress > 0, &no_progress_loops))
4863 goto retry;
4864
4865 /*
4866 * It doesn't make any sense to retry for the compaction if the order-0
4867 * reclaim is not able to make any progress because the current
4868 * implementation of the compaction depends on the sufficient amount
4869 * of free memory (see __compaction_suitable)
4870 */
4871 if (did_some_progress > 0 &&
4872 should_compact_retry(ac, order, alloc_flags,
4873 compact_result, &compact_priority,
4874 &compaction_retries))
4875 goto retry;
4876
4877
4878 /*
4879 * Deal with possible cpuset update races or zonelist updates to avoid
4880 * a unnecessary OOM kill.
4881 */
4882 if (check_retry_cpuset(cpuset_mems_cookie, ac) ||
4883 check_retry_zonelist(zonelist_iter_cookie))
4884 goto restart;
4885
4886 /* Reclaim has failed us, start killing things */
4887 page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
4888 if (page)
4889 goto got_pg;
4890
4891 /* Avoid allocations with no watermarks from looping endlessly */
4892 if (tsk_is_oom_victim(current) &&
4893 (alloc_flags & ALLOC_OOM ||
4894 (gfp_mask & __GFP_NOMEMALLOC)))
4895 goto nopage;
4896
4897 /* Retry as long as the OOM killer is making progress */
4898 if (did_some_progress) {
4899 no_progress_loops = 0;
4900 goto retry;
4901 }
4902
4903 nopage:
4904 /*
4905 * Deal with possible cpuset update races or zonelist updates to avoid
4906 * a unnecessary OOM kill.
4907 */
4908 if (check_retry_cpuset(cpuset_mems_cookie, ac) ||
4909 check_retry_zonelist(zonelist_iter_cookie))
4910 goto restart;
4911
4912 /*
4913 * Make sure that __GFP_NOFAIL request doesn't leak out and make sure
4914 * we always retry
4915 */
4916 if (gfp_mask & __GFP_NOFAIL) {
4917 /*
4918 * All existing users of the __GFP_NOFAIL are blockable, so warn
4919 * of any new users that actually require GFP_NOWAIT
4920 */
4921 if (WARN_ON_ONCE(!can_direct_reclaim))
4922 goto fail;
4923
4924 /*
4925 * PF_MEMALLOC request from this context is rather bizarre
4926 * because we cannot reclaim anything and only can loop waiting
4927 * for somebody to do a work for us
4928 */
4929 WARN_ON_ONCE(current->flags & PF_MEMALLOC);
4930
4931 /*
4932 * non failing costly orders are a hard requirement which we
4933 * are not prepared for much so let's warn about these users
4934 * so that we can identify them and convert them to something
4935 * else.
4936 */
4937 WARN_ON_ONCE(order > PAGE_ALLOC_COSTLY_ORDER);
4938
4939 /*
4940 * Help non-failing allocations by giving them access to memory
4941 * reserves but do not use ALLOC_NO_WATERMARKS because this
4942 * could deplete whole memory reserves which would just make
4943 * the situation worse
4944 */
4945 page = __alloc_pages_cpuset_fallback(gfp_mask, order, ALLOC_HARDER, ac);
4946 if (page)
4947 goto got_pg;
4948
4949 cond_resched();
4950 goto retry;
4951 }
4952 fail:
4953 warn_alloc(gfp_mask, ac->nodemask,
4954 "page allocation failure: order:%u", order);
4955 got_pg:
4956 return page;
4957 }
4958
prepare_alloc_pages(gfp_t gfp_mask,unsigned int order,int preferred_nid,nodemask_t * nodemask,struct alloc_context * ac,gfp_t * alloc_mask,unsigned int * alloc_flags)4959 static inline bool prepare_alloc_pages(gfp_t gfp_mask, unsigned int order,
4960 int preferred_nid, nodemask_t *nodemask,
4961 struct alloc_context *ac, gfp_t *alloc_mask,
4962 unsigned int *alloc_flags)
4963 {
4964 ac->highest_zoneidx = gfp_zone(gfp_mask);
4965 ac->zonelist = node_zonelist(preferred_nid, gfp_mask);
4966 ac->nodemask = nodemask;
4967 ac->migratetype = gfp_migratetype(gfp_mask);
4968
4969 if (cpusets_enabled()) {
4970 *alloc_mask |= __GFP_HARDWALL;
4971 /*
4972 * When we are in the interrupt context, it is irrelevant
4973 * to the current task context. It means that any node ok.
4974 */
4975 if (!in_interrupt() && !ac->nodemask)
4976 ac->nodemask = &cpuset_current_mems_allowed;
4977 else
4978 *alloc_flags |= ALLOC_CPUSET;
4979 }
4980
4981 fs_reclaim_acquire(gfp_mask);
4982 fs_reclaim_release(gfp_mask);
4983
4984 might_sleep_if(gfp_mask & __GFP_DIRECT_RECLAIM);
4985
4986 #ifdef CONFIG_HYPERHOLD_ZSWAPD
4987 if (gfp_mask & __GFP_KSWAPD_RECLAIM)
4988 wake_all_zswapd();
4989 #endif
4990
4991 if (should_fail_alloc_page(gfp_mask, order))
4992 return false;
4993
4994 *alloc_flags = current_alloc_flags(gfp_mask, *alloc_flags);
4995
4996 /* Dirty zone balancing only done in the fast path */
4997 ac->spread_dirty_pages = (gfp_mask & __GFP_WRITE);
4998
4999 /*
5000 * The preferred zone is used for statistics but crucially it is
5001 * also used as the starting point for the zonelist iterator. It
5002 * may get reset for allocations that ignore memory policies.
5003 */
5004 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
5005 ac->highest_zoneidx, ac->nodemask);
5006
5007 return true;
5008 }
5009
5010 /*
5011 * This is the 'heart' of the zoned buddy allocator.
5012 */
5013 struct page *
__alloc_pages_nodemask(gfp_t gfp_mask,unsigned int order,int preferred_nid,nodemask_t * nodemask)5014 __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order, int preferred_nid,
5015 nodemask_t *nodemask)
5016 {
5017 struct page *page;
5018 unsigned int alloc_flags = ALLOC_WMARK_LOW;
5019 gfp_t alloc_mask; /* The gfp_t that was actually used for allocation */
5020 struct alloc_context ac = { };
5021
5022 /*
5023 * There are several places where we assume that the order value is sane
5024 * so bail out early if the request is out of bound.
5025 */
5026 if (unlikely(order >= MAX_ORDER)) {
5027 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
5028 return NULL;
5029 }
5030
5031 gfp_mask &= gfp_allowed_mask;
5032 alloc_mask = gfp_mask;
5033 if (!prepare_alloc_pages(gfp_mask, order, preferred_nid, nodemask, &ac, &alloc_mask, &alloc_flags))
5034 return NULL;
5035
5036 /*
5037 * Forbid the first pass from falling back to types that fragment
5038 * memory until all local zones are considered.
5039 */
5040 alloc_flags |= alloc_flags_nofragment(ac.preferred_zoneref->zone, gfp_mask);
5041
5042 /* First allocation attempt */
5043 page = get_page_from_freelist(alloc_mask, order, alloc_flags, &ac);
5044 if (likely(page))
5045 goto out;
5046
5047 /*
5048 * Apply scoped allocation constraints. This is mainly about GFP_NOFS
5049 * resp. GFP_NOIO which has to be inherited for all allocation requests
5050 * from a particular context which has been marked by
5051 * memalloc_no{fs,io}_{save,restore}.
5052 */
5053 alloc_mask = current_gfp_context(gfp_mask);
5054 ac.spread_dirty_pages = false;
5055
5056 /*
5057 * Restore the original nodemask if it was potentially replaced with
5058 * &cpuset_current_mems_allowed to optimize the fast-path attempt.
5059 */
5060 ac.nodemask = nodemask;
5061
5062 page = __alloc_pages_slowpath(alloc_mask, order, &ac);
5063
5064 out:
5065 if (memcg_kmem_enabled() && (gfp_mask & __GFP_ACCOUNT) && page &&
5066 unlikely(__memcg_kmem_charge_page(page, gfp_mask, order) != 0)) {
5067 __free_pages(page, order);
5068 page = NULL;
5069 }
5070
5071 trace_mm_page_alloc(page, order, alloc_mask, ac.migratetype);
5072
5073 return page;
5074 }
5075 EXPORT_SYMBOL(__alloc_pages_nodemask);
5076
5077 /*
5078 * Common helper functions. Never use with __GFP_HIGHMEM because the returned
5079 * address cannot represent highmem pages. Use alloc_pages and then kmap if
5080 * you need to access high mem.
5081 */
__get_free_pages(gfp_t gfp_mask,unsigned int order)5082 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
5083 {
5084 struct page *page;
5085
5086 page = alloc_pages(gfp_mask & ~__GFP_HIGHMEM, order);
5087 if (!page)
5088 return 0;
5089 return (unsigned long) page_address(page);
5090 }
5091 EXPORT_SYMBOL(__get_free_pages);
5092
get_zeroed_page(gfp_t gfp_mask)5093 unsigned long get_zeroed_page(gfp_t gfp_mask)
5094 {
5095 return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
5096 }
5097 EXPORT_SYMBOL(get_zeroed_page);
5098
free_the_page(struct page * page,unsigned int order)5099 static inline void free_the_page(struct page *page, unsigned int order)
5100 {
5101 if (order == 0) /* Via pcp? */
5102 free_unref_page(page);
5103 else
5104 __free_pages_ok(page, order, FPI_NONE);
5105 }
5106
__free_pages(struct page * page,unsigned int order)5107 void __free_pages(struct page *page, unsigned int order)
5108 {
5109 if (put_page_testzero(page))
5110 free_the_page(page, order);
5111 else if (!PageHead(page))
5112 while (order-- > 0)
5113 free_the_page(page + (1 << order), order);
5114 }
5115 EXPORT_SYMBOL(__free_pages);
5116
free_pages(unsigned long addr,unsigned int order)5117 void free_pages(unsigned long addr, unsigned int order)
5118 {
5119 if (addr != 0) {
5120 VM_BUG_ON(!virt_addr_valid((void *)addr));
5121 __free_pages(virt_to_page((void *)addr), order);
5122 }
5123 }
5124
5125 EXPORT_SYMBOL(free_pages);
5126
5127 /*
5128 * Page Fragment:
5129 * An arbitrary-length arbitrary-offset area of memory which resides
5130 * within a 0 or higher order page. Multiple fragments within that page
5131 * are individually refcounted, in the page's reference counter.
5132 *
5133 * The page_frag functions below provide a simple allocation framework for
5134 * page fragments. This is used by the network stack and network device
5135 * drivers to provide a backing region of memory for use as either an
5136 * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
5137 */
__page_frag_cache_refill(struct page_frag_cache * nc,gfp_t gfp_mask)5138 static struct page *__page_frag_cache_refill(struct page_frag_cache *nc,
5139 gfp_t gfp_mask)
5140 {
5141 struct page *page = NULL;
5142 gfp_t gfp = gfp_mask;
5143
5144 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
5145 gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY |
5146 __GFP_NOMEMALLOC;
5147 page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
5148 PAGE_FRAG_CACHE_MAX_ORDER);
5149 nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
5150 #endif
5151 if (unlikely(!page))
5152 page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
5153
5154 nc->va = page ? page_address(page) : NULL;
5155
5156 #ifdef CONFIG_PAGE_TRACING
5157 if (likely(page)) {
5158 int order = get_order(nc->size);
5159 int i;
5160 struct page *newpage = page;
5161 unsigned int deta = 1U << (unsigned int)order;
5162
5163 for (i = 0; i < (1 << order); i++) {
5164 if (!newpage)
5165 break;
5166 SetPageSKB(newpage);
5167 newpage++;
5168 }
5169 mod_zone_page_state(page_zone(page), NR_SKB_PAGES, (long)deta);
5170 }
5171 #endif
5172
5173 return page;
5174 }
5175
__page_frag_cache_drain(struct page * page,unsigned int count)5176 void __page_frag_cache_drain(struct page *page, unsigned int count)
5177 {
5178 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
5179
5180 if (page_ref_sub_and_test(page, count)) {
5181 #ifdef CONFIG_PAGE_TRACING
5182 if (likely(page)) {
5183 unsigned int deta = 1U << compound_order(page);
5184
5185 mod_zone_page_state(page_zone(page), NR_SKB_PAGES, -(long)deta);
5186 }
5187 #endif
5188 free_the_page(page, compound_order(page));
5189 }
5190 }
5191 EXPORT_SYMBOL(__page_frag_cache_drain);
5192
page_frag_alloc(struct page_frag_cache * nc,unsigned int fragsz,gfp_t gfp_mask)5193 void *page_frag_alloc(struct page_frag_cache *nc,
5194 unsigned int fragsz, gfp_t gfp_mask)
5195 {
5196 unsigned int size = PAGE_SIZE;
5197 struct page *page;
5198 int offset;
5199
5200 if (unlikely(!nc->va)) {
5201 refill:
5202 page = __page_frag_cache_refill(nc, gfp_mask);
5203 if (!page)
5204 return NULL;
5205
5206 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
5207 /* if size can vary use size else just use PAGE_SIZE */
5208 size = nc->size;
5209 #endif
5210 /* Even if we own the page, we do not use atomic_set().
5211 * This would break get_page_unless_zero() users.
5212 */
5213 page_ref_add(page, PAGE_FRAG_CACHE_MAX_SIZE);
5214
5215 /* reset page count bias and offset to start of new frag */
5216 nc->pfmemalloc = page_is_pfmemalloc(page);
5217 nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1;
5218 nc->offset = size;
5219 }
5220
5221 offset = nc->offset - fragsz;
5222 if (unlikely(offset < 0)) {
5223 page = virt_to_page(nc->va);
5224
5225 if (!page_ref_sub_and_test(page, nc->pagecnt_bias))
5226 goto refill;
5227
5228 if (unlikely(nc->pfmemalloc)) {
5229 free_the_page(page, compound_order(page));
5230 goto refill;
5231 }
5232
5233 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
5234 /* if size can vary use size else just use PAGE_SIZE */
5235 size = nc->size;
5236 #endif
5237 /* OK, page count is 0, we can safely set it */
5238 set_page_count(page, PAGE_FRAG_CACHE_MAX_SIZE + 1);
5239
5240 /* reset page count bias and offset to start of new frag */
5241 nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1;
5242 offset = size - fragsz;
5243 if (unlikely(offset < 0)) {
5244 /*
5245 * The caller is trying to allocate a fragment
5246 * with fragsz > PAGE_SIZE but the cache isn't big
5247 * enough to satisfy the request, this may
5248 * happen in low memory conditions.
5249 * We don't release the cache page because
5250 * it could make memory pressure worse
5251 * so we simply return NULL here.
5252 */
5253 return NULL;
5254 }
5255 }
5256
5257 nc->pagecnt_bias--;
5258 nc->offset = offset;
5259
5260 return nc->va + offset;
5261 }
5262 EXPORT_SYMBOL(page_frag_alloc);
5263
5264 /*
5265 * Frees a page fragment allocated out of either a compound or order 0 page.
5266 */
page_frag_free(void * addr)5267 void page_frag_free(void *addr)
5268 {
5269 struct page *page = virt_to_head_page(addr);
5270
5271 if (unlikely(put_page_testzero(page))) {
5272 #ifdef CONFIG_PAGE_TRACING
5273 if (likely(page)) {
5274 unsigned int deta = 1U << compound_order(page);
5275
5276 mod_zone_page_state(page_zone(page), NR_SKB_PAGES, -(long)deta);
5277 }
5278 #endif
5279 free_the_page(page, compound_order(page));
5280 }
5281 }
5282 EXPORT_SYMBOL(page_frag_free);
5283
make_alloc_exact(unsigned long addr,unsigned int order,size_t size)5284 static void *make_alloc_exact(unsigned long addr, unsigned int order,
5285 size_t size)
5286 {
5287 if (addr) {
5288 unsigned long alloc_end = addr + (PAGE_SIZE << order);
5289 unsigned long used = addr + PAGE_ALIGN(size);
5290
5291 split_page(virt_to_page((void *)addr), order);
5292 while (used < alloc_end) {
5293 free_page(used);
5294 used += PAGE_SIZE;
5295 }
5296 }
5297 return (void *)addr;
5298 }
5299
5300 /**
5301 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
5302 * @size: the number of bytes to allocate
5303 * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
5304 *
5305 * This function is similar to alloc_pages(), except that it allocates the
5306 * minimum number of pages to satisfy the request. alloc_pages() can only
5307 * allocate memory in power-of-two pages.
5308 *
5309 * This function is also limited by MAX_ORDER.
5310 *
5311 * Memory allocated by this function must be released by free_pages_exact().
5312 *
5313 * Return: pointer to the allocated area or %NULL in case of error.
5314 */
alloc_pages_exact(size_t size,gfp_t gfp_mask)5315 void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
5316 {
5317 unsigned int order = get_order(size);
5318 unsigned long addr;
5319
5320 if (WARN_ON_ONCE(gfp_mask & __GFP_COMP))
5321 gfp_mask &= ~__GFP_COMP;
5322
5323 addr = __get_free_pages(gfp_mask, order);
5324 return make_alloc_exact(addr, order, size);
5325 }
5326 EXPORT_SYMBOL(alloc_pages_exact);
5327
5328 /**
5329 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
5330 * pages on a node.
5331 * @nid: the preferred node ID where memory should be allocated
5332 * @size: the number of bytes to allocate
5333 * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
5334 *
5335 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
5336 * back.
5337 *
5338 * Return: pointer to the allocated area or %NULL in case of error.
5339 */
alloc_pages_exact_nid(int nid,size_t size,gfp_t gfp_mask)5340 void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
5341 {
5342 unsigned int order = get_order(size);
5343 struct page *p;
5344
5345 if (WARN_ON_ONCE(gfp_mask & __GFP_COMP))
5346 gfp_mask &= ~__GFP_COMP;
5347
5348 p = alloc_pages_node(nid, gfp_mask, order);
5349 if (!p)
5350 return NULL;
5351 return make_alloc_exact((unsigned long)page_address(p), order, size);
5352 }
5353
5354 /**
5355 * free_pages_exact - release memory allocated via alloc_pages_exact()
5356 * @virt: the value returned by alloc_pages_exact.
5357 * @size: size of allocation, same value as passed to alloc_pages_exact().
5358 *
5359 * Release the memory allocated by a previous call to alloc_pages_exact.
5360 */
free_pages_exact(void * virt,size_t size)5361 void free_pages_exact(void *virt, size_t size)
5362 {
5363 unsigned long addr = (unsigned long)virt;
5364 unsigned long end = addr + PAGE_ALIGN(size);
5365
5366 while (addr < end) {
5367 free_page(addr);
5368 addr += PAGE_SIZE;
5369 }
5370 }
5371 EXPORT_SYMBOL(free_pages_exact);
5372
5373 /**
5374 * nr_free_zone_pages - count number of pages beyond high watermark
5375 * @offset: The zone index of the highest zone
5376 *
5377 * nr_free_zone_pages() counts the number of pages which are beyond the
5378 * high watermark within all zones at or below a given zone index. For each
5379 * zone, the number of pages is calculated as:
5380 *
5381 * nr_free_zone_pages = managed_pages - high_pages
5382 *
5383 * Return: number of pages beyond high watermark.
5384 */
nr_free_zone_pages(int offset)5385 static unsigned long nr_free_zone_pages(int offset)
5386 {
5387 struct zoneref *z;
5388 struct zone *zone;
5389
5390 /* Just pick one node, since fallback list is circular */
5391 unsigned long sum = 0;
5392
5393 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
5394
5395 for_each_zone_zonelist(zone, z, zonelist, offset) {
5396 unsigned long size = zone_managed_pages(zone);
5397 unsigned long high = high_wmark_pages(zone);
5398 if (size > high)
5399 sum += size - high;
5400 }
5401
5402 return sum;
5403 }
5404
5405 /**
5406 * nr_free_buffer_pages - count number of pages beyond high watermark
5407 *
5408 * nr_free_buffer_pages() counts the number of pages which are beyond the high
5409 * watermark within ZONE_DMA and ZONE_NORMAL.
5410 *
5411 * Return: number of pages beyond high watermark within ZONE_DMA and
5412 * ZONE_NORMAL.
5413 */
nr_free_buffer_pages(void)5414 unsigned long nr_free_buffer_pages(void)
5415 {
5416 return nr_free_zone_pages(gfp_zone(GFP_USER));
5417 }
5418 EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
5419
show_node(struct zone * zone)5420 static inline void show_node(struct zone *zone)
5421 {
5422 if (IS_ENABLED(CONFIG_NUMA))
5423 printk("Node %d ", zone_to_nid(zone));
5424 }
5425
si_mem_available(void)5426 long si_mem_available(void)
5427 {
5428 long available;
5429 unsigned long pagecache;
5430 unsigned long wmark_low = 0;
5431 unsigned long pages[NR_LRU_LISTS];
5432 unsigned long reclaimable;
5433 struct zone *zone;
5434 int lru;
5435
5436 for (lru = LRU_BASE; lru < NR_LRU_LISTS; lru++)
5437 pages[lru] = global_node_page_state(NR_LRU_BASE + lru);
5438
5439 for_each_zone(zone)
5440 wmark_low += low_wmark_pages(zone);
5441
5442 /*
5443 * Estimate the amount of memory available for userspace allocations,
5444 * without causing swapping.
5445 */
5446 available = global_zone_page_state(NR_FREE_PAGES) - totalreserve_pages;
5447
5448 /*
5449 * Not all the page cache can be freed, otherwise the system will
5450 * start swapping. Assume at least half of the page cache, or the
5451 * low watermark worth of cache, needs to stay.
5452 */
5453 pagecache = pages[LRU_ACTIVE_FILE] + pages[LRU_INACTIVE_FILE];
5454 pagecache -= min(pagecache / 2, wmark_low);
5455 available += pagecache;
5456
5457 /*
5458 * Part of the reclaimable slab and other kernel memory consists of
5459 * items that are in use, and cannot be freed. Cap this estimate at the
5460 * low watermark.
5461 */
5462 reclaimable = global_node_page_state_pages(NR_SLAB_RECLAIMABLE_B) +
5463 global_node_page_state(NR_KERNEL_MISC_RECLAIMABLE);
5464 available += reclaimable - min(reclaimable / 2, wmark_low);
5465
5466 if (available < 0)
5467 available = 0;
5468 return available;
5469 }
5470 EXPORT_SYMBOL_GPL(si_mem_available);
5471
si_meminfo(struct sysinfo * val)5472 void si_meminfo(struct sysinfo *val)
5473 {
5474 val->totalram = totalram_pages();
5475 val->sharedram = global_node_page_state(NR_SHMEM);
5476 val->freeram = global_zone_page_state(NR_FREE_PAGES);
5477 val->bufferram = nr_blockdev_pages();
5478 val->totalhigh = totalhigh_pages();
5479 val->freehigh = nr_free_highpages();
5480 val->mem_unit = PAGE_SIZE;
5481 }
5482
5483 EXPORT_SYMBOL(si_meminfo);
5484
5485 #ifdef CONFIG_NUMA
si_meminfo_node(struct sysinfo * val,int nid)5486 void si_meminfo_node(struct sysinfo *val, int nid)
5487 {
5488 int zone_type; /* needs to be signed */
5489 unsigned long managed_pages = 0;
5490 unsigned long managed_highpages = 0;
5491 unsigned long free_highpages = 0;
5492 pg_data_t *pgdat = NODE_DATA(nid);
5493
5494 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
5495 managed_pages += zone_managed_pages(&pgdat->node_zones[zone_type]);
5496 val->totalram = managed_pages;
5497 val->sharedram = node_page_state(pgdat, NR_SHMEM);
5498 val->freeram = sum_zone_node_page_state(nid, NR_FREE_PAGES);
5499 #ifdef CONFIG_HIGHMEM
5500 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
5501 struct zone *zone = &pgdat->node_zones[zone_type];
5502
5503 if (is_highmem(zone)) {
5504 managed_highpages += zone_managed_pages(zone);
5505 free_highpages += zone_page_state(zone, NR_FREE_PAGES);
5506 }
5507 }
5508 val->totalhigh = managed_highpages;
5509 val->freehigh = free_highpages;
5510 #else
5511 val->totalhigh = managed_highpages;
5512 val->freehigh = free_highpages;
5513 #endif
5514 val->mem_unit = PAGE_SIZE;
5515 }
5516 #endif
5517
5518 /*
5519 * Determine whether the node should be displayed or not, depending on whether
5520 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
5521 */
show_mem_node_skip(unsigned int flags,int nid,nodemask_t * nodemask)5522 static bool show_mem_node_skip(unsigned int flags, int nid, nodemask_t *nodemask)
5523 {
5524 if (!(flags & SHOW_MEM_FILTER_NODES))
5525 return false;
5526
5527 /*
5528 * no node mask - aka implicit memory numa policy. Do not bother with
5529 * the synchronization - read_mems_allowed_begin - because we do not
5530 * have to be precise here.
5531 */
5532 if (!nodemask)
5533 nodemask = &cpuset_current_mems_allowed;
5534
5535 return !node_isset(nid, *nodemask);
5536 }
5537
5538 #define K(x) ((x) << (PAGE_SHIFT-10))
5539
show_migration_types(unsigned char type)5540 static void show_migration_types(unsigned char type)
5541 {
5542 static const char types[MIGRATE_TYPES] = {
5543 [MIGRATE_UNMOVABLE] = 'U',
5544 [MIGRATE_MOVABLE] = 'M',
5545 [MIGRATE_RECLAIMABLE] = 'E',
5546 [MIGRATE_HIGHATOMIC] = 'H',
5547 #ifdef CONFIG_CMA
5548 [MIGRATE_CMA] = 'C',
5549 #endif
5550 #ifdef CONFIG_MEMORY_ISOLATION
5551 [MIGRATE_ISOLATE] = 'I',
5552 #endif
5553 };
5554 char tmp[MIGRATE_TYPES + 1];
5555 char *p = tmp;
5556 int i;
5557
5558 for (i = 0; i < MIGRATE_TYPES; i++) {
5559 if (type & (1 << i))
5560 *p++ = types[i];
5561 }
5562
5563 *p = '\0';
5564 printk(KERN_CONT "(%s) ", tmp);
5565 }
5566
5567 /*
5568 * Show free area list (used inside shift_scroll-lock stuff)
5569 * We also calculate the percentage fragmentation. We do this by counting the
5570 * memory on each free list with the exception of the first item on the list.
5571 *
5572 * Bits in @filter:
5573 * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's
5574 * cpuset.
5575 */
show_free_areas(unsigned int filter,nodemask_t * nodemask)5576 void show_free_areas(unsigned int filter, nodemask_t *nodemask)
5577 {
5578 unsigned long free_pcp = 0;
5579 int cpu;
5580 struct zone *zone;
5581 pg_data_t *pgdat;
5582
5583 for_each_populated_zone(zone) {
5584 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
5585 continue;
5586
5587 for_each_online_cpu(cpu)
5588 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
5589 }
5590
5591 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
5592 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
5593 " unevictable:%lu dirty:%lu writeback:%lu\n"
5594 " slab_reclaimable:%lu slab_unreclaimable:%lu\n"
5595 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
5596 " free:%lu free_pcp:%lu free_cma:%lu\n",
5597 global_node_page_state(NR_ACTIVE_ANON),
5598 global_node_page_state(NR_INACTIVE_ANON),
5599 global_node_page_state(NR_ISOLATED_ANON),
5600 global_node_page_state(NR_ACTIVE_FILE),
5601 global_node_page_state(NR_INACTIVE_FILE),
5602 global_node_page_state(NR_ISOLATED_FILE),
5603 global_node_page_state(NR_UNEVICTABLE),
5604 global_node_page_state(NR_FILE_DIRTY),
5605 global_node_page_state(NR_WRITEBACK),
5606 global_node_page_state_pages(NR_SLAB_RECLAIMABLE_B),
5607 global_node_page_state_pages(NR_SLAB_UNRECLAIMABLE_B),
5608 global_node_page_state(NR_FILE_MAPPED),
5609 global_node_page_state(NR_SHMEM),
5610 global_zone_page_state(NR_PAGETABLE),
5611 global_zone_page_state(NR_BOUNCE),
5612 global_zone_page_state(NR_FREE_PAGES),
5613 free_pcp,
5614 global_zone_page_state(NR_FREE_CMA_PAGES));
5615
5616 for_each_online_pgdat(pgdat) {
5617 if (show_mem_node_skip(filter, pgdat->node_id, nodemask))
5618 continue;
5619
5620 printk("Node %d"
5621 " active_anon:%lukB"
5622 " inactive_anon:%lukB"
5623 " active_file:%lukB"
5624 " inactive_file:%lukB"
5625 " unevictable:%lukB"
5626 " isolated(anon):%lukB"
5627 " isolated(file):%lukB"
5628 " mapped:%lukB"
5629 " dirty:%lukB"
5630 " writeback:%lukB"
5631 " shmem:%lukB"
5632 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5633 " shmem_thp: %lukB"
5634 " shmem_pmdmapped: %lukB"
5635 " anon_thp: %lukB"
5636 #endif
5637 " writeback_tmp:%lukB"
5638 " kernel_stack:%lukB"
5639 #ifdef CONFIG_SHADOW_CALL_STACK
5640 " shadow_call_stack:%lukB"
5641 #endif
5642 " all_unreclaimable? %s"
5643 "\n",
5644 pgdat->node_id,
5645 K(node_page_state(pgdat, NR_ACTIVE_ANON)),
5646 K(node_page_state(pgdat, NR_INACTIVE_ANON)),
5647 K(node_page_state(pgdat, NR_ACTIVE_FILE)),
5648 K(node_page_state(pgdat, NR_INACTIVE_FILE)),
5649 K(node_page_state(pgdat, NR_UNEVICTABLE)),
5650 K(node_page_state(pgdat, NR_ISOLATED_ANON)),
5651 K(node_page_state(pgdat, NR_ISOLATED_FILE)),
5652 K(node_page_state(pgdat, NR_FILE_MAPPED)),
5653 K(node_page_state(pgdat, NR_FILE_DIRTY)),
5654 K(node_page_state(pgdat, NR_WRITEBACK)),
5655 K(node_page_state(pgdat, NR_SHMEM)),
5656 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5657 K(node_page_state(pgdat, NR_SHMEM_THPS) * HPAGE_PMD_NR),
5658 K(node_page_state(pgdat, NR_SHMEM_PMDMAPPED)
5659 * HPAGE_PMD_NR),
5660 K(node_page_state(pgdat, NR_ANON_THPS) * HPAGE_PMD_NR),
5661 #endif
5662 K(node_page_state(pgdat, NR_WRITEBACK_TEMP)),
5663 node_page_state(pgdat, NR_KERNEL_STACK_KB),
5664 #ifdef CONFIG_SHADOW_CALL_STACK
5665 node_page_state(pgdat, NR_KERNEL_SCS_KB),
5666 #endif
5667 pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ?
5668 "yes" : "no");
5669 }
5670
5671 for_each_populated_zone(zone) {
5672 int i;
5673
5674 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
5675 continue;
5676
5677 free_pcp = 0;
5678 for_each_online_cpu(cpu)
5679 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
5680
5681 show_node(zone);
5682 printk(KERN_CONT
5683 "%s"
5684 " free:%lukB"
5685 " min:%lukB"
5686 " low:%lukB"
5687 " high:%lukB"
5688 " reserved_highatomic:%luKB"
5689 " active_anon:%lukB"
5690 " inactive_anon:%lukB"
5691 " active_file:%lukB"
5692 " inactive_file:%lukB"
5693 " unevictable:%lukB"
5694 " writepending:%lukB"
5695 " present:%lukB"
5696 " managed:%lukB"
5697 " mlocked:%lukB"
5698 " pagetables:%lukB"
5699 " bounce:%lukB"
5700 " free_pcp:%lukB"
5701 " local_pcp:%ukB"
5702 " free_cma:%lukB"
5703 "\n",
5704 zone->name,
5705 K(zone_page_state(zone, NR_FREE_PAGES)),
5706 K(min_wmark_pages(zone)),
5707 K(low_wmark_pages(zone)),
5708 K(high_wmark_pages(zone)),
5709 K(zone->nr_reserved_highatomic),
5710 K(zone_page_state(zone, NR_ZONE_ACTIVE_ANON)),
5711 K(zone_page_state(zone, NR_ZONE_INACTIVE_ANON)),
5712 K(zone_page_state(zone, NR_ZONE_ACTIVE_FILE)),
5713 K(zone_page_state(zone, NR_ZONE_INACTIVE_FILE)),
5714 K(zone_page_state(zone, NR_ZONE_UNEVICTABLE)),
5715 K(zone_page_state(zone, NR_ZONE_WRITE_PENDING)),
5716 K(zone->present_pages),
5717 K(zone_managed_pages(zone)),
5718 K(zone_page_state(zone, NR_MLOCK)),
5719 K(zone_page_state(zone, NR_PAGETABLE)),
5720 K(zone_page_state(zone, NR_BOUNCE)),
5721 K(free_pcp),
5722 K(this_cpu_read(zone->pageset->pcp.count)),
5723 K(zone_page_state(zone, NR_FREE_CMA_PAGES)));
5724 printk("lowmem_reserve[]:");
5725 for (i = 0; i < MAX_NR_ZONES; i++)
5726 printk(KERN_CONT " %ld", zone->lowmem_reserve[i]);
5727 printk(KERN_CONT "\n");
5728 }
5729
5730 for_each_populated_zone(zone) {
5731 unsigned int order;
5732 unsigned long nr[MAX_ORDER], flags, total = 0;
5733 unsigned char types[MAX_ORDER];
5734
5735 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
5736 continue;
5737 show_node(zone);
5738 printk(KERN_CONT "%s: ", zone->name);
5739
5740 spin_lock_irqsave(&zone->lock, flags);
5741 for (order = 0; order < MAX_ORDER; order++) {
5742 struct free_area *area = &zone->free_area[order];
5743 int type;
5744
5745 nr[order] = area->nr_free;
5746 total += nr[order] << order;
5747
5748 types[order] = 0;
5749 for (type = 0; type < MIGRATE_TYPES; type++) {
5750 if (!free_area_empty(area, type))
5751 types[order] |= 1 << type;
5752 }
5753 }
5754 spin_unlock_irqrestore(&zone->lock, flags);
5755 for (order = 0; order < MAX_ORDER; order++) {
5756 printk(KERN_CONT "%lu*%lukB ",
5757 nr[order], K(1UL) << order);
5758 if (nr[order])
5759 show_migration_types(types[order]);
5760 }
5761 printk(KERN_CONT "= %lukB\n", K(total));
5762 }
5763
5764 hugetlb_show_meminfo();
5765
5766 printk("%ld total pagecache pages\n", global_node_page_state(NR_FILE_PAGES));
5767
5768 show_swap_cache_info();
5769 }
5770
zoneref_set_zone(struct zone * zone,struct zoneref * zoneref)5771 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
5772 {
5773 zoneref->zone = zone;
5774 zoneref->zone_idx = zone_idx(zone);
5775 }
5776
5777 /*
5778 * Builds allocation fallback zone lists.
5779 *
5780 * Add all populated zones of a node to the zonelist.
5781 */
build_zonerefs_node(pg_data_t * pgdat,struct zoneref * zonerefs)5782 static int build_zonerefs_node(pg_data_t *pgdat, struct zoneref *zonerefs)
5783 {
5784 struct zone *zone;
5785 enum zone_type zone_type = MAX_NR_ZONES;
5786 int nr_zones = 0;
5787
5788 do {
5789 zone_type--;
5790 zone = pgdat->node_zones + zone_type;
5791 if (populated_zone(zone)) {
5792 zoneref_set_zone(zone, &zonerefs[nr_zones++]);
5793 check_highest_zone(zone_type);
5794 }
5795 } while (zone_type);
5796
5797 return nr_zones;
5798 }
5799
5800 #ifdef CONFIG_NUMA
5801
__parse_numa_zonelist_order(char * s)5802 static int __parse_numa_zonelist_order(char *s)
5803 {
5804 /*
5805 * We used to support different zonlists modes but they turned
5806 * out to be just not useful. Let's keep the warning in place
5807 * if somebody still use the cmd line parameter so that we do
5808 * not fail it silently
5809 */
5810 if (!(*s == 'd' || *s == 'D' || *s == 'n' || *s == 'N')) {
5811 pr_warn("Ignoring unsupported numa_zonelist_order value: %s\n", s);
5812 return -EINVAL;
5813 }
5814 return 0;
5815 }
5816
5817 char numa_zonelist_order[] = "Node";
5818
5819 /*
5820 * sysctl handler for numa_zonelist_order
5821 */
numa_zonelist_order_handler(struct ctl_table * table,int write,void * buffer,size_t * length,loff_t * ppos)5822 int numa_zonelist_order_handler(struct ctl_table *table, int write,
5823 void *buffer, size_t *length, loff_t *ppos)
5824 {
5825 if (write)
5826 return __parse_numa_zonelist_order(buffer);
5827 return proc_dostring(table, write, buffer, length, ppos);
5828 }
5829
5830
5831 #define MAX_NODE_LOAD (nr_online_nodes)
5832 static int node_load[MAX_NUMNODES];
5833
5834 /**
5835 * find_next_best_node - find the next node that should appear in a given node's fallback list
5836 * @node: node whose fallback list we're appending
5837 * @used_node_mask: nodemask_t of already used nodes
5838 *
5839 * We use a number of factors to determine which is the next node that should
5840 * appear on a given node's fallback list. The node should not have appeared
5841 * already in @node's fallback list, and it should be the next closest node
5842 * according to the distance array (which contains arbitrary distance values
5843 * from each node to each node in the system), and should also prefer nodes
5844 * with no CPUs, since presumably they'll have very little allocation pressure
5845 * on them otherwise.
5846 *
5847 * Return: node id of the found node or %NUMA_NO_NODE if no node is found.
5848 */
find_next_best_node(int node,nodemask_t * used_node_mask)5849 static int find_next_best_node(int node, nodemask_t *used_node_mask)
5850 {
5851 int n, val;
5852 int min_val = INT_MAX;
5853 int best_node = NUMA_NO_NODE;
5854
5855 /* Use the local node if we haven't already */
5856 if (!node_isset(node, *used_node_mask)) {
5857 node_set(node, *used_node_mask);
5858 return node;
5859 }
5860
5861 for_each_node_state(n, N_MEMORY) {
5862
5863 /* Don't want a node to appear more than once */
5864 if (node_isset(n, *used_node_mask))
5865 continue;
5866
5867 /* Use the distance array to find the distance */
5868 val = node_distance(node, n);
5869
5870 /* Penalize nodes under us ("prefer the next node") */
5871 val += (n < node);
5872
5873 /* Give preference to headless and unused nodes */
5874 if (!cpumask_empty(cpumask_of_node(n)))
5875 val += PENALTY_FOR_NODE_WITH_CPUS;
5876
5877 /* Slight preference for less loaded node */
5878 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
5879 val += node_load[n];
5880
5881 if (val < min_val) {
5882 min_val = val;
5883 best_node = n;
5884 }
5885 }
5886
5887 if (best_node >= 0)
5888 node_set(best_node, *used_node_mask);
5889
5890 return best_node;
5891 }
5892
5893
5894 /*
5895 * Build zonelists ordered by node and zones within node.
5896 * This results in maximum locality--normal zone overflows into local
5897 * DMA zone, if any--but risks exhausting DMA zone.
5898 */
build_zonelists_in_node_order(pg_data_t * pgdat,int * node_order,unsigned nr_nodes)5899 static void build_zonelists_in_node_order(pg_data_t *pgdat, int *node_order,
5900 unsigned nr_nodes)
5901 {
5902 struct zoneref *zonerefs;
5903 int i;
5904
5905 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
5906
5907 for (i = 0; i < nr_nodes; i++) {
5908 int nr_zones;
5909
5910 pg_data_t *node = NODE_DATA(node_order[i]);
5911
5912 nr_zones = build_zonerefs_node(node, zonerefs);
5913 zonerefs += nr_zones;
5914 }
5915 zonerefs->zone = NULL;
5916 zonerefs->zone_idx = 0;
5917 }
5918
5919 /*
5920 * Build gfp_thisnode zonelists
5921 */
build_thisnode_zonelists(pg_data_t * pgdat)5922 static void build_thisnode_zonelists(pg_data_t *pgdat)
5923 {
5924 struct zoneref *zonerefs;
5925 int nr_zones;
5926
5927 zonerefs = pgdat->node_zonelists[ZONELIST_NOFALLBACK]._zonerefs;
5928 nr_zones = build_zonerefs_node(pgdat, zonerefs);
5929 zonerefs += nr_zones;
5930 zonerefs->zone = NULL;
5931 zonerefs->zone_idx = 0;
5932 }
5933
5934 /*
5935 * Build zonelists ordered by zone and nodes within zones.
5936 * This results in conserving DMA zone[s] until all Normal memory is
5937 * exhausted, but results in overflowing to remote node while memory
5938 * may still exist in local DMA zone.
5939 */
5940
build_zonelists(pg_data_t * pgdat)5941 static void build_zonelists(pg_data_t *pgdat)
5942 {
5943 static int node_order[MAX_NUMNODES];
5944 int node, load, nr_nodes = 0;
5945 nodemask_t used_mask = NODE_MASK_NONE;
5946 int local_node, prev_node;
5947
5948 /* NUMA-aware ordering of nodes */
5949 local_node = pgdat->node_id;
5950 load = nr_online_nodes;
5951 prev_node = local_node;
5952
5953 memset(node_order, 0, sizeof(node_order));
5954 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
5955 /*
5956 * We don't want to pressure a particular node.
5957 * So adding penalty to the first node in same
5958 * distance group to make it round-robin.
5959 */
5960 if (node_distance(local_node, node) !=
5961 node_distance(local_node, prev_node))
5962 node_load[node] = load;
5963
5964 node_order[nr_nodes++] = node;
5965 prev_node = node;
5966 load--;
5967 }
5968
5969 build_zonelists_in_node_order(pgdat, node_order, nr_nodes);
5970 build_thisnode_zonelists(pgdat);
5971 }
5972
5973 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
5974 /*
5975 * Return node id of node used for "local" allocations.
5976 * I.e., first node id of first zone in arg node's generic zonelist.
5977 * Used for initializing percpu 'numa_mem', which is used primarily
5978 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
5979 */
local_memory_node(int node)5980 int local_memory_node(int node)
5981 {
5982 struct zoneref *z;
5983
5984 z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
5985 gfp_zone(GFP_KERNEL),
5986 NULL);
5987 return zone_to_nid(z->zone);
5988 }
5989 #endif
5990
5991 static void setup_min_unmapped_ratio(void);
5992 static void setup_min_slab_ratio(void);
5993 #else /* CONFIG_NUMA */
5994
build_zonelists(pg_data_t * pgdat)5995 static void build_zonelists(pg_data_t *pgdat)
5996 {
5997 int node, local_node;
5998 struct zoneref *zonerefs;
5999 int nr_zones;
6000
6001 local_node = pgdat->node_id;
6002
6003 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
6004 nr_zones = build_zonerefs_node(pgdat, zonerefs);
6005 zonerefs += nr_zones;
6006
6007 /*
6008 * Now we build the zonelist so that it contains the zones
6009 * of all the other nodes.
6010 * We don't want to pressure a particular node, so when
6011 * building the zones for node N, we make sure that the
6012 * zones coming right after the local ones are those from
6013 * node N+1 (modulo N)
6014 */
6015 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
6016 if (!node_online(node))
6017 continue;
6018 nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
6019 zonerefs += nr_zones;
6020 }
6021 for (node = 0; node < local_node; node++) {
6022 if (!node_online(node))
6023 continue;
6024 nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
6025 zonerefs += nr_zones;
6026 }
6027
6028 zonerefs->zone = NULL;
6029 zonerefs->zone_idx = 0;
6030 }
6031
6032 #endif /* CONFIG_NUMA */
6033
6034 /*
6035 * Boot pageset table. One per cpu which is going to be used for all
6036 * zones and all nodes. The parameters will be set in such a way
6037 * that an item put on a list will immediately be handed over to
6038 * the buddy list. This is safe since pageset manipulation is done
6039 * with interrupts disabled.
6040 *
6041 * The boot_pagesets must be kept even after bootup is complete for
6042 * unused processors and/or zones. They do play a role for bootstrapping
6043 * hotplugged processors.
6044 *
6045 * zoneinfo_show() and maybe other functions do
6046 * not check if the processor is online before following the pageset pointer.
6047 * Other parts of the kernel may not check if the zone is available.
6048 */
6049 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
6050 static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
6051 static DEFINE_PER_CPU(struct per_cpu_nodestat, boot_nodestats);
6052
__build_all_zonelists(void * data)6053 static void __build_all_zonelists(void *data)
6054 {
6055 int nid;
6056 int __maybe_unused cpu;
6057 pg_data_t *self = data;
6058
6059 write_seqlock(&zonelist_update_seq);
6060
6061 #ifdef CONFIG_NUMA
6062 memset(node_load, 0, sizeof(node_load));
6063 #endif
6064
6065 /*
6066 * This node is hotadded and no memory is yet present. So just
6067 * building zonelists is fine - no need to touch other nodes.
6068 */
6069 if (self && !node_online(self->node_id)) {
6070 build_zonelists(self);
6071 } else {
6072 for_each_online_node(nid) {
6073 pg_data_t *pgdat = NODE_DATA(nid);
6074
6075 build_zonelists(pgdat);
6076 }
6077
6078 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
6079 /*
6080 * We now know the "local memory node" for each node--
6081 * i.e., the node of the first zone in the generic zonelist.
6082 * Set up numa_mem percpu variable for on-line cpus. During
6083 * boot, only the boot cpu should be on-line; we'll init the
6084 * secondary cpus' numa_mem as they come on-line. During
6085 * node/memory hotplug, we'll fixup all on-line cpus.
6086 */
6087 for_each_online_cpu(cpu)
6088 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
6089 #endif
6090 }
6091
6092 write_sequnlock(&zonelist_update_seq);
6093 }
6094
6095 static noinline void __init
build_all_zonelists_init(void)6096 build_all_zonelists_init(void)
6097 {
6098 int cpu;
6099
6100 __build_all_zonelists(NULL);
6101
6102 /*
6103 * Initialize the boot_pagesets that are going to be used
6104 * for bootstrapping processors. The real pagesets for
6105 * each zone will be allocated later when the per cpu
6106 * allocator is available.
6107 *
6108 * boot_pagesets are used also for bootstrapping offline
6109 * cpus if the system is already booted because the pagesets
6110 * are needed to initialize allocators on a specific cpu too.
6111 * F.e. the percpu allocator needs the page allocator which
6112 * needs the percpu allocator in order to allocate its pagesets
6113 * (a chicken-egg dilemma).
6114 */
6115 for_each_possible_cpu(cpu)
6116 setup_pageset(&per_cpu(boot_pageset, cpu), 0);
6117
6118 mminit_verify_zonelist();
6119 cpuset_init_current_mems_allowed();
6120 }
6121
6122 /*
6123 * unless system_state == SYSTEM_BOOTING.
6124 *
6125 * __ref due to call of __init annotated helper build_all_zonelists_init
6126 * [protected by SYSTEM_BOOTING].
6127 */
build_all_zonelists(pg_data_t * pgdat)6128 void __ref build_all_zonelists(pg_data_t *pgdat)
6129 {
6130 unsigned long vm_total_pages;
6131
6132 if (system_state == SYSTEM_BOOTING) {
6133 build_all_zonelists_init();
6134 } else {
6135 __build_all_zonelists(pgdat);
6136 /* cpuset refresh routine should be here */
6137 }
6138 /* Get the number of free pages beyond high watermark in all zones. */
6139 vm_total_pages = nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
6140 /*
6141 * Disable grouping by mobility if the number of pages in the
6142 * system is too low to allow the mechanism to work. It would be
6143 * more accurate, but expensive to check per-zone. This check is
6144 * made on memory-hotadd so a system can start with mobility
6145 * disabled and enable it later
6146 */
6147 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
6148 page_group_by_mobility_disabled = 1;
6149 else
6150 page_group_by_mobility_disabled = 0;
6151
6152 pr_info("Built %u zonelists, mobility grouping %s. Total pages: %ld\n",
6153 nr_online_nodes,
6154 page_group_by_mobility_disabled ? "off" : "on",
6155 vm_total_pages);
6156 #ifdef CONFIG_NUMA
6157 pr_info("Policy zone: %s\n", zone_names[policy_zone]);
6158 #endif
6159 }
6160
6161 /* If zone is ZONE_MOVABLE but memory is mirrored, it is an overlapped init */
6162 static bool __meminit
overlap_memmap_init(unsigned long zone,unsigned long * pfn)6163 overlap_memmap_init(unsigned long zone, unsigned long *pfn)
6164 {
6165 static struct memblock_region *r;
6166
6167 if (mirrored_kernelcore && zone == ZONE_MOVABLE) {
6168 if (!r || *pfn >= memblock_region_memory_end_pfn(r)) {
6169 for_each_mem_region(r) {
6170 if (*pfn < memblock_region_memory_end_pfn(r))
6171 break;
6172 }
6173 }
6174 if (*pfn >= memblock_region_memory_base_pfn(r) &&
6175 memblock_is_mirror(r)) {
6176 *pfn = memblock_region_memory_end_pfn(r);
6177 return true;
6178 }
6179 }
6180 return false;
6181 }
6182
6183 /*
6184 * Initially all pages are reserved - free ones are freed
6185 * up by memblock_free_all() once the early boot process is
6186 * done. Non-atomic initialization, single-pass.
6187 *
6188 * All aligned pageblocks are initialized to the specified migratetype
6189 * (usually MIGRATE_MOVABLE). Besides setting the migratetype, no related
6190 * zone stats (e.g., nr_isolate_pageblock) are touched.
6191 */
memmap_init_zone(unsigned long size,int nid,unsigned long zone,unsigned long start_pfn,unsigned long zone_end_pfn,enum meminit_context context,struct vmem_altmap * altmap,int migratetype)6192 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
6193 unsigned long start_pfn, unsigned long zone_end_pfn,
6194 enum meminit_context context,
6195 struct vmem_altmap *altmap, int migratetype)
6196 {
6197 unsigned long pfn, end_pfn = start_pfn + size;
6198 struct page *page;
6199
6200 if (highest_memmap_pfn < end_pfn - 1)
6201 highest_memmap_pfn = end_pfn - 1;
6202
6203 #ifdef CONFIG_ZONE_DEVICE
6204 /*
6205 * Honor reservation requested by the driver for this ZONE_DEVICE
6206 * memory. We limit the total number of pages to initialize to just
6207 * those that might contain the memory mapping. We will defer the
6208 * ZONE_DEVICE page initialization until after we have released
6209 * the hotplug lock.
6210 */
6211 if (zone == ZONE_DEVICE) {
6212 if (!altmap)
6213 return;
6214
6215 if (start_pfn == altmap->base_pfn)
6216 start_pfn += altmap->reserve;
6217 end_pfn = altmap->base_pfn + vmem_altmap_offset(altmap);
6218 }
6219 #endif
6220
6221 for (pfn = start_pfn; pfn < end_pfn; ) {
6222 /*
6223 * There can be holes in boot-time mem_map[]s handed to this
6224 * function. They do not exist on hotplugged memory.
6225 */
6226 if (context == MEMINIT_EARLY) {
6227 if (overlap_memmap_init(zone, &pfn))
6228 continue;
6229 if (defer_init(nid, pfn, zone_end_pfn))
6230 break;
6231 }
6232
6233 page = pfn_to_page(pfn);
6234 __init_single_page(page, pfn, zone, nid);
6235 if (context == MEMINIT_HOTPLUG)
6236 __SetPageReserved(page);
6237
6238 /*
6239 * Usually, we want to mark the pageblock MIGRATE_MOVABLE,
6240 * such that unmovable allocations won't be scattered all
6241 * over the place during system boot.
6242 */
6243 if (IS_ALIGNED(pfn, pageblock_nr_pages)) {
6244 set_pageblock_migratetype(page, migratetype);
6245 cond_resched();
6246 }
6247 pfn++;
6248 }
6249 }
6250
6251 #ifdef CONFIG_ZONE_DEVICE
memmap_init_zone_device(struct zone * zone,unsigned long start_pfn,unsigned long nr_pages,struct dev_pagemap * pgmap)6252 void __ref memmap_init_zone_device(struct zone *zone,
6253 unsigned long start_pfn,
6254 unsigned long nr_pages,
6255 struct dev_pagemap *pgmap)
6256 {
6257 unsigned long pfn, end_pfn = start_pfn + nr_pages;
6258 struct pglist_data *pgdat = zone->zone_pgdat;
6259 struct vmem_altmap *altmap = pgmap_altmap(pgmap);
6260 unsigned long zone_idx = zone_idx(zone);
6261 unsigned long start = jiffies;
6262 int nid = pgdat->node_id;
6263
6264 if (WARN_ON_ONCE(!pgmap || zone_idx(zone) != ZONE_DEVICE))
6265 return;
6266
6267 /*
6268 * The call to memmap_init should have already taken care
6269 * of the pages reserved for the memmap, so we can just jump to
6270 * the end of that region and start processing the device pages.
6271 */
6272 if (altmap) {
6273 start_pfn = altmap->base_pfn + vmem_altmap_offset(altmap);
6274 nr_pages = end_pfn - start_pfn;
6275 }
6276
6277 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
6278 struct page *page = pfn_to_page(pfn);
6279
6280 __init_single_page(page, pfn, zone_idx, nid);
6281
6282 /*
6283 * Mark page reserved as it will need to wait for onlining
6284 * phase for it to be fully associated with a zone.
6285 *
6286 * We can use the non-atomic __set_bit operation for setting
6287 * the flag as we are still initializing the pages.
6288 */
6289 __SetPageReserved(page);
6290
6291 /*
6292 * ZONE_DEVICE pages union ->lru with a ->pgmap back pointer
6293 * and zone_device_data. It is a bug if a ZONE_DEVICE page is
6294 * ever freed or placed on a driver-private list.
6295 */
6296 page->pgmap = pgmap;
6297 page->zone_device_data = NULL;
6298
6299 /*
6300 * Mark the block movable so that blocks are reserved for
6301 * movable at startup. This will force kernel allocations
6302 * to reserve their blocks rather than leaking throughout
6303 * the address space during boot when many long-lived
6304 * kernel allocations are made.
6305 *
6306 * Please note that MEMINIT_HOTPLUG path doesn't clear memmap
6307 * because this is done early in section_activate()
6308 */
6309 if (IS_ALIGNED(pfn, pageblock_nr_pages)) {
6310 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
6311 cond_resched();
6312 }
6313 }
6314
6315 pr_info("%s initialised %lu pages in %ums\n", __func__,
6316 nr_pages, jiffies_to_msecs(jiffies - start));
6317 }
6318
6319 #endif
zone_init_free_lists(struct zone * zone)6320 static void __meminit zone_init_free_lists(struct zone *zone)
6321 {
6322 unsigned int order, t;
6323 for_each_migratetype_order(order, t) {
6324 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
6325 zone->free_area[order].nr_free = 0;
6326 }
6327 }
6328
6329 #if !defined(CONFIG_FLAT_NODE_MEM_MAP)
6330 /*
6331 * Only struct pages that correspond to ranges defined by memblock.memory
6332 * are zeroed and initialized by going through __init_single_page() during
6333 * memmap_init_zone_range().
6334 *
6335 * But, there could be struct pages that correspond to holes in
6336 * memblock.memory. This can happen because of the following reasons:
6337 * - physical memory bank size is not necessarily the exact multiple of the
6338 * arbitrary section size
6339 * - early reserved memory may not be listed in memblock.memory
6340 * - memory layouts defined with memmap= kernel parameter may not align
6341 * nicely with memmap sections
6342 *
6343 * Explicitly initialize those struct pages so that:
6344 * - PG_Reserved is set
6345 * - zone and node links point to zone and node that span the page if the
6346 * hole is in the middle of a zone
6347 * - zone and node links point to adjacent zone/node if the hole falls on
6348 * the zone boundary; the pages in such holes will be prepended to the
6349 * zone/node above the hole except for the trailing pages in the last
6350 * section that will be appended to the zone/node below.
6351 */
init_unavailable_range(unsigned long spfn,unsigned long epfn,int zone,int node)6352 static void __init init_unavailable_range(unsigned long spfn,
6353 unsigned long epfn,
6354 int zone, int node)
6355 {
6356 unsigned long pfn;
6357 u64 pgcnt = 0;
6358
6359 for (pfn = spfn; pfn < epfn; pfn++) {
6360 if (!pfn_valid(ALIGN_DOWN(pfn, pageblock_nr_pages))) {
6361 pfn = ALIGN_DOWN(pfn, pageblock_nr_pages)
6362 + pageblock_nr_pages - 1;
6363 continue;
6364 }
6365 __init_single_page(pfn_to_page(pfn), pfn, zone, node);
6366 __SetPageReserved(pfn_to_page(pfn));
6367 pgcnt++;
6368 }
6369
6370 if (pgcnt)
6371 pr_info("On node %d, zone %s: %lld pages in unavailable ranges",
6372 node, zone_names[zone], pgcnt);
6373 }
6374 #else
init_unavailable_range(unsigned long spfn,unsigned long epfn,int zone,int node)6375 static inline void init_unavailable_range(unsigned long spfn,
6376 unsigned long epfn,
6377 int zone, int node)
6378 {
6379 }
6380 #endif
6381
memmap_init_zone_range(struct zone * zone,unsigned long start_pfn,unsigned long end_pfn,unsigned long * hole_pfn)6382 static void __init memmap_init_zone_range(struct zone *zone,
6383 unsigned long start_pfn,
6384 unsigned long end_pfn,
6385 unsigned long *hole_pfn)
6386 {
6387 unsigned long zone_start_pfn = zone->zone_start_pfn;
6388 unsigned long zone_end_pfn = zone_start_pfn + zone->spanned_pages;
6389 int nid = zone_to_nid(zone), zone_id = zone_idx(zone);
6390
6391 start_pfn = clamp(start_pfn, zone_start_pfn, zone_end_pfn);
6392 end_pfn = clamp(end_pfn, zone_start_pfn, zone_end_pfn);
6393
6394 if (start_pfn >= end_pfn)
6395 return;
6396
6397 memmap_init_zone(end_pfn - start_pfn, nid, zone_id, start_pfn,
6398 zone_end_pfn, MEMINIT_EARLY, NULL, MIGRATE_MOVABLE);
6399
6400 if (*hole_pfn < start_pfn)
6401 init_unavailable_range(*hole_pfn, start_pfn, zone_id, nid);
6402
6403 *hole_pfn = end_pfn;
6404 }
6405
memmap_init(void)6406 void __init __weak memmap_init(void)
6407 {
6408 unsigned long start_pfn, end_pfn;
6409 unsigned long hole_pfn = 0;
6410 int i, j, zone_id, nid;
6411
6412 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
6413 struct pglist_data *node = NODE_DATA(nid);
6414
6415 for (j = 0; j < MAX_NR_ZONES; j++) {
6416 struct zone *zone = node->node_zones + j;
6417
6418 if (!populated_zone(zone))
6419 continue;
6420
6421 memmap_init_zone_range(zone, start_pfn, end_pfn,
6422 &hole_pfn);
6423 zone_id = j;
6424 }
6425 }
6426
6427 #ifdef CONFIG_SPARSEMEM
6428 /*
6429 * Initialize the memory map for hole in the range [memory_end,
6430 * section_end].
6431 * Append the pages in this hole to the highest zone in the last
6432 * node.
6433 * The call to init_unavailable_range() is outside the ifdef to
6434 * silence the compiler warining about zone_id set but not used;
6435 * for FLATMEM it is a nop anyway
6436 */
6437 end_pfn = round_up(end_pfn, PAGES_PER_SECTION);
6438 if (hole_pfn < end_pfn)
6439 #endif
6440 init_unavailable_range(hole_pfn, end_pfn, zone_id, nid);
6441 }
6442
6443 /* A stub for backwards compatibility with custom implementatin on IA-64 */
arch_memmap_init(unsigned long size,int nid,unsigned long zone,unsigned long range_start_pfn)6444 void __meminit __weak arch_memmap_init(unsigned long size, int nid,
6445 unsigned long zone,
6446 unsigned long range_start_pfn)
6447 {
6448 }
6449
zone_batchsize(struct zone * zone)6450 static int zone_batchsize(struct zone *zone)
6451 {
6452 #ifdef CONFIG_MMU
6453 int batch;
6454
6455 /*
6456 * The per-cpu-pages pools are set to around 1000th of the
6457 * size of the zone.
6458 */
6459 batch = zone_managed_pages(zone) / 1024;
6460 /* But no more than a meg. */
6461 if (batch * PAGE_SIZE > 1024 * 1024)
6462 batch = (1024 * 1024) / PAGE_SIZE;
6463 batch /= 4; /* We effectively *= 4 below */
6464 if (batch < 1)
6465 batch = 1;
6466
6467 /*
6468 * Clamp the batch to a 2^n - 1 value. Having a power
6469 * of 2 value was found to be more likely to have
6470 * suboptimal cache aliasing properties in some cases.
6471 *
6472 * For example if 2 tasks are alternately allocating
6473 * batches of pages, one task can end up with a lot
6474 * of pages of one half of the possible page colors
6475 * and the other with pages of the other colors.
6476 */
6477 batch = rounddown_pow_of_two(batch + batch/2) - 1;
6478
6479 return batch;
6480
6481 #else
6482 /* The deferral and batching of frees should be suppressed under NOMMU
6483 * conditions.
6484 *
6485 * The problem is that NOMMU needs to be able to allocate large chunks
6486 * of contiguous memory as there's no hardware page translation to
6487 * assemble apparent contiguous memory from discontiguous pages.
6488 *
6489 * Queueing large contiguous runs of pages for batching, however,
6490 * causes the pages to actually be freed in smaller chunks. As there
6491 * can be a significant delay between the individual batches being
6492 * recycled, this leads to the once large chunks of space being
6493 * fragmented and becoming unavailable for high-order allocations.
6494 */
6495 return 0;
6496 #endif
6497 }
6498
6499 /*
6500 * pcp->high and pcp->batch values are related and dependent on one another:
6501 * ->batch must never be higher then ->high.
6502 * The following function updates them in a safe manner without read side
6503 * locking.
6504 *
6505 * Any new users of pcp->batch and pcp->high should ensure they can cope with
6506 * those fields changing asynchronously (acording to the above rule).
6507 *
6508 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
6509 * outside of boot time (or some other assurance that no concurrent updaters
6510 * exist).
6511 */
pageset_update(struct per_cpu_pages * pcp,unsigned long high,unsigned long batch)6512 static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
6513 unsigned long batch)
6514 {
6515 /* start with a fail safe value for batch */
6516 pcp->batch = 1;
6517 smp_wmb();
6518
6519 /* Update high, then batch, in order */
6520 pcp->high = high;
6521 smp_wmb();
6522
6523 pcp->batch = batch;
6524 }
6525
6526 /* a companion to pageset_set_high() */
pageset_set_batch(struct per_cpu_pageset * p,unsigned long batch)6527 static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch)
6528 {
6529 pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch));
6530 }
6531
pageset_init(struct per_cpu_pageset * p)6532 static void pageset_init(struct per_cpu_pageset *p)
6533 {
6534 struct per_cpu_pages *pcp;
6535 int migratetype;
6536
6537 memset(p, 0, sizeof(*p));
6538
6539 pcp = &p->pcp;
6540 for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
6541 INIT_LIST_HEAD(&pcp->lists[migratetype]);
6542 }
6543
setup_pageset(struct per_cpu_pageset * p,unsigned long batch)6544 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
6545 {
6546 pageset_init(p);
6547 pageset_set_batch(p, batch);
6548 }
6549
6550 /*
6551 * pageset_set_high() sets the high water mark for hot per_cpu_pagelist
6552 * to the value high for the pageset p.
6553 */
pageset_set_high(struct per_cpu_pageset * p,unsigned long high)6554 static void pageset_set_high(struct per_cpu_pageset *p,
6555 unsigned long high)
6556 {
6557 unsigned long batch = max(1UL, high / 4);
6558 if ((high / 4) > (PAGE_SHIFT * 8))
6559 batch = PAGE_SHIFT * 8;
6560
6561 pageset_update(&p->pcp, high, batch);
6562 }
6563
pageset_set_high_and_batch(struct zone * zone,struct per_cpu_pageset * pcp)6564 static void pageset_set_high_and_batch(struct zone *zone,
6565 struct per_cpu_pageset *pcp)
6566 {
6567 if (percpu_pagelist_fraction)
6568 pageset_set_high(pcp,
6569 (zone_managed_pages(zone) /
6570 percpu_pagelist_fraction));
6571 else
6572 pageset_set_batch(pcp, zone_batchsize(zone));
6573 }
6574
zone_pageset_init(struct zone * zone,int cpu)6575 static void __meminit zone_pageset_init(struct zone *zone, int cpu)
6576 {
6577 struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
6578
6579 pageset_init(pcp);
6580 pageset_set_high_and_batch(zone, pcp);
6581 }
6582
setup_zone_pageset(struct zone * zone)6583 void __meminit setup_zone_pageset(struct zone *zone)
6584 {
6585 int cpu;
6586 zone->pageset = alloc_percpu(struct per_cpu_pageset);
6587 for_each_possible_cpu(cpu)
6588 zone_pageset_init(zone, cpu);
6589 }
6590
6591 /*
6592 * Allocate per cpu pagesets and initialize them.
6593 * Before this call only boot pagesets were available.
6594 */
setup_per_cpu_pageset(void)6595 void __init setup_per_cpu_pageset(void)
6596 {
6597 struct pglist_data *pgdat;
6598 struct zone *zone;
6599 int __maybe_unused cpu;
6600
6601 for_each_populated_zone(zone)
6602 setup_zone_pageset(zone);
6603
6604 #ifdef CONFIG_NUMA
6605 /*
6606 * Unpopulated zones continue using the boot pagesets.
6607 * The numa stats for these pagesets need to be reset.
6608 * Otherwise, they will end up skewing the stats of
6609 * the nodes these zones are associated with.
6610 */
6611 for_each_possible_cpu(cpu) {
6612 struct per_cpu_pageset *pcp = &per_cpu(boot_pageset, cpu);
6613 memset(pcp->vm_numa_stat_diff, 0,
6614 sizeof(pcp->vm_numa_stat_diff));
6615 }
6616 #endif
6617
6618 for_each_online_pgdat(pgdat)
6619 pgdat->per_cpu_nodestats =
6620 alloc_percpu(struct per_cpu_nodestat);
6621 }
6622
zone_pcp_init(struct zone * zone)6623 static __meminit void zone_pcp_init(struct zone *zone)
6624 {
6625 /*
6626 * per cpu subsystem is not up at this point. The following code
6627 * relies on the ability of the linker to provide the
6628 * offset of a (static) per cpu variable into the per cpu area.
6629 */
6630 zone->pageset = &boot_pageset;
6631
6632 if (populated_zone(zone))
6633 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n",
6634 zone->name, zone->present_pages,
6635 zone_batchsize(zone));
6636 }
6637
init_currently_empty_zone(struct zone * zone,unsigned long zone_start_pfn,unsigned long size)6638 void __meminit init_currently_empty_zone(struct zone *zone,
6639 unsigned long zone_start_pfn,
6640 unsigned long size)
6641 {
6642 struct pglist_data *pgdat = zone->zone_pgdat;
6643 int zone_idx = zone_idx(zone) + 1;
6644
6645 if (zone_idx > pgdat->nr_zones)
6646 pgdat->nr_zones = zone_idx;
6647
6648 zone->zone_start_pfn = zone_start_pfn;
6649
6650 mminit_dprintk(MMINIT_TRACE, "memmap_init",
6651 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
6652 pgdat->node_id,
6653 (unsigned long)zone_idx(zone),
6654 zone_start_pfn, (zone_start_pfn + size));
6655
6656 zone_init_free_lists(zone);
6657 zone->initialized = 1;
6658 }
6659
6660 /**
6661 * get_pfn_range_for_nid - Return the start and end page frames for a node
6662 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
6663 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
6664 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
6665 *
6666 * It returns the start and end page frame of a node based on information
6667 * provided by memblock_set_node(). If called for a node
6668 * with no available memory, a warning is printed and the start and end
6669 * PFNs will be 0.
6670 */
get_pfn_range_for_nid(unsigned int nid,unsigned long * start_pfn,unsigned long * end_pfn)6671 void __init get_pfn_range_for_nid(unsigned int nid,
6672 unsigned long *start_pfn, unsigned long *end_pfn)
6673 {
6674 unsigned long this_start_pfn, this_end_pfn;
6675 int i;
6676
6677 *start_pfn = -1UL;
6678 *end_pfn = 0;
6679
6680 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
6681 *start_pfn = min(*start_pfn, this_start_pfn);
6682 *end_pfn = max(*end_pfn, this_end_pfn);
6683 }
6684
6685 if (*start_pfn == -1UL)
6686 *start_pfn = 0;
6687 }
6688
6689 /*
6690 * This finds a zone that can be used for ZONE_MOVABLE pages. The
6691 * assumption is made that zones within a node are ordered in monotonic
6692 * increasing memory addresses so that the "highest" populated zone is used
6693 */
find_usable_zone_for_movable(void)6694 static void __init find_usable_zone_for_movable(void)
6695 {
6696 int zone_index;
6697 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
6698 if (zone_index == ZONE_MOVABLE)
6699 continue;
6700
6701 if (arch_zone_highest_possible_pfn[zone_index] >
6702 arch_zone_lowest_possible_pfn[zone_index])
6703 break;
6704 }
6705
6706 VM_BUG_ON(zone_index == -1);
6707 movable_zone = zone_index;
6708 }
6709
6710 /*
6711 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
6712 * because it is sized independent of architecture. Unlike the other zones,
6713 * the starting point for ZONE_MOVABLE is not fixed. It may be different
6714 * in each node depending on the size of each node and how evenly kernelcore
6715 * is distributed. This helper function adjusts the zone ranges
6716 * provided by the architecture for a given node by using the end of the
6717 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
6718 * zones within a node are in order of monotonic increases memory addresses
6719 */
adjust_zone_range_for_zone_movable(int nid,unsigned long zone_type,unsigned long node_start_pfn,unsigned long node_end_pfn,unsigned long * zone_start_pfn,unsigned long * zone_end_pfn)6720 static void __init adjust_zone_range_for_zone_movable(int nid,
6721 unsigned long zone_type,
6722 unsigned long node_start_pfn,
6723 unsigned long node_end_pfn,
6724 unsigned long *zone_start_pfn,
6725 unsigned long *zone_end_pfn)
6726 {
6727 /* Only adjust if ZONE_MOVABLE is on this node */
6728 if (zone_movable_pfn[nid]) {
6729 /* Size ZONE_MOVABLE */
6730 if (zone_type == ZONE_MOVABLE) {
6731 *zone_start_pfn = zone_movable_pfn[nid];
6732 *zone_end_pfn = min(node_end_pfn,
6733 arch_zone_highest_possible_pfn[movable_zone]);
6734
6735 /* Adjust for ZONE_MOVABLE starting within this range */
6736 } else if (!mirrored_kernelcore &&
6737 *zone_start_pfn < zone_movable_pfn[nid] &&
6738 *zone_end_pfn > zone_movable_pfn[nid]) {
6739 *zone_end_pfn = zone_movable_pfn[nid];
6740
6741 /* Check if this whole range is within ZONE_MOVABLE */
6742 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
6743 *zone_start_pfn = *zone_end_pfn;
6744 }
6745 }
6746
6747 /*
6748 * Return the number of pages a zone spans in a node, including holes
6749 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
6750 */
zone_spanned_pages_in_node(int nid,unsigned long zone_type,unsigned long node_start_pfn,unsigned long node_end_pfn,unsigned long * zone_start_pfn,unsigned long * zone_end_pfn)6751 static unsigned long __init zone_spanned_pages_in_node(int nid,
6752 unsigned long zone_type,
6753 unsigned long node_start_pfn,
6754 unsigned long node_end_pfn,
6755 unsigned long *zone_start_pfn,
6756 unsigned long *zone_end_pfn)
6757 {
6758 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
6759 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
6760 /* When hotadd a new node from cpu_up(), the node should be empty */
6761 if (!node_start_pfn && !node_end_pfn)
6762 return 0;
6763
6764 /* Get the start and end of the zone */
6765 *zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
6766 *zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
6767 adjust_zone_range_for_zone_movable(nid, zone_type,
6768 node_start_pfn, node_end_pfn,
6769 zone_start_pfn, zone_end_pfn);
6770
6771 /* Check that this node has pages within the zone's required range */
6772 if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn)
6773 return 0;
6774
6775 /* Move the zone boundaries inside the node if necessary */
6776 *zone_end_pfn = min(*zone_end_pfn, node_end_pfn);
6777 *zone_start_pfn = max(*zone_start_pfn, node_start_pfn);
6778
6779 /* Return the spanned pages */
6780 return *zone_end_pfn - *zone_start_pfn;
6781 }
6782
6783 /*
6784 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
6785 * then all holes in the requested range will be accounted for.
6786 */
__absent_pages_in_range(int nid,unsigned long range_start_pfn,unsigned long range_end_pfn)6787 unsigned long __init __absent_pages_in_range(int nid,
6788 unsigned long range_start_pfn,
6789 unsigned long range_end_pfn)
6790 {
6791 unsigned long nr_absent = range_end_pfn - range_start_pfn;
6792 unsigned long start_pfn, end_pfn;
6793 int i;
6794
6795 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
6796 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
6797 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
6798 nr_absent -= end_pfn - start_pfn;
6799 }
6800 return nr_absent;
6801 }
6802
6803 /**
6804 * absent_pages_in_range - Return number of page frames in holes within a range
6805 * @start_pfn: The start PFN to start searching for holes
6806 * @end_pfn: The end PFN to stop searching for holes
6807 *
6808 * Return: the number of pages frames in memory holes within a range.
6809 */
absent_pages_in_range(unsigned long start_pfn,unsigned long end_pfn)6810 unsigned long __init absent_pages_in_range(unsigned long start_pfn,
6811 unsigned long end_pfn)
6812 {
6813 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
6814 }
6815
6816 /* Return the number of page frames in holes in a zone on a node */
zone_absent_pages_in_node(int nid,unsigned long zone_type,unsigned long node_start_pfn,unsigned long node_end_pfn)6817 static unsigned long __init zone_absent_pages_in_node(int nid,
6818 unsigned long zone_type,
6819 unsigned long node_start_pfn,
6820 unsigned long node_end_pfn)
6821 {
6822 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
6823 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
6824 unsigned long zone_start_pfn, zone_end_pfn;
6825 unsigned long nr_absent;
6826
6827 /* When hotadd a new node from cpu_up(), the node should be empty */
6828 if (!node_start_pfn && !node_end_pfn)
6829 return 0;
6830
6831 zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
6832 zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
6833
6834 adjust_zone_range_for_zone_movable(nid, zone_type,
6835 node_start_pfn, node_end_pfn,
6836 &zone_start_pfn, &zone_end_pfn);
6837 nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
6838
6839 /*
6840 * ZONE_MOVABLE handling.
6841 * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages
6842 * and vice versa.
6843 */
6844 if (mirrored_kernelcore && zone_movable_pfn[nid]) {
6845 unsigned long start_pfn, end_pfn;
6846 struct memblock_region *r;
6847
6848 for_each_mem_region(r) {
6849 start_pfn = clamp(memblock_region_memory_base_pfn(r),
6850 zone_start_pfn, zone_end_pfn);
6851 end_pfn = clamp(memblock_region_memory_end_pfn(r),
6852 zone_start_pfn, zone_end_pfn);
6853
6854 if (zone_type == ZONE_MOVABLE &&
6855 memblock_is_mirror(r))
6856 nr_absent += end_pfn - start_pfn;
6857
6858 if (zone_type == ZONE_NORMAL &&
6859 !memblock_is_mirror(r))
6860 nr_absent += end_pfn - start_pfn;
6861 }
6862 }
6863
6864 return nr_absent;
6865 }
6866
calculate_node_totalpages(struct pglist_data * pgdat,unsigned long node_start_pfn,unsigned long node_end_pfn)6867 static void __init calculate_node_totalpages(struct pglist_data *pgdat,
6868 unsigned long node_start_pfn,
6869 unsigned long node_end_pfn)
6870 {
6871 unsigned long realtotalpages = 0, totalpages = 0;
6872 enum zone_type i;
6873
6874 for (i = 0; i < MAX_NR_ZONES; i++) {
6875 struct zone *zone = pgdat->node_zones + i;
6876 unsigned long zone_start_pfn, zone_end_pfn;
6877 unsigned long spanned, absent;
6878 unsigned long size, real_size;
6879
6880 spanned = zone_spanned_pages_in_node(pgdat->node_id, i,
6881 node_start_pfn,
6882 node_end_pfn,
6883 &zone_start_pfn,
6884 &zone_end_pfn);
6885 absent = zone_absent_pages_in_node(pgdat->node_id, i,
6886 node_start_pfn,
6887 node_end_pfn);
6888
6889 size = spanned;
6890 real_size = size - absent;
6891
6892 if (size)
6893 zone->zone_start_pfn = zone_start_pfn;
6894 else
6895 zone->zone_start_pfn = 0;
6896 zone->spanned_pages = size;
6897 zone->present_pages = real_size;
6898
6899 totalpages += size;
6900 realtotalpages += real_size;
6901 }
6902
6903 pgdat->node_spanned_pages = totalpages;
6904 pgdat->node_present_pages = realtotalpages;
6905 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
6906 realtotalpages);
6907 }
6908
6909 #ifndef CONFIG_SPARSEMEM
6910 /*
6911 * Calculate the size of the zone->blockflags rounded to an unsigned long
6912 * Start by making sure zonesize is a multiple of pageblock_order by rounding
6913 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
6914 * round what is now in bits to nearest long in bits, then return it in
6915 * bytes.
6916 */
usemap_size(unsigned long zone_start_pfn,unsigned long zonesize)6917 static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
6918 {
6919 unsigned long usemapsize;
6920
6921 zonesize += zone_start_pfn & (pageblock_nr_pages-1);
6922 usemapsize = roundup(zonesize, pageblock_nr_pages);
6923 usemapsize = usemapsize >> pageblock_order;
6924 usemapsize *= NR_PAGEBLOCK_BITS;
6925 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
6926
6927 return usemapsize / 8;
6928 }
6929
setup_usemap(struct pglist_data * pgdat,struct zone * zone,unsigned long zone_start_pfn,unsigned long zonesize)6930 static void __ref setup_usemap(struct pglist_data *pgdat,
6931 struct zone *zone,
6932 unsigned long zone_start_pfn,
6933 unsigned long zonesize)
6934 {
6935 unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize);
6936 zone->pageblock_flags = NULL;
6937 if (usemapsize) {
6938 zone->pageblock_flags =
6939 memblock_alloc_node(usemapsize, SMP_CACHE_BYTES,
6940 pgdat->node_id);
6941 if (!zone->pageblock_flags)
6942 panic("Failed to allocate %ld bytes for zone %s pageblock flags on node %d\n",
6943 usemapsize, zone->name, pgdat->node_id);
6944 }
6945 }
6946 #else
setup_usemap(struct pglist_data * pgdat,struct zone * zone,unsigned long zone_start_pfn,unsigned long zonesize)6947 static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone,
6948 unsigned long zone_start_pfn, unsigned long zonesize) {}
6949 #endif /* CONFIG_SPARSEMEM */
6950
6951 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
6952
6953 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
set_pageblock_order(void)6954 void __init set_pageblock_order(void)
6955 {
6956 unsigned int order;
6957
6958 /* Check that pageblock_nr_pages has not already been setup */
6959 if (pageblock_order)
6960 return;
6961
6962 if (HPAGE_SHIFT > PAGE_SHIFT)
6963 order = HUGETLB_PAGE_ORDER;
6964 else
6965 order = MAX_ORDER - 1;
6966
6967 /*
6968 * Assume the largest contiguous order of interest is a huge page.
6969 * This value may be variable depending on boot parameters on IA64 and
6970 * powerpc.
6971 */
6972 pageblock_order = order;
6973 }
6974 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
6975
6976 /*
6977 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
6978 * is unused as pageblock_order is set at compile-time. See
6979 * include/linux/pageblock-flags.h for the values of pageblock_order based on
6980 * the kernel config
6981 */
set_pageblock_order(void)6982 void __init set_pageblock_order(void)
6983 {
6984 }
6985
6986 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
6987
calc_memmap_size(unsigned long spanned_pages,unsigned long present_pages)6988 static unsigned long __init calc_memmap_size(unsigned long spanned_pages,
6989 unsigned long present_pages)
6990 {
6991 unsigned long pages = spanned_pages;
6992
6993 /*
6994 * Provide a more accurate estimation if there are holes within
6995 * the zone and SPARSEMEM is in use. If there are holes within the
6996 * zone, each populated memory region may cost us one or two extra
6997 * memmap pages due to alignment because memmap pages for each
6998 * populated regions may not be naturally aligned on page boundary.
6999 * So the (present_pages >> 4) heuristic is a tradeoff for that.
7000 */
7001 if (spanned_pages > present_pages + (present_pages >> 4) &&
7002 IS_ENABLED(CONFIG_SPARSEMEM))
7003 pages = present_pages;
7004
7005 return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
7006 }
7007
7008 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
pgdat_init_split_queue(struct pglist_data * pgdat)7009 static void pgdat_init_split_queue(struct pglist_data *pgdat)
7010 {
7011 struct deferred_split *ds_queue = &pgdat->deferred_split_queue;
7012
7013 spin_lock_init(&ds_queue->split_queue_lock);
7014 INIT_LIST_HEAD(&ds_queue->split_queue);
7015 ds_queue->split_queue_len = 0;
7016 }
7017 #else
pgdat_init_split_queue(struct pglist_data * pgdat)7018 static void pgdat_init_split_queue(struct pglist_data *pgdat) {}
7019 #endif
7020
7021 #ifdef CONFIG_COMPACTION
pgdat_init_kcompactd(struct pglist_data * pgdat)7022 static void pgdat_init_kcompactd(struct pglist_data *pgdat)
7023 {
7024 init_waitqueue_head(&pgdat->kcompactd_wait);
7025 }
7026 #else
pgdat_init_kcompactd(struct pglist_data * pgdat)7027 static void pgdat_init_kcompactd(struct pglist_data *pgdat) {}
7028 #endif
7029
pgdat_init_internals(struct pglist_data * pgdat)7030 static void __meminit pgdat_init_internals(struct pglist_data *pgdat)
7031 {
7032 pgdat_resize_init(pgdat);
7033
7034 pgdat_init_split_queue(pgdat);
7035 pgdat_init_kcompactd(pgdat);
7036
7037 init_waitqueue_head(&pgdat->kswapd_wait);
7038 init_waitqueue_head(&pgdat->pfmemalloc_wait);
7039 #ifdef CONFIG_HYPERHOLD_ZSWAPD
7040 init_waitqueue_head(&pgdat->zswapd_wait);
7041 #endif
7042
7043 pgdat_page_ext_init(pgdat);
7044 spin_lock_init(&pgdat->lru_lock);
7045 lruvec_init(&pgdat->__lruvec);
7046 #if defined(CONFIG_HYPERHOLD_FILE_LRU) && defined(CONFIG_MEMCG)
7047 pgdat->__lruvec.pgdat = pgdat;
7048 #endif
7049 }
7050
zone_init_internals(struct zone * zone,enum zone_type idx,int nid,unsigned long remaining_pages)7051 static void __meminit zone_init_internals(struct zone *zone, enum zone_type idx, int nid,
7052 unsigned long remaining_pages)
7053 {
7054 atomic_long_set(&zone->managed_pages, remaining_pages);
7055 zone_set_nid(zone, nid);
7056 zone->name = zone_names[idx];
7057 zone->zone_pgdat = NODE_DATA(nid);
7058 spin_lock_init(&zone->lock);
7059 zone_seqlock_init(zone);
7060 zone_pcp_init(zone);
7061 }
7062
7063 /*
7064 * Set up the zone data structures
7065 * - init pgdat internals
7066 * - init all zones belonging to this node
7067 *
7068 * NOTE: this function is only called during memory hotplug
7069 */
7070 #ifdef CONFIG_MEMORY_HOTPLUG
free_area_init_core_hotplug(int nid)7071 void __ref free_area_init_core_hotplug(int nid)
7072 {
7073 enum zone_type z;
7074 pg_data_t *pgdat = NODE_DATA(nid);
7075
7076 pgdat_init_internals(pgdat);
7077 for (z = 0; z < MAX_NR_ZONES; z++)
7078 zone_init_internals(&pgdat->node_zones[z], z, nid, 0);
7079 }
7080 #endif
7081
7082 /*
7083 * Set up the zone data structures:
7084 * - mark all pages reserved
7085 * - mark all memory queues empty
7086 * - clear the memory bitmaps
7087 *
7088 * NOTE: pgdat should get zeroed by caller.
7089 * NOTE: this function is only called during early init.
7090 */
free_area_init_core(struct pglist_data * pgdat)7091 static void __init free_area_init_core(struct pglist_data *pgdat)
7092 {
7093 enum zone_type j;
7094 int nid = pgdat->node_id;
7095
7096 pgdat_init_internals(pgdat);
7097 pgdat->per_cpu_nodestats = &boot_nodestats;
7098
7099 for (j = 0; j < MAX_NR_ZONES; j++) {
7100 struct zone *zone = pgdat->node_zones + j;
7101 unsigned long size, freesize, memmap_pages;
7102 unsigned long zone_start_pfn = zone->zone_start_pfn;
7103
7104 size = zone->spanned_pages;
7105 freesize = zone->present_pages;
7106
7107 /*
7108 * Adjust freesize so that it accounts for how much memory
7109 * is used by this zone for memmap. This affects the watermark
7110 * and per-cpu initialisations
7111 */
7112 memmap_pages = calc_memmap_size(size, freesize);
7113 if (!is_highmem_idx(j)) {
7114 if (freesize >= memmap_pages) {
7115 freesize -= memmap_pages;
7116 if (memmap_pages)
7117 printk(KERN_DEBUG
7118 " %s zone: %lu pages used for memmap\n",
7119 zone_names[j], memmap_pages);
7120 } else
7121 pr_warn(" %s zone: %lu pages exceeds freesize %lu\n",
7122 zone_names[j], memmap_pages, freesize);
7123 }
7124
7125 /* Account for reserved pages */
7126 if (j == 0 && freesize > dma_reserve) {
7127 freesize -= dma_reserve;
7128 printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
7129 zone_names[0], dma_reserve);
7130 }
7131
7132 if (!is_highmem_idx(j))
7133 nr_kernel_pages += freesize;
7134 /* Charge for highmem memmap if there are enough kernel pages */
7135 else if (nr_kernel_pages > memmap_pages * 2)
7136 nr_kernel_pages -= memmap_pages;
7137 nr_all_pages += freesize;
7138
7139 /*
7140 * Set an approximate value for lowmem here, it will be adjusted
7141 * when the bootmem allocator frees pages into the buddy system.
7142 * And all highmem pages will be managed by the buddy system.
7143 */
7144 zone_init_internals(zone, j, nid, freesize);
7145
7146 if (!size)
7147 continue;
7148
7149 set_pageblock_order();
7150 setup_usemap(pgdat, zone, zone_start_pfn, size);
7151 init_currently_empty_zone(zone, zone_start_pfn, size);
7152 arch_memmap_init(size, nid, j, zone_start_pfn);
7153 }
7154 }
7155
7156 #ifdef CONFIG_FLAT_NODE_MEM_MAP
alloc_node_mem_map(struct pglist_data * pgdat)7157 static void __ref alloc_node_mem_map(struct pglist_data *pgdat)
7158 {
7159 unsigned long __maybe_unused start = 0;
7160 unsigned long __maybe_unused offset = 0;
7161
7162 /* Skip empty nodes */
7163 if (!pgdat->node_spanned_pages)
7164 return;
7165
7166 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
7167 offset = pgdat->node_start_pfn - start;
7168 /* ia64 gets its own node_mem_map, before this, without bootmem */
7169 if (!pgdat->node_mem_map) {
7170 unsigned long size, end;
7171 struct page *map;
7172
7173 /*
7174 * The zone's endpoints aren't required to be MAX_ORDER
7175 * aligned but the node_mem_map endpoints must be in order
7176 * for the buddy allocator to function correctly.
7177 */
7178 end = pgdat_end_pfn(pgdat);
7179 end = ALIGN(end, MAX_ORDER_NR_PAGES);
7180 size = (end - start) * sizeof(struct page);
7181 map = memblock_alloc_node(size, SMP_CACHE_BYTES,
7182 pgdat->node_id);
7183 if (!map)
7184 panic("Failed to allocate %ld bytes for node %d memory map\n",
7185 size, pgdat->node_id);
7186 pgdat->node_mem_map = map + offset;
7187 }
7188 pr_debug("%s: node %d, pgdat %08lx, node_mem_map %08lx\n",
7189 __func__, pgdat->node_id, (unsigned long)pgdat,
7190 (unsigned long)pgdat->node_mem_map);
7191 #ifndef CONFIG_NEED_MULTIPLE_NODES
7192 /*
7193 * With no DISCONTIG, the global mem_map is just set as node 0's
7194 */
7195 if (pgdat == NODE_DATA(0)) {
7196 mem_map = NODE_DATA(0)->node_mem_map;
7197 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
7198 mem_map -= offset;
7199 }
7200 #endif
7201 }
7202 #else
alloc_node_mem_map(struct pglist_data * pgdat)7203 static void __ref alloc_node_mem_map(struct pglist_data *pgdat) { }
7204 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
7205
7206 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
pgdat_set_deferred_range(pg_data_t * pgdat)7207 static inline void pgdat_set_deferred_range(pg_data_t *pgdat)
7208 {
7209 pgdat->first_deferred_pfn = ULONG_MAX;
7210 }
7211 #else
pgdat_set_deferred_range(pg_data_t * pgdat)7212 static inline void pgdat_set_deferred_range(pg_data_t *pgdat) {}
7213 #endif
7214
free_area_init_node(int nid)7215 static void __init free_area_init_node(int nid)
7216 {
7217 pg_data_t *pgdat = NODE_DATA(nid);
7218 unsigned long start_pfn = 0;
7219 unsigned long end_pfn = 0;
7220
7221 /* pg_data_t should be reset to zero when it's allocated */
7222 WARN_ON(pgdat->nr_zones || pgdat->kswapd_highest_zoneidx);
7223
7224 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
7225
7226 pgdat->node_id = nid;
7227 pgdat->node_start_pfn = start_pfn;
7228 pgdat->per_cpu_nodestats = NULL;
7229
7230 pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid,
7231 (u64)start_pfn << PAGE_SHIFT,
7232 end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0);
7233 calculate_node_totalpages(pgdat, start_pfn, end_pfn);
7234
7235 alloc_node_mem_map(pgdat);
7236 pgdat_set_deferred_range(pgdat);
7237
7238 free_area_init_core(pgdat);
7239 }
7240
free_area_init_memoryless_node(int nid)7241 void __init free_area_init_memoryless_node(int nid)
7242 {
7243 free_area_init_node(nid);
7244 }
7245
7246 #if MAX_NUMNODES > 1
7247 /*
7248 * Figure out the number of possible node ids.
7249 */
setup_nr_node_ids(void)7250 void __init setup_nr_node_ids(void)
7251 {
7252 unsigned int highest;
7253
7254 highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES);
7255 nr_node_ids = highest + 1;
7256 }
7257 #endif
7258
7259 /**
7260 * node_map_pfn_alignment - determine the maximum internode alignment
7261 *
7262 * This function should be called after node map is populated and sorted.
7263 * It calculates the maximum power of two alignment which can distinguish
7264 * all the nodes.
7265 *
7266 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
7267 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the
7268 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is
7269 * shifted, 1GiB is enough and this function will indicate so.
7270 *
7271 * This is used to test whether pfn -> nid mapping of the chosen memory
7272 * model has fine enough granularity to avoid incorrect mapping for the
7273 * populated node map.
7274 *
7275 * Return: the determined alignment in pfn's. 0 if there is no alignment
7276 * requirement (single node).
7277 */
node_map_pfn_alignment(void)7278 unsigned long __init node_map_pfn_alignment(void)
7279 {
7280 unsigned long accl_mask = 0, last_end = 0;
7281 unsigned long start, end, mask;
7282 int last_nid = NUMA_NO_NODE;
7283 int i, nid;
7284
7285 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
7286 if (!start || last_nid < 0 || last_nid == nid) {
7287 last_nid = nid;
7288 last_end = end;
7289 continue;
7290 }
7291
7292 /*
7293 * Start with a mask granular enough to pin-point to the
7294 * start pfn and tick off bits one-by-one until it becomes
7295 * too coarse to separate the current node from the last.
7296 */
7297 mask = ~((1 << __ffs(start)) - 1);
7298 while (mask && last_end <= (start & (mask << 1)))
7299 mask <<= 1;
7300
7301 /* accumulate all internode masks */
7302 accl_mask |= mask;
7303 }
7304
7305 /* convert mask to number of pages */
7306 return ~accl_mask + 1;
7307 }
7308
7309 /**
7310 * find_min_pfn_with_active_regions - Find the minimum PFN registered
7311 *
7312 * Return: the minimum PFN based on information provided via
7313 * memblock_set_node().
7314 */
find_min_pfn_with_active_regions(void)7315 unsigned long __init find_min_pfn_with_active_regions(void)
7316 {
7317 return PHYS_PFN(memblock_start_of_DRAM());
7318 }
7319
7320 /*
7321 * early_calculate_totalpages()
7322 * Sum pages in active regions for movable zone.
7323 * Populate N_MEMORY for calculating usable_nodes.
7324 */
early_calculate_totalpages(void)7325 static unsigned long __init early_calculate_totalpages(void)
7326 {
7327 unsigned long totalpages = 0;
7328 unsigned long start_pfn, end_pfn;
7329 int i, nid;
7330
7331 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
7332 unsigned long pages = end_pfn - start_pfn;
7333
7334 totalpages += pages;
7335 if (pages)
7336 node_set_state(nid, N_MEMORY);
7337 }
7338 return totalpages;
7339 }
7340
7341 /*
7342 * Find the PFN the Movable zone begins in each node. Kernel memory
7343 * is spread evenly between nodes as long as the nodes have enough
7344 * memory. When they don't, some nodes will have more kernelcore than
7345 * others
7346 */
find_zone_movable_pfns_for_nodes(void)7347 static void __init find_zone_movable_pfns_for_nodes(void)
7348 {
7349 int i, nid;
7350 unsigned long usable_startpfn;
7351 unsigned long kernelcore_node, kernelcore_remaining;
7352 /* save the state before borrow the nodemask */
7353 nodemask_t saved_node_state = node_states[N_MEMORY];
7354 unsigned long totalpages = early_calculate_totalpages();
7355 int usable_nodes = nodes_weight(node_states[N_MEMORY]);
7356 struct memblock_region *r;
7357
7358 /* Need to find movable_zone earlier when movable_node is specified. */
7359 find_usable_zone_for_movable();
7360
7361 /*
7362 * If movable_node is specified, ignore kernelcore and movablecore
7363 * options.
7364 */
7365 if (movable_node_is_enabled()) {
7366 for_each_mem_region(r) {
7367 if (!memblock_is_hotpluggable(r))
7368 continue;
7369
7370 nid = memblock_get_region_node(r);
7371
7372 usable_startpfn = PFN_DOWN(r->base);
7373 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
7374 min(usable_startpfn, zone_movable_pfn[nid]) :
7375 usable_startpfn;
7376 }
7377
7378 goto out2;
7379 }
7380
7381 /*
7382 * If kernelcore=mirror is specified, ignore movablecore option
7383 */
7384 if (mirrored_kernelcore) {
7385 bool mem_below_4gb_not_mirrored = false;
7386
7387 for_each_mem_region(r) {
7388 if (memblock_is_mirror(r))
7389 continue;
7390
7391 nid = memblock_get_region_node(r);
7392
7393 usable_startpfn = memblock_region_memory_base_pfn(r);
7394
7395 if (usable_startpfn < 0x100000) {
7396 mem_below_4gb_not_mirrored = true;
7397 continue;
7398 }
7399
7400 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
7401 min(usable_startpfn, zone_movable_pfn[nid]) :
7402 usable_startpfn;
7403 }
7404
7405 if (mem_below_4gb_not_mirrored)
7406 pr_warn("This configuration results in unmirrored kernel memory.\n");
7407
7408 goto out2;
7409 }
7410
7411 /*
7412 * If kernelcore=nn% or movablecore=nn% was specified, calculate the
7413 * amount of necessary memory.
7414 */
7415 if (required_kernelcore_percent)
7416 required_kernelcore = (totalpages * 100 * required_kernelcore_percent) /
7417 10000UL;
7418 if (required_movablecore_percent)
7419 required_movablecore = (totalpages * 100 * required_movablecore_percent) /
7420 10000UL;
7421
7422 /*
7423 * If movablecore= was specified, calculate what size of
7424 * kernelcore that corresponds so that memory usable for
7425 * any allocation type is evenly spread. If both kernelcore
7426 * and movablecore are specified, then the value of kernelcore
7427 * will be used for required_kernelcore if it's greater than
7428 * what movablecore would have allowed.
7429 */
7430 if (required_movablecore) {
7431 unsigned long corepages;
7432
7433 /*
7434 * Round-up so that ZONE_MOVABLE is at least as large as what
7435 * was requested by the user
7436 */
7437 required_movablecore =
7438 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
7439 required_movablecore = min(totalpages, required_movablecore);
7440 corepages = totalpages - required_movablecore;
7441
7442 required_kernelcore = max(required_kernelcore, corepages);
7443 }
7444
7445 /*
7446 * If kernelcore was not specified or kernelcore size is larger
7447 * than totalpages, there is no ZONE_MOVABLE.
7448 */
7449 if (!required_kernelcore || required_kernelcore >= totalpages)
7450 goto out;
7451
7452 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
7453 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
7454
7455 restart:
7456 /* Spread kernelcore memory as evenly as possible throughout nodes */
7457 kernelcore_node = required_kernelcore / usable_nodes;
7458 for_each_node_state(nid, N_MEMORY) {
7459 unsigned long start_pfn, end_pfn;
7460
7461 /*
7462 * Recalculate kernelcore_node if the division per node
7463 * now exceeds what is necessary to satisfy the requested
7464 * amount of memory for the kernel
7465 */
7466 if (required_kernelcore < kernelcore_node)
7467 kernelcore_node = required_kernelcore / usable_nodes;
7468
7469 /*
7470 * As the map is walked, we track how much memory is usable
7471 * by the kernel using kernelcore_remaining. When it is
7472 * 0, the rest of the node is usable by ZONE_MOVABLE
7473 */
7474 kernelcore_remaining = kernelcore_node;
7475
7476 /* Go through each range of PFNs within this node */
7477 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
7478 unsigned long size_pages;
7479
7480 start_pfn = max(start_pfn, zone_movable_pfn[nid]);
7481 if (start_pfn >= end_pfn)
7482 continue;
7483
7484 /* Account for what is only usable for kernelcore */
7485 if (start_pfn < usable_startpfn) {
7486 unsigned long kernel_pages;
7487 kernel_pages = min(end_pfn, usable_startpfn)
7488 - start_pfn;
7489
7490 kernelcore_remaining -= min(kernel_pages,
7491 kernelcore_remaining);
7492 required_kernelcore -= min(kernel_pages,
7493 required_kernelcore);
7494
7495 /* Continue if range is now fully accounted */
7496 if (end_pfn <= usable_startpfn) {
7497
7498 /*
7499 * Push zone_movable_pfn to the end so
7500 * that if we have to rebalance
7501 * kernelcore across nodes, we will
7502 * not double account here
7503 */
7504 zone_movable_pfn[nid] = end_pfn;
7505 continue;
7506 }
7507 start_pfn = usable_startpfn;
7508 }
7509
7510 /*
7511 * The usable PFN range for ZONE_MOVABLE is from
7512 * start_pfn->end_pfn. Calculate size_pages as the
7513 * number of pages used as kernelcore
7514 */
7515 size_pages = end_pfn - start_pfn;
7516 if (size_pages > kernelcore_remaining)
7517 size_pages = kernelcore_remaining;
7518 zone_movable_pfn[nid] = start_pfn + size_pages;
7519
7520 /*
7521 * Some kernelcore has been met, update counts and
7522 * break if the kernelcore for this node has been
7523 * satisfied
7524 */
7525 required_kernelcore -= min(required_kernelcore,
7526 size_pages);
7527 kernelcore_remaining -= size_pages;
7528 if (!kernelcore_remaining)
7529 break;
7530 }
7531 }
7532
7533 /*
7534 * If there is still required_kernelcore, we do another pass with one
7535 * less node in the count. This will push zone_movable_pfn[nid] further
7536 * along on the nodes that still have memory until kernelcore is
7537 * satisfied
7538 */
7539 usable_nodes--;
7540 if (usable_nodes && required_kernelcore > usable_nodes)
7541 goto restart;
7542
7543 out2:
7544 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
7545 for (nid = 0; nid < MAX_NUMNODES; nid++) {
7546 unsigned long start_pfn, end_pfn;
7547
7548 zone_movable_pfn[nid] =
7549 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
7550
7551 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
7552 if (zone_movable_pfn[nid] >= end_pfn)
7553 zone_movable_pfn[nid] = 0;
7554 }
7555
7556 out:
7557 /* restore the node_state */
7558 node_states[N_MEMORY] = saved_node_state;
7559 }
7560
7561 /* Any regular or high memory on that node ? */
check_for_memory(pg_data_t * pgdat,int nid)7562 static void check_for_memory(pg_data_t *pgdat, int nid)
7563 {
7564 enum zone_type zone_type;
7565
7566 for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
7567 struct zone *zone = &pgdat->node_zones[zone_type];
7568 if (populated_zone(zone)) {
7569 if (IS_ENABLED(CONFIG_HIGHMEM))
7570 node_set_state(nid, N_HIGH_MEMORY);
7571 if (zone_type <= ZONE_NORMAL)
7572 node_set_state(nid, N_NORMAL_MEMORY);
7573 break;
7574 }
7575 }
7576 }
7577
7578 /*
7579 * Some architecturs, e.g. ARC may have ZONE_HIGHMEM below ZONE_NORMAL. For
7580 * such cases we allow max_zone_pfn sorted in the descending order
7581 */
arch_has_descending_max_zone_pfns(void)7582 bool __weak arch_has_descending_max_zone_pfns(void)
7583 {
7584 return false;
7585 }
7586
7587 /**
7588 * free_area_init - Initialise all pg_data_t and zone data
7589 * @max_zone_pfn: an array of max PFNs for each zone
7590 *
7591 * This will call free_area_init_node() for each active node in the system.
7592 * Using the page ranges provided by memblock_set_node(), the size of each
7593 * zone in each node and their holes is calculated. If the maximum PFN
7594 * between two adjacent zones match, it is assumed that the zone is empty.
7595 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
7596 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
7597 * starts where the previous one ended. For example, ZONE_DMA32 starts
7598 * at arch_max_dma_pfn.
7599 */
free_area_init(unsigned long * max_zone_pfn)7600 void __init free_area_init(unsigned long *max_zone_pfn)
7601 {
7602 unsigned long start_pfn, end_pfn;
7603 int i, nid, zone;
7604 bool descending;
7605
7606 /* Record where the zone boundaries are */
7607 memset(arch_zone_lowest_possible_pfn, 0,
7608 sizeof(arch_zone_lowest_possible_pfn));
7609 memset(arch_zone_highest_possible_pfn, 0,
7610 sizeof(arch_zone_highest_possible_pfn));
7611
7612 start_pfn = find_min_pfn_with_active_regions();
7613 descending = arch_has_descending_max_zone_pfns();
7614
7615 for (i = 0; i < MAX_NR_ZONES; i++) {
7616 if (descending)
7617 zone = MAX_NR_ZONES - i - 1;
7618 else
7619 zone = i;
7620
7621 if (zone == ZONE_MOVABLE)
7622 continue;
7623
7624 end_pfn = max(max_zone_pfn[zone], start_pfn);
7625 arch_zone_lowest_possible_pfn[zone] = start_pfn;
7626 arch_zone_highest_possible_pfn[zone] = end_pfn;
7627
7628 start_pfn = end_pfn;
7629 }
7630
7631 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
7632 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
7633 find_zone_movable_pfns_for_nodes();
7634
7635 /* Print out the zone ranges */
7636 pr_info("Zone ranges:\n");
7637 for (i = 0; i < MAX_NR_ZONES; i++) {
7638 if (i == ZONE_MOVABLE)
7639 continue;
7640 pr_info(" %-8s ", zone_names[i]);
7641 if (arch_zone_lowest_possible_pfn[i] ==
7642 arch_zone_highest_possible_pfn[i])
7643 pr_cont("empty\n");
7644 else
7645 pr_cont("[mem %#018Lx-%#018Lx]\n",
7646 (u64)arch_zone_lowest_possible_pfn[i]
7647 << PAGE_SHIFT,
7648 ((u64)arch_zone_highest_possible_pfn[i]
7649 << PAGE_SHIFT) - 1);
7650 }
7651
7652 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
7653 pr_info("Movable zone start for each node\n");
7654 for (i = 0; i < MAX_NUMNODES; i++) {
7655 if (zone_movable_pfn[i])
7656 pr_info(" Node %d: %#018Lx\n", i,
7657 (u64)zone_movable_pfn[i] << PAGE_SHIFT);
7658 }
7659
7660 /*
7661 * Print out the early node map, and initialize the
7662 * subsection-map relative to active online memory ranges to
7663 * enable future "sub-section" extensions of the memory map.
7664 */
7665 pr_info("Early memory node ranges\n");
7666 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
7667 pr_info(" node %3d: [mem %#018Lx-%#018Lx]\n", nid,
7668 (u64)start_pfn << PAGE_SHIFT,
7669 ((u64)end_pfn << PAGE_SHIFT) - 1);
7670 subsection_map_init(start_pfn, end_pfn - start_pfn);
7671 }
7672
7673 /* Initialise every node */
7674 mminit_verify_pageflags_layout();
7675 setup_nr_node_ids();
7676 for_each_online_node(nid) {
7677 pg_data_t *pgdat = NODE_DATA(nid);
7678 free_area_init_node(nid);
7679
7680 /* Any memory on that node */
7681 if (pgdat->node_present_pages)
7682 node_set_state(nid, N_MEMORY);
7683 check_for_memory(pgdat, nid);
7684 }
7685
7686 memmap_init();
7687 }
7688
cmdline_parse_core(char * p,unsigned long * core,unsigned long * percent)7689 static int __init cmdline_parse_core(char *p, unsigned long *core,
7690 unsigned long *percent)
7691 {
7692 unsigned long long coremem;
7693 char *endptr;
7694
7695 if (!p)
7696 return -EINVAL;
7697
7698 /* Value may be a percentage of total memory, otherwise bytes */
7699 coremem = simple_strtoull(p, &endptr, 0);
7700 if (*endptr == '%') {
7701 /* Paranoid check for percent values greater than 100 */
7702 WARN_ON(coremem > 100);
7703
7704 *percent = coremem;
7705 } else {
7706 coremem = memparse(p, &p);
7707 /* Paranoid check that UL is enough for the coremem value */
7708 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
7709
7710 *core = coremem >> PAGE_SHIFT;
7711 *percent = 0UL;
7712 }
7713 return 0;
7714 }
7715
7716 /*
7717 * kernelcore=size sets the amount of memory for use for allocations that
7718 * cannot be reclaimed or migrated.
7719 */
cmdline_parse_kernelcore(char * p)7720 static int __init cmdline_parse_kernelcore(char *p)
7721 {
7722 /* parse kernelcore=mirror */
7723 if (parse_option_str(p, "mirror")) {
7724 mirrored_kernelcore = true;
7725 return 0;
7726 }
7727
7728 return cmdline_parse_core(p, &required_kernelcore,
7729 &required_kernelcore_percent);
7730 }
7731
7732 /*
7733 * movablecore=size sets the amount of memory for use for allocations that
7734 * can be reclaimed or migrated.
7735 */
cmdline_parse_movablecore(char * p)7736 static int __init cmdline_parse_movablecore(char *p)
7737 {
7738 return cmdline_parse_core(p, &required_movablecore,
7739 &required_movablecore_percent);
7740 }
7741
7742 early_param("kernelcore", cmdline_parse_kernelcore);
7743 early_param("movablecore", cmdline_parse_movablecore);
7744
adjust_managed_page_count(struct page * page,long count)7745 void adjust_managed_page_count(struct page *page, long count)
7746 {
7747 atomic_long_add(count, &page_zone(page)->managed_pages);
7748 totalram_pages_add(count);
7749 #ifdef CONFIG_HIGHMEM
7750 if (PageHighMem(page))
7751 totalhigh_pages_add(count);
7752 #endif
7753 }
7754 EXPORT_SYMBOL(adjust_managed_page_count);
7755
free_reserved_area(void * start,void * end,int poison,const char * s)7756 unsigned long free_reserved_area(void *start, void *end, int poison, const char *s)
7757 {
7758 void *pos;
7759 unsigned long pages = 0;
7760
7761 start = (void *)PAGE_ALIGN((unsigned long)start);
7762 end = (void *)((unsigned long)end & PAGE_MASK);
7763 for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
7764 struct page *page = virt_to_page(pos);
7765 void *direct_map_addr;
7766
7767 /*
7768 * 'direct_map_addr' might be different from 'pos'
7769 * because some architectures' virt_to_page()
7770 * work with aliases. Getting the direct map
7771 * address ensures that we get a _writeable_
7772 * alias for the memset().
7773 */
7774 direct_map_addr = page_address(page);
7775 if ((unsigned int)poison <= 0xFF)
7776 memset(direct_map_addr, poison, PAGE_SIZE);
7777
7778 free_reserved_page(page);
7779 }
7780
7781 if (pages && s)
7782 pr_info("Freeing %s memory: %ldK\n",
7783 s, pages << (PAGE_SHIFT - 10));
7784
7785 return pages;
7786 }
7787
7788 #ifdef CONFIG_HIGHMEM
free_highmem_page(struct page * page)7789 void free_highmem_page(struct page *page)
7790 {
7791 __free_reserved_page(page);
7792 totalram_pages_inc();
7793 atomic_long_inc(&page_zone(page)->managed_pages);
7794 totalhigh_pages_inc();
7795 }
7796 #endif
7797
7798
mem_init_print_info(const char * str)7799 void __init mem_init_print_info(const char *str)
7800 {
7801 unsigned long physpages, codesize, datasize, rosize, bss_size;
7802 unsigned long init_code_size, init_data_size;
7803
7804 physpages = get_num_physpages();
7805 codesize = _etext - _stext;
7806 datasize = _edata - _sdata;
7807 rosize = __end_rodata - __start_rodata;
7808 bss_size = __bss_stop - __bss_start;
7809 init_data_size = __init_end - __init_begin;
7810 init_code_size = _einittext - _sinittext;
7811
7812 /*
7813 * Detect special cases and adjust section sizes accordingly:
7814 * 1) .init.* may be embedded into .data sections
7815 * 2) .init.text.* may be out of [__init_begin, __init_end],
7816 * please refer to arch/tile/kernel/vmlinux.lds.S.
7817 * 3) .rodata.* may be embedded into .text or .data sections.
7818 */
7819 #define adj_init_size(start, end, size, pos, adj) \
7820 do { \
7821 if (&start[0] <= &pos[0] && &pos[0] < &end[0] && size > adj) \
7822 size -= adj; \
7823 } while (0)
7824
7825 adj_init_size(__init_begin, __init_end, init_data_size,
7826 _sinittext, init_code_size);
7827 adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
7828 adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
7829 adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
7830 adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
7831
7832 #undef adj_init_size
7833
7834 pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved"
7835 #ifdef CONFIG_HIGHMEM
7836 ", %luK highmem"
7837 #endif
7838 "%s%s)\n",
7839 nr_free_pages() << (PAGE_SHIFT - 10),
7840 physpages << (PAGE_SHIFT - 10),
7841 codesize >> 10, datasize >> 10, rosize >> 10,
7842 (init_data_size + init_code_size) >> 10, bss_size >> 10,
7843 (physpages - totalram_pages() - totalcma_pages) << (PAGE_SHIFT - 10),
7844 totalcma_pages << (PAGE_SHIFT - 10),
7845 #ifdef CONFIG_HIGHMEM
7846 totalhigh_pages() << (PAGE_SHIFT - 10),
7847 #endif
7848 str ? ", " : "", str ? str : "");
7849 }
7850
7851 /**
7852 * set_dma_reserve - set the specified number of pages reserved in the first zone
7853 * @new_dma_reserve: The number of pages to mark reserved
7854 *
7855 * The per-cpu batchsize and zone watermarks are determined by managed_pages.
7856 * In the DMA zone, a significant percentage may be consumed by kernel image
7857 * and other unfreeable allocations which can skew the watermarks badly. This
7858 * function may optionally be used to account for unfreeable pages in the
7859 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
7860 * smaller per-cpu batchsize.
7861 */
set_dma_reserve(unsigned long new_dma_reserve)7862 void __init set_dma_reserve(unsigned long new_dma_reserve)
7863 {
7864 dma_reserve = new_dma_reserve;
7865 }
7866
page_alloc_cpu_dead(unsigned int cpu)7867 static int page_alloc_cpu_dead(unsigned int cpu)
7868 {
7869
7870 lru_add_drain_cpu(cpu);
7871 drain_pages(cpu);
7872
7873 /*
7874 * Spill the event counters of the dead processor
7875 * into the current processors event counters.
7876 * This artificially elevates the count of the current
7877 * processor.
7878 */
7879 vm_events_fold_cpu(cpu);
7880
7881 /*
7882 * Zero the differential counters of the dead processor
7883 * so that the vm statistics are consistent.
7884 *
7885 * This is only okay since the processor is dead and cannot
7886 * race with what we are doing.
7887 */
7888 cpu_vm_stats_fold(cpu);
7889 return 0;
7890 }
7891
7892 #ifdef CONFIG_NUMA
7893 int hashdist = HASHDIST_DEFAULT;
7894
set_hashdist(char * str)7895 static int __init set_hashdist(char *str)
7896 {
7897 if (!str)
7898 return 0;
7899 hashdist = simple_strtoul(str, &str, 0);
7900 return 1;
7901 }
7902 __setup("hashdist=", set_hashdist);
7903 #endif
7904
page_alloc_init(void)7905 void __init page_alloc_init(void)
7906 {
7907 int ret;
7908
7909 #ifdef CONFIG_NUMA
7910 if (num_node_state(N_MEMORY) == 1)
7911 hashdist = 0;
7912 #endif
7913
7914 ret = cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC_DEAD,
7915 "mm/page_alloc:dead", NULL,
7916 page_alloc_cpu_dead);
7917 WARN_ON(ret < 0);
7918 }
7919
7920 /*
7921 * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
7922 * or min_free_kbytes changes.
7923 */
calculate_totalreserve_pages(void)7924 static void calculate_totalreserve_pages(void)
7925 {
7926 struct pglist_data *pgdat;
7927 unsigned long reserve_pages = 0;
7928 enum zone_type i, j;
7929
7930 for_each_online_pgdat(pgdat) {
7931
7932 pgdat->totalreserve_pages = 0;
7933
7934 for (i = 0; i < MAX_NR_ZONES; i++) {
7935 struct zone *zone = pgdat->node_zones + i;
7936 long max = 0;
7937 unsigned long managed_pages = zone_managed_pages(zone);
7938
7939 /* Find valid and maximum lowmem_reserve in the zone */
7940 for (j = i; j < MAX_NR_ZONES; j++) {
7941 if (zone->lowmem_reserve[j] > max)
7942 max = zone->lowmem_reserve[j];
7943 }
7944
7945 /* we treat the high watermark as reserved pages. */
7946 max += high_wmark_pages(zone);
7947
7948 if (max > managed_pages)
7949 max = managed_pages;
7950
7951 pgdat->totalreserve_pages += max;
7952
7953 reserve_pages += max;
7954 }
7955 }
7956 totalreserve_pages = reserve_pages;
7957 }
7958
7959 /*
7960 * setup_per_zone_lowmem_reserve - called whenever
7961 * sysctl_lowmem_reserve_ratio changes. Ensures that each zone
7962 * has a correct pages reserved value, so an adequate number of
7963 * pages are left in the zone after a successful __alloc_pages().
7964 */
setup_per_zone_lowmem_reserve(void)7965 static void setup_per_zone_lowmem_reserve(void)
7966 {
7967 struct pglist_data *pgdat;
7968 enum zone_type i, j;
7969
7970 for_each_online_pgdat(pgdat) {
7971 for (i = 0; i < MAX_NR_ZONES - 1; i++) {
7972 struct zone *zone = &pgdat->node_zones[i];
7973 int ratio = sysctl_lowmem_reserve_ratio[i];
7974 bool clear = !ratio || !zone_managed_pages(zone);
7975 unsigned long managed_pages = 0;
7976
7977 for (j = i + 1; j < MAX_NR_ZONES; j++) {
7978 struct zone *upper_zone = &pgdat->node_zones[j];
7979
7980 managed_pages += zone_managed_pages(upper_zone);
7981
7982 if (clear)
7983 zone->lowmem_reserve[j] = 0;
7984 else
7985 zone->lowmem_reserve[j] = managed_pages / ratio;
7986 }
7987 }
7988 }
7989
7990 /* update totalreserve_pages */
7991 calculate_totalreserve_pages();
7992 }
7993
__setup_per_zone_wmarks(void)7994 static void __setup_per_zone_wmarks(void)
7995 {
7996 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
7997 unsigned long lowmem_pages = 0;
7998 struct zone *zone;
7999 unsigned long flags;
8000
8001 /* Calculate total number of !ZONE_HIGHMEM pages */
8002 for_each_zone(zone) {
8003 if (!is_highmem(zone))
8004 lowmem_pages += zone_managed_pages(zone);
8005 }
8006
8007 for_each_zone(zone) {
8008 u64 tmp;
8009
8010 spin_lock_irqsave(&zone->lock, flags);
8011 tmp = (u64)pages_min * zone_managed_pages(zone);
8012 do_div(tmp, lowmem_pages);
8013 if (is_highmem(zone)) {
8014 /*
8015 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
8016 * need highmem pages, so cap pages_min to a small
8017 * value here.
8018 *
8019 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
8020 * deltas control async page reclaim, and so should
8021 * not be capped for highmem.
8022 */
8023 unsigned long min_pages;
8024
8025 min_pages = zone_managed_pages(zone) / 1024;
8026 min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
8027 zone->_watermark[WMARK_MIN] = min_pages;
8028 } else {
8029 /*
8030 * If it's a lowmem zone, reserve a number of pages
8031 * proportionate to the zone's size.
8032 */
8033 zone->_watermark[WMARK_MIN] = tmp;
8034 }
8035
8036 /*
8037 * Set the kswapd watermarks distance according to the
8038 * scale factor in proportion to available memory, but
8039 * ensure a minimum size on small systems.
8040 */
8041 tmp = max_t(u64, tmp >> 2,
8042 mult_frac(zone_managed_pages(zone),
8043 watermark_scale_factor, 10000));
8044
8045 zone->watermark_boost = 0;
8046 zone->_watermark[WMARK_LOW] = min_wmark_pages(zone) + tmp;
8047 zone->_watermark[WMARK_HIGH] = min_wmark_pages(zone) + tmp * 2;
8048
8049 spin_unlock_irqrestore(&zone->lock, flags);
8050 }
8051
8052 /* update totalreserve_pages */
8053 calculate_totalreserve_pages();
8054 }
8055
8056 /**
8057 * setup_per_zone_wmarks - called when min_free_kbytes changes
8058 * or when memory is hot-{added|removed}
8059 *
8060 * Ensures that the watermark[min,low,high] values for each zone are set
8061 * correctly with respect to min_free_kbytes.
8062 */
setup_per_zone_wmarks(void)8063 void setup_per_zone_wmarks(void)
8064 {
8065 static DEFINE_SPINLOCK(lock);
8066
8067 spin_lock(&lock);
8068 __setup_per_zone_wmarks();
8069 spin_unlock(&lock);
8070 }
8071
8072 /*
8073 * Initialise min_free_kbytes.
8074 *
8075 * For small machines we want it small (128k min). For large machines
8076 * we want it large (256MB max). But it is not linear, because network
8077 * bandwidth does not increase linearly with machine size. We use
8078 *
8079 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
8080 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
8081 *
8082 * which yields
8083 *
8084 * 16MB: 512k
8085 * 32MB: 724k
8086 * 64MB: 1024k
8087 * 128MB: 1448k
8088 * 256MB: 2048k
8089 * 512MB: 2896k
8090 * 1024MB: 4096k
8091 * 2048MB: 5792k
8092 * 4096MB: 8192k
8093 * 8192MB: 11584k
8094 * 16384MB: 16384k
8095 */
init_per_zone_wmark_min(void)8096 int __meminit init_per_zone_wmark_min(void)
8097 {
8098 unsigned long lowmem_kbytes;
8099 int new_min_free_kbytes;
8100
8101 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
8102 new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
8103
8104 if (new_min_free_kbytes > user_min_free_kbytes) {
8105 min_free_kbytes = new_min_free_kbytes;
8106 if (min_free_kbytes < 128)
8107 min_free_kbytes = 128;
8108 if (min_free_kbytes > 262144)
8109 min_free_kbytes = 262144;
8110 } else {
8111 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
8112 new_min_free_kbytes, user_min_free_kbytes);
8113 }
8114 setup_per_zone_wmarks();
8115 refresh_zone_stat_thresholds();
8116 setup_per_zone_lowmem_reserve();
8117
8118 #ifdef CONFIG_NUMA
8119 setup_min_unmapped_ratio();
8120 setup_min_slab_ratio();
8121 #endif
8122
8123 khugepaged_min_free_kbytes_update();
8124
8125 return 0;
8126 }
postcore_initcall(init_per_zone_wmark_min)8127 postcore_initcall(init_per_zone_wmark_min)
8128
8129 /*
8130 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
8131 * that we can call two helper functions whenever min_free_kbytes
8132 * changes.
8133 */
8134 int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
8135 void *buffer, size_t *length, loff_t *ppos)
8136 {
8137 int rc;
8138
8139 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
8140 if (rc)
8141 return rc;
8142
8143 if (write) {
8144 user_min_free_kbytes = min_free_kbytes;
8145 setup_per_zone_wmarks();
8146 }
8147 return 0;
8148 }
8149
watermark_scale_factor_sysctl_handler(struct ctl_table * table,int write,void * buffer,size_t * length,loff_t * ppos)8150 int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write,
8151 void *buffer, size_t *length, loff_t *ppos)
8152 {
8153 int rc;
8154
8155 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
8156 if (rc)
8157 return rc;
8158
8159 if (write)
8160 setup_per_zone_wmarks();
8161
8162 return 0;
8163 }
8164
8165 #ifdef CONFIG_NUMA
setup_min_unmapped_ratio(void)8166 static void setup_min_unmapped_ratio(void)
8167 {
8168 pg_data_t *pgdat;
8169 struct zone *zone;
8170
8171 for_each_online_pgdat(pgdat)
8172 pgdat->min_unmapped_pages = 0;
8173
8174 for_each_zone(zone)
8175 zone->zone_pgdat->min_unmapped_pages += (zone_managed_pages(zone) *
8176 sysctl_min_unmapped_ratio) / 100;
8177 }
8178
8179
sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table * table,int write,void * buffer,size_t * length,loff_t * ppos)8180 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
8181 void *buffer, size_t *length, loff_t *ppos)
8182 {
8183 int rc;
8184
8185 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
8186 if (rc)
8187 return rc;
8188
8189 setup_min_unmapped_ratio();
8190
8191 return 0;
8192 }
8193
setup_min_slab_ratio(void)8194 static void setup_min_slab_ratio(void)
8195 {
8196 pg_data_t *pgdat;
8197 struct zone *zone;
8198
8199 for_each_online_pgdat(pgdat)
8200 pgdat->min_slab_pages = 0;
8201
8202 for_each_zone(zone)
8203 zone->zone_pgdat->min_slab_pages += (zone_managed_pages(zone) *
8204 sysctl_min_slab_ratio) / 100;
8205 }
8206
sysctl_min_slab_ratio_sysctl_handler(struct ctl_table * table,int write,void * buffer,size_t * length,loff_t * ppos)8207 int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
8208 void *buffer, size_t *length, loff_t *ppos)
8209 {
8210 int rc;
8211
8212 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
8213 if (rc)
8214 return rc;
8215
8216 setup_min_slab_ratio();
8217
8218 return 0;
8219 }
8220 #endif
8221
8222 /*
8223 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
8224 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
8225 * whenever sysctl_lowmem_reserve_ratio changes.
8226 *
8227 * The reserve ratio obviously has absolutely no relation with the
8228 * minimum watermarks. The lowmem reserve ratio can only make sense
8229 * if in function of the boot time zone sizes.
8230 */
lowmem_reserve_ratio_sysctl_handler(struct ctl_table * table,int write,void * buffer,size_t * length,loff_t * ppos)8231 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
8232 void *buffer, size_t *length, loff_t *ppos)
8233 {
8234 int i;
8235
8236 proc_dointvec_minmax(table, write, buffer, length, ppos);
8237
8238 for (i = 0; i < MAX_NR_ZONES; i++) {
8239 if (sysctl_lowmem_reserve_ratio[i] < 1)
8240 sysctl_lowmem_reserve_ratio[i] = 0;
8241 }
8242
8243 setup_per_zone_lowmem_reserve();
8244 return 0;
8245 }
8246
__zone_pcp_update(struct zone * zone)8247 static void __zone_pcp_update(struct zone *zone)
8248 {
8249 unsigned int cpu;
8250
8251 for_each_possible_cpu(cpu)
8252 pageset_set_high_and_batch(zone,
8253 per_cpu_ptr(zone->pageset, cpu));
8254 }
8255
8256 /*
8257 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
8258 * cpu. It is the fraction of total pages in each zone that a hot per cpu
8259 * pagelist can have before it gets flushed back to buddy allocator.
8260 */
percpu_pagelist_fraction_sysctl_handler(struct ctl_table * table,int write,void * buffer,size_t * length,loff_t * ppos)8261 int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *table, int write,
8262 void *buffer, size_t *length, loff_t *ppos)
8263 {
8264 struct zone *zone;
8265 int old_percpu_pagelist_fraction;
8266 int ret;
8267
8268 mutex_lock(&pcp_batch_high_lock);
8269 old_percpu_pagelist_fraction = percpu_pagelist_fraction;
8270
8271 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
8272 if (!write || ret < 0)
8273 goto out;
8274
8275 /* Sanity checking to avoid pcp imbalance */
8276 if (percpu_pagelist_fraction &&
8277 percpu_pagelist_fraction < MIN_PERCPU_PAGELIST_FRACTION) {
8278 percpu_pagelist_fraction = old_percpu_pagelist_fraction;
8279 ret = -EINVAL;
8280 goto out;
8281 }
8282
8283 /* No change? */
8284 if (percpu_pagelist_fraction == old_percpu_pagelist_fraction)
8285 goto out;
8286
8287 for_each_populated_zone(zone)
8288 __zone_pcp_update(zone);
8289 out:
8290 mutex_unlock(&pcp_batch_high_lock);
8291 return ret;
8292 }
8293
8294 #ifndef __HAVE_ARCH_RESERVED_KERNEL_PAGES
8295 /*
8296 * Returns the number of pages that arch has reserved but
8297 * is not known to alloc_large_system_hash().
8298 */
arch_reserved_kernel_pages(void)8299 static unsigned long __init arch_reserved_kernel_pages(void)
8300 {
8301 return 0;
8302 }
8303 #endif
8304
8305 /*
8306 * Adaptive scale is meant to reduce sizes of hash tables on large memory
8307 * machines. As memory size is increased the scale is also increased but at
8308 * slower pace. Starting from ADAPT_SCALE_BASE (64G), every time memory
8309 * quadruples the scale is increased by one, which means the size of hash table
8310 * only doubles, instead of quadrupling as well.
8311 * Because 32-bit systems cannot have large physical memory, where this scaling
8312 * makes sense, it is disabled on such platforms.
8313 */
8314 #if __BITS_PER_LONG > 32
8315 #define ADAPT_SCALE_BASE (64ul << 30)
8316 #define ADAPT_SCALE_SHIFT 2
8317 #define ADAPT_SCALE_NPAGES (ADAPT_SCALE_BASE >> PAGE_SHIFT)
8318 #endif
8319
8320 /*
8321 * allocate a large system hash table from bootmem
8322 * - it is assumed that the hash table must contain an exact power-of-2
8323 * quantity of entries
8324 * - limit is the number of hash buckets, not the total allocation size
8325 */
alloc_large_system_hash(const char * tablename,unsigned long bucketsize,unsigned long numentries,int scale,int flags,unsigned int * _hash_shift,unsigned int * _hash_mask,unsigned long low_limit,unsigned long high_limit)8326 void *__init alloc_large_system_hash(const char *tablename,
8327 unsigned long bucketsize,
8328 unsigned long numentries,
8329 int scale,
8330 int flags,
8331 unsigned int *_hash_shift,
8332 unsigned int *_hash_mask,
8333 unsigned long low_limit,
8334 unsigned long high_limit)
8335 {
8336 unsigned long long max = high_limit;
8337 unsigned long log2qty, size;
8338 void *table = NULL;
8339 gfp_t gfp_flags;
8340 bool virt;
8341
8342 /* allow the kernel cmdline to have a say */
8343 if (!numentries) {
8344 /* round applicable memory size up to nearest megabyte */
8345 numentries = nr_kernel_pages;
8346 numentries -= arch_reserved_kernel_pages();
8347
8348 /* It isn't necessary when PAGE_SIZE >= 1MB */
8349 if (PAGE_SHIFT < 20)
8350 numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
8351
8352 #if __BITS_PER_LONG > 32
8353 if (!high_limit) {
8354 unsigned long adapt;
8355
8356 for (adapt = ADAPT_SCALE_NPAGES; adapt < numentries;
8357 adapt <<= ADAPT_SCALE_SHIFT)
8358 scale++;
8359 }
8360 #endif
8361
8362 /* limit to 1 bucket per 2^scale bytes of low memory */
8363 if (scale > PAGE_SHIFT)
8364 numentries >>= (scale - PAGE_SHIFT);
8365 else
8366 numentries <<= (PAGE_SHIFT - scale);
8367
8368 /* Make sure we've got at least a 0-order allocation.. */
8369 if (unlikely(flags & HASH_SMALL)) {
8370 /* Makes no sense without HASH_EARLY */
8371 WARN_ON(!(flags & HASH_EARLY));
8372 if (!(numentries >> *_hash_shift)) {
8373 numentries = 1UL << *_hash_shift;
8374 BUG_ON(!numentries);
8375 }
8376 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
8377 numentries = PAGE_SIZE / bucketsize;
8378 }
8379 numentries = roundup_pow_of_two(numentries);
8380
8381 /* limit allocation size to 1/16 total memory by default */
8382 if (max == 0) {
8383 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
8384 do_div(max, bucketsize);
8385 }
8386 max = min(max, 0x80000000ULL);
8387
8388 if (numentries < low_limit)
8389 numentries = low_limit;
8390 if (numentries > max)
8391 numentries = max;
8392
8393 log2qty = ilog2(numentries);
8394
8395 gfp_flags = (flags & HASH_ZERO) ? GFP_ATOMIC | __GFP_ZERO : GFP_ATOMIC;
8396 do {
8397 virt = false;
8398 size = bucketsize << log2qty;
8399 if (flags & HASH_EARLY) {
8400 if (flags & HASH_ZERO)
8401 table = memblock_alloc(size, SMP_CACHE_BYTES);
8402 else
8403 table = memblock_alloc_raw(size,
8404 SMP_CACHE_BYTES);
8405 } else if (get_order(size) >= MAX_ORDER || hashdist) {
8406 table = __vmalloc(size, gfp_flags);
8407 virt = true;
8408 } else {
8409 /*
8410 * If bucketsize is not a power-of-two, we may free
8411 * some pages at the end of hash table which
8412 * alloc_pages_exact() automatically does
8413 */
8414 table = alloc_pages_exact(size, gfp_flags);
8415 kmemleak_alloc(table, size, 1, gfp_flags);
8416 }
8417 } while (!table && size > PAGE_SIZE && --log2qty);
8418
8419 if (!table)
8420 panic("Failed to allocate %s hash table\n", tablename);
8421
8422 pr_info("%s hash table entries: %ld (order: %d, %lu bytes, %s)\n",
8423 tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size,
8424 virt ? "vmalloc" : "linear");
8425
8426 if (_hash_shift)
8427 *_hash_shift = log2qty;
8428 if (_hash_mask)
8429 *_hash_mask = (1 << log2qty) - 1;
8430
8431 return table;
8432 }
8433
8434 /*
8435 * This function checks whether pageblock includes unmovable pages or not.
8436 *
8437 * PageLRU check without isolation or lru_lock could race so that
8438 * MIGRATE_MOVABLE block might include unmovable pages. And __PageMovable
8439 * check without lock_page also may miss some movable non-lru pages at
8440 * race condition. So you can't expect this function should be exact.
8441 *
8442 * Returns a page without holding a reference. If the caller wants to
8443 * dereference that page (e.g., dumping), it has to make sure that it
8444 * cannot get removed (e.g., via memory unplug) concurrently.
8445 *
8446 */
has_unmovable_pages(struct zone * zone,struct page * page,int migratetype,int flags)8447 struct page *has_unmovable_pages(struct zone *zone, struct page *page,
8448 int migratetype, int flags)
8449 {
8450 unsigned long iter = 0;
8451 unsigned long pfn = page_to_pfn(page);
8452 unsigned long offset = pfn % pageblock_nr_pages;
8453
8454 if (is_migrate_cma_page(page)) {
8455 /*
8456 * CMA allocations (alloc_contig_range) really need to mark
8457 * isolate CMA pageblocks even when they are not movable in fact
8458 * so consider them movable here.
8459 */
8460 if (is_migrate_cma(migratetype))
8461 return NULL;
8462
8463 return page;
8464 }
8465
8466 for (; iter < pageblock_nr_pages - offset; iter++) {
8467 if (!pfn_valid_within(pfn + iter))
8468 continue;
8469
8470 page = pfn_to_page(pfn + iter);
8471
8472 /*
8473 * Both, bootmem allocations and memory holes are marked
8474 * PG_reserved and are unmovable. We can even have unmovable
8475 * allocations inside ZONE_MOVABLE, for example when
8476 * specifying "movablecore".
8477 */
8478 if (PageReserved(page))
8479 return page;
8480
8481 /*
8482 * If the zone is movable and we have ruled out all reserved
8483 * pages then it should be reasonably safe to assume the rest
8484 * is movable.
8485 */
8486 if (zone_idx(zone) == ZONE_MOVABLE)
8487 continue;
8488
8489 /*
8490 * Hugepages are not in LRU lists, but they're movable.
8491 * THPs are on the LRU, but need to be counted as #small pages.
8492 * We need not scan over tail pages because we don't
8493 * handle each tail page individually in migration.
8494 */
8495 if (PageHuge(page) || PageTransCompound(page)) {
8496 struct page *head = compound_head(page);
8497 unsigned int skip_pages;
8498
8499 if (PageHuge(page)) {
8500 if (!hugepage_migration_supported(page_hstate(head)))
8501 return page;
8502 } else if (!PageLRU(head) && !__PageMovable(head)) {
8503 return page;
8504 }
8505
8506 skip_pages = compound_nr(head) - (page - head);
8507 iter += skip_pages - 1;
8508 continue;
8509 }
8510
8511 /*
8512 * We can't use page_count without pin a page
8513 * because another CPU can free compound page.
8514 * This check already skips compound tails of THP
8515 * because their page->_refcount is zero at all time.
8516 */
8517 if (!page_ref_count(page)) {
8518 if (PageBuddy(page))
8519 iter += (1 << buddy_order(page)) - 1;
8520 continue;
8521 }
8522
8523 /*
8524 * The HWPoisoned page may be not in buddy system, and
8525 * page_count() is not 0.
8526 */
8527 if ((flags & MEMORY_OFFLINE) && PageHWPoison(page))
8528 continue;
8529
8530 /*
8531 * We treat all PageOffline() pages as movable when offlining
8532 * to give drivers a chance to decrement their reference count
8533 * in MEM_GOING_OFFLINE in order to indicate that these pages
8534 * can be offlined as there are no direct references anymore.
8535 * For actually unmovable PageOffline() where the driver does
8536 * not support this, we will fail later when trying to actually
8537 * move these pages that still have a reference count > 0.
8538 * (false negatives in this function only)
8539 */
8540 if ((flags & MEMORY_OFFLINE) && PageOffline(page))
8541 continue;
8542
8543 if (__PageMovable(page) || PageLRU(page))
8544 continue;
8545
8546 /*
8547 * If there are RECLAIMABLE pages, we need to check
8548 * it. But now, memory offline itself doesn't call
8549 * shrink_node_slabs() and it still to be fixed.
8550 */
8551 return page;
8552 }
8553 return NULL;
8554 }
8555
8556 #ifdef CONFIG_CONTIG_ALLOC
pfn_max_align_down(unsigned long pfn)8557 static unsigned long pfn_max_align_down(unsigned long pfn)
8558 {
8559 return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
8560 pageblock_nr_pages) - 1);
8561 }
8562
pfn_max_align_up(unsigned long pfn)8563 static unsigned long pfn_max_align_up(unsigned long pfn)
8564 {
8565 return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
8566 pageblock_nr_pages));
8567 }
8568
8569 /* [start, end) must belong to a single zone. */
__alloc_contig_migrate_range(struct compact_control * cc,unsigned long start,unsigned long end)8570 static int __alloc_contig_migrate_range(struct compact_control *cc,
8571 unsigned long start, unsigned long end)
8572 {
8573 /* This function is based on compact_zone() from compaction.c. */
8574 unsigned int nr_reclaimed;
8575 unsigned long pfn = start;
8576 unsigned int tries = 0;
8577 int ret = 0;
8578 struct migration_target_control mtc = {
8579 .nid = zone_to_nid(cc->zone),
8580 .gfp_mask = GFP_USER | __GFP_MOVABLE | __GFP_RETRY_MAYFAIL,
8581 };
8582
8583 migrate_prep();
8584
8585 while (pfn < end || !list_empty(&cc->migratepages)) {
8586 if (fatal_signal_pending(current)) {
8587 ret = -EINTR;
8588 break;
8589 }
8590
8591 if (list_empty(&cc->migratepages)) {
8592 cc->nr_migratepages = 0;
8593 pfn = isolate_migratepages_range(cc, pfn, end);
8594 if (!pfn) {
8595 ret = -EINTR;
8596 break;
8597 }
8598 tries = 0;
8599 } else if (++tries == 5) {
8600 ret = ret < 0 ? ret : -EBUSY;
8601 break;
8602 }
8603
8604 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
8605 &cc->migratepages);
8606 cc->nr_migratepages -= nr_reclaimed;
8607
8608 ret = migrate_pages(&cc->migratepages, alloc_migration_target,
8609 NULL, (unsigned long)&mtc, cc->mode, MR_CONTIG_RANGE);
8610 }
8611 if (ret < 0) {
8612 putback_movable_pages(&cc->migratepages);
8613 return ret;
8614 }
8615 return 0;
8616 }
8617
8618 /**
8619 * alloc_contig_range() -- tries to allocate given range of pages
8620 * @start: start PFN to allocate
8621 * @end: one-past-the-last PFN to allocate
8622 * @migratetype: migratetype of the underlaying pageblocks (either
8623 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks
8624 * in range must have the same migratetype and it must
8625 * be either of the two.
8626 * @gfp_mask: GFP mask to use during compaction
8627 *
8628 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
8629 * aligned. The PFN range must belong to a single zone.
8630 *
8631 * The first thing this routine does is attempt to MIGRATE_ISOLATE all
8632 * pageblocks in the range. Once isolated, the pageblocks should not
8633 * be modified by others.
8634 *
8635 * Return: zero on success or negative error code. On success all
8636 * pages which PFN is in [start, end) are allocated for the caller and
8637 * need to be freed with free_contig_range().
8638 */
alloc_contig_range(unsigned long start,unsigned long end,unsigned migratetype,gfp_t gfp_mask)8639 int alloc_contig_range(unsigned long start, unsigned long end,
8640 unsigned migratetype, gfp_t gfp_mask)
8641 {
8642 unsigned long outer_start, outer_end;
8643 unsigned int order;
8644 int ret = 0;
8645
8646 struct compact_control cc = {
8647 .nr_migratepages = 0,
8648 .order = -1,
8649 .zone = page_zone(pfn_to_page(start)),
8650 .mode = MIGRATE_SYNC,
8651 .ignore_skip_hint = true,
8652 .no_set_skip_hint = true,
8653 .gfp_mask = current_gfp_context(gfp_mask),
8654 .alloc_contig = true,
8655 };
8656 INIT_LIST_HEAD(&cc.migratepages);
8657
8658 /*
8659 * What we do here is we mark all pageblocks in range as
8660 * MIGRATE_ISOLATE. Because pageblock and max order pages may
8661 * have different sizes, and due to the way page allocator
8662 * work, we align the range to biggest of the two pages so
8663 * that page allocator won't try to merge buddies from
8664 * different pageblocks and change MIGRATE_ISOLATE to some
8665 * other migration type.
8666 *
8667 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
8668 * migrate the pages from an unaligned range (ie. pages that
8669 * we are interested in). This will put all the pages in
8670 * range back to page allocator as MIGRATE_ISOLATE.
8671 *
8672 * When this is done, we take the pages in range from page
8673 * allocator removing them from the buddy system. This way
8674 * page allocator will never consider using them.
8675 *
8676 * This lets us mark the pageblocks back as
8677 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
8678 * aligned range but not in the unaligned, original range are
8679 * put back to page allocator so that buddy can use them.
8680 */
8681
8682 ret = start_isolate_page_range(pfn_max_align_down(start),
8683 pfn_max_align_up(end), migratetype, 0);
8684 if (ret)
8685 return ret;
8686
8687 /*
8688 * In case of -EBUSY, we'd like to know which page causes problem.
8689 * So, just fall through. test_pages_isolated() has a tracepoint
8690 * which will report the busy page.
8691 *
8692 * It is possible that busy pages could become available before
8693 * the call to test_pages_isolated, and the range will actually be
8694 * allocated. So, if we fall through be sure to clear ret so that
8695 * -EBUSY is not accidentally used or returned to caller.
8696 */
8697 ret = __alloc_contig_migrate_range(&cc, start, end);
8698 if (ret && ret != -EBUSY)
8699 goto done;
8700 ret =0;
8701
8702 /*
8703 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
8704 * aligned blocks that are marked as MIGRATE_ISOLATE. What's
8705 * more, all pages in [start, end) are free in page allocator.
8706 * What we are going to do is to allocate all pages from
8707 * [start, end) (that is remove them from page allocator).
8708 *
8709 * The only problem is that pages at the beginning and at the
8710 * end of interesting range may be not aligned with pages that
8711 * page allocator holds, ie. they can be part of higher order
8712 * pages. Because of this, we reserve the bigger range and
8713 * once this is done free the pages we are not interested in.
8714 *
8715 * We don't have to hold zone->lock here because the pages are
8716 * isolated thus they won't get removed from buddy.
8717 */
8718
8719 lru_add_drain_all();
8720
8721 order = 0;
8722 outer_start = start;
8723 while (!PageBuddy(pfn_to_page(outer_start))) {
8724 if (++order >= MAX_ORDER) {
8725 outer_start = start;
8726 break;
8727 }
8728 outer_start &= ~0UL << order;
8729 }
8730
8731 if (outer_start != start) {
8732 order = buddy_order(pfn_to_page(outer_start));
8733
8734 /*
8735 * outer_start page could be small order buddy page and
8736 * it doesn't include start page. Adjust outer_start
8737 * in this case to report failed page properly
8738 * on tracepoint in test_pages_isolated()
8739 */
8740 if (outer_start + (1UL << order) <= start)
8741 outer_start = start;
8742 }
8743
8744 /* Make sure the range is really isolated. */
8745 if (test_pages_isolated(outer_start, end, 0)) {
8746 pr_info_ratelimited("%s: [%lx, %lx) PFNs busy\n",
8747 __func__, outer_start, end);
8748 ret = -EBUSY;
8749 goto done;
8750 }
8751
8752 /* Grab isolated pages from freelists. */
8753 outer_end = isolate_freepages_range(&cc, outer_start, end);
8754 if (!outer_end) {
8755 ret = -EBUSY;
8756 goto done;
8757 }
8758
8759 /* Free head and tail (if any) */
8760 if (start != outer_start)
8761 free_contig_range(outer_start, start - outer_start);
8762 if (end != outer_end)
8763 free_contig_range(end, outer_end - end);
8764
8765 done:
8766 undo_isolate_page_range(pfn_max_align_down(start),
8767 pfn_max_align_up(end), migratetype);
8768 return ret;
8769 }
8770 EXPORT_SYMBOL(alloc_contig_range);
8771
__alloc_contig_pages(unsigned long start_pfn,unsigned long nr_pages,gfp_t gfp_mask)8772 static int __alloc_contig_pages(unsigned long start_pfn,
8773 unsigned long nr_pages, gfp_t gfp_mask)
8774 {
8775 unsigned long end_pfn = start_pfn + nr_pages;
8776
8777 return alloc_contig_range(start_pfn, end_pfn, MIGRATE_MOVABLE,
8778 gfp_mask);
8779 }
8780
pfn_range_valid_contig(struct zone * z,unsigned long start_pfn,unsigned long nr_pages)8781 static bool pfn_range_valid_contig(struct zone *z, unsigned long start_pfn,
8782 unsigned long nr_pages)
8783 {
8784 unsigned long i, end_pfn = start_pfn + nr_pages;
8785 struct page *page;
8786
8787 for (i = start_pfn; i < end_pfn; i++) {
8788 page = pfn_to_online_page(i);
8789 if (!page)
8790 return false;
8791
8792 if (page_zone(page) != z)
8793 return false;
8794
8795 if (PageReserved(page))
8796 return false;
8797
8798 if (page_count(page) > 0)
8799 return false;
8800
8801 if (PageHuge(page))
8802 return false;
8803 }
8804 return true;
8805 }
8806
zone_spans_last_pfn(const struct zone * zone,unsigned long start_pfn,unsigned long nr_pages)8807 static bool zone_spans_last_pfn(const struct zone *zone,
8808 unsigned long start_pfn, unsigned long nr_pages)
8809 {
8810 unsigned long last_pfn = start_pfn + nr_pages - 1;
8811
8812 return zone_spans_pfn(zone, last_pfn);
8813 }
8814
8815 /**
8816 * alloc_contig_pages() -- tries to find and allocate contiguous range of pages
8817 * @nr_pages: Number of contiguous pages to allocate
8818 * @gfp_mask: GFP mask to limit search and used during compaction
8819 * @nid: Target node
8820 * @nodemask: Mask for other possible nodes
8821 *
8822 * This routine is a wrapper around alloc_contig_range(). It scans over zones
8823 * on an applicable zonelist to find a contiguous pfn range which can then be
8824 * tried for allocation with alloc_contig_range(). This routine is intended
8825 * for allocation requests which can not be fulfilled with the buddy allocator.
8826 *
8827 * The allocated memory is always aligned to a page boundary. If nr_pages is a
8828 * power of two then the alignment is guaranteed to be to the given nr_pages
8829 * (e.g. 1GB request would be aligned to 1GB).
8830 *
8831 * Allocated pages can be freed with free_contig_range() or by manually calling
8832 * __free_page() on each allocated page.
8833 *
8834 * Return: pointer to contiguous pages on success, or NULL if not successful.
8835 */
alloc_contig_pages(unsigned long nr_pages,gfp_t gfp_mask,int nid,nodemask_t * nodemask)8836 struct page *alloc_contig_pages(unsigned long nr_pages, gfp_t gfp_mask,
8837 int nid, nodemask_t *nodemask)
8838 {
8839 unsigned long ret, pfn, flags;
8840 struct zonelist *zonelist;
8841 struct zone *zone;
8842 struct zoneref *z;
8843
8844 zonelist = node_zonelist(nid, gfp_mask);
8845 for_each_zone_zonelist_nodemask(zone, z, zonelist,
8846 gfp_zone(gfp_mask), nodemask) {
8847 spin_lock_irqsave(&zone->lock, flags);
8848
8849 pfn = ALIGN(zone->zone_start_pfn, nr_pages);
8850 while (zone_spans_last_pfn(zone, pfn, nr_pages)) {
8851 if (pfn_range_valid_contig(zone, pfn, nr_pages)) {
8852 /*
8853 * We release the zone lock here because
8854 * alloc_contig_range() will also lock the zone
8855 * at some point. If there's an allocation
8856 * spinning on this lock, it may win the race
8857 * and cause alloc_contig_range() to fail...
8858 */
8859 spin_unlock_irqrestore(&zone->lock, flags);
8860 ret = __alloc_contig_pages(pfn, nr_pages,
8861 gfp_mask);
8862 if (!ret)
8863 return pfn_to_page(pfn);
8864 spin_lock_irqsave(&zone->lock, flags);
8865 }
8866 pfn += nr_pages;
8867 }
8868 spin_unlock_irqrestore(&zone->lock, flags);
8869 }
8870 return NULL;
8871 }
8872 #endif /* CONFIG_CONTIG_ALLOC */
8873
free_contig_range(unsigned long pfn,unsigned int nr_pages)8874 void free_contig_range(unsigned long pfn, unsigned int nr_pages)
8875 {
8876 unsigned int count = 0;
8877
8878 for (; nr_pages--; pfn++) {
8879 struct page *page = pfn_to_page(pfn);
8880
8881 count += page_count(page) != 1;
8882 __free_page(page);
8883 }
8884 WARN(count != 0, "%d pages are still in use!\n", count);
8885 }
8886 EXPORT_SYMBOL(free_contig_range);
8887
8888 /*
8889 * The zone indicated has a new number of managed_pages; batch sizes and percpu
8890 * page high values need to be recalulated.
8891 */
zone_pcp_update(struct zone * zone)8892 void __meminit zone_pcp_update(struct zone *zone)
8893 {
8894 mutex_lock(&pcp_batch_high_lock);
8895 __zone_pcp_update(zone);
8896 mutex_unlock(&pcp_batch_high_lock);
8897 }
8898
zone_pcp_reset(struct zone * zone)8899 void zone_pcp_reset(struct zone *zone)
8900 {
8901 unsigned long flags;
8902 int cpu;
8903 struct per_cpu_pageset *pset;
8904
8905 /* avoid races with drain_pages() */
8906 local_irq_save(flags);
8907 if (zone->pageset != &boot_pageset) {
8908 for_each_online_cpu(cpu) {
8909 pset = per_cpu_ptr(zone->pageset, cpu);
8910 drain_zonestat(zone, pset);
8911 }
8912 free_percpu(zone->pageset);
8913 zone->pageset = &boot_pageset;
8914 }
8915 local_irq_restore(flags);
8916 }
8917
8918 #ifdef CONFIG_MEMORY_HOTREMOVE
8919 /*
8920 * All pages in the range must be in a single zone, must not contain holes,
8921 * must span full sections, and must be isolated before calling this function.
8922 */
__offline_isolated_pages(unsigned long start_pfn,unsigned long end_pfn)8923 void __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
8924 {
8925 unsigned long pfn = start_pfn;
8926 struct page *page;
8927 struct zone *zone;
8928 unsigned int order;
8929 unsigned long flags;
8930
8931 offline_mem_sections(pfn, end_pfn);
8932 zone = page_zone(pfn_to_page(pfn));
8933 spin_lock_irqsave(&zone->lock, flags);
8934 while (pfn < end_pfn) {
8935 page = pfn_to_page(pfn);
8936 /*
8937 * The HWPoisoned page may be not in buddy system, and
8938 * page_count() is not 0.
8939 */
8940 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
8941 pfn++;
8942 continue;
8943 }
8944 /*
8945 * At this point all remaining PageOffline() pages have a
8946 * reference count of 0 and can simply be skipped.
8947 */
8948 if (PageOffline(page)) {
8949 BUG_ON(page_count(page));
8950 BUG_ON(PageBuddy(page));
8951 pfn++;
8952 continue;
8953 }
8954
8955 BUG_ON(page_count(page));
8956 BUG_ON(!PageBuddy(page));
8957 order = buddy_order(page);
8958 del_page_from_free_list(page, zone, order);
8959 pfn += (1 << order);
8960 }
8961 spin_unlock_irqrestore(&zone->lock, flags);
8962 }
8963 #endif
8964
is_free_buddy_page(struct page * page)8965 bool is_free_buddy_page(struct page *page)
8966 {
8967 struct zone *zone = page_zone(page);
8968 unsigned long pfn = page_to_pfn(page);
8969 unsigned long flags;
8970 unsigned int order;
8971
8972 spin_lock_irqsave(&zone->lock, flags);
8973 for (order = 0; order < MAX_ORDER; order++) {
8974 struct page *page_head = page - (pfn & ((1 << order) - 1));
8975
8976 if (PageBuddy(page_head) && buddy_order(page_head) >= order)
8977 break;
8978 }
8979 spin_unlock_irqrestore(&zone->lock, flags);
8980
8981 return order < MAX_ORDER;
8982 }
8983
8984 #ifdef CONFIG_MEMORY_FAILURE
8985 /*
8986 * Break down a higher-order page in sub-pages, and keep our target out of
8987 * buddy allocator.
8988 */
break_down_buddy_pages(struct zone * zone,struct page * page,struct page * target,int low,int high,int migratetype)8989 static void break_down_buddy_pages(struct zone *zone, struct page *page,
8990 struct page *target, int low, int high,
8991 int migratetype)
8992 {
8993 unsigned long size = 1 << high;
8994 struct page *current_buddy, *next_page;
8995
8996 while (high > low) {
8997 high--;
8998 size >>= 1;
8999
9000 if (target >= &page[size]) {
9001 next_page = page + size;
9002 current_buddy = page;
9003 } else {
9004 next_page = page;
9005 current_buddy = page + size;
9006 }
9007
9008 if (set_page_guard(zone, current_buddy, high, migratetype))
9009 continue;
9010
9011 if (current_buddy != target) {
9012 add_to_free_list(current_buddy, zone, high, migratetype);
9013 set_buddy_order(current_buddy, high);
9014 page = next_page;
9015 }
9016 }
9017 }
9018
9019 /*
9020 * Take a page that will be marked as poisoned off the buddy allocator.
9021 */
take_page_off_buddy(struct page * page)9022 bool take_page_off_buddy(struct page *page)
9023 {
9024 struct zone *zone = page_zone(page);
9025 unsigned long pfn = page_to_pfn(page);
9026 unsigned long flags;
9027 unsigned int order;
9028 bool ret = false;
9029
9030 spin_lock_irqsave(&zone->lock, flags);
9031 for (order = 0; order < MAX_ORDER; order++) {
9032 struct page *page_head = page - (pfn & ((1 << order) - 1));
9033 int page_order = buddy_order(page_head);
9034
9035 if (PageBuddy(page_head) && page_order >= order) {
9036 unsigned long pfn_head = page_to_pfn(page_head);
9037 int migratetype = get_pfnblock_migratetype(page_head,
9038 pfn_head);
9039
9040 del_page_from_free_list(page_head, zone, page_order);
9041 break_down_buddy_pages(zone, page_head, page, 0,
9042 page_order, migratetype);
9043 if (!is_migrate_isolate(migratetype))
9044 __mod_zone_freepage_state(zone, -1, migratetype);
9045 ret = true;
9046 break;
9047 }
9048 if (page_count(page_head) > 0)
9049 break;
9050 }
9051 spin_unlock_irqrestore(&zone->lock, flags);
9052 return ret;
9053 }
9054 #endif
9055
9056 #ifdef CONFIG_ZONE_DMA
has_managed_dma(void)9057 bool has_managed_dma(void)
9058 {
9059 struct pglist_data *pgdat;
9060
9061 for_each_online_pgdat(pgdat) {
9062 struct zone *zone = &pgdat->node_zones[ZONE_DMA];
9063
9064 if (managed_zone(zone))
9065 return true;
9066 }
9067 return false;
9068 }
9069 #endif /* CONFIG_ZONE_DMA */
9070