• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/mm/swap.c
4  *
5  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
6  */
7 
8 /*
9  * This file contains the default values for the operation of the
10  * Linux VM subsystem. Fine-tuning documentation can be found in
11  * Documentation/admin-guide/sysctl/vm.rst.
12  * Started 18.12.91
13  * Swap aging added 23.2.95, Stephen Tweedie.
14  * Buffermem limits added 12.3.98, Rik van Riel.
15  */
16 
17 #include <linux/mm.h>
18 #include <linux/sched.h>
19 #include <linux/kernel_stat.h>
20 #include <linux/swap.h>
21 #include <linux/mman.h>
22 #include <linux/pagemap.h>
23 #include <linux/pagevec.h>
24 #include <linux/init.h>
25 #include <linux/export.h>
26 #include <linux/mm_inline.h>
27 #include <linux/percpu_counter.h>
28 #include <linux/memremap.h>
29 #include <linux/percpu.h>
30 #include <linux/cpu.h>
31 #include <linux/notifier.h>
32 #include <linux/backing-dev.h>
33 #include <linux/memcontrol.h>
34 #include <linux/gfp.h>
35 #include <linux/uio.h>
36 #include <linux/hugetlb.h>
37 #include <linux/page_idle.h>
38 #include <linux/local_lock.h>
39 
40 #include "internal.h"
41 
42 #define CREATE_TRACE_POINTS
43 #include <trace/events/pagemap.h>
44 
45 /* How many pages do we try to swap or page in/out together? */
46 int page_cluster;
47 
48 /* Protecting only lru_rotate.pvec which requires disabling interrupts */
49 struct lru_rotate {
50 	local_lock_t lock;
51 	struct pagevec pvec;
52 };
53 static DEFINE_PER_CPU(struct lru_rotate, lru_rotate) = {
54 	.lock = INIT_LOCAL_LOCK(lock),
55 };
56 
57 /*
58  * The following struct pagevec are grouped together because they are protected
59  * by disabling preemption (and interrupts remain enabled).
60  */
61 struct lru_pvecs {
62 	local_lock_t lock;
63 	struct pagevec lru_add;
64 	struct pagevec lru_deactivate_file;
65 	struct pagevec lru_deactivate;
66 	struct pagevec lru_lazyfree;
67 #ifdef CONFIG_SMP
68 	struct pagevec activate_page;
69 #endif
70 };
71 static DEFINE_PER_CPU(struct lru_pvecs, lru_pvecs) = {
72 	.lock = INIT_LOCAL_LOCK(lock),
73 };
74 
75 /*
76  * This path almost never happens for VM activity - pages are normally
77  * freed via pagevecs.  But it gets used by networking.
78  */
__page_cache_release(struct page * page)79 static void __page_cache_release(struct page *page)
80 {
81 	if (PageLRU(page)) {
82 		pg_data_t *pgdat = page_pgdat(page);
83 		struct lruvec *lruvec;
84 		unsigned long flags;
85 
86 		spin_lock_irqsave(&pgdat->lru_lock, flags);
87 		lruvec = mem_cgroup_page_lruvec(page, pgdat);
88 		VM_BUG_ON_PAGE(!PageLRU(page), page);
89 		__ClearPageLRU(page);
90 		del_page_from_lru_list(page, lruvec, page_off_lru(page));
91 		spin_unlock_irqrestore(&pgdat->lru_lock, flags);
92 	}
93 	__ClearPageWaiters(page);
94 }
95 
__put_single_page(struct page * page)96 static void __put_single_page(struct page *page)
97 {
98 	__page_cache_release(page);
99 	mem_cgroup_uncharge(page);
100 	free_unref_page(page);
101 }
102 
__put_compound_page(struct page * page)103 static void __put_compound_page(struct page *page)
104 {
105 	/*
106 	 * __page_cache_release() is supposed to be called for thp, not for
107 	 * hugetlb. This is because hugetlb page does never have PageLRU set
108 	 * (it's never listed to any LRU lists) and no memcg routines should
109 	 * be called for hugetlb (it has a separate hugetlb_cgroup.)
110 	 */
111 	if (!PageHuge(page))
112 		__page_cache_release(page);
113 	destroy_compound_page(page);
114 }
115 
__put_page(struct page * page)116 void __put_page(struct page *page)
117 {
118 	if (is_zone_device_page(page)) {
119 		put_dev_pagemap(page->pgmap);
120 
121 		/*
122 		 * The page belongs to the device that created pgmap. Do
123 		 * not return it to page allocator.
124 		 */
125 		return;
126 	}
127 
128 	if (unlikely(PageCompound(page)))
129 		__put_compound_page(page);
130 	else
131 		__put_single_page(page);
132 }
133 EXPORT_SYMBOL(__put_page);
134 
135 /**
136  * put_pages_list() - release a list of pages
137  * @pages: list of pages threaded on page->lru
138  *
139  * Release a list of pages which are strung together on page.lru.  Currently
140  * used by read_cache_pages() and related error recovery code.
141  */
put_pages_list(struct list_head * pages)142 void put_pages_list(struct list_head *pages)
143 {
144 	while (!list_empty(pages)) {
145 		struct page *victim;
146 
147 		victim = lru_to_page(pages);
148 		list_del(&victim->lru);
149 		put_page(victim);
150 	}
151 }
152 EXPORT_SYMBOL(put_pages_list);
153 
154 /*
155  * get_kernel_pages() - pin kernel pages in memory
156  * @kiov:	An array of struct kvec structures
157  * @nr_segs:	number of segments to pin
158  * @write:	pinning for read/write, currently ignored
159  * @pages:	array that receives pointers to the pages pinned.
160  *		Should be at least nr_segs long.
161  *
162  * Returns number of pages pinned. This may be fewer than the number
163  * requested. If nr_pages is 0 or negative, returns 0. If no pages
164  * were pinned, returns -errno. Each page returned must be released
165  * with a put_page() call when it is finished with.
166  */
get_kernel_pages(const struct kvec * kiov,int nr_segs,int write,struct page ** pages)167 int get_kernel_pages(const struct kvec *kiov, int nr_segs, int write,
168 		struct page **pages)
169 {
170 	int seg;
171 
172 	for (seg = 0; seg < nr_segs; seg++) {
173 		if (WARN_ON(kiov[seg].iov_len != PAGE_SIZE))
174 			return seg;
175 
176 		pages[seg] = kmap_to_page(kiov[seg].iov_base);
177 		get_page(pages[seg]);
178 	}
179 
180 	return seg;
181 }
182 EXPORT_SYMBOL_GPL(get_kernel_pages);
183 
184 /*
185  * get_kernel_page() - pin a kernel page in memory
186  * @start:	starting kernel address
187  * @write:	pinning for read/write, currently ignored
188  * @pages:	array that receives pointer to the page pinned.
189  *		Must be at least nr_segs long.
190  *
191  * Returns 1 if page is pinned. If the page was not pinned, returns
192  * -errno. The page returned must be released with a put_page() call
193  * when it is finished with.
194  */
get_kernel_page(unsigned long start,int write,struct page ** pages)195 int get_kernel_page(unsigned long start, int write, struct page **pages)
196 {
197 	const struct kvec kiov = {
198 		.iov_base = (void *)start,
199 		.iov_len = PAGE_SIZE
200 	};
201 
202 	return get_kernel_pages(&kiov, 1, write, pages);
203 }
204 EXPORT_SYMBOL_GPL(get_kernel_page);
205 
pagevec_lru_move_fn(struct pagevec * pvec,void (* move_fn)(struct page * page,struct lruvec * lruvec,void * arg),void * arg)206 static void pagevec_lru_move_fn(struct pagevec *pvec,
207 	void (*move_fn)(struct page *page, struct lruvec *lruvec, void *arg),
208 	void *arg)
209 {
210 	int i;
211 	struct pglist_data *pgdat = NULL;
212 	struct lruvec *lruvec;
213 	unsigned long flags = 0;
214 
215 	for (i = 0; i < pagevec_count(pvec); i++) {
216 		struct page *page = pvec->pages[i];
217 		struct pglist_data *pagepgdat = page_pgdat(page);
218 
219 		if (pagepgdat != pgdat) {
220 			if (pgdat)
221 				spin_unlock_irqrestore(&pgdat->lru_lock, flags);
222 			pgdat = pagepgdat;
223 			spin_lock_irqsave(&pgdat->lru_lock, flags);
224 		}
225 
226 		lruvec = mem_cgroup_page_lruvec(page, pgdat);
227 		(*move_fn)(page, lruvec, arg);
228 	}
229 	if (pgdat)
230 		spin_unlock_irqrestore(&pgdat->lru_lock, flags);
231 	release_pages(pvec->pages, pvec->nr);
232 	pagevec_reinit(pvec);
233 }
234 
pagevec_move_tail_fn(struct page * page,struct lruvec * lruvec,void * arg)235 static void pagevec_move_tail_fn(struct page *page, struct lruvec *lruvec,
236 				 void *arg)
237 {
238 	int *pgmoved = arg;
239 
240 	if (PageLRU(page) && !PageUnevictable(page)) {
241 		del_page_from_lru_list(page, lruvec, page_lru(page));
242 		ClearPageActive(page);
243 		add_page_to_lru_list_tail(page, lruvec, page_lru(page));
244 		(*pgmoved) += thp_nr_pages(page);
245 	}
246 }
247 
248 /*
249  * pagevec_move_tail() must be called with IRQ disabled.
250  * Otherwise this may cause nasty races.
251  */
pagevec_move_tail(struct pagevec * pvec)252 static void pagevec_move_tail(struct pagevec *pvec)
253 {
254 	int pgmoved = 0;
255 
256 	pagevec_lru_move_fn(pvec, pagevec_move_tail_fn, &pgmoved);
257 	__count_vm_events(PGROTATED, pgmoved);
258 }
259 
260 /*
261  * Writeback is about to end against a page which has been marked for immediate
262  * reclaim.  If it still appears to be reclaimable, move it to the tail of the
263  * inactive list.
264  */
rotate_reclaimable_page(struct page * page)265 void rotate_reclaimable_page(struct page *page)
266 {
267 	if (!PageLocked(page) && !PageDirty(page) &&
268 	    !PageUnevictable(page) && PageLRU(page)) {
269 		struct pagevec *pvec;
270 		unsigned long flags;
271 
272 		get_page(page);
273 		local_lock_irqsave(&lru_rotate.lock, flags);
274 		pvec = this_cpu_ptr(&lru_rotate.pvec);
275 		if (!pagevec_add(pvec, page) || PageCompound(page))
276 			pagevec_move_tail(pvec);
277 		local_unlock_irqrestore(&lru_rotate.lock, flags);
278 	}
279 }
280 
lru_note_cost(struct lruvec * lruvec,bool file,unsigned int nr_pages)281 void lru_note_cost(struct lruvec *lruvec, bool file, unsigned int nr_pages)
282 {
283 	do {
284 		unsigned long lrusize;
285 
286 		/* Record cost event */
287 		if (file)
288 			lruvec->file_cost += nr_pages;
289 		else
290 			lruvec->anon_cost += nr_pages;
291 
292 		/*
293 		 * Decay previous events
294 		 *
295 		 * Because workloads change over time (and to avoid
296 		 * overflow) we keep these statistics as a floating
297 		 * average, which ends up weighing recent refaults
298 		 * more than old ones.
299 		 */
300 		lrusize = lruvec_page_state(lruvec, NR_INACTIVE_ANON) +
301 			  lruvec_page_state(lruvec, NR_ACTIVE_ANON) +
302 			  lruvec_page_state(lruvec, NR_INACTIVE_FILE) +
303 			  lruvec_page_state(lruvec, NR_ACTIVE_FILE);
304 
305 		if (lruvec->file_cost + lruvec->anon_cost > lrusize / 4) {
306 			lruvec->file_cost /= 2;
307 			lruvec->anon_cost /= 2;
308 		}
309 	} while ((lruvec = parent_lruvec(lruvec)));
310 }
311 
lru_note_cost_page(struct page * page)312 void lru_note_cost_page(struct page *page)
313 {
314 #ifdef CONFIG_HYPERHOLD_FILE_LRU
315 	if (page_is_file_lru(page)) {
316 		lru_note_cost(&(page_pgdat(page)->__lruvec), 1, thp_nr_pages(page));
317 		return;
318 	}
319 #endif
320 	lru_note_cost(mem_cgroup_page_lruvec(page, page_pgdat(page)),
321 		      page_is_file_lru(page), thp_nr_pages(page));
322 }
323 
__activate_page(struct page * page,struct lruvec * lruvec,void * arg)324 static void __activate_page(struct page *page, struct lruvec *lruvec,
325 			    void *arg)
326 {
327 	if (PageLRU(page) && !PageActive(page) && !PageUnevictable(page)) {
328 		int lru = page_lru_base_type(page);
329 		int nr_pages = thp_nr_pages(page);
330 
331 		del_page_from_lru_list(page, lruvec, lru);
332 		SetPageActive(page);
333 		lru += LRU_ACTIVE;
334 		add_page_to_lru_list(page, lruvec, lru);
335 		trace_mm_lru_activate(page);
336 
337 		__count_vm_events(PGACTIVATE, nr_pages);
338 		__count_memcg_events(lruvec_memcg(lruvec), PGACTIVATE,
339 				     nr_pages);
340 	}
341 }
342 
343 #ifdef CONFIG_SMP
activate_page_drain(int cpu)344 static void activate_page_drain(int cpu)
345 {
346 	struct pagevec *pvec = &per_cpu(lru_pvecs.activate_page, cpu);
347 
348 	if (pagevec_count(pvec))
349 		pagevec_lru_move_fn(pvec, __activate_page, NULL);
350 }
351 
need_activate_page_drain(int cpu)352 static bool need_activate_page_drain(int cpu)
353 {
354 	return pagevec_count(&per_cpu(lru_pvecs.activate_page, cpu)) != 0;
355 }
356 
activate_page(struct page * page)357 static void activate_page(struct page *page)
358 {
359 	page = compound_head(page);
360 	if (PageLRU(page) && !PageActive(page) && !PageUnevictable(page)) {
361 		struct pagevec *pvec;
362 
363 		local_lock(&lru_pvecs.lock);
364 		pvec = this_cpu_ptr(&lru_pvecs.activate_page);
365 		get_page(page);
366 		if (!pagevec_add(pvec, page) || PageCompound(page))
367 			pagevec_lru_move_fn(pvec, __activate_page, NULL);
368 		local_unlock(&lru_pvecs.lock);
369 	}
370 }
371 
372 #else
activate_page_drain(int cpu)373 static inline void activate_page_drain(int cpu)
374 {
375 }
376 
activate_page(struct page * page)377 static void activate_page(struct page *page)
378 {
379 	pg_data_t *pgdat = page_pgdat(page);
380 
381 	page = compound_head(page);
382 	spin_lock_irq(&pgdat->lru_lock);
383 	__activate_page(page, mem_cgroup_page_lruvec(page, pgdat), NULL);
384 	spin_unlock_irq(&pgdat->lru_lock);
385 }
386 #endif
387 
__lru_cache_activate_page(struct page * page)388 static void __lru_cache_activate_page(struct page *page)
389 {
390 	struct pagevec *pvec;
391 	int i;
392 
393 	local_lock(&lru_pvecs.lock);
394 	pvec = this_cpu_ptr(&lru_pvecs.lru_add);
395 
396 	/*
397 	 * Search backwards on the optimistic assumption that the page being
398 	 * activated has just been added to this pagevec. Note that only
399 	 * the local pagevec is examined as a !PageLRU page could be in the
400 	 * process of being released, reclaimed, migrated or on a remote
401 	 * pagevec that is currently being drained. Furthermore, marking
402 	 * a remote pagevec's page PageActive potentially hits a race where
403 	 * a page is marked PageActive just after it is added to the inactive
404 	 * list causing accounting errors and BUG_ON checks to trigger.
405 	 */
406 	for (i = pagevec_count(pvec) - 1; i >= 0; i--) {
407 		struct page *pagevec_page = pvec->pages[i];
408 
409 		if (pagevec_page == page) {
410 			SetPageActive(page);
411 			break;
412 		}
413 	}
414 
415 	local_unlock(&lru_pvecs.lock);
416 }
417 
418 /*
419  * Mark a page as having seen activity.
420  *
421  * inactive,unreferenced	->	inactive,referenced
422  * inactive,referenced		->	active,unreferenced
423  * active,unreferenced		->	active,referenced
424  *
425  * When a newly allocated page is not yet visible, so safe for non-atomic ops,
426  * __SetPageReferenced(page) may be substituted for mark_page_accessed(page).
427  */
mark_page_accessed(struct page * page)428 void mark_page_accessed(struct page *page)
429 {
430 	page = compound_head(page);
431 
432 	if (!PageReferenced(page)) {
433 		SetPageReferenced(page);
434 	} else if (PageUnevictable(page)) {
435 		/*
436 		 * Unevictable pages are on the "LRU_UNEVICTABLE" list. But,
437 		 * this list is never rotated or maintained, so marking an
438 		 * evictable page accessed has no effect.
439 		 */
440 	} else if (!PageActive(page)) {
441 		/*
442 		 * If the page is on the LRU, queue it for activation via
443 		 * lru_pvecs.activate_page. Otherwise, assume the page is on a
444 		 * pagevec, mark it active and it'll be moved to the active
445 		 * LRU on the next drain.
446 		 */
447 		if (PageLRU(page))
448 			activate_page(page);
449 		else
450 			__lru_cache_activate_page(page);
451 		ClearPageReferenced(page);
452 		workingset_activation(page);
453 	}
454 	if (page_is_idle(page))
455 		clear_page_idle(page);
456 }
457 EXPORT_SYMBOL(mark_page_accessed);
458 
459 /**
460  * lru_cache_add - add a page to a page list
461  * @page: the page to be added to the LRU.
462  *
463  * Queue the page for addition to the LRU via pagevec. The decision on whether
464  * to add the page to the [in]active [file|anon] list is deferred until the
465  * pagevec is drained. This gives a chance for the caller of lru_cache_add()
466  * have the page added to the active list using mark_page_accessed().
467  */
lru_cache_add(struct page * page)468 void lru_cache_add(struct page *page)
469 {
470 	struct pagevec *pvec;
471 
472 	VM_BUG_ON_PAGE(PageActive(page) && PageUnevictable(page), page);
473 	VM_BUG_ON_PAGE(PageLRU(page), page);
474 
475 	get_page(page);
476 	local_lock(&lru_pvecs.lock);
477 	pvec = this_cpu_ptr(&lru_pvecs.lru_add);
478 	if (!pagevec_add(pvec, page) || PageCompound(page))
479 		__pagevec_lru_add(pvec);
480 	local_unlock(&lru_pvecs.lock);
481 }
482 EXPORT_SYMBOL(lru_cache_add);
483 
484 /**
485  * lru_cache_add_inactive_or_unevictable
486  * @page:  the page to be added to LRU
487  * @vma:   vma in which page is mapped for determining reclaimability
488  *
489  * Place @page on the inactive or unevictable LRU list, depending on its
490  * evictability.
491  */
lru_cache_add_inactive_or_unevictable(struct page * page,struct vm_area_struct * vma)492 void lru_cache_add_inactive_or_unevictable(struct page *page,
493 					 struct vm_area_struct *vma)
494 {
495 	bool unevictable;
496 
497 	VM_BUG_ON_PAGE(PageLRU(page), page);
498 
499 	unevictable = (vma->vm_flags & (VM_LOCKED | VM_SPECIAL)) == VM_LOCKED;
500 	if (unlikely(unevictable) && !TestSetPageMlocked(page)) {
501 		int nr_pages = thp_nr_pages(page);
502 		/*
503 		 * We use the irq-unsafe __mod_zone_page_stat because this
504 		 * counter is not modified from interrupt context, and the pte
505 		 * lock is held(spinlock), which implies preemption disabled.
506 		 */
507 		__mod_zone_page_state(page_zone(page), NR_MLOCK, nr_pages);
508 		count_vm_events(UNEVICTABLE_PGMLOCKED, nr_pages);
509 	}
510 	lru_cache_add(page);
511 }
512 
513 /*
514  * If the page can not be invalidated, it is moved to the
515  * inactive list to speed up its reclaim.  It is moved to the
516  * head of the list, rather than the tail, to give the flusher
517  * threads some time to write it out, as this is much more
518  * effective than the single-page writeout from reclaim.
519  *
520  * If the page isn't page_mapped and dirty/writeback, the page
521  * could reclaim asap using PG_reclaim.
522  *
523  * 1. active, mapped page -> none
524  * 2. active, dirty/writeback page -> inactive, head, PG_reclaim
525  * 3. inactive, mapped page -> none
526  * 4. inactive, dirty/writeback page -> inactive, head, PG_reclaim
527  * 5. inactive, clean -> inactive, tail
528  * 6. Others -> none
529  *
530  * In 4, why it moves inactive's head, the VM expects the page would
531  * be write it out by flusher threads as this is much more effective
532  * than the single-page writeout from reclaim.
533  */
lru_deactivate_file_fn(struct page * page,struct lruvec * lruvec,void * arg)534 static void lru_deactivate_file_fn(struct page *page, struct lruvec *lruvec,
535 			      void *arg)
536 {
537 	int lru;
538 	bool active;
539 	int nr_pages = thp_nr_pages(page);
540 
541 	if (!PageLRU(page))
542 		return;
543 
544 	if (PageUnevictable(page))
545 		return;
546 
547 	/* Some processes are using the page */
548 	if (page_mapped(page))
549 		return;
550 
551 	active = PageActive(page);
552 	lru = page_lru_base_type(page);
553 
554 	del_page_from_lru_list(page, lruvec, lru + active);
555 	ClearPageActive(page);
556 	ClearPageReferenced(page);
557 
558 	if (PageWriteback(page) || PageDirty(page)) {
559 		/*
560 		 * PG_reclaim could be raced with end_page_writeback
561 		 * It can make readahead confusing.  But race window
562 		 * is _really_ small and  it's non-critical problem.
563 		 */
564 		add_page_to_lru_list(page, lruvec, lru);
565 		SetPageReclaim(page);
566 	} else {
567 		/*
568 		 * The page's writeback ends up during pagevec
569 		 * We moves tha page into tail of inactive.
570 		 */
571 		add_page_to_lru_list_tail(page, lruvec, lru);
572 		__count_vm_events(PGROTATED, nr_pages);
573 	}
574 
575 	if (active) {
576 		__count_vm_events(PGDEACTIVATE, nr_pages);
577 		__count_memcg_events(lruvec_memcg(lruvec), PGDEACTIVATE,
578 				     nr_pages);
579 	}
580 }
581 
lru_deactivate_fn(struct page * page,struct lruvec * lruvec,void * arg)582 static void lru_deactivate_fn(struct page *page, struct lruvec *lruvec,
583 			    void *arg)
584 {
585 	if (PageLRU(page) && PageActive(page) && !PageUnevictable(page)) {
586 		int lru = page_lru_base_type(page);
587 		int nr_pages = thp_nr_pages(page);
588 
589 		del_page_from_lru_list(page, lruvec, lru + LRU_ACTIVE);
590 		ClearPageActive(page);
591 		ClearPageReferenced(page);
592 		add_page_to_lru_list(page, lruvec, lru);
593 
594 		__count_vm_events(PGDEACTIVATE, nr_pages);
595 		__count_memcg_events(lruvec_memcg(lruvec), PGDEACTIVATE,
596 				     nr_pages);
597 	}
598 }
599 
lru_lazyfree_fn(struct page * page,struct lruvec * lruvec,void * arg)600 static void lru_lazyfree_fn(struct page *page, struct lruvec *lruvec,
601 			    void *arg)
602 {
603 	if (PageLRU(page) && PageAnon(page) && PageSwapBacked(page) &&
604 	    !PageSwapCache(page) && !PageUnevictable(page)) {
605 		bool active = PageActive(page);
606 		int nr_pages = thp_nr_pages(page);
607 
608 		del_page_from_lru_list(page, lruvec,
609 				       LRU_INACTIVE_ANON + active);
610 		ClearPageActive(page);
611 		ClearPageReferenced(page);
612 		/*
613 		 * Lazyfree pages are clean anonymous pages.  They have
614 		 * PG_swapbacked flag cleared, to distinguish them from normal
615 		 * anonymous pages
616 		 */
617 		ClearPageSwapBacked(page);
618 		add_page_to_lru_list(page, lruvec, LRU_INACTIVE_FILE);
619 
620 		__count_vm_events(PGLAZYFREE, nr_pages);
621 		__count_memcg_events(lruvec_memcg(lruvec), PGLAZYFREE,
622 				     nr_pages);
623 	}
624 }
625 
626 /*
627  * Drain pages out of the cpu's pagevecs.
628  * Either "cpu" is the current CPU, and preemption has already been
629  * disabled; or "cpu" is being hot-unplugged, and is already dead.
630  */
lru_add_drain_cpu(int cpu)631 void lru_add_drain_cpu(int cpu)
632 {
633 	struct pagevec *pvec = &per_cpu(lru_pvecs.lru_add, cpu);
634 
635 	if (pagevec_count(pvec))
636 		__pagevec_lru_add(pvec);
637 
638 	pvec = &per_cpu(lru_rotate.pvec, cpu);
639 	/* Disabling interrupts below acts as a compiler barrier. */
640 	if (data_race(pagevec_count(pvec))) {
641 		unsigned long flags;
642 
643 		/* No harm done if a racing interrupt already did this */
644 		local_lock_irqsave(&lru_rotate.lock, flags);
645 		pagevec_move_tail(pvec);
646 		local_unlock_irqrestore(&lru_rotate.lock, flags);
647 	}
648 
649 	pvec = &per_cpu(lru_pvecs.lru_deactivate_file, cpu);
650 	if (pagevec_count(pvec))
651 		pagevec_lru_move_fn(pvec, lru_deactivate_file_fn, NULL);
652 
653 	pvec = &per_cpu(lru_pvecs.lru_deactivate, cpu);
654 	if (pagevec_count(pvec))
655 		pagevec_lru_move_fn(pvec, lru_deactivate_fn, NULL);
656 
657 	pvec = &per_cpu(lru_pvecs.lru_lazyfree, cpu);
658 	if (pagevec_count(pvec))
659 		pagevec_lru_move_fn(pvec, lru_lazyfree_fn, NULL);
660 
661 	activate_page_drain(cpu);
662 }
663 
664 /**
665  * deactivate_file_page - forcefully deactivate a file page
666  * @page: page to deactivate
667  *
668  * This function hints the VM that @page is a good reclaim candidate,
669  * for example if its invalidation fails due to the page being dirty
670  * or under writeback.
671  */
deactivate_file_page(struct page * page)672 void deactivate_file_page(struct page *page)
673 {
674 	/*
675 	 * In a workload with many unevictable page such as mprotect,
676 	 * unevictable page deactivation for accelerating reclaim is pointless.
677 	 */
678 	if (PageUnevictable(page))
679 		return;
680 
681 	if (likely(get_page_unless_zero(page))) {
682 		struct pagevec *pvec;
683 
684 		local_lock(&lru_pvecs.lock);
685 		pvec = this_cpu_ptr(&lru_pvecs.lru_deactivate_file);
686 
687 		if (!pagevec_add(pvec, page) || PageCompound(page))
688 			pagevec_lru_move_fn(pvec, lru_deactivate_file_fn, NULL);
689 		local_unlock(&lru_pvecs.lock);
690 	}
691 }
692 
693 /*
694  * deactivate_page - deactivate a page
695  * @page: page to deactivate
696  *
697  * deactivate_page() moves @page to the inactive list if @page was on the active
698  * list and was not an unevictable page.  This is done to accelerate the reclaim
699  * of @page.
700  */
deactivate_page(struct page * page)701 void deactivate_page(struct page *page)
702 {
703 	if (PageLRU(page) && PageActive(page) && !PageUnevictable(page)) {
704 		struct pagevec *pvec;
705 
706 		local_lock(&lru_pvecs.lock);
707 		pvec = this_cpu_ptr(&lru_pvecs.lru_deactivate);
708 		get_page(page);
709 		if (!pagevec_add(pvec, page) || PageCompound(page))
710 			pagevec_lru_move_fn(pvec, lru_deactivate_fn, NULL);
711 		local_unlock(&lru_pvecs.lock);
712 	}
713 }
714 
715 /**
716  * mark_page_lazyfree - make an anon page lazyfree
717  * @page: page to deactivate
718  *
719  * mark_page_lazyfree() moves @page to the inactive file list.
720  * This is done to accelerate the reclaim of @page.
721  */
mark_page_lazyfree(struct page * page)722 void mark_page_lazyfree(struct page *page)
723 {
724 	if (PageLRU(page) && PageAnon(page) && PageSwapBacked(page) &&
725 	    !PageSwapCache(page) && !PageUnevictable(page)) {
726 		struct pagevec *pvec;
727 
728 		local_lock(&lru_pvecs.lock);
729 		pvec = this_cpu_ptr(&lru_pvecs.lru_lazyfree);
730 		get_page(page);
731 		if (!pagevec_add(pvec, page) || PageCompound(page))
732 			pagevec_lru_move_fn(pvec, lru_lazyfree_fn, NULL);
733 		local_unlock(&lru_pvecs.lock);
734 	}
735 }
736 
lru_add_drain(void)737 void lru_add_drain(void)
738 {
739 	local_lock(&lru_pvecs.lock);
740 	lru_add_drain_cpu(smp_processor_id());
741 	local_unlock(&lru_pvecs.lock);
742 }
743 
lru_add_drain_cpu_zone(struct zone * zone)744 void lru_add_drain_cpu_zone(struct zone *zone)
745 {
746 	local_lock(&lru_pvecs.lock);
747 	lru_add_drain_cpu(smp_processor_id());
748 	drain_local_pages(zone);
749 	local_unlock(&lru_pvecs.lock);
750 }
751 
752 #ifdef CONFIG_SMP
753 
754 static DEFINE_PER_CPU(struct work_struct, lru_add_drain_work);
755 
lru_add_drain_per_cpu(struct work_struct * dummy)756 static void lru_add_drain_per_cpu(struct work_struct *dummy)
757 {
758 	lru_add_drain();
759 }
760 
761 /*
762  * Doesn't need any cpu hotplug locking because we do rely on per-cpu
763  * kworkers being shut down before our page_alloc_cpu_dead callback is
764  * executed on the offlined cpu.
765  * Calling this function with cpu hotplug locks held can actually lead
766  * to obscure indirect dependencies via WQ context.
767  */
lru_add_drain_all(void)768 void lru_add_drain_all(void)
769 {
770 	/*
771 	 * lru_drain_gen - Global pages generation number
772 	 *
773 	 * (A) Definition: global lru_drain_gen = x implies that all generations
774 	 *     0 < n <= x are already *scheduled* for draining.
775 	 *
776 	 * This is an optimization for the highly-contended use case where a
777 	 * user space workload keeps constantly generating a flow of pages for
778 	 * each CPU.
779 	 */
780 	static unsigned int lru_drain_gen;
781 	static struct cpumask has_work;
782 	static DEFINE_MUTEX(lock);
783 	unsigned cpu, this_gen;
784 
785 	/*
786 	 * Make sure nobody triggers this path before mm_percpu_wq is fully
787 	 * initialized.
788 	 */
789 	if (WARN_ON(!mm_percpu_wq))
790 		return;
791 
792 	/*
793 	 * Guarantee pagevec counter stores visible by this CPU are visible to
794 	 * other CPUs before loading the current drain generation.
795 	 */
796 	smp_mb();
797 
798 	/*
799 	 * (B) Locally cache global LRU draining generation number
800 	 *
801 	 * The read barrier ensures that the counter is loaded before the mutex
802 	 * is taken. It pairs with smp_mb() inside the mutex critical section
803 	 * at (D).
804 	 */
805 	this_gen = smp_load_acquire(&lru_drain_gen);
806 
807 	mutex_lock(&lock);
808 
809 	/*
810 	 * (C) Exit the draining operation if a newer generation, from another
811 	 * lru_add_drain_all(), was already scheduled for draining. Check (A).
812 	 */
813 	if (unlikely(this_gen != lru_drain_gen))
814 		goto done;
815 
816 	/*
817 	 * (D) Increment global generation number
818 	 *
819 	 * Pairs with smp_load_acquire() at (B), outside of the critical
820 	 * section. Use a full memory barrier to guarantee that the new global
821 	 * drain generation number is stored before loading pagevec counters.
822 	 *
823 	 * This pairing must be done here, before the for_each_online_cpu loop
824 	 * below which drains the page vectors.
825 	 *
826 	 * Let x, y, and z represent some system CPU numbers, where x < y < z.
827 	 * Assume CPU #z is is in the middle of the for_each_online_cpu loop
828 	 * below and has already reached CPU #y's per-cpu data. CPU #x comes
829 	 * along, adds some pages to its per-cpu vectors, then calls
830 	 * lru_add_drain_all().
831 	 *
832 	 * If the paired barrier is done at any later step, e.g. after the
833 	 * loop, CPU #x will just exit at (C) and miss flushing out all of its
834 	 * added pages.
835 	 */
836 	WRITE_ONCE(lru_drain_gen, lru_drain_gen + 1);
837 	smp_mb();
838 
839 	cpumask_clear(&has_work);
840 	for_each_online_cpu(cpu) {
841 		struct work_struct *work = &per_cpu(lru_add_drain_work, cpu);
842 
843 		if (pagevec_count(&per_cpu(lru_pvecs.lru_add, cpu)) ||
844 		    data_race(pagevec_count(&per_cpu(lru_rotate.pvec, cpu))) ||
845 		    pagevec_count(&per_cpu(lru_pvecs.lru_deactivate_file, cpu)) ||
846 		    pagevec_count(&per_cpu(lru_pvecs.lru_deactivate, cpu)) ||
847 		    pagevec_count(&per_cpu(lru_pvecs.lru_lazyfree, cpu)) ||
848 		    need_activate_page_drain(cpu)) {
849 			INIT_WORK(work, lru_add_drain_per_cpu);
850 			queue_work_on(cpu, mm_percpu_wq, work);
851 			__cpumask_set_cpu(cpu, &has_work);
852 		}
853 	}
854 
855 	for_each_cpu(cpu, &has_work)
856 		flush_work(&per_cpu(lru_add_drain_work, cpu));
857 
858 done:
859 	mutex_unlock(&lock);
860 }
861 #else
lru_add_drain_all(void)862 void lru_add_drain_all(void)
863 {
864 	lru_add_drain();
865 }
866 #endif /* CONFIG_SMP */
867 
868 /**
869  * release_pages - batched put_page()
870  * @pages: array of pages to release
871  * @nr: number of pages
872  *
873  * Decrement the reference count on all the pages in @pages.  If it
874  * fell to zero, remove the page from the LRU and free it.
875  */
release_pages(struct page ** pages,int nr)876 void release_pages(struct page **pages, int nr)
877 {
878 	int i;
879 	LIST_HEAD(pages_to_free);
880 	struct pglist_data *locked_pgdat = NULL;
881 	struct lruvec *lruvec;
882 	unsigned long flags;
883 	unsigned int lock_batch;
884 
885 	for (i = 0; i < nr; i++) {
886 		struct page *page = pages[i];
887 
888 		/*
889 		 * Make sure the IRQ-safe lock-holding time does not get
890 		 * excessive with a continuous string of pages from the
891 		 * same pgdat. The lock is held only if pgdat != NULL.
892 		 */
893 		if (locked_pgdat && ++lock_batch == SWAP_CLUSTER_MAX) {
894 			spin_unlock_irqrestore(&locked_pgdat->lru_lock, flags);
895 			locked_pgdat = NULL;
896 		}
897 
898 		page = compound_head(page);
899 		if (is_huge_zero_page(page))
900 			continue;
901 
902 		if (is_zone_device_page(page)) {
903 			if (locked_pgdat) {
904 				spin_unlock_irqrestore(&locked_pgdat->lru_lock,
905 						       flags);
906 				locked_pgdat = NULL;
907 			}
908 			/*
909 			 * ZONE_DEVICE pages that return 'false' from
910 			 * page_is_devmap_managed() do not require special
911 			 * processing, and instead, expect a call to
912 			 * put_page_testzero().
913 			 */
914 			if (page_is_devmap_managed(page)) {
915 				put_devmap_managed_page(page);
916 				continue;
917 			}
918 		}
919 
920 		if (!put_page_testzero(page))
921 			continue;
922 
923 		if (PageCompound(page)) {
924 			if (locked_pgdat) {
925 				spin_unlock_irqrestore(&locked_pgdat->lru_lock, flags);
926 				locked_pgdat = NULL;
927 			}
928 			__put_compound_page(page);
929 			continue;
930 		}
931 
932 		if (PageLRU(page)) {
933 			struct pglist_data *pgdat = page_pgdat(page);
934 
935 			if (pgdat != locked_pgdat) {
936 				if (locked_pgdat)
937 					spin_unlock_irqrestore(&locked_pgdat->lru_lock,
938 									flags);
939 				lock_batch = 0;
940 				locked_pgdat = pgdat;
941 				spin_lock_irqsave(&locked_pgdat->lru_lock, flags);
942 			}
943 
944 			lruvec = mem_cgroup_page_lruvec(page, locked_pgdat);
945 			VM_BUG_ON_PAGE(!PageLRU(page), page);
946 			__ClearPageLRU(page);
947 			del_page_from_lru_list(page, lruvec, page_off_lru(page));
948 		}
949 
950 		__ClearPageWaiters(page);
951 
952 		list_add(&page->lru, &pages_to_free);
953 	}
954 	if (locked_pgdat)
955 		spin_unlock_irqrestore(&locked_pgdat->lru_lock, flags);
956 
957 	mem_cgroup_uncharge_list(&pages_to_free);
958 	free_unref_page_list(&pages_to_free);
959 }
960 EXPORT_SYMBOL(release_pages);
961 
962 /*
963  * The pages which we're about to release may be in the deferred lru-addition
964  * queues.  That would prevent them from really being freed right now.  That's
965  * OK from a correctness point of view but is inefficient - those pages may be
966  * cache-warm and we want to give them back to the page allocator ASAP.
967  *
968  * So __pagevec_release() will drain those queues here.  __pagevec_lru_add()
969  * and __pagevec_lru_add_active() call release_pages() directly to avoid
970  * mutual recursion.
971  */
__pagevec_release(struct pagevec * pvec)972 void __pagevec_release(struct pagevec *pvec)
973 {
974 	if (!pvec->percpu_pvec_drained) {
975 		lru_add_drain();
976 		pvec->percpu_pvec_drained = true;
977 	}
978 	release_pages(pvec->pages, pagevec_count(pvec));
979 	pagevec_reinit(pvec);
980 }
981 EXPORT_SYMBOL(__pagevec_release);
982 
983 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
984 /* used by __split_huge_page_refcount() */
lru_add_page_tail(struct page * page,struct page * page_tail,struct lruvec * lruvec,struct list_head * list)985 void lru_add_page_tail(struct page *page, struct page *page_tail,
986 		       struct lruvec *lruvec, struct list_head *list)
987 {
988 	VM_BUG_ON_PAGE(!PageHead(page), page);
989 	VM_BUG_ON_PAGE(PageCompound(page_tail), page);
990 	VM_BUG_ON_PAGE(PageLRU(page_tail), page);
991 	lockdep_assert_held(&lruvec_pgdat(lruvec)->lru_lock);
992 
993 	if (!list)
994 		SetPageLRU(page_tail);
995 
996 	if (likely(PageLRU(page)))
997 		list_add_tail(&page_tail->lru, &page->lru);
998 	else if (list) {
999 		/* page reclaim is reclaiming a huge page */
1000 		get_page(page_tail);
1001 		list_add_tail(&page_tail->lru, list);
1002 	} else {
1003 		/*
1004 		 * Head page has not yet been counted, as an hpage,
1005 		 * so we must account for each subpage individually.
1006 		 *
1007 		 * Put page_tail on the list at the correct position
1008 		 * so they all end up in order.
1009 		 */
1010 		add_page_to_lru_list_tail(page_tail, lruvec,
1011 					  page_lru(page_tail));
1012 	}
1013 }
1014 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1015 
__pagevec_lru_add_fn(struct page * page,struct lruvec * lruvec,void * arg)1016 static void __pagevec_lru_add_fn(struct page *page, struct lruvec *lruvec,
1017 				 void *arg)
1018 {
1019 	enum lru_list lru;
1020 	int was_unevictable = TestClearPageUnevictable(page);
1021 	int nr_pages = thp_nr_pages(page);
1022 
1023 	VM_BUG_ON_PAGE(PageLRU(page), page);
1024 
1025 	/*
1026 	 * Page becomes evictable in two ways:
1027 	 * 1) Within LRU lock [munlock_vma_page() and __munlock_pagevec()].
1028 	 * 2) Before acquiring LRU lock to put the page to correct LRU and then
1029 	 *   a) do PageLRU check with lock [check_move_unevictable_pages]
1030 	 *   b) do PageLRU check before lock [clear_page_mlock]
1031 	 *
1032 	 * (1) & (2a) are ok as LRU lock will serialize them. For (2b), we need
1033 	 * following strict ordering:
1034 	 *
1035 	 * #0: __pagevec_lru_add_fn		#1: clear_page_mlock
1036 	 *
1037 	 * SetPageLRU()				TestClearPageMlocked()
1038 	 * smp_mb() // explicit ordering	// above provides strict
1039 	 *					// ordering
1040 	 * PageMlocked()			PageLRU()
1041 	 *
1042 	 *
1043 	 * if '#1' does not observe setting of PG_lru by '#0' and fails
1044 	 * isolation, the explicit barrier will make sure that page_evictable
1045 	 * check will put the page in correct LRU. Without smp_mb(), SetPageLRU
1046 	 * can be reordered after PageMlocked check and can make '#1' to fail
1047 	 * the isolation of the page whose Mlocked bit is cleared (#0 is also
1048 	 * looking at the same page) and the evictable page will be stranded
1049 	 * in an unevictable LRU.
1050 	 */
1051 	SetPageLRU(page);
1052 	smp_mb__after_atomic();
1053 
1054 	if (page_evictable(page)) {
1055 		lru = page_lru(page);
1056 		if (was_unevictable)
1057 			__count_vm_events(UNEVICTABLE_PGRESCUED, nr_pages);
1058 	} else {
1059 		lru = LRU_UNEVICTABLE;
1060 		ClearPageActive(page);
1061 		SetPageUnevictable(page);
1062 		if (!was_unevictable)
1063 			__count_vm_events(UNEVICTABLE_PGCULLED, nr_pages);
1064 	}
1065 
1066 	add_page_to_lru_list(page, lruvec, lru);
1067 	trace_mm_lru_insertion(page, lru);
1068 }
1069 
1070 /*
1071  * Add the passed pages to the LRU, then drop the caller's refcount
1072  * on them.  Reinitialises the caller's pagevec.
1073  */
__pagevec_lru_add(struct pagevec * pvec)1074 void __pagevec_lru_add(struct pagevec *pvec)
1075 {
1076 	pagevec_lru_move_fn(pvec, __pagevec_lru_add_fn, NULL);
1077 }
1078 
1079 /**
1080  * pagevec_lookup_entries - gang pagecache lookup
1081  * @pvec:	Where the resulting entries are placed
1082  * @mapping:	The address_space to search
1083  * @start:	The starting entry index
1084  * @nr_entries:	The maximum number of pages
1085  * @indices:	The cache indices corresponding to the entries in @pvec
1086  *
1087  * pagevec_lookup_entries() will search for and return a group of up
1088  * to @nr_pages pages and shadow entries in the mapping.  All
1089  * entries are placed in @pvec.  pagevec_lookup_entries() takes a
1090  * reference against actual pages in @pvec.
1091  *
1092  * The search returns a group of mapping-contiguous entries with
1093  * ascending indexes.  There may be holes in the indices due to
1094  * not-present entries.
1095  *
1096  * Only one subpage of a Transparent Huge Page is returned in one call:
1097  * allowing truncate_inode_pages_range() to evict the whole THP without
1098  * cycling through a pagevec of extra references.
1099  *
1100  * pagevec_lookup_entries() returns the number of entries which were
1101  * found.
1102  */
pagevec_lookup_entries(struct pagevec * pvec,struct address_space * mapping,pgoff_t start,unsigned nr_entries,pgoff_t * indices)1103 unsigned pagevec_lookup_entries(struct pagevec *pvec,
1104 				struct address_space *mapping,
1105 				pgoff_t start, unsigned nr_entries,
1106 				pgoff_t *indices)
1107 {
1108 	pvec->nr = find_get_entries(mapping, start, nr_entries,
1109 				    pvec->pages, indices);
1110 	return pagevec_count(pvec);
1111 }
1112 
1113 /**
1114  * pagevec_remove_exceptionals - pagevec exceptionals pruning
1115  * @pvec:	The pagevec to prune
1116  *
1117  * pagevec_lookup_entries() fills both pages and exceptional radix
1118  * tree entries into the pagevec.  This function prunes all
1119  * exceptionals from @pvec without leaving holes, so that it can be
1120  * passed on to page-only pagevec operations.
1121  */
pagevec_remove_exceptionals(struct pagevec * pvec)1122 void pagevec_remove_exceptionals(struct pagevec *pvec)
1123 {
1124 	int i, j;
1125 
1126 	for (i = 0, j = 0; i < pagevec_count(pvec); i++) {
1127 		struct page *page = pvec->pages[i];
1128 		if (!xa_is_value(page))
1129 			pvec->pages[j++] = page;
1130 	}
1131 	pvec->nr = j;
1132 }
1133 
1134 /**
1135  * pagevec_lookup_range - gang pagecache lookup
1136  * @pvec:	Where the resulting pages are placed
1137  * @mapping:	The address_space to search
1138  * @start:	The starting page index
1139  * @end:	The final page index
1140  *
1141  * pagevec_lookup_range() will search for & return a group of up to PAGEVEC_SIZE
1142  * pages in the mapping starting from index @start and upto index @end
1143  * (inclusive).  The pages are placed in @pvec.  pagevec_lookup() takes a
1144  * reference against the pages in @pvec.
1145  *
1146  * The search returns a group of mapping-contiguous pages with ascending
1147  * indexes.  There may be holes in the indices due to not-present pages. We
1148  * also update @start to index the next page for the traversal.
1149  *
1150  * pagevec_lookup_range() returns the number of pages which were found. If this
1151  * number is smaller than PAGEVEC_SIZE, the end of specified range has been
1152  * reached.
1153  */
pagevec_lookup_range(struct pagevec * pvec,struct address_space * mapping,pgoff_t * start,pgoff_t end)1154 unsigned pagevec_lookup_range(struct pagevec *pvec,
1155 		struct address_space *mapping, pgoff_t *start, pgoff_t end)
1156 {
1157 	pvec->nr = find_get_pages_range(mapping, start, end, PAGEVEC_SIZE,
1158 					pvec->pages);
1159 	return pagevec_count(pvec);
1160 }
1161 EXPORT_SYMBOL(pagevec_lookup_range);
1162 
pagevec_lookup_range_tag(struct pagevec * pvec,struct address_space * mapping,pgoff_t * index,pgoff_t end,xa_mark_t tag)1163 unsigned pagevec_lookup_range_tag(struct pagevec *pvec,
1164 		struct address_space *mapping, pgoff_t *index, pgoff_t end,
1165 		xa_mark_t tag)
1166 {
1167 	pvec->nr = find_get_pages_range_tag(mapping, index, end, tag,
1168 					PAGEVEC_SIZE, pvec->pages);
1169 	return pagevec_count(pvec);
1170 }
1171 EXPORT_SYMBOL(pagevec_lookup_range_tag);
1172 
pagevec_lookup_range_nr_tag(struct pagevec * pvec,struct address_space * mapping,pgoff_t * index,pgoff_t end,xa_mark_t tag,unsigned max_pages)1173 unsigned pagevec_lookup_range_nr_tag(struct pagevec *pvec,
1174 		struct address_space *mapping, pgoff_t *index, pgoff_t end,
1175 		xa_mark_t tag, unsigned max_pages)
1176 {
1177 	pvec->nr = find_get_pages_range_tag(mapping, index, end, tag,
1178 		min_t(unsigned int, max_pages, PAGEVEC_SIZE), pvec->pages);
1179 	return pagevec_count(pvec);
1180 }
1181 EXPORT_SYMBOL(pagevec_lookup_range_nr_tag);
1182 /*
1183  * Perform any setup for the swap system
1184  */
swap_setup(void)1185 void __init swap_setup(void)
1186 {
1187 	unsigned long megs = totalram_pages() >> (20 - PAGE_SHIFT);
1188 
1189 	/* Use a smaller cluster for small-memory machines */
1190 	if (megs < 16)
1191 		page_cluster = 2;
1192 	else
1193 		page_cluster = 3;
1194 	/*
1195 	 * Right now other parts of the system means that we
1196 	 * _really_ don't want to cluster much more
1197 	 */
1198 }
1199 
1200 #ifdef CONFIG_DEV_PAGEMAP_OPS
put_devmap_managed_page(struct page * page)1201 void put_devmap_managed_page(struct page *page)
1202 {
1203 	int count;
1204 
1205 	if (WARN_ON_ONCE(!page_is_devmap_managed(page)))
1206 		return;
1207 
1208 	count = page_ref_dec_return(page);
1209 
1210 	/*
1211 	 * devmap page refcounts are 1-based, rather than 0-based: if
1212 	 * refcount is 1, then the page is free and the refcount is
1213 	 * stable because nobody holds a reference on the page.
1214 	 */
1215 	if (count == 1)
1216 		free_devmap_managed_page(page);
1217 	else if (!count)
1218 		__put_page(page);
1219 }
1220 EXPORT_SYMBOL(put_devmap_managed_page);
1221 #endif
1222