1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * Procedures for maintaining information about logical memory blocks.
4 *
5 * Peter Bergner, IBM Corp. June 2001.
6 * Copyright (C) 2001 Peter Bergner.
7 */
8
9 #include <linux/kernel.h>
10 #include <linux/slab.h>
11 #include <linux/init.h>
12 #include <linux/bitops.h>
13 #include <linux/poison.h>
14 #include <linux/pfn.h>
15 #include <linux/debugfs.h>
16 #include <linux/kmemleak.h>
17 #include <linux/seq_file.h>
18 #include <linux/memblock.h>
19
20 #include <asm/sections.h>
21 #include <linux/io.h>
22
23 #include "internal.h"
24
25 #define INIT_MEMBLOCK_REGIONS 128
26 #define INIT_PHYSMEM_REGIONS 4
27
28 #ifndef INIT_MEMBLOCK_RESERVED_REGIONS
29 # define INIT_MEMBLOCK_RESERVED_REGIONS INIT_MEMBLOCK_REGIONS
30 #endif
31
32 /**
33 * DOC: memblock overview
34 *
35 * Memblock is a method of managing memory regions during the early
36 * boot period when the usual kernel memory allocators are not up and
37 * running.
38 *
39 * Memblock views the system memory as collections of contiguous
40 * regions. There are several types of these collections:
41 *
42 * * ``memory`` - describes the physical memory available to the
43 * kernel; this may differ from the actual physical memory installed
44 * in the system, for instance when the memory is restricted with
45 * ``mem=`` command line parameter
46 * * ``reserved`` - describes the regions that were allocated
47 * * ``physmem`` - describes the actual physical memory available during
48 * boot regardless of the possible restrictions and memory hot(un)plug;
49 * the ``physmem`` type is only available on some architectures.
50 *
51 * Each region is represented by struct memblock_region that
52 * defines the region extents, its attributes and NUMA node id on NUMA
53 * systems. Every memory type is described by the struct memblock_type
54 * which contains an array of memory regions along with
55 * the allocator metadata. The "memory" and "reserved" types are nicely
56 * wrapped with struct memblock. This structure is statically
57 * initialized at build time. The region arrays are initially sized to
58 * %INIT_MEMBLOCK_REGIONS for "memory" and %INIT_MEMBLOCK_RESERVED_REGIONS
59 * for "reserved". The region array for "physmem" is initially sized to
60 * %INIT_PHYSMEM_REGIONS.
61 * The memblock_allow_resize() enables automatic resizing of the region
62 * arrays during addition of new regions. This feature should be used
63 * with care so that memory allocated for the region array will not
64 * overlap with areas that should be reserved, for example initrd.
65 *
66 * The early architecture setup should tell memblock what the physical
67 * memory layout is by using memblock_add() or memblock_add_node()
68 * functions. The first function does not assign the region to a NUMA
69 * node and it is appropriate for UMA systems. Yet, it is possible to
70 * use it on NUMA systems as well and assign the region to a NUMA node
71 * later in the setup process using memblock_set_node(). The
72 * memblock_add_node() performs such an assignment directly.
73 *
74 * Once memblock is setup the memory can be allocated using one of the
75 * API variants:
76 *
77 * * memblock_phys_alloc*() - these functions return the **physical**
78 * address of the allocated memory
79 * * memblock_alloc*() - these functions return the **virtual** address
80 * of the allocated memory.
81 *
82 * Note, that both API variants use implicit assumptions about allowed
83 * memory ranges and the fallback methods. Consult the documentation
84 * of memblock_alloc_internal() and memblock_alloc_range_nid()
85 * functions for more elaborate description.
86 *
87 * As the system boot progresses, the architecture specific mem_init()
88 * function frees all the memory to the buddy page allocator.
89 *
90 * Unless an architecture enables %CONFIG_ARCH_KEEP_MEMBLOCK, the
91 * memblock data structures (except "physmem") will be discarded after the
92 * system initialization completes.
93 */
94
95 #ifndef CONFIG_NEED_MULTIPLE_NODES
96 struct pglist_data __refdata contig_page_data;
97 EXPORT_SYMBOL(contig_page_data);
98 #endif
99
100 unsigned long max_low_pfn;
101 unsigned long min_low_pfn;
102 unsigned long max_pfn;
103 unsigned long long max_possible_pfn;
104
105 static struct memblock_region memblock_memory_init_regions[INIT_MEMBLOCK_REGIONS] __initdata_memblock;
106 static struct memblock_region memblock_reserved_init_regions[INIT_MEMBLOCK_RESERVED_REGIONS] __initdata_memblock;
107 #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
108 static struct memblock_region memblock_physmem_init_regions[INIT_PHYSMEM_REGIONS];
109 #endif
110
111 struct memblock memblock __initdata_memblock = {
112 .memory.regions = memblock_memory_init_regions,
113 .memory.cnt = 1, /* empty dummy entry */
114 .memory.max = INIT_MEMBLOCK_REGIONS,
115 .memory.name = "memory",
116
117 .reserved.regions = memblock_reserved_init_regions,
118 .reserved.cnt = 1, /* empty dummy entry */
119 .reserved.max = INIT_MEMBLOCK_RESERVED_REGIONS,
120 .reserved.name = "reserved",
121
122 .bottom_up = false,
123 .current_limit = MEMBLOCK_ALLOC_ANYWHERE,
124 };
125
126 #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
127 struct memblock_type physmem = {
128 .regions = memblock_physmem_init_regions,
129 .cnt = 1, /* empty dummy entry */
130 .max = INIT_PHYSMEM_REGIONS,
131 .name = "physmem",
132 };
133 #endif
134
135 /*
136 * keep a pointer to &memblock.memory in the text section to use it in
137 * __next_mem_range() and its helpers.
138 * For architectures that do not keep memblock data after init, this
139 * pointer will be reset to NULL at memblock_discard()
140 */
141 static __refdata struct memblock_type *memblock_memory = &memblock.memory;
142
143 #define for_each_memblock_type(i, memblock_type, rgn) \
144 for (i = 0, rgn = &memblock_type->regions[0]; \
145 i < memblock_type->cnt; \
146 i++, rgn = &memblock_type->regions[i])
147
148 #define memblock_dbg(fmt, ...) \
149 do { \
150 if (memblock_debug) \
151 pr_info(fmt, ##__VA_ARGS__); \
152 } while (0)
153
154 static int memblock_debug __initdata_memblock;
155 static bool system_has_some_mirror __initdata_memblock = false;
156 static int memblock_can_resize __initdata_memblock;
157 static int memblock_memory_in_slab __initdata_memblock = 0;
158 static int memblock_reserved_in_slab __initdata_memblock = 0;
159
choose_memblock_flags(void)160 static enum memblock_flags __init_memblock choose_memblock_flags(void)
161 {
162 return system_has_some_mirror ? MEMBLOCK_MIRROR : MEMBLOCK_NONE;
163 }
164
165 /* adjust *@size so that (@base + *@size) doesn't overflow, return new size */
memblock_cap_size(phys_addr_t base,phys_addr_t * size)166 static inline phys_addr_t memblock_cap_size(phys_addr_t base, phys_addr_t *size)
167 {
168 return *size = min(*size, PHYS_ADDR_MAX - base);
169 }
170
171 /*
172 * Address comparison utilities
173 */
memblock_addrs_overlap(phys_addr_t base1,phys_addr_t size1,phys_addr_t base2,phys_addr_t size2)174 static unsigned long __init_memblock memblock_addrs_overlap(phys_addr_t base1, phys_addr_t size1,
175 phys_addr_t base2, phys_addr_t size2)
176 {
177 return ((base1 < (base2 + size2)) && (base2 < (base1 + size1)));
178 }
179
memblock_overlaps_region(struct memblock_type * type,phys_addr_t base,phys_addr_t size)180 bool __init_memblock memblock_overlaps_region(struct memblock_type *type,
181 phys_addr_t base, phys_addr_t size)
182 {
183 unsigned long i;
184
185 memblock_cap_size(base, &size);
186
187 for (i = 0; i < type->cnt; i++)
188 if (memblock_addrs_overlap(base, size, type->regions[i].base,
189 type->regions[i].size))
190 break;
191 return i < type->cnt;
192 }
193
194 /**
195 * __memblock_find_range_bottom_up - find free area utility in bottom-up
196 * @start: start of candidate range
197 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_ANYWHERE or
198 * %MEMBLOCK_ALLOC_ACCESSIBLE
199 * @size: size of free area to find
200 * @align: alignment of free area to find
201 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
202 * @flags: pick from blocks based on memory attributes
203 *
204 * Utility called from memblock_find_in_range_node(), find free area bottom-up.
205 *
206 * Return:
207 * Found address on success, 0 on failure.
208 */
209 static phys_addr_t __init_memblock
__memblock_find_range_bottom_up(phys_addr_t start,phys_addr_t end,phys_addr_t size,phys_addr_t align,int nid,enum memblock_flags flags)210 __memblock_find_range_bottom_up(phys_addr_t start, phys_addr_t end,
211 phys_addr_t size, phys_addr_t align, int nid,
212 enum memblock_flags flags)
213 {
214 phys_addr_t this_start, this_end, cand;
215 u64 i;
216
217 for_each_free_mem_range(i, nid, flags, &this_start, &this_end, NULL) {
218 this_start = clamp(this_start, start, end);
219 this_end = clamp(this_end, start, end);
220
221 cand = round_up(this_start, align);
222 if (cand < this_end && this_end - cand >= size)
223 return cand;
224 }
225
226 return 0;
227 }
228
229 /**
230 * __memblock_find_range_top_down - find free area utility, in top-down
231 * @start: start of candidate range
232 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_ANYWHERE or
233 * %MEMBLOCK_ALLOC_ACCESSIBLE
234 * @size: size of free area to find
235 * @align: alignment of free area to find
236 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
237 * @flags: pick from blocks based on memory attributes
238 *
239 * Utility called from memblock_find_in_range_node(), find free area top-down.
240 *
241 * Return:
242 * Found address on success, 0 on failure.
243 */
244 static phys_addr_t __init_memblock
__memblock_find_range_top_down(phys_addr_t start,phys_addr_t end,phys_addr_t size,phys_addr_t align,int nid,enum memblock_flags flags)245 __memblock_find_range_top_down(phys_addr_t start, phys_addr_t end,
246 phys_addr_t size, phys_addr_t align, int nid,
247 enum memblock_flags flags)
248 {
249 phys_addr_t this_start, this_end, cand;
250 u64 i;
251
252 for_each_free_mem_range_reverse(i, nid, flags, &this_start, &this_end,
253 NULL) {
254 this_start = clamp(this_start, start, end);
255 this_end = clamp(this_end, start, end);
256
257 if (this_end < size)
258 continue;
259
260 cand = round_down(this_end - size, align);
261 if (cand >= this_start)
262 return cand;
263 }
264
265 return 0;
266 }
267
268 /**
269 * memblock_find_in_range_node - find free area in given range and node
270 * @size: size of free area to find
271 * @align: alignment of free area to find
272 * @start: start of candidate range
273 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_ANYWHERE or
274 * %MEMBLOCK_ALLOC_ACCESSIBLE
275 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
276 * @flags: pick from blocks based on memory attributes
277 *
278 * Find @size free area aligned to @align in the specified range and node.
279 *
280 * Return:
281 * Found address on success, 0 on failure.
282 */
memblock_find_in_range_node(phys_addr_t size,phys_addr_t align,phys_addr_t start,phys_addr_t end,int nid,enum memblock_flags flags)283 static phys_addr_t __init_memblock memblock_find_in_range_node(phys_addr_t size,
284 phys_addr_t align, phys_addr_t start,
285 phys_addr_t end, int nid,
286 enum memblock_flags flags)
287 {
288 /* pump up @end */
289 if (end == MEMBLOCK_ALLOC_ACCESSIBLE ||
290 end == MEMBLOCK_ALLOC_KASAN)
291 end = memblock.current_limit;
292
293 /* avoid allocating the first page */
294 start = max_t(phys_addr_t, start, PAGE_SIZE);
295 end = max(start, end);
296
297 if (memblock_bottom_up())
298 return __memblock_find_range_bottom_up(start, end, size, align,
299 nid, flags);
300 else
301 return __memblock_find_range_top_down(start, end, size, align,
302 nid, flags);
303 }
304
305 /**
306 * memblock_find_in_range - find free area in given range
307 * @start: start of candidate range
308 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_ANYWHERE or
309 * %MEMBLOCK_ALLOC_ACCESSIBLE
310 * @size: size of free area to find
311 * @align: alignment of free area to find
312 *
313 * Find @size free area aligned to @align in the specified range.
314 *
315 * Return:
316 * Found address on success, 0 on failure.
317 */
memblock_find_in_range(phys_addr_t start,phys_addr_t end,phys_addr_t size,phys_addr_t align)318 phys_addr_t __init_memblock memblock_find_in_range(phys_addr_t start,
319 phys_addr_t end, phys_addr_t size,
320 phys_addr_t align)
321 {
322 phys_addr_t ret;
323 enum memblock_flags flags = choose_memblock_flags();
324
325 again:
326 ret = memblock_find_in_range_node(size, align, start, end,
327 NUMA_NO_NODE, flags);
328
329 if (!ret && (flags & MEMBLOCK_MIRROR)) {
330 pr_warn("Could not allocate %pap bytes of mirrored memory\n",
331 &size);
332 flags &= ~MEMBLOCK_MIRROR;
333 goto again;
334 }
335
336 return ret;
337 }
338
memblock_remove_region(struct memblock_type * type,unsigned long r)339 static void __init_memblock memblock_remove_region(struct memblock_type *type, unsigned long r)
340 {
341 type->total_size -= type->regions[r].size;
342 memmove(&type->regions[r], &type->regions[r + 1],
343 (type->cnt - (r + 1)) * sizeof(type->regions[r]));
344 type->cnt--;
345
346 /* Special case for empty arrays */
347 if (type->cnt == 0) {
348 WARN_ON(type->total_size != 0);
349 type->cnt = 1;
350 type->regions[0].base = 0;
351 type->regions[0].size = 0;
352 type->regions[0].flags = 0;
353 memblock_set_region_node(&type->regions[0], MAX_NUMNODES);
354 }
355 }
356
357 #ifndef CONFIG_ARCH_KEEP_MEMBLOCK
358 /**
359 * memblock_discard - discard memory and reserved arrays if they were allocated
360 */
memblock_discard(void)361 void __init memblock_discard(void)
362 {
363 phys_addr_t addr, size;
364
365 if (memblock.reserved.regions != memblock_reserved_init_regions) {
366 addr = __pa(memblock.reserved.regions);
367 size = PAGE_ALIGN(sizeof(struct memblock_region) *
368 memblock.reserved.max);
369 if (memblock_reserved_in_slab)
370 kfree(memblock.reserved.regions);
371 else
372 __memblock_free_late(addr, size);
373 }
374
375 if (memblock.memory.regions != memblock_memory_init_regions) {
376 addr = __pa(memblock.memory.regions);
377 size = PAGE_ALIGN(sizeof(struct memblock_region) *
378 memblock.memory.max);
379 if (memblock_memory_in_slab)
380 kfree(memblock.memory.regions);
381 else
382 __memblock_free_late(addr, size);
383 }
384
385 memblock_memory = NULL;
386 }
387 #endif
388
389 /**
390 * memblock_double_array - double the size of the memblock regions array
391 * @type: memblock type of the regions array being doubled
392 * @new_area_start: starting address of memory range to avoid overlap with
393 * @new_area_size: size of memory range to avoid overlap with
394 *
395 * Double the size of the @type regions array. If memblock is being used to
396 * allocate memory for a new reserved regions array and there is a previously
397 * allocated memory range [@new_area_start, @new_area_start + @new_area_size]
398 * waiting to be reserved, ensure the memory used by the new array does
399 * not overlap.
400 *
401 * Return:
402 * 0 on success, -1 on failure.
403 */
memblock_double_array(struct memblock_type * type,phys_addr_t new_area_start,phys_addr_t new_area_size)404 static int __init_memblock memblock_double_array(struct memblock_type *type,
405 phys_addr_t new_area_start,
406 phys_addr_t new_area_size)
407 {
408 struct memblock_region *new_array, *old_array;
409 phys_addr_t old_alloc_size, new_alloc_size;
410 phys_addr_t old_size, new_size, addr, new_end;
411 int use_slab = slab_is_available();
412 int *in_slab;
413
414 /* We don't allow resizing until we know about the reserved regions
415 * of memory that aren't suitable for allocation
416 */
417 if (!memblock_can_resize)
418 return -1;
419
420 /* Calculate new doubled size */
421 old_size = type->max * sizeof(struct memblock_region);
422 new_size = old_size << 1;
423 /*
424 * We need to allocated new one align to PAGE_SIZE,
425 * so we can free them completely later.
426 */
427 old_alloc_size = PAGE_ALIGN(old_size);
428 new_alloc_size = PAGE_ALIGN(new_size);
429
430 /* Retrieve the slab flag */
431 if (type == &memblock.memory)
432 in_slab = &memblock_memory_in_slab;
433 else
434 in_slab = &memblock_reserved_in_slab;
435
436 /* Try to find some space for it */
437 if (use_slab) {
438 new_array = kmalloc(new_size, GFP_KERNEL);
439 addr = new_array ? __pa(new_array) : 0;
440 } else {
441 /* only exclude range when trying to double reserved.regions */
442 if (type != &memblock.reserved)
443 new_area_start = new_area_size = 0;
444
445 addr = memblock_find_in_range(new_area_start + new_area_size,
446 memblock.current_limit,
447 new_alloc_size, PAGE_SIZE);
448 if (!addr && new_area_size)
449 addr = memblock_find_in_range(0,
450 min(new_area_start, memblock.current_limit),
451 new_alloc_size, PAGE_SIZE);
452
453 new_array = addr ? __va(addr) : NULL;
454 }
455 if (!addr) {
456 pr_err("memblock: Failed to double %s array from %ld to %ld entries !\n",
457 type->name, type->max, type->max * 2);
458 return -1;
459 }
460
461 new_end = addr + new_size - 1;
462 memblock_dbg("memblock: %s is doubled to %ld at [%pa-%pa]",
463 type->name, type->max * 2, &addr, &new_end);
464
465 /*
466 * Found space, we now need to move the array over before we add the
467 * reserved region since it may be our reserved array itself that is
468 * full.
469 */
470 memcpy(new_array, type->regions, old_size);
471 memset(new_array + type->max, 0, old_size);
472 old_array = type->regions;
473 type->regions = new_array;
474 type->max <<= 1;
475
476 /* Free old array. We needn't free it if the array is the static one */
477 if (*in_slab)
478 kfree(old_array);
479 else if (old_array != memblock_memory_init_regions &&
480 old_array != memblock_reserved_init_regions)
481 memblock_free(__pa(old_array), old_alloc_size);
482
483 /*
484 * Reserve the new array if that comes from the memblock. Otherwise, we
485 * needn't do it
486 */
487 if (!use_slab)
488 BUG_ON(memblock_reserve(addr, new_alloc_size));
489
490 /* Update slab flag */
491 *in_slab = use_slab;
492
493 return 0;
494 }
495
496 /**
497 * memblock_merge_regions - merge neighboring compatible regions
498 * @type: memblock type to scan
499 *
500 * Scan @type and merge neighboring compatible regions.
501 */
memblock_merge_regions(struct memblock_type * type)502 static void __init_memblock memblock_merge_regions(struct memblock_type *type)
503 {
504 int i = 0;
505
506 /* cnt never goes below 1 */
507 while (i < type->cnt - 1) {
508 struct memblock_region *this = &type->regions[i];
509 struct memblock_region *next = &type->regions[i + 1];
510
511 if (this->base + this->size != next->base ||
512 memblock_get_region_node(this) !=
513 memblock_get_region_node(next) ||
514 this->flags != next->flags) {
515 BUG_ON(this->base + this->size > next->base);
516 i++;
517 continue;
518 }
519
520 this->size += next->size;
521 /* move forward from next + 1, index of which is i + 2 */
522 memmove(next, next + 1, (type->cnt - (i + 2)) * sizeof(*next));
523 type->cnt--;
524 }
525 }
526
527 /**
528 * memblock_insert_region - insert new memblock region
529 * @type: memblock type to insert into
530 * @idx: index for the insertion point
531 * @base: base address of the new region
532 * @size: size of the new region
533 * @nid: node id of the new region
534 * @flags: flags of the new region
535 *
536 * Insert new memblock region [@base, @base + @size) into @type at @idx.
537 * @type must already have extra room to accommodate the new region.
538 */
memblock_insert_region(struct memblock_type * type,int idx,phys_addr_t base,phys_addr_t size,int nid,enum memblock_flags flags)539 static void __init_memblock memblock_insert_region(struct memblock_type *type,
540 int idx, phys_addr_t base,
541 phys_addr_t size,
542 int nid,
543 enum memblock_flags flags)
544 {
545 struct memblock_region *rgn = &type->regions[idx];
546
547 BUG_ON(type->cnt >= type->max);
548 memmove(rgn + 1, rgn, (type->cnt - idx) * sizeof(*rgn));
549 rgn->base = base;
550 rgn->size = size;
551 rgn->flags = flags;
552 memblock_set_region_node(rgn, nid);
553 type->cnt++;
554 type->total_size += size;
555 }
556
557 /**
558 * memblock_add_range - add new memblock region
559 * @type: memblock type to add new region into
560 * @base: base address of the new region
561 * @size: size of the new region
562 * @nid: nid of the new region
563 * @flags: flags of the new region
564 *
565 * Add new memblock region [@base, @base + @size) into @type. The new region
566 * is allowed to overlap with existing ones - overlaps don't affect already
567 * existing regions. @type is guaranteed to be minimal (all neighbouring
568 * compatible regions are merged) after the addition.
569 *
570 * Return:
571 * 0 on success, -errno on failure.
572 */
memblock_add_range(struct memblock_type * type,phys_addr_t base,phys_addr_t size,int nid,enum memblock_flags flags)573 static int __init_memblock memblock_add_range(struct memblock_type *type,
574 phys_addr_t base, phys_addr_t size,
575 int nid, enum memblock_flags flags)
576 {
577 bool insert = false;
578 phys_addr_t obase = base;
579 phys_addr_t end = base + memblock_cap_size(base, &size);
580 int idx, nr_new;
581 struct memblock_region *rgn;
582
583 if (!size)
584 return 0;
585
586 /* special case for empty array */
587 if (type->regions[0].size == 0) {
588 WARN_ON(type->cnt != 1 || type->total_size);
589 type->regions[0].base = base;
590 type->regions[0].size = size;
591 type->regions[0].flags = flags;
592 memblock_set_region_node(&type->regions[0], nid);
593 type->total_size = size;
594 return 0;
595 }
596 repeat:
597 /*
598 * The following is executed twice. Once with %false @insert and
599 * then with %true. The first counts the number of regions needed
600 * to accommodate the new area. The second actually inserts them.
601 */
602 base = obase;
603 nr_new = 0;
604
605 for_each_memblock_type(idx, type, rgn) {
606 phys_addr_t rbase = rgn->base;
607 phys_addr_t rend = rbase + rgn->size;
608
609 if (rbase >= end)
610 break;
611 if (rend <= base)
612 continue;
613 /*
614 * @rgn overlaps. If it separates the lower part of new
615 * area, insert that portion.
616 */
617 if (rbase > base) {
618 #ifdef CONFIG_NEED_MULTIPLE_NODES
619 WARN_ON(nid != memblock_get_region_node(rgn));
620 #endif
621 WARN_ON(flags != rgn->flags);
622 nr_new++;
623 if (insert)
624 memblock_insert_region(type, idx++, base,
625 rbase - base, nid,
626 flags);
627 }
628 /* area below @rend is dealt with, forget about it */
629 base = min(rend, end);
630 }
631
632 /* insert the remaining portion */
633 if (base < end) {
634 nr_new++;
635 if (insert)
636 memblock_insert_region(type, idx, base, end - base,
637 nid, flags);
638 }
639
640 if (!nr_new)
641 return 0;
642
643 /*
644 * If this was the first round, resize array and repeat for actual
645 * insertions; otherwise, merge and return.
646 */
647 if (!insert) {
648 while (type->cnt + nr_new > type->max)
649 if (memblock_double_array(type, obase, size) < 0)
650 return -ENOMEM;
651 insert = true;
652 goto repeat;
653 } else {
654 memblock_merge_regions(type);
655 return 0;
656 }
657 }
658
659 /**
660 * memblock_add_node - add new memblock region within a NUMA node
661 * @base: base address of the new region
662 * @size: size of the new region
663 * @nid: nid of the new region
664 *
665 * Add new memblock region [@base, @base + @size) to the "memory"
666 * type. See memblock_add_range() description for mode details
667 *
668 * Return:
669 * 0 on success, -errno on failure.
670 */
memblock_add_node(phys_addr_t base,phys_addr_t size,int nid)671 int __init_memblock memblock_add_node(phys_addr_t base, phys_addr_t size,
672 int nid)
673 {
674 return memblock_add_range(&memblock.memory, base, size, nid, 0);
675 }
676
677 /**
678 * memblock_add - add new memblock region
679 * @base: base address of the new region
680 * @size: size of the new region
681 *
682 * Add new memblock region [@base, @base + @size) to the "memory"
683 * type. See memblock_add_range() description for mode details
684 *
685 * Return:
686 * 0 on success, -errno on failure.
687 */
memblock_add(phys_addr_t base,phys_addr_t size)688 int __init_memblock memblock_add(phys_addr_t base, phys_addr_t size)
689 {
690 phys_addr_t end = base + size - 1;
691
692 memblock_dbg("%s: [%pa-%pa] %pS\n", __func__,
693 &base, &end, (void *)_RET_IP_);
694
695 return memblock_add_range(&memblock.memory, base, size, MAX_NUMNODES, 0);
696 }
697
698 /**
699 * memblock_isolate_range - isolate given range into disjoint memblocks
700 * @type: memblock type to isolate range for
701 * @base: base of range to isolate
702 * @size: size of range to isolate
703 * @start_rgn: out parameter for the start of isolated region
704 * @end_rgn: out parameter for the end of isolated region
705 *
706 * Walk @type and ensure that regions don't cross the boundaries defined by
707 * [@base, @base + @size). Crossing regions are split at the boundaries,
708 * which may create at most two more regions. The index of the first
709 * region inside the range is returned in *@start_rgn and end in *@end_rgn.
710 *
711 * Return:
712 * 0 on success, -errno on failure.
713 */
memblock_isolate_range(struct memblock_type * type,phys_addr_t base,phys_addr_t size,int * start_rgn,int * end_rgn)714 static int __init_memblock memblock_isolate_range(struct memblock_type *type,
715 phys_addr_t base, phys_addr_t size,
716 int *start_rgn, int *end_rgn)
717 {
718 phys_addr_t end = base + memblock_cap_size(base, &size);
719 int idx;
720 struct memblock_region *rgn;
721
722 *start_rgn = *end_rgn = 0;
723
724 if (!size)
725 return 0;
726
727 /* we'll create at most two more regions */
728 while (type->cnt + 2 > type->max)
729 if (memblock_double_array(type, base, size) < 0)
730 return -ENOMEM;
731
732 for_each_memblock_type(idx, type, rgn) {
733 phys_addr_t rbase = rgn->base;
734 phys_addr_t rend = rbase + rgn->size;
735
736 if (rbase >= end)
737 break;
738 if (rend <= base)
739 continue;
740
741 if (rbase < base) {
742 /*
743 * @rgn intersects from below. Split and continue
744 * to process the next region - the new top half.
745 */
746 rgn->base = base;
747 rgn->size -= base - rbase;
748 type->total_size -= base - rbase;
749 memblock_insert_region(type, idx, rbase, base - rbase,
750 memblock_get_region_node(rgn),
751 rgn->flags);
752 } else if (rend > end) {
753 /*
754 * @rgn intersects from above. Split and redo the
755 * current region - the new bottom half.
756 */
757 rgn->base = end;
758 rgn->size -= end - rbase;
759 type->total_size -= end - rbase;
760 memblock_insert_region(type, idx--, rbase, end - rbase,
761 memblock_get_region_node(rgn),
762 rgn->flags);
763 } else {
764 /* @rgn is fully contained, record it */
765 if (!*end_rgn)
766 *start_rgn = idx;
767 *end_rgn = idx + 1;
768 }
769 }
770
771 return 0;
772 }
773
memblock_remove_range(struct memblock_type * type,phys_addr_t base,phys_addr_t size)774 static int __init_memblock memblock_remove_range(struct memblock_type *type,
775 phys_addr_t base, phys_addr_t size)
776 {
777 int start_rgn, end_rgn;
778 int i, ret;
779
780 ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
781 if (ret)
782 return ret;
783
784 for (i = end_rgn - 1; i >= start_rgn; i--)
785 memblock_remove_region(type, i);
786 return 0;
787 }
788
memblock_remove(phys_addr_t base,phys_addr_t size)789 int __init_memblock memblock_remove(phys_addr_t base, phys_addr_t size)
790 {
791 phys_addr_t end = base + size - 1;
792
793 memblock_dbg("%s: [%pa-%pa] %pS\n", __func__,
794 &base, &end, (void *)_RET_IP_);
795
796 return memblock_remove_range(&memblock.memory, base, size);
797 }
798
799 /**
800 * memblock_free - free boot memory block
801 * @base: phys starting address of the boot memory block
802 * @size: size of the boot memory block in bytes
803 *
804 * Free boot memory block previously allocated by memblock_alloc_xx() API.
805 * The freeing memory will not be released to the buddy allocator.
806 */
memblock_free(phys_addr_t base,phys_addr_t size)807 int __init_memblock memblock_free(phys_addr_t base, phys_addr_t size)
808 {
809 phys_addr_t end = base + size - 1;
810
811 memblock_dbg("%s: [%pa-%pa] %pS\n", __func__,
812 &base, &end, (void *)_RET_IP_);
813
814 kmemleak_free_part_phys(base, size);
815 return memblock_remove_range(&memblock.reserved, base, size);
816 }
817
memblock_reserve(phys_addr_t base,phys_addr_t size)818 int __init_memblock memblock_reserve(phys_addr_t base, phys_addr_t size)
819 {
820 phys_addr_t end = base + size - 1;
821
822 memblock_dbg("%s: [%pa-%pa] %pS\n", __func__,
823 &base, &end, (void *)_RET_IP_);
824
825 return memblock_add_range(&memblock.reserved, base, size, MAX_NUMNODES, 0);
826 }
827
828 #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
memblock_physmem_add(phys_addr_t base,phys_addr_t size)829 int __init_memblock memblock_physmem_add(phys_addr_t base, phys_addr_t size)
830 {
831 phys_addr_t end = base + size - 1;
832
833 memblock_dbg("%s: [%pa-%pa] %pS\n", __func__,
834 &base, &end, (void *)_RET_IP_);
835
836 return memblock_add_range(&physmem, base, size, MAX_NUMNODES, 0);
837 }
838 #endif
839
840 /**
841 * memblock_setclr_flag - set or clear flag for a memory region
842 * @base: base address of the region
843 * @size: size of the region
844 * @set: set or clear the flag
845 * @flag: the flag to udpate
846 *
847 * This function isolates region [@base, @base + @size), and sets/clears flag
848 *
849 * Return: 0 on success, -errno on failure.
850 */
memblock_setclr_flag(phys_addr_t base,phys_addr_t size,int set,int flag)851 static int __init_memblock memblock_setclr_flag(phys_addr_t base,
852 phys_addr_t size, int set, int flag)
853 {
854 struct memblock_type *type = &memblock.memory;
855 int i, ret, start_rgn, end_rgn;
856
857 ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
858 if (ret)
859 return ret;
860
861 for (i = start_rgn; i < end_rgn; i++) {
862 struct memblock_region *r = &type->regions[i];
863
864 if (set)
865 r->flags |= flag;
866 else
867 r->flags &= ~flag;
868 }
869
870 memblock_merge_regions(type);
871 return 0;
872 }
873
874 /**
875 * memblock_mark_hotplug - Mark hotpluggable memory with flag MEMBLOCK_HOTPLUG.
876 * @base: the base phys addr of the region
877 * @size: the size of the region
878 *
879 * Return: 0 on success, -errno on failure.
880 */
memblock_mark_hotplug(phys_addr_t base,phys_addr_t size)881 int __init_memblock memblock_mark_hotplug(phys_addr_t base, phys_addr_t size)
882 {
883 return memblock_setclr_flag(base, size, 1, MEMBLOCK_HOTPLUG);
884 }
885
886 /**
887 * memblock_clear_hotplug - Clear flag MEMBLOCK_HOTPLUG for a specified region.
888 * @base: the base phys addr of the region
889 * @size: the size of the region
890 *
891 * Return: 0 on success, -errno on failure.
892 */
memblock_clear_hotplug(phys_addr_t base,phys_addr_t size)893 int __init_memblock memblock_clear_hotplug(phys_addr_t base, phys_addr_t size)
894 {
895 return memblock_setclr_flag(base, size, 0, MEMBLOCK_HOTPLUG);
896 }
897
898 /**
899 * memblock_mark_mirror - Mark mirrored memory with flag MEMBLOCK_MIRROR.
900 * @base: the base phys addr of the region
901 * @size: the size of the region
902 *
903 * Return: 0 on success, -errno on failure.
904 */
memblock_mark_mirror(phys_addr_t base,phys_addr_t size)905 int __init_memblock memblock_mark_mirror(phys_addr_t base, phys_addr_t size)
906 {
907 system_has_some_mirror = true;
908
909 return memblock_setclr_flag(base, size, 1, MEMBLOCK_MIRROR);
910 }
911
912 /**
913 * memblock_mark_nomap - Mark a memory region with flag MEMBLOCK_NOMAP.
914 * @base: the base phys addr of the region
915 * @size: the size of the region
916 *
917 * Return: 0 on success, -errno on failure.
918 */
memblock_mark_nomap(phys_addr_t base,phys_addr_t size)919 int __init_memblock memblock_mark_nomap(phys_addr_t base, phys_addr_t size)
920 {
921 return memblock_setclr_flag(base, size, 1, MEMBLOCK_NOMAP);
922 }
923
924 /**
925 * memblock_clear_nomap - Clear flag MEMBLOCK_NOMAP for a specified region.
926 * @base: the base phys addr of the region
927 * @size: the size of the region
928 *
929 * Return: 0 on success, -errno on failure.
930 */
memblock_clear_nomap(phys_addr_t base,phys_addr_t size)931 int __init_memblock memblock_clear_nomap(phys_addr_t base, phys_addr_t size)
932 {
933 return memblock_setclr_flag(base, size, 0, MEMBLOCK_NOMAP);
934 }
935
should_skip_region(struct memblock_type * type,struct memblock_region * m,int nid,int flags)936 static bool should_skip_region(struct memblock_type *type,
937 struct memblock_region *m,
938 int nid, int flags)
939 {
940 int m_nid = memblock_get_region_node(m);
941
942 /* we never skip regions when iterating memblock.reserved or physmem */
943 if (type != memblock_memory)
944 return false;
945
946 /* only memory regions are associated with nodes, check it */
947 if (nid != NUMA_NO_NODE && nid != m_nid)
948 return true;
949
950 /* skip hotpluggable memory regions if needed */
951 if (movable_node_is_enabled() && memblock_is_hotpluggable(m) &&
952 !(flags & MEMBLOCK_HOTPLUG))
953 return true;
954
955 /* if we want mirror memory skip non-mirror memory regions */
956 if ((flags & MEMBLOCK_MIRROR) && !memblock_is_mirror(m))
957 return true;
958
959 /* skip nomap memory unless we were asked for it explicitly */
960 if (!(flags & MEMBLOCK_NOMAP) && memblock_is_nomap(m))
961 return true;
962
963 return false;
964 }
965
966 /**
967 * __next_mem_range - next function for for_each_free_mem_range() etc.
968 * @idx: pointer to u64 loop variable
969 * @nid: node selector, %NUMA_NO_NODE for all nodes
970 * @flags: pick from blocks based on memory attributes
971 * @type_a: pointer to memblock_type from where the range is taken
972 * @type_b: pointer to memblock_type which excludes memory from being taken
973 * @out_start: ptr to phys_addr_t for start address of the range, can be %NULL
974 * @out_end: ptr to phys_addr_t for end address of the range, can be %NULL
975 * @out_nid: ptr to int for nid of the range, can be %NULL
976 *
977 * Find the first area from *@idx which matches @nid, fill the out
978 * parameters, and update *@idx for the next iteration. The lower 32bit of
979 * *@idx contains index into type_a and the upper 32bit indexes the
980 * areas before each region in type_b. For example, if type_b regions
981 * look like the following,
982 *
983 * 0:[0-16), 1:[32-48), 2:[128-130)
984 *
985 * The upper 32bit indexes the following regions.
986 *
987 * 0:[0-0), 1:[16-32), 2:[48-128), 3:[130-MAX)
988 *
989 * As both region arrays are sorted, the function advances the two indices
990 * in lockstep and returns each intersection.
991 */
__next_mem_range(u64 * idx,int nid,enum memblock_flags flags,struct memblock_type * type_a,struct memblock_type * type_b,phys_addr_t * out_start,phys_addr_t * out_end,int * out_nid)992 void __next_mem_range(u64 *idx, int nid, enum memblock_flags flags,
993 struct memblock_type *type_a,
994 struct memblock_type *type_b, phys_addr_t *out_start,
995 phys_addr_t *out_end, int *out_nid)
996 {
997 int idx_a = *idx & 0xffffffff;
998 int idx_b = *idx >> 32;
999
1000 if (WARN_ONCE(nid == MAX_NUMNODES,
1001 "Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n"))
1002 nid = NUMA_NO_NODE;
1003
1004 for (; idx_a < type_a->cnt; idx_a++) {
1005 struct memblock_region *m = &type_a->regions[idx_a];
1006
1007 phys_addr_t m_start = m->base;
1008 phys_addr_t m_end = m->base + m->size;
1009 int m_nid = memblock_get_region_node(m);
1010
1011 if (should_skip_region(type_a, m, nid, flags))
1012 continue;
1013
1014 if (!type_b) {
1015 if (out_start)
1016 *out_start = m_start;
1017 if (out_end)
1018 *out_end = m_end;
1019 if (out_nid)
1020 *out_nid = m_nid;
1021 idx_a++;
1022 *idx = (u32)idx_a | (u64)idx_b << 32;
1023 return;
1024 }
1025
1026 /* scan areas before each reservation */
1027 for (; idx_b < type_b->cnt + 1; idx_b++) {
1028 struct memblock_region *r;
1029 phys_addr_t r_start;
1030 phys_addr_t r_end;
1031
1032 r = &type_b->regions[idx_b];
1033 r_start = idx_b ? r[-1].base + r[-1].size : 0;
1034 r_end = idx_b < type_b->cnt ?
1035 r->base : PHYS_ADDR_MAX;
1036
1037 /*
1038 * if idx_b advanced past idx_a,
1039 * break out to advance idx_a
1040 */
1041 if (r_start >= m_end)
1042 break;
1043 /* if the two regions intersect, we're done */
1044 if (m_start < r_end) {
1045 if (out_start)
1046 *out_start =
1047 max(m_start, r_start);
1048 if (out_end)
1049 *out_end = min(m_end, r_end);
1050 if (out_nid)
1051 *out_nid = m_nid;
1052 /*
1053 * The region which ends first is
1054 * advanced for the next iteration.
1055 */
1056 if (m_end <= r_end)
1057 idx_a++;
1058 else
1059 idx_b++;
1060 *idx = (u32)idx_a | (u64)idx_b << 32;
1061 return;
1062 }
1063 }
1064 }
1065
1066 /* signal end of iteration */
1067 *idx = ULLONG_MAX;
1068 }
1069
1070 /**
1071 * __next_mem_range_rev - generic next function for for_each_*_range_rev()
1072 *
1073 * @idx: pointer to u64 loop variable
1074 * @nid: node selector, %NUMA_NO_NODE for all nodes
1075 * @flags: pick from blocks based on memory attributes
1076 * @type_a: pointer to memblock_type from where the range is taken
1077 * @type_b: pointer to memblock_type which excludes memory from being taken
1078 * @out_start: ptr to phys_addr_t for start address of the range, can be %NULL
1079 * @out_end: ptr to phys_addr_t for end address of the range, can be %NULL
1080 * @out_nid: ptr to int for nid of the range, can be %NULL
1081 *
1082 * Finds the next range from type_a which is not marked as unsuitable
1083 * in type_b.
1084 *
1085 * Reverse of __next_mem_range().
1086 */
__next_mem_range_rev(u64 * idx,int nid,enum memblock_flags flags,struct memblock_type * type_a,struct memblock_type * type_b,phys_addr_t * out_start,phys_addr_t * out_end,int * out_nid)1087 void __init_memblock __next_mem_range_rev(u64 *idx, int nid,
1088 enum memblock_flags flags,
1089 struct memblock_type *type_a,
1090 struct memblock_type *type_b,
1091 phys_addr_t *out_start,
1092 phys_addr_t *out_end, int *out_nid)
1093 {
1094 int idx_a = *idx & 0xffffffff;
1095 int idx_b = *idx >> 32;
1096
1097 if (WARN_ONCE(nid == MAX_NUMNODES, "Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n"))
1098 nid = NUMA_NO_NODE;
1099
1100 if (*idx == (u64)ULLONG_MAX) {
1101 idx_a = type_a->cnt - 1;
1102 if (type_b != NULL)
1103 idx_b = type_b->cnt;
1104 else
1105 idx_b = 0;
1106 }
1107
1108 for (; idx_a >= 0; idx_a--) {
1109 struct memblock_region *m = &type_a->regions[idx_a];
1110
1111 phys_addr_t m_start = m->base;
1112 phys_addr_t m_end = m->base + m->size;
1113 int m_nid = memblock_get_region_node(m);
1114
1115 if (should_skip_region(type_a, m, nid, flags))
1116 continue;
1117
1118 if (!type_b) {
1119 if (out_start)
1120 *out_start = m_start;
1121 if (out_end)
1122 *out_end = m_end;
1123 if (out_nid)
1124 *out_nid = m_nid;
1125 idx_a--;
1126 *idx = (u32)idx_a | (u64)idx_b << 32;
1127 return;
1128 }
1129
1130 /* scan areas before each reservation */
1131 for (; idx_b >= 0; idx_b--) {
1132 struct memblock_region *r;
1133 phys_addr_t r_start;
1134 phys_addr_t r_end;
1135
1136 r = &type_b->regions[idx_b];
1137 r_start = idx_b ? r[-1].base + r[-1].size : 0;
1138 r_end = idx_b < type_b->cnt ?
1139 r->base : PHYS_ADDR_MAX;
1140 /*
1141 * if idx_b advanced past idx_a,
1142 * break out to advance idx_a
1143 */
1144
1145 if (r_end <= m_start)
1146 break;
1147 /* if the two regions intersect, we're done */
1148 if (m_end > r_start) {
1149 if (out_start)
1150 *out_start = max(m_start, r_start);
1151 if (out_end)
1152 *out_end = min(m_end, r_end);
1153 if (out_nid)
1154 *out_nid = m_nid;
1155 if (m_start >= r_start)
1156 idx_a--;
1157 else
1158 idx_b--;
1159 *idx = (u32)idx_a | (u64)idx_b << 32;
1160 return;
1161 }
1162 }
1163 }
1164 /* signal end of iteration */
1165 *idx = ULLONG_MAX;
1166 }
1167
1168 /*
1169 * Common iterator interface used to define for_each_mem_pfn_range().
1170 */
__next_mem_pfn_range(int * idx,int nid,unsigned long * out_start_pfn,unsigned long * out_end_pfn,int * out_nid)1171 void __init_memblock __next_mem_pfn_range(int *idx, int nid,
1172 unsigned long *out_start_pfn,
1173 unsigned long *out_end_pfn, int *out_nid)
1174 {
1175 struct memblock_type *type = &memblock.memory;
1176 struct memblock_region *r;
1177 int r_nid;
1178
1179 while (++*idx < type->cnt) {
1180 r = &type->regions[*idx];
1181 r_nid = memblock_get_region_node(r);
1182
1183 if (PFN_UP(r->base) >= PFN_DOWN(r->base + r->size))
1184 continue;
1185 if (nid == MAX_NUMNODES || nid == r_nid)
1186 break;
1187 }
1188 if (*idx >= type->cnt) {
1189 *idx = -1;
1190 return;
1191 }
1192
1193 if (out_start_pfn)
1194 *out_start_pfn = PFN_UP(r->base);
1195 if (out_end_pfn)
1196 *out_end_pfn = PFN_DOWN(r->base + r->size);
1197 if (out_nid)
1198 *out_nid = r_nid;
1199 }
1200
1201 /**
1202 * memblock_set_node - set node ID on memblock regions
1203 * @base: base of area to set node ID for
1204 * @size: size of area to set node ID for
1205 * @type: memblock type to set node ID for
1206 * @nid: node ID to set
1207 *
1208 * Set the nid of memblock @type regions in [@base, @base + @size) to @nid.
1209 * Regions which cross the area boundaries are split as necessary.
1210 *
1211 * Return:
1212 * 0 on success, -errno on failure.
1213 */
memblock_set_node(phys_addr_t base,phys_addr_t size,struct memblock_type * type,int nid)1214 int __init_memblock memblock_set_node(phys_addr_t base, phys_addr_t size,
1215 struct memblock_type *type, int nid)
1216 {
1217 #ifdef CONFIG_NEED_MULTIPLE_NODES
1218 int start_rgn, end_rgn;
1219 int i, ret;
1220
1221 ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
1222 if (ret)
1223 return ret;
1224
1225 for (i = start_rgn; i < end_rgn; i++)
1226 memblock_set_region_node(&type->regions[i], nid);
1227
1228 memblock_merge_regions(type);
1229 #endif
1230 return 0;
1231 }
1232
1233 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1234 /**
1235 * __next_mem_pfn_range_in_zone - iterator for for_each_*_range_in_zone()
1236 *
1237 * @idx: pointer to u64 loop variable
1238 * @zone: zone in which all of the memory blocks reside
1239 * @out_spfn: ptr to ulong for start pfn of the range, can be %NULL
1240 * @out_epfn: ptr to ulong for end pfn of the range, can be %NULL
1241 *
1242 * This function is meant to be a zone/pfn specific wrapper for the
1243 * for_each_mem_range type iterators. Specifically they are used in the
1244 * deferred memory init routines and as such we were duplicating much of
1245 * this logic throughout the code. So instead of having it in multiple
1246 * locations it seemed like it would make more sense to centralize this to
1247 * one new iterator that does everything they need.
1248 */
1249 void __init_memblock
__next_mem_pfn_range_in_zone(u64 * idx,struct zone * zone,unsigned long * out_spfn,unsigned long * out_epfn)1250 __next_mem_pfn_range_in_zone(u64 *idx, struct zone *zone,
1251 unsigned long *out_spfn, unsigned long *out_epfn)
1252 {
1253 int zone_nid = zone_to_nid(zone);
1254 phys_addr_t spa, epa;
1255 int nid;
1256
1257 __next_mem_range(idx, zone_nid, MEMBLOCK_NONE,
1258 &memblock.memory, &memblock.reserved,
1259 &spa, &epa, &nid);
1260
1261 while (*idx != U64_MAX) {
1262 unsigned long epfn = PFN_DOWN(epa);
1263 unsigned long spfn = PFN_UP(spa);
1264
1265 /*
1266 * Verify the end is at least past the start of the zone and
1267 * that we have at least one PFN to initialize.
1268 */
1269 if (zone->zone_start_pfn < epfn && spfn < epfn) {
1270 /* if we went too far just stop searching */
1271 if (zone_end_pfn(zone) <= spfn) {
1272 *idx = U64_MAX;
1273 break;
1274 }
1275
1276 if (out_spfn)
1277 *out_spfn = max(zone->zone_start_pfn, spfn);
1278 if (out_epfn)
1279 *out_epfn = min(zone_end_pfn(zone), epfn);
1280
1281 return;
1282 }
1283
1284 __next_mem_range(idx, zone_nid, MEMBLOCK_NONE,
1285 &memblock.memory, &memblock.reserved,
1286 &spa, &epa, &nid);
1287 }
1288
1289 /* signal end of iteration */
1290 if (out_spfn)
1291 *out_spfn = ULONG_MAX;
1292 if (out_epfn)
1293 *out_epfn = 0;
1294 }
1295
1296 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1297
1298 /**
1299 * memblock_alloc_range_nid - allocate boot memory block
1300 * @size: size of memory block to be allocated in bytes
1301 * @align: alignment of the region and block's size
1302 * @start: the lower bound of the memory region to allocate (phys address)
1303 * @end: the upper bound of the memory region to allocate (phys address)
1304 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1305 * @exact_nid: control the allocation fall back to other nodes
1306 *
1307 * The allocation is performed from memory region limited by
1308 * memblock.current_limit if @end == %MEMBLOCK_ALLOC_ACCESSIBLE.
1309 *
1310 * If the specified node can not hold the requested memory and @exact_nid
1311 * is false, the allocation falls back to any node in the system.
1312 *
1313 * For systems with memory mirroring, the allocation is attempted first
1314 * from the regions with mirroring enabled and then retried from any
1315 * memory region.
1316 *
1317 * In addition, function sets the min_count to 0 using kmemleak_alloc_phys for
1318 * allocated boot memory block, so that it is never reported as leaks.
1319 *
1320 * Return:
1321 * Physical address of allocated memory block on success, %0 on failure.
1322 */
memblock_alloc_range_nid(phys_addr_t size,phys_addr_t align,phys_addr_t start,phys_addr_t end,int nid,bool exact_nid)1323 phys_addr_t __init memblock_alloc_range_nid(phys_addr_t size,
1324 phys_addr_t align, phys_addr_t start,
1325 phys_addr_t end, int nid,
1326 bool exact_nid)
1327 {
1328 enum memblock_flags flags = choose_memblock_flags();
1329 phys_addr_t found;
1330
1331 if (WARN_ONCE(nid == MAX_NUMNODES, "Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n"))
1332 nid = NUMA_NO_NODE;
1333
1334 if (!align) {
1335 /* Can't use WARNs this early in boot on powerpc */
1336 dump_stack();
1337 align = SMP_CACHE_BYTES;
1338 }
1339
1340 again:
1341 found = memblock_find_in_range_node(size, align, start, end, nid,
1342 flags);
1343 if (found && !memblock_reserve(found, size))
1344 goto done;
1345
1346 if (nid != NUMA_NO_NODE && !exact_nid) {
1347 found = memblock_find_in_range_node(size, align, start,
1348 end, NUMA_NO_NODE,
1349 flags);
1350 if (found && !memblock_reserve(found, size))
1351 goto done;
1352 }
1353
1354 if (flags & MEMBLOCK_MIRROR) {
1355 flags &= ~MEMBLOCK_MIRROR;
1356 pr_warn("Could not allocate %pap bytes of mirrored memory\n",
1357 &size);
1358 goto again;
1359 }
1360
1361 return 0;
1362
1363 done:
1364 /* Skip kmemleak for kasan_init() due to high volume. */
1365 if (end != MEMBLOCK_ALLOC_KASAN)
1366 /*
1367 * The min_count is set to 0 so that memblock allocated
1368 * blocks are never reported as leaks. This is because many
1369 * of these blocks are only referred via the physical
1370 * address which is not looked up by kmemleak.
1371 */
1372 kmemleak_alloc_phys(found, size, 0, 0);
1373
1374 return found;
1375 }
1376
1377 /**
1378 * memblock_phys_alloc_range - allocate a memory block inside specified range
1379 * @size: size of memory block to be allocated in bytes
1380 * @align: alignment of the region and block's size
1381 * @start: the lower bound of the memory region to allocate (physical address)
1382 * @end: the upper bound of the memory region to allocate (physical address)
1383 *
1384 * Allocate @size bytes in the between @start and @end.
1385 *
1386 * Return: physical address of the allocated memory block on success,
1387 * %0 on failure.
1388 */
memblock_phys_alloc_range(phys_addr_t size,phys_addr_t align,phys_addr_t start,phys_addr_t end)1389 phys_addr_t __init memblock_phys_alloc_range(phys_addr_t size,
1390 phys_addr_t align,
1391 phys_addr_t start,
1392 phys_addr_t end)
1393 {
1394 return memblock_alloc_range_nid(size, align, start, end, NUMA_NO_NODE,
1395 false);
1396 }
1397
1398 /**
1399 * memblock_phys_alloc_try_nid - allocate a memory block from specified MUMA node
1400 * @size: size of memory block to be allocated in bytes
1401 * @align: alignment of the region and block's size
1402 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1403 *
1404 * Allocates memory block from the specified NUMA node. If the node
1405 * has no available memory, attempts to allocated from any node in the
1406 * system.
1407 *
1408 * Return: physical address of the allocated memory block on success,
1409 * %0 on failure.
1410 */
memblock_phys_alloc_try_nid(phys_addr_t size,phys_addr_t align,int nid)1411 phys_addr_t __init memblock_phys_alloc_try_nid(phys_addr_t size, phys_addr_t align, int nid)
1412 {
1413 return memblock_alloc_range_nid(size, align, 0,
1414 MEMBLOCK_ALLOC_ACCESSIBLE, nid, false);
1415 }
1416
1417 /**
1418 * memblock_alloc_internal - allocate boot memory block
1419 * @size: size of memory block to be allocated in bytes
1420 * @align: alignment of the region and block's size
1421 * @min_addr: the lower bound of the memory region to allocate (phys address)
1422 * @max_addr: the upper bound of the memory region to allocate (phys address)
1423 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1424 * @exact_nid: control the allocation fall back to other nodes
1425 *
1426 * Allocates memory block using memblock_alloc_range_nid() and
1427 * converts the returned physical address to virtual.
1428 *
1429 * The @min_addr limit is dropped if it can not be satisfied and the allocation
1430 * will fall back to memory below @min_addr. Other constraints, such
1431 * as node and mirrored memory will be handled again in
1432 * memblock_alloc_range_nid().
1433 *
1434 * Return:
1435 * Virtual address of allocated memory block on success, NULL on failure.
1436 */
memblock_alloc_internal(phys_addr_t size,phys_addr_t align,phys_addr_t min_addr,phys_addr_t max_addr,int nid,bool exact_nid)1437 static void * __init memblock_alloc_internal(
1438 phys_addr_t size, phys_addr_t align,
1439 phys_addr_t min_addr, phys_addr_t max_addr,
1440 int nid, bool exact_nid)
1441 {
1442 phys_addr_t alloc;
1443
1444 /*
1445 * Detect any accidental use of these APIs after slab is ready, as at
1446 * this moment memblock may be deinitialized already and its
1447 * internal data may be destroyed (after execution of memblock_free_all)
1448 */
1449 if (WARN_ON_ONCE(slab_is_available()))
1450 return kzalloc_node(size, GFP_NOWAIT, nid);
1451
1452 if (max_addr > memblock.current_limit)
1453 max_addr = memblock.current_limit;
1454
1455 alloc = memblock_alloc_range_nid(size, align, min_addr, max_addr, nid,
1456 exact_nid);
1457
1458 /* retry allocation without lower limit */
1459 if (!alloc && min_addr)
1460 alloc = memblock_alloc_range_nid(size, align, 0, max_addr, nid,
1461 exact_nid);
1462
1463 if (!alloc)
1464 return NULL;
1465
1466 return phys_to_virt(alloc);
1467 }
1468
1469 /**
1470 * memblock_alloc_exact_nid_raw - allocate boot memory block on the exact node
1471 * without zeroing memory
1472 * @size: size of memory block to be allocated in bytes
1473 * @align: alignment of the region and block's size
1474 * @min_addr: the lower bound of the memory region from where the allocation
1475 * is preferred (phys address)
1476 * @max_addr: the upper bound of the memory region from where the allocation
1477 * is preferred (phys address), or %MEMBLOCK_ALLOC_ACCESSIBLE to
1478 * allocate only from memory limited by memblock.current_limit value
1479 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1480 *
1481 * Public function, provides additional debug information (including caller
1482 * info), if enabled. Does not zero allocated memory.
1483 *
1484 * Return:
1485 * Virtual address of allocated memory block on success, NULL on failure.
1486 */
memblock_alloc_exact_nid_raw(phys_addr_t size,phys_addr_t align,phys_addr_t min_addr,phys_addr_t max_addr,int nid)1487 void * __init memblock_alloc_exact_nid_raw(
1488 phys_addr_t size, phys_addr_t align,
1489 phys_addr_t min_addr, phys_addr_t max_addr,
1490 int nid)
1491 {
1492 void *ptr;
1493
1494 memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=%pa max_addr=%pa %pS\n",
1495 __func__, (u64)size, (u64)align, nid, &min_addr,
1496 &max_addr, (void *)_RET_IP_);
1497
1498 ptr = memblock_alloc_internal(size, align,
1499 min_addr, max_addr, nid, true);
1500 if (ptr && size > 0)
1501 page_init_poison(ptr, size);
1502
1503 return ptr;
1504 }
1505
1506 /**
1507 * memblock_alloc_try_nid_raw - allocate boot memory block without zeroing
1508 * memory and without panicking
1509 * @size: size of memory block to be allocated in bytes
1510 * @align: alignment of the region and block's size
1511 * @min_addr: the lower bound of the memory region from where the allocation
1512 * is preferred (phys address)
1513 * @max_addr: the upper bound of the memory region from where the allocation
1514 * is preferred (phys address), or %MEMBLOCK_ALLOC_ACCESSIBLE to
1515 * allocate only from memory limited by memblock.current_limit value
1516 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1517 *
1518 * Public function, provides additional debug information (including caller
1519 * info), if enabled. Does not zero allocated memory, does not panic if request
1520 * cannot be satisfied.
1521 *
1522 * Return:
1523 * Virtual address of allocated memory block on success, NULL on failure.
1524 */
memblock_alloc_try_nid_raw(phys_addr_t size,phys_addr_t align,phys_addr_t min_addr,phys_addr_t max_addr,int nid)1525 void * __init memblock_alloc_try_nid_raw(
1526 phys_addr_t size, phys_addr_t align,
1527 phys_addr_t min_addr, phys_addr_t max_addr,
1528 int nid)
1529 {
1530 void *ptr;
1531
1532 memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=%pa max_addr=%pa %pS\n",
1533 __func__, (u64)size, (u64)align, nid, &min_addr,
1534 &max_addr, (void *)_RET_IP_);
1535
1536 ptr = memblock_alloc_internal(size, align,
1537 min_addr, max_addr, nid, false);
1538 if (ptr && size > 0)
1539 page_init_poison(ptr, size);
1540
1541 return ptr;
1542 }
1543
1544 /**
1545 * memblock_alloc_try_nid - allocate boot memory block
1546 * @size: size of memory block to be allocated in bytes
1547 * @align: alignment of the region and block's size
1548 * @min_addr: the lower bound of the memory region from where the allocation
1549 * is preferred (phys address)
1550 * @max_addr: the upper bound of the memory region from where the allocation
1551 * is preferred (phys address), or %MEMBLOCK_ALLOC_ACCESSIBLE to
1552 * allocate only from memory limited by memblock.current_limit value
1553 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1554 *
1555 * Public function, provides additional debug information (including caller
1556 * info), if enabled. This function zeroes the allocated memory.
1557 *
1558 * Return:
1559 * Virtual address of allocated memory block on success, NULL on failure.
1560 */
memblock_alloc_try_nid(phys_addr_t size,phys_addr_t align,phys_addr_t min_addr,phys_addr_t max_addr,int nid)1561 void * __init memblock_alloc_try_nid(
1562 phys_addr_t size, phys_addr_t align,
1563 phys_addr_t min_addr, phys_addr_t max_addr,
1564 int nid)
1565 {
1566 void *ptr;
1567
1568 memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=%pa max_addr=%pa %pS\n",
1569 __func__, (u64)size, (u64)align, nid, &min_addr,
1570 &max_addr, (void *)_RET_IP_);
1571 ptr = memblock_alloc_internal(size, align,
1572 min_addr, max_addr, nid, false);
1573 if (ptr)
1574 memset(ptr, 0, size);
1575
1576 return ptr;
1577 }
1578
1579 /**
1580 * __memblock_free_late - free pages directly to buddy allocator
1581 * @base: phys starting address of the boot memory block
1582 * @size: size of the boot memory block in bytes
1583 *
1584 * This is only useful when the memblock allocator has already been torn
1585 * down, but we are still initializing the system. Pages are released directly
1586 * to the buddy allocator.
1587 */
__memblock_free_late(phys_addr_t base,phys_addr_t size)1588 void __init __memblock_free_late(phys_addr_t base, phys_addr_t size)
1589 {
1590 phys_addr_t cursor, end;
1591
1592 end = base + size - 1;
1593 memblock_dbg("%s: [%pa-%pa] %pS\n",
1594 __func__, &base, &end, (void *)_RET_IP_);
1595 kmemleak_free_part_phys(base, size);
1596 cursor = PFN_UP(base);
1597 end = PFN_DOWN(base + size);
1598
1599 for (; cursor < end; cursor++) {
1600 /*
1601 * Reserved pages are always initialized by the end of
1602 * memblock_free_all() (by memmap_init() and, if deferred
1603 * initialization is enabled, memmap_init_reserved_pages()), so
1604 * these pages can be released directly to the buddy allocator.
1605 */
1606 __free_pages_core(pfn_to_page(cursor), 0);
1607 totalram_pages_inc();
1608 }
1609 }
1610
1611 /*
1612 * Remaining API functions
1613 */
1614
memblock_phys_mem_size(void)1615 phys_addr_t __init_memblock memblock_phys_mem_size(void)
1616 {
1617 return memblock.memory.total_size;
1618 }
1619
memblock_reserved_size(void)1620 phys_addr_t __init_memblock memblock_reserved_size(void)
1621 {
1622 return memblock.reserved.total_size;
1623 }
1624
1625 /* lowest address */
memblock_start_of_DRAM(void)1626 phys_addr_t __init_memblock memblock_start_of_DRAM(void)
1627 {
1628 return memblock.memory.regions[0].base;
1629 }
1630
memblock_end_of_DRAM(void)1631 phys_addr_t __init_memblock memblock_end_of_DRAM(void)
1632 {
1633 int idx = memblock.memory.cnt - 1;
1634
1635 return (memblock.memory.regions[idx].base + memblock.memory.regions[idx].size);
1636 }
1637
__find_max_addr(phys_addr_t limit)1638 static phys_addr_t __init_memblock __find_max_addr(phys_addr_t limit)
1639 {
1640 phys_addr_t max_addr = PHYS_ADDR_MAX;
1641 struct memblock_region *r;
1642
1643 /*
1644 * translate the memory @limit size into the max address within one of
1645 * the memory memblock regions, if the @limit exceeds the total size
1646 * of those regions, max_addr will keep original value PHYS_ADDR_MAX
1647 */
1648 for_each_mem_region(r) {
1649 if (limit <= r->size) {
1650 max_addr = r->base + limit;
1651 break;
1652 }
1653 limit -= r->size;
1654 }
1655
1656 return max_addr;
1657 }
1658
memblock_enforce_memory_limit(phys_addr_t limit)1659 void __init memblock_enforce_memory_limit(phys_addr_t limit)
1660 {
1661 phys_addr_t max_addr;
1662
1663 if (!limit)
1664 return;
1665
1666 max_addr = __find_max_addr(limit);
1667
1668 /* @limit exceeds the total size of the memory, do nothing */
1669 if (max_addr == PHYS_ADDR_MAX)
1670 return;
1671
1672 /* truncate both memory and reserved regions */
1673 memblock_remove_range(&memblock.memory, max_addr,
1674 PHYS_ADDR_MAX);
1675 memblock_remove_range(&memblock.reserved, max_addr,
1676 PHYS_ADDR_MAX);
1677 }
1678
memblock_cap_memory_range(phys_addr_t base,phys_addr_t size)1679 void __init memblock_cap_memory_range(phys_addr_t base, phys_addr_t size)
1680 {
1681 int start_rgn, end_rgn;
1682 int i, ret;
1683
1684 if (!size)
1685 return;
1686
1687 ret = memblock_isolate_range(&memblock.memory, base, size,
1688 &start_rgn, &end_rgn);
1689 if (ret)
1690 return;
1691
1692 /* remove all the MAP regions */
1693 for (i = memblock.memory.cnt - 1; i >= end_rgn; i--)
1694 if (!memblock_is_nomap(&memblock.memory.regions[i]))
1695 memblock_remove_region(&memblock.memory, i);
1696
1697 for (i = start_rgn - 1; i >= 0; i--)
1698 if (!memblock_is_nomap(&memblock.memory.regions[i]))
1699 memblock_remove_region(&memblock.memory, i);
1700
1701 /* truncate the reserved regions */
1702 memblock_remove_range(&memblock.reserved, 0, base);
1703 memblock_remove_range(&memblock.reserved,
1704 base + size, PHYS_ADDR_MAX);
1705 }
1706
memblock_mem_limit_remove_map(phys_addr_t limit)1707 void __init memblock_mem_limit_remove_map(phys_addr_t limit)
1708 {
1709 phys_addr_t max_addr;
1710
1711 if (!limit)
1712 return;
1713
1714 max_addr = __find_max_addr(limit);
1715
1716 /* @limit exceeds the total size of the memory, do nothing */
1717 if (max_addr == PHYS_ADDR_MAX)
1718 return;
1719
1720 memblock_cap_memory_range(0, max_addr);
1721 }
1722
memblock_search(struct memblock_type * type,phys_addr_t addr)1723 static int __init_memblock memblock_search(struct memblock_type *type, phys_addr_t addr)
1724 {
1725 unsigned int left = 0, right = type->cnt;
1726
1727 do {
1728 unsigned int mid = (right + left) / 2;
1729
1730 if (addr < type->regions[mid].base)
1731 right = mid;
1732 else if (addr >= (type->regions[mid].base +
1733 type->regions[mid].size))
1734 left = mid + 1;
1735 else
1736 return mid;
1737 } while (left < right);
1738 return -1;
1739 }
1740
memblock_is_reserved(phys_addr_t addr)1741 bool __init_memblock memblock_is_reserved(phys_addr_t addr)
1742 {
1743 return memblock_search(&memblock.reserved, addr) != -1;
1744 }
1745
memblock_is_memory(phys_addr_t addr)1746 bool __init_memblock memblock_is_memory(phys_addr_t addr)
1747 {
1748 return memblock_search(&memblock.memory, addr) != -1;
1749 }
1750
memblock_is_map_memory(phys_addr_t addr)1751 bool __init_memblock memblock_is_map_memory(phys_addr_t addr)
1752 {
1753 int i = memblock_search(&memblock.memory, addr);
1754
1755 if (i == -1)
1756 return false;
1757 return !memblock_is_nomap(&memblock.memory.regions[i]);
1758 }
1759
memblock_search_pfn_nid(unsigned long pfn,unsigned long * start_pfn,unsigned long * end_pfn)1760 int __init_memblock memblock_search_pfn_nid(unsigned long pfn,
1761 unsigned long *start_pfn, unsigned long *end_pfn)
1762 {
1763 struct memblock_type *type = &memblock.memory;
1764 int mid = memblock_search(type, PFN_PHYS(pfn));
1765
1766 if (mid == -1)
1767 return -1;
1768
1769 *start_pfn = PFN_DOWN(type->regions[mid].base);
1770 *end_pfn = PFN_DOWN(type->regions[mid].base + type->regions[mid].size);
1771
1772 return memblock_get_region_node(&type->regions[mid]);
1773 }
1774
1775 /**
1776 * memblock_is_region_memory - check if a region is a subset of memory
1777 * @base: base of region to check
1778 * @size: size of region to check
1779 *
1780 * Check if the region [@base, @base + @size) is a subset of a memory block.
1781 *
1782 * Return:
1783 * 0 if false, non-zero if true
1784 */
memblock_is_region_memory(phys_addr_t base,phys_addr_t size)1785 bool __init_memblock memblock_is_region_memory(phys_addr_t base, phys_addr_t size)
1786 {
1787 int idx = memblock_search(&memblock.memory, base);
1788 phys_addr_t end = base + memblock_cap_size(base, &size);
1789
1790 if (idx == -1)
1791 return false;
1792 return (memblock.memory.regions[idx].base +
1793 memblock.memory.regions[idx].size) >= end;
1794 }
1795
1796 /**
1797 * memblock_is_region_reserved - check if a region intersects reserved memory
1798 * @base: base of region to check
1799 * @size: size of region to check
1800 *
1801 * Check if the region [@base, @base + @size) intersects a reserved
1802 * memory block.
1803 *
1804 * Return:
1805 * True if they intersect, false if not.
1806 */
memblock_is_region_reserved(phys_addr_t base,phys_addr_t size)1807 bool __init_memblock memblock_is_region_reserved(phys_addr_t base, phys_addr_t size)
1808 {
1809 return memblock_overlaps_region(&memblock.reserved, base, size);
1810 }
1811
memblock_trim_memory(phys_addr_t align)1812 void __init_memblock memblock_trim_memory(phys_addr_t align)
1813 {
1814 phys_addr_t start, end, orig_start, orig_end;
1815 struct memblock_region *r;
1816
1817 for_each_mem_region(r) {
1818 orig_start = r->base;
1819 orig_end = r->base + r->size;
1820 start = round_up(orig_start, align);
1821 end = round_down(orig_end, align);
1822
1823 if (start == orig_start && end == orig_end)
1824 continue;
1825
1826 if (start < end) {
1827 r->base = start;
1828 r->size = end - start;
1829 } else {
1830 memblock_remove_region(&memblock.memory,
1831 r - memblock.memory.regions);
1832 r--;
1833 }
1834 }
1835 }
1836
memblock_set_current_limit(phys_addr_t limit)1837 void __init_memblock memblock_set_current_limit(phys_addr_t limit)
1838 {
1839 memblock.current_limit = limit;
1840 }
1841
memblock_get_current_limit(void)1842 phys_addr_t __init_memblock memblock_get_current_limit(void)
1843 {
1844 return memblock.current_limit;
1845 }
1846
memblock_dump(struct memblock_type * type)1847 static void __init_memblock memblock_dump(struct memblock_type *type)
1848 {
1849 phys_addr_t base, end, size;
1850 enum memblock_flags flags;
1851 int idx;
1852 struct memblock_region *rgn;
1853
1854 pr_info(" %s.cnt = 0x%lx\n", type->name, type->cnt);
1855
1856 for_each_memblock_type(idx, type, rgn) {
1857 char nid_buf[32] = "";
1858
1859 base = rgn->base;
1860 size = rgn->size;
1861 end = base + size - 1;
1862 flags = rgn->flags;
1863 #ifdef CONFIG_NEED_MULTIPLE_NODES
1864 if (memblock_get_region_node(rgn) != MAX_NUMNODES)
1865 snprintf(nid_buf, sizeof(nid_buf), " on node %d",
1866 memblock_get_region_node(rgn));
1867 #endif
1868 pr_info(" %s[%#x]\t[%pa-%pa], %pa bytes%s flags: %#x\n",
1869 type->name, idx, &base, &end, &size, nid_buf, flags);
1870 }
1871 }
1872
__memblock_dump_all(void)1873 static void __init_memblock __memblock_dump_all(void)
1874 {
1875 pr_info("MEMBLOCK configuration:\n");
1876 pr_info(" memory size = %pa reserved size = %pa\n",
1877 &memblock.memory.total_size,
1878 &memblock.reserved.total_size);
1879
1880 memblock_dump(&memblock.memory);
1881 memblock_dump(&memblock.reserved);
1882 #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
1883 memblock_dump(&physmem);
1884 #endif
1885 }
1886
memblock_dump_all(void)1887 void __init_memblock memblock_dump_all(void)
1888 {
1889 if (memblock_debug)
1890 __memblock_dump_all();
1891 }
1892
memblock_allow_resize(void)1893 void __init memblock_allow_resize(void)
1894 {
1895 memblock_can_resize = 1;
1896 }
1897
early_memblock(char * p)1898 static int __init early_memblock(char *p)
1899 {
1900 if (p && strstr(p, "debug"))
1901 memblock_debug = 1;
1902 return 0;
1903 }
1904 early_param("memblock", early_memblock);
1905
__free_pages_memory(unsigned long start,unsigned long end)1906 static void __init __free_pages_memory(unsigned long start, unsigned long end)
1907 {
1908 int order;
1909
1910 while (start < end) {
1911 order = min(MAX_ORDER - 1UL, __ffs(start));
1912
1913 while (start + (1UL << order) > end)
1914 order--;
1915
1916 memblock_free_pages(pfn_to_page(start), start, order);
1917
1918 start += (1UL << order);
1919 }
1920 }
1921
__free_memory_core(phys_addr_t start,phys_addr_t end)1922 static unsigned long __init __free_memory_core(phys_addr_t start,
1923 phys_addr_t end)
1924 {
1925 unsigned long start_pfn = PFN_UP(start);
1926 unsigned long end_pfn = min_t(unsigned long,
1927 PFN_DOWN(end), max_low_pfn);
1928
1929 if (start_pfn >= end_pfn)
1930 return 0;
1931
1932 __free_pages_memory(start_pfn, end_pfn);
1933
1934 return end_pfn - start_pfn;
1935 }
1936
free_low_memory_core_early(void)1937 static unsigned long __init free_low_memory_core_early(void)
1938 {
1939 unsigned long count = 0;
1940 phys_addr_t start, end;
1941 u64 i;
1942
1943 memblock_clear_hotplug(0, -1);
1944
1945 for_each_reserved_mem_range(i, &start, &end)
1946 reserve_bootmem_region(start, end);
1947
1948 /*
1949 * We need to use NUMA_NO_NODE instead of NODE_DATA(0)->node_id
1950 * because in some case like Node0 doesn't have RAM installed
1951 * low ram will be on Node1
1952 */
1953 for_each_free_mem_range(i, NUMA_NO_NODE, MEMBLOCK_NONE, &start, &end,
1954 NULL)
1955 count += __free_memory_core(start, end);
1956
1957 return count;
1958 }
1959
1960 static int reset_managed_pages_done __initdata;
1961
reset_node_managed_pages(pg_data_t * pgdat)1962 void reset_node_managed_pages(pg_data_t *pgdat)
1963 {
1964 struct zone *z;
1965
1966 for (z = pgdat->node_zones; z < pgdat->node_zones + MAX_NR_ZONES; z++)
1967 atomic_long_set(&z->managed_pages, 0);
1968 }
1969
reset_all_zones_managed_pages(void)1970 void __init reset_all_zones_managed_pages(void)
1971 {
1972 struct pglist_data *pgdat;
1973
1974 if (reset_managed_pages_done)
1975 return;
1976
1977 for_each_online_pgdat(pgdat)
1978 reset_node_managed_pages(pgdat);
1979
1980 reset_managed_pages_done = 1;
1981 }
1982
1983 /**
1984 * memblock_free_all - release free pages to the buddy allocator
1985 *
1986 * Return: the number of pages actually released.
1987 */
memblock_free_all(void)1988 unsigned long __init memblock_free_all(void)
1989 {
1990 unsigned long pages;
1991
1992 reset_all_zones_managed_pages();
1993
1994 pages = free_low_memory_core_early();
1995 totalram_pages_add(pages);
1996
1997 return pages;
1998 }
1999
2000 #if defined(CONFIG_DEBUG_FS) && defined(CONFIG_ARCH_KEEP_MEMBLOCK)
2001
memblock_debug_show(struct seq_file * m,void * private)2002 static int memblock_debug_show(struct seq_file *m, void *private)
2003 {
2004 struct memblock_type *type = m->private;
2005 struct memblock_region *reg;
2006 int i;
2007 phys_addr_t end;
2008
2009 for (i = 0; i < type->cnt; i++) {
2010 reg = &type->regions[i];
2011 end = reg->base + reg->size - 1;
2012
2013 seq_printf(m, "%4d: ", i);
2014 seq_printf(m, "%pa..%pa\n", ®->base, &end);
2015 }
2016 return 0;
2017 }
2018 DEFINE_SHOW_ATTRIBUTE(memblock_debug);
2019
memblock_init_debugfs(void)2020 static int __init memblock_init_debugfs(void)
2021 {
2022 struct dentry *root = debugfs_create_dir("memblock", NULL);
2023
2024 debugfs_create_file("memory", 0444, root,
2025 &memblock.memory, &memblock_debug_fops);
2026 debugfs_create_file("reserved", 0444, root,
2027 &memblock.reserved, &memblock_debug_fops);
2028 #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
2029 debugfs_create_file("physmem", 0444, root, &physmem,
2030 &memblock_debug_fops);
2031 #endif
2032
2033 return 0;
2034 }
2035 __initcall(memblock_init_debugfs);
2036
2037 #endif /* CONFIG_DEBUG_FS */
2038