• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Machine check handler.
4  *
5  * K8 parts Copyright 2002,2003 Andi Kleen, SuSE Labs.
6  * Rest from unknown author(s).
7  * 2004 Andi Kleen. Rewrote most of it.
8  * Copyright 2008 Intel Corporation
9  * Author: Andi Kleen
10  */
11 
12 #include <linux/thread_info.h>
13 #include <linux/capability.h>
14 #include <linux/miscdevice.h>
15 #include <linux/ratelimit.h>
16 #include <linux/rcupdate.h>
17 #include <linux/kobject.h>
18 #include <linux/uaccess.h>
19 #include <linux/kdebug.h>
20 #include <linux/kernel.h>
21 #include <linux/percpu.h>
22 #include <linux/string.h>
23 #include <linux/device.h>
24 #include <linux/syscore_ops.h>
25 #include <linux/delay.h>
26 #include <linux/ctype.h>
27 #include <linux/sched.h>
28 #include <linux/sysfs.h>
29 #include <linux/types.h>
30 #include <linux/slab.h>
31 #include <linux/init.h>
32 #include <linux/kmod.h>
33 #include <linux/poll.h>
34 #include <linux/nmi.h>
35 #include <linux/cpu.h>
36 #include <linux/ras.h>
37 #include <linux/smp.h>
38 #include <linux/fs.h>
39 #include <linux/mm.h>
40 #include <linux/debugfs.h>
41 #include <linux/irq_work.h>
42 #include <linux/export.h>
43 #include <linux/set_memory.h>
44 #include <linux/sync_core.h>
45 #include <linux/task_work.h>
46 #include <linux/hardirq.h>
47 
48 #include <asm/intel-family.h>
49 #include <asm/processor.h>
50 #include <asm/traps.h>
51 #include <asm/tlbflush.h>
52 #include <asm/mce.h>
53 #include <asm/msr.h>
54 #include <asm/reboot.h>
55 
56 #include "internal.h"
57 
58 /* sysfs synchronization */
59 static DEFINE_MUTEX(mce_sysfs_mutex);
60 
61 #define CREATE_TRACE_POINTS
62 #include <trace/events/mce.h>
63 
64 #define SPINUNIT		100	/* 100ns */
65 
66 DEFINE_PER_CPU(unsigned, mce_exception_count);
67 
68 DEFINE_PER_CPU_READ_MOSTLY(unsigned int, mce_num_banks);
69 
70 struct mce_bank {
71 	u64			ctl;			/* subevents to enable */
72 	bool			init;			/* initialise bank? */
73 };
74 static DEFINE_PER_CPU_READ_MOSTLY(struct mce_bank[MAX_NR_BANKS], mce_banks_array);
75 
76 #define ATTR_LEN               16
77 /* One object for each MCE bank, shared by all CPUs */
78 struct mce_bank_dev {
79 	struct device_attribute	attr;			/* device attribute */
80 	char			attrname[ATTR_LEN];	/* attribute name */
81 	u8			bank;			/* bank number */
82 };
83 static struct mce_bank_dev mce_bank_devs[MAX_NR_BANKS];
84 
85 struct mce_vendor_flags mce_flags __read_mostly;
86 
87 struct mca_config mca_cfg __read_mostly = {
88 	.bootlog  = -1,
89 	/*
90 	 * Tolerant levels:
91 	 * 0: always panic on uncorrected errors, log corrected errors
92 	 * 1: panic or SIGBUS on uncorrected errors, log corrected errors
93 	 * 2: SIGBUS or log uncorrected errors (if possible), log corr. errors
94 	 * 3: never panic or SIGBUS, log all errors (for testing only)
95 	 */
96 	.tolerant = 1,
97 	.monarch_timeout = -1
98 };
99 
100 static DEFINE_PER_CPU(struct mce, mces_seen);
101 static unsigned long mce_need_notify;
102 static int cpu_missing;
103 
104 /*
105  * MCA banks polled by the period polling timer for corrected events.
106  * With Intel CMCI, this only has MCA banks which do not support CMCI (if any).
107  */
108 DEFINE_PER_CPU(mce_banks_t, mce_poll_banks) = {
109 	[0 ... BITS_TO_LONGS(MAX_NR_BANKS)-1] = ~0UL
110 };
111 
112 /*
113  * MCA banks controlled through firmware first for corrected errors.
114  * This is a global list of banks for which we won't enable CMCI and we
115  * won't poll. Firmware controls these banks and is responsible for
116  * reporting corrected errors through GHES. Uncorrected/recoverable
117  * errors are still notified through a machine check.
118  */
119 mce_banks_t mce_banks_ce_disabled;
120 
121 static struct work_struct mce_work;
122 static struct irq_work mce_irq_work;
123 
124 static void (*quirk_no_way_out)(int bank, struct mce *m, struct pt_regs *regs);
125 
126 /*
127  * CPU/chipset specific EDAC code can register a notifier call here to print
128  * MCE errors in a human-readable form.
129  */
130 BLOCKING_NOTIFIER_HEAD(x86_mce_decoder_chain);
131 
132 /* Do initial initialization of a struct mce */
mce_setup(struct mce * m)133 noinstr void mce_setup(struct mce *m)
134 {
135 	memset(m, 0, sizeof(struct mce));
136 	m->cpu = m->extcpu = smp_processor_id();
137 	/* need the internal __ version to avoid deadlocks */
138 	m->time = __ktime_get_real_seconds();
139 	m->cpuvendor = boot_cpu_data.x86_vendor;
140 	m->cpuid = cpuid_eax(1);
141 	m->socketid = cpu_data(m->extcpu).phys_proc_id;
142 	m->apicid = cpu_data(m->extcpu).initial_apicid;
143 	m->mcgcap = __rdmsr(MSR_IA32_MCG_CAP);
144 
145 	if (this_cpu_has(X86_FEATURE_INTEL_PPIN))
146 		m->ppin = __rdmsr(MSR_PPIN);
147 	else if (this_cpu_has(X86_FEATURE_AMD_PPIN))
148 		m->ppin = __rdmsr(MSR_AMD_PPIN);
149 
150 	m->microcode = boot_cpu_data.microcode;
151 }
152 
153 DEFINE_PER_CPU(struct mce, injectm);
154 EXPORT_PER_CPU_SYMBOL_GPL(injectm);
155 
mce_log(struct mce * m)156 void mce_log(struct mce *m)
157 {
158 	if (!mce_gen_pool_add(m))
159 		irq_work_queue(&mce_irq_work);
160 }
161 EXPORT_SYMBOL_GPL(mce_log);
162 
mce_register_decode_chain(struct notifier_block * nb)163 void mce_register_decode_chain(struct notifier_block *nb)
164 {
165 	if (WARN_ON(nb->priority < MCE_PRIO_LOWEST ||
166 		    nb->priority > MCE_PRIO_HIGHEST))
167 		return;
168 
169 	blocking_notifier_chain_register(&x86_mce_decoder_chain, nb);
170 }
171 EXPORT_SYMBOL_GPL(mce_register_decode_chain);
172 
mce_unregister_decode_chain(struct notifier_block * nb)173 void mce_unregister_decode_chain(struct notifier_block *nb)
174 {
175 	blocking_notifier_chain_unregister(&x86_mce_decoder_chain, nb);
176 }
177 EXPORT_SYMBOL_GPL(mce_unregister_decode_chain);
178 
mca_msr_reg(int bank,enum mca_msr reg)179 u32 mca_msr_reg(int bank, enum mca_msr reg)
180 {
181 	if (mce_flags.smca) {
182 		switch (reg) {
183 		case MCA_CTL:	 return MSR_AMD64_SMCA_MCx_CTL(bank);
184 		case MCA_ADDR:	 return MSR_AMD64_SMCA_MCx_ADDR(bank);
185 		case MCA_MISC:	 return MSR_AMD64_SMCA_MCx_MISC(bank);
186 		case MCA_STATUS: return MSR_AMD64_SMCA_MCx_STATUS(bank);
187 		}
188 	}
189 
190 	switch (reg) {
191 	case MCA_CTL:	 return MSR_IA32_MCx_CTL(bank);
192 	case MCA_ADDR:	 return MSR_IA32_MCx_ADDR(bank);
193 	case MCA_MISC:	 return MSR_IA32_MCx_MISC(bank);
194 	case MCA_STATUS: return MSR_IA32_MCx_STATUS(bank);
195 	}
196 
197 	return 0;
198 }
199 
__print_mce(struct mce * m)200 static void __print_mce(struct mce *m)
201 {
202 	pr_emerg(HW_ERR "CPU %d: Machine Check%s: %Lx Bank %d: %016Lx\n",
203 		 m->extcpu,
204 		 (m->mcgstatus & MCG_STATUS_MCIP ? " Exception" : ""),
205 		 m->mcgstatus, m->bank, m->status);
206 
207 	if (m->ip) {
208 		pr_emerg(HW_ERR "RIP%s %02x:<%016Lx> ",
209 			!(m->mcgstatus & MCG_STATUS_EIPV) ? " !INEXACT!" : "",
210 			m->cs, m->ip);
211 
212 		if (m->cs == __KERNEL_CS)
213 			pr_cont("{%pS}", (void *)(unsigned long)m->ip);
214 		pr_cont("\n");
215 	}
216 
217 	pr_emerg(HW_ERR "TSC %llx ", m->tsc);
218 	if (m->addr)
219 		pr_cont("ADDR %llx ", m->addr);
220 	if (m->misc)
221 		pr_cont("MISC %llx ", m->misc);
222 	if (m->ppin)
223 		pr_cont("PPIN %llx ", m->ppin);
224 
225 	if (mce_flags.smca) {
226 		if (m->synd)
227 			pr_cont("SYND %llx ", m->synd);
228 		if (m->ipid)
229 			pr_cont("IPID %llx ", m->ipid);
230 	}
231 
232 	pr_cont("\n");
233 
234 	/*
235 	 * Note this output is parsed by external tools and old fields
236 	 * should not be changed.
237 	 */
238 	pr_emerg(HW_ERR "PROCESSOR %u:%x TIME %llu SOCKET %u APIC %x microcode %x\n",
239 		m->cpuvendor, m->cpuid, m->time, m->socketid, m->apicid,
240 		m->microcode);
241 }
242 
print_mce(struct mce * m)243 static void print_mce(struct mce *m)
244 {
245 	__print_mce(m);
246 
247 	if (m->cpuvendor != X86_VENDOR_AMD && m->cpuvendor != X86_VENDOR_HYGON)
248 		pr_emerg_ratelimited(HW_ERR "Run the above through 'mcelog --ascii'\n");
249 }
250 
251 #define PANIC_TIMEOUT 5 /* 5 seconds */
252 
253 static atomic_t mce_panicked;
254 
255 static int fake_panic;
256 static atomic_t mce_fake_panicked;
257 
258 /* Panic in progress. Enable interrupts and wait for final IPI */
wait_for_panic(void)259 static void wait_for_panic(void)
260 {
261 	long timeout = PANIC_TIMEOUT*USEC_PER_SEC;
262 
263 	preempt_disable();
264 	local_irq_enable();
265 	while (timeout-- > 0)
266 		udelay(1);
267 	if (panic_timeout == 0)
268 		panic_timeout = mca_cfg.panic_timeout;
269 	panic("Panicing machine check CPU died");
270 }
271 
mce_panic(const char * msg,struct mce * final,char * exp)272 static noinstr void mce_panic(const char *msg, struct mce *final, char *exp)
273 {
274 	struct llist_node *pending;
275 	struct mce_evt_llist *l;
276 	int apei_err = 0;
277 
278 	/*
279 	 * Allow instrumentation around external facilities usage. Not that it
280 	 * matters a whole lot since the machine is going to panic anyway.
281 	 */
282 	instrumentation_begin();
283 
284 	if (!fake_panic) {
285 		/*
286 		 * Make sure only one CPU runs in machine check panic
287 		 */
288 		if (atomic_inc_return(&mce_panicked) > 1)
289 			wait_for_panic();
290 		barrier();
291 
292 		bust_spinlocks(1);
293 		console_verbose();
294 	} else {
295 		/* Don't log too much for fake panic */
296 		if (atomic_inc_return(&mce_fake_panicked) > 1)
297 			goto out;
298 	}
299 	pending = mce_gen_pool_prepare_records();
300 	/* First print corrected ones that are still unlogged */
301 	llist_for_each_entry(l, pending, llnode) {
302 		struct mce *m = &l->mce;
303 		if (!(m->status & MCI_STATUS_UC)) {
304 			print_mce(m);
305 			if (!apei_err)
306 				apei_err = apei_write_mce(m);
307 		}
308 	}
309 	/* Now print uncorrected but with the final one last */
310 	llist_for_each_entry(l, pending, llnode) {
311 		struct mce *m = &l->mce;
312 		if (!(m->status & MCI_STATUS_UC))
313 			continue;
314 		if (!final || mce_cmp(m, final)) {
315 			print_mce(m);
316 			if (!apei_err)
317 				apei_err = apei_write_mce(m);
318 		}
319 	}
320 	if (final) {
321 		print_mce(final);
322 		if (!apei_err)
323 			apei_err = apei_write_mce(final);
324 	}
325 	if (cpu_missing)
326 		pr_emerg(HW_ERR "Some CPUs didn't answer in synchronization\n");
327 	if (exp)
328 		pr_emerg(HW_ERR "Machine check: %s\n", exp);
329 	if (!fake_panic) {
330 		if (panic_timeout == 0)
331 			panic_timeout = mca_cfg.panic_timeout;
332 		panic(msg);
333 	} else
334 		pr_emerg(HW_ERR "Fake kernel panic: %s\n", msg);
335 
336 out:
337 	instrumentation_end();
338 }
339 
340 /* Support code for software error injection */
341 
msr_to_offset(u32 msr)342 static int msr_to_offset(u32 msr)
343 {
344 	unsigned bank = __this_cpu_read(injectm.bank);
345 
346 	if (msr == mca_cfg.rip_msr)
347 		return offsetof(struct mce, ip);
348 	if (msr == mca_msr_reg(bank, MCA_STATUS))
349 		return offsetof(struct mce, status);
350 	if (msr == mca_msr_reg(bank, MCA_ADDR))
351 		return offsetof(struct mce, addr);
352 	if (msr == mca_msr_reg(bank, MCA_MISC))
353 		return offsetof(struct mce, misc);
354 	if (msr == MSR_IA32_MCG_STATUS)
355 		return offsetof(struct mce, mcgstatus);
356 	return -1;
357 }
358 
ex_handler_rdmsr_fault(const struct exception_table_entry * fixup,struct pt_regs * regs,int trapnr,unsigned long error_code,unsigned long fault_addr)359 __visible bool ex_handler_rdmsr_fault(const struct exception_table_entry *fixup,
360 				      struct pt_regs *regs, int trapnr,
361 				      unsigned long error_code,
362 				      unsigned long fault_addr)
363 {
364 	pr_emerg("MSR access error: RDMSR from 0x%x at rIP: 0x%lx (%pS)\n",
365 		 (unsigned int)regs->cx, regs->ip, (void *)regs->ip);
366 
367 	show_stack_regs(regs);
368 
369 	panic("MCA architectural violation!\n");
370 
371 	while (true)
372 		cpu_relax();
373 
374 	return true;
375 }
376 
377 /* MSR access wrappers used for error injection */
mce_rdmsrl(u32 msr)378 static noinstr u64 mce_rdmsrl(u32 msr)
379 {
380 	DECLARE_ARGS(val, low, high);
381 
382 	if (__this_cpu_read(injectm.finished)) {
383 		int offset;
384 		u64 ret;
385 
386 		instrumentation_begin();
387 
388 		offset = msr_to_offset(msr);
389 		if (offset < 0)
390 			ret = 0;
391 		else
392 			ret = *(u64 *)((char *)this_cpu_ptr(&injectm) + offset);
393 
394 		instrumentation_end();
395 
396 		return ret;
397 	}
398 
399 	/*
400 	 * RDMSR on MCA MSRs should not fault. If they do, this is very much an
401 	 * architectural violation and needs to be reported to hw vendor. Panic
402 	 * the box to not allow any further progress.
403 	 */
404 	asm volatile("1: rdmsr\n"
405 		     "2:\n"
406 		     _ASM_EXTABLE_HANDLE(1b, 2b, ex_handler_rdmsr_fault)
407 		     : EAX_EDX_RET(val, low, high) : "c" (msr));
408 
409 
410 	return EAX_EDX_VAL(val, low, high);
411 }
412 
ex_handler_wrmsr_fault(const struct exception_table_entry * fixup,struct pt_regs * regs,int trapnr,unsigned long error_code,unsigned long fault_addr)413 __visible bool ex_handler_wrmsr_fault(const struct exception_table_entry *fixup,
414 				      struct pt_regs *regs, int trapnr,
415 				      unsigned long error_code,
416 				      unsigned long fault_addr)
417 {
418 	pr_emerg("MSR access error: WRMSR to 0x%x (tried to write 0x%08x%08x) at rIP: 0x%lx (%pS)\n",
419 		 (unsigned int)regs->cx, (unsigned int)regs->dx, (unsigned int)regs->ax,
420 		  regs->ip, (void *)regs->ip);
421 
422 	show_stack_regs(regs);
423 
424 	panic("MCA architectural violation!\n");
425 
426 	while (true)
427 		cpu_relax();
428 
429 	return true;
430 }
431 
mce_wrmsrl(u32 msr,u64 v)432 static noinstr void mce_wrmsrl(u32 msr, u64 v)
433 {
434 	u32 low, high;
435 
436 	if (__this_cpu_read(injectm.finished)) {
437 		int offset;
438 
439 		instrumentation_begin();
440 
441 		offset = msr_to_offset(msr);
442 		if (offset >= 0)
443 			*(u64 *)((char *)this_cpu_ptr(&injectm) + offset) = v;
444 
445 		instrumentation_end();
446 
447 		return;
448 	}
449 
450 	low  = (u32)v;
451 	high = (u32)(v >> 32);
452 
453 	/* See comment in mce_rdmsrl() */
454 	asm volatile("1: wrmsr\n"
455 		     "2:\n"
456 		     _ASM_EXTABLE_HANDLE(1b, 2b, ex_handler_wrmsr_fault)
457 		     : : "c" (msr), "a"(low), "d" (high) : "memory");
458 }
459 
460 /*
461  * Collect all global (w.r.t. this processor) status about this machine
462  * check into our "mce" struct so that we can use it later to assess
463  * the severity of the problem as we read per-bank specific details.
464  */
mce_gather_info(struct mce * m,struct pt_regs * regs)465 static inline void mce_gather_info(struct mce *m, struct pt_regs *regs)
466 {
467 	mce_setup(m);
468 
469 	m->mcgstatus = mce_rdmsrl(MSR_IA32_MCG_STATUS);
470 	if (regs) {
471 		/*
472 		 * Get the address of the instruction at the time of
473 		 * the machine check error.
474 		 */
475 		if (m->mcgstatus & (MCG_STATUS_RIPV|MCG_STATUS_EIPV)) {
476 			m->ip = regs->ip;
477 			m->cs = regs->cs;
478 
479 			/*
480 			 * When in VM86 mode make the cs look like ring 3
481 			 * always. This is a lie, but it's better than passing
482 			 * the additional vm86 bit around everywhere.
483 			 */
484 			if (v8086_mode(regs))
485 				m->cs |= 3;
486 		}
487 		/* Use accurate RIP reporting if available. */
488 		if (mca_cfg.rip_msr)
489 			m->ip = mce_rdmsrl(mca_cfg.rip_msr);
490 	}
491 }
492 
mce_available(struct cpuinfo_x86 * c)493 int mce_available(struct cpuinfo_x86 *c)
494 {
495 	if (mca_cfg.disabled)
496 		return 0;
497 	return cpu_has(c, X86_FEATURE_MCE) && cpu_has(c, X86_FEATURE_MCA);
498 }
499 
mce_schedule_work(void)500 static void mce_schedule_work(void)
501 {
502 	if (!mce_gen_pool_empty())
503 		schedule_work(&mce_work);
504 }
505 
mce_irq_work_cb(struct irq_work * entry)506 static void mce_irq_work_cb(struct irq_work *entry)
507 {
508 	mce_schedule_work();
509 }
510 
511 /*
512  * Check if the address reported by the CPU is in a format we can parse.
513  * It would be possible to add code for most other cases, but all would
514  * be somewhat complicated (e.g. segment offset would require an instruction
515  * parser). So only support physical addresses up to page granuality for now.
516  */
mce_usable_address(struct mce * m)517 int mce_usable_address(struct mce *m)
518 {
519 	if (!(m->status & MCI_STATUS_ADDRV))
520 		return 0;
521 
522 	/* Checks after this one are Intel/Zhaoxin-specific: */
523 	if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL &&
524 	    boot_cpu_data.x86_vendor != X86_VENDOR_ZHAOXIN)
525 		return 1;
526 
527 	if (!(m->status & MCI_STATUS_MISCV))
528 		return 0;
529 
530 	if (MCI_MISC_ADDR_LSB(m->misc) > PAGE_SHIFT)
531 		return 0;
532 
533 	if (MCI_MISC_ADDR_MODE(m->misc) != MCI_MISC_ADDR_PHYS)
534 		return 0;
535 
536 	return 1;
537 }
538 EXPORT_SYMBOL_GPL(mce_usable_address);
539 
mce_is_memory_error(struct mce * m)540 bool mce_is_memory_error(struct mce *m)
541 {
542 	switch (m->cpuvendor) {
543 	case X86_VENDOR_AMD:
544 	case X86_VENDOR_HYGON:
545 		return amd_mce_is_memory_error(m);
546 
547 	case X86_VENDOR_INTEL:
548 	case X86_VENDOR_ZHAOXIN:
549 		/*
550 		 * Intel SDM Volume 3B - 15.9.2 Compound Error Codes
551 		 *
552 		 * Bit 7 of the MCACOD field of IA32_MCi_STATUS is used for
553 		 * indicating a memory error. Bit 8 is used for indicating a
554 		 * cache hierarchy error. The combination of bit 2 and bit 3
555 		 * is used for indicating a `generic' cache hierarchy error
556 		 * But we can't just blindly check the above bits, because if
557 		 * bit 11 is set, then it is a bus/interconnect error - and
558 		 * either way the above bits just gives more detail on what
559 		 * bus/interconnect error happened. Note that bit 12 can be
560 		 * ignored, as it's the "filter" bit.
561 		 */
562 		return (m->status & 0xef80) == BIT(7) ||
563 		       (m->status & 0xef00) == BIT(8) ||
564 		       (m->status & 0xeffc) == 0xc;
565 
566 	default:
567 		return false;
568 	}
569 }
570 EXPORT_SYMBOL_GPL(mce_is_memory_error);
571 
whole_page(struct mce * m)572 static bool whole_page(struct mce *m)
573 {
574 	if (!mca_cfg.ser || !(m->status & MCI_STATUS_MISCV))
575 		return true;
576 
577 	return MCI_MISC_ADDR_LSB(m->misc) >= PAGE_SHIFT;
578 }
579 
mce_is_correctable(struct mce * m)580 bool mce_is_correctable(struct mce *m)
581 {
582 	if (m->cpuvendor == X86_VENDOR_AMD && m->status & MCI_STATUS_DEFERRED)
583 		return false;
584 
585 	if (m->cpuvendor == X86_VENDOR_HYGON && m->status & MCI_STATUS_DEFERRED)
586 		return false;
587 
588 	if (m->status & MCI_STATUS_UC)
589 		return false;
590 
591 	return true;
592 }
593 EXPORT_SYMBOL_GPL(mce_is_correctable);
594 
mce_early_notifier(struct notifier_block * nb,unsigned long val,void * data)595 static int mce_early_notifier(struct notifier_block *nb, unsigned long val,
596 			      void *data)
597 {
598 	struct mce *m = (struct mce *)data;
599 
600 	if (!m)
601 		return NOTIFY_DONE;
602 
603 	/* Emit the trace record: */
604 	trace_mce_record(m);
605 
606 	set_bit(0, &mce_need_notify);
607 
608 	mce_notify_irq();
609 
610 	return NOTIFY_DONE;
611 }
612 
613 static struct notifier_block early_nb = {
614 	.notifier_call	= mce_early_notifier,
615 	.priority	= MCE_PRIO_EARLY,
616 };
617 
uc_decode_notifier(struct notifier_block * nb,unsigned long val,void * data)618 static int uc_decode_notifier(struct notifier_block *nb, unsigned long val,
619 			      void *data)
620 {
621 	struct mce *mce = (struct mce *)data;
622 	unsigned long pfn;
623 
624 	if (!mce || !mce_usable_address(mce))
625 		return NOTIFY_DONE;
626 
627 	if (mce->severity != MCE_AO_SEVERITY &&
628 	    mce->severity != MCE_DEFERRED_SEVERITY)
629 		return NOTIFY_DONE;
630 
631 	pfn = mce->addr >> PAGE_SHIFT;
632 	if (!memory_failure(pfn, 0)) {
633 		set_mce_nospec(pfn, whole_page(mce));
634 		mce->kflags |= MCE_HANDLED_UC;
635 	}
636 
637 	return NOTIFY_OK;
638 }
639 
640 static struct notifier_block mce_uc_nb = {
641 	.notifier_call	= uc_decode_notifier,
642 	.priority	= MCE_PRIO_UC,
643 };
644 
mce_default_notifier(struct notifier_block * nb,unsigned long val,void * data)645 static int mce_default_notifier(struct notifier_block *nb, unsigned long val,
646 				void *data)
647 {
648 	struct mce *m = (struct mce *)data;
649 
650 	if (!m)
651 		return NOTIFY_DONE;
652 
653 	if (mca_cfg.print_all || !m->kflags)
654 		__print_mce(m);
655 
656 	return NOTIFY_DONE;
657 }
658 
659 static struct notifier_block mce_default_nb = {
660 	.notifier_call	= mce_default_notifier,
661 	/* lowest prio, we want it to run last. */
662 	.priority	= MCE_PRIO_LOWEST,
663 };
664 
665 /*
666  * Read ADDR and MISC registers.
667  */
mce_read_aux(struct mce * m,int i)668 static noinstr void mce_read_aux(struct mce *m, int i)
669 {
670 	if (m->status & MCI_STATUS_MISCV)
671 		m->misc = mce_rdmsrl(mca_msr_reg(i, MCA_MISC));
672 
673 	if (m->status & MCI_STATUS_ADDRV) {
674 		m->addr = mce_rdmsrl(mca_msr_reg(i, MCA_ADDR));
675 
676 		/*
677 		 * Mask the reported address by the reported granularity.
678 		 */
679 		if (mca_cfg.ser && (m->status & MCI_STATUS_MISCV)) {
680 			u8 shift = MCI_MISC_ADDR_LSB(m->misc);
681 			m->addr >>= shift;
682 			m->addr <<= shift;
683 		}
684 
685 		/*
686 		 * Extract [55:<lsb>] where lsb is the least significant
687 		 * *valid* bit of the address bits.
688 		 */
689 		if (mce_flags.smca) {
690 			u8 lsb = (m->addr >> 56) & 0x3f;
691 
692 			m->addr &= GENMASK_ULL(55, lsb);
693 		}
694 	}
695 
696 	if (mce_flags.smca) {
697 		m->ipid = mce_rdmsrl(MSR_AMD64_SMCA_MCx_IPID(i));
698 
699 		if (m->status & MCI_STATUS_SYNDV)
700 			m->synd = mce_rdmsrl(MSR_AMD64_SMCA_MCx_SYND(i));
701 	}
702 }
703 
704 DEFINE_PER_CPU(unsigned, mce_poll_count);
705 
706 /*
707  * Poll for corrected events or events that happened before reset.
708  * Those are just logged through /dev/mcelog.
709  *
710  * This is executed in standard interrupt context.
711  *
712  * Note: spec recommends to panic for fatal unsignalled
713  * errors here. However this would be quite problematic --
714  * we would need to reimplement the Monarch handling and
715  * it would mess up the exclusion between exception handler
716  * and poll handler -- * so we skip this for now.
717  * These cases should not happen anyways, or only when the CPU
718  * is already totally * confused. In this case it's likely it will
719  * not fully execute the machine check handler either.
720  */
machine_check_poll(enum mcp_flags flags,mce_banks_t * b)721 bool machine_check_poll(enum mcp_flags flags, mce_banks_t *b)
722 {
723 	struct mce_bank *mce_banks = this_cpu_ptr(mce_banks_array);
724 	bool error_seen = false;
725 	struct mce m;
726 	int i;
727 
728 	this_cpu_inc(mce_poll_count);
729 
730 	mce_gather_info(&m, NULL);
731 
732 	if (flags & MCP_TIMESTAMP)
733 		m.tsc = rdtsc();
734 
735 	for (i = 0; i < this_cpu_read(mce_num_banks); i++) {
736 		if (!mce_banks[i].ctl || !test_bit(i, *b))
737 			continue;
738 
739 		m.misc = 0;
740 		m.addr = 0;
741 		m.bank = i;
742 
743 		barrier();
744 		m.status = mce_rdmsrl(mca_msr_reg(i, MCA_STATUS));
745 
746 		/* If this entry is not valid, ignore it */
747 		if (!(m.status & MCI_STATUS_VAL))
748 			continue;
749 
750 		/*
751 		 * If we are logging everything (at CPU online) or this
752 		 * is a corrected error, then we must log it.
753 		 */
754 		if ((flags & MCP_UC) || !(m.status & MCI_STATUS_UC))
755 			goto log_it;
756 
757 		/*
758 		 * Newer Intel systems that support software error
759 		 * recovery need to make additional checks. Other
760 		 * CPUs should skip over uncorrected errors, but log
761 		 * everything else.
762 		 */
763 		if (!mca_cfg.ser) {
764 			if (m.status & MCI_STATUS_UC)
765 				continue;
766 			goto log_it;
767 		}
768 
769 		/* Log "not enabled" (speculative) errors */
770 		if (!(m.status & MCI_STATUS_EN))
771 			goto log_it;
772 
773 		/*
774 		 * Log UCNA (SDM: 15.6.3 "UCR Error Classification")
775 		 * UC == 1 && PCC == 0 && S == 0
776 		 */
777 		if (!(m.status & MCI_STATUS_PCC) && !(m.status & MCI_STATUS_S))
778 			goto log_it;
779 
780 		/*
781 		 * Skip anything else. Presumption is that our read of this
782 		 * bank is racing with a machine check. Leave the log alone
783 		 * for do_machine_check() to deal with it.
784 		 */
785 		continue;
786 
787 log_it:
788 		error_seen = true;
789 
790 		if (flags & MCP_DONTLOG)
791 			goto clear_it;
792 
793 		mce_read_aux(&m, i);
794 		m.severity = mce_severity(&m, NULL, mca_cfg.tolerant, NULL, false);
795 		/*
796 		 * Don't get the IP here because it's unlikely to
797 		 * have anything to do with the actual error location.
798 		 */
799 
800 		if (mca_cfg.dont_log_ce && !mce_usable_address(&m))
801 			goto clear_it;
802 
803 		if (flags & MCP_QUEUE_LOG)
804 			mce_gen_pool_add(&m);
805 		else
806 			mce_log(&m);
807 
808 clear_it:
809 		/*
810 		 * Clear state for this bank.
811 		 */
812 		mce_wrmsrl(mca_msr_reg(i, MCA_STATUS), 0);
813 	}
814 
815 	/*
816 	 * Don't clear MCG_STATUS here because it's only defined for
817 	 * exceptions.
818 	 */
819 
820 	sync_core();
821 
822 	return error_seen;
823 }
824 EXPORT_SYMBOL_GPL(machine_check_poll);
825 
826 /*
827  * Do a quick check if any of the events requires a panic.
828  * This decides if we keep the events around or clear them.
829  */
mce_no_way_out(struct mce * m,char ** msg,unsigned long * validp,struct pt_regs * regs)830 static int mce_no_way_out(struct mce *m, char **msg, unsigned long *validp,
831 			  struct pt_regs *regs)
832 {
833 	char *tmp = *msg;
834 	int i;
835 
836 	for (i = 0; i < this_cpu_read(mce_num_banks); i++) {
837 		m->status = mce_rdmsrl(mca_msr_reg(i, MCA_STATUS));
838 		if (!(m->status & MCI_STATUS_VAL))
839 			continue;
840 
841 		__set_bit(i, validp);
842 		if (quirk_no_way_out)
843 			quirk_no_way_out(i, m, regs);
844 
845 		m->bank = i;
846 		if (mce_severity(m, regs, mca_cfg.tolerant, &tmp, true) >= MCE_PANIC_SEVERITY) {
847 			mce_read_aux(m, i);
848 			*msg = tmp;
849 			return 1;
850 		}
851 	}
852 	return 0;
853 }
854 
855 /*
856  * Variable to establish order between CPUs while scanning.
857  * Each CPU spins initially until executing is equal its number.
858  */
859 static atomic_t mce_executing;
860 
861 /*
862  * Defines order of CPUs on entry. First CPU becomes Monarch.
863  */
864 static atomic_t mce_callin;
865 
866 /*
867  * Check if a timeout waiting for other CPUs happened.
868  */
mce_timed_out(u64 * t,const char * msg)869 static int mce_timed_out(u64 *t, const char *msg)
870 {
871 	/*
872 	 * The others already did panic for some reason.
873 	 * Bail out like in a timeout.
874 	 * rmb() to tell the compiler that system_state
875 	 * might have been modified by someone else.
876 	 */
877 	rmb();
878 	if (atomic_read(&mce_panicked))
879 		wait_for_panic();
880 	if (!mca_cfg.monarch_timeout)
881 		goto out;
882 	if ((s64)*t < SPINUNIT) {
883 		if (mca_cfg.tolerant <= 1)
884 			mce_panic(msg, NULL, NULL);
885 		cpu_missing = 1;
886 		return 1;
887 	}
888 	*t -= SPINUNIT;
889 out:
890 	touch_nmi_watchdog();
891 	return 0;
892 }
893 
894 /*
895  * The Monarch's reign.  The Monarch is the CPU who entered
896  * the machine check handler first. It waits for the others to
897  * raise the exception too and then grades them. When any
898  * error is fatal panic. Only then let the others continue.
899  *
900  * The other CPUs entering the MCE handler will be controlled by the
901  * Monarch. They are called Subjects.
902  *
903  * This way we prevent any potential data corruption in a unrecoverable case
904  * and also makes sure always all CPU's errors are examined.
905  *
906  * Also this detects the case of a machine check event coming from outer
907  * space (not detected by any CPUs) In this case some external agent wants
908  * us to shut down, so panic too.
909  *
910  * The other CPUs might still decide to panic if the handler happens
911  * in a unrecoverable place, but in this case the system is in a semi-stable
912  * state and won't corrupt anything by itself. It's ok to let the others
913  * continue for a bit first.
914  *
915  * All the spin loops have timeouts; when a timeout happens a CPU
916  * typically elects itself to be Monarch.
917  */
mce_reign(void)918 static void mce_reign(void)
919 {
920 	int cpu;
921 	struct mce *m = NULL;
922 	int global_worst = 0;
923 	char *msg = NULL;
924 
925 	/*
926 	 * This CPU is the Monarch and the other CPUs have run
927 	 * through their handlers.
928 	 * Grade the severity of the errors of all the CPUs.
929 	 */
930 	for_each_possible_cpu(cpu) {
931 		struct mce *mtmp = &per_cpu(mces_seen, cpu);
932 
933 		if (mtmp->severity > global_worst) {
934 			global_worst = mtmp->severity;
935 			m = &per_cpu(mces_seen, cpu);
936 		}
937 	}
938 
939 	/*
940 	 * Cannot recover? Panic here then.
941 	 * This dumps all the mces in the log buffer and stops the
942 	 * other CPUs.
943 	 */
944 	if (m && global_worst >= MCE_PANIC_SEVERITY && mca_cfg.tolerant < 3) {
945 		/* call mce_severity() to get "msg" for panic */
946 		mce_severity(m, NULL, mca_cfg.tolerant, &msg, true);
947 		mce_panic("Fatal machine check", m, msg);
948 	}
949 
950 	/*
951 	 * For UC somewhere we let the CPU who detects it handle it.
952 	 * Also must let continue the others, otherwise the handling
953 	 * CPU could deadlock on a lock.
954 	 */
955 
956 	/*
957 	 * No machine check event found. Must be some external
958 	 * source or one CPU is hung. Panic.
959 	 */
960 	if (global_worst <= MCE_KEEP_SEVERITY && mca_cfg.tolerant < 3)
961 		mce_panic("Fatal machine check from unknown source", NULL, NULL);
962 
963 	/*
964 	 * Now clear all the mces_seen so that they don't reappear on
965 	 * the next mce.
966 	 */
967 	for_each_possible_cpu(cpu)
968 		memset(&per_cpu(mces_seen, cpu), 0, sizeof(struct mce));
969 }
970 
971 static atomic_t global_nwo;
972 
973 /*
974  * Start of Monarch synchronization. This waits until all CPUs have
975  * entered the exception handler and then determines if any of them
976  * saw a fatal event that requires panic. Then it executes them
977  * in the entry order.
978  * TBD double check parallel CPU hotunplug
979  */
mce_start(int * no_way_out)980 static int mce_start(int *no_way_out)
981 {
982 	int order;
983 	int cpus = num_online_cpus();
984 	u64 timeout = (u64)mca_cfg.monarch_timeout * NSEC_PER_USEC;
985 
986 	if (!timeout)
987 		return -1;
988 
989 	atomic_add(*no_way_out, &global_nwo);
990 	/*
991 	 * Rely on the implied barrier below, such that global_nwo
992 	 * is updated before mce_callin.
993 	 */
994 	order = atomic_inc_return(&mce_callin);
995 
996 	/*
997 	 * Wait for everyone.
998 	 */
999 	while (atomic_read(&mce_callin) != cpus) {
1000 		if (mce_timed_out(&timeout,
1001 				  "Timeout: Not all CPUs entered broadcast exception handler")) {
1002 			atomic_set(&global_nwo, 0);
1003 			return -1;
1004 		}
1005 		ndelay(SPINUNIT);
1006 	}
1007 
1008 	/*
1009 	 * mce_callin should be read before global_nwo
1010 	 */
1011 	smp_rmb();
1012 
1013 	if (order == 1) {
1014 		/*
1015 		 * Monarch: Starts executing now, the others wait.
1016 		 */
1017 		atomic_set(&mce_executing, 1);
1018 	} else {
1019 		/*
1020 		 * Subject: Now start the scanning loop one by one in
1021 		 * the original callin order.
1022 		 * This way when there are any shared banks it will be
1023 		 * only seen by one CPU before cleared, avoiding duplicates.
1024 		 */
1025 		while (atomic_read(&mce_executing) < order) {
1026 			if (mce_timed_out(&timeout,
1027 					  "Timeout: Subject CPUs unable to finish machine check processing")) {
1028 				atomic_set(&global_nwo, 0);
1029 				return -1;
1030 			}
1031 			ndelay(SPINUNIT);
1032 		}
1033 	}
1034 
1035 	/*
1036 	 * Cache the global no_way_out state.
1037 	 */
1038 	*no_way_out = atomic_read(&global_nwo);
1039 
1040 	return order;
1041 }
1042 
1043 /*
1044  * Synchronize between CPUs after main scanning loop.
1045  * This invokes the bulk of the Monarch processing.
1046  */
mce_end(int order)1047 static noinstr int mce_end(int order)
1048 {
1049 	u64 timeout = (u64)mca_cfg.monarch_timeout * NSEC_PER_USEC;
1050 	int ret = -1;
1051 
1052 	/* Allow instrumentation around external facilities. */
1053 	instrumentation_begin();
1054 
1055 	if (!timeout)
1056 		goto reset;
1057 	if (order < 0)
1058 		goto reset;
1059 
1060 	/*
1061 	 * Allow others to run.
1062 	 */
1063 	atomic_inc(&mce_executing);
1064 
1065 	if (order == 1) {
1066 		/* CHECKME: Can this race with a parallel hotplug? */
1067 		int cpus = num_online_cpus();
1068 
1069 		/*
1070 		 * Monarch: Wait for everyone to go through their scanning
1071 		 * loops.
1072 		 */
1073 		while (atomic_read(&mce_executing) <= cpus) {
1074 			if (mce_timed_out(&timeout,
1075 					  "Timeout: Monarch CPU unable to finish machine check processing"))
1076 				goto reset;
1077 			ndelay(SPINUNIT);
1078 		}
1079 
1080 		mce_reign();
1081 		barrier();
1082 		ret = 0;
1083 	} else {
1084 		/*
1085 		 * Subject: Wait for Monarch to finish.
1086 		 */
1087 		while (atomic_read(&mce_executing) != 0) {
1088 			if (mce_timed_out(&timeout,
1089 					  "Timeout: Monarch CPU did not finish machine check processing"))
1090 				goto reset;
1091 			ndelay(SPINUNIT);
1092 		}
1093 
1094 		/*
1095 		 * Don't reset anything. That's done by the Monarch.
1096 		 */
1097 		ret = 0;
1098 		goto out;
1099 	}
1100 
1101 	/*
1102 	 * Reset all global state.
1103 	 */
1104 reset:
1105 	atomic_set(&global_nwo, 0);
1106 	atomic_set(&mce_callin, 0);
1107 	barrier();
1108 
1109 	/*
1110 	 * Let others run again.
1111 	 */
1112 	atomic_set(&mce_executing, 0);
1113 
1114 out:
1115 	instrumentation_end();
1116 
1117 	return ret;
1118 }
1119 
mce_clear_state(unsigned long * toclear)1120 static void mce_clear_state(unsigned long *toclear)
1121 {
1122 	int i;
1123 
1124 	for (i = 0; i < this_cpu_read(mce_num_banks); i++) {
1125 		if (test_bit(i, toclear))
1126 			mce_wrmsrl(mca_msr_reg(i, MCA_STATUS), 0);
1127 	}
1128 }
1129 
1130 /*
1131  * Cases where we avoid rendezvous handler timeout:
1132  * 1) If this CPU is offline.
1133  *
1134  * 2) If crashing_cpu was set, e.g. we're entering kdump and we need to
1135  *  skip those CPUs which remain looping in the 1st kernel - see
1136  *  crash_nmi_callback().
1137  *
1138  * Note: there still is a small window between kexec-ing and the new,
1139  * kdump kernel establishing a new #MC handler where a broadcasted MCE
1140  * might not get handled properly.
1141  */
mce_check_crashing_cpu(void)1142 static noinstr bool mce_check_crashing_cpu(void)
1143 {
1144 	unsigned int cpu = smp_processor_id();
1145 
1146 	if (arch_cpu_is_offline(cpu) ||
1147 	    (crashing_cpu != -1 && crashing_cpu != cpu)) {
1148 		u64 mcgstatus;
1149 
1150 		mcgstatus = __rdmsr(MSR_IA32_MCG_STATUS);
1151 
1152 		if (boot_cpu_data.x86_vendor == X86_VENDOR_ZHAOXIN) {
1153 			if (mcgstatus & MCG_STATUS_LMCES)
1154 				return false;
1155 		}
1156 
1157 		if (mcgstatus & MCG_STATUS_RIPV) {
1158 			__wrmsr(MSR_IA32_MCG_STATUS, 0, 0);
1159 			return true;
1160 		}
1161 	}
1162 	return false;
1163 }
1164 
__mc_scan_banks(struct mce * m,struct pt_regs * regs,struct mce * final,unsigned long * toclear,unsigned long * valid_banks,int no_way_out,int * worst)1165 static void __mc_scan_banks(struct mce *m, struct pt_regs *regs, struct mce *final,
1166 			    unsigned long *toclear, unsigned long *valid_banks,
1167 			    int no_way_out, int *worst)
1168 {
1169 	struct mce_bank *mce_banks = this_cpu_ptr(mce_banks_array);
1170 	struct mca_config *cfg = &mca_cfg;
1171 	int severity, i;
1172 
1173 	for (i = 0; i < this_cpu_read(mce_num_banks); i++) {
1174 		__clear_bit(i, toclear);
1175 		if (!test_bit(i, valid_banks))
1176 			continue;
1177 
1178 		if (!mce_banks[i].ctl)
1179 			continue;
1180 
1181 		m->misc = 0;
1182 		m->addr = 0;
1183 		m->bank = i;
1184 
1185 		m->status = mce_rdmsrl(mca_msr_reg(i, MCA_STATUS));
1186 		if (!(m->status & MCI_STATUS_VAL))
1187 			continue;
1188 
1189 		/*
1190 		 * Corrected or non-signaled errors are handled by
1191 		 * machine_check_poll(). Leave them alone, unless this panics.
1192 		 */
1193 		if (!(m->status & (cfg->ser ? MCI_STATUS_S : MCI_STATUS_UC)) &&
1194 			!no_way_out)
1195 			continue;
1196 
1197 		/* Set taint even when machine check was not enabled. */
1198 		add_taint(TAINT_MACHINE_CHECK, LOCKDEP_NOW_UNRELIABLE);
1199 
1200 		severity = mce_severity(m, regs, cfg->tolerant, NULL, true);
1201 
1202 		/*
1203 		 * When machine check was for corrected/deferred handler don't
1204 		 * touch, unless we're panicking.
1205 		 */
1206 		if ((severity == MCE_KEEP_SEVERITY ||
1207 		     severity == MCE_UCNA_SEVERITY) && !no_way_out)
1208 			continue;
1209 
1210 		__set_bit(i, toclear);
1211 
1212 		/* Machine check event was not enabled. Clear, but ignore. */
1213 		if (severity == MCE_NO_SEVERITY)
1214 			continue;
1215 
1216 		mce_read_aux(m, i);
1217 
1218 		/* assuming valid severity level != 0 */
1219 		m->severity = severity;
1220 
1221 		mce_log(m);
1222 
1223 		if (severity > *worst) {
1224 			*final = *m;
1225 			*worst = severity;
1226 		}
1227 	}
1228 
1229 	/* mce_clear_state will clear *final, save locally for use later */
1230 	*m = *final;
1231 }
1232 
kill_me_now(struct callback_head * ch)1233 static void kill_me_now(struct callback_head *ch)
1234 {
1235 	struct task_struct *p = container_of(ch, struct task_struct, mce_kill_me);
1236 
1237 	p->mce_count = 0;
1238 	force_sig(SIGBUS);
1239 }
1240 
kill_me_maybe(struct callback_head * cb)1241 static void kill_me_maybe(struct callback_head *cb)
1242 {
1243 	struct task_struct *p = container_of(cb, struct task_struct, mce_kill_me);
1244 	int flags = MF_ACTION_REQUIRED;
1245 
1246 	p->mce_count = 0;
1247 	pr_err("Uncorrected hardware memory error in user-access at %llx", p->mce_addr);
1248 
1249 	if (!p->mce_ripv)
1250 		flags |= MF_MUST_KILL;
1251 
1252 	if (!memory_failure(p->mce_addr >> PAGE_SHIFT, flags) &&
1253 	    !(p->mce_kflags & MCE_IN_KERNEL_COPYIN)) {
1254 		set_mce_nospec(p->mce_addr >> PAGE_SHIFT, p->mce_whole_page);
1255 		sync_core();
1256 		return;
1257 	}
1258 
1259 	if (p->mce_vaddr != (void __user *)-1l) {
1260 		force_sig_mceerr(BUS_MCEERR_AR, p->mce_vaddr, PAGE_SHIFT);
1261 	} else {
1262 		pr_err("Memory error not recovered");
1263 		kill_me_now(cb);
1264 	}
1265 }
1266 
queue_task_work(struct mce * m,char * msg,int kill_current_task)1267 static void queue_task_work(struct mce *m, char *msg, int kill_current_task)
1268 {
1269 	int count = ++current->mce_count;
1270 
1271 	/* First call, save all the details */
1272 	if (count == 1) {
1273 		current->mce_addr = m->addr;
1274 		current->mce_kflags = m->kflags;
1275 		current->mce_ripv = !!(m->mcgstatus & MCG_STATUS_RIPV);
1276 		current->mce_whole_page = whole_page(m);
1277 
1278 		if (kill_current_task)
1279 			current->mce_kill_me.func = kill_me_now;
1280 		else
1281 			current->mce_kill_me.func = kill_me_maybe;
1282 	}
1283 
1284 	/* Ten is likely overkill. Don't expect more than two faults before task_work() */
1285 	if (count > 10)
1286 		mce_panic("Too many consecutive machine checks while accessing user data", m, msg);
1287 
1288 	/* Second or later call, make sure page address matches the one from first call */
1289 	if (count > 1 && (current->mce_addr >> PAGE_SHIFT) != (m->addr >> PAGE_SHIFT))
1290 		mce_panic("Consecutive machine checks to different user pages", m, msg);
1291 
1292 	/* Do not call task_work_add() more than once */
1293 	if (count > 1)
1294 		return;
1295 
1296 	task_work_add(current, &current->mce_kill_me, TWA_RESUME);
1297 }
1298 
1299 /*
1300  * The actual machine check handler. This only handles real
1301  * exceptions when something got corrupted coming in through int 18.
1302  *
1303  * This is executed in NMI context not subject to normal locking rules. This
1304  * implies that most kernel services cannot be safely used. Don't even
1305  * think about putting a printk in there!
1306  *
1307  * On Intel systems this is entered on all CPUs in parallel through
1308  * MCE broadcast. However some CPUs might be broken beyond repair,
1309  * so be always careful when synchronizing with others.
1310  *
1311  * Tracing and kprobes are disabled: if we interrupted a kernel context
1312  * with IF=1, we need to minimize stack usage.  There are also recursion
1313  * issues: if the machine check was due to a failure of the memory
1314  * backing the user stack, tracing that reads the user stack will cause
1315  * potentially infinite recursion.
1316  */
do_machine_check(struct pt_regs * regs)1317 noinstr void do_machine_check(struct pt_regs *regs)
1318 {
1319 	DECLARE_BITMAP(valid_banks, MAX_NR_BANKS);
1320 	DECLARE_BITMAP(toclear, MAX_NR_BANKS);
1321 	struct mca_config *cfg = &mca_cfg;
1322 	struct mce m, *final;
1323 	char *msg = NULL;
1324 	int worst = 0;
1325 
1326 	/*
1327 	 * Establish sequential order between the CPUs entering the machine
1328 	 * check handler.
1329 	 */
1330 	int order = -1;
1331 
1332 	/*
1333 	 * If no_way_out gets set, there is no safe way to recover from this
1334 	 * MCE.  If mca_cfg.tolerant is cranked up, we'll try anyway.
1335 	 */
1336 	int no_way_out = 0;
1337 
1338 	/*
1339 	 * If kill_it gets set, there might be a way to recover from this
1340 	 * error.
1341 	 */
1342 	int kill_it = 0;
1343 
1344 	/*
1345 	 * MCEs are always local on AMD. Same is determined by MCG_STATUS_LMCES
1346 	 * on Intel.
1347 	 */
1348 	int lmce = 1;
1349 
1350 	this_cpu_inc(mce_exception_count);
1351 
1352 	mce_gather_info(&m, regs);
1353 	m.tsc = rdtsc();
1354 
1355 	final = this_cpu_ptr(&mces_seen);
1356 	*final = m;
1357 
1358 	memset(valid_banks, 0, sizeof(valid_banks));
1359 	no_way_out = mce_no_way_out(&m, &msg, valid_banks, regs);
1360 
1361 	barrier();
1362 
1363 	/*
1364 	 * When no restart IP might need to kill or panic.
1365 	 * Assume the worst for now, but if we find the
1366 	 * severity is MCE_AR_SEVERITY we have other options.
1367 	 */
1368 	if (!(m.mcgstatus & MCG_STATUS_RIPV))
1369 		kill_it = 1;
1370 
1371 	/*
1372 	 * Check if this MCE is signaled to only this logical processor,
1373 	 * on Intel, Zhaoxin only.
1374 	 */
1375 	if (m.cpuvendor == X86_VENDOR_INTEL ||
1376 	    m.cpuvendor == X86_VENDOR_ZHAOXIN)
1377 		lmce = m.mcgstatus & MCG_STATUS_LMCES;
1378 
1379 	/*
1380 	 * Local machine check may already know that we have to panic.
1381 	 * Broadcast machine check begins rendezvous in mce_start()
1382 	 * Go through all banks in exclusion of the other CPUs. This way we
1383 	 * don't report duplicated events on shared banks because the first one
1384 	 * to see it will clear it.
1385 	 */
1386 	if (lmce) {
1387 		if (no_way_out)
1388 			mce_panic("Fatal local machine check", &m, msg);
1389 	} else {
1390 		order = mce_start(&no_way_out);
1391 	}
1392 
1393 	__mc_scan_banks(&m, regs, final, toclear, valid_banks, no_way_out, &worst);
1394 
1395 	if (!no_way_out)
1396 		mce_clear_state(toclear);
1397 
1398 	/*
1399 	 * Do most of the synchronization with other CPUs.
1400 	 * When there's any problem use only local no_way_out state.
1401 	 */
1402 	if (!lmce) {
1403 		if (mce_end(order) < 0) {
1404 			if (!no_way_out)
1405 				no_way_out = worst >= MCE_PANIC_SEVERITY;
1406 		}
1407 	} else {
1408 		/*
1409 		 * If there was a fatal machine check we should have
1410 		 * already called mce_panic earlier in this function.
1411 		 * Since we re-read the banks, we might have found
1412 		 * something new. Check again to see if we found a
1413 		 * fatal error. We call "mce_severity()" again to
1414 		 * make sure we have the right "msg".
1415 		 */
1416 		if (worst >= MCE_PANIC_SEVERITY && mca_cfg.tolerant < 3) {
1417 			mce_severity(&m, regs, cfg->tolerant, &msg, true);
1418 			mce_panic("Local fatal machine check!", &m, msg);
1419 		}
1420 	}
1421 
1422 	/*
1423 	 * If tolerant is at an insane level we drop requests to kill
1424 	 * processes and continue even when there is no way out.
1425 	 */
1426 	if (cfg->tolerant == 3)
1427 		kill_it = 0;
1428 	else if (no_way_out)
1429 		mce_panic("Fatal machine check on current CPU", &m, msg);
1430 
1431 	if (worst > 0)
1432 		irq_work_queue(&mce_irq_work);
1433 
1434 	if (worst != MCE_AR_SEVERITY && !kill_it)
1435 		goto out;
1436 
1437 	/*
1438 	 * Enable instrumentation around the external facilities like
1439 	 * task_work_add() (via queue_task_work()), fixup_exception() etc.
1440 	 * For now, that is. Fixing this properly would need a lot more involved
1441 	 * reorganization.
1442 	 */
1443 	instrumentation_begin();
1444 
1445 	/* Fault was in user mode and we need to take some action */
1446 	if ((m.cs & 3) == 3) {
1447 		/* If this triggers there is no way to recover. Die hard. */
1448 		BUG_ON(!on_thread_stack() || !user_mode(regs));
1449 
1450 		queue_task_work(&m, msg, kill_it);
1451 
1452 	} else {
1453 		/*
1454 		 * Handle an MCE which has happened in kernel space but from
1455 		 * which the kernel can recover: ex_has_fault_handler() has
1456 		 * already verified that the rIP at which the error happened is
1457 		 * a rIP from which the kernel can recover (by jumping to
1458 		 * recovery code specified in _ASM_EXTABLE_FAULT()) and the
1459 		 * corresponding exception handler which would do that is the
1460 		 * proper one.
1461 		 */
1462 		if (m.kflags & MCE_IN_KERNEL_RECOV) {
1463 			if (!fixup_exception(regs, X86_TRAP_MC, 0, 0))
1464 				mce_panic("Failed kernel mode recovery", &m, msg);
1465 		}
1466 
1467 		if (m.kflags & MCE_IN_KERNEL_COPYIN)
1468 			queue_task_work(&m, msg, kill_it);
1469 	}
1470 
1471 	instrumentation_end();
1472 
1473 out:
1474 	mce_wrmsrl(MSR_IA32_MCG_STATUS, 0);
1475 }
1476 EXPORT_SYMBOL_GPL(do_machine_check);
1477 
1478 #ifndef CONFIG_MEMORY_FAILURE
memory_failure(unsigned long pfn,int flags)1479 int memory_failure(unsigned long pfn, int flags)
1480 {
1481 	/* mce_severity() should not hand us an ACTION_REQUIRED error */
1482 	BUG_ON(flags & MF_ACTION_REQUIRED);
1483 	pr_err("Uncorrected memory error in page 0x%lx ignored\n"
1484 	       "Rebuild kernel with CONFIG_MEMORY_FAILURE=y for smarter handling\n",
1485 	       pfn);
1486 
1487 	return 0;
1488 }
1489 #endif
1490 
1491 /*
1492  * Periodic polling timer for "silent" machine check errors.  If the
1493  * poller finds an MCE, poll 2x faster.  When the poller finds no more
1494  * errors, poll 2x slower (up to check_interval seconds).
1495  */
1496 static unsigned long check_interval = INITIAL_CHECK_INTERVAL;
1497 
1498 static DEFINE_PER_CPU(unsigned long, mce_next_interval); /* in jiffies */
1499 static DEFINE_PER_CPU(struct timer_list, mce_timer);
1500 
mce_adjust_timer_default(unsigned long interval)1501 static unsigned long mce_adjust_timer_default(unsigned long interval)
1502 {
1503 	return interval;
1504 }
1505 
1506 static unsigned long (*mce_adjust_timer)(unsigned long interval) = mce_adjust_timer_default;
1507 
__start_timer(struct timer_list * t,unsigned long interval)1508 static void __start_timer(struct timer_list *t, unsigned long interval)
1509 {
1510 	unsigned long when = jiffies + interval;
1511 	unsigned long flags;
1512 
1513 	local_irq_save(flags);
1514 
1515 	if (!timer_pending(t) || time_before(when, t->expires))
1516 		mod_timer(t, round_jiffies(when));
1517 
1518 	local_irq_restore(flags);
1519 }
1520 
mce_timer_fn(struct timer_list * t)1521 static void mce_timer_fn(struct timer_list *t)
1522 {
1523 	struct timer_list *cpu_t = this_cpu_ptr(&mce_timer);
1524 	unsigned long iv;
1525 
1526 	WARN_ON(cpu_t != t);
1527 
1528 	iv = __this_cpu_read(mce_next_interval);
1529 
1530 	if (mce_available(this_cpu_ptr(&cpu_info))) {
1531 		machine_check_poll(0, this_cpu_ptr(&mce_poll_banks));
1532 
1533 		if (mce_intel_cmci_poll()) {
1534 			iv = mce_adjust_timer(iv);
1535 			goto done;
1536 		}
1537 	}
1538 
1539 	/*
1540 	 * Alert userspace if needed. If we logged an MCE, reduce the polling
1541 	 * interval, otherwise increase the polling interval.
1542 	 */
1543 	if (mce_notify_irq())
1544 		iv = max(iv / 2, (unsigned long) HZ/100);
1545 	else
1546 		iv = min(iv * 2, round_jiffies_relative(check_interval * HZ));
1547 
1548 done:
1549 	__this_cpu_write(mce_next_interval, iv);
1550 	__start_timer(t, iv);
1551 }
1552 
1553 /*
1554  * Ensure that the timer is firing in @interval from now.
1555  */
mce_timer_kick(unsigned long interval)1556 void mce_timer_kick(unsigned long interval)
1557 {
1558 	struct timer_list *t = this_cpu_ptr(&mce_timer);
1559 	unsigned long iv = __this_cpu_read(mce_next_interval);
1560 
1561 	__start_timer(t, interval);
1562 
1563 	if (interval < iv)
1564 		__this_cpu_write(mce_next_interval, interval);
1565 }
1566 
1567 /* Must not be called in IRQ context where del_timer_sync() can deadlock */
mce_timer_delete_all(void)1568 static void mce_timer_delete_all(void)
1569 {
1570 	int cpu;
1571 
1572 	for_each_online_cpu(cpu)
1573 		del_timer_sync(&per_cpu(mce_timer, cpu));
1574 }
1575 
1576 /*
1577  * Notify the user(s) about new machine check events.
1578  * Can be called from interrupt context, but not from machine check/NMI
1579  * context.
1580  */
mce_notify_irq(void)1581 int mce_notify_irq(void)
1582 {
1583 	/* Not more than two messages every minute */
1584 	static DEFINE_RATELIMIT_STATE(ratelimit, 60*HZ, 2);
1585 
1586 	if (test_and_clear_bit(0, &mce_need_notify)) {
1587 		mce_work_trigger();
1588 
1589 		if (__ratelimit(&ratelimit))
1590 			pr_info(HW_ERR "Machine check events logged\n");
1591 
1592 		return 1;
1593 	}
1594 	return 0;
1595 }
1596 EXPORT_SYMBOL_GPL(mce_notify_irq);
1597 
__mcheck_cpu_mce_banks_init(void)1598 static void __mcheck_cpu_mce_banks_init(void)
1599 {
1600 	struct mce_bank *mce_banks = this_cpu_ptr(mce_banks_array);
1601 	u8 n_banks = this_cpu_read(mce_num_banks);
1602 	int i;
1603 
1604 	for (i = 0; i < n_banks; i++) {
1605 		struct mce_bank *b = &mce_banks[i];
1606 
1607 		/*
1608 		 * Init them all, __mcheck_cpu_apply_quirks() is going to apply
1609 		 * the required vendor quirks before
1610 		 * __mcheck_cpu_init_clear_banks() does the final bank setup.
1611 		 */
1612 		b->ctl = -1ULL;
1613 		b->init = 1;
1614 	}
1615 }
1616 
1617 /*
1618  * Initialize Machine Checks for a CPU.
1619  */
__mcheck_cpu_cap_init(void)1620 static void __mcheck_cpu_cap_init(void)
1621 {
1622 	u64 cap;
1623 	u8 b;
1624 
1625 	rdmsrl(MSR_IA32_MCG_CAP, cap);
1626 
1627 	b = cap & MCG_BANKCNT_MASK;
1628 
1629 	if (b > MAX_NR_BANKS) {
1630 		pr_warn("CPU%d: Using only %u machine check banks out of %u\n",
1631 			smp_processor_id(), MAX_NR_BANKS, b);
1632 		b = MAX_NR_BANKS;
1633 	}
1634 
1635 	this_cpu_write(mce_num_banks, b);
1636 
1637 	__mcheck_cpu_mce_banks_init();
1638 
1639 	/* Use accurate RIP reporting if available. */
1640 	if ((cap & MCG_EXT_P) && MCG_EXT_CNT(cap) >= 9)
1641 		mca_cfg.rip_msr = MSR_IA32_MCG_EIP;
1642 
1643 	if (cap & MCG_SER_P)
1644 		mca_cfg.ser = 1;
1645 }
1646 
__mcheck_cpu_init_generic(void)1647 static void __mcheck_cpu_init_generic(void)
1648 {
1649 	enum mcp_flags m_fl = 0;
1650 	mce_banks_t all_banks;
1651 	u64 cap;
1652 
1653 	if (!mca_cfg.bootlog)
1654 		m_fl = MCP_DONTLOG;
1655 
1656 	/*
1657 	 * Log the machine checks left over from the previous reset. Log them
1658 	 * only, do not start processing them. That will happen in mcheck_late_init()
1659 	 * when all consumers have been registered on the notifier chain.
1660 	 */
1661 	bitmap_fill(all_banks, MAX_NR_BANKS);
1662 	machine_check_poll(MCP_UC | MCP_QUEUE_LOG | m_fl, &all_banks);
1663 
1664 	cr4_set_bits(X86_CR4_MCE);
1665 
1666 	rdmsrl(MSR_IA32_MCG_CAP, cap);
1667 	if (cap & MCG_CTL_P)
1668 		wrmsr(MSR_IA32_MCG_CTL, 0xffffffff, 0xffffffff);
1669 }
1670 
__mcheck_cpu_init_clear_banks(void)1671 static void __mcheck_cpu_init_clear_banks(void)
1672 {
1673 	struct mce_bank *mce_banks = this_cpu_ptr(mce_banks_array);
1674 	int i;
1675 
1676 	for (i = 0; i < this_cpu_read(mce_num_banks); i++) {
1677 		struct mce_bank *b = &mce_banks[i];
1678 
1679 		if (!b->init)
1680 			continue;
1681 		wrmsrl(mca_msr_reg(i, MCA_CTL), b->ctl);
1682 		wrmsrl(mca_msr_reg(i, MCA_STATUS), 0);
1683 	}
1684 }
1685 
1686 /*
1687  * Do a final check to see if there are any unused/RAZ banks.
1688  *
1689  * This must be done after the banks have been initialized and any quirks have
1690  * been applied.
1691  *
1692  * Do not call this from any user-initiated flows, e.g. CPU hotplug or sysfs.
1693  * Otherwise, a user who disables a bank will not be able to re-enable it
1694  * without a system reboot.
1695  */
__mcheck_cpu_check_banks(void)1696 static void __mcheck_cpu_check_banks(void)
1697 {
1698 	struct mce_bank *mce_banks = this_cpu_ptr(mce_banks_array);
1699 	u64 msrval;
1700 	int i;
1701 
1702 	for (i = 0; i < this_cpu_read(mce_num_banks); i++) {
1703 		struct mce_bank *b = &mce_banks[i];
1704 
1705 		if (!b->init)
1706 			continue;
1707 
1708 		rdmsrl(mca_msr_reg(i, MCA_CTL), msrval);
1709 		b->init = !!msrval;
1710 	}
1711 }
1712 
1713 /*
1714  * During IFU recovery Sandy Bridge -EP4S processors set the RIPV and
1715  * EIPV bits in MCG_STATUS to zero on the affected logical processor (SDM
1716  * Vol 3B Table 15-20). But this confuses both the code that determines
1717  * whether the machine check occurred in kernel or user mode, and also
1718  * the severity assessment code. Pretend that EIPV was set, and take the
1719  * ip/cs values from the pt_regs that mce_gather_info() ignored earlier.
1720  */
quirk_sandybridge_ifu(int bank,struct mce * m,struct pt_regs * regs)1721 static void quirk_sandybridge_ifu(int bank, struct mce *m, struct pt_regs *regs)
1722 {
1723 	if (bank != 0)
1724 		return;
1725 	if ((m->mcgstatus & (MCG_STATUS_EIPV|MCG_STATUS_RIPV)) != 0)
1726 		return;
1727 	if ((m->status & (MCI_STATUS_OVER|MCI_STATUS_UC|
1728 		          MCI_STATUS_EN|MCI_STATUS_MISCV|MCI_STATUS_ADDRV|
1729 			  MCI_STATUS_PCC|MCI_STATUS_S|MCI_STATUS_AR|
1730 			  MCACOD)) !=
1731 			 (MCI_STATUS_UC|MCI_STATUS_EN|
1732 			  MCI_STATUS_MISCV|MCI_STATUS_ADDRV|MCI_STATUS_S|
1733 			  MCI_STATUS_AR|MCACOD_INSTR))
1734 		return;
1735 
1736 	m->mcgstatus |= MCG_STATUS_EIPV;
1737 	m->ip = regs->ip;
1738 	m->cs = regs->cs;
1739 }
1740 
1741 /* Add per CPU specific workarounds here */
__mcheck_cpu_apply_quirks(struct cpuinfo_x86 * c)1742 static int __mcheck_cpu_apply_quirks(struct cpuinfo_x86 *c)
1743 {
1744 	struct mce_bank *mce_banks = this_cpu_ptr(mce_banks_array);
1745 	struct mca_config *cfg = &mca_cfg;
1746 
1747 	if (c->x86_vendor == X86_VENDOR_UNKNOWN) {
1748 		pr_info("unknown CPU type - not enabling MCE support\n");
1749 		return -EOPNOTSUPP;
1750 	}
1751 
1752 	/* This should be disabled by the BIOS, but isn't always */
1753 	if (c->x86_vendor == X86_VENDOR_AMD) {
1754 		if (c->x86 == 15 && this_cpu_read(mce_num_banks) > 4) {
1755 			/*
1756 			 * disable GART TBL walk error reporting, which
1757 			 * trips off incorrectly with the IOMMU & 3ware
1758 			 * & Cerberus:
1759 			 */
1760 			clear_bit(10, (unsigned long *)&mce_banks[4].ctl);
1761 		}
1762 		if (c->x86 < 0x11 && cfg->bootlog < 0) {
1763 			/*
1764 			 * Lots of broken BIOS around that don't clear them
1765 			 * by default and leave crap in there. Don't log:
1766 			 */
1767 			cfg->bootlog = 0;
1768 		}
1769 		/*
1770 		 * Various K7s with broken bank 0 around. Always disable
1771 		 * by default.
1772 		 */
1773 		if (c->x86 == 6 && this_cpu_read(mce_num_banks) > 0)
1774 			mce_banks[0].ctl = 0;
1775 
1776 		/*
1777 		 * overflow_recov is supported for F15h Models 00h-0fh
1778 		 * even though we don't have a CPUID bit for it.
1779 		 */
1780 		if (c->x86 == 0x15 && c->x86_model <= 0xf)
1781 			mce_flags.overflow_recov = 1;
1782 
1783 	}
1784 
1785 	if (c->x86_vendor == X86_VENDOR_INTEL) {
1786 		/*
1787 		 * SDM documents that on family 6 bank 0 should not be written
1788 		 * because it aliases to another special BIOS controlled
1789 		 * register.
1790 		 * But it's not aliased anymore on model 0x1a+
1791 		 * Don't ignore bank 0 completely because there could be a
1792 		 * valid event later, merely don't write CTL0.
1793 		 */
1794 
1795 		if (c->x86 == 6 && c->x86_model < 0x1A && this_cpu_read(mce_num_banks) > 0)
1796 			mce_banks[0].init = 0;
1797 
1798 		/*
1799 		 * All newer Intel systems support MCE broadcasting. Enable
1800 		 * synchronization with a one second timeout.
1801 		 */
1802 		if ((c->x86 > 6 || (c->x86 == 6 && c->x86_model >= 0xe)) &&
1803 			cfg->monarch_timeout < 0)
1804 			cfg->monarch_timeout = USEC_PER_SEC;
1805 
1806 		/*
1807 		 * There are also broken BIOSes on some Pentium M and
1808 		 * earlier systems:
1809 		 */
1810 		if (c->x86 == 6 && c->x86_model <= 13 && cfg->bootlog < 0)
1811 			cfg->bootlog = 0;
1812 
1813 		if (c->x86 == 6 && c->x86_model == 45)
1814 			quirk_no_way_out = quirk_sandybridge_ifu;
1815 	}
1816 
1817 	if (c->x86_vendor == X86_VENDOR_ZHAOXIN) {
1818 		/*
1819 		 * All newer Zhaoxin CPUs support MCE broadcasting. Enable
1820 		 * synchronization with a one second timeout.
1821 		 */
1822 		if (c->x86 > 6 || (c->x86_model == 0x19 || c->x86_model == 0x1f)) {
1823 			if (cfg->monarch_timeout < 0)
1824 				cfg->monarch_timeout = USEC_PER_SEC;
1825 		}
1826 	}
1827 
1828 	if (cfg->monarch_timeout < 0)
1829 		cfg->monarch_timeout = 0;
1830 	if (cfg->bootlog != 0)
1831 		cfg->panic_timeout = 30;
1832 
1833 	return 0;
1834 }
1835 
__mcheck_cpu_ancient_init(struct cpuinfo_x86 * c)1836 static int __mcheck_cpu_ancient_init(struct cpuinfo_x86 *c)
1837 {
1838 	if (c->x86 != 5)
1839 		return 0;
1840 
1841 	switch (c->x86_vendor) {
1842 	case X86_VENDOR_INTEL:
1843 		intel_p5_mcheck_init(c);
1844 		return 1;
1845 		break;
1846 	case X86_VENDOR_CENTAUR:
1847 		winchip_mcheck_init(c);
1848 		return 1;
1849 		break;
1850 	default:
1851 		return 0;
1852 	}
1853 
1854 	return 0;
1855 }
1856 
1857 /*
1858  * Init basic CPU features needed for early decoding of MCEs.
1859  */
__mcheck_cpu_init_early(struct cpuinfo_x86 * c)1860 static void __mcheck_cpu_init_early(struct cpuinfo_x86 *c)
1861 {
1862 	if (c->x86_vendor == X86_VENDOR_AMD || c->x86_vendor == X86_VENDOR_HYGON) {
1863 		mce_flags.overflow_recov = !!cpu_has(c, X86_FEATURE_OVERFLOW_RECOV);
1864 		mce_flags.succor	 = !!cpu_has(c, X86_FEATURE_SUCCOR);
1865 		mce_flags.smca		 = !!cpu_has(c, X86_FEATURE_SMCA);
1866 		mce_flags.amd_threshold	 = 1;
1867 	}
1868 }
1869 
mce_centaur_feature_init(struct cpuinfo_x86 * c)1870 static void mce_centaur_feature_init(struct cpuinfo_x86 *c)
1871 {
1872 	struct mca_config *cfg = &mca_cfg;
1873 
1874 	 /*
1875 	  * All newer Centaur CPUs support MCE broadcasting. Enable
1876 	  * synchronization with a one second timeout.
1877 	  */
1878 	if ((c->x86 == 6 && c->x86_model == 0xf && c->x86_stepping >= 0xe) ||
1879 	     c->x86 > 6) {
1880 		if (cfg->monarch_timeout < 0)
1881 			cfg->monarch_timeout = USEC_PER_SEC;
1882 	}
1883 }
1884 
mce_zhaoxin_feature_init(struct cpuinfo_x86 * c)1885 static void mce_zhaoxin_feature_init(struct cpuinfo_x86 *c)
1886 {
1887 	struct mce_bank *mce_banks = this_cpu_ptr(mce_banks_array);
1888 
1889 	/*
1890 	 * These CPUs have MCA bank 8 which reports only one error type called
1891 	 * SVAD (System View Address Decoder). The reporting of that error is
1892 	 * controlled by IA32_MC8.CTL.0.
1893 	 *
1894 	 * If enabled, prefetching on these CPUs will cause SVAD MCE when
1895 	 * virtual machines start and result in a system  panic. Always disable
1896 	 * bank 8 SVAD error by default.
1897 	 */
1898 	if ((c->x86 == 7 && c->x86_model == 0x1b) ||
1899 	    (c->x86_model == 0x19 || c->x86_model == 0x1f)) {
1900 		if (this_cpu_read(mce_num_banks) > 8)
1901 			mce_banks[8].ctl = 0;
1902 	}
1903 
1904 	intel_init_cmci();
1905 	intel_init_lmce();
1906 	mce_adjust_timer = cmci_intel_adjust_timer;
1907 }
1908 
mce_zhaoxin_feature_clear(struct cpuinfo_x86 * c)1909 static void mce_zhaoxin_feature_clear(struct cpuinfo_x86 *c)
1910 {
1911 	intel_clear_lmce();
1912 }
1913 
__mcheck_cpu_init_vendor(struct cpuinfo_x86 * c)1914 static void __mcheck_cpu_init_vendor(struct cpuinfo_x86 *c)
1915 {
1916 	switch (c->x86_vendor) {
1917 	case X86_VENDOR_INTEL:
1918 		mce_intel_feature_init(c);
1919 		mce_adjust_timer = cmci_intel_adjust_timer;
1920 		break;
1921 
1922 	case X86_VENDOR_AMD: {
1923 		mce_amd_feature_init(c);
1924 		break;
1925 		}
1926 
1927 	case X86_VENDOR_HYGON:
1928 		mce_hygon_feature_init(c);
1929 		break;
1930 
1931 	case X86_VENDOR_CENTAUR:
1932 		mce_centaur_feature_init(c);
1933 		break;
1934 
1935 	case X86_VENDOR_ZHAOXIN:
1936 		mce_zhaoxin_feature_init(c);
1937 		break;
1938 
1939 	default:
1940 		break;
1941 	}
1942 }
1943 
__mcheck_cpu_clear_vendor(struct cpuinfo_x86 * c)1944 static void __mcheck_cpu_clear_vendor(struct cpuinfo_x86 *c)
1945 {
1946 	switch (c->x86_vendor) {
1947 	case X86_VENDOR_INTEL:
1948 		mce_intel_feature_clear(c);
1949 		break;
1950 
1951 	case X86_VENDOR_ZHAOXIN:
1952 		mce_zhaoxin_feature_clear(c);
1953 		break;
1954 
1955 	default:
1956 		break;
1957 	}
1958 }
1959 
mce_start_timer(struct timer_list * t)1960 static void mce_start_timer(struct timer_list *t)
1961 {
1962 	unsigned long iv = check_interval * HZ;
1963 
1964 	if (mca_cfg.ignore_ce || !iv)
1965 		return;
1966 
1967 	this_cpu_write(mce_next_interval, iv);
1968 	__start_timer(t, iv);
1969 }
1970 
__mcheck_cpu_setup_timer(void)1971 static void __mcheck_cpu_setup_timer(void)
1972 {
1973 	struct timer_list *t = this_cpu_ptr(&mce_timer);
1974 
1975 	timer_setup(t, mce_timer_fn, TIMER_PINNED);
1976 }
1977 
__mcheck_cpu_init_timer(void)1978 static void __mcheck_cpu_init_timer(void)
1979 {
1980 	struct timer_list *t = this_cpu_ptr(&mce_timer);
1981 
1982 	timer_setup(t, mce_timer_fn, TIMER_PINNED);
1983 	mce_start_timer(t);
1984 }
1985 
filter_mce(struct mce * m)1986 bool filter_mce(struct mce *m)
1987 {
1988 	if (boot_cpu_data.x86_vendor == X86_VENDOR_AMD)
1989 		return amd_filter_mce(m);
1990 	if (boot_cpu_data.x86_vendor == X86_VENDOR_INTEL)
1991 		return intel_filter_mce(m);
1992 
1993 	return false;
1994 }
1995 
1996 /* Handle unconfigured int18 (should never happen) */
unexpected_machine_check(struct pt_regs * regs)1997 static noinstr void unexpected_machine_check(struct pt_regs *regs)
1998 {
1999 	instrumentation_begin();
2000 	pr_err("CPU#%d: Unexpected int18 (Machine Check)\n",
2001 	       smp_processor_id());
2002 	instrumentation_end();
2003 }
2004 
2005 /* Call the installed machine check handler for this CPU setup. */
2006 void (*machine_check_vector)(struct pt_regs *) = unexpected_machine_check;
2007 
exc_machine_check_kernel(struct pt_regs * regs)2008 static __always_inline void exc_machine_check_kernel(struct pt_regs *regs)
2009 {
2010 	irqentry_state_t irq_state;
2011 
2012 	WARN_ON_ONCE(user_mode(regs));
2013 
2014 	/*
2015 	 * Only required when from kernel mode. See
2016 	 * mce_check_crashing_cpu() for details.
2017 	 */
2018 	if (machine_check_vector == do_machine_check &&
2019 	    mce_check_crashing_cpu())
2020 		return;
2021 
2022 	irq_state = irqentry_nmi_enter(regs);
2023 	/*
2024 	 * The call targets are marked noinstr, but objtool can't figure
2025 	 * that out because it's an indirect call. Annotate it.
2026 	 */
2027 	instrumentation_begin();
2028 	trace_hardirqs_off_finish();
2029 	machine_check_vector(regs);
2030 	if (regs->flags & X86_EFLAGS_IF)
2031 		trace_hardirqs_on_prepare();
2032 	instrumentation_end();
2033 	irqentry_nmi_exit(regs, irq_state);
2034 }
2035 
exc_machine_check_user(struct pt_regs * regs)2036 static __always_inline void exc_machine_check_user(struct pt_regs *regs)
2037 {
2038 	irqentry_enter_from_user_mode(regs);
2039 	instrumentation_begin();
2040 	machine_check_vector(regs);
2041 	instrumentation_end();
2042 	irqentry_exit_to_user_mode(regs);
2043 }
2044 
2045 #ifdef CONFIG_X86_64
2046 /* MCE hit kernel mode */
DEFINE_IDTENTRY_MCE(exc_machine_check)2047 DEFINE_IDTENTRY_MCE(exc_machine_check)
2048 {
2049 	unsigned long dr7;
2050 
2051 	dr7 = local_db_save();
2052 	exc_machine_check_kernel(regs);
2053 	local_db_restore(dr7);
2054 }
2055 
2056 /* The user mode variant. */
DEFINE_IDTENTRY_MCE_USER(exc_machine_check)2057 DEFINE_IDTENTRY_MCE_USER(exc_machine_check)
2058 {
2059 	unsigned long dr7;
2060 
2061 	dr7 = local_db_save();
2062 	exc_machine_check_user(regs);
2063 	local_db_restore(dr7);
2064 }
2065 #else
2066 /* 32bit unified entry point */
DEFINE_IDTENTRY_RAW(exc_machine_check)2067 DEFINE_IDTENTRY_RAW(exc_machine_check)
2068 {
2069 	unsigned long dr7;
2070 
2071 	dr7 = local_db_save();
2072 	if (user_mode(regs))
2073 		exc_machine_check_user(regs);
2074 	else
2075 		exc_machine_check_kernel(regs);
2076 	local_db_restore(dr7);
2077 }
2078 #endif
2079 
2080 /*
2081  * Called for each booted CPU to set up machine checks.
2082  * Must be called with preempt off:
2083  */
mcheck_cpu_init(struct cpuinfo_x86 * c)2084 void mcheck_cpu_init(struct cpuinfo_x86 *c)
2085 {
2086 	if (mca_cfg.disabled)
2087 		return;
2088 
2089 	if (__mcheck_cpu_ancient_init(c))
2090 		return;
2091 
2092 	if (!mce_available(c))
2093 		return;
2094 
2095 	__mcheck_cpu_cap_init();
2096 
2097 	if (__mcheck_cpu_apply_quirks(c) < 0) {
2098 		mca_cfg.disabled = 1;
2099 		return;
2100 	}
2101 
2102 	if (mce_gen_pool_init()) {
2103 		mca_cfg.disabled = 1;
2104 		pr_emerg("Couldn't allocate MCE records pool!\n");
2105 		return;
2106 	}
2107 
2108 	machine_check_vector = do_machine_check;
2109 
2110 	__mcheck_cpu_init_early(c);
2111 	__mcheck_cpu_init_generic();
2112 	__mcheck_cpu_init_vendor(c);
2113 	__mcheck_cpu_init_clear_banks();
2114 	__mcheck_cpu_check_banks();
2115 	__mcheck_cpu_setup_timer();
2116 }
2117 
2118 /*
2119  * Called for each booted CPU to clear some machine checks opt-ins
2120  */
mcheck_cpu_clear(struct cpuinfo_x86 * c)2121 void mcheck_cpu_clear(struct cpuinfo_x86 *c)
2122 {
2123 	if (mca_cfg.disabled)
2124 		return;
2125 
2126 	if (!mce_available(c))
2127 		return;
2128 
2129 	/*
2130 	 * Possibly to clear general settings generic to x86
2131 	 * __mcheck_cpu_clear_generic(c);
2132 	 */
2133 	__mcheck_cpu_clear_vendor(c);
2134 
2135 }
2136 
__mce_disable_bank(void * arg)2137 static void __mce_disable_bank(void *arg)
2138 {
2139 	int bank = *((int *)arg);
2140 	__clear_bit(bank, this_cpu_ptr(mce_poll_banks));
2141 	cmci_disable_bank(bank);
2142 }
2143 
mce_disable_bank(int bank)2144 void mce_disable_bank(int bank)
2145 {
2146 	if (bank >= this_cpu_read(mce_num_banks)) {
2147 		pr_warn(FW_BUG
2148 			"Ignoring request to disable invalid MCA bank %d.\n",
2149 			bank);
2150 		return;
2151 	}
2152 	set_bit(bank, mce_banks_ce_disabled);
2153 	on_each_cpu(__mce_disable_bank, &bank, 1);
2154 }
2155 
2156 /*
2157  * mce=off Disables machine check
2158  * mce=no_cmci Disables CMCI
2159  * mce=no_lmce Disables LMCE
2160  * mce=dont_log_ce Clears corrected events silently, no log created for CEs.
2161  * mce=print_all Print all machine check logs to console
2162  * mce=ignore_ce Disables polling and CMCI, corrected events are not cleared.
2163  * mce=TOLERANCELEVEL[,monarchtimeout] (number, see above)
2164  *	monarchtimeout is how long to wait for other CPUs on machine
2165  *	check, or 0 to not wait
2166  * mce=bootlog Log MCEs from before booting. Disabled by default on AMD Fam10h
2167 	and older.
2168  * mce=nobootlog Don't log MCEs from before booting.
2169  * mce=bios_cmci_threshold Don't program the CMCI threshold
2170  * mce=recovery force enable copy_mc_fragile()
2171  */
mcheck_enable(char * str)2172 static int __init mcheck_enable(char *str)
2173 {
2174 	struct mca_config *cfg = &mca_cfg;
2175 
2176 	if (*str == 0) {
2177 		enable_p5_mce();
2178 		return 1;
2179 	}
2180 	if (*str == '=')
2181 		str++;
2182 	if (!strcmp(str, "off"))
2183 		cfg->disabled = 1;
2184 	else if (!strcmp(str, "no_cmci"))
2185 		cfg->cmci_disabled = true;
2186 	else if (!strcmp(str, "no_lmce"))
2187 		cfg->lmce_disabled = 1;
2188 	else if (!strcmp(str, "dont_log_ce"))
2189 		cfg->dont_log_ce = true;
2190 	else if (!strcmp(str, "print_all"))
2191 		cfg->print_all = true;
2192 	else if (!strcmp(str, "ignore_ce"))
2193 		cfg->ignore_ce = true;
2194 	else if (!strcmp(str, "bootlog") || !strcmp(str, "nobootlog"))
2195 		cfg->bootlog = (str[0] == 'b');
2196 	else if (!strcmp(str, "bios_cmci_threshold"))
2197 		cfg->bios_cmci_threshold = 1;
2198 	else if (!strcmp(str, "recovery"))
2199 		cfg->recovery = 1;
2200 	else if (isdigit(str[0])) {
2201 		if (get_option(&str, &cfg->tolerant) == 2)
2202 			get_option(&str, &(cfg->monarch_timeout));
2203 	} else {
2204 		pr_info("mce argument %s ignored. Please use /sys\n", str);
2205 		return 0;
2206 	}
2207 	return 1;
2208 }
2209 __setup("mce", mcheck_enable);
2210 
mcheck_init(void)2211 int __init mcheck_init(void)
2212 {
2213 	mcheck_intel_therm_init();
2214 	mce_register_decode_chain(&early_nb);
2215 	mce_register_decode_chain(&mce_uc_nb);
2216 	mce_register_decode_chain(&mce_default_nb);
2217 	mcheck_vendor_init_severity();
2218 
2219 	INIT_WORK(&mce_work, mce_gen_pool_process);
2220 	init_irq_work(&mce_irq_work, mce_irq_work_cb);
2221 
2222 	return 0;
2223 }
2224 
2225 /*
2226  * mce_syscore: PM support
2227  */
2228 
2229 /*
2230  * Disable machine checks on suspend and shutdown. We can't really handle
2231  * them later.
2232  */
mce_disable_error_reporting(void)2233 static void mce_disable_error_reporting(void)
2234 {
2235 	struct mce_bank *mce_banks = this_cpu_ptr(mce_banks_array);
2236 	int i;
2237 
2238 	for (i = 0; i < this_cpu_read(mce_num_banks); i++) {
2239 		struct mce_bank *b = &mce_banks[i];
2240 
2241 		if (b->init)
2242 			wrmsrl(mca_msr_reg(i, MCA_CTL), 0);
2243 	}
2244 	return;
2245 }
2246 
vendor_disable_error_reporting(void)2247 static void vendor_disable_error_reporting(void)
2248 {
2249 	/*
2250 	 * Don't clear on Intel or AMD or Hygon or Zhaoxin CPUs. Some of these
2251 	 * MSRs are socket-wide. Disabling them for just a single offlined CPU
2252 	 * is bad, since it will inhibit reporting for all shared resources on
2253 	 * the socket like the last level cache (LLC), the integrated memory
2254 	 * controller (iMC), etc.
2255 	 */
2256 	if (boot_cpu_data.x86_vendor == X86_VENDOR_INTEL ||
2257 	    boot_cpu_data.x86_vendor == X86_VENDOR_HYGON ||
2258 	    boot_cpu_data.x86_vendor == X86_VENDOR_AMD ||
2259 	    boot_cpu_data.x86_vendor == X86_VENDOR_ZHAOXIN)
2260 		return;
2261 
2262 	mce_disable_error_reporting();
2263 }
2264 
mce_syscore_suspend(void)2265 static int mce_syscore_suspend(void)
2266 {
2267 	vendor_disable_error_reporting();
2268 	return 0;
2269 }
2270 
mce_syscore_shutdown(void)2271 static void mce_syscore_shutdown(void)
2272 {
2273 	vendor_disable_error_reporting();
2274 }
2275 
2276 /*
2277  * On resume clear all MCE state. Don't want to see leftovers from the BIOS.
2278  * Only one CPU is active at this time, the others get re-added later using
2279  * CPU hotplug:
2280  */
mce_syscore_resume(void)2281 static void mce_syscore_resume(void)
2282 {
2283 	__mcheck_cpu_init_generic();
2284 	__mcheck_cpu_init_vendor(raw_cpu_ptr(&cpu_info));
2285 	__mcheck_cpu_init_clear_banks();
2286 }
2287 
2288 static struct syscore_ops mce_syscore_ops = {
2289 	.suspend	= mce_syscore_suspend,
2290 	.shutdown	= mce_syscore_shutdown,
2291 	.resume		= mce_syscore_resume,
2292 };
2293 
2294 /*
2295  * mce_device: Sysfs support
2296  */
2297 
mce_cpu_restart(void * data)2298 static void mce_cpu_restart(void *data)
2299 {
2300 	if (!mce_available(raw_cpu_ptr(&cpu_info)))
2301 		return;
2302 	__mcheck_cpu_init_generic();
2303 	__mcheck_cpu_init_clear_banks();
2304 	__mcheck_cpu_init_timer();
2305 }
2306 
2307 /* Reinit MCEs after user configuration changes */
mce_restart(void)2308 static void mce_restart(void)
2309 {
2310 	mce_timer_delete_all();
2311 	on_each_cpu(mce_cpu_restart, NULL, 1);
2312 }
2313 
2314 /* Toggle features for corrected errors */
mce_disable_cmci(void * data)2315 static void mce_disable_cmci(void *data)
2316 {
2317 	if (!mce_available(raw_cpu_ptr(&cpu_info)))
2318 		return;
2319 	cmci_clear();
2320 }
2321 
mce_enable_ce(void * all)2322 static void mce_enable_ce(void *all)
2323 {
2324 	if (!mce_available(raw_cpu_ptr(&cpu_info)))
2325 		return;
2326 	cmci_reenable();
2327 	cmci_recheck();
2328 	if (all)
2329 		__mcheck_cpu_init_timer();
2330 }
2331 
2332 static struct bus_type mce_subsys = {
2333 	.name		= "machinecheck",
2334 	.dev_name	= "machinecheck",
2335 };
2336 
2337 DEFINE_PER_CPU(struct device *, mce_device);
2338 
attr_to_bank(struct device_attribute * attr)2339 static inline struct mce_bank_dev *attr_to_bank(struct device_attribute *attr)
2340 {
2341 	return container_of(attr, struct mce_bank_dev, attr);
2342 }
2343 
show_bank(struct device * s,struct device_attribute * attr,char * buf)2344 static ssize_t show_bank(struct device *s, struct device_attribute *attr,
2345 			 char *buf)
2346 {
2347 	u8 bank = attr_to_bank(attr)->bank;
2348 	struct mce_bank *b;
2349 
2350 	if (bank >= per_cpu(mce_num_banks, s->id))
2351 		return -EINVAL;
2352 
2353 	b = &per_cpu(mce_banks_array, s->id)[bank];
2354 
2355 	if (!b->init)
2356 		return -ENODEV;
2357 
2358 	return sprintf(buf, "%llx\n", b->ctl);
2359 }
2360 
set_bank(struct device * s,struct device_attribute * attr,const char * buf,size_t size)2361 static ssize_t set_bank(struct device *s, struct device_attribute *attr,
2362 			const char *buf, size_t size)
2363 {
2364 	u8 bank = attr_to_bank(attr)->bank;
2365 	struct mce_bank *b;
2366 	u64 new;
2367 
2368 	if (kstrtou64(buf, 0, &new) < 0)
2369 		return -EINVAL;
2370 
2371 	if (bank >= per_cpu(mce_num_banks, s->id))
2372 		return -EINVAL;
2373 
2374 	b = &per_cpu(mce_banks_array, s->id)[bank];
2375 
2376 	if (!b->init)
2377 		return -ENODEV;
2378 
2379 	b->ctl = new;
2380 	mce_restart();
2381 
2382 	return size;
2383 }
2384 
set_ignore_ce(struct device * s,struct device_attribute * attr,const char * buf,size_t size)2385 static ssize_t set_ignore_ce(struct device *s,
2386 			     struct device_attribute *attr,
2387 			     const char *buf, size_t size)
2388 {
2389 	u64 new;
2390 
2391 	if (kstrtou64(buf, 0, &new) < 0)
2392 		return -EINVAL;
2393 
2394 	mutex_lock(&mce_sysfs_mutex);
2395 	if (mca_cfg.ignore_ce ^ !!new) {
2396 		if (new) {
2397 			/* disable ce features */
2398 			mce_timer_delete_all();
2399 			on_each_cpu(mce_disable_cmci, NULL, 1);
2400 			mca_cfg.ignore_ce = true;
2401 		} else {
2402 			/* enable ce features */
2403 			mca_cfg.ignore_ce = false;
2404 			on_each_cpu(mce_enable_ce, (void *)1, 1);
2405 		}
2406 	}
2407 	mutex_unlock(&mce_sysfs_mutex);
2408 
2409 	return size;
2410 }
2411 
set_cmci_disabled(struct device * s,struct device_attribute * attr,const char * buf,size_t size)2412 static ssize_t set_cmci_disabled(struct device *s,
2413 				 struct device_attribute *attr,
2414 				 const char *buf, size_t size)
2415 {
2416 	u64 new;
2417 
2418 	if (kstrtou64(buf, 0, &new) < 0)
2419 		return -EINVAL;
2420 
2421 	mutex_lock(&mce_sysfs_mutex);
2422 	if (mca_cfg.cmci_disabled ^ !!new) {
2423 		if (new) {
2424 			/* disable cmci */
2425 			on_each_cpu(mce_disable_cmci, NULL, 1);
2426 			mca_cfg.cmci_disabled = true;
2427 		} else {
2428 			/* enable cmci */
2429 			mca_cfg.cmci_disabled = false;
2430 			on_each_cpu(mce_enable_ce, NULL, 1);
2431 		}
2432 	}
2433 	mutex_unlock(&mce_sysfs_mutex);
2434 
2435 	return size;
2436 }
2437 
store_int_with_restart(struct device * s,struct device_attribute * attr,const char * buf,size_t size)2438 static ssize_t store_int_with_restart(struct device *s,
2439 				      struct device_attribute *attr,
2440 				      const char *buf, size_t size)
2441 {
2442 	unsigned long old_check_interval = check_interval;
2443 	ssize_t ret = device_store_ulong(s, attr, buf, size);
2444 
2445 	if (check_interval == old_check_interval)
2446 		return ret;
2447 
2448 	mutex_lock(&mce_sysfs_mutex);
2449 	mce_restart();
2450 	mutex_unlock(&mce_sysfs_mutex);
2451 
2452 	return ret;
2453 }
2454 
2455 static DEVICE_INT_ATTR(tolerant, 0644, mca_cfg.tolerant);
2456 static DEVICE_INT_ATTR(monarch_timeout, 0644, mca_cfg.monarch_timeout);
2457 static DEVICE_BOOL_ATTR(dont_log_ce, 0644, mca_cfg.dont_log_ce);
2458 static DEVICE_BOOL_ATTR(print_all, 0644, mca_cfg.print_all);
2459 
2460 static struct dev_ext_attribute dev_attr_check_interval = {
2461 	__ATTR(check_interval, 0644, device_show_int, store_int_with_restart),
2462 	&check_interval
2463 };
2464 
2465 static struct dev_ext_attribute dev_attr_ignore_ce = {
2466 	__ATTR(ignore_ce, 0644, device_show_bool, set_ignore_ce),
2467 	&mca_cfg.ignore_ce
2468 };
2469 
2470 static struct dev_ext_attribute dev_attr_cmci_disabled = {
2471 	__ATTR(cmci_disabled, 0644, device_show_bool, set_cmci_disabled),
2472 	&mca_cfg.cmci_disabled
2473 };
2474 
2475 static struct device_attribute *mce_device_attrs[] = {
2476 	&dev_attr_tolerant.attr,
2477 	&dev_attr_check_interval.attr,
2478 #ifdef CONFIG_X86_MCELOG_LEGACY
2479 	&dev_attr_trigger,
2480 #endif
2481 	&dev_attr_monarch_timeout.attr,
2482 	&dev_attr_dont_log_ce.attr,
2483 	&dev_attr_print_all.attr,
2484 	&dev_attr_ignore_ce.attr,
2485 	&dev_attr_cmci_disabled.attr,
2486 	NULL
2487 };
2488 
2489 static cpumask_var_t mce_device_initialized;
2490 
mce_device_release(struct device * dev)2491 static void mce_device_release(struct device *dev)
2492 {
2493 	kfree(dev);
2494 }
2495 
2496 /* Per CPU device init. All of the CPUs still share the same bank device: */
mce_device_create(unsigned int cpu)2497 static int mce_device_create(unsigned int cpu)
2498 {
2499 	struct device *dev;
2500 	int err;
2501 	int i, j;
2502 
2503 	if (!mce_available(&boot_cpu_data))
2504 		return -EIO;
2505 
2506 	dev = per_cpu(mce_device, cpu);
2507 	if (dev)
2508 		return 0;
2509 
2510 	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
2511 	if (!dev)
2512 		return -ENOMEM;
2513 	dev->id  = cpu;
2514 	dev->bus = &mce_subsys;
2515 	dev->release = &mce_device_release;
2516 
2517 	err = device_register(dev);
2518 	if (err) {
2519 		put_device(dev);
2520 		return err;
2521 	}
2522 
2523 	for (i = 0; mce_device_attrs[i]; i++) {
2524 		err = device_create_file(dev, mce_device_attrs[i]);
2525 		if (err)
2526 			goto error;
2527 	}
2528 	for (j = 0; j < per_cpu(mce_num_banks, cpu); j++) {
2529 		err = device_create_file(dev, &mce_bank_devs[j].attr);
2530 		if (err)
2531 			goto error2;
2532 	}
2533 	cpumask_set_cpu(cpu, mce_device_initialized);
2534 	per_cpu(mce_device, cpu) = dev;
2535 
2536 	return 0;
2537 error2:
2538 	while (--j >= 0)
2539 		device_remove_file(dev, &mce_bank_devs[j].attr);
2540 error:
2541 	while (--i >= 0)
2542 		device_remove_file(dev, mce_device_attrs[i]);
2543 
2544 	device_unregister(dev);
2545 
2546 	return err;
2547 }
2548 
mce_device_remove(unsigned int cpu)2549 static void mce_device_remove(unsigned int cpu)
2550 {
2551 	struct device *dev = per_cpu(mce_device, cpu);
2552 	int i;
2553 
2554 	if (!cpumask_test_cpu(cpu, mce_device_initialized))
2555 		return;
2556 
2557 	for (i = 0; mce_device_attrs[i]; i++)
2558 		device_remove_file(dev, mce_device_attrs[i]);
2559 
2560 	for (i = 0; i < per_cpu(mce_num_banks, cpu); i++)
2561 		device_remove_file(dev, &mce_bank_devs[i].attr);
2562 
2563 	device_unregister(dev);
2564 	cpumask_clear_cpu(cpu, mce_device_initialized);
2565 	per_cpu(mce_device, cpu) = NULL;
2566 }
2567 
2568 /* Make sure there are no machine checks on offlined CPUs. */
mce_disable_cpu(void)2569 static void mce_disable_cpu(void)
2570 {
2571 	if (!mce_available(raw_cpu_ptr(&cpu_info)))
2572 		return;
2573 
2574 	if (!cpuhp_tasks_frozen)
2575 		cmci_clear();
2576 
2577 	vendor_disable_error_reporting();
2578 }
2579 
mce_reenable_cpu(void)2580 static void mce_reenable_cpu(void)
2581 {
2582 	struct mce_bank *mce_banks = this_cpu_ptr(mce_banks_array);
2583 	int i;
2584 
2585 	if (!mce_available(raw_cpu_ptr(&cpu_info)))
2586 		return;
2587 
2588 	if (!cpuhp_tasks_frozen)
2589 		cmci_reenable();
2590 	for (i = 0; i < this_cpu_read(mce_num_banks); i++) {
2591 		struct mce_bank *b = &mce_banks[i];
2592 
2593 		if (b->init)
2594 			wrmsrl(mca_msr_reg(i, MCA_CTL), b->ctl);
2595 	}
2596 }
2597 
mce_cpu_dead(unsigned int cpu)2598 static int mce_cpu_dead(unsigned int cpu)
2599 {
2600 	mce_intel_hcpu_update(cpu);
2601 
2602 	/* intentionally ignoring frozen here */
2603 	if (!cpuhp_tasks_frozen)
2604 		cmci_rediscover();
2605 	return 0;
2606 }
2607 
mce_cpu_online(unsigned int cpu)2608 static int mce_cpu_online(unsigned int cpu)
2609 {
2610 	struct timer_list *t = this_cpu_ptr(&mce_timer);
2611 	int ret;
2612 
2613 	mce_device_create(cpu);
2614 
2615 	ret = mce_threshold_create_device(cpu);
2616 	if (ret) {
2617 		mce_device_remove(cpu);
2618 		return ret;
2619 	}
2620 	mce_reenable_cpu();
2621 	mce_start_timer(t);
2622 	return 0;
2623 }
2624 
mce_cpu_pre_down(unsigned int cpu)2625 static int mce_cpu_pre_down(unsigned int cpu)
2626 {
2627 	struct timer_list *t = this_cpu_ptr(&mce_timer);
2628 
2629 	mce_disable_cpu();
2630 	del_timer_sync(t);
2631 	mce_threshold_remove_device(cpu);
2632 	mce_device_remove(cpu);
2633 	return 0;
2634 }
2635 
mce_init_banks(void)2636 static __init void mce_init_banks(void)
2637 {
2638 	int i;
2639 
2640 	for (i = 0; i < MAX_NR_BANKS; i++) {
2641 		struct mce_bank_dev *b = &mce_bank_devs[i];
2642 		struct device_attribute *a = &b->attr;
2643 
2644 		b->bank = i;
2645 
2646 		sysfs_attr_init(&a->attr);
2647 		a->attr.name	= b->attrname;
2648 		snprintf(b->attrname, ATTR_LEN, "bank%d", i);
2649 
2650 		a->attr.mode	= 0644;
2651 		a->show		= show_bank;
2652 		a->store	= set_bank;
2653 	}
2654 }
2655 
2656 /*
2657  * When running on XEN, this initcall is ordered against the XEN mcelog
2658  * initcall:
2659  *
2660  *   device_initcall(xen_late_init_mcelog);
2661  *   device_initcall_sync(mcheck_init_device);
2662  */
mcheck_init_device(void)2663 static __init int mcheck_init_device(void)
2664 {
2665 	int err;
2666 
2667 	/*
2668 	 * Check if we have a spare virtual bit. This will only become
2669 	 * a problem if/when we move beyond 5-level page tables.
2670 	 */
2671 	MAYBE_BUILD_BUG_ON(__VIRTUAL_MASK_SHIFT >= 63);
2672 
2673 	if (!mce_available(&boot_cpu_data)) {
2674 		err = -EIO;
2675 		goto err_out;
2676 	}
2677 
2678 	if (!zalloc_cpumask_var(&mce_device_initialized, GFP_KERNEL)) {
2679 		err = -ENOMEM;
2680 		goto err_out;
2681 	}
2682 
2683 	mce_init_banks();
2684 
2685 	err = subsys_system_register(&mce_subsys, NULL);
2686 	if (err)
2687 		goto err_out_mem;
2688 
2689 	err = cpuhp_setup_state(CPUHP_X86_MCE_DEAD, "x86/mce:dead", NULL,
2690 				mce_cpu_dead);
2691 	if (err)
2692 		goto err_out_mem;
2693 
2694 	/*
2695 	 * Invokes mce_cpu_online() on all CPUs which are online when
2696 	 * the state is installed.
2697 	 */
2698 	err = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "x86/mce:online",
2699 				mce_cpu_online, mce_cpu_pre_down);
2700 	if (err < 0)
2701 		goto err_out_online;
2702 
2703 	register_syscore_ops(&mce_syscore_ops);
2704 
2705 	return 0;
2706 
2707 err_out_online:
2708 	cpuhp_remove_state(CPUHP_X86_MCE_DEAD);
2709 
2710 err_out_mem:
2711 	free_cpumask_var(mce_device_initialized);
2712 
2713 err_out:
2714 	pr_err("Unable to init MCE device (rc: %d)\n", err);
2715 
2716 	return err;
2717 }
2718 device_initcall_sync(mcheck_init_device);
2719 
2720 /*
2721  * Old style boot options parsing. Only for compatibility.
2722  */
mcheck_disable(char * str)2723 static int __init mcheck_disable(char *str)
2724 {
2725 	mca_cfg.disabled = 1;
2726 	return 1;
2727 }
2728 __setup("nomce", mcheck_disable);
2729 
2730 #ifdef CONFIG_DEBUG_FS
mce_get_debugfs_dir(void)2731 struct dentry *mce_get_debugfs_dir(void)
2732 {
2733 	static struct dentry *dmce;
2734 
2735 	if (!dmce)
2736 		dmce = debugfs_create_dir("mce", NULL);
2737 
2738 	return dmce;
2739 }
2740 
mce_reset(void)2741 static void mce_reset(void)
2742 {
2743 	cpu_missing = 0;
2744 	atomic_set(&mce_fake_panicked, 0);
2745 	atomic_set(&mce_executing, 0);
2746 	atomic_set(&mce_callin, 0);
2747 	atomic_set(&global_nwo, 0);
2748 }
2749 
fake_panic_get(void * data,u64 * val)2750 static int fake_panic_get(void *data, u64 *val)
2751 {
2752 	*val = fake_panic;
2753 	return 0;
2754 }
2755 
fake_panic_set(void * data,u64 val)2756 static int fake_panic_set(void *data, u64 val)
2757 {
2758 	mce_reset();
2759 	fake_panic = val;
2760 	return 0;
2761 }
2762 
2763 DEFINE_DEBUGFS_ATTRIBUTE(fake_panic_fops, fake_panic_get, fake_panic_set,
2764 			 "%llu\n");
2765 
mcheck_debugfs_init(void)2766 static void __init mcheck_debugfs_init(void)
2767 {
2768 	struct dentry *dmce;
2769 
2770 	dmce = mce_get_debugfs_dir();
2771 	debugfs_create_file_unsafe("fake_panic", 0444, dmce, NULL,
2772 				   &fake_panic_fops);
2773 }
2774 #else
mcheck_debugfs_init(void)2775 static void __init mcheck_debugfs_init(void) { }
2776 #endif
2777 
mcheck_late_init(void)2778 static int __init mcheck_late_init(void)
2779 {
2780 	if (mca_cfg.recovery)
2781 		enable_copy_mc_fragile();
2782 
2783 	mcheck_debugfs_init();
2784 
2785 	/*
2786 	 * Flush out everything that has been logged during early boot, now that
2787 	 * everything has been initialized (workqueues, decoders, ...).
2788 	 */
2789 	mce_schedule_work();
2790 
2791 	return 0;
2792 }
2793 late_initcall(mcheck_late_init);
2794