• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Memory Migration functionality - linux/mm/migrate.c
4  *
5  * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter
6  *
7  * Page migration was first developed in the context of the memory hotplug
8  * project. The main authors of the migration code are:
9  *
10  * IWAMOTO Toshihiro <iwamoto@valinux.co.jp>
11  * Hirokazu Takahashi <taka@valinux.co.jp>
12  * Dave Hansen <haveblue@us.ibm.com>
13  * Christoph Lameter
14  */
15 
16 #include <linux/migrate.h>
17 #include <linux/export.h>
18 #include <linux/swap.h>
19 #include <linux/swapops.h>
20 #include <linux/pagemap.h>
21 #include <linux/buffer_head.h>
22 #include <linux/mm_inline.h>
23 #include <linux/nsproxy.h>
24 #include <linux/pagevec.h>
25 #include <linux/ksm.h>
26 #include <linux/rmap.h>
27 #include <linux/topology.h>
28 #include <linux/cpu.h>
29 #include <linux/cpuset.h>
30 #include <linux/writeback.h>
31 #include <linux/mempolicy.h>
32 #include <linux/vmalloc.h>
33 #include <linux/security.h>
34 #include <linux/backing-dev.h>
35 #include <linux/compaction.h>
36 #include <linux/syscalls.h>
37 #include <linux/compat.h>
38 #include <linux/hugetlb.h>
39 #include <linux/hugetlb_cgroup.h>
40 #include <linux/gfp.h>
41 #include <linux/pagewalk.h>
42 #include <linux/pfn_t.h>
43 #include <linux/memremap.h>
44 #include <linux/userfaultfd_k.h>
45 #include <linux/balloon_compaction.h>
46 #include <linux/mmu_notifier.h>
47 #include <linux/page_idle.h>
48 #include <linux/page_owner.h>
49 #include <linux/sched/mm.h>
50 #include <linux/ptrace.h>
51 #include <linux/oom.h>
52 
53 #include <asm/tlbflush.h>
54 
55 #define CREATE_TRACE_POINTS
56 #include <trace/events/migrate.h>
57 
58 #include "internal.h"
59 
60 /*
61  * migrate_prep() needs to be called before we start compiling a list of pages
62  * to be migrated using isolate_lru_page(). If scheduling work on other CPUs is
63  * undesirable, use migrate_prep_local()
64  */
migrate_prep(void)65 int migrate_prep(void)
66 {
67 	/*
68 	 * Clear the LRU lists so pages can be isolated.
69 	 * Note that pages may be moved off the LRU after we have
70 	 * drained them. Those pages will fail to migrate like other
71 	 * pages that may be busy.
72 	 */
73 	lru_add_drain_all();
74 
75 	return 0;
76 }
77 
78 /* Do the necessary work of migrate_prep but not if it involves other CPUs */
migrate_prep_local(void)79 int migrate_prep_local(void)
80 {
81 	lru_add_drain();
82 
83 	return 0;
84 }
85 
isolate_movable_page(struct page * page,isolate_mode_t mode)86 int isolate_movable_page(struct page *page, isolate_mode_t mode)
87 {
88 	struct address_space *mapping;
89 
90 	/*
91 	 * Avoid burning cycles with pages that are yet under __free_pages(),
92 	 * or just got freed under us.
93 	 *
94 	 * In case we 'win' a race for a movable page being freed under us and
95 	 * raise its refcount preventing __free_pages() from doing its job
96 	 * the put_page() at the end of this block will take care of
97 	 * release this page, thus avoiding a nasty leakage.
98 	 */
99 	if (unlikely(!get_page_unless_zero(page)))
100 		goto out;
101 
102 	/*
103 	 * Check PageMovable before holding a PG_lock because page's owner
104 	 * assumes anybody doesn't touch PG_lock of newly allocated page
105 	 * so unconditionally grabbing the lock ruins page's owner side.
106 	 */
107 	if (unlikely(!__PageMovable(page)))
108 		goto out_putpage;
109 	/*
110 	 * As movable pages are not isolated from LRU lists, concurrent
111 	 * compaction threads can race against page migration functions
112 	 * as well as race against the releasing a page.
113 	 *
114 	 * In order to avoid having an already isolated movable page
115 	 * being (wrongly) re-isolated while it is under migration,
116 	 * or to avoid attempting to isolate pages being released,
117 	 * lets be sure we have the page lock
118 	 * before proceeding with the movable page isolation steps.
119 	 */
120 	if (unlikely(!trylock_page(page)))
121 		goto out_putpage;
122 
123 	if (!PageMovable(page) || PageIsolated(page))
124 		goto out_no_isolated;
125 
126 	mapping = page_mapping(page);
127 	VM_BUG_ON_PAGE(!mapping, page);
128 
129 	if (!mapping->a_ops->isolate_page(page, mode))
130 		goto out_no_isolated;
131 
132 	/* Driver shouldn't use PG_isolated bit of page->flags */
133 	WARN_ON_ONCE(PageIsolated(page));
134 	__SetPageIsolated(page);
135 	unlock_page(page);
136 
137 	return 0;
138 
139 out_no_isolated:
140 	unlock_page(page);
141 out_putpage:
142 	put_page(page);
143 out:
144 	return -EBUSY;
145 }
146 
147 /* It should be called on page which is PG_movable */
putback_movable_page(struct page * page)148 void putback_movable_page(struct page *page)
149 {
150 	struct address_space *mapping;
151 
152 	VM_BUG_ON_PAGE(!PageLocked(page), page);
153 	VM_BUG_ON_PAGE(!PageMovable(page), page);
154 	VM_BUG_ON_PAGE(!PageIsolated(page), page);
155 
156 	mapping = page_mapping(page);
157 	mapping->a_ops->putback_page(page);
158 	__ClearPageIsolated(page);
159 }
160 
161 /*
162  * Put previously isolated pages back onto the appropriate lists
163  * from where they were once taken off for compaction/migration.
164  *
165  * This function shall be used whenever the isolated pageset has been
166  * built from lru, balloon, hugetlbfs page. See isolate_migratepages_range()
167  * and isolate_huge_page().
168  */
putback_movable_pages(struct list_head * l)169 void putback_movable_pages(struct list_head *l)
170 {
171 	struct page *page;
172 	struct page *page2;
173 
174 	list_for_each_entry_safe(page, page2, l, lru) {
175 		if (unlikely(PageHuge(page))) {
176 			putback_active_hugepage(page);
177 			continue;
178 		}
179 		list_del(&page->lru);
180 		/*
181 		 * We isolated non-lru movable page so here we can use
182 		 * __PageMovable because LRU page's mapping cannot have
183 		 * PAGE_MAPPING_MOVABLE.
184 		 */
185 		if (unlikely(__PageMovable(page))) {
186 			VM_BUG_ON_PAGE(!PageIsolated(page), page);
187 			lock_page(page);
188 			if (PageMovable(page))
189 				putback_movable_page(page);
190 			else
191 				__ClearPageIsolated(page);
192 			unlock_page(page);
193 			put_page(page);
194 		} else {
195 			mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON +
196 					page_is_file_lru(page), -thp_nr_pages(page));
197 			putback_lru_page(page);
198 		}
199 	}
200 }
201 
202 /*
203  * Restore a potential migration pte to a working pte entry
204  */
remove_migration_pte(struct page * page,struct vm_area_struct * vma,unsigned long addr,void * old)205 static bool remove_migration_pte(struct page *page, struct vm_area_struct *vma,
206 				 unsigned long addr, void *old)
207 {
208 	struct page_vma_mapped_walk pvmw = {
209 		.page = old,
210 		.vma = vma,
211 		.address = addr,
212 		.flags = PVMW_SYNC | PVMW_MIGRATION,
213 	};
214 	struct page *new;
215 	pte_t pte;
216 	swp_entry_t entry;
217 
218 	VM_BUG_ON_PAGE(PageTail(page), page);
219 	while (page_vma_mapped_walk(&pvmw)) {
220 		if (PageKsm(page))
221 			new = page;
222 		else
223 			new = page - pvmw.page->index +
224 				linear_page_index(vma, pvmw.address);
225 
226 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
227 		/* PMD-mapped THP migration entry */
228 		if (!pvmw.pte) {
229 			VM_BUG_ON_PAGE(PageHuge(page) || !PageTransCompound(page), page);
230 			remove_migration_pmd(&pvmw, new);
231 			continue;
232 		}
233 #endif
234 
235 		get_page(new);
236 		pte = pte_mkold(mk_pte(new, READ_ONCE(vma->vm_page_prot)));
237 		if (pte_swp_soft_dirty(*pvmw.pte))
238 			pte = pte_mksoft_dirty(pte);
239 
240 		/*
241 		 * Recheck VMA as permissions can change since migration started
242 		 */
243 		entry = pte_to_swp_entry(*pvmw.pte);
244 		if (is_write_migration_entry(entry))
245 			pte = maybe_mkwrite(pte, vma);
246 		else if (pte_swp_uffd_wp(*pvmw.pte))
247 			pte = pte_mkuffd_wp(pte);
248 
249 		if (unlikely(is_device_private_page(new))) {
250 			entry = make_device_private_entry(new, pte_write(pte));
251 			pte = swp_entry_to_pte(entry);
252 			if (pte_swp_soft_dirty(*pvmw.pte))
253 				pte = pte_swp_mksoft_dirty(pte);
254 			if (pte_swp_uffd_wp(*pvmw.pte))
255 				pte = pte_swp_mkuffd_wp(pte);
256 		}
257 
258 #ifdef CONFIG_HUGETLB_PAGE
259 		if (PageHuge(new)) {
260 			pte = pte_mkhuge(pte);
261 			pte = arch_make_huge_pte(pte, vma, new, 0);
262 			set_huge_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte);
263 			if (PageAnon(new))
264 				hugepage_add_anon_rmap(new, vma, pvmw.address);
265 			else
266 				page_dup_rmap(new, true);
267 		} else
268 #endif
269 		{
270 			set_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte);
271 
272 			if (PageAnon(new))
273 				page_add_anon_rmap(new, vma, pvmw.address, false);
274 			else
275 				page_add_file_rmap(new, false);
276 		}
277 		if (vma->vm_flags & VM_LOCKED && !PageTransCompound(new))
278 			mlock_vma_page(new);
279 
280 		if (PageTransHuge(page) && PageMlocked(page))
281 			clear_page_mlock(page);
282 
283 		/* No need to invalidate - it was non-present before */
284 		update_mmu_cache(vma, pvmw.address, pvmw.pte);
285 	}
286 
287 	return true;
288 }
289 
290 /*
291  * Get rid of all migration entries and replace them by
292  * references to the indicated page.
293  */
remove_migration_ptes(struct page * old,struct page * new,bool locked)294 void remove_migration_ptes(struct page *old, struct page *new, bool locked)
295 {
296 	struct rmap_walk_control rwc = {
297 		.rmap_one = remove_migration_pte,
298 		.arg = old,
299 	};
300 
301 	if (locked)
302 		rmap_walk_locked(new, &rwc);
303 	else
304 		rmap_walk(new, &rwc);
305 }
306 
307 /*
308  * Something used the pte of a page under migration. We need to
309  * get to the page and wait until migration is finished.
310  * When we return from this function the fault will be retried.
311  */
__migration_entry_wait(struct mm_struct * mm,pte_t * ptep,spinlock_t * ptl)312 void __migration_entry_wait(struct mm_struct *mm, pte_t *ptep,
313 				spinlock_t *ptl)
314 {
315 	pte_t pte;
316 	swp_entry_t entry;
317 	struct page *page;
318 
319 	spin_lock(ptl);
320 	pte = *ptep;
321 	if (!is_swap_pte(pte))
322 		goto out;
323 
324 	entry = pte_to_swp_entry(pte);
325 	if (!is_migration_entry(entry))
326 		goto out;
327 
328 	page = migration_entry_to_page(entry);
329 	page = compound_head(page);
330 
331 	/*
332 	 * Once page cache replacement of page migration started, page_count
333 	 * is zero; but we must not call put_and_wait_on_page_locked() without
334 	 * a ref. Use get_page_unless_zero(), and just fault again if it fails.
335 	 */
336 	if (!get_page_unless_zero(page))
337 		goto out;
338 	pte_unmap_unlock(ptep, ptl);
339 	put_and_wait_on_page_locked(page);
340 	return;
341 out:
342 	pte_unmap_unlock(ptep, ptl);
343 }
344 
migration_entry_wait(struct mm_struct * mm,pmd_t * pmd,unsigned long address)345 void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd,
346 				unsigned long address)
347 {
348 	spinlock_t *ptl = pte_lockptr(mm, pmd);
349 	pte_t *ptep = pte_offset_map(pmd, address);
350 	__migration_entry_wait(mm, ptep, ptl);
351 }
352 
migration_entry_wait_huge(struct vm_area_struct * vma,struct mm_struct * mm,pte_t * pte)353 void migration_entry_wait_huge(struct vm_area_struct *vma,
354 		struct mm_struct *mm, pte_t *pte)
355 {
356 	spinlock_t *ptl = huge_pte_lockptr(hstate_vma(vma), mm, pte);
357 	__migration_entry_wait(mm, pte, ptl);
358 }
359 
360 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
pmd_migration_entry_wait(struct mm_struct * mm,pmd_t * pmd)361 void pmd_migration_entry_wait(struct mm_struct *mm, pmd_t *pmd)
362 {
363 	spinlock_t *ptl;
364 	struct page *page;
365 
366 	ptl = pmd_lock(mm, pmd);
367 	if (!is_pmd_migration_entry(*pmd))
368 		goto unlock;
369 	page = migration_entry_to_page(pmd_to_swp_entry(*pmd));
370 	if (!get_page_unless_zero(page))
371 		goto unlock;
372 	spin_unlock(ptl);
373 	put_and_wait_on_page_locked(page);
374 	return;
375 unlock:
376 	spin_unlock(ptl);
377 }
378 #endif
379 
expected_page_refs(struct address_space * mapping,struct page * page)380 static int expected_page_refs(struct address_space *mapping, struct page *page)
381 {
382 	int expected_count = 1;
383 
384 	/*
385 	 * Device private pages have an extra refcount as they are
386 	 * ZONE_DEVICE pages.
387 	 */
388 	expected_count += is_device_private_page(page);
389 	if (mapping)
390 		expected_count += thp_nr_pages(page) + page_has_private(page);
391 
392 	return expected_count;
393 }
394 
395 /*
396  * Replace the page in the mapping.
397  *
398  * The number of remaining references must be:
399  * 1 for anonymous pages without a mapping
400  * 2 for pages with a mapping
401  * 3 for pages with a mapping and PagePrivate/PagePrivate2 set.
402  */
migrate_page_move_mapping(struct address_space * mapping,struct page * newpage,struct page * page,int extra_count)403 int migrate_page_move_mapping(struct address_space *mapping,
404 		struct page *newpage, struct page *page, int extra_count)
405 {
406 	XA_STATE(xas, &mapping->i_pages, page_index(page));
407 	struct zone *oldzone, *newzone;
408 	int dirty;
409 	int expected_count = expected_page_refs(mapping, page) + extra_count;
410 	int nr = thp_nr_pages(page);
411 
412 	if (!mapping) {
413 		/* Anonymous page without mapping */
414 		if (page_count(page) != expected_count)
415 			return -EAGAIN;
416 
417 		/* No turning back from here */
418 		newpage->index = page->index;
419 		newpage->mapping = page->mapping;
420 		if (PageSwapBacked(page))
421 			__SetPageSwapBacked(newpage);
422 
423 		return MIGRATEPAGE_SUCCESS;
424 	}
425 
426 	oldzone = page_zone(page);
427 	newzone = page_zone(newpage);
428 
429 	xas_lock_irq(&xas);
430 	if (page_count(page) != expected_count || xas_load(&xas) != page) {
431 		xas_unlock_irq(&xas);
432 		return -EAGAIN;
433 	}
434 
435 	if (!page_ref_freeze(page, expected_count)) {
436 		xas_unlock_irq(&xas);
437 		return -EAGAIN;
438 	}
439 
440 	/*
441 	 * Now we know that no one else is looking at the page:
442 	 * no turning back from here.
443 	 */
444 	newpage->index = page->index;
445 	newpage->mapping = page->mapping;
446 	page_ref_add(newpage, nr); /* add cache reference */
447 	if (PageSwapBacked(page)) {
448 		__SetPageSwapBacked(newpage);
449 		if (PageSwapCache(page)) {
450 			SetPageSwapCache(newpage);
451 			set_page_private(newpage, page_private(page));
452 		}
453 	} else {
454 		VM_BUG_ON_PAGE(PageSwapCache(page), page);
455 	}
456 
457 	/* Move dirty while page refs frozen and newpage not yet exposed */
458 	dirty = PageDirty(page);
459 	if (dirty) {
460 		ClearPageDirty(page);
461 		SetPageDirty(newpage);
462 	}
463 
464 	xas_store(&xas, newpage);
465 	if (PageTransHuge(page)) {
466 		int i;
467 
468 		for (i = 1; i < nr; i++) {
469 			xas_next(&xas);
470 			xas_store(&xas, newpage);
471 		}
472 	}
473 
474 	/*
475 	 * Drop cache reference from old page by unfreezing
476 	 * to one less reference.
477 	 * We know this isn't the last reference.
478 	 */
479 	page_ref_unfreeze(page, expected_count - nr);
480 
481 	xas_unlock(&xas);
482 	/* Leave irq disabled to prevent preemption while updating stats */
483 
484 	/*
485 	 * If moved to a different zone then also account
486 	 * the page for that zone. Other VM counters will be
487 	 * taken care of when we establish references to the
488 	 * new page and drop references to the old page.
489 	 *
490 	 * Note that anonymous pages are accounted for
491 	 * via NR_FILE_PAGES and NR_ANON_MAPPED if they
492 	 * are mapped to swap space.
493 	 */
494 	if (newzone != oldzone) {
495 		struct lruvec *old_lruvec, *new_lruvec;
496 		struct mem_cgroup *memcg;
497 
498 		memcg = page_memcg(page);
499 		old_lruvec = mem_cgroup_lruvec(memcg, oldzone->zone_pgdat);
500 		new_lruvec = mem_cgroup_lruvec(memcg, newzone->zone_pgdat);
501 
502 		__mod_lruvec_state(old_lruvec, NR_FILE_PAGES, -nr);
503 		__mod_lruvec_state(new_lruvec, NR_FILE_PAGES, nr);
504 		if (PageSwapBacked(page) && !PageSwapCache(page)) {
505 			__mod_lruvec_state(old_lruvec, NR_SHMEM, -nr);
506 			__mod_lruvec_state(new_lruvec, NR_SHMEM, nr);
507 		}
508 		if (dirty && mapping_can_writeback(mapping)) {
509 			__mod_lruvec_state(old_lruvec, NR_FILE_DIRTY, -nr);
510 			__mod_zone_page_state(oldzone, NR_ZONE_WRITE_PENDING, -nr);
511 			__mod_lruvec_state(new_lruvec, NR_FILE_DIRTY, nr);
512 			__mod_zone_page_state(newzone, NR_ZONE_WRITE_PENDING, nr);
513 		}
514 	}
515 	local_irq_enable();
516 
517 	return MIGRATEPAGE_SUCCESS;
518 }
519 EXPORT_SYMBOL(migrate_page_move_mapping);
520 
521 /*
522  * The expected number of remaining references is the same as that
523  * of migrate_page_move_mapping().
524  */
migrate_huge_page_move_mapping(struct address_space * mapping,struct page * newpage,struct page * page)525 int migrate_huge_page_move_mapping(struct address_space *mapping,
526 				   struct page *newpage, struct page *page)
527 {
528 	XA_STATE(xas, &mapping->i_pages, page_index(page));
529 	int expected_count;
530 
531 	xas_lock_irq(&xas);
532 	expected_count = 2 + page_has_private(page);
533 	if (page_count(page) != expected_count || xas_load(&xas) != page) {
534 		xas_unlock_irq(&xas);
535 		return -EAGAIN;
536 	}
537 
538 	if (!page_ref_freeze(page, expected_count)) {
539 		xas_unlock_irq(&xas);
540 		return -EAGAIN;
541 	}
542 
543 	newpage->index = page->index;
544 	newpage->mapping = page->mapping;
545 
546 	get_page(newpage);
547 
548 	xas_store(&xas, newpage);
549 
550 	page_ref_unfreeze(page, expected_count - 1);
551 
552 	xas_unlock_irq(&xas);
553 
554 	return MIGRATEPAGE_SUCCESS;
555 }
556 
557 /*
558  * Gigantic pages are so large that we do not guarantee that page++ pointer
559  * arithmetic will work across the entire page.  We need something more
560  * specialized.
561  */
__copy_gigantic_page(struct page * dst,struct page * src,int nr_pages)562 static void __copy_gigantic_page(struct page *dst, struct page *src,
563 				int nr_pages)
564 {
565 	int i;
566 	struct page *dst_base = dst;
567 	struct page *src_base = src;
568 
569 	for (i = 0; i < nr_pages; ) {
570 		cond_resched();
571 		copy_highpage(dst, src);
572 
573 		i++;
574 		dst = mem_map_next(dst, dst_base, i);
575 		src = mem_map_next(src, src_base, i);
576 	}
577 }
578 
copy_huge_page(struct page * dst,struct page * src)579 static void copy_huge_page(struct page *dst, struct page *src)
580 {
581 	int i;
582 	int nr_pages;
583 
584 	if (PageHuge(src)) {
585 		/* hugetlbfs page */
586 		struct hstate *h = page_hstate(src);
587 		nr_pages = pages_per_huge_page(h);
588 
589 		if (unlikely(nr_pages > MAX_ORDER_NR_PAGES)) {
590 			__copy_gigantic_page(dst, src, nr_pages);
591 			return;
592 		}
593 	} else {
594 		/* thp page */
595 		BUG_ON(!PageTransHuge(src));
596 		nr_pages = thp_nr_pages(src);
597 	}
598 
599 	for (i = 0; i < nr_pages; i++) {
600 		cond_resched();
601 		copy_highpage(dst + i, src + i);
602 	}
603 }
604 
605 /*
606  * Copy the page to its new location
607  */
migrate_page_states(struct page * newpage,struct page * page)608 void migrate_page_states(struct page *newpage, struct page *page)
609 {
610 	int cpupid;
611 
612 	if (PageError(page))
613 		SetPageError(newpage);
614 	if (PageReferenced(page))
615 		SetPageReferenced(newpage);
616 	if (PageUptodate(page))
617 		SetPageUptodate(newpage);
618 	if (TestClearPageActive(page)) {
619 		VM_BUG_ON_PAGE(PageUnevictable(page), page);
620 		SetPageActive(newpage);
621 	} else if (TestClearPageUnevictable(page))
622 		SetPageUnevictable(newpage);
623 	if (PageWorkingset(page))
624 		SetPageWorkingset(newpage);
625 	if (PageChecked(page))
626 		SetPageChecked(newpage);
627 	if (PageMappedToDisk(page))
628 		SetPageMappedToDisk(newpage);
629 
630 	/* Move dirty on pages not done by migrate_page_move_mapping() */
631 	if (PageDirty(page))
632 		SetPageDirty(newpage);
633 
634 	if (page_is_young(page))
635 		set_page_young(newpage);
636 	if (page_is_idle(page))
637 		set_page_idle(newpage);
638 
639 	/* Migrate the page's xpm state */
640 	if(PageXPMWritetainted(page))
641 		SetPageXPMWritetainted(newpage);
642 
643 	if(PageXPMReadonly(page))
644 		SetPageXPMReadonly(newpage);
645 
646 	/*
647 	 * Copy NUMA information to the new page, to prevent over-eager
648 	 * future migrations of this same page.
649 	 */
650 	cpupid = page_cpupid_xchg_last(page, -1);
651 	page_cpupid_xchg_last(newpage, cpupid);
652 
653 	ksm_migrate_page(newpage, page);
654 	/*
655 	 * Please do not reorder this without considering how mm/ksm.c's
656 	 * get_ksm_page() depends upon ksm_migrate_page() and PageSwapCache().
657 	 */
658 	if (PageSwapCache(page))
659 		ClearPageSwapCache(page);
660 	ClearPagePrivate(page);
661 	set_page_private(page, 0);
662 
663 	/*
664 	 * If any waiters have accumulated on the new page then
665 	 * wake them up.
666 	 */
667 	if (PageWriteback(newpage))
668 		end_page_writeback(newpage);
669 
670 	/*
671 	 * PG_readahead shares the same bit with PG_reclaim.  The above
672 	 * end_page_writeback() may clear PG_readahead mistakenly, so set the
673 	 * bit after that.
674 	 */
675 	if (PageReadahead(page))
676 		SetPageReadahead(newpage);
677 
678 	copy_page_owner(page, newpage);
679 
680 	if (!PageHuge(page))
681 		mem_cgroup_migrate(page, newpage);
682 }
683 EXPORT_SYMBOL(migrate_page_states);
684 
migrate_page_copy(struct page * newpage,struct page * page)685 void migrate_page_copy(struct page *newpage, struct page *page)
686 {
687 	if (PageHuge(page) || PageTransHuge(page))
688 		copy_huge_page(newpage, page);
689 	else
690 		copy_highpage(newpage, page);
691 
692 	migrate_page_states(newpage, page);
693 }
694 EXPORT_SYMBOL(migrate_page_copy);
695 
696 /************************************************************
697  *                    Migration functions
698  ***********************************************************/
699 
migrate_page_extra(struct address_space * mapping,struct page * newpage,struct page * page,enum migrate_mode mode,int extra_count)700 int migrate_page_extra(struct address_space *mapping,
701 		struct page *newpage, struct page *page,
702 		enum migrate_mode mode, int extra_count)
703 {
704 	int rc;
705 
706 	BUG_ON(PageWriteback(page));	/* Writeback must be complete */
707 
708 	rc = migrate_page_move_mapping(mapping, newpage, page, extra_count);
709 
710 	if (rc != MIGRATEPAGE_SUCCESS)
711 		return rc;
712 
713 	if (mode != MIGRATE_SYNC_NO_COPY)
714 		migrate_page_copy(newpage, page);
715 	else
716 		migrate_page_states(newpage, page);
717 	return MIGRATEPAGE_SUCCESS;
718 }
719 
720 /*
721  * Common logic to directly migrate a single LRU page suitable for
722  * pages that do not use PagePrivate/PagePrivate2.
723  *
724  * Pages are locked upon entry and exit.
725  */
migrate_page(struct address_space * mapping,struct page * newpage,struct page * page,enum migrate_mode mode)726 int migrate_page(struct address_space *mapping,
727 		struct page *newpage, struct page *page,
728 		enum migrate_mode mode)
729 {
730 	return migrate_page_extra(mapping, newpage, page, mode, 0);
731 }
732 EXPORT_SYMBOL(migrate_page);
733 
734 #ifdef CONFIG_BLOCK
735 /* Returns true if all buffers are successfully locked */
buffer_migrate_lock_buffers(struct buffer_head * head,enum migrate_mode mode)736 static bool buffer_migrate_lock_buffers(struct buffer_head *head,
737 							enum migrate_mode mode)
738 {
739 	struct buffer_head *bh = head;
740 
741 	/* Simple case, sync compaction */
742 	if (mode != MIGRATE_ASYNC) {
743 		do {
744 			lock_buffer(bh);
745 			bh = bh->b_this_page;
746 
747 		} while (bh != head);
748 
749 		return true;
750 	}
751 
752 	/* async case, we cannot block on lock_buffer so use trylock_buffer */
753 	do {
754 		if (!trylock_buffer(bh)) {
755 			/*
756 			 * We failed to lock the buffer and cannot stall in
757 			 * async migration. Release the taken locks
758 			 */
759 			struct buffer_head *failed_bh = bh;
760 			bh = head;
761 			while (bh != failed_bh) {
762 				unlock_buffer(bh);
763 				bh = bh->b_this_page;
764 			}
765 			return false;
766 		}
767 
768 		bh = bh->b_this_page;
769 	} while (bh != head);
770 	return true;
771 }
772 
__buffer_migrate_page(struct address_space * mapping,struct page * newpage,struct page * page,enum migrate_mode mode,bool check_refs)773 static int __buffer_migrate_page(struct address_space *mapping,
774 		struct page *newpage, struct page *page, enum migrate_mode mode,
775 		bool check_refs)
776 {
777 	struct buffer_head *bh, *head;
778 	int rc;
779 	int expected_count;
780 
781 	if (!page_has_buffers(page))
782 		return migrate_page(mapping, newpage, page, mode);
783 
784 	/* Check whether page does not have extra refs before we do more work */
785 	expected_count = expected_page_refs(mapping, page);
786 	if (page_count(page) != expected_count)
787 		return -EAGAIN;
788 
789 	head = page_buffers(page);
790 	if (!buffer_migrate_lock_buffers(head, mode))
791 		return -EAGAIN;
792 
793 	if (check_refs) {
794 		bool busy;
795 		bool invalidated = false;
796 
797 recheck_buffers:
798 		busy = false;
799 		spin_lock(&mapping->private_lock);
800 		bh = head;
801 		do {
802 			if (atomic_read(&bh->b_count)) {
803 				busy = true;
804 				break;
805 			}
806 			bh = bh->b_this_page;
807 		} while (bh != head);
808 		if (busy) {
809 			if (invalidated) {
810 				rc = -EAGAIN;
811 				goto unlock_buffers;
812 			}
813 			spin_unlock(&mapping->private_lock);
814 			invalidate_bh_lrus();
815 			invalidated = true;
816 			goto recheck_buffers;
817 		}
818 	}
819 
820 	rc = migrate_page_move_mapping(mapping, newpage, page, 0);
821 	if (rc != MIGRATEPAGE_SUCCESS)
822 		goto unlock_buffers;
823 
824 	attach_page_private(newpage, detach_page_private(page));
825 
826 	bh = head;
827 	do {
828 		set_bh_page(bh, newpage, bh_offset(bh));
829 		bh = bh->b_this_page;
830 
831 	} while (bh != head);
832 
833 	if (mode != MIGRATE_SYNC_NO_COPY)
834 		migrate_page_copy(newpage, page);
835 	else
836 		migrate_page_states(newpage, page);
837 
838 	rc = MIGRATEPAGE_SUCCESS;
839 unlock_buffers:
840 	if (check_refs)
841 		spin_unlock(&mapping->private_lock);
842 	bh = head;
843 	do {
844 		unlock_buffer(bh);
845 		bh = bh->b_this_page;
846 
847 	} while (bh != head);
848 
849 	return rc;
850 }
851 
852 /*
853  * Migration function for pages with buffers. This function can only be used
854  * if the underlying filesystem guarantees that no other references to "page"
855  * exist. For example attached buffer heads are accessed only under page lock.
856  */
buffer_migrate_page(struct address_space * mapping,struct page * newpage,struct page * page,enum migrate_mode mode)857 int buffer_migrate_page(struct address_space *mapping,
858 		struct page *newpage, struct page *page, enum migrate_mode mode)
859 {
860 	return __buffer_migrate_page(mapping, newpage, page, mode, false);
861 }
862 EXPORT_SYMBOL(buffer_migrate_page);
863 
864 /*
865  * Same as above except that this variant is more careful and checks that there
866  * are also no buffer head references. This function is the right one for
867  * mappings where buffer heads are directly looked up and referenced (such as
868  * block device mappings).
869  */
buffer_migrate_page_norefs(struct address_space * mapping,struct page * newpage,struct page * page,enum migrate_mode mode)870 int buffer_migrate_page_norefs(struct address_space *mapping,
871 		struct page *newpage, struct page *page, enum migrate_mode mode)
872 {
873 	return __buffer_migrate_page(mapping, newpage, page, mode, true);
874 }
875 #endif
876 
877 /*
878  * Writeback a page to clean the dirty state
879  */
writeout(struct address_space * mapping,struct page * page)880 static int writeout(struct address_space *mapping, struct page *page)
881 {
882 	struct writeback_control wbc = {
883 		.sync_mode = WB_SYNC_NONE,
884 		.nr_to_write = 1,
885 		.range_start = 0,
886 		.range_end = LLONG_MAX,
887 		.for_reclaim = 1
888 	};
889 	int rc;
890 
891 	if (!mapping->a_ops->writepage)
892 		/* No write method for the address space */
893 		return -EINVAL;
894 
895 	if (!clear_page_dirty_for_io(page))
896 		/* Someone else already triggered a write */
897 		return -EAGAIN;
898 
899 	/*
900 	 * A dirty page may imply that the underlying filesystem has
901 	 * the page on some queue. So the page must be clean for
902 	 * migration. Writeout may mean we loose the lock and the
903 	 * page state is no longer what we checked for earlier.
904 	 * At this point we know that the migration attempt cannot
905 	 * be successful.
906 	 */
907 	remove_migration_ptes(page, page, false);
908 
909 	rc = mapping->a_ops->writepage(page, &wbc);
910 
911 	if (rc != AOP_WRITEPAGE_ACTIVATE)
912 		/* unlocked. Relock */
913 		lock_page(page);
914 
915 	return (rc < 0) ? -EIO : -EAGAIN;
916 }
917 
918 /*
919  * Default handling if a filesystem does not provide a migration function.
920  */
fallback_migrate_page(struct address_space * mapping,struct page * newpage,struct page * page,enum migrate_mode mode)921 static int fallback_migrate_page(struct address_space *mapping,
922 	struct page *newpage, struct page *page, enum migrate_mode mode)
923 {
924 	if (PageDirty(page)) {
925 		/* Only writeback pages in full synchronous migration */
926 		switch (mode) {
927 		case MIGRATE_SYNC:
928 		case MIGRATE_SYNC_NO_COPY:
929 			break;
930 		default:
931 			return -EBUSY;
932 		}
933 		return writeout(mapping, page);
934 	}
935 
936 	/*
937 	 * Buffers may be managed in a filesystem specific way.
938 	 * We must have no buffers or drop them.
939 	 */
940 	if (page_has_private(page) &&
941 	    !try_to_release_page(page, GFP_KERNEL))
942 		return mode == MIGRATE_SYNC ? -EAGAIN : -EBUSY;
943 
944 	return migrate_page(mapping, newpage, page, mode);
945 }
946 
947 /*
948  * Move a page to a newly allocated page
949  * The page is locked and all ptes have been successfully removed.
950  *
951  * The new page will have replaced the old page if this function
952  * is successful.
953  *
954  * Return value:
955  *   < 0 - error code
956  *  MIGRATEPAGE_SUCCESS - success
957  */
move_to_new_page(struct page * newpage,struct page * page,enum migrate_mode mode)958 static int move_to_new_page(struct page *newpage, struct page *page,
959 				enum migrate_mode mode)
960 {
961 	struct address_space *mapping;
962 	int rc = -EAGAIN;
963 	bool is_lru = !__PageMovable(page);
964 
965 	VM_BUG_ON_PAGE(!PageLocked(page), page);
966 	VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
967 
968 	mapping = page_mapping(page);
969 
970 	if (likely(is_lru)) {
971 		if (!mapping)
972 			rc = migrate_page(mapping, newpage, page, mode);
973 		else if (mapping->a_ops->migratepage)
974 			/*
975 			 * Most pages have a mapping and most filesystems
976 			 * provide a migratepage callback. Anonymous pages
977 			 * are part of swap space which also has its own
978 			 * migratepage callback. This is the most common path
979 			 * for page migration.
980 			 */
981 			rc = mapping->a_ops->migratepage(mapping, newpage,
982 							page, mode);
983 		else
984 			rc = fallback_migrate_page(mapping, newpage,
985 							page, mode);
986 	} else {
987 		/*
988 		 * In case of non-lru page, it could be released after
989 		 * isolation step. In that case, we shouldn't try migration.
990 		 */
991 		VM_BUG_ON_PAGE(!PageIsolated(page), page);
992 		if (!PageMovable(page)) {
993 			rc = MIGRATEPAGE_SUCCESS;
994 			__ClearPageIsolated(page);
995 			goto out;
996 		}
997 
998 		rc = mapping->a_ops->migratepage(mapping, newpage,
999 						page, mode);
1000 		WARN_ON_ONCE(rc == MIGRATEPAGE_SUCCESS &&
1001 			!PageIsolated(page));
1002 	}
1003 
1004 	/*
1005 	 * When successful, old pagecache page->mapping must be cleared before
1006 	 * page is freed; but stats require that PageAnon be left as PageAnon.
1007 	 */
1008 	if (rc == MIGRATEPAGE_SUCCESS) {
1009 		if (__PageMovable(page)) {
1010 			VM_BUG_ON_PAGE(!PageIsolated(page), page);
1011 
1012 			/*
1013 			 * We clear PG_movable under page_lock so any compactor
1014 			 * cannot try to migrate this page.
1015 			 */
1016 			__ClearPageIsolated(page);
1017 		}
1018 
1019 		/*
1020 		 * Anonymous and movable page->mapping will be cleared by
1021 		 * free_pages_prepare so don't reset it here for keeping
1022 		 * the type to work PageAnon, for example.
1023 		 */
1024 		if (!PageMappingFlags(page))
1025 			page->mapping = NULL;
1026 
1027 		if (likely(!is_zone_device_page(newpage))) {
1028 			int i, nr = compound_nr(newpage);
1029 
1030 			for (i = 0; i < nr; i++)
1031 				flush_dcache_page(newpage + i);
1032 		}
1033 	}
1034 out:
1035 	return rc;
1036 }
1037 
__unmap_and_move(struct page * page,struct page * newpage,int force,enum migrate_mode mode)1038 static int __unmap_and_move(struct page *page, struct page *newpage,
1039 				int force, enum migrate_mode mode)
1040 {
1041 	int rc = -EAGAIN;
1042 	int page_was_mapped = 0;
1043 	struct anon_vma *anon_vma = NULL;
1044 	bool is_lru = !__PageMovable(page);
1045 
1046 	if (!trylock_page(page)) {
1047 		if (!force || mode == MIGRATE_ASYNC)
1048 			goto out;
1049 
1050 		/*
1051 		 * It's not safe for direct compaction to call lock_page.
1052 		 * For example, during page readahead pages are added locked
1053 		 * to the LRU. Later, when the IO completes the pages are
1054 		 * marked uptodate and unlocked. However, the queueing
1055 		 * could be merging multiple pages for one bio (e.g.
1056 		 * mpage_readahead). If an allocation happens for the
1057 		 * second or third page, the process can end up locking
1058 		 * the same page twice and deadlocking. Rather than
1059 		 * trying to be clever about what pages can be locked,
1060 		 * avoid the use of lock_page for direct compaction
1061 		 * altogether.
1062 		 */
1063 		if (current->flags & PF_MEMALLOC)
1064 			goto out;
1065 
1066 		lock_page(page);
1067 	}
1068 
1069 	if (PageWriteback(page)) {
1070 		/*
1071 		 * Only in the case of a full synchronous migration is it
1072 		 * necessary to wait for PageWriteback. In the async case,
1073 		 * the retry loop is too short and in the sync-light case,
1074 		 * the overhead of stalling is too much
1075 		 */
1076 		switch (mode) {
1077 		case MIGRATE_SYNC:
1078 		case MIGRATE_SYNC_NO_COPY:
1079 			break;
1080 		default:
1081 			rc = -EBUSY;
1082 			goto out_unlock;
1083 		}
1084 		if (!force)
1085 			goto out_unlock;
1086 		wait_on_page_writeback(page);
1087 	}
1088 
1089 	/*
1090 	 * By try_to_unmap(), page->mapcount goes down to 0 here. In this case,
1091 	 * we cannot notice that anon_vma is freed while we migrates a page.
1092 	 * This get_anon_vma() delays freeing anon_vma pointer until the end
1093 	 * of migration. File cache pages are no problem because of page_lock()
1094 	 * File Caches may use write_page() or lock_page() in migration, then,
1095 	 * just care Anon page here.
1096 	 *
1097 	 * Only page_get_anon_vma() understands the subtleties of
1098 	 * getting a hold on an anon_vma from outside one of its mms.
1099 	 * But if we cannot get anon_vma, then we won't need it anyway,
1100 	 * because that implies that the anon page is no longer mapped
1101 	 * (and cannot be remapped so long as we hold the page lock).
1102 	 */
1103 	if (PageAnon(page) && !PageKsm(page))
1104 		anon_vma = page_get_anon_vma(page);
1105 
1106 	/*
1107 	 * Block others from accessing the new page when we get around to
1108 	 * establishing additional references. We are usually the only one
1109 	 * holding a reference to newpage at this point. We used to have a BUG
1110 	 * here if trylock_page(newpage) fails, but would like to allow for
1111 	 * cases where there might be a race with the previous use of newpage.
1112 	 * This is much like races on refcount of oldpage: just don't BUG().
1113 	 */
1114 	if (unlikely(!trylock_page(newpage)))
1115 		goto out_unlock;
1116 
1117 	if (unlikely(!is_lru)) {
1118 		rc = move_to_new_page(newpage, page, mode);
1119 		goto out_unlock_both;
1120 	}
1121 
1122 	/*
1123 	 * Corner case handling:
1124 	 * 1. When a new swap-cache page is read into, it is added to the LRU
1125 	 * and treated as swapcache but it has no rmap yet.
1126 	 * Calling try_to_unmap() against a page->mapping==NULL page will
1127 	 * trigger a BUG.  So handle it here.
1128 	 * 2. An orphaned page (see truncate_complete_page) might have
1129 	 * fs-private metadata. The page can be picked up due to memory
1130 	 * offlining.  Everywhere else except page reclaim, the page is
1131 	 * invisible to the vm, so the page can not be migrated.  So try to
1132 	 * free the metadata, so the page can be freed.
1133 	 */
1134 	if (!page->mapping) {
1135 		VM_BUG_ON_PAGE(PageAnon(page), page);
1136 		if (page_has_private(page)) {
1137 			try_to_free_buffers(page);
1138 			goto out_unlock_both;
1139 		}
1140 	} else if (page_mapped(page)) {
1141 		/* Establish migration ptes */
1142 		VM_BUG_ON_PAGE(PageAnon(page) && !PageKsm(page) && !anon_vma,
1143 				page);
1144 		try_to_unmap(page, TTU_MIGRATION|TTU_IGNORE_MLOCK);
1145 		page_was_mapped = 1;
1146 	}
1147 
1148 	if (!page_mapped(page))
1149 		rc = move_to_new_page(newpage, page, mode);
1150 
1151 	if (page_was_mapped)
1152 		remove_migration_ptes(page,
1153 			rc == MIGRATEPAGE_SUCCESS ? newpage : page, false);
1154 
1155 out_unlock_both:
1156 	unlock_page(newpage);
1157 out_unlock:
1158 	/* Drop an anon_vma reference if we took one */
1159 	if (anon_vma)
1160 		put_anon_vma(anon_vma);
1161 	unlock_page(page);
1162 out:
1163 	/*
1164 	 * If migration is successful, decrease refcount of the newpage
1165 	 * which will not free the page because new page owner increased
1166 	 * refcounter. As well, if it is LRU page, add the page to LRU
1167 	 * list in here. Use the old state of the isolated source page to
1168 	 * determine if we migrated a LRU page. newpage was already unlocked
1169 	 * and possibly modified by its owner - don't rely on the page
1170 	 * state.
1171 	 */
1172 	if (rc == MIGRATEPAGE_SUCCESS) {
1173 		if (unlikely(!is_lru))
1174 			put_page(newpage);
1175 		else
1176 			putback_lru_page(newpage);
1177 	}
1178 
1179 	return rc;
1180 }
1181 
1182 /*
1183  * Obtain the lock on page, remove all ptes and migrate the page
1184  * to the newly allocated page in newpage.
1185  */
unmap_and_move(new_page_t get_new_page,free_page_t put_new_page,unsigned long private,struct page * page,int force,enum migrate_mode mode,enum migrate_reason reason)1186 static int unmap_and_move(new_page_t get_new_page,
1187 				   free_page_t put_new_page,
1188 				   unsigned long private, struct page *page,
1189 				   int force, enum migrate_mode mode,
1190 				   enum migrate_reason reason)
1191 {
1192 	int rc = MIGRATEPAGE_SUCCESS;
1193 	struct page *newpage = NULL;
1194 
1195 	if (!thp_migration_supported() && PageTransHuge(page))
1196 		return -ENOMEM;
1197 
1198 	if (page_count(page) == 1) {
1199 		/* page was freed from under us. So we are done. */
1200 		ClearPageActive(page);
1201 		ClearPageUnevictable(page);
1202 		if (unlikely(__PageMovable(page))) {
1203 			lock_page(page);
1204 			if (!PageMovable(page))
1205 				__ClearPageIsolated(page);
1206 			unlock_page(page);
1207 		}
1208 		goto out;
1209 	}
1210 
1211 	newpage = get_new_page(page, private);
1212 	if (!newpage)
1213 		return -ENOMEM;
1214 
1215 	rc = __unmap_and_move(page, newpage, force, mode);
1216 	if (rc == MIGRATEPAGE_SUCCESS)
1217 		set_page_owner_migrate_reason(newpage, reason);
1218 
1219 out:
1220 	if (rc != -EAGAIN) {
1221 		/*
1222 		 * A page that has been migrated has all references
1223 		 * removed and will be freed. A page that has not been
1224 		 * migrated will have kept its references and be restored.
1225 		 */
1226 		list_del(&page->lru);
1227 
1228 		/*
1229 		 * Compaction can migrate also non-LRU pages which are
1230 		 * not accounted to NR_ISOLATED_*. They can be recognized
1231 		 * as __PageMovable
1232 		 */
1233 		if (likely(!__PageMovable(page)))
1234 			mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON +
1235 					page_is_file_lru(page), -thp_nr_pages(page));
1236 	}
1237 
1238 	/*
1239 	 * If migration is successful, releases reference grabbed during
1240 	 * isolation. Otherwise, restore the page to right list unless
1241 	 * we want to retry.
1242 	 */
1243 	if (rc == MIGRATEPAGE_SUCCESS) {
1244 		if (reason != MR_MEMORY_FAILURE)
1245 			/*
1246 			 * We release the page in page_handle_poison.
1247 			 */
1248 			put_page(page);
1249 	} else {
1250 		if (rc != -EAGAIN) {
1251 			if (likely(!__PageMovable(page))) {
1252 				putback_lru_page(page);
1253 				goto put_new;
1254 			}
1255 
1256 			lock_page(page);
1257 			if (PageMovable(page))
1258 				putback_movable_page(page);
1259 			else
1260 				__ClearPageIsolated(page);
1261 			unlock_page(page);
1262 			put_page(page);
1263 		}
1264 put_new:
1265 		if (put_new_page)
1266 			put_new_page(newpage, private);
1267 		else
1268 			put_page(newpage);
1269 	}
1270 
1271 	return rc;
1272 }
1273 
1274 /*
1275  * Counterpart of unmap_and_move_page() for hugepage migration.
1276  *
1277  * This function doesn't wait the completion of hugepage I/O
1278  * because there is no race between I/O and migration for hugepage.
1279  * Note that currently hugepage I/O occurs only in direct I/O
1280  * where no lock is held and PG_writeback is irrelevant,
1281  * and writeback status of all subpages are counted in the reference
1282  * count of the head page (i.e. if all subpages of a 2MB hugepage are
1283  * under direct I/O, the reference of the head page is 512 and a bit more.)
1284  * This means that when we try to migrate hugepage whose subpages are
1285  * doing direct I/O, some references remain after try_to_unmap() and
1286  * hugepage migration fails without data corruption.
1287  *
1288  * There is also no race when direct I/O is issued on the page under migration,
1289  * because then pte is replaced with migration swap entry and direct I/O code
1290  * will wait in the page fault for migration to complete.
1291  */
unmap_and_move_huge_page(new_page_t get_new_page,free_page_t put_new_page,unsigned long private,struct page * hpage,int force,enum migrate_mode mode,int reason)1292 static int unmap_and_move_huge_page(new_page_t get_new_page,
1293 				free_page_t put_new_page, unsigned long private,
1294 				struct page *hpage, int force,
1295 				enum migrate_mode mode, int reason)
1296 {
1297 	int rc = -EAGAIN;
1298 	int page_was_mapped = 0;
1299 	struct page *new_hpage;
1300 	struct anon_vma *anon_vma = NULL;
1301 	struct address_space *mapping = NULL;
1302 
1303 	/*
1304 	 * Migratability of hugepages depends on architectures and their size.
1305 	 * This check is necessary because some callers of hugepage migration
1306 	 * like soft offline and memory hotremove don't walk through page
1307 	 * tables or check whether the hugepage is pmd-based or not before
1308 	 * kicking migration.
1309 	 */
1310 	if (!hugepage_migration_supported(page_hstate(hpage))) {
1311 		putback_active_hugepage(hpage);
1312 		return -ENOSYS;
1313 	}
1314 
1315 	new_hpage = get_new_page(hpage, private);
1316 	if (!new_hpage)
1317 		return -ENOMEM;
1318 
1319 	if (!trylock_page(hpage)) {
1320 		if (!force)
1321 			goto out;
1322 		switch (mode) {
1323 		case MIGRATE_SYNC:
1324 		case MIGRATE_SYNC_NO_COPY:
1325 			break;
1326 		default:
1327 			goto out;
1328 		}
1329 		lock_page(hpage);
1330 	}
1331 
1332 	/*
1333 	 * Check for pages which are in the process of being freed.  Without
1334 	 * page_mapping() set, hugetlbfs specific move page routine will not
1335 	 * be called and we could leak usage counts for subpools.
1336 	 */
1337 	if (page_private(hpage) && !page_mapping(hpage)) {
1338 		rc = -EBUSY;
1339 		goto out_unlock;
1340 	}
1341 
1342 	if (PageAnon(hpage))
1343 		anon_vma = page_get_anon_vma(hpage);
1344 
1345 	if (unlikely(!trylock_page(new_hpage)))
1346 		goto put_anon;
1347 
1348 	if (page_mapped(hpage)) {
1349 		bool mapping_locked = false;
1350 		enum ttu_flags ttu = TTU_MIGRATION|TTU_IGNORE_MLOCK;
1351 
1352 		if (!PageAnon(hpage)) {
1353 			/*
1354 			 * In shared mappings, try_to_unmap could potentially
1355 			 * call huge_pmd_unshare.  Because of this, take
1356 			 * semaphore in write mode here and set TTU_RMAP_LOCKED
1357 			 * to let lower levels know we have taken the lock.
1358 			 */
1359 			mapping = hugetlb_page_mapping_lock_write(hpage);
1360 			if (unlikely(!mapping))
1361 				goto unlock_put_anon;
1362 
1363 			mapping_locked = true;
1364 			ttu |= TTU_RMAP_LOCKED;
1365 		}
1366 
1367 		try_to_unmap(hpage, ttu);
1368 		page_was_mapped = 1;
1369 
1370 		if (mapping_locked)
1371 			i_mmap_unlock_write(mapping);
1372 	}
1373 
1374 	if (!page_mapped(hpage))
1375 		rc = move_to_new_page(new_hpage, hpage, mode);
1376 
1377 	if (page_was_mapped)
1378 		remove_migration_ptes(hpage,
1379 			rc == MIGRATEPAGE_SUCCESS ? new_hpage : hpage, false);
1380 
1381 unlock_put_anon:
1382 	unlock_page(new_hpage);
1383 
1384 put_anon:
1385 	if (anon_vma)
1386 		put_anon_vma(anon_vma);
1387 
1388 	if (rc == MIGRATEPAGE_SUCCESS) {
1389 		move_hugetlb_state(hpage, new_hpage, reason);
1390 		put_new_page = NULL;
1391 	}
1392 
1393 out_unlock:
1394 	unlock_page(hpage);
1395 out:
1396 	if (rc != -EAGAIN)
1397 		putback_active_hugepage(hpage);
1398 
1399 	/*
1400 	 * If migration was not successful and there's a freeing callback, use
1401 	 * it.  Otherwise, put_page() will drop the reference grabbed during
1402 	 * isolation.
1403 	 */
1404 	if (put_new_page)
1405 		put_new_page(new_hpage, private);
1406 	else
1407 		putback_active_hugepage(new_hpage);
1408 
1409 	return rc;
1410 }
1411 
1412 /*
1413  * migrate_pages - migrate the pages specified in a list, to the free pages
1414  *		   supplied as the target for the page migration
1415  *
1416  * @from:		The list of pages to be migrated.
1417  * @get_new_page:	The function used to allocate free pages to be used
1418  *			as the target of the page migration.
1419  * @put_new_page:	The function used to free target pages if migration
1420  *			fails, or NULL if no special handling is necessary.
1421  * @private:		Private data to be passed on to get_new_page()
1422  * @mode:		The migration mode that specifies the constraints for
1423  *			page migration, if any.
1424  * @reason:		The reason for page migration.
1425  *
1426  * The function returns after 10 attempts or if no pages are movable any more
1427  * because the list has become empty or no retryable pages exist any more.
1428  * The caller should call putback_movable_pages() to return pages to the LRU
1429  * or free list only if ret != 0.
1430  *
1431  * Returns the number of pages that were not migrated, or an error code.
1432  */
migrate_pages(struct list_head * from,new_page_t get_new_page,free_page_t put_new_page,unsigned long private,enum migrate_mode mode,int reason)1433 int migrate_pages(struct list_head *from, new_page_t get_new_page,
1434 		free_page_t put_new_page, unsigned long private,
1435 		enum migrate_mode mode, int reason)
1436 {
1437 	int retry = 1;
1438 	int thp_retry = 1;
1439 	int nr_failed = 0;
1440 	int nr_succeeded = 0;
1441 	int nr_thp_succeeded = 0;
1442 	int nr_thp_failed = 0;
1443 	int nr_thp_split = 0;
1444 	int pass = 0;
1445 	bool is_thp = false;
1446 	struct page *page;
1447 	struct page *page2;
1448 	int swapwrite = current->flags & PF_SWAPWRITE;
1449 	int rc, nr_subpages;
1450 
1451 	if (!swapwrite)
1452 		current->flags |= PF_SWAPWRITE;
1453 
1454 	for (pass = 0; pass < 10 && (retry || thp_retry); pass++) {
1455 		retry = 0;
1456 		thp_retry = 0;
1457 
1458 		list_for_each_entry_safe(page, page2, from, lru) {
1459 retry:
1460 			/*
1461 			 * THP statistics is based on the source huge page.
1462 			 * Capture required information that might get lost
1463 			 * during migration.
1464 			 */
1465 			is_thp = PageTransHuge(page) && !PageHuge(page);
1466 			nr_subpages = thp_nr_pages(page);
1467 			cond_resched();
1468 
1469 			if (PageHuge(page))
1470 				rc = unmap_and_move_huge_page(get_new_page,
1471 						put_new_page, private, page,
1472 						pass > 2, mode, reason);
1473 			else
1474 				rc = unmap_and_move(get_new_page, put_new_page,
1475 						private, page, pass > 2, mode,
1476 						reason);
1477 
1478 			switch(rc) {
1479 			case -ENOMEM:
1480 				/*
1481 				 * THP migration might be unsupported or the
1482 				 * allocation could've failed so we should
1483 				 * retry on the same page with the THP split
1484 				 * to base pages.
1485 				 *
1486 				 * Head page is retried immediately and tail
1487 				 * pages are added to the tail of the list so
1488 				 * we encounter them after the rest of the list
1489 				 * is processed.
1490 				 */
1491 				if (is_thp) {
1492 					lock_page(page);
1493 					rc = split_huge_page_to_list(page, from);
1494 					unlock_page(page);
1495 					if (!rc) {
1496 						list_safe_reset_next(page, page2, lru);
1497 						nr_thp_split++;
1498 						goto retry;
1499 					}
1500 
1501 					nr_thp_failed++;
1502 					nr_failed += nr_subpages;
1503 					goto out;
1504 				}
1505 				nr_failed++;
1506 				goto out;
1507 			case -EAGAIN:
1508 				if (is_thp) {
1509 					thp_retry++;
1510 					break;
1511 				}
1512 				retry++;
1513 				break;
1514 			case MIGRATEPAGE_SUCCESS:
1515 				if (is_thp) {
1516 					nr_thp_succeeded++;
1517 					nr_succeeded += nr_subpages;
1518 					break;
1519 				}
1520 				nr_succeeded++;
1521 				break;
1522 			default:
1523 				/*
1524 				 * Permanent failure (-EBUSY, -ENOSYS, etc.):
1525 				 * unlike -EAGAIN case, the failed page is
1526 				 * removed from migration page list and not
1527 				 * retried in the next outer loop.
1528 				 */
1529 				if (is_thp) {
1530 					nr_thp_failed++;
1531 					nr_failed += nr_subpages;
1532 					break;
1533 				}
1534 				nr_failed++;
1535 				break;
1536 			}
1537 		}
1538 	}
1539 	nr_failed += retry + thp_retry;
1540 	nr_thp_failed += thp_retry;
1541 	rc = nr_failed;
1542 out:
1543 	count_vm_events(PGMIGRATE_SUCCESS, nr_succeeded);
1544 	count_vm_events(PGMIGRATE_FAIL, nr_failed);
1545 	count_vm_events(THP_MIGRATION_SUCCESS, nr_thp_succeeded);
1546 	count_vm_events(THP_MIGRATION_FAIL, nr_thp_failed);
1547 	count_vm_events(THP_MIGRATION_SPLIT, nr_thp_split);
1548 	trace_mm_migrate_pages(nr_succeeded, nr_failed, nr_thp_succeeded,
1549 			       nr_thp_failed, nr_thp_split, mode, reason);
1550 
1551 	if (!swapwrite)
1552 		current->flags &= ~PF_SWAPWRITE;
1553 
1554 	return rc;
1555 }
1556 
alloc_migration_target(struct page * page,unsigned long private)1557 struct page *alloc_migration_target(struct page *page, unsigned long private)
1558 {
1559 	struct migration_target_control *mtc;
1560 	gfp_t gfp_mask;
1561 	unsigned int order = 0;
1562 	struct page *new_page = NULL;
1563 	int nid;
1564 	int zidx;
1565 
1566 	mtc = (struct migration_target_control *)private;
1567 	gfp_mask = mtc->gfp_mask;
1568 	nid = mtc->nid;
1569 	if (nid == NUMA_NO_NODE)
1570 		nid = page_to_nid(page);
1571 
1572 	if (PageHuge(page)) {
1573 		struct hstate *h = page_hstate(compound_head(page));
1574 
1575 		gfp_mask = htlb_modify_alloc_mask(h, gfp_mask);
1576 		return alloc_huge_page_nodemask(h, nid, mtc->nmask, gfp_mask);
1577 	}
1578 
1579 	if (PageTransHuge(page)) {
1580 		/*
1581 		 * clear __GFP_RECLAIM to make the migration callback
1582 		 * consistent with regular THP allocations.
1583 		 */
1584 		gfp_mask &= ~__GFP_RECLAIM;
1585 		gfp_mask |= GFP_TRANSHUGE;
1586 		order = HPAGE_PMD_ORDER;
1587 	}
1588 	zidx = zone_idx(page_zone(page));
1589 	if (is_highmem_idx(zidx) || zidx == ZONE_MOVABLE)
1590 		gfp_mask |= __GFP_HIGHMEM;
1591 
1592 	new_page = __alloc_pages_nodemask(gfp_mask, order, nid, mtc->nmask);
1593 
1594 	if (new_page && PageTransHuge(new_page))
1595 		prep_transhuge_page(new_page);
1596 
1597 	return new_page;
1598 }
1599 
1600 #ifdef CONFIG_NUMA
1601 
store_status(int __user * status,int start,int value,int nr)1602 static int store_status(int __user *status, int start, int value, int nr)
1603 {
1604 	while (nr-- > 0) {
1605 		if (put_user(value, status + start))
1606 			return -EFAULT;
1607 		start++;
1608 	}
1609 
1610 	return 0;
1611 }
1612 
do_move_pages_to_node(struct mm_struct * mm,struct list_head * pagelist,int node)1613 static int do_move_pages_to_node(struct mm_struct *mm,
1614 		struct list_head *pagelist, int node)
1615 {
1616 	int err;
1617 	struct migration_target_control mtc = {
1618 		.nid = node,
1619 		.gfp_mask = GFP_HIGHUSER_MOVABLE | __GFP_THISNODE,
1620 	};
1621 
1622 	err = migrate_pages(pagelist, alloc_migration_target, NULL,
1623 			(unsigned long)&mtc, MIGRATE_SYNC, MR_SYSCALL);
1624 	if (err)
1625 		putback_movable_pages(pagelist);
1626 	return err;
1627 }
1628 
1629 /*
1630  * Resolves the given address to a struct page, isolates it from the LRU and
1631  * puts it to the given pagelist.
1632  * Returns:
1633  *     errno - if the page cannot be found/isolated
1634  *     0 - when it doesn't have to be migrated because it is already on the
1635  *         target node
1636  *     1 - when it has been queued
1637  */
add_page_for_migration(struct mm_struct * mm,unsigned long addr,int node,struct list_head * pagelist,bool migrate_all)1638 static int add_page_for_migration(struct mm_struct *mm, unsigned long addr,
1639 		int node, struct list_head *pagelist, bool migrate_all)
1640 {
1641 	struct vm_area_struct *vma;
1642 	struct page *page;
1643 	unsigned int follflags;
1644 	int err;
1645 
1646 	mmap_read_lock(mm);
1647 	err = -EFAULT;
1648 	vma = find_vma(mm, addr);
1649 	if (!vma || addr < vma->vm_start || !vma_migratable(vma))
1650 		goto out;
1651 
1652 	/* FOLL_DUMP to ignore special (like zero) pages */
1653 	follflags = FOLL_GET | FOLL_DUMP;
1654 	page = follow_page(vma, addr, follflags);
1655 
1656 	err = PTR_ERR(page);
1657 	if (IS_ERR(page))
1658 		goto out;
1659 
1660 	err = -ENOENT;
1661 	if (!page)
1662 		goto out;
1663 
1664 	err = 0;
1665 	if (page_to_nid(page) == node)
1666 		goto out_putpage;
1667 
1668 	err = -EACCES;
1669 	if (page_mapcount(page) > 1 && !migrate_all)
1670 		goto out_putpage;
1671 
1672 	if (PageHuge(page)) {
1673 		if (PageHead(page)) {
1674 			isolate_huge_page(page, pagelist);
1675 			err = 1;
1676 		}
1677 	} else {
1678 		struct page *head;
1679 
1680 		head = compound_head(page);
1681 		err = isolate_lru_page(head);
1682 		if (err)
1683 			goto out_putpage;
1684 
1685 		err = 1;
1686 		list_add_tail(&head->lru, pagelist);
1687 		mod_node_page_state(page_pgdat(head),
1688 			NR_ISOLATED_ANON + page_is_file_lru(head),
1689 			thp_nr_pages(head));
1690 	}
1691 out_putpage:
1692 	/*
1693 	 * Either remove the duplicate refcount from
1694 	 * isolate_lru_page() or drop the page ref if it was
1695 	 * not isolated.
1696 	 */
1697 	put_page(page);
1698 out:
1699 	mmap_read_unlock(mm);
1700 	return err;
1701 }
1702 
move_pages_and_store_status(struct mm_struct * mm,int node,struct list_head * pagelist,int __user * status,int start,int i,unsigned long nr_pages)1703 static int move_pages_and_store_status(struct mm_struct *mm, int node,
1704 		struct list_head *pagelist, int __user *status,
1705 		int start, int i, unsigned long nr_pages)
1706 {
1707 	int err;
1708 
1709 	if (list_empty(pagelist))
1710 		return 0;
1711 
1712 	err = do_move_pages_to_node(mm, pagelist, node);
1713 	if (err) {
1714 		/*
1715 		 * Positive err means the number of failed
1716 		 * pages to migrate.  Since we are going to
1717 		 * abort and return the number of non-migrated
1718 		 * pages, so need to incude the rest of the
1719 		 * nr_pages that have not been attempted as
1720 		 * well.
1721 		 */
1722 		if (err > 0)
1723 			err += nr_pages - i - 1;
1724 		return err;
1725 	}
1726 	return store_status(status, start, node, i - start);
1727 }
1728 
1729 /*
1730  * Migrate an array of page address onto an array of nodes and fill
1731  * the corresponding array of status.
1732  */
do_pages_move(struct mm_struct * mm,nodemask_t task_nodes,unsigned long nr_pages,const void __user * __user * pages,const int __user * nodes,int __user * status,int flags)1733 static int do_pages_move(struct mm_struct *mm, nodemask_t task_nodes,
1734 			 unsigned long nr_pages,
1735 			 const void __user * __user *pages,
1736 			 const int __user *nodes,
1737 			 int __user *status, int flags)
1738 {
1739 	int current_node = NUMA_NO_NODE;
1740 	LIST_HEAD(pagelist);
1741 	int start, i;
1742 	int err = 0, err1;
1743 
1744 	migrate_prep();
1745 
1746 	for (i = start = 0; i < nr_pages; i++) {
1747 		const void __user *p;
1748 		unsigned long addr;
1749 		int node;
1750 
1751 		err = -EFAULT;
1752 		if (get_user(p, pages + i))
1753 			goto out_flush;
1754 		if (get_user(node, nodes + i))
1755 			goto out_flush;
1756 		addr = (unsigned long)untagged_addr(p);
1757 
1758 		err = -ENODEV;
1759 		if (node < 0 || node >= MAX_NUMNODES)
1760 			goto out_flush;
1761 		if (!node_state(node, N_MEMORY))
1762 			goto out_flush;
1763 
1764 		err = -EACCES;
1765 		if (!node_isset(node, task_nodes))
1766 			goto out_flush;
1767 
1768 		if (current_node == NUMA_NO_NODE) {
1769 			current_node = node;
1770 			start = i;
1771 		} else if (node != current_node) {
1772 			err = move_pages_and_store_status(mm, current_node,
1773 					&pagelist, status, start, i, nr_pages);
1774 			if (err)
1775 				goto out;
1776 			start = i;
1777 			current_node = node;
1778 		}
1779 
1780 		/*
1781 		 * Errors in the page lookup or isolation are not fatal and we simply
1782 		 * report them via status
1783 		 */
1784 		err = add_page_for_migration(mm, addr, current_node,
1785 				&pagelist, flags & MPOL_MF_MOVE_ALL);
1786 
1787 		if (err > 0) {
1788 			/* The page is successfully queued for migration */
1789 			continue;
1790 		}
1791 
1792 		/*
1793 		 * If the page is already on the target node (!err), store the
1794 		 * node, otherwise, store the err.
1795 		 */
1796 		err = store_status(status, i, err ? : current_node, 1);
1797 		if (err)
1798 			goto out_flush;
1799 
1800 		err = move_pages_and_store_status(mm, current_node, &pagelist,
1801 				status, start, i, nr_pages);
1802 		if (err)
1803 			goto out;
1804 		current_node = NUMA_NO_NODE;
1805 	}
1806 out_flush:
1807 	/* Make sure we do not overwrite the existing error */
1808 	err1 = move_pages_and_store_status(mm, current_node, &pagelist,
1809 				status, start, i, nr_pages);
1810 	if (err >= 0)
1811 		err = err1;
1812 out:
1813 	return err;
1814 }
1815 
1816 /*
1817  * Determine the nodes of an array of pages and store it in an array of status.
1818  */
do_pages_stat_array(struct mm_struct * mm,unsigned long nr_pages,const void __user ** pages,int * status)1819 static void do_pages_stat_array(struct mm_struct *mm, unsigned long nr_pages,
1820 				const void __user **pages, int *status)
1821 {
1822 	unsigned long i;
1823 
1824 	mmap_read_lock(mm);
1825 
1826 	for (i = 0; i < nr_pages; i++) {
1827 		unsigned long addr = (unsigned long)(*pages);
1828 		struct vm_area_struct *vma;
1829 		struct page *page;
1830 		int err = -EFAULT;
1831 
1832 		vma = find_vma(mm, addr);
1833 		if (!vma || addr < vma->vm_start)
1834 			goto set_status;
1835 
1836 		/* FOLL_DUMP to ignore special (like zero) pages */
1837 		page = follow_page(vma, addr, FOLL_DUMP);
1838 
1839 		err = PTR_ERR(page);
1840 		if (IS_ERR(page))
1841 			goto set_status;
1842 
1843 		err = page ? page_to_nid(page) : -ENOENT;
1844 set_status:
1845 		*status = err;
1846 
1847 		pages++;
1848 		status++;
1849 	}
1850 
1851 	mmap_read_unlock(mm);
1852 }
1853 
1854 /*
1855  * Determine the nodes of a user array of pages and store it in
1856  * a user array of status.
1857  */
do_pages_stat(struct mm_struct * mm,unsigned long nr_pages,const void __user * __user * pages,int __user * status)1858 static int do_pages_stat(struct mm_struct *mm, unsigned long nr_pages,
1859 			 const void __user * __user *pages,
1860 			 int __user *status)
1861 {
1862 #define DO_PAGES_STAT_CHUNK_NR 16
1863 	const void __user *chunk_pages[DO_PAGES_STAT_CHUNK_NR];
1864 	int chunk_status[DO_PAGES_STAT_CHUNK_NR];
1865 
1866 	while (nr_pages) {
1867 		unsigned long chunk_nr;
1868 
1869 		chunk_nr = nr_pages;
1870 		if (chunk_nr > DO_PAGES_STAT_CHUNK_NR)
1871 			chunk_nr = DO_PAGES_STAT_CHUNK_NR;
1872 
1873 		if (copy_from_user(chunk_pages, pages, chunk_nr * sizeof(*chunk_pages)))
1874 			break;
1875 
1876 		do_pages_stat_array(mm, chunk_nr, chunk_pages, chunk_status);
1877 
1878 		if (copy_to_user(status, chunk_status, chunk_nr * sizeof(*status)))
1879 			break;
1880 
1881 		pages += chunk_nr;
1882 		status += chunk_nr;
1883 		nr_pages -= chunk_nr;
1884 	}
1885 	return nr_pages ? -EFAULT : 0;
1886 }
1887 
find_mm_struct(pid_t pid,nodemask_t * mem_nodes)1888 static struct mm_struct *find_mm_struct(pid_t pid, nodemask_t *mem_nodes)
1889 {
1890 	struct task_struct *task;
1891 	struct mm_struct *mm;
1892 
1893 	/*
1894 	 * There is no need to check if current process has the right to modify
1895 	 * the specified process when they are same.
1896 	 */
1897 	if (!pid) {
1898 		mmget(current->mm);
1899 		*mem_nodes = cpuset_mems_allowed(current);
1900 		return current->mm;
1901 	}
1902 
1903 	/* Find the mm_struct */
1904 	rcu_read_lock();
1905 	task = find_task_by_vpid(pid);
1906 	if (!task) {
1907 		rcu_read_unlock();
1908 		return ERR_PTR(-ESRCH);
1909 	}
1910 	get_task_struct(task);
1911 
1912 	/*
1913 	 * Check if this process has the right to modify the specified
1914 	 * process. Use the regular "ptrace_may_access()" checks.
1915 	 */
1916 	if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS)) {
1917 		rcu_read_unlock();
1918 		mm = ERR_PTR(-EPERM);
1919 		goto out;
1920 	}
1921 	rcu_read_unlock();
1922 
1923 	mm = ERR_PTR(security_task_movememory(task));
1924 	if (IS_ERR(mm))
1925 		goto out;
1926 	*mem_nodes = cpuset_mems_allowed(task);
1927 	mm = get_task_mm(task);
1928 out:
1929 	put_task_struct(task);
1930 	if (!mm)
1931 		mm = ERR_PTR(-EINVAL);
1932 	return mm;
1933 }
1934 
1935 /*
1936  * Move a list of pages in the address space of the currently executing
1937  * process.
1938  */
kernel_move_pages(pid_t pid,unsigned long nr_pages,const void __user * __user * pages,const int __user * nodes,int __user * status,int flags)1939 static int kernel_move_pages(pid_t pid, unsigned long nr_pages,
1940 			     const void __user * __user *pages,
1941 			     const int __user *nodes,
1942 			     int __user *status, int flags)
1943 {
1944 	struct mm_struct *mm;
1945 	int err;
1946 	nodemask_t task_nodes;
1947 
1948 	/* Check flags */
1949 	if (flags & ~(MPOL_MF_MOVE|MPOL_MF_MOVE_ALL))
1950 		return -EINVAL;
1951 
1952 	if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
1953 		return -EPERM;
1954 
1955 	mm = find_mm_struct(pid, &task_nodes);
1956 	if (IS_ERR(mm))
1957 		return PTR_ERR(mm);
1958 
1959 	if (nodes)
1960 		err = do_pages_move(mm, task_nodes, nr_pages, pages,
1961 				    nodes, status, flags);
1962 	else
1963 		err = do_pages_stat(mm, nr_pages, pages, status);
1964 
1965 	mmput(mm);
1966 	return err;
1967 }
1968 
SYSCALL_DEFINE6(move_pages,pid_t,pid,unsigned long,nr_pages,const void __user * __user *,pages,const int __user *,nodes,int __user *,status,int,flags)1969 SYSCALL_DEFINE6(move_pages, pid_t, pid, unsigned long, nr_pages,
1970 		const void __user * __user *, pages,
1971 		const int __user *, nodes,
1972 		int __user *, status, int, flags)
1973 {
1974 	return kernel_move_pages(pid, nr_pages, pages, nodes, status, flags);
1975 }
1976 
1977 #ifdef CONFIG_COMPAT
COMPAT_SYSCALL_DEFINE6(move_pages,pid_t,pid,compat_ulong_t,nr_pages,compat_uptr_t __user *,pages32,const int __user *,nodes,int __user *,status,int,flags)1978 COMPAT_SYSCALL_DEFINE6(move_pages, pid_t, pid, compat_ulong_t, nr_pages,
1979 		       compat_uptr_t __user *, pages32,
1980 		       const int __user *, nodes,
1981 		       int __user *, status,
1982 		       int, flags)
1983 {
1984 	const void __user * __user *pages;
1985 	int i;
1986 
1987 	pages = compat_alloc_user_space(nr_pages * sizeof(void *));
1988 	for (i = 0; i < nr_pages; i++) {
1989 		compat_uptr_t p;
1990 
1991 		if (get_user(p, pages32 + i) ||
1992 			put_user(compat_ptr(p), pages + i))
1993 			return -EFAULT;
1994 	}
1995 	return kernel_move_pages(pid, nr_pages, pages, nodes, status, flags);
1996 }
1997 #endif /* CONFIG_COMPAT */
1998 
1999 #ifdef CONFIG_NUMA_BALANCING
2000 /*
2001  * Returns true if this is a safe migration target node for misplaced NUMA
2002  * pages. Currently it only checks the watermarks which crude
2003  */
migrate_balanced_pgdat(struct pglist_data * pgdat,unsigned long nr_migrate_pages)2004 static bool migrate_balanced_pgdat(struct pglist_data *pgdat,
2005 				   unsigned long nr_migrate_pages)
2006 {
2007 	int z;
2008 
2009 	for (z = pgdat->nr_zones - 1; z >= 0; z--) {
2010 		struct zone *zone = pgdat->node_zones + z;
2011 
2012 		if (!populated_zone(zone))
2013 			continue;
2014 
2015 		/* Avoid waking kswapd by allocating pages_to_migrate pages. */
2016 		if (!zone_watermark_ok(zone, 0,
2017 				       high_wmark_pages(zone) +
2018 				       nr_migrate_pages,
2019 				       ZONE_MOVABLE, 0))
2020 			continue;
2021 		return true;
2022 	}
2023 	return false;
2024 }
2025 
alloc_misplaced_dst_page(struct page * page,unsigned long data)2026 static struct page *alloc_misplaced_dst_page(struct page *page,
2027 					   unsigned long data)
2028 {
2029 	int nid = (int) data;
2030 	struct page *newpage;
2031 
2032 	newpage = __alloc_pages_node(nid,
2033 					 (GFP_HIGHUSER_MOVABLE |
2034 					  __GFP_THISNODE | __GFP_NOMEMALLOC |
2035 					  __GFP_NORETRY | __GFP_NOWARN) &
2036 					 ~__GFP_RECLAIM, 0);
2037 
2038 	return newpage;
2039 }
2040 
numamigrate_isolate_page(pg_data_t * pgdat,struct page * page)2041 static int numamigrate_isolate_page(pg_data_t *pgdat, struct page *page)
2042 {
2043 	int page_lru;
2044 
2045 	VM_BUG_ON_PAGE(compound_order(page) && !PageTransHuge(page), page);
2046 
2047 	/* Avoid migrating to a node that is nearly full */
2048 	if (!migrate_balanced_pgdat(pgdat, compound_nr(page)))
2049 		return 0;
2050 
2051 	if (isolate_lru_page(page))
2052 		return 0;
2053 
2054 	/*
2055 	 * migrate_misplaced_transhuge_page() skips page migration's usual
2056 	 * check on page_count(), so we must do it here, now that the page
2057 	 * has been isolated: a GUP pin, or any other pin, prevents migration.
2058 	 * The expected page count is 3: 1 for page's mapcount and 1 for the
2059 	 * caller's pin and 1 for the reference taken by isolate_lru_page().
2060 	 */
2061 	if (PageTransHuge(page) && page_count(page) != 3) {
2062 		putback_lru_page(page);
2063 		return 0;
2064 	}
2065 
2066 	page_lru = page_is_file_lru(page);
2067 	mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON + page_lru,
2068 				thp_nr_pages(page));
2069 
2070 	/*
2071 	 * Isolating the page has taken another reference, so the
2072 	 * caller's reference can be safely dropped without the page
2073 	 * disappearing underneath us during migration.
2074 	 */
2075 	put_page(page);
2076 	return 1;
2077 }
2078 
pmd_trans_migrating(pmd_t pmd)2079 bool pmd_trans_migrating(pmd_t pmd)
2080 {
2081 	struct page *page = pmd_page(pmd);
2082 	return PageLocked(page);
2083 }
2084 
2085 /*
2086  * Attempt to migrate a misplaced page to the specified destination
2087  * node. Caller is expected to have an elevated reference count on
2088  * the page that will be dropped by this function before returning.
2089  */
migrate_misplaced_page(struct page * page,struct vm_area_struct * vma,int node)2090 int migrate_misplaced_page(struct page *page, struct vm_area_struct *vma,
2091 			   int node)
2092 {
2093 	pg_data_t *pgdat = NODE_DATA(node);
2094 	int isolated;
2095 	int nr_remaining;
2096 	LIST_HEAD(migratepages);
2097 
2098 	/*
2099 	 * Don't migrate file pages that are mapped in multiple processes
2100 	 * with execute permissions as they are probably shared libraries.
2101 	 */
2102 	if (page_mapcount(page) != 1 && page_is_file_lru(page) &&
2103 	    (vma->vm_flags & VM_EXEC))
2104 		goto out;
2105 
2106 	/*
2107 	 * Also do not migrate dirty pages as not all filesystems can move
2108 	 * dirty pages in MIGRATE_ASYNC mode which is a waste of cycles.
2109 	 */
2110 	if (page_is_file_lru(page) && PageDirty(page))
2111 		goto out;
2112 
2113 	isolated = numamigrate_isolate_page(pgdat, page);
2114 	if (!isolated)
2115 		goto out;
2116 
2117 	list_add(&page->lru, &migratepages);
2118 	nr_remaining = migrate_pages(&migratepages, alloc_misplaced_dst_page,
2119 				     NULL, node, MIGRATE_ASYNC,
2120 				     MR_NUMA_MISPLACED);
2121 	if (nr_remaining) {
2122 		if (!list_empty(&migratepages)) {
2123 			list_del(&page->lru);
2124 			dec_node_page_state(page, NR_ISOLATED_ANON +
2125 					page_is_file_lru(page));
2126 			putback_lru_page(page);
2127 		}
2128 		isolated = 0;
2129 	} else
2130 		count_vm_numa_event(NUMA_PAGE_MIGRATE);
2131 	BUG_ON(!list_empty(&migratepages));
2132 	return isolated;
2133 
2134 out:
2135 	put_page(page);
2136 	return 0;
2137 }
2138 #endif /* CONFIG_NUMA_BALANCING */
2139 
2140 #if defined(CONFIG_NUMA_BALANCING) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
2141 /*
2142  * Migrates a THP to a given target node. page must be locked and is unlocked
2143  * before returning.
2144  */
migrate_misplaced_transhuge_page(struct mm_struct * mm,struct vm_area_struct * vma,pmd_t * pmd,pmd_t entry,unsigned long address,struct page * page,int node)2145 int migrate_misplaced_transhuge_page(struct mm_struct *mm,
2146 				struct vm_area_struct *vma,
2147 				pmd_t *pmd, pmd_t entry,
2148 				unsigned long address,
2149 				struct page *page, int node)
2150 {
2151 	spinlock_t *ptl;
2152 	pg_data_t *pgdat = NODE_DATA(node);
2153 	int isolated = 0;
2154 	struct page *new_page = NULL;
2155 	int page_lru = page_is_file_lru(page);
2156 	unsigned long start = address & HPAGE_PMD_MASK;
2157 
2158 	new_page = alloc_pages_node(node,
2159 		(GFP_TRANSHUGE_LIGHT | __GFP_THISNODE),
2160 		HPAGE_PMD_ORDER);
2161 	if (!new_page)
2162 		goto out_fail;
2163 	prep_transhuge_page(new_page);
2164 
2165 	isolated = numamigrate_isolate_page(pgdat, page);
2166 	if (!isolated) {
2167 		put_page(new_page);
2168 		goto out_fail;
2169 	}
2170 
2171 	/* Prepare a page as a migration target */
2172 	__SetPageLocked(new_page);
2173 	if (PageSwapBacked(page))
2174 		__SetPageSwapBacked(new_page);
2175 
2176 	/* anon mapping, we can simply copy page->mapping to the new page: */
2177 	new_page->mapping = page->mapping;
2178 	new_page->index = page->index;
2179 	/* flush the cache before copying using the kernel virtual address */
2180 	flush_cache_range(vma, start, start + HPAGE_PMD_SIZE);
2181 	migrate_page_copy(new_page, page);
2182 	WARN_ON(PageLRU(new_page));
2183 
2184 	/* Recheck the target PMD */
2185 	ptl = pmd_lock(mm, pmd);
2186 	if (unlikely(!pmd_same(*pmd, entry) || !page_ref_freeze(page, 2))) {
2187 		spin_unlock(ptl);
2188 
2189 		/* Reverse changes made by migrate_page_copy() */
2190 		if (TestClearPageActive(new_page))
2191 			SetPageActive(page);
2192 		if (TestClearPageUnevictable(new_page))
2193 			SetPageUnevictable(page);
2194 
2195 		unlock_page(new_page);
2196 		put_page(new_page);		/* Free it */
2197 
2198 		/* Retake the callers reference and putback on LRU */
2199 		get_page(page);
2200 		putback_lru_page(page);
2201 		mod_node_page_state(page_pgdat(page),
2202 			 NR_ISOLATED_ANON + page_lru, -HPAGE_PMD_NR);
2203 
2204 		goto out_unlock;
2205 	}
2206 
2207 	entry = mk_huge_pmd(new_page, vma->vm_page_prot);
2208 	entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
2209 
2210 	/*
2211 	 * Overwrite the old entry under pagetable lock and establish
2212 	 * the new PTE. Any parallel GUP will either observe the old
2213 	 * page blocking on the page lock, block on the page table
2214 	 * lock or observe the new page. The SetPageUptodate on the
2215 	 * new page and page_add_new_anon_rmap guarantee the copy is
2216 	 * visible before the pagetable update.
2217 	 */
2218 	page_add_anon_rmap(new_page, vma, start, true);
2219 	/*
2220 	 * At this point the pmd is numa/protnone (i.e. non present) and the TLB
2221 	 * has already been flushed globally.  So no TLB can be currently
2222 	 * caching this non present pmd mapping.  There's no need to clear the
2223 	 * pmd before doing set_pmd_at(), nor to flush the TLB after
2224 	 * set_pmd_at().  Clearing the pmd here would introduce a race
2225 	 * condition against MADV_DONTNEED, because MADV_DONTNEED only holds the
2226 	 * mmap_lock for reading.  If the pmd is set to NULL at any given time,
2227 	 * MADV_DONTNEED won't wait on the pmd lock and it'll skip clearing this
2228 	 * pmd.
2229 	 */
2230 	set_pmd_at(mm, start, pmd, entry);
2231 	update_mmu_cache_pmd(vma, address, &entry);
2232 
2233 	page_ref_unfreeze(page, 2);
2234 	mlock_migrate_page(new_page, page);
2235 	page_remove_rmap(page, true);
2236 	set_page_owner_migrate_reason(new_page, MR_NUMA_MISPLACED);
2237 
2238 	spin_unlock(ptl);
2239 
2240 	/* Take an "isolate" reference and put new page on the LRU. */
2241 	get_page(new_page);
2242 	putback_lru_page(new_page);
2243 
2244 	unlock_page(new_page);
2245 	unlock_page(page);
2246 	put_page(page);			/* Drop the rmap reference */
2247 	put_page(page);			/* Drop the LRU isolation reference */
2248 
2249 	count_vm_events(PGMIGRATE_SUCCESS, HPAGE_PMD_NR);
2250 	count_vm_numa_events(NUMA_PAGE_MIGRATE, HPAGE_PMD_NR);
2251 
2252 	mod_node_page_state(page_pgdat(page),
2253 			NR_ISOLATED_ANON + page_lru,
2254 			-HPAGE_PMD_NR);
2255 	return isolated;
2256 
2257 out_fail:
2258 	count_vm_events(PGMIGRATE_FAIL, HPAGE_PMD_NR);
2259 	ptl = pmd_lock(mm, pmd);
2260 	if (pmd_same(*pmd, entry)) {
2261 		entry = pmd_modify(entry, vma->vm_page_prot);
2262 		set_pmd_at(mm, start, pmd, entry);
2263 		update_mmu_cache_pmd(vma, address, &entry);
2264 	}
2265 	spin_unlock(ptl);
2266 
2267 out_unlock:
2268 	unlock_page(page);
2269 	put_page(page);
2270 	return 0;
2271 }
2272 #endif /* CONFIG_NUMA_BALANCING */
2273 
2274 #endif /* CONFIG_NUMA */
2275 
2276 #ifdef CONFIG_DEVICE_PRIVATE
migrate_vma_collect_hole(unsigned long start,unsigned long end,__always_unused int depth,struct mm_walk * walk)2277 static int migrate_vma_collect_hole(unsigned long start,
2278 				    unsigned long end,
2279 				    __always_unused int depth,
2280 				    struct mm_walk *walk)
2281 {
2282 	struct migrate_vma *migrate = walk->private;
2283 	unsigned long addr;
2284 
2285 	/* Only allow populating anonymous memory. */
2286 	if (!vma_is_anonymous(walk->vma)) {
2287 		for (addr = start; addr < end; addr += PAGE_SIZE) {
2288 			migrate->src[migrate->npages] = 0;
2289 			migrate->dst[migrate->npages] = 0;
2290 			migrate->npages++;
2291 		}
2292 		return 0;
2293 	}
2294 
2295 	for (addr = start; addr < end; addr += PAGE_SIZE) {
2296 		migrate->src[migrate->npages] = MIGRATE_PFN_MIGRATE;
2297 		migrate->dst[migrate->npages] = 0;
2298 		migrate->npages++;
2299 		migrate->cpages++;
2300 	}
2301 
2302 	return 0;
2303 }
2304 
migrate_vma_collect_skip(unsigned long start,unsigned long end,struct mm_walk * walk)2305 static int migrate_vma_collect_skip(unsigned long start,
2306 				    unsigned long end,
2307 				    struct mm_walk *walk)
2308 {
2309 	struct migrate_vma *migrate = walk->private;
2310 	unsigned long addr;
2311 
2312 	for (addr = start; addr < end; addr += PAGE_SIZE) {
2313 		migrate->dst[migrate->npages] = 0;
2314 		migrate->src[migrate->npages++] = 0;
2315 	}
2316 
2317 	return 0;
2318 }
2319 
migrate_vma_collect_pmd(pmd_t * pmdp,unsigned long start,unsigned long end,struct mm_walk * walk)2320 static int migrate_vma_collect_pmd(pmd_t *pmdp,
2321 				   unsigned long start,
2322 				   unsigned long end,
2323 				   struct mm_walk *walk)
2324 {
2325 	struct migrate_vma *migrate = walk->private;
2326 	struct vm_area_struct *vma = walk->vma;
2327 	struct mm_struct *mm = vma->vm_mm;
2328 	unsigned long addr = start, unmapped = 0;
2329 	spinlock_t *ptl;
2330 	pte_t *ptep;
2331 
2332 again:
2333 	if (pmd_none(*pmdp))
2334 		return migrate_vma_collect_hole(start, end, -1, walk);
2335 
2336 	if (pmd_trans_huge(*pmdp)) {
2337 		struct page *page;
2338 
2339 		ptl = pmd_lock(mm, pmdp);
2340 		if (unlikely(!pmd_trans_huge(*pmdp))) {
2341 			spin_unlock(ptl);
2342 			goto again;
2343 		}
2344 
2345 		page = pmd_page(*pmdp);
2346 		if (is_huge_zero_page(page)) {
2347 			spin_unlock(ptl);
2348 			split_huge_pmd(vma, pmdp, addr);
2349 			if (pmd_trans_unstable(pmdp))
2350 				return migrate_vma_collect_skip(start, end,
2351 								walk);
2352 		} else {
2353 			int ret;
2354 
2355 			get_page(page);
2356 			spin_unlock(ptl);
2357 			if (unlikely(!trylock_page(page)))
2358 				return migrate_vma_collect_skip(start, end,
2359 								walk);
2360 			ret = split_huge_page(page);
2361 			unlock_page(page);
2362 			put_page(page);
2363 			if (ret)
2364 				return migrate_vma_collect_skip(start, end,
2365 								walk);
2366 			if (pmd_none(*pmdp))
2367 				return migrate_vma_collect_hole(start, end, -1,
2368 								walk);
2369 		}
2370 	}
2371 
2372 	if (unlikely(pmd_bad(*pmdp)))
2373 		return migrate_vma_collect_skip(start, end, walk);
2374 
2375 	ptep = pte_offset_map_lock(mm, pmdp, addr, &ptl);
2376 	arch_enter_lazy_mmu_mode();
2377 
2378 	for (; addr < end; addr += PAGE_SIZE, ptep++) {
2379 		unsigned long mpfn = 0, pfn;
2380 		struct page *page;
2381 		swp_entry_t entry;
2382 		pte_t pte;
2383 
2384 		pte = *ptep;
2385 
2386 		if (pte_none(pte)) {
2387 			if (vma_is_anonymous(vma)) {
2388 				mpfn = MIGRATE_PFN_MIGRATE;
2389 				migrate->cpages++;
2390 			}
2391 			goto next;
2392 		}
2393 
2394 		if (!pte_present(pte)) {
2395 			/*
2396 			 * Only care about unaddressable device page special
2397 			 * page table entry. Other special swap entries are not
2398 			 * migratable, and we ignore regular swapped page.
2399 			 */
2400 			entry = pte_to_swp_entry(pte);
2401 			if (!is_device_private_entry(entry))
2402 				goto next;
2403 
2404 			page = device_private_entry_to_page(entry);
2405 			if (!(migrate->flags &
2406 				MIGRATE_VMA_SELECT_DEVICE_PRIVATE) ||
2407 			    page->pgmap->owner != migrate->pgmap_owner)
2408 				goto next;
2409 
2410 			mpfn = migrate_pfn(page_to_pfn(page)) |
2411 					MIGRATE_PFN_MIGRATE;
2412 			if (is_write_device_private_entry(entry))
2413 				mpfn |= MIGRATE_PFN_WRITE;
2414 		} else {
2415 			if (!(migrate->flags & MIGRATE_VMA_SELECT_SYSTEM))
2416 				goto next;
2417 			pfn = pte_pfn(pte);
2418 			if (is_zero_pfn(pfn)) {
2419 				mpfn = MIGRATE_PFN_MIGRATE;
2420 				migrate->cpages++;
2421 				goto next;
2422 			}
2423 			page = vm_normal_page(migrate->vma, addr, pte);
2424 			mpfn = migrate_pfn(pfn) | MIGRATE_PFN_MIGRATE;
2425 			mpfn |= pte_write(pte) ? MIGRATE_PFN_WRITE : 0;
2426 		}
2427 
2428 		/* FIXME support THP */
2429 		if (!page || !page->mapping || PageTransCompound(page)) {
2430 			mpfn = 0;
2431 			goto next;
2432 		}
2433 
2434 		/*
2435 		 * By getting a reference on the page we pin it and that blocks
2436 		 * any kind of migration. Side effect is that it "freezes" the
2437 		 * pte.
2438 		 *
2439 		 * We drop this reference after isolating the page from the lru
2440 		 * for non device page (device page are not on the lru and thus
2441 		 * can't be dropped from it).
2442 		 */
2443 		get_page(page);
2444 		migrate->cpages++;
2445 
2446 		/*
2447 		 * Optimize for the common case where page is only mapped once
2448 		 * in one process. If we can lock the page, then we can safely
2449 		 * set up a special migration page table entry now.
2450 		 */
2451 		if (trylock_page(page)) {
2452 			pte_t swp_pte;
2453 
2454 			mpfn |= MIGRATE_PFN_LOCKED;
2455 			ptep_get_and_clear(mm, addr, ptep);
2456 
2457 			/* Setup special migration page table entry */
2458 			entry = make_migration_entry(page, mpfn &
2459 						     MIGRATE_PFN_WRITE);
2460 			swp_pte = swp_entry_to_pte(entry);
2461 			if (pte_present(pte)) {
2462 				if (pte_soft_dirty(pte))
2463 					swp_pte = pte_swp_mksoft_dirty(swp_pte);
2464 				if (pte_uffd_wp(pte))
2465 					swp_pte = pte_swp_mkuffd_wp(swp_pte);
2466 			} else {
2467 				if (pte_swp_soft_dirty(pte))
2468 					swp_pte = pte_swp_mksoft_dirty(swp_pte);
2469 				if (pte_swp_uffd_wp(pte))
2470 					swp_pte = pte_swp_mkuffd_wp(swp_pte);
2471 			}
2472 			set_pte_at(mm, addr, ptep, swp_pte);
2473 
2474 			/*
2475 			 * This is like regular unmap: we remove the rmap and
2476 			 * drop page refcount. Page won't be freed, as we took
2477 			 * a reference just above.
2478 			 */
2479 			page_remove_rmap(page, false);
2480 			put_page(page);
2481 
2482 			if (pte_present(pte))
2483 				unmapped++;
2484 		}
2485 
2486 next:
2487 		migrate->dst[migrate->npages] = 0;
2488 		migrate->src[migrate->npages++] = mpfn;
2489 	}
2490 
2491 	/* Only flush the TLB if we actually modified any entries */
2492 	if (unmapped)
2493 		flush_tlb_range(walk->vma, start, end);
2494 
2495 	arch_leave_lazy_mmu_mode();
2496 	pte_unmap_unlock(ptep - 1, ptl);
2497 
2498 	return 0;
2499 }
2500 
2501 static const struct mm_walk_ops migrate_vma_walk_ops = {
2502 	.pmd_entry		= migrate_vma_collect_pmd,
2503 	.pte_hole		= migrate_vma_collect_hole,
2504 };
2505 
2506 /*
2507  * migrate_vma_collect() - collect pages over a range of virtual addresses
2508  * @migrate: migrate struct containing all migration information
2509  *
2510  * This will walk the CPU page table. For each virtual address backed by a
2511  * valid page, it updates the src array and takes a reference on the page, in
2512  * order to pin the page until we lock it and unmap it.
2513  */
migrate_vma_collect(struct migrate_vma * migrate)2514 static void migrate_vma_collect(struct migrate_vma *migrate)
2515 {
2516 	struct mmu_notifier_range range;
2517 
2518 	/*
2519 	 * Note that the pgmap_owner is passed to the mmu notifier callback so
2520 	 * that the registered device driver can skip invalidating device
2521 	 * private page mappings that won't be migrated.
2522 	 */
2523 	mmu_notifier_range_init_migrate(&range, 0, migrate->vma,
2524 		migrate->vma->vm_mm, migrate->start, migrate->end,
2525 		migrate->pgmap_owner);
2526 	mmu_notifier_invalidate_range_start(&range);
2527 
2528 	walk_page_range(migrate->vma->vm_mm, migrate->start, migrate->end,
2529 			&migrate_vma_walk_ops, migrate);
2530 
2531 	mmu_notifier_invalidate_range_end(&range);
2532 	migrate->end = migrate->start + (migrate->npages << PAGE_SHIFT);
2533 }
2534 
2535 /*
2536  * migrate_vma_check_page() - check if page is pinned or not
2537  * @page: struct page to check
2538  *
2539  * Pinned pages cannot be migrated. This is the same test as in
2540  * migrate_page_move_mapping(), except that here we allow migration of a
2541  * ZONE_DEVICE page.
2542  */
migrate_vma_check_page(struct page * page,struct page * fault_page)2543 static bool migrate_vma_check_page(struct page *page, struct page *fault_page)
2544 {
2545 	/*
2546 	 * One extra ref because caller holds an extra reference, either from
2547 	 * isolate_lru_page() for a regular page, or migrate_vma_collect() for
2548 	 * a device page.
2549 	 */
2550 	int extra = 1 + (page == fault_page);
2551 
2552 	/*
2553 	 * FIXME support THP (transparent huge page), it is bit more complex to
2554 	 * check them than regular pages, because they can be mapped with a pmd
2555 	 * or with a pte (split pte mapping).
2556 	 */
2557 	if (PageCompound(page))
2558 		return false;
2559 
2560 	/* Page from ZONE_DEVICE have one extra reference */
2561 	if (is_zone_device_page(page)) {
2562 		/*
2563 		 * Private page can never be pin as they have no valid pte and
2564 		 * GUP will fail for those. Yet if there is a pending migration
2565 		 * a thread might try to wait on the pte migration entry and
2566 		 * will bump the page reference count. Sadly there is no way to
2567 		 * differentiate a regular pin from migration wait. Hence to
2568 		 * avoid 2 racing thread trying to migrate back to CPU to enter
2569 		 * infinite loop (one stoping migration because the other is
2570 		 * waiting on pte migration entry). We always return true here.
2571 		 *
2572 		 * FIXME proper solution is to rework migration_entry_wait() so
2573 		 * it does not need to take a reference on page.
2574 		 */
2575 		return is_device_private_page(page);
2576 	}
2577 
2578 	/* For file back page */
2579 	if (page_mapping(page))
2580 		extra += 1 + page_has_private(page);
2581 
2582 	if ((page_count(page) - extra) > page_mapcount(page))
2583 		return false;
2584 
2585 	return true;
2586 }
2587 
2588 /*
2589  * migrate_vma_prepare() - lock pages and isolate them from the lru
2590  * @migrate: migrate struct containing all migration information
2591  *
2592  * This locks pages that have been collected by migrate_vma_collect(). Once each
2593  * page is locked it is isolated from the lru (for non-device pages). Finally,
2594  * the ref taken by migrate_vma_collect() is dropped, as locked pages cannot be
2595  * migrated by concurrent kernel threads.
2596  */
migrate_vma_prepare(struct migrate_vma * migrate)2597 static void migrate_vma_prepare(struct migrate_vma *migrate)
2598 {
2599 	const unsigned long npages = migrate->npages;
2600 	const unsigned long start = migrate->start;
2601 	unsigned long addr, i, restore = 0;
2602 	bool allow_drain = true;
2603 
2604 	lru_add_drain();
2605 
2606 	for (i = 0; (i < npages) && migrate->cpages; i++) {
2607 		struct page *page = migrate_pfn_to_page(migrate->src[i]);
2608 		bool remap = true;
2609 
2610 		if (!page)
2611 			continue;
2612 
2613 		if (!(migrate->src[i] & MIGRATE_PFN_LOCKED)) {
2614 			/*
2615 			 * Because we are migrating several pages there can be
2616 			 * a deadlock between 2 concurrent migration where each
2617 			 * are waiting on each other page lock.
2618 			 *
2619 			 * Make migrate_vma() a best effort thing and backoff
2620 			 * for any page we can not lock right away.
2621 			 */
2622 			if (!trylock_page(page)) {
2623 				migrate->src[i] = 0;
2624 				migrate->cpages--;
2625 				put_page(page);
2626 				continue;
2627 			}
2628 			remap = false;
2629 			migrate->src[i] |= MIGRATE_PFN_LOCKED;
2630 		}
2631 
2632 		/* ZONE_DEVICE pages are not on LRU */
2633 		if (!is_zone_device_page(page)) {
2634 			if (!PageLRU(page) && allow_drain) {
2635 				/* Drain CPU's pagevec */
2636 				lru_add_drain_all();
2637 				allow_drain = false;
2638 			}
2639 
2640 			if (isolate_lru_page(page)) {
2641 				if (remap) {
2642 					migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2643 					migrate->cpages--;
2644 					restore++;
2645 				} else {
2646 					migrate->src[i] = 0;
2647 					unlock_page(page);
2648 					migrate->cpages--;
2649 					put_page(page);
2650 				}
2651 				continue;
2652 			}
2653 
2654 			/* Drop the reference we took in collect */
2655 			put_page(page);
2656 		}
2657 
2658 		if (!migrate_vma_check_page(page, migrate->fault_page)) {
2659 			if (remap) {
2660 				migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2661 				migrate->cpages--;
2662 				restore++;
2663 
2664 				if (!is_zone_device_page(page)) {
2665 					get_page(page);
2666 					putback_lru_page(page);
2667 				}
2668 			} else {
2669 				migrate->src[i] = 0;
2670 				unlock_page(page);
2671 				migrate->cpages--;
2672 
2673 				if (!is_zone_device_page(page))
2674 					putback_lru_page(page);
2675 				else
2676 					put_page(page);
2677 			}
2678 		}
2679 	}
2680 
2681 	for (i = 0, addr = start; i < npages && restore; i++, addr += PAGE_SIZE) {
2682 		struct page *page = migrate_pfn_to_page(migrate->src[i]);
2683 
2684 		if (!page || (migrate->src[i] & MIGRATE_PFN_MIGRATE))
2685 			continue;
2686 
2687 		remove_migration_pte(page, migrate->vma, addr, page);
2688 
2689 		migrate->src[i] = 0;
2690 		unlock_page(page);
2691 		put_page(page);
2692 		restore--;
2693 	}
2694 }
2695 
2696 /*
2697  * migrate_vma_unmap() - replace page mapping with special migration pte entry
2698  * @migrate: migrate struct containing all migration information
2699  *
2700  * Replace page mapping (CPU page table pte) with a special migration pte entry
2701  * and check again if it has been pinned. Pinned pages are restored because we
2702  * cannot migrate them.
2703  *
2704  * This is the last step before we call the device driver callback to allocate
2705  * destination memory and copy contents of original page over to new page.
2706  */
migrate_vma_unmap(struct migrate_vma * migrate)2707 static void migrate_vma_unmap(struct migrate_vma *migrate)
2708 {
2709 	int flags = TTU_MIGRATION | TTU_IGNORE_MLOCK;
2710 	const unsigned long npages = migrate->npages;
2711 	const unsigned long start = migrate->start;
2712 	unsigned long addr, i, restore = 0;
2713 
2714 	for (i = 0; i < npages; i++) {
2715 		struct page *page = migrate_pfn_to_page(migrate->src[i]);
2716 
2717 		if (!page || !(migrate->src[i] & MIGRATE_PFN_MIGRATE))
2718 			continue;
2719 
2720 		if (page_mapped(page)) {
2721 			try_to_unmap(page, flags);
2722 			if (page_mapped(page))
2723 				goto restore;
2724 		}
2725 
2726 		if (migrate_vma_check_page(page, migrate->fault_page))
2727 			continue;
2728 
2729 restore:
2730 		migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2731 		migrate->cpages--;
2732 		restore++;
2733 	}
2734 
2735 	for (addr = start, i = 0; i < npages && restore; addr += PAGE_SIZE, i++) {
2736 		struct page *page = migrate_pfn_to_page(migrate->src[i]);
2737 
2738 		if (!page || (migrate->src[i] & MIGRATE_PFN_MIGRATE))
2739 			continue;
2740 
2741 		remove_migration_ptes(page, page, false);
2742 
2743 		migrate->src[i] = 0;
2744 		unlock_page(page);
2745 		restore--;
2746 
2747 		if (is_zone_device_page(page))
2748 			put_page(page);
2749 		else
2750 			putback_lru_page(page);
2751 	}
2752 }
2753 
2754 /**
2755  * migrate_vma_setup() - prepare to migrate a range of memory
2756  * @args: contains the vma, start, and pfns arrays for the migration
2757  *
2758  * Returns: negative errno on failures, 0 when 0 or more pages were migrated
2759  * without an error.
2760  *
2761  * Prepare to migrate a range of memory virtual address range by collecting all
2762  * the pages backing each virtual address in the range, saving them inside the
2763  * src array.  Then lock those pages and unmap them. Once the pages are locked
2764  * and unmapped, check whether each page is pinned or not.  Pages that aren't
2765  * pinned have the MIGRATE_PFN_MIGRATE flag set (by this function) in the
2766  * corresponding src array entry.  Then restores any pages that are pinned, by
2767  * remapping and unlocking those pages.
2768  *
2769  * The caller should then allocate destination memory and copy source memory to
2770  * it for all those entries (ie with MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE
2771  * flag set).  Once these are allocated and copied, the caller must update each
2772  * corresponding entry in the dst array with the pfn value of the destination
2773  * page and with the MIGRATE_PFN_VALID and MIGRATE_PFN_LOCKED flags set
2774  * (destination pages must have their struct pages locked, via lock_page()).
2775  *
2776  * Note that the caller does not have to migrate all the pages that are marked
2777  * with MIGRATE_PFN_MIGRATE flag in src array unless this is a migration from
2778  * device memory to system memory.  If the caller cannot migrate a device page
2779  * back to system memory, then it must return VM_FAULT_SIGBUS, which has severe
2780  * consequences for the userspace process, so it must be avoided if at all
2781  * possible.
2782  *
2783  * For empty entries inside CPU page table (pte_none() or pmd_none() is true) we
2784  * do set MIGRATE_PFN_MIGRATE flag inside the corresponding source array thus
2785  * allowing the caller to allocate device memory for those unback virtual
2786  * address.  For this the caller simply has to allocate device memory and
2787  * properly set the destination entry like for regular migration.  Note that
2788  * this can still fails and thus inside the device driver must check if the
2789  * migration was successful for those entries after calling migrate_vma_pages()
2790  * just like for regular migration.
2791  *
2792  * After that, the callers must call migrate_vma_pages() to go over each entry
2793  * in the src array that has the MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE flag
2794  * set. If the corresponding entry in dst array has MIGRATE_PFN_VALID flag set,
2795  * then migrate_vma_pages() to migrate struct page information from the source
2796  * struct page to the destination struct page.  If it fails to migrate the
2797  * struct page information, then it clears the MIGRATE_PFN_MIGRATE flag in the
2798  * src array.
2799  *
2800  * At this point all successfully migrated pages have an entry in the src
2801  * array with MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE flag set and the dst
2802  * array entry with MIGRATE_PFN_VALID flag set.
2803  *
2804  * Once migrate_vma_pages() returns the caller may inspect which pages were
2805  * successfully migrated, and which were not.  Successfully migrated pages will
2806  * have the MIGRATE_PFN_MIGRATE flag set for their src array entry.
2807  *
2808  * It is safe to update device page table after migrate_vma_pages() because
2809  * both destination and source page are still locked, and the mmap_lock is held
2810  * in read mode (hence no one can unmap the range being migrated).
2811  *
2812  * Once the caller is done cleaning up things and updating its page table (if it
2813  * chose to do so, this is not an obligation) it finally calls
2814  * migrate_vma_finalize() to update the CPU page table to point to new pages
2815  * for successfully migrated pages or otherwise restore the CPU page table to
2816  * point to the original source pages.
2817  */
migrate_vma_setup(struct migrate_vma * args)2818 int migrate_vma_setup(struct migrate_vma *args)
2819 {
2820 	long nr_pages = (args->end - args->start) >> PAGE_SHIFT;
2821 
2822 	args->start &= PAGE_MASK;
2823 	args->end &= PAGE_MASK;
2824 	if (!args->vma || is_vm_hugetlb_page(args->vma) ||
2825 	    (args->vma->vm_flags & VM_SPECIAL) || vma_is_dax(args->vma))
2826 		return -EINVAL;
2827 	if (nr_pages <= 0)
2828 		return -EINVAL;
2829 	if (args->start < args->vma->vm_start ||
2830 	    args->start >= args->vma->vm_end)
2831 		return -EINVAL;
2832 	if (args->end <= args->vma->vm_start || args->end > args->vma->vm_end)
2833 		return -EINVAL;
2834 	if (!args->src || !args->dst)
2835 		return -EINVAL;
2836 	if (args->fault_page && !is_device_private_page(args->fault_page))
2837 		return -EINVAL;
2838 
2839 	memset(args->src, 0, sizeof(*args->src) * nr_pages);
2840 	args->cpages = 0;
2841 	args->npages = 0;
2842 
2843 	migrate_vma_collect(args);
2844 
2845 	if (args->cpages)
2846 		migrate_vma_prepare(args);
2847 	if (args->cpages)
2848 		migrate_vma_unmap(args);
2849 
2850 	/*
2851 	 * At this point pages are locked and unmapped, and thus they have
2852 	 * stable content and can safely be copied to destination memory that
2853 	 * is allocated by the drivers.
2854 	 */
2855 	return 0;
2856 
2857 }
2858 EXPORT_SYMBOL(migrate_vma_setup);
2859 
2860 /*
2861  * This code closely matches the code in:
2862  *   __handle_mm_fault()
2863  *     handle_pte_fault()
2864  *       do_anonymous_page()
2865  * to map in an anonymous zero page but the struct page will be a ZONE_DEVICE
2866  * private page.
2867  */
migrate_vma_insert_page(struct migrate_vma * migrate,unsigned long addr,struct page * page,unsigned long * src,unsigned long * dst)2868 static void migrate_vma_insert_page(struct migrate_vma *migrate,
2869 				    unsigned long addr,
2870 				    struct page *page,
2871 				    unsigned long *src,
2872 				    unsigned long *dst)
2873 {
2874 	struct vm_area_struct *vma = migrate->vma;
2875 	struct mm_struct *mm = vma->vm_mm;
2876 	bool flush = false;
2877 	spinlock_t *ptl;
2878 	pte_t entry;
2879 	pgd_t *pgdp;
2880 	p4d_t *p4dp;
2881 	pud_t *pudp;
2882 	pmd_t *pmdp;
2883 	pte_t *ptep;
2884 
2885 	/* Only allow populating anonymous memory */
2886 	if (!vma_is_anonymous(vma))
2887 		goto abort;
2888 
2889 	pgdp = pgd_offset(mm, addr);
2890 	p4dp = p4d_alloc(mm, pgdp, addr);
2891 	if (!p4dp)
2892 		goto abort;
2893 	pudp = pud_alloc(mm, p4dp, addr);
2894 	if (!pudp)
2895 		goto abort;
2896 	pmdp = pmd_alloc(mm, pudp, addr);
2897 	if (!pmdp)
2898 		goto abort;
2899 
2900 	if (pmd_trans_huge(*pmdp) || pmd_devmap(*pmdp))
2901 		goto abort;
2902 
2903 	/*
2904 	 * Use pte_alloc() instead of pte_alloc_map().  We can't run
2905 	 * pte_offset_map() on pmds where a huge pmd might be created
2906 	 * from a different thread.
2907 	 *
2908 	 * pte_alloc_map() is safe to use under mmap_write_lock(mm) or when
2909 	 * parallel threads are excluded by other means.
2910 	 *
2911 	 * Here we only have mmap_read_lock(mm).
2912 	 */
2913 	if (pte_alloc(mm, pmdp))
2914 		goto abort;
2915 
2916 	/* See the comment in pte_alloc_one_map() */
2917 	if (unlikely(pmd_trans_unstable(pmdp)))
2918 		goto abort;
2919 
2920 	if (unlikely(anon_vma_prepare(vma)))
2921 		goto abort;
2922 	if (mem_cgroup_charge(page, vma->vm_mm, GFP_KERNEL))
2923 		goto abort;
2924 
2925 	/*
2926 	 * The memory barrier inside __SetPageUptodate makes sure that
2927 	 * preceding stores to the page contents become visible before
2928 	 * the set_pte_at() write.
2929 	 */
2930 	__SetPageUptodate(page);
2931 
2932 	if (is_zone_device_page(page)) {
2933 		if (is_device_private_page(page)) {
2934 			swp_entry_t swp_entry;
2935 
2936 			swp_entry = make_device_private_entry(page, vma->vm_flags & VM_WRITE);
2937 			entry = swp_entry_to_pte(swp_entry);
2938 		} else {
2939 			/*
2940 			 * For now we only support migrating to un-addressable
2941 			 * device memory.
2942 			 */
2943 			pr_warn_once("Unsupported ZONE_DEVICE page type.\n");
2944 			goto abort;
2945 		}
2946 	} else {
2947 		entry = mk_pte(page, vma->vm_page_prot);
2948 		if (vma->vm_flags & VM_WRITE)
2949 			entry = pte_mkwrite(pte_mkdirty(entry));
2950 	}
2951 
2952 	ptep = pte_offset_map_lock(mm, pmdp, addr, &ptl);
2953 
2954 	if (check_stable_address_space(mm))
2955 		goto unlock_abort;
2956 
2957 	if (pte_present(*ptep)) {
2958 		unsigned long pfn = pte_pfn(*ptep);
2959 
2960 		if (!is_zero_pfn(pfn))
2961 			goto unlock_abort;
2962 		flush = true;
2963 	} else if (!pte_none(*ptep))
2964 		goto unlock_abort;
2965 
2966 	/*
2967 	 * Check for userfaultfd but do not deliver the fault. Instead,
2968 	 * just back off.
2969 	 */
2970 	if (userfaultfd_missing(vma))
2971 		goto unlock_abort;
2972 
2973 	inc_mm_counter(mm, MM_ANONPAGES);
2974 	page_add_new_anon_rmap(page, vma, addr, false);
2975 	if (!is_zone_device_page(page))
2976 		lru_cache_add_inactive_or_unevictable(page, vma);
2977 	get_page(page);
2978 
2979 	if (flush) {
2980 		flush_cache_page(vma, addr, pte_pfn(*ptep));
2981 		ptep_clear_flush_notify(vma, addr, ptep);
2982 		set_pte_at_notify(mm, addr, ptep, entry);
2983 		update_mmu_cache(vma, addr, ptep);
2984 	} else {
2985 		/* No need to invalidate - it was non-present before */
2986 		set_pte_at(mm, addr, ptep, entry);
2987 		update_mmu_cache(vma, addr, ptep);
2988 	}
2989 
2990 	pte_unmap_unlock(ptep, ptl);
2991 	*src = MIGRATE_PFN_MIGRATE;
2992 	return;
2993 
2994 unlock_abort:
2995 	pte_unmap_unlock(ptep, ptl);
2996 abort:
2997 	*src &= ~MIGRATE_PFN_MIGRATE;
2998 }
2999 
3000 /**
3001  * migrate_vma_pages() - migrate meta-data from src page to dst page
3002  * @migrate: migrate struct containing all migration information
3003  *
3004  * This migrates struct page meta-data from source struct page to destination
3005  * struct page. This effectively finishes the migration from source page to the
3006  * destination page.
3007  */
migrate_vma_pages(struct migrate_vma * migrate)3008 void migrate_vma_pages(struct migrate_vma *migrate)
3009 {
3010 	const unsigned long npages = migrate->npages;
3011 	const unsigned long start = migrate->start;
3012 	struct mmu_notifier_range range;
3013 	unsigned long addr, i;
3014 	bool notified = false;
3015 
3016 	for (i = 0, addr = start; i < npages; addr += PAGE_SIZE, i++) {
3017 		struct page *newpage = migrate_pfn_to_page(migrate->dst[i]);
3018 		struct page *page = migrate_pfn_to_page(migrate->src[i]);
3019 		struct address_space *mapping;
3020 		int r;
3021 
3022 		if (!newpage) {
3023 			migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
3024 			continue;
3025 		}
3026 
3027 		if (!page) {
3028 			if (!(migrate->src[i] & MIGRATE_PFN_MIGRATE))
3029 				continue;
3030 			if (!notified) {
3031 				notified = true;
3032 
3033 				mmu_notifier_range_init(&range,
3034 							MMU_NOTIFY_CLEAR, 0,
3035 							NULL,
3036 							migrate->vma->vm_mm,
3037 							addr, migrate->end);
3038 				mmu_notifier_invalidate_range_start(&range);
3039 			}
3040 			migrate_vma_insert_page(migrate, addr, newpage,
3041 						&migrate->src[i],
3042 						&migrate->dst[i]);
3043 			continue;
3044 		}
3045 
3046 		mapping = page_mapping(page);
3047 
3048 		if (is_zone_device_page(newpage)) {
3049 			if (is_device_private_page(newpage)) {
3050 				/*
3051 				 * For now only support private anonymous when
3052 				 * migrating to un-addressable device memory.
3053 				 */
3054 				if (mapping) {
3055 					migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
3056 					continue;
3057 				}
3058 			} else {
3059 				/*
3060 				 * Other types of ZONE_DEVICE page are not
3061 				 * supported.
3062 				 */
3063 				migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
3064 				continue;
3065 			}
3066 		}
3067 
3068 		if (migrate->fault_page == page)
3069 			r = migrate_page_extra(mapping, newpage, page,
3070 					       MIGRATE_SYNC_NO_COPY, 1);
3071 		else
3072 			r = migrate_page(mapping, newpage, page,
3073 					 MIGRATE_SYNC_NO_COPY);
3074 		if (r != MIGRATEPAGE_SUCCESS)
3075 			migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
3076 	}
3077 
3078 	/*
3079 	 * No need to double call mmu_notifier->invalidate_range() callback as
3080 	 * the above ptep_clear_flush_notify() inside migrate_vma_insert_page()
3081 	 * did already call it.
3082 	 */
3083 	if (notified)
3084 		mmu_notifier_invalidate_range_only_end(&range);
3085 }
3086 EXPORT_SYMBOL(migrate_vma_pages);
3087 
3088 /**
3089  * migrate_vma_finalize() - restore CPU page table entry
3090  * @migrate: migrate struct containing all migration information
3091  *
3092  * This replaces the special migration pte entry with either a mapping to the
3093  * new page if migration was successful for that page, or to the original page
3094  * otherwise.
3095  *
3096  * This also unlocks the pages and puts them back on the lru, or drops the extra
3097  * refcount, for device pages.
3098  */
migrate_vma_finalize(struct migrate_vma * migrate)3099 void migrate_vma_finalize(struct migrate_vma *migrate)
3100 {
3101 	const unsigned long npages = migrate->npages;
3102 	unsigned long i;
3103 
3104 	for (i = 0; i < npages; i++) {
3105 		struct page *newpage = migrate_pfn_to_page(migrate->dst[i]);
3106 		struct page *page = migrate_pfn_to_page(migrate->src[i]);
3107 
3108 		if (!page) {
3109 			if (newpage) {
3110 				unlock_page(newpage);
3111 				put_page(newpage);
3112 			}
3113 			continue;
3114 		}
3115 
3116 		if (!(migrate->src[i] & MIGRATE_PFN_MIGRATE) || !newpage) {
3117 			if (newpage) {
3118 				unlock_page(newpage);
3119 				put_page(newpage);
3120 			}
3121 			newpage = page;
3122 		}
3123 
3124 		remove_migration_ptes(page, newpage, false);
3125 		unlock_page(page);
3126 
3127 		if (is_zone_device_page(page))
3128 			put_page(page);
3129 		else
3130 			putback_lru_page(page);
3131 
3132 		if (newpage != page) {
3133 			unlock_page(newpage);
3134 			if (is_zone_device_page(newpage))
3135 				put_page(newpage);
3136 			else
3137 				putback_lru_page(newpage);
3138 		}
3139 	}
3140 }
3141 EXPORT_SYMBOL(migrate_vma_finalize);
3142 #endif /* CONFIG_DEVICE_PRIVATE */
3143