1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Memory Migration functionality - linux/mm/migrate.c
4 *
5 * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter
6 *
7 * Page migration was first developed in the context of the memory hotplug
8 * project. The main authors of the migration code are:
9 *
10 * IWAMOTO Toshihiro <iwamoto@valinux.co.jp>
11 * Hirokazu Takahashi <taka@valinux.co.jp>
12 * Dave Hansen <haveblue@us.ibm.com>
13 * Christoph Lameter
14 */
15
16 #include <linux/migrate.h>
17 #include <linux/export.h>
18 #include <linux/swap.h>
19 #include <linux/swapops.h>
20 #include <linux/pagemap.h>
21 #include <linux/buffer_head.h>
22 #include <linux/mm_inline.h>
23 #include <linux/nsproxy.h>
24 #include <linux/pagevec.h>
25 #include <linux/ksm.h>
26 #include <linux/rmap.h>
27 #include <linux/topology.h>
28 #include <linux/cpu.h>
29 #include <linux/cpuset.h>
30 #include <linux/writeback.h>
31 #include <linux/mempolicy.h>
32 #include <linux/vmalloc.h>
33 #include <linux/security.h>
34 #include <linux/backing-dev.h>
35 #include <linux/compaction.h>
36 #include <linux/syscalls.h>
37 #include <linux/compat.h>
38 #include <linux/hugetlb.h>
39 #include <linux/hugetlb_cgroup.h>
40 #include <linux/gfp.h>
41 #include <linux/pagewalk.h>
42 #include <linux/pfn_t.h>
43 #include <linux/memremap.h>
44 #include <linux/userfaultfd_k.h>
45 #include <linux/balloon_compaction.h>
46 #include <linux/mmu_notifier.h>
47 #include <linux/page_idle.h>
48 #include <linux/page_owner.h>
49 #include <linux/sched/mm.h>
50 #include <linux/ptrace.h>
51 #include <linux/oom.h>
52
53 #include <asm/tlbflush.h>
54
55 #define CREATE_TRACE_POINTS
56 #include <trace/events/migrate.h>
57
58 #include "internal.h"
59
60 /*
61 * migrate_prep() needs to be called before we start compiling a list of pages
62 * to be migrated using isolate_lru_page(). If scheduling work on other CPUs is
63 * undesirable, use migrate_prep_local()
64 */
migrate_prep(void)65 int migrate_prep(void)
66 {
67 /*
68 * Clear the LRU lists so pages can be isolated.
69 * Note that pages may be moved off the LRU after we have
70 * drained them. Those pages will fail to migrate like other
71 * pages that may be busy.
72 */
73 lru_add_drain_all();
74
75 return 0;
76 }
77
78 /* Do the necessary work of migrate_prep but not if it involves other CPUs */
migrate_prep_local(void)79 int migrate_prep_local(void)
80 {
81 lru_add_drain();
82
83 return 0;
84 }
85
isolate_movable_page(struct page * page,isolate_mode_t mode)86 int isolate_movable_page(struct page *page, isolate_mode_t mode)
87 {
88 struct address_space *mapping;
89
90 /*
91 * Avoid burning cycles with pages that are yet under __free_pages(),
92 * or just got freed under us.
93 *
94 * In case we 'win' a race for a movable page being freed under us and
95 * raise its refcount preventing __free_pages() from doing its job
96 * the put_page() at the end of this block will take care of
97 * release this page, thus avoiding a nasty leakage.
98 */
99 if (unlikely(!get_page_unless_zero(page)))
100 goto out;
101
102 /*
103 * Check PageMovable before holding a PG_lock because page's owner
104 * assumes anybody doesn't touch PG_lock of newly allocated page
105 * so unconditionally grabbing the lock ruins page's owner side.
106 */
107 if (unlikely(!__PageMovable(page)))
108 goto out_putpage;
109 /*
110 * As movable pages are not isolated from LRU lists, concurrent
111 * compaction threads can race against page migration functions
112 * as well as race against the releasing a page.
113 *
114 * In order to avoid having an already isolated movable page
115 * being (wrongly) re-isolated while it is under migration,
116 * or to avoid attempting to isolate pages being released,
117 * lets be sure we have the page lock
118 * before proceeding with the movable page isolation steps.
119 */
120 if (unlikely(!trylock_page(page)))
121 goto out_putpage;
122
123 if (!PageMovable(page) || PageIsolated(page))
124 goto out_no_isolated;
125
126 mapping = page_mapping(page);
127 VM_BUG_ON_PAGE(!mapping, page);
128
129 if (!mapping->a_ops->isolate_page(page, mode))
130 goto out_no_isolated;
131
132 /* Driver shouldn't use PG_isolated bit of page->flags */
133 WARN_ON_ONCE(PageIsolated(page));
134 __SetPageIsolated(page);
135 unlock_page(page);
136
137 return 0;
138
139 out_no_isolated:
140 unlock_page(page);
141 out_putpage:
142 put_page(page);
143 out:
144 return -EBUSY;
145 }
146
147 /* It should be called on page which is PG_movable */
putback_movable_page(struct page * page)148 void putback_movable_page(struct page *page)
149 {
150 struct address_space *mapping;
151
152 VM_BUG_ON_PAGE(!PageLocked(page), page);
153 VM_BUG_ON_PAGE(!PageMovable(page), page);
154 VM_BUG_ON_PAGE(!PageIsolated(page), page);
155
156 mapping = page_mapping(page);
157 mapping->a_ops->putback_page(page);
158 __ClearPageIsolated(page);
159 }
160
161 /*
162 * Put previously isolated pages back onto the appropriate lists
163 * from where they were once taken off for compaction/migration.
164 *
165 * This function shall be used whenever the isolated pageset has been
166 * built from lru, balloon, hugetlbfs page. See isolate_migratepages_range()
167 * and isolate_huge_page().
168 */
putback_movable_pages(struct list_head * l)169 void putback_movable_pages(struct list_head *l)
170 {
171 struct page *page;
172 struct page *page2;
173
174 list_for_each_entry_safe(page, page2, l, lru) {
175 if (unlikely(PageHuge(page))) {
176 putback_active_hugepage(page);
177 continue;
178 }
179 list_del(&page->lru);
180 /*
181 * We isolated non-lru movable page so here we can use
182 * __PageMovable because LRU page's mapping cannot have
183 * PAGE_MAPPING_MOVABLE.
184 */
185 if (unlikely(__PageMovable(page))) {
186 VM_BUG_ON_PAGE(!PageIsolated(page), page);
187 lock_page(page);
188 if (PageMovable(page))
189 putback_movable_page(page);
190 else
191 __ClearPageIsolated(page);
192 unlock_page(page);
193 put_page(page);
194 } else {
195 mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON +
196 page_is_file_lru(page), -thp_nr_pages(page));
197 putback_lru_page(page);
198 }
199 }
200 }
201
202 /*
203 * Restore a potential migration pte to a working pte entry
204 */
remove_migration_pte(struct page * page,struct vm_area_struct * vma,unsigned long addr,void * old)205 static bool remove_migration_pte(struct page *page, struct vm_area_struct *vma,
206 unsigned long addr, void *old)
207 {
208 struct page_vma_mapped_walk pvmw = {
209 .page = old,
210 .vma = vma,
211 .address = addr,
212 .flags = PVMW_SYNC | PVMW_MIGRATION,
213 };
214 struct page *new;
215 pte_t pte;
216 swp_entry_t entry;
217
218 VM_BUG_ON_PAGE(PageTail(page), page);
219 while (page_vma_mapped_walk(&pvmw)) {
220 if (PageKsm(page))
221 new = page;
222 else
223 new = page - pvmw.page->index +
224 linear_page_index(vma, pvmw.address);
225
226 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
227 /* PMD-mapped THP migration entry */
228 if (!pvmw.pte) {
229 VM_BUG_ON_PAGE(PageHuge(page) || !PageTransCompound(page), page);
230 remove_migration_pmd(&pvmw, new);
231 continue;
232 }
233 #endif
234
235 get_page(new);
236 pte = pte_mkold(mk_pte(new, READ_ONCE(vma->vm_page_prot)));
237 if (pte_swp_soft_dirty(*pvmw.pte))
238 pte = pte_mksoft_dirty(pte);
239
240 /*
241 * Recheck VMA as permissions can change since migration started
242 */
243 entry = pte_to_swp_entry(*pvmw.pte);
244 if (is_write_migration_entry(entry))
245 pte = maybe_mkwrite(pte, vma);
246 else if (pte_swp_uffd_wp(*pvmw.pte))
247 pte = pte_mkuffd_wp(pte);
248
249 if (unlikely(is_device_private_page(new))) {
250 entry = make_device_private_entry(new, pte_write(pte));
251 pte = swp_entry_to_pte(entry);
252 if (pte_swp_soft_dirty(*pvmw.pte))
253 pte = pte_swp_mksoft_dirty(pte);
254 if (pte_swp_uffd_wp(*pvmw.pte))
255 pte = pte_swp_mkuffd_wp(pte);
256 }
257
258 #ifdef CONFIG_HUGETLB_PAGE
259 if (PageHuge(new)) {
260 pte = pte_mkhuge(pte);
261 pte = arch_make_huge_pte(pte, vma, new, 0);
262 set_huge_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte);
263 if (PageAnon(new))
264 hugepage_add_anon_rmap(new, vma, pvmw.address);
265 else
266 page_dup_rmap(new, true);
267 } else
268 #endif
269 {
270 set_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte);
271
272 if (PageAnon(new))
273 page_add_anon_rmap(new, vma, pvmw.address, false);
274 else
275 page_add_file_rmap(new, false);
276 }
277 if (vma->vm_flags & VM_LOCKED && !PageTransCompound(new))
278 mlock_vma_page(new);
279
280 if (PageTransHuge(page) && PageMlocked(page))
281 clear_page_mlock(page);
282
283 /* No need to invalidate - it was non-present before */
284 update_mmu_cache(vma, pvmw.address, pvmw.pte);
285 }
286
287 return true;
288 }
289
290 /*
291 * Get rid of all migration entries and replace them by
292 * references to the indicated page.
293 */
remove_migration_ptes(struct page * old,struct page * new,bool locked)294 void remove_migration_ptes(struct page *old, struct page *new, bool locked)
295 {
296 struct rmap_walk_control rwc = {
297 .rmap_one = remove_migration_pte,
298 .arg = old,
299 };
300
301 if (locked)
302 rmap_walk_locked(new, &rwc);
303 else
304 rmap_walk(new, &rwc);
305 }
306
307 /*
308 * Something used the pte of a page under migration. We need to
309 * get to the page and wait until migration is finished.
310 * When we return from this function the fault will be retried.
311 */
__migration_entry_wait(struct mm_struct * mm,pte_t * ptep,spinlock_t * ptl)312 void __migration_entry_wait(struct mm_struct *mm, pte_t *ptep,
313 spinlock_t *ptl)
314 {
315 pte_t pte;
316 swp_entry_t entry;
317 struct page *page;
318
319 spin_lock(ptl);
320 pte = *ptep;
321 if (!is_swap_pte(pte))
322 goto out;
323
324 entry = pte_to_swp_entry(pte);
325 if (!is_migration_entry(entry))
326 goto out;
327
328 page = migration_entry_to_page(entry);
329 page = compound_head(page);
330
331 /*
332 * Once page cache replacement of page migration started, page_count
333 * is zero; but we must not call put_and_wait_on_page_locked() without
334 * a ref. Use get_page_unless_zero(), and just fault again if it fails.
335 */
336 if (!get_page_unless_zero(page))
337 goto out;
338 pte_unmap_unlock(ptep, ptl);
339 put_and_wait_on_page_locked(page);
340 return;
341 out:
342 pte_unmap_unlock(ptep, ptl);
343 }
344
migration_entry_wait(struct mm_struct * mm,pmd_t * pmd,unsigned long address)345 void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd,
346 unsigned long address)
347 {
348 spinlock_t *ptl = pte_lockptr(mm, pmd);
349 pte_t *ptep = pte_offset_map(pmd, address);
350 __migration_entry_wait(mm, ptep, ptl);
351 }
352
migration_entry_wait_huge(struct vm_area_struct * vma,struct mm_struct * mm,pte_t * pte)353 void migration_entry_wait_huge(struct vm_area_struct *vma,
354 struct mm_struct *mm, pte_t *pte)
355 {
356 spinlock_t *ptl = huge_pte_lockptr(hstate_vma(vma), mm, pte);
357 __migration_entry_wait(mm, pte, ptl);
358 }
359
360 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
pmd_migration_entry_wait(struct mm_struct * mm,pmd_t * pmd)361 void pmd_migration_entry_wait(struct mm_struct *mm, pmd_t *pmd)
362 {
363 spinlock_t *ptl;
364 struct page *page;
365
366 ptl = pmd_lock(mm, pmd);
367 if (!is_pmd_migration_entry(*pmd))
368 goto unlock;
369 page = migration_entry_to_page(pmd_to_swp_entry(*pmd));
370 if (!get_page_unless_zero(page))
371 goto unlock;
372 spin_unlock(ptl);
373 put_and_wait_on_page_locked(page);
374 return;
375 unlock:
376 spin_unlock(ptl);
377 }
378 #endif
379
expected_page_refs(struct address_space * mapping,struct page * page)380 static int expected_page_refs(struct address_space *mapping, struct page *page)
381 {
382 int expected_count = 1;
383
384 /*
385 * Device private pages have an extra refcount as they are
386 * ZONE_DEVICE pages.
387 */
388 expected_count += is_device_private_page(page);
389 if (mapping)
390 expected_count += thp_nr_pages(page) + page_has_private(page);
391
392 return expected_count;
393 }
394
395 /*
396 * Replace the page in the mapping.
397 *
398 * The number of remaining references must be:
399 * 1 for anonymous pages without a mapping
400 * 2 for pages with a mapping
401 * 3 for pages with a mapping and PagePrivate/PagePrivate2 set.
402 */
migrate_page_move_mapping(struct address_space * mapping,struct page * newpage,struct page * page,int extra_count)403 int migrate_page_move_mapping(struct address_space *mapping,
404 struct page *newpage, struct page *page, int extra_count)
405 {
406 XA_STATE(xas, &mapping->i_pages, page_index(page));
407 struct zone *oldzone, *newzone;
408 int dirty;
409 int expected_count = expected_page_refs(mapping, page) + extra_count;
410 int nr = thp_nr_pages(page);
411
412 if (!mapping) {
413 /* Anonymous page without mapping */
414 if (page_count(page) != expected_count)
415 return -EAGAIN;
416
417 /* No turning back from here */
418 newpage->index = page->index;
419 newpage->mapping = page->mapping;
420 if (PageSwapBacked(page))
421 __SetPageSwapBacked(newpage);
422
423 return MIGRATEPAGE_SUCCESS;
424 }
425
426 oldzone = page_zone(page);
427 newzone = page_zone(newpage);
428
429 xas_lock_irq(&xas);
430 if (page_count(page) != expected_count || xas_load(&xas) != page) {
431 xas_unlock_irq(&xas);
432 return -EAGAIN;
433 }
434
435 if (!page_ref_freeze(page, expected_count)) {
436 xas_unlock_irq(&xas);
437 return -EAGAIN;
438 }
439
440 /*
441 * Now we know that no one else is looking at the page:
442 * no turning back from here.
443 */
444 newpage->index = page->index;
445 newpage->mapping = page->mapping;
446 page_ref_add(newpage, nr); /* add cache reference */
447 if (PageSwapBacked(page)) {
448 __SetPageSwapBacked(newpage);
449 if (PageSwapCache(page)) {
450 SetPageSwapCache(newpage);
451 set_page_private(newpage, page_private(page));
452 }
453 } else {
454 VM_BUG_ON_PAGE(PageSwapCache(page), page);
455 }
456
457 /* Move dirty while page refs frozen and newpage not yet exposed */
458 dirty = PageDirty(page);
459 if (dirty) {
460 ClearPageDirty(page);
461 SetPageDirty(newpage);
462 }
463
464 xas_store(&xas, newpage);
465 if (PageTransHuge(page)) {
466 int i;
467
468 for (i = 1; i < nr; i++) {
469 xas_next(&xas);
470 xas_store(&xas, newpage);
471 }
472 }
473
474 /*
475 * Drop cache reference from old page by unfreezing
476 * to one less reference.
477 * We know this isn't the last reference.
478 */
479 page_ref_unfreeze(page, expected_count - nr);
480
481 xas_unlock(&xas);
482 /* Leave irq disabled to prevent preemption while updating stats */
483
484 /*
485 * If moved to a different zone then also account
486 * the page for that zone. Other VM counters will be
487 * taken care of when we establish references to the
488 * new page and drop references to the old page.
489 *
490 * Note that anonymous pages are accounted for
491 * via NR_FILE_PAGES and NR_ANON_MAPPED if they
492 * are mapped to swap space.
493 */
494 if (newzone != oldzone) {
495 struct lruvec *old_lruvec, *new_lruvec;
496 struct mem_cgroup *memcg;
497
498 memcg = page_memcg(page);
499 old_lruvec = mem_cgroup_lruvec(memcg, oldzone->zone_pgdat);
500 new_lruvec = mem_cgroup_lruvec(memcg, newzone->zone_pgdat);
501
502 __mod_lruvec_state(old_lruvec, NR_FILE_PAGES, -nr);
503 __mod_lruvec_state(new_lruvec, NR_FILE_PAGES, nr);
504 if (PageSwapBacked(page) && !PageSwapCache(page)) {
505 __mod_lruvec_state(old_lruvec, NR_SHMEM, -nr);
506 __mod_lruvec_state(new_lruvec, NR_SHMEM, nr);
507 }
508 if (dirty && mapping_can_writeback(mapping)) {
509 __mod_lruvec_state(old_lruvec, NR_FILE_DIRTY, -nr);
510 __mod_zone_page_state(oldzone, NR_ZONE_WRITE_PENDING, -nr);
511 __mod_lruvec_state(new_lruvec, NR_FILE_DIRTY, nr);
512 __mod_zone_page_state(newzone, NR_ZONE_WRITE_PENDING, nr);
513 }
514 }
515 local_irq_enable();
516
517 return MIGRATEPAGE_SUCCESS;
518 }
519 EXPORT_SYMBOL(migrate_page_move_mapping);
520
521 /*
522 * The expected number of remaining references is the same as that
523 * of migrate_page_move_mapping().
524 */
migrate_huge_page_move_mapping(struct address_space * mapping,struct page * newpage,struct page * page)525 int migrate_huge_page_move_mapping(struct address_space *mapping,
526 struct page *newpage, struct page *page)
527 {
528 XA_STATE(xas, &mapping->i_pages, page_index(page));
529 int expected_count;
530
531 xas_lock_irq(&xas);
532 expected_count = 2 + page_has_private(page);
533 if (page_count(page) != expected_count || xas_load(&xas) != page) {
534 xas_unlock_irq(&xas);
535 return -EAGAIN;
536 }
537
538 if (!page_ref_freeze(page, expected_count)) {
539 xas_unlock_irq(&xas);
540 return -EAGAIN;
541 }
542
543 newpage->index = page->index;
544 newpage->mapping = page->mapping;
545
546 get_page(newpage);
547
548 xas_store(&xas, newpage);
549
550 page_ref_unfreeze(page, expected_count - 1);
551
552 xas_unlock_irq(&xas);
553
554 return MIGRATEPAGE_SUCCESS;
555 }
556
557 /*
558 * Gigantic pages are so large that we do not guarantee that page++ pointer
559 * arithmetic will work across the entire page. We need something more
560 * specialized.
561 */
__copy_gigantic_page(struct page * dst,struct page * src,int nr_pages)562 static void __copy_gigantic_page(struct page *dst, struct page *src,
563 int nr_pages)
564 {
565 int i;
566 struct page *dst_base = dst;
567 struct page *src_base = src;
568
569 for (i = 0; i < nr_pages; ) {
570 cond_resched();
571 copy_highpage(dst, src);
572
573 i++;
574 dst = mem_map_next(dst, dst_base, i);
575 src = mem_map_next(src, src_base, i);
576 }
577 }
578
copy_huge_page(struct page * dst,struct page * src)579 static void copy_huge_page(struct page *dst, struct page *src)
580 {
581 int i;
582 int nr_pages;
583
584 if (PageHuge(src)) {
585 /* hugetlbfs page */
586 struct hstate *h = page_hstate(src);
587 nr_pages = pages_per_huge_page(h);
588
589 if (unlikely(nr_pages > MAX_ORDER_NR_PAGES)) {
590 __copy_gigantic_page(dst, src, nr_pages);
591 return;
592 }
593 } else {
594 /* thp page */
595 BUG_ON(!PageTransHuge(src));
596 nr_pages = thp_nr_pages(src);
597 }
598
599 for (i = 0; i < nr_pages; i++) {
600 cond_resched();
601 copy_highpage(dst + i, src + i);
602 }
603 }
604
605 /*
606 * Copy the page to its new location
607 */
migrate_page_states(struct page * newpage,struct page * page)608 void migrate_page_states(struct page *newpage, struct page *page)
609 {
610 int cpupid;
611
612 if (PageError(page))
613 SetPageError(newpage);
614 if (PageReferenced(page))
615 SetPageReferenced(newpage);
616 if (PageUptodate(page))
617 SetPageUptodate(newpage);
618 if (TestClearPageActive(page)) {
619 VM_BUG_ON_PAGE(PageUnevictable(page), page);
620 SetPageActive(newpage);
621 } else if (TestClearPageUnevictable(page))
622 SetPageUnevictable(newpage);
623 if (PageWorkingset(page))
624 SetPageWorkingset(newpage);
625 if (PageChecked(page))
626 SetPageChecked(newpage);
627 if (PageMappedToDisk(page))
628 SetPageMappedToDisk(newpage);
629
630 /* Move dirty on pages not done by migrate_page_move_mapping() */
631 if (PageDirty(page))
632 SetPageDirty(newpage);
633
634 if (page_is_young(page))
635 set_page_young(newpage);
636 if (page_is_idle(page))
637 set_page_idle(newpage);
638
639 /* Migrate the page's xpm state */
640 if(PageXPMWritetainted(page))
641 SetPageXPMWritetainted(newpage);
642
643 if(PageXPMReadonly(page))
644 SetPageXPMReadonly(newpage);
645
646 /*
647 * Copy NUMA information to the new page, to prevent over-eager
648 * future migrations of this same page.
649 */
650 cpupid = page_cpupid_xchg_last(page, -1);
651 page_cpupid_xchg_last(newpage, cpupid);
652
653 ksm_migrate_page(newpage, page);
654 /*
655 * Please do not reorder this without considering how mm/ksm.c's
656 * get_ksm_page() depends upon ksm_migrate_page() and PageSwapCache().
657 */
658 if (PageSwapCache(page))
659 ClearPageSwapCache(page);
660 ClearPagePrivate(page);
661 set_page_private(page, 0);
662
663 /*
664 * If any waiters have accumulated on the new page then
665 * wake them up.
666 */
667 if (PageWriteback(newpage))
668 end_page_writeback(newpage);
669
670 /*
671 * PG_readahead shares the same bit with PG_reclaim. The above
672 * end_page_writeback() may clear PG_readahead mistakenly, so set the
673 * bit after that.
674 */
675 if (PageReadahead(page))
676 SetPageReadahead(newpage);
677
678 copy_page_owner(page, newpage);
679
680 if (!PageHuge(page))
681 mem_cgroup_migrate(page, newpage);
682 }
683 EXPORT_SYMBOL(migrate_page_states);
684
migrate_page_copy(struct page * newpage,struct page * page)685 void migrate_page_copy(struct page *newpage, struct page *page)
686 {
687 if (PageHuge(page) || PageTransHuge(page))
688 copy_huge_page(newpage, page);
689 else
690 copy_highpage(newpage, page);
691
692 migrate_page_states(newpage, page);
693 }
694 EXPORT_SYMBOL(migrate_page_copy);
695
696 /************************************************************
697 * Migration functions
698 ***********************************************************/
699
migrate_page_extra(struct address_space * mapping,struct page * newpage,struct page * page,enum migrate_mode mode,int extra_count)700 int migrate_page_extra(struct address_space *mapping,
701 struct page *newpage, struct page *page,
702 enum migrate_mode mode, int extra_count)
703 {
704 int rc;
705
706 BUG_ON(PageWriteback(page)); /* Writeback must be complete */
707
708 rc = migrate_page_move_mapping(mapping, newpage, page, extra_count);
709
710 if (rc != MIGRATEPAGE_SUCCESS)
711 return rc;
712
713 if (mode != MIGRATE_SYNC_NO_COPY)
714 migrate_page_copy(newpage, page);
715 else
716 migrate_page_states(newpage, page);
717 return MIGRATEPAGE_SUCCESS;
718 }
719
720 /*
721 * Common logic to directly migrate a single LRU page suitable for
722 * pages that do not use PagePrivate/PagePrivate2.
723 *
724 * Pages are locked upon entry and exit.
725 */
migrate_page(struct address_space * mapping,struct page * newpage,struct page * page,enum migrate_mode mode)726 int migrate_page(struct address_space *mapping,
727 struct page *newpage, struct page *page,
728 enum migrate_mode mode)
729 {
730 return migrate_page_extra(mapping, newpage, page, mode, 0);
731 }
732 EXPORT_SYMBOL(migrate_page);
733
734 #ifdef CONFIG_BLOCK
735 /* Returns true if all buffers are successfully locked */
buffer_migrate_lock_buffers(struct buffer_head * head,enum migrate_mode mode)736 static bool buffer_migrate_lock_buffers(struct buffer_head *head,
737 enum migrate_mode mode)
738 {
739 struct buffer_head *bh = head;
740
741 /* Simple case, sync compaction */
742 if (mode != MIGRATE_ASYNC) {
743 do {
744 lock_buffer(bh);
745 bh = bh->b_this_page;
746
747 } while (bh != head);
748
749 return true;
750 }
751
752 /* async case, we cannot block on lock_buffer so use trylock_buffer */
753 do {
754 if (!trylock_buffer(bh)) {
755 /*
756 * We failed to lock the buffer and cannot stall in
757 * async migration. Release the taken locks
758 */
759 struct buffer_head *failed_bh = bh;
760 bh = head;
761 while (bh != failed_bh) {
762 unlock_buffer(bh);
763 bh = bh->b_this_page;
764 }
765 return false;
766 }
767
768 bh = bh->b_this_page;
769 } while (bh != head);
770 return true;
771 }
772
__buffer_migrate_page(struct address_space * mapping,struct page * newpage,struct page * page,enum migrate_mode mode,bool check_refs)773 static int __buffer_migrate_page(struct address_space *mapping,
774 struct page *newpage, struct page *page, enum migrate_mode mode,
775 bool check_refs)
776 {
777 struct buffer_head *bh, *head;
778 int rc;
779 int expected_count;
780
781 if (!page_has_buffers(page))
782 return migrate_page(mapping, newpage, page, mode);
783
784 /* Check whether page does not have extra refs before we do more work */
785 expected_count = expected_page_refs(mapping, page);
786 if (page_count(page) != expected_count)
787 return -EAGAIN;
788
789 head = page_buffers(page);
790 if (!buffer_migrate_lock_buffers(head, mode))
791 return -EAGAIN;
792
793 if (check_refs) {
794 bool busy;
795 bool invalidated = false;
796
797 recheck_buffers:
798 busy = false;
799 spin_lock(&mapping->private_lock);
800 bh = head;
801 do {
802 if (atomic_read(&bh->b_count)) {
803 busy = true;
804 break;
805 }
806 bh = bh->b_this_page;
807 } while (bh != head);
808 if (busy) {
809 if (invalidated) {
810 rc = -EAGAIN;
811 goto unlock_buffers;
812 }
813 spin_unlock(&mapping->private_lock);
814 invalidate_bh_lrus();
815 invalidated = true;
816 goto recheck_buffers;
817 }
818 }
819
820 rc = migrate_page_move_mapping(mapping, newpage, page, 0);
821 if (rc != MIGRATEPAGE_SUCCESS)
822 goto unlock_buffers;
823
824 attach_page_private(newpage, detach_page_private(page));
825
826 bh = head;
827 do {
828 set_bh_page(bh, newpage, bh_offset(bh));
829 bh = bh->b_this_page;
830
831 } while (bh != head);
832
833 if (mode != MIGRATE_SYNC_NO_COPY)
834 migrate_page_copy(newpage, page);
835 else
836 migrate_page_states(newpage, page);
837
838 rc = MIGRATEPAGE_SUCCESS;
839 unlock_buffers:
840 if (check_refs)
841 spin_unlock(&mapping->private_lock);
842 bh = head;
843 do {
844 unlock_buffer(bh);
845 bh = bh->b_this_page;
846
847 } while (bh != head);
848
849 return rc;
850 }
851
852 /*
853 * Migration function for pages with buffers. This function can only be used
854 * if the underlying filesystem guarantees that no other references to "page"
855 * exist. For example attached buffer heads are accessed only under page lock.
856 */
buffer_migrate_page(struct address_space * mapping,struct page * newpage,struct page * page,enum migrate_mode mode)857 int buffer_migrate_page(struct address_space *mapping,
858 struct page *newpage, struct page *page, enum migrate_mode mode)
859 {
860 return __buffer_migrate_page(mapping, newpage, page, mode, false);
861 }
862 EXPORT_SYMBOL(buffer_migrate_page);
863
864 /*
865 * Same as above except that this variant is more careful and checks that there
866 * are also no buffer head references. This function is the right one for
867 * mappings where buffer heads are directly looked up and referenced (such as
868 * block device mappings).
869 */
buffer_migrate_page_norefs(struct address_space * mapping,struct page * newpage,struct page * page,enum migrate_mode mode)870 int buffer_migrate_page_norefs(struct address_space *mapping,
871 struct page *newpage, struct page *page, enum migrate_mode mode)
872 {
873 return __buffer_migrate_page(mapping, newpage, page, mode, true);
874 }
875 #endif
876
877 /*
878 * Writeback a page to clean the dirty state
879 */
writeout(struct address_space * mapping,struct page * page)880 static int writeout(struct address_space *mapping, struct page *page)
881 {
882 struct writeback_control wbc = {
883 .sync_mode = WB_SYNC_NONE,
884 .nr_to_write = 1,
885 .range_start = 0,
886 .range_end = LLONG_MAX,
887 .for_reclaim = 1
888 };
889 int rc;
890
891 if (!mapping->a_ops->writepage)
892 /* No write method for the address space */
893 return -EINVAL;
894
895 if (!clear_page_dirty_for_io(page))
896 /* Someone else already triggered a write */
897 return -EAGAIN;
898
899 /*
900 * A dirty page may imply that the underlying filesystem has
901 * the page on some queue. So the page must be clean for
902 * migration. Writeout may mean we loose the lock and the
903 * page state is no longer what we checked for earlier.
904 * At this point we know that the migration attempt cannot
905 * be successful.
906 */
907 remove_migration_ptes(page, page, false);
908
909 rc = mapping->a_ops->writepage(page, &wbc);
910
911 if (rc != AOP_WRITEPAGE_ACTIVATE)
912 /* unlocked. Relock */
913 lock_page(page);
914
915 return (rc < 0) ? -EIO : -EAGAIN;
916 }
917
918 /*
919 * Default handling if a filesystem does not provide a migration function.
920 */
fallback_migrate_page(struct address_space * mapping,struct page * newpage,struct page * page,enum migrate_mode mode)921 static int fallback_migrate_page(struct address_space *mapping,
922 struct page *newpage, struct page *page, enum migrate_mode mode)
923 {
924 if (PageDirty(page)) {
925 /* Only writeback pages in full synchronous migration */
926 switch (mode) {
927 case MIGRATE_SYNC:
928 case MIGRATE_SYNC_NO_COPY:
929 break;
930 default:
931 return -EBUSY;
932 }
933 return writeout(mapping, page);
934 }
935
936 /*
937 * Buffers may be managed in a filesystem specific way.
938 * We must have no buffers or drop them.
939 */
940 if (page_has_private(page) &&
941 !try_to_release_page(page, GFP_KERNEL))
942 return mode == MIGRATE_SYNC ? -EAGAIN : -EBUSY;
943
944 return migrate_page(mapping, newpage, page, mode);
945 }
946
947 /*
948 * Move a page to a newly allocated page
949 * The page is locked and all ptes have been successfully removed.
950 *
951 * The new page will have replaced the old page if this function
952 * is successful.
953 *
954 * Return value:
955 * < 0 - error code
956 * MIGRATEPAGE_SUCCESS - success
957 */
move_to_new_page(struct page * newpage,struct page * page,enum migrate_mode mode)958 static int move_to_new_page(struct page *newpage, struct page *page,
959 enum migrate_mode mode)
960 {
961 struct address_space *mapping;
962 int rc = -EAGAIN;
963 bool is_lru = !__PageMovable(page);
964
965 VM_BUG_ON_PAGE(!PageLocked(page), page);
966 VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
967
968 mapping = page_mapping(page);
969
970 if (likely(is_lru)) {
971 if (!mapping)
972 rc = migrate_page(mapping, newpage, page, mode);
973 else if (mapping->a_ops->migratepage)
974 /*
975 * Most pages have a mapping and most filesystems
976 * provide a migratepage callback. Anonymous pages
977 * are part of swap space which also has its own
978 * migratepage callback. This is the most common path
979 * for page migration.
980 */
981 rc = mapping->a_ops->migratepage(mapping, newpage,
982 page, mode);
983 else
984 rc = fallback_migrate_page(mapping, newpage,
985 page, mode);
986 } else {
987 /*
988 * In case of non-lru page, it could be released after
989 * isolation step. In that case, we shouldn't try migration.
990 */
991 VM_BUG_ON_PAGE(!PageIsolated(page), page);
992 if (!PageMovable(page)) {
993 rc = MIGRATEPAGE_SUCCESS;
994 __ClearPageIsolated(page);
995 goto out;
996 }
997
998 rc = mapping->a_ops->migratepage(mapping, newpage,
999 page, mode);
1000 WARN_ON_ONCE(rc == MIGRATEPAGE_SUCCESS &&
1001 !PageIsolated(page));
1002 }
1003
1004 /*
1005 * When successful, old pagecache page->mapping must be cleared before
1006 * page is freed; but stats require that PageAnon be left as PageAnon.
1007 */
1008 if (rc == MIGRATEPAGE_SUCCESS) {
1009 if (__PageMovable(page)) {
1010 VM_BUG_ON_PAGE(!PageIsolated(page), page);
1011
1012 /*
1013 * We clear PG_movable under page_lock so any compactor
1014 * cannot try to migrate this page.
1015 */
1016 __ClearPageIsolated(page);
1017 }
1018
1019 /*
1020 * Anonymous and movable page->mapping will be cleared by
1021 * free_pages_prepare so don't reset it here for keeping
1022 * the type to work PageAnon, for example.
1023 */
1024 if (!PageMappingFlags(page))
1025 page->mapping = NULL;
1026
1027 if (likely(!is_zone_device_page(newpage))) {
1028 int i, nr = compound_nr(newpage);
1029
1030 for (i = 0; i < nr; i++)
1031 flush_dcache_page(newpage + i);
1032 }
1033 }
1034 out:
1035 return rc;
1036 }
1037
__unmap_and_move(struct page * page,struct page * newpage,int force,enum migrate_mode mode)1038 static int __unmap_and_move(struct page *page, struct page *newpage,
1039 int force, enum migrate_mode mode)
1040 {
1041 int rc = -EAGAIN;
1042 int page_was_mapped = 0;
1043 struct anon_vma *anon_vma = NULL;
1044 bool is_lru = !__PageMovable(page);
1045
1046 if (!trylock_page(page)) {
1047 if (!force || mode == MIGRATE_ASYNC)
1048 goto out;
1049
1050 /*
1051 * It's not safe for direct compaction to call lock_page.
1052 * For example, during page readahead pages are added locked
1053 * to the LRU. Later, when the IO completes the pages are
1054 * marked uptodate and unlocked. However, the queueing
1055 * could be merging multiple pages for one bio (e.g.
1056 * mpage_readahead). If an allocation happens for the
1057 * second or third page, the process can end up locking
1058 * the same page twice and deadlocking. Rather than
1059 * trying to be clever about what pages can be locked,
1060 * avoid the use of lock_page for direct compaction
1061 * altogether.
1062 */
1063 if (current->flags & PF_MEMALLOC)
1064 goto out;
1065
1066 lock_page(page);
1067 }
1068
1069 if (PageWriteback(page)) {
1070 /*
1071 * Only in the case of a full synchronous migration is it
1072 * necessary to wait for PageWriteback. In the async case,
1073 * the retry loop is too short and in the sync-light case,
1074 * the overhead of stalling is too much
1075 */
1076 switch (mode) {
1077 case MIGRATE_SYNC:
1078 case MIGRATE_SYNC_NO_COPY:
1079 break;
1080 default:
1081 rc = -EBUSY;
1082 goto out_unlock;
1083 }
1084 if (!force)
1085 goto out_unlock;
1086 wait_on_page_writeback(page);
1087 }
1088
1089 /*
1090 * By try_to_unmap(), page->mapcount goes down to 0 here. In this case,
1091 * we cannot notice that anon_vma is freed while we migrates a page.
1092 * This get_anon_vma() delays freeing anon_vma pointer until the end
1093 * of migration. File cache pages are no problem because of page_lock()
1094 * File Caches may use write_page() or lock_page() in migration, then,
1095 * just care Anon page here.
1096 *
1097 * Only page_get_anon_vma() understands the subtleties of
1098 * getting a hold on an anon_vma from outside one of its mms.
1099 * But if we cannot get anon_vma, then we won't need it anyway,
1100 * because that implies that the anon page is no longer mapped
1101 * (and cannot be remapped so long as we hold the page lock).
1102 */
1103 if (PageAnon(page) && !PageKsm(page))
1104 anon_vma = page_get_anon_vma(page);
1105
1106 /*
1107 * Block others from accessing the new page when we get around to
1108 * establishing additional references. We are usually the only one
1109 * holding a reference to newpage at this point. We used to have a BUG
1110 * here if trylock_page(newpage) fails, but would like to allow for
1111 * cases where there might be a race with the previous use of newpage.
1112 * This is much like races on refcount of oldpage: just don't BUG().
1113 */
1114 if (unlikely(!trylock_page(newpage)))
1115 goto out_unlock;
1116
1117 if (unlikely(!is_lru)) {
1118 rc = move_to_new_page(newpage, page, mode);
1119 goto out_unlock_both;
1120 }
1121
1122 /*
1123 * Corner case handling:
1124 * 1. When a new swap-cache page is read into, it is added to the LRU
1125 * and treated as swapcache but it has no rmap yet.
1126 * Calling try_to_unmap() against a page->mapping==NULL page will
1127 * trigger a BUG. So handle it here.
1128 * 2. An orphaned page (see truncate_complete_page) might have
1129 * fs-private metadata. The page can be picked up due to memory
1130 * offlining. Everywhere else except page reclaim, the page is
1131 * invisible to the vm, so the page can not be migrated. So try to
1132 * free the metadata, so the page can be freed.
1133 */
1134 if (!page->mapping) {
1135 VM_BUG_ON_PAGE(PageAnon(page), page);
1136 if (page_has_private(page)) {
1137 try_to_free_buffers(page);
1138 goto out_unlock_both;
1139 }
1140 } else if (page_mapped(page)) {
1141 /* Establish migration ptes */
1142 VM_BUG_ON_PAGE(PageAnon(page) && !PageKsm(page) && !anon_vma,
1143 page);
1144 try_to_unmap(page, TTU_MIGRATION|TTU_IGNORE_MLOCK);
1145 page_was_mapped = 1;
1146 }
1147
1148 if (!page_mapped(page))
1149 rc = move_to_new_page(newpage, page, mode);
1150
1151 if (page_was_mapped)
1152 remove_migration_ptes(page,
1153 rc == MIGRATEPAGE_SUCCESS ? newpage : page, false);
1154
1155 out_unlock_both:
1156 unlock_page(newpage);
1157 out_unlock:
1158 /* Drop an anon_vma reference if we took one */
1159 if (anon_vma)
1160 put_anon_vma(anon_vma);
1161 unlock_page(page);
1162 out:
1163 /*
1164 * If migration is successful, decrease refcount of the newpage
1165 * which will not free the page because new page owner increased
1166 * refcounter. As well, if it is LRU page, add the page to LRU
1167 * list in here. Use the old state of the isolated source page to
1168 * determine if we migrated a LRU page. newpage was already unlocked
1169 * and possibly modified by its owner - don't rely on the page
1170 * state.
1171 */
1172 if (rc == MIGRATEPAGE_SUCCESS) {
1173 if (unlikely(!is_lru))
1174 put_page(newpage);
1175 else
1176 putback_lru_page(newpage);
1177 }
1178
1179 return rc;
1180 }
1181
1182 /*
1183 * Obtain the lock on page, remove all ptes and migrate the page
1184 * to the newly allocated page in newpage.
1185 */
unmap_and_move(new_page_t get_new_page,free_page_t put_new_page,unsigned long private,struct page * page,int force,enum migrate_mode mode,enum migrate_reason reason)1186 static int unmap_and_move(new_page_t get_new_page,
1187 free_page_t put_new_page,
1188 unsigned long private, struct page *page,
1189 int force, enum migrate_mode mode,
1190 enum migrate_reason reason)
1191 {
1192 int rc = MIGRATEPAGE_SUCCESS;
1193 struct page *newpage = NULL;
1194
1195 if (!thp_migration_supported() && PageTransHuge(page))
1196 return -ENOMEM;
1197
1198 if (page_count(page) == 1) {
1199 /* page was freed from under us. So we are done. */
1200 ClearPageActive(page);
1201 ClearPageUnevictable(page);
1202 if (unlikely(__PageMovable(page))) {
1203 lock_page(page);
1204 if (!PageMovable(page))
1205 __ClearPageIsolated(page);
1206 unlock_page(page);
1207 }
1208 goto out;
1209 }
1210
1211 newpage = get_new_page(page, private);
1212 if (!newpage)
1213 return -ENOMEM;
1214
1215 rc = __unmap_and_move(page, newpage, force, mode);
1216 if (rc == MIGRATEPAGE_SUCCESS)
1217 set_page_owner_migrate_reason(newpage, reason);
1218
1219 out:
1220 if (rc != -EAGAIN) {
1221 /*
1222 * A page that has been migrated has all references
1223 * removed and will be freed. A page that has not been
1224 * migrated will have kept its references and be restored.
1225 */
1226 list_del(&page->lru);
1227
1228 /*
1229 * Compaction can migrate also non-LRU pages which are
1230 * not accounted to NR_ISOLATED_*. They can be recognized
1231 * as __PageMovable
1232 */
1233 if (likely(!__PageMovable(page)))
1234 mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON +
1235 page_is_file_lru(page), -thp_nr_pages(page));
1236 }
1237
1238 /*
1239 * If migration is successful, releases reference grabbed during
1240 * isolation. Otherwise, restore the page to right list unless
1241 * we want to retry.
1242 */
1243 if (rc == MIGRATEPAGE_SUCCESS) {
1244 if (reason != MR_MEMORY_FAILURE)
1245 /*
1246 * We release the page in page_handle_poison.
1247 */
1248 put_page(page);
1249 } else {
1250 if (rc != -EAGAIN) {
1251 if (likely(!__PageMovable(page))) {
1252 putback_lru_page(page);
1253 goto put_new;
1254 }
1255
1256 lock_page(page);
1257 if (PageMovable(page))
1258 putback_movable_page(page);
1259 else
1260 __ClearPageIsolated(page);
1261 unlock_page(page);
1262 put_page(page);
1263 }
1264 put_new:
1265 if (put_new_page)
1266 put_new_page(newpage, private);
1267 else
1268 put_page(newpage);
1269 }
1270
1271 return rc;
1272 }
1273
1274 /*
1275 * Counterpart of unmap_and_move_page() for hugepage migration.
1276 *
1277 * This function doesn't wait the completion of hugepage I/O
1278 * because there is no race between I/O and migration for hugepage.
1279 * Note that currently hugepage I/O occurs only in direct I/O
1280 * where no lock is held and PG_writeback is irrelevant,
1281 * and writeback status of all subpages are counted in the reference
1282 * count of the head page (i.e. if all subpages of a 2MB hugepage are
1283 * under direct I/O, the reference of the head page is 512 and a bit more.)
1284 * This means that when we try to migrate hugepage whose subpages are
1285 * doing direct I/O, some references remain after try_to_unmap() and
1286 * hugepage migration fails without data corruption.
1287 *
1288 * There is also no race when direct I/O is issued on the page under migration,
1289 * because then pte is replaced with migration swap entry and direct I/O code
1290 * will wait in the page fault for migration to complete.
1291 */
unmap_and_move_huge_page(new_page_t get_new_page,free_page_t put_new_page,unsigned long private,struct page * hpage,int force,enum migrate_mode mode,int reason)1292 static int unmap_and_move_huge_page(new_page_t get_new_page,
1293 free_page_t put_new_page, unsigned long private,
1294 struct page *hpage, int force,
1295 enum migrate_mode mode, int reason)
1296 {
1297 int rc = -EAGAIN;
1298 int page_was_mapped = 0;
1299 struct page *new_hpage;
1300 struct anon_vma *anon_vma = NULL;
1301 struct address_space *mapping = NULL;
1302
1303 /*
1304 * Migratability of hugepages depends on architectures and their size.
1305 * This check is necessary because some callers of hugepage migration
1306 * like soft offline and memory hotremove don't walk through page
1307 * tables or check whether the hugepage is pmd-based or not before
1308 * kicking migration.
1309 */
1310 if (!hugepage_migration_supported(page_hstate(hpage))) {
1311 putback_active_hugepage(hpage);
1312 return -ENOSYS;
1313 }
1314
1315 new_hpage = get_new_page(hpage, private);
1316 if (!new_hpage)
1317 return -ENOMEM;
1318
1319 if (!trylock_page(hpage)) {
1320 if (!force)
1321 goto out;
1322 switch (mode) {
1323 case MIGRATE_SYNC:
1324 case MIGRATE_SYNC_NO_COPY:
1325 break;
1326 default:
1327 goto out;
1328 }
1329 lock_page(hpage);
1330 }
1331
1332 /*
1333 * Check for pages which are in the process of being freed. Without
1334 * page_mapping() set, hugetlbfs specific move page routine will not
1335 * be called and we could leak usage counts for subpools.
1336 */
1337 if (page_private(hpage) && !page_mapping(hpage)) {
1338 rc = -EBUSY;
1339 goto out_unlock;
1340 }
1341
1342 if (PageAnon(hpage))
1343 anon_vma = page_get_anon_vma(hpage);
1344
1345 if (unlikely(!trylock_page(new_hpage)))
1346 goto put_anon;
1347
1348 if (page_mapped(hpage)) {
1349 bool mapping_locked = false;
1350 enum ttu_flags ttu = TTU_MIGRATION|TTU_IGNORE_MLOCK;
1351
1352 if (!PageAnon(hpage)) {
1353 /*
1354 * In shared mappings, try_to_unmap could potentially
1355 * call huge_pmd_unshare. Because of this, take
1356 * semaphore in write mode here and set TTU_RMAP_LOCKED
1357 * to let lower levels know we have taken the lock.
1358 */
1359 mapping = hugetlb_page_mapping_lock_write(hpage);
1360 if (unlikely(!mapping))
1361 goto unlock_put_anon;
1362
1363 mapping_locked = true;
1364 ttu |= TTU_RMAP_LOCKED;
1365 }
1366
1367 try_to_unmap(hpage, ttu);
1368 page_was_mapped = 1;
1369
1370 if (mapping_locked)
1371 i_mmap_unlock_write(mapping);
1372 }
1373
1374 if (!page_mapped(hpage))
1375 rc = move_to_new_page(new_hpage, hpage, mode);
1376
1377 if (page_was_mapped)
1378 remove_migration_ptes(hpage,
1379 rc == MIGRATEPAGE_SUCCESS ? new_hpage : hpage, false);
1380
1381 unlock_put_anon:
1382 unlock_page(new_hpage);
1383
1384 put_anon:
1385 if (anon_vma)
1386 put_anon_vma(anon_vma);
1387
1388 if (rc == MIGRATEPAGE_SUCCESS) {
1389 move_hugetlb_state(hpage, new_hpage, reason);
1390 put_new_page = NULL;
1391 }
1392
1393 out_unlock:
1394 unlock_page(hpage);
1395 out:
1396 if (rc != -EAGAIN)
1397 putback_active_hugepage(hpage);
1398
1399 /*
1400 * If migration was not successful and there's a freeing callback, use
1401 * it. Otherwise, put_page() will drop the reference grabbed during
1402 * isolation.
1403 */
1404 if (put_new_page)
1405 put_new_page(new_hpage, private);
1406 else
1407 putback_active_hugepage(new_hpage);
1408
1409 return rc;
1410 }
1411
1412 /*
1413 * migrate_pages - migrate the pages specified in a list, to the free pages
1414 * supplied as the target for the page migration
1415 *
1416 * @from: The list of pages to be migrated.
1417 * @get_new_page: The function used to allocate free pages to be used
1418 * as the target of the page migration.
1419 * @put_new_page: The function used to free target pages if migration
1420 * fails, or NULL if no special handling is necessary.
1421 * @private: Private data to be passed on to get_new_page()
1422 * @mode: The migration mode that specifies the constraints for
1423 * page migration, if any.
1424 * @reason: The reason for page migration.
1425 *
1426 * The function returns after 10 attempts or if no pages are movable any more
1427 * because the list has become empty or no retryable pages exist any more.
1428 * The caller should call putback_movable_pages() to return pages to the LRU
1429 * or free list only if ret != 0.
1430 *
1431 * Returns the number of pages that were not migrated, or an error code.
1432 */
migrate_pages(struct list_head * from,new_page_t get_new_page,free_page_t put_new_page,unsigned long private,enum migrate_mode mode,int reason)1433 int migrate_pages(struct list_head *from, new_page_t get_new_page,
1434 free_page_t put_new_page, unsigned long private,
1435 enum migrate_mode mode, int reason)
1436 {
1437 int retry = 1;
1438 int thp_retry = 1;
1439 int nr_failed = 0;
1440 int nr_succeeded = 0;
1441 int nr_thp_succeeded = 0;
1442 int nr_thp_failed = 0;
1443 int nr_thp_split = 0;
1444 int pass = 0;
1445 bool is_thp = false;
1446 struct page *page;
1447 struct page *page2;
1448 int swapwrite = current->flags & PF_SWAPWRITE;
1449 int rc, nr_subpages;
1450
1451 if (!swapwrite)
1452 current->flags |= PF_SWAPWRITE;
1453
1454 for (pass = 0; pass < 10 && (retry || thp_retry); pass++) {
1455 retry = 0;
1456 thp_retry = 0;
1457
1458 list_for_each_entry_safe(page, page2, from, lru) {
1459 retry:
1460 /*
1461 * THP statistics is based on the source huge page.
1462 * Capture required information that might get lost
1463 * during migration.
1464 */
1465 is_thp = PageTransHuge(page) && !PageHuge(page);
1466 nr_subpages = thp_nr_pages(page);
1467 cond_resched();
1468
1469 if (PageHuge(page))
1470 rc = unmap_and_move_huge_page(get_new_page,
1471 put_new_page, private, page,
1472 pass > 2, mode, reason);
1473 else
1474 rc = unmap_and_move(get_new_page, put_new_page,
1475 private, page, pass > 2, mode,
1476 reason);
1477
1478 switch(rc) {
1479 case -ENOMEM:
1480 /*
1481 * THP migration might be unsupported or the
1482 * allocation could've failed so we should
1483 * retry on the same page with the THP split
1484 * to base pages.
1485 *
1486 * Head page is retried immediately and tail
1487 * pages are added to the tail of the list so
1488 * we encounter them after the rest of the list
1489 * is processed.
1490 */
1491 if (is_thp) {
1492 lock_page(page);
1493 rc = split_huge_page_to_list(page, from);
1494 unlock_page(page);
1495 if (!rc) {
1496 list_safe_reset_next(page, page2, lru);
1497 nr_thp_split++;
1498 goto retry;
1499 }
1500
1501 nr_thp_failed++;
1502 nr_failed += nr_subpages;
1503 goto out;
1504 }
1505 nr_failed++;
1506 goto out;
1507 case -EAGAIN:
1508 if (is_thp) {
1509 thp_retry++;
1510 break;
1511 }
1512 retry++;
1513 break;
1514 case MIGRATEPAGE_SUCCESS:
1515 if (is_thp) {
1516 nr_thp_succeeded++;
1517 nr_succeeded += nr_subpages;
1518 break;
1519 }
1520 nr_succeeded++;
1521 break;
1522 default:
1523 /*
1524 * Permanent failure (-EBUSY, -ENOSYS, etc.):
1525 * unlike -EAGAIN case, the failed page is
1526 * removed from migration page list and not
1527 * retried in the next outer loop.
1528 */
1529 if (is_thp) {
1530 nr_thp_failed++;
1531 nr_failed += nr_subpages;
1532 break;
1533 }
1534 nr_failed++;
1535 break;
1536 }
1537 }
1538 }
1539 nr_failed += retry + thp_retry;
1540 nr_thp_failed += thp_retry;
1541 rc = nr_failed;
1542 out:
1543 count_vm_events(PGMIGRATE_SUCCESS, nr_succeeded);
1544 count_vm_events(PGMIGRATE_FAIL, nr_failed);
1545 count_vm_events(THP_MIGRATION_SUCCESS, nr_thp_succeeded);
1546 count_vm_events(THP_MIGRATION_FAIL, nr_thp_failed);
1547 count_vm_events(THP_MIGRATION_SPLIT, nr_thp_split);
1548 trace_mm_migrate_pages(nr_succeeded, nr_failed, nr_thp_succeeded,
1549 nr_thp_failed, nr_thp_split, mode, reason);
1550
1551 if (!swapwrite)
1552 current->flags &= ~PF_SWAPWRITE;
1553
1554 return rc;
1555 }
1556
alloc_migration_target(struct page * page,unsigned long private)1557 struct page *alloc_migration_target(struct page *page, unsigned long private)
1558 {
1559 struct migration_target_control *mtc;
1560 gfp_t gfp_mask;
1561 unsigned int order = 0;
1562 struct page *new_page = NULL;
1563 int nid;
1564 int zidx;
1565
1566 mtc = (struct migration_target_control *)private;
1567 gfp_mask = mtc->gfp_mask;
1568 nid = mtc->nid;
1569 if (nid == NUMA_NO_NODE)
1570 nid = page_to_nid(page);
1571
1572 if (PageHuge(page)) {
1573 struct hstate *h = page_hstate(compound_head(page));
1574
1575 gfp_mask = htlb_modify_alloc_mask(h, gfp_mask);
1576 return alloc_huge_page_nodemask(h, nid, mtc->nmask, gfp_mask);
1577 }
1578
1579 if (PageTransHuge(page)) {
1580 /*
1581 * clear __GFP_RECLAIM to make the migration callback
1582 * consistent with regular THP allocations.
1583 */
1584 gfp_mask &= ~__GFP_RECLAIM;
1585 gfp_mask |= GFP_TRANSHUGE;
1586 order = HPAGE_PMD_ORDER;
1587 }
1588 zidx = zone_idx(page_zone(page));
1589 if (is_highmem_idx(zidx) || zidx == ZONE_MOVABLE)
1590 gfp_mask |= __GFP_HIGHMEM;
1591
1592 new_page = __alloc_pages_nodemask(gfp_mask, order, nid, mtc->nmask);
1593
1594 if (new_page && PageTransHuge(new_page))
1595 prep_transhuge_page(new_page);
1596
1597 return new_page;
1598 }
1599
1600 #ifdef CONFIG_NUMA
1601
store_status(int __user * status,int start,int value,int nr)1602 static int store_status(int __user *status, int start, int value, int nr)
1603 {
1604 while (nr-- > 0) {
1605 if (put_user(value, status + start))
1606 return -EFAULT;
1607 start++;
1608 }
1609
1610 return 0;
1611 }
1612
do_move_pages_to_node(struct mm_struct * mm,struct list_head * pagelist,int node)1613 static int do_move_pages_to_node(struct mm_struct *mm,
1614 struct list_head *pagelist, int node)
1615 {
1616 int err;
1617 struct migration_target_control mtc = {
1618 .nid = node,
1619 .gfp_mask = GFP_HIGHUSER_MOVABLE | __GFP_THISNODE,
1620 };
1621
1622 err = migrate_pages(pagelist, alloc_migration_target, NULL,
1623 (unsigned long)&mtc, MIGRATE_SYNC, MR_SYSCALL);
1624 if (err)
1625 putback_movable_pages(pagelist);
1626 return err;
1627 }
1628
1629 /*
1630 * Resolves the given address to a struct page, isolates it from the LRU and
1631 * puts it to the given pagelist.
1632 * Returns:
1633 * errno - if the page cannot be found/isolated
1634 * 0 - when it doesn't have to be migrated because it is already on the
1635 * target node
1636 * 1 - when it has been queued
1637 */
add_page_for_migration(struct mm_struct * mm,unsigned long addr,int node,struct list_head * pagelist,bool migrate_all)1638 static int add_page_for_migration(struct mm_struct *mm, unsigned long addr,
1639 int node, struct list_head *pagelist, bool migrate_all)
1640 {
1641 struct vm_area_struct *vma;
1642 struct page *page;
1643 unsigned int follflags;
1644 int err;
1645
1646 mmap_read_lock(mm);
1647 err = -EFAULT;
1648 vma = find_vma(mm, addr);
1649 if (!vma || addr < vma->vm_start || !vma_migratable(vma))
1650 goto out;
1651
1652 /* FOLL_DUMP to ignore special (like zero) pages */
1653 follflags = FOLL_GET | FOLL_DUMP;
1654 page = follow_page(vma, addr, follflags);
1655
1656 err = PTR_ERR(page);
1657 if (IS_ERR(page))
1658 goto out;
1659
1660 err = -ENOENT;
1661 if (!page)
1662 goto out;
1663
1664 err = 0;
1665 if (page_to_nid(page) == node)
1666 goto out_putpage;
1667
1668 err = -EACCES;
1669 if (page_mapcount(page) > 1 && !migrate_all)
1670 goto out_putpage;
1671
1672 if (PageHuge(page)) {
1673 if (PageHead(page)) {
1674 isolate_huge_page(page, pagelist);
1675 err = 1;
1676 }
1677 } else {
1678 struct page *head;
1679
1680 head = compound_head(page);
1681 err = isolate_lru_page(head);
1682 if (err)
1683 goto out_putpage;
1684
1685 err = 1;
1686 list_add_tail(&head->lru, pagelist);
1687 mod_node_page_state(page_pgdat(head),
1688 NR_ISOLATED_ANON + page_is_file_lru(head),
1689 thp_nr_pages(head));
1690 }
1691 out_putpage:
1692 /*
1693 * Either remove the duplicate refcount from
1694 * isolate_lru_page() or drop the page ref if it was
1695 * not isolated.
1696 */
1697 put_page(page);
1698 out:
1699 mmap_read_unlock(mm);
1700 return err;
1701 }
1702
move_pages_and_store_status(struct mm_struct * mm,int node,struct list_head * pagelist,int __user * status,int start,int i,unsigned long nr_pages)1703 static int move_pages_and_store_status(struct mm_struct *mm, int node,
1704 struct list_head *pagelist, int __user *status,
1705 int start, int i, unsigned long nr_pages)
1706 {
1707 int err;
1708
1709 if (list_empty(pagelist))
1710 return 0;
1711
1712 err = do_move_pages_to_node(mm, pagelist, node);
1713 if (err) {
1714 /*
1715 * Positive err means the number of failed
1716 * pages to migrate. Since we are going to
1717 * abort and return the number of non-migrated
1718 * pages, so need to incude the rest of the
1719 * nr_pages that have not been attempted as
1720 * well.
1721 */
1722 if (err > 0)
1723 err += nr_pages - i - 1;
1724 return err;
1725 }
1726 return store_status(status, start, node, i - start);
1727 }
1728
1729 /*
1730 * Migrate an array of page address onto an array of nodes and fill
1731 * the corresponding array of status.
1732 */
do_pages_move(struct mm_struct * mm,nodemask_t task_nodes,unsigned long nr_pages,const void __user * __user * pages,const int __user * nodes,int __user * status,int flags)1733 static int do_pages_move(struct mm_struct *mm, nodemask_t task_nodes,
1734 unsigned long nr_pages,
1735 const void __user * __user *pages,
1736 const int __user *nodes,
1737 int __user *status, int flags)
1738 {
1739 int current_node = NUMA_NO_NODE;
1740 LIST_HEAD(pagelist);
1741 int start, i;
1742 int err = 0, err1;
1743
1744 migrate_prep();
1745
1746 for (i = start = 0; i < nr_pages; i++) {
1747 const void __user *p;
1748 unsigned long addr;
1749 int node;
1750
1751 err = -EFAULT;
1752 if (get_user(p, pages + i))
1753 goto out_flush;
1754 if (get_user(node, nodes + i))
1755 goto out_flush;
1756 addr = (unsigned long)untagged_addr(p);
1757
1758 err = -ENODEV;
1759 if (node < 0 || node >= MAX_NUMNODES)
1760 goto out_flush;
1761 if (!node_state(node, N_MEMORY))
1762 goto out_flush;
1763
1764 err = -EACCES;
1765 if (!node_isset(node, task_nodes))
1766 goto out_flush;
1767
1768 if (current_node == NUMA_NO_NODE) {
1769 current_node = node;
1770 start = i;
1771 } else if (node != current_node) {
1772 err = move_pages_and_store_status(mm, current_node,
1773 &pagelist, status, start, i, nr_pages);
1774 if (err)
1775 goto out;
1776 start = i;
1777 current_node = node;
1778 }
1779
1780 /*
1781 * Errors in the page lookup or isolation are not fatal and we simply
1782 * report them via status
1783 */
1784 err = add_page_for_migration(mm, addr, current_node,
1785 &pagelist, flags & MPOL_MF_MOVE_ALL);
1786
1787 if (err > 0) {
1788 /* The page is successfully queued for migration */
1789 continue;
1790 }
1791
1792 /*
1793 * If the page is already on the target node (!err), store the
1794 * node, otherwise, store the err.
1795 */
1796 err = store_status(status, i, err ? : current_node, 1);
1797 if (err)
1798 goto out_flush;
1799
1800 err = move_pages_and_store_status(mm, current_node, &pagelist,
1801 status, start, i, nr_pages);
1802 if (err)
1803 goto out;
1804 current_node = NUMA_NO_NODE;
1805 }
1806 out_flush:
1807 /* Make sure we do not overwrite the existing error */
1808 err1 = move_pages_and_store_status(mm, current_node, &pagelist,
1809 status, start, i, nr_pages);
1810 if (err >= 0)
1811 err = err1;
1812 out:
1813 return err;
1814 }
1815
1816 /*
1817 * Determine the nodes of an array of pages and store it in an array of status.
1818 */
do_pages_stat_array(struct mm_struct * mm,unsigned long nr_pages,const void __user ** pages,int * status)1819 static void do_pages_stat_array(struct mm_struct *mm, unsigned long nr_pages,
1820 const void __user **pages, int *status)
1821 {
1822 unsigned long i;
1823
1824 mmap_read_lock(mm);
1825
1826 for (i = 0; i < nr_pages; i++) {
1827 unsigned long addr = (unsigned long)(*pages);
1828 struct vm_area_struct *vma;
1829 struct page *page;
1830 int err = -EFAULT;
1831
1832 vma = find_vma(mm, addr);
1833 if (!vma || addr < vma->vm_start)
1834 goto set_status;
1835
1836 /* FOLL_DUMP to ignore special (like zero) pages */
1837 page = follow_page(vma, addr, FOLL_DUMP);
1838
1839 err = PTR_ERR(page);
1840 if (IS_ERR(page))
1841 goto set_status;
1842
1843 err = page ? page_to_nid(page) : -ENOENT;
1844 set_status:
1845 *status = err;
1846
1847 pages++;
1848 status++;
1849 }
1850
1851 mmap_read_unlock(mm);
1852 }
1853
1854 /*
1855 * Determine the nodes of a user array of pages and store it in
1856 * a user array of status.
1857 */
do_pages_stat(struct mm_struct * mm,unsigned long nr_pages,const void __user * __user * pages,int __user * status)1858 static int do_pages_stat(struct mm_struct *mm, unsigned long nr_pages,
1859 const void __user * __user *pages,
1860 int __user *status)
1861 {
1862 #define DO_PAGES_STAT_CHUNK_NR 16
1863 const void __user *chunk_pages[DO_PAGES_STAT_CHUNK_NR];
1864 int chunk_status[DO_PAGES_STAT_CHUNK_NR];
1865
1866 while (nr_pages) {
1867 unsigned long chunk_nr;
1868
1869 chunk_nr = nr_pages;
1870 if (chunk_nr > DO_PAGES_STAT_CHUNK_NR)
1871 chunk_nr = DO_PAGES_STAT_CHUNK_NR;
1872
1873 if (copy_from_user(chunk_pages, pages, chunk_nr * sizeof(*chunk_pages)))
1874 break;
1875
1876 do_pages_stat_array(mm, chunk_nr, chunk_pages, chunk_status);
1877
1878 if (copy_to_user(status, chunk_status, chunk_nr * sizeof(*status)))
1879 break;
1880
1881 pages += chunk_nr;
1882 status += chunk_nr;
1883 nr_pages -= chunk_nr;
1884 }
1885 return nr_pages ? -EFAULT : 0;
1886 }
1887
find_mm_struct(pid_t pid,nodemask_t * mem_nodes)1888 static struct mm_struct *find_mm_struct(pid_t pid, nodemask_t *mem_nodes)
1889 {
1890 struct task_struct *task;
1891 struct mm_struct *mm;
1892
1893 /*
1894 * There is no need to check if current process has the right to modify
1895 * the specified process when they are same.
1896 */
1897 if (!pid) {
1898 mmget(current->mm);
1899 *mem_nodes = cpuset_mems_allowed(current);
1900 return current->mm;
1901 }
1902
1903 /* Find the mm_struct */
1904 rcu_read_lock();
1905 task = find_task_by_vpid(pid);
1906 if (!task) {
1907 rcu_read_unlock();
1908 return ERR_PTR(-ESRCH);
1909 }
1910 get_task_struct(task);
1911
1912 /*
1913 * Check if this process has the right to modify the specified
1914 * process. Use the regular "ptrace_may_access()" checks.
1915 */
1916 if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS)) {
1917 rcu_read_unlock();
1918 mm = ERR_PTR(-EPERM);
1919 goto out;
1920 }
1921 rcu_read_unlock();
1922
1923 mm = ERR_PTR(security_task_movememory(task));
1924 if (IS_ERR(mm))
1925 goto out;
1926 *mem_nodes = cpuset_mems_allowed(task);
1927 mm = get_task_mm(task);
1928 out:
1929 put_task_struct(task);
1930 if (!mm)
1931 mm = ERR_PTR(-EINVAL);
1932 return mm;
1933 }
1934
1935 /*
1936 * Move a list of pages in the address space of the currently executing
1937 * process.
1938 */
kernel_move_pages(pid_t pid,unsigned long nr_pages,const void __user * __user * pages,const int __user * nodes,int __user * status,int flags)1939 static int kernel_move_pages(pid_t pid, unsigned long nr_pages,
1940 const void __user * __user *pages,
1941 const int __user *nodes,
1942 int __user *status, int flags)
1943 {
1944 struct mm_struct *mm;
1945 int err;
1946 nodemask_t task_nodes;
1947
1948 /* Check flags */
1949 if (flags & ~(MPOL_MF_MOVE|MPOL_MF_MOVE_ALL))
1950 return -EINVAL;
1951
1952 if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
1953 return -EPERM;
1954
1955 mm = find_mm_struct(pid, &task_nodes);
1956 if (IS_ERR(mm))
1957 return PTR_ERR(mm);
1958
1959 if (nodes)
1960 err = do_pages_move(mm, task_nodes, nr_pages, pages,
1961 nodes, status, flags);
1962 else
1963 err = do_pages_stat(mm, nr_pages, pages, status);
1964
1965 mmput(mm);
1966 return err;
1967 }
1968
SYSCALL_DEFINE6(move_pages,pid_t,pid,unsigned long,nr_pages,const void __user * __user *,pages,const int __user *,nodes,int __user *,status,int,flags)1969 SYSCALL_DEFINE6(move_pages, pid_t, pid, unsigned long, nr_pages,
1970 const void __user * __user *, pages,
1971 const int __user *, nodes,
1972 int __user *, status, int, flags)
1973 {
1974 return kernel_move_pages(pid, nr_pages, pages, nodes, status, flags);
1975 }
1976
1977 #ifdef CONFIG_COMPAT
COMPAT_SYSCALL_DEFINE6(move_pages,pid_t,pid,compat_ulong_t,nr_pages,compat_uptr_t __user *,pages32,const int __user *,nodes,int __user *,status,int,flags)1978 COMPAT_SYSCALL_DEFINE6(move_pages, pid_t, pid, compat_ulong_t, nr_pages,
1979 compat_uptr_t __user *, pages32,
1980 const int __user *, nodes,
1981 int __user *, status,
1982 int, flags)
1983 {
1984 const void __user * __user *pages;
1985 int i;
1986
1987 pages = compat_alloc_user_space(nr_pages * sizeof(void *));
1988 for (i = 0; i < nr_pages; i++) {
1989 compat_uptr_t p;
1990
1991 if (get_user(p, pages32 + i) ||
1992 put_user(compat_ptr(p), pages + i))
1993 return -EFAULT;
1994 }
1995 return kernel_move_pages(pid, nr_pages, pages, nodes, status, flags);
1996 }
1997 #endif /* CONFIG_COMPAT */
1998
1999 #ifdef CONFIG_NUMA_BALANCING
2000 /*
2001 * Returns true if this is a safe migration target node for misplaced NUMA
2002 * pages. Currently it only checks the watermarks which crude
2003 */
migrate_balanced_pgdat(struct pglist_data * pgdat,unsigned long nr_migrate_pages)2004 static bool migrate_balanced_pgdat(struct pglist_data *pgdat,
2005 unsigned long nr_migrate_pages)
2006 {
2007 int z;
2008
2009 for (z = pgdat->nr_zones - 1; z >= 0; z--) {
2010 struct zone *zone = pgdat->node_zones + z;
2011
2012 if (!populated_zone(zone))
2013 continue;
2014
2015 /* Avoid waking kswapd by allocating pages_to_migrate pages. */
2016 if (!zone_watermark_ok(zone, 0,
2017 high_wmark_pages(zone) +
2018 nr_migrate_pages,
2019 ZONE_MOVABLE, 0))
2020 continue;
2021 return true;
2022 }
2023 return false;
2024 }
2025
alloc_misplaced_dst_page(struct page * page,unsigned long data)2026 static struct page *alloc_misplaced_dst_page(struct page *page,
2027 unsigned long data)
2028 {
2029 int nid = (int) data;
2030 struct page *newpage;
2031
2032 newpage = __alloc_pages_node(nid,
2033 (GFP_HIGHUSER_MOVABLE |
2034 __GFP_THISNODE | __GFP_NOMEMALLOC |
2035 __GFP_NORETRY | __GFP_NOWARN) &
2036 ~__GFP_RECLAIM, 0);
2037
2038 return newpage;
2039 }
2040
numamigrate_isolate_page(pg_data_t * pgdat,struct page * page)2041 static int numamigrate_isolate_page(pg_data_t *pgdat, struct page *page)
2042 {
2043 int page_lru;
2044
2045 VM_BUG_ON_PAGE(compound_order(page) && !PageTransHuge(page), page);
2046
2047 /* Avoid migrating to a node that is nearly full */
2048 if (!migrate_balanced_pgdat(pgdat, compound_nr(page)))
2049 return 0;
2050
2051 if (isolate_lru_page(page))
2052 return 0;
2053
2054 /*
2055 * migrate_misplaced_transhuge_page() skips page migration's usual
2056 * check on page_count(), so we must do it here, now that the page
2057 * has been isolated: a GUP pin, or any other pin, prevents migration.
2058 * The expected page count is 3: 1 for page's mapcount and 1 for the
2059 * caller's pin and 1 for the reference taken by isolate_lru_page().
2060 */
2061 if (PageTransHuge(page) && page_count(page) != 3) {
2062 putback_lru_page(page);
2063 return 0;
2064 }
2065
2066 page_lru = page_is_file_lru(page);
2067 mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON + page_lru,
2068 thp_nr_pages(page));
2069
2070 /*
2071 * Isolating the page has taken another reference, so the
2072 * caller's reference can be safely dropped without the page
2073 * disappearing underneath us during migration.
2074 */
2075 put_page(page);
2076 return 1;
2077 }
2078
pmd_trans_migrating(pmd_t pmd)2079 bool pmd_trans_migrating(pmd_t pmd)
2080 {
2081 struct page *page = pmd_page(pmd);
2082 return PageLocked(page);
2083 }
2084
2085 /*
2086 * Attempt to migrate a misplaced page to the specified destination
2087 * node. Caller is expected to have an elevated reference count on
2088 * the page that will be dropped by this function before returning.
2089 */
migrate_misplaced_page(struct page * page,struct vm_area_struct * vma,int node)2090 int migrate_misplaced_page(struct page *page, struct vm_area_struct *vma,
2091 int node)
2092 {
2093 pg_data_t *pgdat = NODE_DATA(node);
2094 int isolated;
2095 int nr_remaining;
2096 LIST_HEAD(migratepages);
2097
2098 /*
2099 * Don't migrate file pages that are mapped in multiple processes
2100 * with execute permissions as they are probably shared libraries.
2101 */
2102 if (page_mapcount(page) != 1 && page_is_file_lru(page) &&
2103 (vma->vm_flags & VM_EXEC))
2104 goto out;
2105
2106 /*
2107 * Also do not migrate dirty pages as not all filesystems can move
2108 * dirty pages in MIGRATE_ASYNC mode which is a waste of cycles.
2109 */
2110 if (page_is_file_lru(page) && PageDirty(page))
2111 goto out;
2112
2113 isolated = numamigrate_isolate_page(pgdat, page);
2114 if (!isolated)
2115 goto out;
2116
2117 list_add(&page->lru, &migratepages);
2118 nr_remaining = migrate_pages(&migratepages, alloc_misplaced_dst_page,
2119 NULL, node, MIGRATE_ASYNC,
2120 MR_NUMA_MISPLACED);
2121 if (nr_remaining) {
2122 if (!list_empty(&migratepages)) {
2123 list_del(&page->lru);
2124 dec_node_page_state(page, NR_ISOLATED_ANON +
2125 page_is_file_lru(page));
2126 putback_lru_page(page);
2127 }
2128 isolated = 0;
2129 } else
2130 count_vm_numa_event(NUMA_PAGE_MIGRATE);
2131 BUG_ON(!list_empty(&migratepages));
2132 return isolated;
2133
2134 out:
2135 put_page(page);
2136 return 0;
2137 }
2138 #endif /* CONFIG_NUMA_BALANCING */
2139
2140 #if defined(CONFIG_NUMA_BALANCING) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
2141 /*
2142 * Migrates a THP to a given target node. page must be locked and is unlocked
2143 * before returning.
2144 */
migrate_misplaced_transhuge_page(struct mm_struct * mm,struct vm_area_struct * vma,pmd_t * pmd,pmd_t entry,unsigned long address,struct page * page,int node)2145 int migrate_misplaced_transhuge_page(struct mm_struct *mm,
2146 struct vm_area_struct *vma,
2147 pmd_t *pmd, pmd_t entry,
2148 unsigned long address,
2149 struct page *page, int node)
2150 {
2151 spinlock_t *ptl;
2152 pg_data_t *pgdat = NODE_DATA(node);
2153 int isolated = 0;
2154 struct page *new_page = NULL;
2155 int page_lru = page_is_file_lru(page);
2156 unsigned long start = address & HPAGE_PMD_MASK;
2157
2158 new_page = alloc_pages_node(node,
2159 (GFP_TRANSHUGE_LIGHT | __GFP_THISNODE),
2160 HPAGE_PMD_ORDER);
2161 if (!new_page)
2162 goto out_fail;
2163 prep_transhuge_page(new_page);
2164
2165 isolated = numamigrate_isolate_page(pgdat, page);
2166 if (!isolated) {
2167 put_page(new_page);
2168 goto out_fail;
2169 }
2170
2171 /* Prepare a page as a migration target */
2172 __SetPageLocked(new_page);
2173 if (PageSwapBacked(page))
2174 __SetPageSwapBacked(new_page);
2175
2176 /* anon mapping, we can simply copy page->mapping to the new page: */
2177 new_page->mapping = page->mapping;
2178 new_page->index = page->index;
2179 /* flush the cache before copying using the kernel virtual address */
2180 flush_cache_range(vma, start, start + HPAGE_PMD_SIZE);
2181 migrate_page_copy(new_page, page);
2182 WARN_ON(PageLRU(new_page));
2183
2184 /* Recheck the target PMD */
2185 ptl = pmd_lock(mm, pmd);
2186 if (unlikely(!pmd_same(*pmd, entry) || !page_ref_freeze(page, 2))) {
2187 spin_unlock(ptl);
2188
2189 /* Reverse changes made by migrate_page_copy() */
2190 if (TestClearPageActive(new_page))
2191 SetPageActive(page);
2192 if (TestClearPageUnevictable(new_page))
2193 SetPageUnevictable(page);
2194
2195 unlock_page(new_page);
2196 put_page(new_page); /* Free it */
2197
2198 /* Retake the callers reference and putback on LRU */
2199 get_page(page);
2200 putback_lru_page(page);
2201 mod_node_page_state(page_pgdat(page),
2202 NR_ISOLATED_ANON + page_lru, -HPAGE_PMD_NR);
2203
2204 goto out_unlock;
2205 }
2206
2207 entry = mk_huge_pmd(new_page, vma->vm_page_prot);
2208 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
2209
2210 /*
2211 * Overwrite the old entry under pagetable lock and establish
2212 * the new PTE. Any parallel GUP will either observe the old
2213 * page blocking on the page lock, block on the page table
2214 * lock or observe the new page. The SetPageUptodate on the
2215 * new page and page_add_new_anon_rmap guarantee the copy is
2216 * visible before the pagetable update.
2217 */
2218 page_add_anon_rmap(new_page, vma, start, true);
2219 /*
2220 * At this point the pmd is numa/protnone (i.e. non present) and the TLB
2221 * has already been flushed globally. So no TLB can be currently
2222 * caching this non present pmd mapping. There's no need to clear the
2223 * pmd before doing set_pmd_at(), nor to flush the TLB after
2224 * set_pmd_at(). Clearing the pmd here would introduce a race
2225 * condition against MADV_DONTNEED, because MADV_DONTNEED only holds the
2226 * mmap_lock for reading. If the pmd is set to NULL at any given time,
2227 * MADV_DONTNEED won't wait on the pmd lock and it'll skip clearing this
2228 * pmd.
2229 */
2230 set_pmd_at(mm, start, pmd, entry);
2231 update_mmu_cache_pmd(vma, address, &entry);
2232
2233 page_ref_unfreeze(page, 2);
2234 mlock_migrate_page(new_page, page);
2235 page_remove_rmap(page, true);
2236 set_page_owner_migrate_reason(new_page, MR_NUMA_MISPLACED);
2237
2238 spin_unlock(ptl);
2239
2240 /* Take an "isolate" reference and put new page on the LRU. */
2241 get_page(new_page);
2242 putback_lru_page(new_page);
2243
2244 unlock_page(new_page);
2245 unlock_page(page);
2246 put_page(page); /* Drop the rmap reference */
2247 put_page(page); /* Drop the LRU isolation reference */
2248
2249 count_vm_events(PGMIGRATE_SUCCESS, HPAGE_PMD_NR);
2250 count_vm_numa_events(NUMA_PAGE_MIGRATE, HPAGE_PMD_NR);
2251
2252 mod_node_page_state(page_pgdat(page),
2253 NR_ISOLATED_ANON + page_lru,
2254 -HPAGE_PMD_NR);
2255 return isolated;
2256
2257 out_fail:
2258 count_vm_events(PGMIGRATE_FAIL, HPAGE_PMD_NR);
2259 ptl = pmd_lock(mm, pmd);
2260 if (pmd_same(*pmd, entry)) {
2261 entry = pmd_modify(entry, vma->vm_page_prot);
2262 set_pmd_at(mm, start, pmd, entry);
2263 update_mmu_cache_pmd(vma, address, &entry);
2264 }
2265 spin_unlock(ptl);
2266
2267 out_unlock:
2268 unlock_page(page);
2269 put_page(page);
2270 return 0;
2271 }
2272 #endif /* CONFIG_NUMA_BALANCING */
2273
2274 #endif /* CONFIG_NUMA */
2275
2276 #ifdef CONFIG_DEVICE_PRIVATE
migrate_vma_collect_hole(unsigned long start,unsigned long end,__always_unused int depth,struct mm_walk * walk)2277 static int migrate_vma_collect_hole(unsigned long start,
2278 unsigned long end,
2279 __always_unused int depth,
2280 struct mm_walk *walk)
2281 {
2282 struct migrate_vma *migrate = walk->private;
2283 unsigned long addr;
2284
2285 /* Only allow populating anonymous memory. */
2286 if (!vma_is_anonymous(walk->vma)) {
2287 for (addr = start; addr < end; addr += PAGE_SIZE) {
2288 migrate->src[migrate->npages] = 0;
2289 migrate->dst[migrate->npages] = 0;
2290 migrate->npages++;
2291 }
2292 return 0;
2293 }
2294
2295 for (addr = start; addr < end; addr += PAGE_SIZE) {
2296 migrate->src[migrate->npages] = MIGRATE_PFN_MIGRATE;
2297 migrate->dst[migrate->npages] = 0;
2298 migrate->npages++;
2299 migrate->cpages++;
2300 }
2301
2302 return 0;
2303 }
2304
migrate_vma_collect_skip(unsigned long start,unsigned long end,struct mm_walk * walk)2305 static int migrate_vma_collect_skip(unsigned long start,
2306 unsigned long end,
2307 struct mm_walk *walk)
2308 {
2309 struct migrate_vma *migrate = walk->private;
2310 unsigned long addr;
2311
2312 for (addr = start; addr < end; addr += PAGE_SIZE) {
2313 migrate->dst[migrate->npages] = 0;
2314 migrate->src[migrate->npages++] = 0;
2315 }
2316
2317 return 0;
2318 }
2319
migrate_vma_collect_pmd(pmd_t * pmdp,unsigned long start,unsigned long end,struct mm_walk * walk)2320 static int migrate_vma_collect_pmd(pmd_t *pmdp,
2321 unsigned long start,
2322 unsigned long end,
2323 struct mm_walk *walk)
2324 {
2325 struct migrate_vma *migrate = walk->private;
2326 struct vm_area_struct *vma = walk->vma;
2327 struct mm_struct *mm = vma->vm_mm;
2328 unsigned long addr = start, unmapped = 0;
2329 spinlock_t *ptl;
2330 pte_t *ptep;
2331
2332 again:
2333 if (pmd_none(*pmdp))
2334 return migrate_vma_collect_hole(start, end, -1, walk);
2335
2336 if (pmd_trans_huge(*pmdp)) {
2337 struct page *page;
2338
2339 ptl = pmd_lock(mm, pmdp);
2340 if (unlikely(!pmd_trans_huge(*pmdp))) {
2341 spin_unlock(ptl);
2342 goto again;
2343 }
2344
2345 page = pmd_page(*pmdp);
2346 if (is_huge_zero_page(page)) {
2347 spin_unlock(ptl);
2348 split_huge_pmd(vma, pmdp, addr);
2349 if (pmd_trans_unstable(pmdp))
2350 return migrate_vma_collect_skip(start, end,
2351 walk);
2352 } else {
2353 int ret;
2354
2355 get_page(page);
2356 spin_unlock(ptl);
2357 if (unlikely(!trylock_page(page)))
2358 return migrate_vma_collect_skip(start, end,
2359 walk);
2360 ret = split_huge_page(page);
2361 unlock_page(page);
2362 put_page(page);
2363 if (ret)
2364 return migrate_vma_collect_skip(start, end,
2365 walk);
2366 if (pmd_none(*pmdp))
2367 return migrate_vma_collect_hole(start, end, -1,
2368 walk);
2369 }
2370 }
2371
2372 if (unlikely(pmd_bad(*pmdp)))
2373 return migrate_vma_collect_skip(start, end, walk);
2374
2375 ptep = pte_offset_map_lock(mm, pmdp, addr, &ptl);
2376 arch_enter_lazy_mmu_mode();
2377
2378 for (; addr < end; addr += PAGE_SIZE, ptep++) {
2379 unsigned long mpfn = 0, pfn;
2380 struct page *page;
2381 swp_entry_t entry;
2382 pte_t pte;
2383
2384 pte = *ptep;
2385
2386 if (pte_none(pte)) {
2387 if (vma_is_anonymous(vma)) {
2388 mpfn = MIGRATE_PFN_MIGRATE;
2389 migrate->cpages++;
2390 }
2391 goto next;
2392 }
2393
2394 if (!pte_present(pte)) {
2395 /*
2396 * Only care about unaddressable device page special
2397 * page table entry. Other special swap entries are not
2398 * migratable, and we ignore regular swapped page.
2399 */
2400 entry = pte_to_swp_entry(pte);
2401 if (!is_device_private_entry(entry))
2402 goto next;
2403
2404 page = device_private_entry_to_page(entry);
2405 if (!(migrate->flags &
2406 MIGRATE_VMA_SELECT_DEVICE_PRIVATE) ||
2407 page->pgmap->owner != migrate->pgmap_owner)
2408 goto next;
2409
2410 mpfn = migrate_pfn(page_to_pfn(page)) |
2411 MIGRATE_PFN_MIGRATE;
2412 if (is_write_device_private_entry(entry))
2413 mpfn |= MIGRATE_PFN_WRITE;
2414 } else {
2415 if (!(migrate->flags & MIGRATE_VMA_SELECT_SYSTEM))
2416 goto next;
2417 pfn = pte_pfn(pte);
2418 if (is_zero_pfn(pfn)) {
2419 mpfn = MIGRATE_PFN_MIGRATE;
2420 migrate->cpages++;
2421 goto next;
2422 }
2423 page = vm_normal_page(migrate->vma, addr, pte);
2424 mpfn = migrate_pfn(pfn) | MIGRATE_PFN_MIGRATE;
2425 mpfn |= pte_write(pte) ? MIGRATE_PFN_WRITE : 0;
2426 }
2427
2428 /* FIXME support THP */
2429 if (!page || !page->mapping || PageTransCompound(page)) {
2430 mpfn = 0;
2431 goto next;
2432 }
2433
2434 /*
2435 * By getting a reference on the page we pin it and that blocks
2436 * any kind of migration. Side effect is that it "freezes" the
2437 * pte.
2438 *
2439 * We drop this reference after isolating the page from the lru
2440 * for non device page (device page are not on the lru and thus
2441 * can't be dropped from it).
2442 */
2443 get_page(page);
2444 migrate->cpages++;
2445
2446 /*
2447 * Optimize for the common case where page is only mapped once
2448 * in one process. If we can lock the page, then we can safely
2449 * set up a special migration page table entry now.
2450 */
2451 if (trylock_page(page)) {
2452 pte_t swp_pte;
2453
2454 mpfn |= MIGRATE_PFN_LOCKED;
2455 ptep_get_and_clear(mm, addr, ptep);
2456
2457 /* Setup special migration page table entry */
2458 entry = make_migration_entry(page, mpfn &
2459 MIGRATE_PFN_WRITE);
2460 swp_pte = swp_entry_to_pte(entry);
2461 if (pte_present(pte)) {
2462 if (pte_soft_dirty(pte))
2463 swp_pte = pte_swp_mksoft_dirty(swp_pte);
2464 if (pte_uffd_wp(pte))
2465 swp_pte = pte_swp_mkuffd_wp(swp_pte);
2466 } else {
2467 if (pte_swp_soft_dirty(pte))
2468 swp_pte = pte_swp_mksoft_dirty(swp_pte);
2469 if (pte_swp_uffd_wp(pte))
2470 swp_pte = pte_swp_mkuffd_wp(swp_pte);
2471 }
2472 set_pte_at(mm, addr, ptep, swp_pte);
2473
2474 /*
2475 * This is like regular unmap: we remove the rmap and
2476 * drop page refcount. Page won't be freed, as we took
2477 * a reference just above.
2478 */
2479 page_remove_rmap(page, false);
2480 put_page(page);
2481
2482 if (pte_present(pte))
2483 unmapped++;
2484 }
2485
2486 next:
2487 migrate->dst[migrate->npages] = 0;
2488 migrate->src[migrate->npages++] = mpfn;
2489 }
2490
2491 /* Only flush the TLB if we actually modified any entries */
2492 if (unmapped)
2493 flush_tlb_range(walk->vma, start, end);
2494
2495 arch_leave_lazy_mmu_mode();
2496 pte_unmap_unlock(ptep - 1, ptl);
2497
2498 return 0;
2499 }
2500
2501 static const struct mm_walk_ops migrate_vma_walk_ops = {
2502 .pmd_entry = migrate_vma_collect_pmd,
2503 .pte_hole = migrate_vma_collect_hole,
2504 };
2505
2506 /*
2507 * migrate_vma_collect() - collect pages over a range of virtual addresses
2508 * @migrate: migrate struct containing all migration information
2509 *
2510 * This will walk the CPU page table. For each virtual address backed by a
2511 * valid page, it updates the src array and takes a reference on the page, in
2512 * order to pin the page until we lock it and unmap it.
2513 */
migrate_vma_collect(struct migrate_vma * migrate)2514 static void migrate_vma_collect(struct migrate_vma *migrate)
2515 {
2516 struct mmu_notifier_range range;
2517
2518 /*
2519 * Note that the pgmap_owner is passed to the mmu notifier callback so
2520 * that the registered device driver can skip invalidating device
2521 * private page mappings that won't be migrated.
2522 */
2523 mmu_notifier_range_init_migrate(&range, 0, migrate->vma,
2524 migrate->vma->vm_mm, migrate->start, migrate->end,
2525 migrate->pgmap_owner);
2526 mmu_notifier_invalidate_range_start(&range);
2527
2528 walk_page_range(migrate->vma->vm_mm, migrate->start, migrate->end,
2529 &migrate_vma_walk_ops, migrate);
2530
2531 mmu_notifier_invalidate_range_end(&range);
2532 migrate->end = migrate->start + (migrate->npages << PAGE_SHIFT);
2533 }
2534
2535 /*
2536 * migrate_vma_check_page() - check if page is pinned or not
2537 * @page: struct page to check
2538 *
2539 * Pinned pages cannot be migrated. This is the same test as in
2540 * migrate_page_move_mapping(), except that here we allow migration of a
2541 * ZONE_DEVICE page.
2542 */
migrate_vma_check_page(struct page * page,struct page * fault_page)2543 static bool migrate_vma_check_page(struct page *page, struct page *fault_page)
2544 {
2545 /*
2546 * One extra ref because caller holds an extra reference, either from
2547 * isolate_lru_page() for a regular page, or migrate_vma_collect() for
2548 * a device page.
2549 */
2550 int extra = 1 + (page == fault_page);
2551
2552 /*
2553 * FIXME support THP (transparent huge page), it is bit more complex to
2554 * check them than regular pages, because they can be mapped with a pmd
2555 * or with a pte (split pte mapping).
2556 */
2557 if (PageCompound(page))
2558 return false;
2559
2560 /* Page from ZONE_DEVICE have one extra reference */
2561 if (is_zone_device_page(page)) {
2562 /*
2563 * Private page can never be pin as they have no valid pte and
2564 * GUP will fail for those. Yet if there is a pending migration
2565 * a thread might try to wait on the pte migration entry and
2566 * will bump the page reference count. Sadly there is no way to
2567 * differentiate a regular pin from migration wait. Hence to
2568 * avoid 2 racing thread trying to migrate back to CPU to enter
2569 * infinite loop (one stoping migration because the other is
2570 * waiting on pte migration entry). We always return true here.
2571 *
2572 * FIXME proper solution is to rework migration_entry_wait() so
2573 * it does not need to take a reference on page.
2574 */
2575 return is_device_private_page(page);
2576 }
2577
2578 /* For file back page */
2579 if (page_mapping(page))
2580 extra += 1 + page_has_private(page);
2581
2582 if ((page_count(page) - extra) > page_mapcount(page))
2583 return false;
2584
2585 return true;
2586 }
2587
2588 /*
2589 * migrate_vma_prepare() - lock pages and isolate them from the lru
2590 * @migrate: migrate struct containing all migration information
2591 *
2592 * This locks pages that have been collected by migrate_vma_collect(). Once each
2593 * page is locked it is isolated from the lru (for non-device pages). Finally,
2594 * the ref taken by migrate_vma_collect() is dropped, as locked pages cannot be
2595 * migrated by concurrent kernel threads.
2596 */
migrate_vma_prepare(struct migrate_vma * migrate)2597 static void migrate_vma_prepare(struct migrate_vma *migrate)
2598 {
2599 const unsigned long npages = migrate->npages;
2600 const unsigned long start = migrate->start;
2601 unsigned long addr, i, restore = 0;
2602 bool allow_drain = true;
2603
2604 lru_add_drain();
2605
2606 for (i = 0; (i < npages) && migrate->cpages; i++) {
2607 struct page *page = migrate_pfn_to_page(migrate->src[i]);
2608 bool remap = true;
2609
2610 if (!page)
2611 continue;
2612
2613 if (!(migrate->src[i] & MIGRATE_PFN_LOCKED)) {
2614 /*
2615 * Because we are migrating several pages there can be
2616 * a deadlock between 2 concurrent migration where each
2617 * are waiting on each other page lock.
2618 *
2619 * Make migrate_vma() a best effort thing and backoff
2620 * for any page we can not lock right away.
2621 */
2622 if (!trylock_page(page)) {
2623 migrate->src[i] = 0;
2624 migrate->cpages--;
2625 put_page(page);
2626 continue;
2627 }
2628 remap = false;
2629 migrate->src[i] |= MIGRATE_PFN_LOCKED;
2630 }
2631
2632 /* ZONE_DEVICE pages are not on LRU */
2633 if (!is_zone_device_page(page)) {
2634 if (!PageLRU(page) && allow_drain) {
2635 /* Drain CPU's pagevec */
2636 lru_add_drain_all();
2637 allow_drain = false;
2638 }
2639
2640 if (isolate_lru_page(page)) {
2641 if (remap) {
2642 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2643 migrate->cpages--;
2644 restore++;
2645 } else {
2646 migrate->src[i] = 0;
2647 unlock_page(page);
2648 migrate->cpages--;
2649 put_page(page);
2650 }
2651 continue;
2652 }
2653
2654 /* Drop the reference we took in collect */
2655 put_page(page);
2656 }
2657
2658 if (!migrate_vma_check_page(page, migrate->fault_page)) {
2659 if (remap) {
2660 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2661 migrate->cpages--;
2662 restore++;
2663
2664 if (!is_zone_device_page(page)) {
2665 get_page(page);
2666 putback_lru_page(page);
2667 }
2668 } else {
2669 migrate->src[i] = 0;
2670 unlock_page(page);
2671 migrate->cpages--;
2672
2673 if (!is_zone_device_page(page))
2674 putback_lru_page(page);
2675 else
2676 put_page(page);
2677 }
2678 }
2679 }
2680
2681 for (i = 0, addr = start; i < npages && restore; i++, addr += PAGE_SIZE) {
2682 struct page *page = migrate_pfn_to_page(migrate->src[i]);
2683
2684 if (!page || (migrate->src[i] & MIGRATE_PFN_MIGRATE))
2685 continue;
2686
2687 remove_migration_pte(page, migrate->vma, addr, page);
2688
2689 migrate->src[i] = 0;
2690 unlock_page(page);
2691 put_page(page);
2692 restore--;
2693 }
2694 }
2695
2696 /*
2697 * migrate_vma_unmap() - replace page mapping with special migration pte entry
2698 * @migrate: migrate struct containing all migration information
2699 *
2700 * Replace page mapping (CPU page table pte) with a special migration pte entry
2701 * and check again if it has been pinned. Pinned pages are restored because we
2702 * cannot migrate them.
2703 *
2704 * This is the last step before we call the device driver callback to allocate
2705 * destination memory and copy contents of original page over to new page.
2706 */
migrate_vma_unmap(struct migrate_vma * migrate)2707 static void migrate_vma_unmap(struct migrate_vma *migrate)
2708 {
2709 int flags = TTU_MIGRATION | TTU_IGNORE_MLOCK;
2710 const unsigned long npages = migrate->npages;
2711 const unsigned long start = migrate->start;
2712 unsigned long addr, i, restore = 0;
2713
2714 for (i = 0; i < npages; i++) {
2715 struct page *page = migrate_pfn_to_page(migrate->src[i]);
2716
2717 if (!page || !(migrate->src[i] & MIGRATE_PFN_MIGRATE))
2718 continue;
2719
2720 if (page_mapped(page)) {
2721 try_to_unmap(page, flags);
2722 if (page_mapped(page))
2723 goto restore;
2724 }
2725
2726 if (migrate_vma_check_page(page, migrate->fault_page))
2727 continue;
2728
2729 restore:
2730 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2731 migrate->cpages--;
2732 restore++;
2733 }
2734
2735 for (addr = start, i = 0; i < npages && restore; addr += PAGE_SIZE, i++) {
2736 struct page *page = migrate_pfn_to_page(migrate->src[i]);
2737
2738 if (!page || (migrate->src[i] & MIGRATE_PFN_MIGRATE))
2739 continue;
2740
2741 remove_migration_ptes(page, page, false);
2742
2743 migrate->src[i] = 0;
2744 unlock_page(page);
2745 restore--;
2746
2747 if (is_zone_device_page(page))
2748 put_page(page);
2749 else
2750 putback_lru_page(page);
2751 }
2752 }
2753
2754 /**
2755 * migrate_vma_setup() - prepare to migrate a range of memory
2756 * @args: contains the vma, start, and pfns arrays for the migration
2757 *
2758 * Returns: negative errno on failures, 0 when 0 or more pages were migrated
2759 * without an error.
2760 *
2761 * Prepare to migrate a range of memory virtual address range by collecting all
2762 * the pages backing each virtual address in the range, saving them inside the
2763 * src array. Then lock those pages and unmap them. Once the pages are locked
2764 * and unmapped, check whether each page is pinned or not. Pages that aren't
2765 * pinned have the MIGRATE_PFN_MIGRATE flag set (by this function) in the
2766 * corresponding src array entry. Then restores any pages that are pinned, by
2767 * remapping and unlocking those pages.
2768 *
2769 * The caller should then allocate destination memory and copy source memory to
2770 * it for all those entries (ie with MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE
2771 * flag set). Once these are allocated and copied, the caller must update each
2772 * corresponding entry in the dst array with the pfn value of the destination
2773 * page and with the MIGRATE_PFN_VALID and MIGRATE_PFN_LOCKED flags set
2774 * (destination pages must have their struct pages locked, via lock_page()).
2775 *
2776 * Note that the caller does not have to migrate all the pages that are marked
2777 * with MIGRATE_PFN_MIGRATE flag in src array unless this is a migration from
2778 * device memory to system memory. If the caller cannot migrate a device page
2779 * back to system memory, then it must return VM_FAULT_SIGBUS, which has severe
2780 * consequences for the userspace process, so it must be avoided if at all
2781 * possible.
2782 *
2783 * For empty entries inside CPU page table (pte_none() or pmd_none() is true) we
2784 * do set MIGRATE_PFN_MIGRATE flag inside the corresponding source array thus
2785 * allowing the caller to allocate device memory for those unback virtual
2786 * address. For this the caller simply has to allocate device memory and
2787 * properly set the destination entry like for regular migration. Note that
2788 * this can still fails and thus inside the device driver must check if the
2789 * migration was successful for those entries after calling migrate_vma_pages()
2790 * just like for regular migration.
2791 *
2792 * After that, the callers must call migrate_vma_pages() to go over each entry
2793 * in the src array that has the MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE flag
2794 * set. If the corresponding entry in dst array has MIGRATE_PFN_VALID flag set,
2795 * then migrate_vma_pages() to migrate struct page information from the source
2796 * struct page to the destination struct page. If it fails to migrate the
2797 * struct page information, then it clears the MIGRATE_PFN_MIGRATE flag in the
2798 * src array.
2799 *
2800 * At this point all successfully migrated pages have an entry in the src
2801 * array with MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE flag set and the dst
2802 * array entry with MIGRATE_PFN_VALID flag set.
2803 *
2804 * Once migrate_vma_pages() returns the caller may inspect which pages were
2805 * successfully migrated, and which were not. Successfully migrated pages will
2806 * have the MIGRATE_PFN_MIGRATE flag set for their src array entry.
2807 *
2808 * It is safe to update device page table after migrate_vma_pages() because
2809 * both destination and source page are still locked, and the mmap_lock is held
2810 * in read mode (hence no one can unmap the range being migrated).
2811 *
2812 * Once the caller is done cleaning up things and updating its page table (if it
2813 * chose to do so, this is not an obligation) it finally calls
2814 * migrate_vma_finalize() to update the CPU page table to point to new pages
2815 * for successfully migrated pages or otherwise restore the CPU page table to
2816 * point to the original source pages.
2817 */
migrate_vma_setup(struct migrate_vma * args)2818 int migrate_vma_setup(struct migrate_vma *args)
2819 {
2820 long nr_pages = (args->end - args->start) >> PAGE_SHIFT;
2821
2822 args->start &= PAGE_MASK;
2823 args->end &= PAGE_MASK;
2824 if (!args->vma || is_vm_hugetlb_page(args->vma) ||
2825 (args->vma->vm_flags & VM_SPECIAL) || vma_is_dax(args->vma))
2826 return -EINVAL;
2827 if (nr_pages <= 0)
2828 return -EINVAL;
2829 if (args->start < args->vma->vm_start ||
2830 args->start >= args->vma->vm_end)
2831 return -EINVAL;
2832 if (args->end <= args->vma->vm_start || args->end > args->vma->vm_end)
2833 return -EINVAL;
2834 if (!args->src || !args->dst)
2835 return -EINVAL;
2836 if (args->fault_page && !is_device_private_page(args->fault_page))
2837 return -EINVAL;
2838
2839 memset(args->src, 0, sizeof(*args->src) * nr_pages);
2840 args->cpages = 0;
2841 args->npages = 0;
2842
2843 migrate_vma_collect(args);
2844
2845 if (args->cpages)
2846 migrate_vma_prepare(args);
2847 if (args->cpages)
2848 migrate_vma_unmap(args);
2849
2850 /*
2851 * At this point pages are locked and unmapped, and thus they have
2852 * stable content and can safely be copied to destination memory that
2853 * is allocated by the drivers.
2854 */
2855 return 0;
2856
2857 }
2858 EXPORT_SYMBOL(migrate_vma_setup);
2859
2860 /*
2861 * This code closely matches the code in:
2862 * __handle_mm_fault()
2863 * handle_pte_fault()
2864 * do_anonymous_page()
2865 * to map in an anonymous zero page but the struct page will be a ZONE_DEVICE
2866 * private page.
2867 */
migrate_vma_insert_page(struct migrate_vma * migrate,unsigned long addr,struct page * page,unsigned long * src,unsigned long * dst)2868 static void migrate_vma_insert_page(struct migrate_vma *migrate,
2869 unsigned long addr,
2870 struct page *page,
2871 unsigned long *src,
2872 unsigned long *dst)
2873 {
2874 struct vm_area_struct *vma = migrate->vma;
2875 struct mm_struct *mm = vma->vm_mm;
2876 bool flush = false;
2877 spinlock_t *ptl;
2878 pte_t entry;
2879 pgd_t *pgdp;
2880 p4d_t *p4dp;
2881 pud_t *pudp;
2882 pmd_t *pmdp;
2883 pte_t *ptep;
2884
2885 /* Only allow populating anonymous memory */
2886 if (!vma_is_anonymous(vma))
2887 goto abort;
2888
2889 pgdp = pgd_offset(mm, addr);
2890 p4dp = p4d_alloc(mm, pgdp, addr);
2891 if (!p4dp)
2892 goto abort;
2893 pudp = pud_alloc(mm, p4dp, addr);
2894 if (!pudp)
2895 goto abort;
2896 pmdp = pmd_alloc(mm, pudp, addr);
2897 if (!pmdp)
2898 goto abort;
2899
2900 if (pmd_trans_huge(*pmdp) || pmd_devmap(*pmdp))
2901 goto abort;
2902
2903 /*
2904 * Use pte_alloc() instead of pte_alloc_map(). We can't run
2905 * pte_offset_map() on pmds where a huge pmd might be created
2906 * from a different thread.
2907 *
2908 * pte_alloc_map() is safe to use under mmap_write_lock(mm) or when
2909 * parallel threads are excluded by other means.
2910 *
2911 * Here we only have mmap_read_lock(mm).
2912 */
2913 if (pte_alloc(mm, pmdp))
2914 goto abort;
2915
2916 /* See the comment in pte_alloc_one_map() */
2917 if (unlikely(pmd_trans_unstable(pmdp)))
2918 goto abort;
2919
2920 if (unlikely(anon_vma_prepare(vma)))
2921 goto abort;
2922 if (mem_cgroup_charge(page, vma->vm_mm, GFP_KERNEL))
2923 goto abort;
2924
2925 /*
2926 * The memory barrier inside __SetPageUptodate makes sure that
2927 * preceding stores to the page contents become visible before
2928 * the set_pte_at() write.
2929 */
2930 __SetPageUptodate(page);
2931
2932 if (is_zone_device_page(page)) {
2933 if (is_device_private_page(page)) {
2934 swp_entry_t swp_entry;
2935
2936 swp_entry = make_device_private_entry(page, vma->vm_flags & VM_WRITE);
2937 entry = swp_entry_to_pte(swp_entry);
2938 } else {
2939 /*
2940 * For now we only support migrating to un-addressable
2941 * device memory.
2942 */
2943 pr_warn_once("Unsupported ZONE_DEVICE page type.\n");
2944 goto abort;
2945 }
2946 } else {
2947 entry = mk_pte(page, vma->vm_page_prot);
2948 if (vma->vm_flags & VM_WRITE)
2949 entry = pte_mkwrite(pte_mkdirty(entry));
2950 }
2951
2952 ptep = pte_offset_map_lock(mm, pmdp, addr, &ptl);
2953
2954 if (check_stable_address_space(mm))
2955 goto unlock_abort;
2956
2957 if (pte_present(*ptep)) {
2958 unsigned long pfn = pte_pfn(*ptep);
2959
2960 if (!is_zero_pfn(pfn))
2961 goto unlock_abort;
2962 flush = true;
2963 } else if (!pte_none(*ptep))
2964 goto unlock_abort;
2965
2966 /*
2967 * Check for userfaultfd but do not deliver the fault. Instead,
2968 * just back off.
2969 */
2970 if (userfaultfd_missing(vma))
2971 goto unlock_abort;
2972
2973 inc_mm_counter(mm, MM_ANONPAGES);
2974 page_add_new_anon_rmap(page, vma, addr, false);
2975 if (!is_zone_device_page(page))
2976 lru_cache_add_inactive_or_unevictable(page, vma);
2977 get_page(page);
2978
2979 if (flush) {
2980 flush_cache_page(vma, addr, pte_pfn(*ptep));
2981 ptep_clear_flush_notify(vma, addr, ptep);
2982 set_pte_at_notify(mm, addr, ptep, entry);
2983 update_mmu_cache(vma, addr, ptep);
2984 } else {
2985 /* No need to invalidate - it was non-present before */
2986 set_pte_at(mm, addr, ptep, entry);
2987 update_mmu_cache(vma, addr, ptep);
2988 }
2989
2990 pte_unmap_unlock(ptep, ptl);
2991 *src = MIGRATE_PFN_MIGRATE;
2992 return;
2993
2994 unlock_abort:
2995 pte_unmap_unlock(ptep, ptl);
2996 abort:
2997 *src &= ~MIGRATE_PFN_MIGRATE;
2998 }
2999
3000 /**
3001 * migrate_vma_pages() - migrate meta-data from src page to dst page
3002 * @migrate: migrate struct containing all migration information
3003 *
3004 * This migrates struct page meta-data from source struct page to destination
3005 * struct page. This effectively finishes the migration from source page to the
3006 * destination page.
3007 */
migrate_vma_pages(struct migrate_vma * migrate)3008 void migrate_vma_pages(struct migrate_vma *migrate)
3009 {
3010 const unsigned long npages = migrate->npages;
3011 const unsigned long start = migrate->start;
3012 struct mmu_notifier_range range;
3013 unsigned long addr, i;
3014 bool notified = false;
3015
3016 for (i = 0, addr = start; i < npages; addr += PAGE_SIZE, i++) {
3017 struct page *newpage = migrate_pfn_to_page(migrate->dst[i]);
3018 struct page *page = migrate_pfn_to_page(migrate->src[i]);
3019 struct address_space *mapping;
3020 int r;
3021
3022 if (!newpage) {
3023 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
3024 continue;
3025 }
3026
3027 if (!page) {
3028 if (!(migrate->src[i] & MIGRATE_PFN_MIGRATE))
3029 continue;
3030 if (!notified) {
3031 notified = true;
3032
3033 mmu_notifier_range_init(&range,
3034 MMU_NOTIFY_CLEAR, 0,
3035 NULL,
3036 migrate->vma->vm_mm,
3037 addr, migrate->end);
3038 mmu_notifier_invalidate_range_start(&range);
3039 }
3040 migrate_vma_insert_page(migrate, addr, newpage,
3041 &migrate->src[i],
3042 &migrate->dst[i]);
3043 continue;
3044 }
3045
3046 mapping = page_mapping(page);
3047
3048 if (is_zone_device_page(newpage)) {
3049 if (is_device_private_page(newpage)) {
3050 /*
3051 * For now only support private anonymous when
3052 * migrating to un-addressable device memory.
3053 */
3054 if (mapping) {
3055 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
3056 continue;
3057 }
3058 } else {
3059 /*
3060 * Other types of ZONE_DEVICE page are not
3061 * supported.
3062 */
3063 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
3064 continue;
3065 }
3066 }
3067
3068 if (migrate->fault_page == page)
3069 r = migrate_page_extra(mapping, newpage, page,
3070 MIGRATE_SYNC_NO_COPY, 1);
3071 else
3072 r = migrate_page(mapping, newpage, page,
3073 MIGRATE_SYNC_NO_COPY);
3074 if (r != MIGRATEPAGE_SUCCESS)
3075 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
3076 }
3077
3078 /*
3079 * No need to double call mmu_notifier->invalidate_range() callback as
3080 * the above ptep_clear_flush_notify() inside migrate_vma_insert_page()
3081 * did already call it.
3082 */
3083 if (notified)
3084 mmu_notifier_invalidate_range_only_end(&range);
3085 }
3086 EXPORT_SYMBOL(migrate_vma_pages);
3087
3088 /**
3089 * migrate_vma_finalize() - restore CPU page table entry
3090 * @migrate: migrate struct containing all migration information
3091 *
3092 * This replaces the special migration pte entry with either a mapping to the
3093 * new page if migration was successful for that page, or to the original page
3094 * otherwise.
3095 *
3096 * This also unlocks the pages and puts them back on the lru, or drops the extra
3097 * refcount, for device pages.
3098 */
migrate_vma_finalize(struct migrate_vma * migrate)3099 void migrate_vma_finalize(struct migrate_vma *migrate)
3100 {
3101 const unsigned long npages = migrate->npages;
3102 unsigned long i;
3103
3104 for (i = 0; i < npages; i++) {
3105 struct page *newpage = migrate_pfn_to_page(migrate->dst[i]);
3106 struct page *page = migrate_pfn_to_page(migrate->src[i]);
3107
3108 if (!page) {
3109 if (newpage) {
3110 unlock_page(newpage);
3111 put_page(newpage);
3112 }
3113 continue;
3114 }
3115
3116 if (!(migrate->src[i] & MIGRATE_PFN_MIGRATE) || !newpage) {
3117 if (newpage) {
3118 unlock_page(newpage);
3119 put_page(newpage);
3120 }
3121 newpage = page;
3122 }
3123
3124 remove_migration_ptes(page, newpage, false);
3125 unlock_page(page);
3126
3127 if (is_zone_device_page(page))
3128 put_page(page);
3129 else
3130 putback_lru_page(page);
3131
3132 if (newpage != page) {
3133 unlock_page(newpage);
3134 if (is_zone_device_page(newpage))
3135 put_page(newpage);
3136 else
3137 putback_lru_page(newpage);
3138 }
3139 }
3140 }
3141 EXPORT_SYMBOL(migrate_vma_finalize);
3142 #endif /* CONFIG_DEVICE_PRIVATE */
3143