1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * linux/drivers/mmc/core/core.c
4 *
5 * Copyright (C) 2003-2004 Russell King, All Rights Reserved.
6 * SD support Copyright (C) 2004 Ian Molton, All Rights Reserved.
7 * Copyright (C) 2005-2008 Pierre Ossman, All Rights Reserved.
8 * MMCv4 support Copyright (C) 2006 Philip Langdale, All Rights Reserved.
9 */
10 #include <linux/module.h>
11 #include <linux/init.h>
12 #include <linux/interrupt.h>
13 #include <linux/completion.h>
14 #include <linux/device.h>
15 #include <linux/delay.h>
16 #include <linux/pagemap.h>
17 #include <linux/err.h>
18 #include <linux/leds.h>
19 #include <linux/scatterlist.h>
20 #include <linux/log2.h>
21 #include <linux/pm_runtime.h>
22 #include <linux/pm_wakeup.h>
23 #include <linux/suspend.h>
24 #include <linux/fault-inject.h>
25 #include <linux/random.h>
26 #include <linux/slab.h>
27 #include <linux/of.h>
28
29 #include <linux/mmc/card.h>
30 #include <linux/mmc/host.h>
31 #include <linux/mmc/mmc.h>
32 #include <linux/mmc/sd.h>
33 #include <linux/mmc/slot-gpio.h>
34
35 #define CREATE_TRACE_POINTS
36 #include <trace/events/mmc.h>
37
38 #include "core.h"
39 #include "card.h"
40 #include "bus.h"
41 #include "host.h"
42 #include "sdio_bus.h"
43 #include "pwrseq.h"
44
45 #include "mmc_ops.h"
46 #include "sd_ops.h"
47 #include "sdio_ops.h"
48
49 /* The max erase timeout, used when host->max_busy_timeout isn't specified */
50 #define MMC_ERASE_TIMEOUT_MS (60 * 1000) /* 60 s */
51 #define SD_DISCARD_TIMEOUT_MS (250)
52
53 static const unsigned freqs[] = { 400000, 300000, 200000, 100000 };
54
55 /*
56 * Enabling software CRCs on the data blocks can be a significant (30%)
57 * performance cost, and for other reasons may not always be desired.
58 * So we allow it it to be disabled.
59 */
60 bool use_spi_crc = 1;
61 module_param(use_spi_crc, bool, 0);
62
mmc_schedule_delayed_work(struct delayed_work * work,unsigned long delay)63 static int mmc_schedule_delayed_work(struct delayed_work *work,
64 unsigned long delay)
65 {
66 /*
67 * We use the system_freezable_wq, because of two reasons.
68 * First, it allows several works (not the same work item) to be
69 * executed simultaneously. Second, the queue becomes frozen when
70 * userspace becomes frozen during system PM.
71 */
72 return queue_delayed_work(system_freezable_wq, work, delay);
73 }
74
75 #ifdef CONFIG_FAIL_MMC_REQUEST
76
77 /*
78 * Internal function. Inject random data errors.
79 * If mmc_data is NULL no errors are injected.
80 */
mmc_should_fail_request(struct mmc_host * host,struct mmc_request * mrq)81 static void mmc_should_fail_request(struct mmc_host *host,
82 struct mmc_request *mrq)
83 {
84 struct mmc_command *cmd = mrq->cmd;
85 struct mmc_data *data = mrq->data;
86 static const int data_errors[] = {
87 -ETIMEDOUT,
88 -EILSEQ,
89 -EIO,
90 };
91
92 if (!data)
93 return;
94
95 if ((cmd && cmd->error) || data->error ||
96 !should_fail(&host->fail_mmc_request, data->blksz * data->blocks))
97 return;
98
99 data->error = data_errors[prandom_u32() % ARRAY_SIZE(data_errors)];
100 data->bytes_xfered = (prandom_u32() % (data->bytes_xfered >> 9)) << 9;
101 }
102
103 #else /* CONFIG_FAIL_MMC_REQUEST */
104
mmc_should_fail_request(struct mmc_host * host,struct mmc_request * mrq)105 static inline void mmc_should_fail_request(struct mmc_host *host,
106 struct mmc_request *mrq)
107 {
108 }
109
110 #endif /* CONFIG_FAIL_MMC_REQUEST */
111
mmc_complete_cmd(struct mmc_request * mrq)112 static inline void mmc_complete_cmd(struct mmc_request *mrq)
113 {
114 if (mrq->cap_cmd_during_tfr && !completion_done(&mrq->cmd_completion))
115 complete_all(&mrq->cmd_completion);
116 }
117
mmc_command_done(struct mmc_host * host,struct mmc_request * mrq)118 void mmc_command_done(struct mmc_host *host, struct mmc_request *mrq)
119 {
120 if (!mrq->cap_cmd_during_tfr)
121 return;
122
123 mmc_complete_cmd(mrq);
124
125 pr_debug("%s: cmd done, tfr ongoing (CMD%u)\n",
126 mmc_hostname(host), mrq->cmd->opcode);
127 }
128 EXPORT_SYMBOL(mmc_command_done);
129
130 /**
131 * mmc_request_done - finish processing an MMC request
132 * @host: MMC host which completed request
133 * @mrq: MMC request which request
134 *
135 * MMC drivers should call this function when they have completed
136 * their processing of a request.
137 */
mmc_request_done(struct mmc_host * host,struct mmc_request * mrq)138 void mmc_request_done(struct mmc_host *host, struct mmc_request *mrq)
139 {
140 struct mmc_command *cmd = mrq->cmd;
141 int err = cmd->error;
142
143 /* Flag re-tuning needed on CRC errors */
144 if (cmd->opcode != MMC_SEND_TUNING_BLOCK &&
145 cmd->opcode != MMC_SEND_TUNING_BLOCK_HS200 &&
146 !host->retune_crc_disable &&
147 (err == -EILSEQ || (mrq->sbc && mrq->sbc->error == -EILSEQ) ||
148 (mrq->data && mrq->data->error == -EILSEQ) ||
149 (mrq->stop && mrq->stop->error == -EILSEQ)))
150 mmc_retune_needed(host);
151
152 if (err && cmd->retries && mmc_host_is_spi(host)) {
153 if (cmd->resp[0] & R1_SPI_ILLEGAL_COMMAND)
154 cmd->retries = 0;
155 }
156
157 if (host->ongoing_mrq == mrq)
158 host->ongoing_mrq = NULL;
159
160 mmc_complete_cmd(mrq);
161
162 trace_mmc_request_done(host, mrq);
163
164 /*
165 * We list various conditions for the command to be considered
166 * properly done:
167 *
168 * - There was no error, OK fine then
169 * - We are not doing some kind of retry
170 * - The card was removed (...so just complete everything no matter
171 * if there are errors or retries)
172 */
173 if (!err || !cmd->retries || mmc_card_removed(host->card)) {
174 mmc_should_fail_request(host, mrq);
175
176 if (!host->ongoing_mrq)
177 led_trigger_event(host->led, LED_OFF);
178
179 if (mrq->sbc) {
180 pr_debug("%s: req done <CMD%u>: %d: %08x %08x %08x %08x\n",
181 mmc_hostname(host), mrq->sbc->opcode,
182 mrq->sbc->error,
183 mrq->sbc->resp[0], mrq->sbc->resp[1],
184 mrq->sbc->resp[2], mrq->sbc->resp[3]);
185 }
186
187 pr_debug("%s: req done (CMD%u): %d: %08x %08x %08x %08x\n",
188 mmc_hostname(host), cmd->opcode, err,
189 cmd->resp[0], cmd->resp[1],
190 cmd->resp[2], cmd->resp[3]);
191
192 if (mrq->data) {
193 pr_debug("%s: %d bytes transferred: %d\n",
194 mmc_hostname(host),
195 mrq->data->bytes_xfered, mrq->data->error);
196 }
197
198 if (mrq->stop) {
199 pr_debug("%s: (CMD%u): %d: %08x %08x %08x %08x\n",
200 mmc_hostname(host), mrq->stop->opcode,
201 mrq->stop->error,
202 mrq->stop->resp[0], mrq->stop->resp[1],
203 mrq->stop->resp[2], mrq->stop->resp[3]);
204 }
205 }
206 /*
207 * Request starter must handle retries - see
208 * mmc_wait_for_req_done().
209 */
210 if (mrq->done)
211 mrq->done(mrq);
212 }
213
214 EXPORT_SYMBOL(mmc_request_done);
215
__mmc_start_request(struct mmc_host * host,struct mmc_request * mrq)216 static void __mmc_start_request(struct mmc_host *host, struct mmc_request *mrq)
217 {
218 int err;
219
220 /* Assumes host controller has been runtime resumed by mmc_claim_host */
221 err = mmc_retune(host);
222 if (err) {
223 mrq->cmd->error = err;
224 mmc_request_done(host, mrq);
225 return;
226 }
227
228 /*
229 * For sdio rw commands we must wait for card busy otherwise some
230 * sdio devices won't work properly.
231 * And bypass I/O abort, reset and bus suspend operations.
232 */
233 if (sdio_is_io_busy(mrq->cmd->opcode, mrq->cmd->arg) &&
234 host->ops->card_busy) {
235 int tries = 500; /* Wait aprox 500ms at maximum */
236
237 while (host->ops->card_busy(host) && --tries)
238 mmc_delay(1);
239
240 if (tries == 0) {
241 mrq->cmd->error = -EBUSY;
242 mmc_request_done(host, mrq);
243 return;
244 }
245 }
246
247 if (mrq->cap_cmd_during_tfr) {
248 host->ongoing_mrq = mrq;
249 /*
250 * Retry path could come through here without having waiting on
251 * cmd_completion, so ensure it is reinitialised.
252 */
253 reinit_completion(&mrq->cmd_completion);
254 }
255
256 trace_mmc_request_start(host, mrq);
257
258 if (host->cqe_on)
259 host->cqe_ops->cqe_off(host);
260
261 host->ops->request(host, mrq);
262 }
263
mmc_mrq_pr_debug(struct mmc_host * host,struct mmc_request * mrq,bool cqe)264 static void mmc_mrq_pr_debug(struct mmc_host *host, struct mmc_request *mrq,
265 bool cqe)
266 {
267 if (mrq->sbc) {
268 pr_debug("<%s: starting CMD%u arg %08x flags %08x>\n",
269 mmc_hostname(host), mrq->sbc->opcode,
270 mrq->sbc->arg, mrq->sbc->flags);
271 }
272
273 if (mrq->cmd) {
274 pr_debug("%s: starting %sCMD%u arg %08x flags %08x\n",
275 mmc_hostname(host), cqe ? "CQE direct " : "",
276 mrq->cmd->opcode, mrq->cmd->arg, mrq->cmd->flags);
277 } else if (cqe) {
278 pr_debug("%s: starting CQE transfer for tag %d blkaddr %u\n",
279 mmc_hostname(host), mrq->tag, mrq->data->blk_addr);
280 }
281
282 if (mrq->data) {
283 pr_debug("%s: blksz %d blocks %d flags %08x "
284 "tsac %d ms nsac %d\n",
285 mmc_hostname(host), mrq->data->blksz,
286 mrq->data->blocks, mrq->data->flags,
287 mrq->data->timeout_ns / 1000000,
288 mrq->data->timeout_clks);
289 }
290
291 if (mrq->stop) {
292 pr_debug("%s: CMD%u arg %08x flags %08x\n",
293 mmc_hostname(host), mrq->stop->opcode,
294 mrq->stop->arg, mrq->stop->flags);
295 }
296 }
297
mmc_mrq_prep(struct mmc_host * host,struct mmc_request * mrq)298 static int mmc_mrq_prep(struct mmc_host *host, struct mmc_request *mrq)
299 {
300 unsigned int i, sz = 0;
301 struct scatterlist *sg;
302
303 if (mrq->cmd) {
304 mrq->cmd->error = 0;
305 mrq->cmd->mrq = mrq;
306 mrq->cmd->data = mrq->data;
307 }
308 if (mrq->sbc) {
309 mrq->sbc->error = 0;
310 mrq->sbc->mrq = mrq;
311 }
312 if (mrq->data) {
313 if (mrq->data->blksz > host->max_blk_size ||
314 mrq->data->blocks > host->max_blk_count ||
315 mrq->data->blocks * mrq->data->blksz > host->max_req_size)
316 return -EINVAL;
317
318 for_each_sg(mrq->data->sg, sg, mrq->data->sg_len, i)
319 sz += sg->length;
320 if (sz != mrq->data->blocks * mrq->data->blksz)
321 return -EINVAL;
322
323 mrq->data->error = 0;
324 mrq->data->mrq = mrq;
325 if (mrq->stop) {
326 mrq->data->stop = mrq->stop;
327 mrq->stop->error = 0;
328 mrq->stop->mrq = mrq;
329 }
330 }
331
332 return 0;
333 }
334
mmc_start_request(struct mmc_host * host,struct mmc_request * mrq)335 int mmc_start_request(struct mmc_host *host, struct mmc_request *mrq)
336 {
337 int err;
338
339 init_completion(&mrq->cmd_completion);
340
341 mmc_retune_hold(host);
342
343 if (mmc_card_removed(host->card))
344 return -ENOMEDIUM;
345
346 mmc_mrq_pr_debug(host, mrq, false);
347
348 WARN_ON(!host->claimed);
349
350 err = mmc_mrq_prep(host, mrq);
351 if (err)
352 return err;
353
354 led_trigger_event(host->led, LED_FULL);
355 __mmc_start_request(host, mrq);
356
357 return 0;
358 }
359 EXPORT_SYMBOL(mmc_start_request);
360
mmc_wait_done(struct mmc_request * mrq)361 static void mmc_wait_done(struct mmc_request *mrq)
362 {
363 complete(&mrq->completion);
364 }
365
mmc_wait_ongoing_tfr_cmd(struct mmc_host * host)366 static inline void mmc_wait_ongoing_tfr_cmd(struct mmc_host *host)
367 {
368 struct mmc_request *ongoing_mrq = READ_ONCE(host->ongoing_mrq);
369
370 /*
371 * If there is an ongoing transfer, wait for the command line to become
372 * available.
373 */
374 if (ongoing_mrq && !completion_done(&ongoing_mrq->cmd_completion))
375 wait_for_completion(&ongoing_mrq->cmd_completion);
376 }
377
__mmc_start_req(struct mmc_host * host,struct mmc_request * mrq)378 static int __mmc_start_req(struct mmc_host *host, struct mmc_request *mrq)
379 {
380 int err;
381
382 mmc_wait_ongoing_tfr_cmd(host);
383
384 init_completion(&mrq->completion);
385 mrq->done = mmc_wait_done;
386
387 err = mmc_start_request(host, mrq);
388 if (err) {
389 mrq->cmd->error = err;
390 mmc_complete_cmd(mrq);
391 complete(&mrq->completion);
392 }
393
394 return err;
395 }
396
mmc_wait_for_req_done(struct mmc_host * host,struct mmc_request * mrq)397 void mmc_wait_for_req_done(struct mmc_host *host, struct mmc_request *mrq)
398 {
399 struct mmc_command *cmd;
400
401 while (1) {
402 wait_for_completion(&mrq->completion);
403
404 cmd = mrq->cmd;
405
406 if (!cmd->error || !cmd->retries ||
407 mmc_card_removed(host->card))
408 break;
409
410 mmc_retune_recheck(host);
411
412 pr_debug("%s: req failed (CMD%u): %d, retrying...\n",
413 mmc_hostname(host), cmd->opcode, cmd->error);
414 cmd->retries--;
415 cmd->error = 0;
416 __mmc_start_request(host, mrq);
417 }
418
419 mmc_retune_release(host);
420 }
421 EXPORT_SYMBOL(mmc_wait_for_req_done);
422
423 /*
424 * mmc_cqe_start_req - Start a CQE request.
425 * @host: MMC host to start the request
426 * @mrq: request to start
427 *
428 * Start the request, re-tuning if needed and it is possible. Returns an error
429 * code if the request fails to start or -EBUSY if CQE is busy.
430 */
mmc_cqe_start_req(struct mmc_host * host,struct mmc_request * mrq)431 int mmc_cqe_start_req(struct mmc_host *host, struct mmc_request *mrq)
432 {
433 int err;
434
435 /*
436 * CQE cannot process re-tuning commands. Caller must hold retuning
437 * while CQE is in use. Re-tuning can happen here only when CQE has no
438 * active requests i.e. this is the first. Note, re-tuning will call
439 * ->cqe_off().
440 */
441 err = mmc_retune(host);
442 if (err)
443 goto out_err;
444
445 mrq->host = host;
446
447 mmc_mrq_pr_debug(host, mrq, true);
448
449 err = mmc_mrq_prep(host, mrq);
450 if (err)
451 goto out_err;
452
453 err = host->cqe_ops->cqe_request(host, mrq);
454 if (err)
455 goto out_err;
456
457 trace_mmc_request_start(host, mrq);
458
459 return 0;
460
461 out_err:
462 if (mrq->cmd) {
463 pr_debug("%s: failed to start CQE direct CMD%u, error %d\n",
464 mmc_hostname(host), mrq->cmd->opcode, err);
465 } else {
466 pr_debug("%s: failed to start CQE transfer for tag %d, error %d\n",
467 mmc_hostname(host), mrq->tag, err);
468 }
469 return err;
470 }
471 EXPORT_SYMBOL(mmc_cqe_start_req);
472
473 /**
474 * mmc_cqe_request_done - CQE has finished processing an MMC request
475 * @host: MMC host which completed request
476 * @mrq: MMC request which completed
477 *
478 * CQE drivers should call this function when they have completed
479 * their processing of a request.
480 */
mmc_cqe_request_done(struct mmc_host * host,struct mmc_request * mrq)481 void mmc_cqe_request_done(struct mmc_host *host, struct mmc_request *mrq)
482 {
483 mmc_should_fail_request(host, mrq);
484
485 /* Flag re-tuning needed on CRC errors */
486 if ((mrq->cmd && mrq->cmd->error == -EILSEQ) ||
487 (mrq->data && mrq->data->error == -EILSEQ))
488 mmc_retune_needed(host);
489
490 trace_mmc_request_done(host, mrq);
491
492 if (mrq->cmd) {
493 pr_debug("%s: CQE req done (direct CMD%u): %d\n",
494 mmc_hostname(host), mrq->cmd->opcode, mrq->cmd->error);
495 } else {
496 pr_debug("%s: CQE transfer done tag %d\n",
497 mmc_hostname(host), mrq->tag);
498 }
499
500 if (mrq->data) {
501 pr_debug("%s: %d bytes transferred: %d\n",
502 mmc_hostname(host),
503 mrq->data->bytes_xfered, mrq->data->error);
504 }
505
506 mrq->done(mrq);
507 }
508 EXPORT_SYMBOL(mmc_cqe_request_done);
509
510 /**
511 * mmc_cqe_post_req - CQE post process of a completed MMC request
512 * @host: MMC host
513 * @mrq: MMC request to be processed
514 */
mmc_cqe_post_req(struct mmc_host * host,struct mmc_request * mrq)515 void mmc_cqe_post_req(struct mmc_host *host, struct mmc_request *mrq)
516 {
517 if (host->cqe_ops->cqe_post_req)
518 host->cqe_ops->cqe_post_req(host, mrq);
519 }
520 EXPORT_SYMBOL(mmc_cqe_post_req);
521
522 /* Arbitrary 1 second timeout */
523 #define MMC_CQE_RECOVERY_TIMEOUT 1000
524
525 /*
526 * mmc_cqe_recovery - Recover from CQE errors.
527 * @host: MMC host to recover
528 *
529 * Recovery consists of stopping CQE, stopping eMMC, discarding the queue in
530 * in eMMC, and discarding the queue in CQE. CQE must call
531 * mmc_cqe_request_done() on all requests. An error is returned if the eMMC
532 * fails to discard its queue.
533 */
mmc_cqe_recovery(struct mmc_host * host)534 int mmc_cqe_recovery(struct mmc_host *host)
535 {
536 struct mmc_command cmd;
537 int err;
538
539 mmc_retune_hold_now(host);
540
541 /*
542 * Recovery is expected seldom, if at all, but it reduces performance,
543 * so make sure it is not completely silent.
544 */
545 pr_warn("%s: running CQE recovery\n", mmc_hostname(host));
546
547 host->cqe_ops->cqe_recovery_start(host);
548
549 memset(&cmd, 0, sizeof(cmd));
550 cmd.opcode = MMC_STOP_TRANSMISSION,
551 cmd.flags = MMC_RSP_R1B | MMC_CMD_AC,
552 cmd.flags &= ~MMC_RSP_CRC; /* Ignore CRC */
553 cmd.busy_timeout = MMC_CQE_RECOVERY_TIMEOUT,
554 mmc_wait_for_cmd(host, &cmd, 0);
555
556 memset(&cmd, 0, sizeof(cmd));
557 cmd.opcode = MMC_CMDQ_TASK_MGMT;
558 cmd.arg = 1; /* Discard entire queue */
559 cmd.flags = MMC_RSP_R1B | MMC_CMD_AC;
560 cmd.flags &= ~MMC_RSP_CRC; /* Ignore CRC */
561 cmd.busy_timeout = MMC_CQE_RECOVERY_TIMEOUT,
562 err = mmc_wait_for_cmd(host, &cmd, 0);
563
564 host->cqe_ops->cqe_recovery_finish(host);
565
566 mmc_retune_release(host);
567
568 return err;
569 }
570 EXPORT_SYMBOL(mmc_cqe_recovery);
571
572 /**
573 * mmc_is_req_done - Determine if a 'cap_cmd_during_tfr' request is done
574 * @host: MMC host
575 * @mrq: MMC request
576 *
577 * mmc_is_req_done() is used with requests that have
578 * mrq->cap_cmd_during_tfr = true. mmc_is_req_done() must be called after
579 * starting a request and before waiting for it to complete. That is,
580 * either in between calls to mmc_start_req(), or after mmc_wait_for_req()
581 * and before mmc_wait_for_req_done(). If it is called at other times the
582 * result is not meaningful.
583 */
mmc_is_req_done(struct mmc_host * host,struct mmc_request * mrq)584 bool mmc_is_req_done(struct mmc_host *host, struct mmc_request *mrq)
585 {
586 return completion_done(&mrq->completion);
587 }
588 EXPORT_SYMBOL(mmc_is_req_done);
589
590 /**
591 * mmc_wait_for_req - start a request and wait for completion
592 * @host: MMC host to start command
593 * @mrq: MMC request to start
594 *
595 * Start a new MMC custom command request for a host, and wait
596 * for the command to complete. In the case of 'cap_cmd_during_tfr'
597 * requests, the transfer is ongoing and the caller can issue further
598 * commands that do not use the data lines, and then wait by calling
599 * mmc_wait_for_req_done().
600 * Does not attempt to parse the response.
601 */
mmc_wait_for_req(struct mmc_host * host,struct mmc_request * mrq)602 void mmc_wait_for_req(struct mmc_host *host, struct mmc_request *mrq)
603 {
604 __mmc_start_req(host, mrq);
605
606 if (!mrq->cap_cmd_during_tfr)
607 mmc_wait_for_req_done(host, mrq);
608 }
609 EXPORT_SYMBOL(mmc_wait_for_req);
610
611 /**
612 * mmc_wait_for_cmd - start a command and wait for completion
613 * @host: MMC host to start command
614 * @cmd: MMC command to start
615 * @retries: maximum number of retries
616 *
617 * Start a new MMC command for a host, and wait for the command
618 * to complete. Return any error that occurred while the command
619 * was executing. Do not attempt to parse the response.
620 */
mmc_wait_for_cmd(struct mmc_host * host,struct mmc_command * cmd,int retries)621 int mmc_wait_for_cmd(struct mmc_host *host, struct mmc_command *cmd, int retries)
622 {
623 struct mmc_request mrq = {};
624
625 WARN_ON(!host->claimed);
626
627 memset(cmd->resp, 0, sizeof(cmd->resp));
628 cmd->retries = retries;
629
630 mrq.cmd = cmd;
631 cmd->data = NULL;
632
633 mmc_wait_for_req(host, &mrq);
634
635 return cmd->error;
636 }
637
638 EXPORT_SYMBOL(mmc_wait_for_cmd);
639
640 /**
641 * mmc_set_data_timeout - set the timeout for a data command
642 * @data: data phase for command
643 * @card: the MMC card associated with the data transfer
644 *
645 * Computes the data timeout parameters according to the
646 * correct algorithm given the card type.
647 */
mmc_set_data_timeout(struct mmc_data * data,const struct mmc_card * card)648 void mmc_set_data_timeout(struct mmc_data *data, const struct mmc_card *card)
649 {
650 unsigned int mult;
651
652 /*
653 * SDIO cards only define an upper 1 s limit on access.
654 */
655 if (mmc_card_sdio(card)) {
656 data->timeout_ns = 1000000000;
657 data->timeout_clks = 0;
658 return;
659 }
660
661 /*
662 * SD cards use a 100 multiplier rather than 10
663 */
664 mult = mmc_card_sd(card) ? 100 : 10;
665
666 /*
667 * Scale up the multiplier (and therefore the timeout) by
668 * the r2w factor for writes.
669 */
670 if (data->flags & MMC_DATA_WRITE)
671 mult <<= card->csd.r2w_factor;
672
673 data->timeout_ns = card->csd.taac_ns * mult;
674 data->timeout_clks = card->csd.taac_clks * mult;
675
676 /*
677 * SD cards also have an upper limit on the timeout.
678 */
679 if (mmc_card_sd(card)) {
680 unsigned int timeout_us, limit_us;
681
682 timeout_us = data->timeout_ns / 1000;
683 if (card->host->ios.clock)
684 timeout_us += data->timeout_clks * 1000 /
685 (card->host->ios.clock / 1000);
686
687 if (data->flags & MMC_DATA_WRITE)
688 /*
689 * The MMC spec "It is strongly recommended
690 * for hosts to implement more than 500ms
691 * timeout value even if the card indicates
692 * the 250ms maximum busy length." Even the
693 * previous value of 300ms is known to be
694 * insufficient for some cards.
695 */
696 limit_us = 3000000;
697 else
698 limit_us = 100000;
699
700 /*
701 * SDHC cards always use these fixed values.
702 */
703 if (timeout_us > limit_us) {
704 data->timeout_ns = limit_us * 1000;
705 data->timeout_clks = 0;
706 }
707
708 /* assign limit value if invalid */
709 if (timeout_us == 0)
710 data->timeout_ns = limit_us * 1000;
711 }
712
713 /*
714 * Some cards require longer data read timeout than indicated in CSD.
715 * Address this by setting the read timeout to a "reasonably high"
716 * value. For the cards tested, 600ms has proven enough. If necessary,
717 * this value can be increased if other problematic cards require this.
718 */
719 if (mmc_card_long_read_time(card) && data->flags & MMC_DATA_READ) {
720 data->timeout_ns = 600000000;
721 data->timeout_clks = 0;
722 }
723
724 /*
725 * Some cards need very high timeouts if driven in SPI mode.
726 * The worst observed timeout was 900ms after writing a
727 * continuous stream of data until the internal logic
728 * overflowed.
729 */
730 if (mmc_host_is_spi(card->host)) {
731 if (data->flags & MMC_DATA_WRITE) {
732 if (data->timeout_ns < 1000000000)
733 data->timeout_ns = 1000000000; /* 1s */
734 } else {
735 if (data->timeout_ns < 100000000)
736 data->timeout_ns = 100000000; /* 100ms */
737 }
738 }
739 }
740 EXPORT_SYMBOL(mmc_set_data_timeout);
741
742 /*
743 * Allow claiming an already claimed host if the context is the same or there is
744 * no context but the task is the same.
745 */
mmc_ctx_matches(struct mmc_host * host,struct mmc_ctx * ctx,struct task_struct * task)746 static inline bool mmc_ctx_matches(struct mmc_host *host, struct mmc_ctx *ctx,
747 struct task_struct *task)
748 {
749 return host->claimer == ctx ||
750 (!ctx && task && host->claimer->task == task);
751 }
752
mmc_ctx_set_claimer(struct mmc_host * host,struct mmc_ctx * ctx,struct task_struct * task)753 static inline void mmc_ctx_set_claimer(struct mmc_host *host,
754 struct mmc_ctx *ctx,
755 struct task_struct *task)
756 {
757 if (!host->claimer) {
758 if (ctx)
759 host->claimer = ctx;
760 else
761 host->claimer = &host->default_ctx;
762 }
763 if (task)
764 host->claimer->task = task;
765 }
766
767 /**
768 * __mmc_claim_host - exclusively claim a host
769 * @host: mmc host to claim
770 * @ctx: context that claims the host or NULL in which case the default
771 * context will be used
772 * @abort: whether or not the operation should be aborted
773 *
774 * Claim a host for a set of operations. If @abort is non null and
775 * dereference a non-zero value then this will return prematurely with
776 * that non-zero value without acquiring the lock. Returns zero
777 * with the lock held otherwise.
778 */
__mmc_claim_host(struct mmc_host * host,struct mmc_ctx * ctx,atomic_t * abort)779 int __mmc_claim_host(struct mmc_host *host, struct mmc_ctx *ctx,
780 atomic_t *abort)
781 {
782 struct task_struct *task = ctx ? NULL : current;
783 DECLARE_WAITQUEUE(wait, current);
784 unsigned long flags;
785 int stop;
786 bool pm = false;
787
788 might_sleep();
789
790 add_wait_queue(&host->wq, &wait);
791 spin_lock_irqsave(&host->lock, flags);
792 while (1) {
793 set_current_state(TASK_UNINTERRUPTIBLE);
794 stop = abort ? atomic_read(abort) : 0;
795 if (stop || !host->claimed || mmc_ctx_matches(host, ctx, task))
796 break;
797 spin_unlock_irqrestore(&host->lock, flags);
798 schedule();
799 spin_lock_irqsave(&host->lock, flags);
800 }
801 set_current_state(TASK_RUNNING);
802 if (!stop) {
803 host->claimed = 1;
804 mmc_ctx_set_claimer(host, ctx, task);
805 host->claim_cnt += 1;
806 if (host->claim_cnt == 1)
807 pm = true;
808 } else
809 wake_up(&host->wq);
810 spin_unlock_irqrestore(&host->lock, flags);
811 remove_wait_queue(&host->wq, &wait);
812
813 if (pm)
814 pm_runtime_get_sync(mmc_dev(host));
815
816 return stop;
817 }
818 EXPORT_SYMBOL(__mmc_claim_host);
819
820 /**
821 * mmc_release_host - release a host
822 * @host: mmc host to release
823 *
824 * Release a MMC host, allowing others to claim the host
825 * for their operations.
826 */
mmc_release_host(struct mmc_host * host)827 void mmc_release_host(struct mmc_host *host)
828 {
829 unsigned long flags;
830
831 WARN_ON(!host->claimed);
832
833 spin_lock_irqsave(&host->lock, flags);
834 if (--host->claim_cnt) {
835 /* Release for nested claim */
836 spin_unlock_irqrestore(&host->lock, flags);
837 } else {
838 host->claimed = 0;
839 host->claimer->task = NULL;
840 host->claimer = NULL;
841 spin_unlock_irqrestore(&host->lock, flags);
842 wake_up(&host->wq);
843 pm_runtime_mark_last_busy(mmc_dev(host));
844 if (host->caps & MMC_CAP_SYNC_RUNTIME_PM)
845 pm_runtime_put_sync_suspend(mmc_dev(host));
846 else
847 pm_runtime_put_autosuspend(mmc_dev(host));
848 }
849 }
850 EXPORT_SYMBOL(mmc_release_host);
851
852 /*
853 * This is a helper function, which fetches a runtime pm reference for the
854 * card device and also claims the host.
855 */
mmc_get_card(struct mmc_card * card,struct mmc_ctx * ctx)856 void mmc_get_card(struct mmc_card *card, struct mmc_ctx *ctx)
857 {
858 pm_runtime_get_sync(&card->dev);
859 __mmc_claim_host(card->host, ctx, NULL);
860 }
861 EXPORT_SYMBOL(mmc_get_card);
862
863 /*
864 * This is a helper function, which releases the host and drops the runtime
865 * pm reference for the card device.
866 */
mmc_put_card(struct mmc_card * card,struct mmc_ctx * ctx)867 void mmc_put_card(struct mmc_card *card, struct mmc_ctx *ctx)
868 {
869 struct mmc_host *host = card->host;
870
871 WARN_ON(ctx && host->claimer != ctx);
872
873 mmc_release_host(host);
874 pm_runtime_mark_last_busy(&card->dev);
875 pm_runtime_put_autosuspend(&card->dev);
876 }
877 EXPORT_SYMBOL(mmc_put_card);
878
879 /*
880 * Internal function that does the actual ios call to the host driver,
881 * optionally printing some debug output.
882 */
mmc_set_ios(struct mmc_host * host)883 static inline void mmc_set_ios(struct mmc_host *host)
884 {
885 struct mmc_ios *ios = &host->ios;
886
887 pr_debug("%s: clock %uHz busmode %u powermode %u cs %u Vdd %u "
888 "width %u timing %u\n",
889 mmc_hostname(host), ios->clock, ios->bus_mode,
890 ios->power_mode, ios->chip_select, ios->vdd,
891 1 << ios->bus_width, ios->timing);
892
893 host->ops->set_ios(host, ios);
894 }
895
896 /*
897 * Control chip select pin on a host.
898 */
mmc_set_chip_select(struct mmc_host * host,int mode)899 void mmc_set_chip_select(struct mmc_host *host, int mode)
900 {
901 host->ios.chip_select = mode;
902 mmc_set_ios(host);
903 }
904
905 /*
906 * Sets the host clock to the highest possible frequency that
907 * is below "hz".
908 */
mmc_set_clock(struct mmc_host * host,unsigned int hz)909 void mmc_set_clock(struct mmc_host *host, unsigned int hz)
910 {
911 WARN_ON(hz && hz < host->f_min);
912
913 if (hz > host->f_max)
914 hz = host->f_max;
915
916 host->ios.clock = hz;
917 mmc_set_ios(host);
918 }
919
mmc_execute_tuning(struct mmc_card * card)920 int mmc_execute_tuning(struct mmc_card *card)
921 {
922 struct mmc_host *host = card->host;
923 u32 opcode;
924 int err;
925
926 if (!host->ops->execute_tuning)
927 return 0;
928
929 if (host->cqe_on)
930 host->cqe_ops->cqe_off(host);
931
932 if (mmc_card_mmc(card))
933 opcode = MMC_SEND_TUNING_BLOCK_HS200;
934 else
935 opcode = MMC_SEND_TUNING_BLOCK;
936
937 err = host->ops->execute_tuning(host, opcode);
938
939 if (err) {
940 pr_err("%s: tuning execution failed: %d\n",
941 mmc_hostname(host), err);
942 } else {
943 host->retune_now = 0;
944 host->need_retune = 0;
945 mmc_retune_enable(host);
946 }
947
948 return err;
949 }
950
951 /*
952 * Change the bus mode (open drain/push-pull) of a host.
953 */
mmc_set_bus_mode(struct mmc_host * host,unsigned int mode)954 void mmc_set_bus_mode(struct mmc_host *host, unsigned int mode)
955 {
956 host->ios.bus_mode = mode;
957 mmc_set_ios(host);
958 }
959
960 /*
961 * Change data bus width of a host.
962 */
mmc_set_bus_width(struct mmc_host * host,unsigned int width)963 void mmc_set_bus_width(struct mmc_host *host, unsigned int width)
964 {
965 host->ios.bus_width = width;
966 mmc_set_ios(host);
967 }
968
969 /*
970 * Set initial state after a power cycle or a hw_reset.
971 */
mmc_set_initial_state(struct mmc_host * host)972 void mmc_set_initial_state(struct mmc_host *host)
973 {
974 if (host->cqe_on)
975 host->cqe_ops->cqe_off(host);
976
977 mmc_retune_disable(host);
978
979 if (mmc_host_is_spi(host))
980 host->ios.chip_select = MMC_CS_HIGH;
981 else
982 host->ios.chip_select = MMC_CS_DONTCARE;
983 host->ios.bus_mode = MMC_BUSMODE_PUSHPULL;
984 host->ios.bus_width = MMC_BUS_WIDTH_1;
985 host->ios.timing = MMC_TIMING_LEGACY;
986 host->ios.drv_type = 0;
987 host->ios.enhanced_strobe = false;
988
989 /*
990 * Make sure we are in non-enhanced strobe mode before we
991 * actually enable it in ext_csd.
992 */
993 if ((host->caps2 & MMC_CAP2_HS400_ES) &&
994 host->ops->hs400_enhanced_strobe)
995 host->ops->hs400_enhanced_strobe(host, &host->ios);
996
997 mmc_set_ios(host);
998 }
999
1000 /**
1001 * mmc_vdd_to_ocrbitnum - Convert a voltage to the OCR bit number
1002 * @vdd: voltage (mV)
1003 * @low_bits: prefer low bits in boundary cases
1004 *
1005 * This function returns the OCR bit number according to the provided @vdd
1006 * value. If conversion is not possible a negative errno value returned.
1007 *
1008 * Depending on the @low_bits flag the function prefers low or high OCR bits
1009 * on boundary voltages. For example,
1010 * with @low_bits = true, 3300 mV translates to ilog2(MMC_VDD_32_33);
1011 * with @low_bits = false, 3300 mV translates to ilog2(MMC_VDD_33_34);
1012 *
1013 * Any value in the [1951:1999] range translates to the ilog2(MMC_VDD_20_21).
1014 */
mmc_vdd_to_ocrbitnum(int vdd,bool low_bits)1015 static int mmc_vdd_to_ocrbitnum(int vdd, bool low_bits)
1016 {
1017 const int max_bit = ilog2(MMC_VDD_35_36);
1018 int bit;
1019
1020 if (vdd < 1650 || vdd > 3600)
1021 return -EINVAL;
1022
1023 if (vdd >= 1650 && vdd <= 1950)
1024 return ilog2(MMC_VDD_165_195);
1025
1026 if (low_bits)
1027 vdd -= 1;
1028
1029 /* Base 2000 mV, step 100 mV, bit's base 8. */
1030 bit = (vdd - 2000) / 100 + 8;
1031 if (bit > max_bit)
1032 return max_bit;
1033 return bit;
1034 }
1035
1036 /**
1037 * mmc_vddrange_to_ocrmask - Convert a voltage range to the OCR mask
1038 * @vdd_min: minimum voltage value (mV)
1039 * @vdd_max: maximum voltage value (mV)
1040 *
1041 * This function returns the OCR mask bits according to the provided @vdd_min
1042 * and @vdd_max values. If conversion is not possible the function returns 0.
1043 *
1044 * Notes wrt boundary cases:
1045 * This function sets the OCR bits for all boundary voltages, for example
1046 * [3300:3400] range is translated to MMC_VDD_32_33 | MMC_VDD_33_34 |
1047 * MMC_VDD_34_35 mask.
1048 */
mmc_vddrange_to_ocrmask(int vdd_min,int vdd_max)1049 u32 mmc_vddrange_to_ocrmask(int vdd_min, int vdd_max)
1050 {
1051 u32 mask = 0;
1052
1053 if (vdd_max < vdd_min)
1054 return 0;
1055
1056 /* Prefer high bits for the boundary vdd_max values. */
1057 vdd_max = mmc_vdd_to_ocrbitnum(vdd_max, false);
1058 if (vdd_max < 0)
1059 return 0;
1060
1061 /* Prefer low bits for the boundary vdd_min values. */
1062 vdd_min = mmc_vdd_to_ocrbitnum(vdd_min, true);
1063 if (vdd_min < 0)
1064 return 0;
1065
1066 /* Fill the mask, from max bit to min bit. */
1067 while (vdd_max >= vdd_min)
1068 mask |= 1 << vdd_max--;
1069
1070 return mask;
1071 }
1072
mmc_of_get_func_num(struct device_node * node)1073 static int mmc_of_get_func_num(struct device_node *node)
1074 {
1075 u32 reg;
1076 int ret;
1077
1078 ret = of_property_read_u32(node, "reg", ®);
1079 if (ret < 0)
1080 return ret;
1081
1082 return reg;
1083 }
1084
mmc_of_find_child_device(struct mmc_host * host,unsigned func_num)1085 struct device_node *mmc_of_find_child_device(struct mmc_host *host,
1086 unsigned func_num)
1087 {
1088 struct device_node *node;
1089
1090 if (!host->parent || !host->parent->of_node)
1091 return NULL;
1092
1093 for_each_child_of_node(host->parent->of_node, node) {
1094 if (mmc_of_get_func_num(node) == func_num)
1095 return node;
1096 }
1097
1098 return NULL;
1099 }
1100
1101 /*
1102 * Mask off any voltages we don't support and select
1103 * the lowest voltage
1104 */
mmc_select_voltage(struct mmc_host * host,u32 ocr)1105 u32 mmc_select_voltage(struct mmc_host *host, u32 ocr)
1106 {
1107 int bit;
1108
1109 /*
1110 * Sanity check the voltages that the card claims to
1111 * support.
1112 */
1113 if (ocr & 0x7F) {
1114 dev_warn(mmc_dev(host),
1115 "card claims to support voltages below defined range\n");
1116 ocr &= ~0x7F;
1117 }
1118
1119 ocr &= host->ocr_avail;
1120 if (!ocr) {
1121 dev_warn(mmc_dev(host), "no support for card's volts\n");
1122 return 0;
1123 }
1124
1125 if (host->caps2 & MMC_CAP2_FULL_PWR_CYCLE) {
1126 bit = ffs(ocr) - 1;
1127 ocr &= 3 << bit;
1128 mmc_power_cycle(host, ocr);
1129 } else {
1130 bit = fls(ocr) - 1;
1131 /*
1132 * The bit variable represents the highest voltage bit set in
1133 * the OCR register.
1134 * To keep a range of 2 values (e.g. 3.2V/3.3V and 3.3V/3.4V),
1135 * we must shift the mask '3' with (bit - 1).
1136 */
1137 ocr &= 3 << (bit - 1);
1138 if (bit != host->ios.vdd)
1139 dev_warn(mmc_dev(host), "exceeding card's volts\n");
1140 }
1141
1142 return ocr;
1143 }
1144
mmc_set_signal_voltage(struct mmc_host * host,int signal_voltage)1145 int mmc_set_signal_voltage(struct mmc_host *host, int signal_voltage)
1146 {
1147 int err = 0;
1148 int old_signal_voltage = host->ios.signal_voltage;
1149
1150 host->ios.signal_voltage = signal_voltage;
1151 if (host->ops->start_signal_voltage_switch)
1152 err = host->ops->start_signal_voltage_switch(host, &host->ios);
1153
1154 if (err)
1155 host->ios.signal_voltage = old_signal_voltage;
1156
1157 return err;
1158
1159 }
1160
mmc_set_initial_signal_voltage(struct mmc_host * host)1161 void mmc_set_initial_signal_voltage(struct mmc_host *host)
1162 {
1163 /* Try to set signal voltage to 3.3V but fall back to 1.8v or 1.2v */
1164 if (!mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_330))
1165 dev_dbg(mmc_dev(host), "Initial signal voltage of 3.3v\n");
1166 else if (!mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_180))
1167 dev_dbg(mmc_dev(host), "Initial signal voltage of 1.8v\n");
1168 else if (!mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_120))
1169 dev_dbg(mmc_dev(host), "Initial signal voltage of 1.2v\n");
1170 }
1171
mmc_host_set_uhs_voltage(struct mmc_host * host)1172 int mmc_host_set_uhs_voltage(struct mmc_host *host)
1173 {
1174 u32 clock;
1175
1176 /*
1177 * During a signal voltage level switch, the clock must be gated
1178 * for 5 ms according to the SD spec
1179 */
1180 clock = host->ios.clock;
1181 host->ios.clock = 0;
1182 mmc_set_ios(host);
1183
1184 if (mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_180))
1185 return -EAGAIN;
1186
1187 /* Keep clock gated for at least 10 ms, though spec only says 5 ms */
1188 mmc_delay(10);
1189 host->ios.clock = clock;
1190 mmc_set_ios(host);
1191
1192 return 0;
1193 }
1194
mmc_set_uhs_voltage(struct mmc_host * host,u32 ocr)1195 int mmc_set_uhs_voltage(struct mmc_host *host, u32 ocr)
1196 {
1197 struct mmc_command cmd = {};
1198 int err = 0;
1199
1200 /*
1201 * If we cannot switch voltages, return failure so the caller
1202 * can continue without UHS mode
1203 */
1204 if (!host->ops->start_signal_voltage_switch)
1205 return -EPERM;
1206 if (!host->ops->card_busy)
1207 pr_warn("%s: cannot verify signal voltage switch\n",
1208 mmc_hostname(host));
1209
1210 cmd.opcode = SD_SWITCH_VOLTAGE;
1211 cmd.arg = 0;
1212 cmd.flags = MMC_RSP_R1 | MMC_CMD_AC;
1213
1214 err = mmc_wait_for_cmd(host, &cmd, 0);
1215 if (err)
1216 goto power_cycle;
1217
1218 if (!mmc_host_is_spi(host) && (cmd.resp[0] & R1_ERROR))
1219 return -EIO;
1220
1221 /*
1222 * The card should drive cmd and dat[0:3] low immediately
1223 * after the response of cmd11, but wait 1 ms to be sure
1224 */
1225 mmc_delay(1);
1226 if (host->ops->card_busy && !host->ops->card_busy(host)) {
1227 err = -EAGAIN;
1228 goto power_cycle;
1229 }
1230
1231 if (mmc_host_set_uhs_voltage(host)) {
1232 /*
1233 * Voltages may not have been switched, but we've already
1234 * sent CMD11, so a power cycle is required anyway
1235 */
1236 err = -EAGAIN;
1237 goto power_cycle;
1238 }
1239
1240 /* Wait for at least 1 ms according to spec */
1241 mmc_delay(1);
1242
1243 /*
1244 * Failure to switch is indicated by the card holding
1245 * dat[0:3] low
1246 */
1247 if (host->ops->card_busy && host->ops->card_busy(host))
1248 err = -EAGAIN;
1249
1250 power_cycle:
1251 if (err) {
1252 pr_debug("%s: Signal voltage switch failed, "
1253 "power cycling card\n", mmc_hostname(host));
1254 mmc_power_cycle(host, ocr);
1255 }
1256
1257 return err;
1258 }
1259
1260 /*
1261 * Select timing parameters for host.
1262 */
mmc_set_timing(struct mmc_host * host,unsigned int timing)1263 void mmc_set_timing(struct mmc_host *host, unsigned int timing)
1264 {
1265 host->ios.timing = timing;
1266 mmc_set_ios(host);
1267 }
1268
1269 /*
1270 * Select appropriate driver type for host.
1271 */
mmc_set_driver_type(struct mmc_host * host,unsigned int drv_type)1272 void mmc_set_driver_type(struct mmc_host *host, unsigned int drv_type)
1273 {
1274 host->ios.drv_type = drv_type;
1275 mmc_set_ios(host);
1276 }
1277
mmc_select_drive_strength(struct mmc_card * card,unsigned int max_dtr,int card_drv_type,int * drv_type)1278 int mmc_select_drive_strength(struct mmc_card *card, unsigned int max_dtr,
1279 int card_drv_type, int *drv_type)
1280 {
1281 struct mmc_host *host = card->host;
1282 int host_drv_type = SD_DRIVER_TYPE_B;
1283
1284 *drv_type = 0;
1285
1286 if (!host->ops->select_drive_strength)
1287 return 0;
1288
1289 /* Use SD definition of driver strength for hosts */
1290 if (host->caps & MMC_CAP_DRIVER_TYPE_A)
1291 host_drv_type |= SD_DRIVER_TYPE_A;
1292
1293 if (host->caps & MMC_CAP_DRIVER_TYPE_C)
1294 host_drv_type |= SD_DRIVER_TYPE_C;
1295
1296 if (host->caps & MMC_CAP_DRIVER_TYPE_D)
1297 host_drv_type |= SD_DRIVER_TYPE_D;
1298
1299 /*
1300 * The drive strength that the hardware can support
1301 * depends on the board design. Pass the appropriate
1302 * information and let the hardware specific code
1303 * return what is possible given the options
1304 */
1305 return host->ops->select_drive_strength(card, max_dtr,
1306 host_drv_type,
1307 card_drv_type,
1308 drv_type);
1309 }
1310
1311 /*
1312 * Apply power to the MMC stack. This is a two-stage process.
1313 * First, we enable power to the card without the clock running.
1314 * We then wait a bit for the power to stabilise. Finally,
1315 * enable the bus drivers and clock to the card.
1316 *
1317 * We must _NOT_ enable the clock prior to power stablising.
1318 *
1319 * If a host does all the power sequencing itself, ignore the
1320 * initial MMC_POWER_UP stage.
1321 */
mmc_power_up(struct mmc_host * host,u32 ocr)1322 void mmc_power_up(struct mmc_host *host, u32 ocr)
1323 {
1324 if (host->ios.power_mode == MMC_POWER_ON)
1325 return;
1326
1327 mmc_pwrseq_pre_power_on(host);
1328
1329 host->ios.vdd = fls(ocr) - 1;
1330 host->ios.power_mode = MMC_POWER_UP;
1331 /* Set initial state and call mmc_set_ios */
1332 mmc_set_initial_state(host);
1333
1334 mmc_set_initial_signal_voltage(host);
1335
1336 /*
1337 * This delay should be sufficient to allow the power supply
1338 * to reach the minimum voltage.
1339 */
1340 mmc_delay(host->ios.power_delay_ms);
1341
1342 mmc_pwrseq_post_power_on(host);
1343
1344 host->ios.clock = host->f_init;
1345
1346 host->ios.power_mode = MMC_POWER_ON;
1347 mmc_set_ios(host);
1348
1349 /*
1350 * This delay must be at least 74 clock sizes, or 1 ms, or the
1351 * time required to reach a stable voltage.
1352 */
1353 mmc_delay(host->ios.power_delay_ms);
1354 }
1355
mmc_power_off(struct mmc_host * host)1356 void mmc_power_off(struct mmc_host *host)
1357 {
1358 if (host->ios.power_mode == MMC_POWER_OFF)
1359 return;
1360
1361 mmc_pwrseq_power_off(host);
1362
1363 host->ios.clock = 0;
1364 host->ios.vdd = 0;
1365
1366 host->ios.power_mode = MMC_POWER_OFF;
1367 /* Set initial state and call mmc_set_ios */
1368 mmc_set_initial_state(host);
1369
1370 /*
1371 * Some configurations, such as the 802.11 SDIO card in the OLPC
1372 * XO-1.5, require a short delay after poweroff before the card
1373 * can be successfully turned on again.
1374 */
1375 mmc_delay(1);
1376 }
1377
mmc_power_cycle(struct mmc_host * host,u32 ocr)1378 void mmc_power_cycle(struct mmc_host *host, u32 ocr)
1379 {
1380 mmc_power_off(host);
1381 /* Wait at least 1 ms according to SD spec */
1382 mmc_delay(1);
1383 mmc_power_up(host, ocr);
1384 }
1385
1386 /*
1387 * Cleanup when the last reference to the bus operator is dropped.
1388 */
__mmc_release_bus(struct mmc_host * host)1389 static void __mmc_release_bus(struct mmc_host *host)
1390 {
1391 WARN_ON(!host->bus_dead);
1392
1393 host->bus_ops = NULL;
1394 }
1395
1396 /*
1397 * Increase reference count of bus operator
1398 */
mmc_bus_get(struct mmc_host * host)1399 static inline void mmc_bus_get(struct mmc_host *host)
1400 {
1401 unsigned long flags;
1402
1403 spin_lock_irqsave(&host->lock, flags);
1404 host->bus_refs++;
1405 spin_unlock_irqrestore(&host->lock, flags);
1406 }
1407
1408 /*
1409 * Decrease reference count of bus operator and free it if
1410 * it is the last reference.
1411 */
mmc_bus_put(struct mmc_host * host)1412 static inline void mmc_bus_put(struct mmc_host *host)
1413 {
1414 unsigned long flags;
1415
1416 spin_lock_irqsave(&host->lock, flags);
1417 host->bus_refs--;
1418 if ((host->bus_refs == 0) && host->bus_ops)
1419 __mmc_release_bus(host);
1420 spin_unlock_irqrestore(&host->lock, flags);
1421 }
1422
1423 /*
1424 * Assign a mmc bus handler to a host. Only one bus handler may control a
1425 * host at any given time.
1426 */
mmc_attach_bus(struct mmc_host * host,const struct mmc_bus_ops * ops)1427 void mmc_attach_bus(struct mmc_host *host, const struct mmc_bus_ops *ops)
1428 {
1429 unsigned long flags;
1430
1431 WARN_ON(!host->claimed);
1432
1433 spin_lock_irqsave(&host->lock, flags);
1434
1435 WARN_ON(host->bus_ops);
1436 WARN_ON(host->bus_refs);
1437
1438 host->bus_ops = ops;
1439 host->bus_refs = 1;
1440 host->bus_dead = 0;
1441
1442 spin_unlock_irqrestore(&host->lock, flags);
1443 }
1444
1445 /*
1446 * Remove the current bus handler from a host.
1447 */
mmc_detach_bus(struct mmc_host * host)1448 void mmc_detach_bus(struct mmc_host *host)
1449 {
1450 unsigned long flags;
1451
1452 WARN_ON(!host->claimed);
1453 WARN_ON(!host->bus_ops);
1454
1455 spin_lock_irqsave(&host->lock, flags);
1456
1457 host->bus_dead = 1;
1458
1459 spin_unlock_irqrestore(&host->lock, flags);
1460
1461 mmc_bus_put(host);
1462 }
1463
_mmc_detect_change(struct mmc_host * host,unsigned long delay,bool cd_irq)1464 void _mmc_detect_change(struct mmc_host *host, unsigned long delay, bool cd_irq)
1465 {
1466 /*
1467 * Prevent system sleep for 5s to allow user space to consume the
1468 * corresponding uevent. This is especially useful, when CD irq is used
1469 * as a system wakeup, but doesn't hurt in other cases.
1470 */
1471 if (cd_irq && !(host->caps & MMC_CAP_NEEDS_POLL))
1472 __pm_wakeup_event(host->ws, 5000);
1473
1474 host->detect_change = 1;
1475 mmc_schedule_delayed_work(&host->detect, delay);
1476 }
1477
1478 /**
1479 * mmc_detect_change - process change of state on a MMC socket
1480 * @host: host which changed state.
1481 * @delay: optional delay to wait before detection (jiffies)
1482 *
1483 * MMC drivers should call this when they detect a card has been
1484 * inserted or removed. The MMC layer will confirm that any
1485 * present card is still functional, and initialize any newly
1486 * inserted.
1487 */
mmc_detect_change(struct mmc_host * host,unsigned long delay)1488 void mmc_detect_change(struct mmc_host *host, unsigned long delay)
1489 {
1490 _mmc_detect_change(host, delay, true);
1491 }
1492 EXPORT_SYMBOL(mmc_detect_change);
1493
mmc_init_erase(struct mmc_card * card)1494 void mmc_init_erase(struct mmc_card *card)
1495 {
1496 unsigned int sz;
1497
1498 if (is_power_of_2(card->erase_size))
1499 card->erase_shift = ffs(card->erase_size) - 1;
1500 else
1501 card->erase_shift = 0;
1502
1503 /*
1504 * It is possible to erase an arbitrarily large area of an SD or MMC
1505 * card. That is not desirable because it can take a long time
1506 * (minutes) potentially delaying more important I/O, and also the
1507 * timeout calculations become increasingly hugely over-estimated.
1508 * Consequently, 'pref_erase' is defined as a guide to limit erases
1509 * to that size and alignment.
1510 *
1511 * For SD cards that define Allocation Unit size, limit erases to one
1512 * Allocation Unit at a time.
1513 * For MMC, have a stab at ai good value and for modern cards it will
1514 * end up being 4MiB. Note that if the value is too small, it can end
1515 * up taking longer to erase. Also note, erase_size is already set to
1516 * High Capacity Erase Size if available when this function is called.
1517 */
1518 if (mmc_card_sd(card) && card->ssr.au) {
1519 card->pref_erase = card->ssr.au;
1520 card->erase_shift = ffs(card->ssr.au) - 1;
1521 } else if (card->erase_size) {
1522 sz = (card->csd.capacity << (card->csd.read_blkbits - 9)) >> 11;
1523 if (sz < 128)
1524 card->pref_erase = 512 * 1024 / 512;
1525 else if (sz < 512)
1526 card->pref_erase = 1024 * 1024 / 512;
1527 else if (sz < 1024)
1528 card->pref_erase = 2 * 1024 * 1024 / 512;
1529 else
1530 card->pref_erase = 4 * 1024 * 1024 / 512;
1531 if (card->pref_erase < card->erase_size)
1532 card->pref_erase = card->erase_size;
1533 else {
1534 sz = card->pref_erase % card->erase_size;
1535 if (sz)
1536 card->pref_erase += card->erase_size - sz;
1537 }
1538 } else
1539 card->pref_erase = 0;
1540 }
1541
is_trim_arg(unsigned int arg)1542 static bool is_trim_arg(unsigned int arg)
1543 {
1544 return (arg & MMC_TRIM_OR_DISCARD_ARGS) && arg != MMC_DISCARD_ARG;
1545 }
1546
mmc_mmc_erase_timeout(struct mmc_card * card,unsigned int arg,unsigned int qty)1547 static unsigned int mmc_mmc_erase_timeout(struct mmc_card *card,
1548 unsigned int arg, unsigned int qty)
1549 {
1550 unsigned int erase_timeout;
1551
1552 if (arg == MMC_DISCARD_ARG ||
1553 (arg == MMC_TRIM_ARG && card->ext_csd.rev >= 6)) {
1554 erase_timeout = card->ext_csd.trim_timeout;
1555 } else if (card->ext_csd.erase_group_def & 1) {
1556 /* High Capacity Erase Group Size uses HC timeouts */
1557 if (arg == MMC_TRIM_ARG)
1558 erase_timeout = card->ext_csd.trim_timeout;
1559 else
1560 erase_timeout = card->ext_csd.hc_erase_timeout;
1561 } else {
1562 /* CSD Erase Group Size uses write timeout */
1563 unsigned int mult = (10 << card->csd.r2w_factor);
1564 unsigned int timeout_clks = card->csd.taac_clks * mult;
1565 unsigned int timeout_us;
1566
1567 /* Avoid overflow: e.g. taac_ns=80000000 mult=1280 */
1568 if (card->csd.taac_ns < 1000000)
1569 timeout_us = (card->csd.taac_ns * mult) / 1000;
1570 else
1571 timeout_us = (card->csd.taac_ns / 1000) * mult;
1572
1573 /*
1574 * ios.clock is only a target. The real clock rate might be
1575 * less but not that much less, so fudge it by multiplying by 2.
1576 */
1577 timeout_clks <<= 1;
1578 timeout_us += (timeout_clks * 1000) /
1579 (card->host->ios.clock / 1000);
1580
1581 erase_timeout = timeout_us / 1000;
1582
1583 /*
1584 * Theoretically, the calculation could underflow so round up
1585 * to 1ms in that case.
1586 */
1587 if (!erase_timeout)
1588 erase_timeout = 1;
1589 }
1590
1591 /* Multiplier for secure operations */
1592 if (arg & MMC_SECURE_ARGS) {
1593 if (arg == MMC_SECURE_ERASE_ARG)
1594 erase_timeout *= card->ext_csd.sec_erase_mult;
1595 else
1596 erase_timeout *= card->ext_csd.sec_trim_mult;
1597 }
1598
1599 erase_timeout *= qty;
1600
1601 /*
1602 * Ensure at least a 1 second timeout for SPI as per
1603 * 'mmc_set_data_timeout()'
1604 */
1605 if (mmc_host_is_spi(card->host) && erase_timeout < 1000)
1606 erase_timeout = 1000;
1607
1608 return erase_timeout;
1609 }
1610
mmc_sd_erase_timeout(struct mmc_card * card,unsigned int arg,unsigned int qty)1611 static unsigned int mmc_sd_erase_timeout(struct mmc_card *card,
1612 unsigned int arg,
1613 unsigned int qty)
1614 {
1615 unsigned int erase_timeout;
1616
1617 /* for DISCARD none of the below calculation applies.
1618 * the busy timeout is 250msec per discard command.
1619 */
1620 if (arg == SD_DISCARD_ARG)
1621 return SD_DISCARD_TIMEOUT_MS;
1622
1623 if (card->ssr.erase_timeout) {
1624 /* Erase timeout specified in SD Status Register (SSR) */
1625 erase_timeout = card->ssr.erase_timeout * qty +
1626 card->ssr.erase_offset;
1627 } else {
1628 /*
1629 * Erase timeout not specified in SD Status Register (SSR) so
1630 * use 250ms per write block.
1631 */
1632 erase_timeout = 250 * qty;
1633 }
1634
1635 /* Must not be less than 1 second */
1636 if (erase_timeout < 1000)
1637 erase_timeout = 1000;
1638
1639 return erase_timeout;
1640 }
1641
mmc_erase_timeout(struct mmc_card * card,unsigned int arg,unsigned int qty)1642 static unsigned int mmc_erase_timeout(struct mmc_card *card,
1643 unsigned int arg,
1644 unsigned int qty)
1645 {
1646 if (mmc_card_sd(card))
1647 return mmc_sd_erase_timeout(card, arg, qty);
1648 else
1649 return mmc_mmc_erase_timeout(card, arg, qty);
1650 }
1651
mmc_do_erase(struct mmc_card * card,unsigned int from,unsigned int to,unsigned int arg)1652 static int mmc_do_erase(struct mmc_card *card, unsigned int from,
1653 unsigned int to, unsigned int arg)
1654 {
1655 struct mmc_command cmd = {};
1656 unsigned int qty = 0, busy_timeout = 0;
1657 bool use_r1b_resp = false;
1658 int err;
1659
1660 mmc_retune_hold(card->host);
1661
1662 /*
1663 * qty is used to calculate the erase timeout which depends on how many
1664 * erase groups (or allocation units in SD terminology) are affected.
1665 * We count erasing part of an erase group as one erase group.
1666 * For SD, the allocation units are always a power of 2. For MMC, the
1667 * erase group size is almost certainly also power of 2, but it does not
1668 * seem to insist on that in the JEDEC standard, so we fall back to
1669 * division in that case. SD may not specify an allocation unit size,
1670 * in which case the timeout is based on the number of write blocks.
1671 *
1672 * Note that the timeout for secure trim 2 will only be correct if the
1673 * number of erase groups specified is the same as the total of all
1674 * preceding secure trim 1 commands. Since the power may have been
1675 * lost since the secure trim 1 commands occurred, it is generally
1676 * impossible to calculate the secure trim 2 timeout correctly.
1677 */
1678 if (card->erase_shift)
1679 qty += ((to >> card->erase_shift) -
1680 (from >> card->erase_shift)) + 1;
1681 else if (mmc_card_sd(card))
1682 qty += to - from + 1;
1683 else
1684 qty += ((to / card->erase_size) -
1685 (from / card->erase_size)) + 1;
1686
1687 if (!mmc_card_blockaddr(card)) {
1688 from <<= 9;
1689 to <<= 9;
1690 }
1691
1692 if (mmc_card_sd(card))
1693 cmd.opcode = SD_ERASE_WR_BLK_START;
1694 else
1695 cmd.opcode = MMC_ERASE_GROUP_START;
1696 cmd.arg = from;
1697 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
1698 err = mmc_wait_for_cmd(card->host, &cmd, 0);
1699 if (err) {
1700 pr_err("mmc_erase: group start error %d, "
1701 "status %#x\n", err, cmd.resp[0]);
1702 err = -EIO;
1703 goto out;
1704 }
1705
1706 memset(&cmd, 0, sizeof(struct mmc_command));
1707 if (mmc_card_sd(card))
1708 cmd.opcode = SD_ERASE_WR_BLK_END;
1709 else
1710 cmd.opcode = MMC_ERASE_GROUP_END;
1711 cmd.arg = to;
1712 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
1713 err = mmc_wait_for_cmd(card->host, &cmd, 0);
1714 if (err) {
1715 pr_err("mmc_erase: group end error %d, status %#x\n",
1716 err, cmd.resp[0]);
1717 err = -EIO;
1718 goto out;
1719 }
1720
1721 memset(&cmd, 0, sizeof(struct mmc_command));
1722 cmd.opcode = MMC_ERASE;
1723 cmd.arg = arg;
1724 busy_timeout = mmc_erase_timeout(card, arg, qty);
1725 /*
1726 * If the host controller supports busy signalling and the timeout for
1727 * the erase operation does not exceed the max_busy_timeout, we should
1728 * use R1B response. Or we need to prevent the host from doing hw busy
1729 * detection, which is done by converting to a R1 response instead.
1730 * Note, some hosts requires R1B, which also means they are on their own
1731 * when it comes to deal with the busy timeout.
1732 */
1733 if (!(card->host->caps & MMC_CAP_NEED_RSP_BUSY) &&
1734 card->host->max_busy_timeout &&
1735 busy_timeout > card->host->max_busy_timeout) {
1736 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
1737 } else {
1738 cmd.flags = MMC_RSP_SPI_R1B | MMC_RSP_R1B | MMC_CMD_AC;
1739 cmd.busy_timeout = busy_timeout;
1740 use_r1b_resp = true;
1741 }
1742
1743 err = mmc_wait_for_cmd(card->host, &cmd, 0);
1744 if (err) {
1745 pr_err("mmc_erase: erase error %d, status %#x\n",
1746 err, cmd.resp[0]);
1747 err = -EIO;
1748 goto out;
1749 }
1750
1751 if (mmc_host_is_spi(card->host))
1752 goto out;
1753
1754 /*
1755 * In case of when R1B + MMC_CAP_WAIT_WHILE_BUSY is used, the polling
1756 * shall be avoided.
1757 */
1758 if ((card->host->caps & MMC_CAP_WAIT_WHILE_BUSY) && use_r1b_resp)
1759 goto out;
1760
1761 /* Let's poll to find out when the erase operation completes. */
1762 err = mmc_poll_for_busy(card, busy_timeout, MMC_BUSY_ERASE);
1763
1764 out:
1765 mmc_retune_release(card->host);
1766 return err;
1767 }
1768
mmc_align_erase_size(struct mmc_card * card,unsigned int * from,unsigned int * to,unsigned int nr)1769 static unsigned int mmc_align_erase_size(struct mmc_card *card,
1770 unsigned int *from,
1771 unsigned int *to,
1772 unsigned int nr)
1773 {
1774 unsigned int from_new = *from, nr_new = nr, rem;
1775
1776 /*
1777 * When the 'card->erase_size' is power of 2, we can use round_up/down()
1778 * to align the erase size efficiently.
1779 */
1780 if (is_power_of_2(card->erase_size)) {
1781 unsigned int temp = from_new;
1782
1783 from_new = round_up(temp, card->erase_size);
1784 rem = from_new - temp;
1785
1786 if (nr_new > rem)
1787 nr_new -= rem;
1788 else
1789 return 0;
1790
1791 nr_new = round_down(nr_new, card->erase_size);
1792 } else {
1793 rem = from_new % card->erase_size;
1794 if (rem) {
1795 rem = card->erase_size - rem;
1796 from_new += rem;
1797 if (nr_new > rem)
1798 nr_new -= rem;
1799 else
1800 return 0;
1801 }
1802
1803 rem = nr_new % card->erase_size;
1804 if (rem)
1805 nr_new -= rem;
1806 }
1807
1808 if (nr_new == 0)
1809 return 0;
1810
1811 *to = from_new + nr_new;
1812 *from = from_new;
1813
1814 return nr_new;
1815 }
1816
1817 /**
1818 * mmc_erase - erase sectors.
1819 * @card: card to erase
1820 * @from: first sector to erase
1821 * @nr: number of sectors to erase
1822 * @arg: erase command argument
1823 *
1824 * Caller must claim host before calling this function.
1825 */
mmc_erase(struct mmc_card * card,unsigned int from,unsigned int nr,unsigned int arg)1826 int mmc_erase(struct mmc_card *card, unsigned int from, unsigned int nr,
1827 unsigned int arg)
1828 {
1829 unsigned int rem, to = from + nr;
1830 int err;
1831
1832 if (!(card->csd.cmdclass & CCC_ERASE))
1833 return -EOPNOTSUPP;
1834
1835 if (!card->erase_size)
1836 return -EOPNOTSUPP;
1837
1838 if (mmc_card_sd(card) && arg != SD_ERASE_ARG && arg != SD_DISCARD_ARG)
1839 return -EOPNOTSUPP;
1840
1841 if (mmc_card_mmc(card) && (arg & MMC_SECURE_ARGS) &&
1842 !(card->ext_csd.sec_feature_support & EXT_CSD_SEC_ER_EN))
1843 return -EOPNOTSUPP;
1844
1845 if (mmc_card_mmc(card) && is_trim_arg(arg) &&
1846 !(card->ext_csd.sec_feature_support & EXT_CSD_SEC_GB_CL_EN))
1847 return -EOPNOTSUPP;
1848
1849 if (arg == MMC_SECURE_ERASE_ARG) {
1850 if (from % card->erase_size || nr % card->erase_size)
1851 return -EINVAL;
1852 }
1853
1854 if (arg == MMC_ERASE_ARG)
1855 nr = mmc_align_erase_size(card, &from, &to, nr);
1856
1857 if (nr == 0)
1858 return 0;
1859
1860 if (to <= from)
1861 return -EINVAL;
1862
1863 /* 'from' and 'to' are inclusive */
1864 to -= 1;
1865
1866 /*
1867 * Special case where only one erase-group fits in the timeout budget:
1868 * If the region crosses an erase-group boundary on this particular
1869 * case, we will be trimming more than one erase-group which, does not
1870 * fit in the timeout budget of the controller, so we need to split it
1871 * and call mmc_do_erase() twice if necessary. This special case is
1872 * identified by the card->eg_boundary flag.
1873 */
1874 rem = card->erase_size - (from % card->erase_size);
1875 if ((arg & MMC_TRIM_OR_DISCARD_ARGS) && card->eg_boundary && nr > rem) {
1876 err = mmc_do_erase(card, from, from + rem - 1, arg);
1877 from += rem;
1878 if ((err) || (to <= from))
1879 return err;
1880 }
1881
1882 return mmc_do_erase(card, from, to, arg);
1883 }
1884 EXPORT_SYMBOL(mmc_erase);
1885
mmc_can_erase(struct mmc_card * card)1886 int mmc_can_erase(struct mmc_card *card)
1887 {
1888 if (card->csd.cmdclass & CCC_ERASE && card->erase_size)
1889 return 1;
1890 return 0;
1891 }
1892 EXPORT_SYMBOL(mmc_can_erase);
1893
mmc_can_trim(struct mmc_card * card)1894 int mmc_can_trim(struct mmc_card *card)
1895 {
1896 if ((card->ext_csd.sec_feature_support & EXT_CSD_SEC_GB_CL_EN) &&
1897 (!(card->quirks & MMC_QUIRK_TRIM_BROKEN)))
1898 return 1;
1899 return 0;
1900 }
1901 EXPORT_SYMBOL(mmc_can_trim);
1902
mmc_can_discard(struct mmc_card * card)1903 int mmc_can_discard(struct mmc_card *card)
1904 {
1905 /*
1906 * As there's no way to detect the discard support bit at v4.5
1907 * use the s/w feature support filed.
1908 */
1909 if (card->ext_csd.feature_support & MMC_DISCARD_FEATURE)
1910 return 1;
1911 return 0;
1912 }
1913 EXPORT_SYMBOL(mmc_can_discard);
1914
mmc_can_sanitize(struct mmc_card * card)1915 int mmc_can_sanitize(struct mmc_card *card)
1916 {
1917 if (!mmc_can_trim(card) && !mmc_can_erase(card))
1918 return 0;
1919 if (card->ext_csd.sec_feature_support & EXT_CSD_SEC_SANITIZE)
1920 return 1;
1921 return 0;
1922 }
1923
mmc_can_secure_erase_trim(struct mmc_card * card)1924 int mmc_can_secure_erase_trim(struct mmc_card *card)
1925 {
1926 if ((card->ext_csd.sec_feature_support & EXT_CSD_SEC_ER_EN) &&
1927 !(card->quirks & MMC_QUIRK_SEC_ERASE_TRIM_BROKEN))
1928 return 1;
1929 return 0;
1930 }
1931 EXPORT_SYMBOL(mmc_can_secure_erase_trim);
1932
mmc_erase_group_aligned(struct mmc_card * card,unsigned int from,unsigned int nr)1933 int mmc_erase_group_aligned(struct mmc_card *card, unsigned int from,
1934 unsigned int nr)
1935 {
1936 if (!card->erase_size)
1937 return 0;
1938 if (from % card->erase_size || nr % card->erase_size)
1939 return 0;
1940 return 1;
1941 }
1942 EXPORT_SYMBOL(mmc_erase_group_aligned);
1943
mmc_do_calc_max_discard(struct mmc_card * card,unsigned int arg)1944 static unsigned int mmc_do_calc_max_discard(struct mmc_card *card,
1945 unsigned int arg)
1946 {
1947 struct mmc_host *host = card->host;
1948 unsigned int max_discard, x, y, qty = 0, max_qty, min_qty, timeout;
1949 unsigned int last_timeout = 0;
1950 unsigned int max_busy_timeout = host->max_busy_timeout ?
1951 host->max_busy_timeout : MMC_ERASE_TIMEOUT_MS;
1952
1953 if (card->erase_shift) {
1954 max_qty = UINT_MAX >> card->erase_shift;
1955 min_qty = card->pref_erase >> card->erase_shift;
1956 } else if (mmc_card_sd(card)) {
1957 max_qty = UINT_MAX;
1958 min_qty = card->pref_erase;
1959 } else {
1960 max_qty = UINT_MAX / card->erase_size;
1961 min_qty = card->pref_erase / card->erase_size;
1962 }
1963
1964 /*
1965 * We should not only use 'host->max_busy_timeout' as the limitation
1966 * when deciding the max discard sectors. We should set a balance value
1967 * to improve the erase speed, and it can not get too long timeout at
1968 * the same time.
1969 *
1970 * Here we set 'card->pref_erase' as the minimal discard sectors no
1971 * matter what size of 'host->max_busy_timeout', but if the
1972 * 'host->max_busy_timeout' is large enough for more discard sectors,
1973 * then we can continue to increase the max discard sectors until we
1974 * get a balance value. In cases when the 'host->max_busy_timeout'
1975 * isn't specified, use the default max erase timeout.
1976 */
1977 do {
1978 y = 0;
1979 for (x = 1; x && x <= max_qty && max_qty - x >= qty; x <<= 1) {
1980 timeout = mmc_erase_timeout(card, arg, qty + x);
1981
1982 if (qty + x > min_qty && timeout > max_busy_timeout)
1983 break;
1984
1985 if (timeout < last_timeout)
1986 break;
1987 last_timeout = timeout;
1988 y = x;
1989 }
1990 qty += y;
1991 } while (y);
1992
1993 if (!qty)
1994 return 0;
1995
1996 /*
1997 * When specifying a sector range to trim, chances are we might cross
1998 * an erase-group boundary even if the amount of sectors is less than
1999 * one erase-group.
2000 * If we can only fit one erase-group in the controller timeout budget,
2001 * we have to care that erase-group boundaries are not crossed by a
2002 * single trim operation. We flag that special case with "eg_boundary".
2003 * In all other cases we can just decrement qty and pretend that we
2004 * always touch (qty + 1) erase-groups as a simple optimization.
2005 */
2006 if (qty == 1)
2007 card->eg_boundary = 1;
2008 else
2009 qty--;
2010
2011 /* Convert qty to sectors */
2012 if (card->erase_shift)
2013 max_discard = qty << card->erase_shift;
2014 else if (mmc_card_sd(card))
2015 max_discard = qty + 1;
2016 else
2017 max_discard = qty * card->erase_size;
2018
2019 return max_discard;
2020 }
2021
mmc_calc_max_discard(struct mmc_card * card)2022 unsigned int mmc_calc_max_discard(struct mmc_card *card)
2023 {
2024 struct mmc_host *host = card->host;
2025 unsigned int max_discard, max_trim;
2026
2027 /*
2028 * Without erase_group_def set, MMC erase timeout depends on clock
2029 * frequence which can change. In that case, the best choice is
2030 * just the preferred erase size.
2031 */
2032 if (mmc_card_mmc(card) && !(card->ext_csd.erase_group_def & 1))
2033 return card->pref_erase;
2034
2035 max_discard = mmc_do_calc_max_discard(card, MMC_ERASE_ARG);
2036 if (mmc_can_trim(card)) {
2037 max_trim = mmc_do_calc_max_discard(card, MMC_TRIM_ARG);
2038 if (max_trim < max_discard || max_discard == 0)
2039 max_discard = max_trim;
2040 } else if (max_discard < card->erase_size) {
2041 max_discard = 0;
2042 }
2043 pr_debug("%s: calculated max. discard sectors %u for timeout %u ms\n",
2044 mmc_hostname(host), max_discard, host->max_busy_timeout ?
2045 host->max_busy_timeout : MMC_ERASE_TIMEOUT_MS);
2046 return max_discard;
2047 }
2048 EXPORT_SYMBOL(mmc_calc_max_discard);
2049
mmc_card_is_blockaddr(struct mmc_card * card)2050 bool mmc_card_is_blockaddr(struct mmc_card *card)
2051 {
2052 return card ? mmc_card_blockaddr(card) : false;
2053 }
2054 EXPORT_SYMBOL(mmc_card_is_blockaddr);
2055
mmc_set_blocklen(struct mmc_card * card,unsigned int blocklen)2056 int mmc_set_blocklen(struct mmc_card *card, unsigned int blocklen)
2057 {
2058 struct mmc_command cmd = {};
2059
2060 if (mmc_card_blockaddr(card) || mmc_card_ddr52(card) ||
2061 mmc_card_hs400(card) || mmc_card_hs400es(card))
2062 return 0;
2063
2064 cmd.opcode = MMC_SET_BLOCKLEN;
2065 cmd.arg = blocklen;
2066 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
2067 return mmc_wait_for_cmd(card->host, &cmd, 5);
2068 }
2069 EXPORT_SYMBOL(mmc_set_blocklen);
2070
mmc_hw_reset_for_init(struct mmc_host * host)2071 static void mmc_hw_reset_for_init(struct mmc_host *host)
2072 {
2073 mmc_pwrseq_reset(host);
2074
2075 if (!(host->caps & MMC_CAP_HW_RESET) || !host->ops->hw_reset)
2076 return;
2077 host->ops->hw_reset(host);
2078 }
2079
2080 /**
2081 * mmc_hw_reset - reset the card in hardware
2082 * @host: MMC host to which the card is attached
2083 *
2084 * Hard reset the card. This function is only for upper layers, like the
2085 * block layer or card drivers. You cannot use it in host drivers (struct
2086 * mmc_card might be gone then).
2087 *
2088 * Return: 0 on success, -errno on failure
2089 */
mmc_hw_reset(struct mmc_host * host)2090 int mmc_hw_reset(struct mmc_host *host)
2091 {
2092 int ret;
2093
2094 if (!host->card)
2095 return -EINVAL;
2096
2097 mmc_bus_get(host);
2098 if (!host->bus_ops || host->bus_dead || !host->bus_ops->hw_reset) {
2099 mmc_bus_put(host);
2100 return -EOPNOTSUPP;
2101 }
2102
2103 ret = host->bus_ops->hw_reset(host);
2104 mmc_bus_put(host);
2105
2106 if (ret < 0)
2107 pr_warn("%s: tried to HW reset card, got error %d\n",
2108 mmc_hostname(host), ret);
2109
2110 return ret;
2111 }
2112 EXPORT_SYMBOL(mmc_hw_reset);
2113
mmc_sw_reset(struct mmc_host * host)2114 int mmc_sw_reset(struct mmc_host *host)
2115 {
2116 int ret;
2117
2118 if (!host->card)
2119 return -EINVAL;
2120
2121 mmc_bus_get(host);
2122 if (!host->bus_ops || host->bus_dead || !host->bus_ops->sw_reset) {
2123 mmc_bus_put(host);
2124 return -EOPNOTSUPP;
2125 }
2126
2127 ret = host->bus_ops->sw_reset(host);
2128 mmc_bus_put(host);
2129
2130 if (ret)
2131 pr_warn("%s: tried to SW reset card, got error %d\n",
2132 mmc_hostname(host), ret);
2133
2134 return ret;
2135 }
2136 EXPORT_SYMBOL(mmc_sw_reset);
2137
mmc_rescan_try_freq(struct mmc_host * host,unsigned freq)2138 static int mmc_rescan_try_freq(struct mmc_host *host, unsigned freq)
2139 {
2140 host->f_init = freq;
2141
2142 pr_debug("%s: %s: trying to init card at %u Hz\n",
2143 mmc_hostname(host), __func__, host->f_init);
2144
2145 mmc_power_up(host, host->ocr_avail);
2146
2147 /*
2148 * Some eMMCs (with VCCQ always on) may not be reset after power up, so
2149 * do a hardware reset if possible.
2150 */
2151 mmc_hw_reset_for_init(host);
2152
2153 /*
2154 * sdio_reset sends CMD52 to reset card. Since we do not know
2155 * if the card is being re-initialized, just send it. CMD52
2156 * should be ignored by SD/eMMC cards.
2157 * Skip it if we already know that we do not support SDIO commands
2158 */
2159 if (!(host->caps2 & MMC_CAP2_NO_SDIO))
2160 sdio_reset(host);
2161
2162 mmc_go_idle(host);
2163
2164 if (!(host->caps2 & MMC_CAP2_NO_SD))
2165 mmc_send_if_cond(host, host->ocr_avail);
2166
2167 /* Order's important: probe SDIO, then SD, then MMC */
2168 if (!(host->caps2 & MMC_CAP2_NO_SDIO))
2169 if (!mmc_attach_sdio(host))
2170 return 0;
2171
2172 if (!(host->caps2 & MMC_CAP2_NO_SD))
2173 if (!mmc_attach_sd(host))
2174 return 0;
2175
2176 if (!(host->caps2 & MMC_CAP2_NO_MMC))
2177 if (!mmc_attach_mmc(host))
2178 return 0;
2179
2180 mmc_power_off(host);
2181 return -EIO;
2182 }
2183
_mmc_detect_card_removed(struct mmc_host * host)2184 int _mmc_detect_card_removed(struct mmc_host *host)
2185 {
2186 int ret;
2187
2188 if (!host->card || mmc_card_removed(host->card))
2189 return 1;
2190
2191 ret = host->bus_ops->alive(host);
2192
2193 /*
2194 * Card detect status and alive check may be out of sync if card is
2195 * removed slowly, when card detect switch changes while card/slot
2196 * pads are still contacted in hardware (refer to "SD Card Mechanical
2197 * Addendum, Appendix C: Card Detection Switch"). So reschedule a
2198 * detect work 200ms later for this case.
2199 */
2200 if (!ret && host->ops->get_cd && !host->ops->get_cd(host)) {
2201 mmc_detect_change(host, msecs_to_jiffies(200));
2202 pr_debug("%s: card removed too slowly\n", mmc_hostname(host));
2203 }
2204
2205 if (ret) {
2206 mmc_card_set_removed(host->card);
2207 pr_debug("%s: card remove detected\n", mmc_hostname(host));
2208 }
2209
2210 return ret;
2211 }
2212
mmc_detect_card_removed(struct mmc_host * host)2213 int mmc_detect_card_removed(struct mmc_host *host)
2214 {
2215 struct mmc_card *card = host->card;
2216 int ret;
2217
2218 WARN_ON(!host->claimed);
2219
2220 if (!card)
2221 return 1;
2222
2223 if (!mmc_card_is_removable(host))
2224 return 0;
2225
2226 ret = mmc_card_removed(card);
2227 /*
2228 * The card will be considered unchanged unless we have been asked to
2229 * detect a change or host requires polling to provide card detection.
2230 */
2231 if (!host->detect_change && !(host->caps & MMC_CAP_NEEDS_POLL))
2232 return ret;
2233
2234 host->detect_change = 0;
2235 if (!ret) {
2236 ret = _mmc_detect_card_removed(host);
2237 if (ret && (host->caps & MMC_CAP_NEEDS_POLL)) {
2238 /*
2239 * Schedule a detect work as soon as possible to let a
2240 * rescan handle the card removal.
2241 */
2242 cancel_delayed_work(&host->detect);
2243 _mmc_detect_change(host, 0, false);
2244 }
2245 }
2246
2247 return ret;
2248 }
2249 EXPORT_SYMBOL(mmc_detect_card_removed);
2250
mmc_rescan(struct work_struct * work)2251 void mmc_rescan(struct work_struct *work)
2252 {
2253 struct mmc_host *host =
2254 container_of(work, struct mmc_host, detect.work);
2255 int i;
2256
2257 if (host->rescan_disable)
2258 return;
2259
2260 /* If there is a non-removable card registered, only scan once */
2261 if (!mmc_card_is_removable(host) && host->rescan_entered)
2262 return;
2263 host->rescan_entered = 1;
2264
2265 if (host->trigger_card_event && host->ops->card_event) {
2266 mmc_claim_host(host);
2267 host->ops->card_event(host);
2268 mmc_release_host(host);
2269 host->trigger_card_event = false;
2270 }
2271
2272 mmc_bus_get(host);
2273
2274 /* Verify a registered card to be functional, else remove it. */
2275 if (host->bus_ops && !host->bus_dead)
2276 host->bus_ops->detect(host);
2277
2278 host->detect_change = 0;
2279
2280 /*
2281 * Let mmc_bus_put() free the bus/bus_ops if we've found that
2282 * the card is no longer present.
2283 */
2284 mmc_bus_put(host);
2285 mmc_bus_get(host);
2286
2287 /* if there still is a card present, stop here */
2288 if (host->bus_ops != NULL) {
2289 mmc_bus_put(host);
2290 goto out;
2291 }
2292
2293 /*
2294 * Only we can add a new handler, so it's safe to
2295 * release the lock here.
2296 */
2297 mmc_bus_put(host);
2298
2299 mmc_claim_host(host);
2300 if (mmc_card_is_removable(host) && host->ops->get_cd &&
2301 host->ops->get_cd(host) == 0) {
2302 mmc_power_off(host);
2303 mmc_release_host(host);
2304 goto out;
2305 }
2306
2307 for (i = 0; i < ARRAY_SIZE(freqs); i++) {
2308 unsigned int freq = freqs[i];
2309 if (freq > host->f_max) {
2310 if (i + 1 < ARRAY_SIZE(freqs))
2311 continue;
2312 freq = host->f_max;
2313 }
2314 if (!mmc_rescan_try_freq(host, max(freq, host->f_min)))
2315 break;
2316 if (freqs[i] <= host->f_min)
2317 break;
2318 }
2319 mmc_release_host(host);
2320
2321 out:
2322 if (host->caps & MMC_CAP_NEEDS_POLL)
2323 mmc_schedule_delayed_work(&host->detect, HZ);
2324 }
2325
mmc_start_host(struct mmc_host * host)2326 void mmc_start_host(struct mmc_host *host)
2327 {
2328 host->f_init = max(min(freqs[0], host->f_max), host->f_min);
2329 host->rescan_disable = 0;
2330
2331 if (!(host->caps2 & MMC_CAP2_NO_PRESCAN_POWERUP)) {
2332 mmc_claim_host(host);
2333 mmc_power_up(host, host->ocr_avail);
2334 mmc_release_host(host);
2335 }
2336
2337 mmc_gpiod_request_cd_irq(host);
2338 _mmc_detect_change(host, 0, false);
2339 }
2340
__mmc_stop_host(struct mmc_host * host)2341 void __mmc_stop_host(struct mmc_host *host)
2342 {
2343 if (host->slot.cd_irq >= 0) {
2344 mmc_gpio_set_cd_wake(host, false);
2345 disable_irq(host->slot.cd_irq);
2346 }
2347
2348 host->rescan_disable = 1;
2349 cancel_delayed_work_sync(&host->detect);
2350 }
2351
mmc_stop_host(struct mmc_host * host)2352 void mmc_stop_host(struct mmc_host *host)
2353 {
2354 __mmc_stop_host(host);
2355
2356 /* clear pm flags now and let card drivers set them as needed */
2357 host->pm_flags = 0;
2358
2359 mmc_bus_get(host);
2360 if (host->bus_ops && !host->bus_dead) {
2361 /* Calling bus_ops->remove() with a claimed host can deadlock */
2362 host->bus_ops->remove(host);
2363 mmc_claim_host(host);
2364 mmc_detach_bus(host);
2365 mmc_power_off(host);
2366 mmc_release_host(host);
2367 mmc_bus_put(host);
2368 return;
2369 }
2370 mmc_bus_put(host);
2371
2372 mmc_claim_host(host);
2373 mmc_power_off(host);
2374 mmc_release_host(host);
2375 }
2376
mmc_init(void)2377 static int __init mmc_init(void)
2378 {
2379 int ret;
2380
2381 ret = mmc_register_bus();
2382 if (ret)
2383 return ret;
2384
2385 ret = mmc_register_host_class();
2386 if (ret)
2387 goto unregister_bus;
2388
2389 ret = sdio_register_bus();
2390 if (ret)
2391 goto unregister_host_class;
2392
2393 return 0;
2394
2395 unregister_host_class:
2396 mmc_unregister_host_class();
2397 unregister_bus:
2398 mmc_unregister_bus();
2399 return ret;
2400 }
2401
mmc_exit(void)2402 static void __exit mmc_exit(void)
2403 {
2404 sdio_unregister_bus();
2405 mmc_unregister_host_class();
2406 mmc_unregister_bus();
2407 }
2408
2409 subsys_initcall(mmc_init);
2410 module_exit(mmc_exit);
2411
2412 MODULE_LICENSE("GPL");
2413