• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/drivers/mmc/core/core.c
4  *
5  *  Copyright (C) 2003-2004 Russell King, All Rights Reserved.
6  *  SD support Copyright (C) 2004 Ian Molton, All Rights Reserved.
7  *  Copyright (C) 2005-2008 Pierre Ossman, All Rights Reserved.
8  *  MMCv4 support Copyright (C) 2006 Philip Langdale, All Rights Reserved.
9  */
10 #include <linux/module.h>
11 #include <linux/init.h>
12 #include <linux/interrupt.h>
13 #include <linux/completion.h>
14 #include <linux/device.h>
15 #include <linux/delay.h>
16 #include <linux/pagemap.h>
17 #include <linux/err.h>
18 #include <linux/leds.h>
19 #include <linux/scatterlist.h>
20 #include <linux/log2.h>
21 #include <linux/pm_runtime.h>
22 #include <linux/pm_wakeup.h>
23 #include <linux/suspend.h>
24 #include <linux/fault-inject.h>
25 #include <linux/random.h>
26 #include <linux/slab.h>
27 #include <linux/of.h>
28 
29 #include <linux/mmc/card.h>
30 #include <linux/mmc/host.h>
31 #include <linux/mmc/mmc.h>
32 #include <linux/mmc/sd.h>
33 #include <linux/mmc/slot-gpio.h>
34 
35 #define CREATE_TRACE_POINTS
36 #include <trace/events/mmc.h>
37 
38 #include "core.h"
39 #include "card.h"
40 #include "bus.h"
41 #include "host.h"
42 #include "sdio_bus.h"
43 #include "pwrseq.h"
44 
45 #include "mmc_ops.h"
46 #include "sd_ops.h"
47 #include "sdio_ops.h"
48 
49 /* The max erase timeout, used when host->max_busy_timeout isn't specified */
50 #define MMC_ERASE_TIMEOUT_MS	(60 * 1000) /* 60 s */
51 #define SD_DISCARD_TIMEOUT_MS	(250)
52 
53 static const unsigned freqs[] = { 400000, 300000, 200000, 100000 };
54 
55 /*
56  * Enabling software CRCs on the data blocks can be a significant (30%)
57  * performance cost, and for other reasons may not always be desired.
58  * So we allow it it to be disabled.
59  */
60 bool use_spi_crc = 1;
61 module_param(use_spi_crc, bool, 0);
62 
mmc_schedule_delayed_work(struct delayed_work * work,unsigned long delay)63 static int mmc_schedule_delayed_work(struct delayed_work *work,
64 				     unsigned long delay)
65 {
66 	/*
67 	 * We use the system_freezable_wq, because of two reasons.
68 	 * First, it allows several works (not the same work item) to be
69 	 * executed simultaneously. Second, the queue becomes frozen when
70 	 * userspace becomes frozen during system PM.
71 	 */
72 	return queue_delayed_work(system_freezable_wq, work, delay);
73 }
74 
75 #ifdef CONFIG_FAIL_MMC_REQUEST
76 
77 /*
78  * Internal function. Inject random data errors.
79  * If mmc_data is NULL no errors are injected.
80  */
mmc_should_fail_request(struct mmc_host * host,struct mmc_request * mrq)81 static void mmc_should_fail_request(struct mmc_host *host,
82 				    struct mmc_request *mrq)
83 {
84 	struct mmc_command *cmd = mrq->cmd;
85 	struct mmc_data *data = mrq->data;
86 	static const int data_errors[] = {
87 		-ETIMEDOUT,
88 		-EILSEQ,
89 		-EIO,
90 	};
91 
92 	if (!data)
93 		return;
94 
95 	if ((cmd && cmd->error) || data->error ||
96 	    !should_fail(&host->fail_mmc_request, data->blksz * data->blocks))
97 		return;
98 
99 	data->error = data_errors[prandom_u32() % ARRAY_SIZE(data_errors)];
100 	data->bytes_xfered = (prandom_u32() % (data->bytes_xfered >> 9)) << 9;
101 }
102 
103 #else /* CONFIG_FAIL_MMC_REQUEST */
104 
mmc_should_fail_request(struct mmc_host * host,struct mmc_request * mrq)105 static inline void mmc_should_fail_request(struct mmc_host *host,
106 					   struct mmc_request *mrq)
107 {
108 }
109 
110 #endif /* CONFIG_FAIL_MMC_REQUEST */
111 
mmc_complete_cmd(struct mmc_request * mrq)112 static inline void mmc_complete_cmd(struct mmc_request *mrq)
113 {
114 	if (mrq->cap_cmd_during_tfr && !completion_done(&mrq->cmd_completion))
115 		complete_all(&mrq->cmd_completion);
116 }
117 
mmc_command_done(struct mmc_host * host,struct mmc_request * mrq)118 void mmc_command_done(struct mmc_host *host, struct mmc_request *mrq)
119 {
120 	if (!mrq->cap_cmd_during_tfr)
121 		return;
122 
123 	mmc_complete_cmd(mrq);
124 
125 	pr_debug("%s: cmd done, tfr ongoing (CMD%u)\n",
126 		 mmc_hostname(host), mrq->cmd->opcode);
127 }
128 EXPORT_SYMBOL(mmc_command_done);
129 
130 /**
131  *	mmc_request_done - finish processing an MMC request
132  *	@host: MMC host which completed request
133  *	@mrq: MMC request which request
134  *
135  *	MMC drivers should call this function when they have completed
136  *	their processing of a request.
137  */
mmc_request_done(struct mmc_host * host,struct mmc_request * mrq)138 void mmc_request_done(struct mmc_host *host, struct mmc_request *mrq)
139 {
140 	struct mmc_command *cmd = mrq->cmd;
141 	int err = cmd->error;
142 
143 	/* Flag re-tuning needed on CRC errors */
144 	if (cmd->opcode != MMC_SEND_TUNING_BLOCK &&
145 	    cmd->opcode != MMC_SEND_TUNING_BLOCK_HS200 &&
146 	    !host->retune_crc_disable &&
147 	    (err == -EILSEQ || (mrq->sbc && mrq->sbc->error == -EILSEQ) ||
148 	    (mrq->data && mrq->data->error == -EILSEQ) ||
149 	    (mrq->stop && mrq->stop->error == -EILSEQ)))
150 		mmc_retune_needed(host);
151 
152 	if (err && cmd->retries && mmc_host_is_spi(host)) {
153 		if (cmd->resp[0] & R1_SPI_ILLEGAL_COMMAND)
154 			cmd->retries = 0;
155 	}
156 
157 	if (host->ongoing_mrq == mrq)
158 		host->ongoing_mrq = NULL;
159 
160 	mmc_complete_cmd(mrq);
161 
162 	trace_mmc_request_done(host, mrq);
163 
164 	/*
165 	 * We list various conditions for the command to be considered
166 	 * properly done:
167 	 *
168 	 * - There was no error, OK fine then
169 	 * - We are not doing some kind of retry
170 	 * - The card was removed (...so just complete everything no matter
171 	 *   if there are errors or retries)
172 	 */
173 	if (!err || !cmd->retries || mmc_card_removed(host->card)) {
174 		mmc_should_fail_request(host, mrq);
175 
176 		if (!host->ongoing_mrq)
177 			led_trigger_event(host->led, LED_OFF);
178 
179 		if (mrq->sbc) {
180 			pr_debug("%s: req done <CMD%u>: %d: %08x %08x %08x %08x\n",
181 				mmc_hostname(host), mrq->sbc->opcode,
182 				mrq->sbc->error,
183 				mrq->sbc->resp[0], mrq->sbc->resp[1],
184 				mrq->sbc->resp[2], mrq->sbc->resp[3]);
185 		}
186 
187 		pr_debug("%s: req done (CMD%u): %d: %08x %08x %08x %08x\n",
188 			mmc_hostname(host), cmd->opcode, err,
189 			cmd->resp[0], cmd->resp[1],
190 			cmd->resp[2], cmd->resp[3]);
191 
192 		if (mrq->data) {
193 			pr_debug("%s:     %d bytes transferred: %d\n",
194 				mmc_hostname(host),
195 				mrq->data->bytes_xfered, mrq->data->error);
196 		}
197 
198 		if (mrq->stop) {
199 			pr_debug("%s:     (CMD%u): %d: %08x %08x %08x %08x\n",
200 				mmc_hostname(host), mrq->stop->opcode,
201 				mrq->stop->error,
202 				mrq->stop->resp[0], mrq->stop->resp[1],
203 				mrq->stop->resp[2], mrq->stop->resp[3]);
204 		}
205 	}
206 	/*
207 	 * Request starter must handle retries - see
208 	 * mmc_wait_for_req_done().
209 	 */
210 	if (mrq->done)
211 		mrq->done(mrq);
212 }
213 
214 EXPORT_SYMBOL(mmc_request_done);
215 
__mmc_start_request(struct mmc_host * host,struct mmc_request * mrq)216 static void __mmc_start_request(struct mmc_host *host, struct mmc_request *mrq)
217 {
218 	int err;
219 
220 	/* Assumes host controller has been runtime resumed by mmc_claim_host */
221 	err = mmc_retune(host);
222 	if (err) {
223 		mrq->cmd->error = err;
224 		mmc_request_done(host, mrq);
225 		return;
226 	}
227 
228 	/*
229 	 * For sdio rw commands we must wait for card busy otherwise some
230 	 * sdio devices won't work properly.
231 	 * And bypass I/O abort, reset and bus suspend operations.
232 	 */
233 	if (sdio_is_io_busy(mrq->cmd->opcode, mrq->cmd->arg) &&
234 	    host->ops->card_busy) {
235 		int tries = 500; /* Wait aprox 500ms at maximum */
236 
237 		while (host->ops->card_busy(host) && --tries)
238 			mmc_delay(1);
239 
240 		if (tries == 0) {
241 			mrq->cmd->error = -EBUSY;
242 			mmc_request_done(host, mrq);
243 			return;
244 		}
245 	}
246 
247 	if (mrq->cap_cmd_during_tfr) {
248 		host->ongoing_mrq = mrq;
249 		/*
250 		 * Retry path could come through here without having waiting on
251 		 * cmd_completion, so ensure it is reinitialised.
252 		 */
253 		reinit_completion(&mrq->cmd_completion);
254 	}
255 
256 	trace_mmc_request_start(host, mrq);
257 
258 	if (host->cqe_on)
259 		host->cqe_ops->cqe_off(host);
260 
261 	host->ops->request(host, mrq);
262 }
263 
mmc_mrq_pr_debug(struct mmc_host * host,struct mmc_request * mrq,bool cqe)264 static void mmc_mrq_pr_debug(struct mmc_host *host, struct mmc_request *mrq,
265 			     bool cqe)
266 {
267 	if (mrq->sbc) {
268 		pr_debug("<%s: starting CMD%u arg %08x flags %08x>\n",
269 			 mmc_hostname(host), mrq->sbc->opcode,
270 			 mrq->sbc->arg, mrq->sbc->flags);
271 	}
272 
273 	if (mrq->cmd) {
274 		pr_debug("%s: starting %sCMD%u arg %08x flags %08x\n",
275 			 mmc_hostname(host), cqe ? "CQE direct " : "",
276 			 mrq->cmd->opcode, mrq->cmd->arg, mrq->cmd->flags);
277 	} else if (cqe) {
278 		pr_debug("%s: starting CQE transfer for tag %d blkaddr %u\n",
279 			 mmc_hostname(host), mrq->tag, mrq->data->blk_addr);
280 	}
281 
282 	if (mrq->data) {
283 		pr_debug("%s:     blksz %d blocks %d flags %08x "
284 			"tsac %d ms nsac %d\n",
285 			mmc_hostname(host), mrq->data->blksz,
286 			mrq->data->blocks, mrq->data->flags,
287 			mrq->data->timeout_ns / 1000000,
288 			mrq->data->timeout_clks);
289 	}
290 
291 	if (mrq->stop) {
292 		pr_debug("%s:     CMD%u arg %08x flags %08x\n",
293 			 mmc_hostname(host), mrq->stop->opcode,
294 			 mrq->stop->arg, mrq->stop->flags);
295 	}
296 }
297 
mmc_mrq_prep(struct mmc_host * host,struct mmc_request * mrq)298 static int mmc_mrq_prep(struct mmc_host *host, struct mmc_request *mrq)
299 {
300 	unsigned int i, sz = 0;
301 	struct scatterlist *sg;
302 
303 	if (mrq->cmd) {
304 		mrq->cmd->error = 0;
305 		mrq->cmd->mrq = mrq;
306 		mrq->cmd->data = mrq->data;
307 	}
308 	if (mrq->sbc) {
309 		mrq->sbc->error = 0;
310 		mrq->sbc->mrq = mrq;
311 	}
312 	if (mrq->data) {
313 		if (mrq->data->blksz > host->max_blk_size ||
314 		    mrq->data->blocks > host->max_blk_count ||
315 		    mrq->data->blocks * mrq->data->blksz > host->max_req_size)
316 			return -EINVAL;
317 
318 		for_each_sg(mrq->data->sg, sg, mrq->data->sg_len, i)
319 			sz += sg->length;
320 		if (sz != mrq->data->blocks * mrq->data->blksz)
321 			return -EINVAL;
322 
323 		mrq->data->error = 0;
324 		mrq->data->mrq = mrq;
325 		if (mrq->stop) {
326 			mrq->data->stop = mrq->stop;
327 			mrq->stop->error = 0;
328 			mrq->stop->mrq = mrq;
329 		}
330 	}
331 
332 	return 0;
333 }
334 
mmc_start_request(struct mmc_host * host,struct mmc_request * mrq)335 int mmc_start_request(struct mmc_host *host, struct mmc_request *mrq)
336 {
337 	int err;
338 
339 	init_completion(&mrq->cmd_completion);
340 
341 	mmc_retune_hold(host);
342 
343 	if (mmc_card_removed(host->card))
344 		return -ENOMEDIUM;
345 
346 	mmc_mrq_pr_debug(host, mrq, false);
347 
348 	WARN_ON(!host->claimed);
349 
350 	err = mmc_mrq_prep(host, mrq);
351 	if (err)
352 		return err;
353 
354 	led_trigger_event(host->led, LED_FULL);
355 	__mmc_start_request(host, mrq);
356 
357 	return 0;
358 }
359 EXPORT_SYMBOL(mmc_start_request);
360 
mmc_wait_done(struct mmc_request * mrq)361 static void mmc_wait_done(struct mmc_request *mrq)
362 {
363 	complete(&mrq->completion);
364 }
365 
mmc_wait_ongoing_tfr_cmd(struct mmc_host * host)366 static inline void mmc_wait_ongoing_tfr_cmd(struct mmc_host *host)
367 {
368 	struct mmc_request *ongoing_mrq = READ_ONCE(host->ongoing_mrq);
369 
370 	/*
371 	 * If there is an ongoing transfer, wait for the command line to become
372 	 * available.
373 	 */
374 	if (ongoing_mrq && !completion_done(&ongoing_mrq->cmd_completion))
375 		wait_for_completion(&ongoing_mrq->cmd_completion);
376 }
377 
__mmc_start_req(struct mmc_host * host,struct mmc_request * mrq)378 static int __mmc_start_req(struct mmc_host *host, struct mmc_request *mrq)
379 {
380 	int err;
381 
382 	mmc_wait_ongoing_tfr_cmd(host);
383 
384 	init_completion(&mrq->completion);
385 	mrq->done = mmc_wait_done;
386 
387 	err = mmc_start_request(host, mrq);
388 	if (err) {
389 		mrq->cmd->error = err;
390 		mmc_complete_cmd(mrq);
391 		complete(&mrq->completion);
392 	}
393 
394 	return err;
395 }
396 
mmc_wait_for_req_done(struct mmc_host * host,struct mmc_request * mrq)397 void mmc_wait_for_req_done(struct mmc_host *host, struct mmc_request *mrq)
398 {
399 	struct mmc_command *cmd;
400 
401 	while (1) {
402 		wait_for_completion(&mrq->completion);
403 
404 		cmd = mrq->cmd;
405 
406 		if (!cmd->error || !cmd->retries ||
407 		    mmc_card_removed(host->card))
408 			break;
409 
410 		mmc_retune_recheck(host);
411 
412 		pr_debug("%s: req failed (CMD%u): %d, retrying...\n",
413 			 mmc_hostname(host), cmd->opcode, cmd->error);
414 		cmd->retries--;
415 		cmd->error = 0;
416 		__mmc_start_request(host, mrq);
417 	}
418 
419 	mmc_retune_release(host);
420 }
421 EXPORT_SYMBOL(mmc_wait_for_req_done);
422 
423 /*
424  * mmc_cqe_start_req - Start a CQE request.
425  * @host: MMC host to start the request
426  * @mrq: request to start
427  *
428  * Start the request, re-tuning if needed and it is possible. Returns an error
429  * code if the request fails to start or -EBUSY if CQE is busy.
430  */
mmc_cqe_start_req(struct mmc_host * host,struct mmc_request * mrq)431 int mmc_cqe_start_req(struct mmc_host *host, struct mmc_request *mrq)
432 {
433 	int err;
434 
435 	/*
436 	 * CQE cannot process re-tuning commands. Caller must hold retuning
437 	 * while CQE is in use.  Re-tuning can happen here only when CQE has no
438 	 * active requests i.e. this is the first.  Note, re-tuning will call
439 	 * ->cqe_off().
440 	 */
441 	err = mmc_retune(host);
442 	if (err)
443 		goto out_err;
444 
445 	mrq->host = host;
446 
447 	mmc_mrq_pr_debug(host, mrq, true);
448 
449 	err = mmc_mrq_prep(host, mrq);
450 	if (err)
451 		goto out_err;
452 
453 	err = host->cqe_ops->cqe_request(host, mrq);
454 	if (err)
455 		goto out_err;
456 
457 	trace_mmc_request_start(host, mrq);
458 
459 	return 0;
460 
461 out_err:
462 	if (mrq->cmd) {
463 		pr_debug("%s: failed to start CQE direct CMD%u, error %d\n",
464 			 mmc_hostname(host), mrq->cmd->opcode, err);
465 	} else {
466 		pr_debug("%s: failed to start CQE transfer for tag %d, error %d\n",
467 			 mmc_hostname(host), mrq->tag, err);
468 	}
469 	return err;
470 }
471 EXPORT_SYMBOL(mmc_cqe_start_req);
472 
473 /**
474  *	mmc_cqe_request_done - CQE has finished processing an MMC request
475  *	@host: MMC host which completed request
476  *	@mrq: MMC request which completed
477  *
478  *	CQE drivers should call this function when they have completed
479  *	their processing of a request.
480  */
mmc_cqe_request_done(struct mmc_host * host,struct mmc_request * mrq)481 void mmc_cqe_request_done(struct mmc_host *host, struct mmc_request *mrq)
482 {
483 	mmc_should_fail_request(host, mrq);
484 
485 	/* Flag re-tuning needed on CRC errors */
486 	if ((mrq->cmd && mrq->cmd->error == -EILSEQ) ||
487 	    (mrq->data && mrq->data->error == -EILSEQ))
488 		mmc_retune_needed(host);
489 
490 	trace_mmc_request_done(host, mrq);
491 
492 	if (mrq->cmd) {
493 		pr_debug("%s: CQE req done (direct CMD%u): %d\n",
494 			 mmc_hostname(host), mrq->cmd->opcode, mrq->cmd->error);
495 	} else {
496 		pr_debug("%s: CQE transfer done tag %d\n",
497 			 mmc_hostname(host), mrq->tag);
498 	}
499 
500 	if (mrq->data) {
501 		pr_debug("%s:     %d bytes transferred: %d\n",
502 			 mmc_hostname(host),
503 			 mrq->data->bytes_xfered, mrq->data->error);
504 	}
505 
506 	mrq->done(mrq);
507 }
508 EXPORT_SYMBOL(mmc_cqe_request_done);
509 
510 /**
511  *	mmc_cqe_post_req - CQE post process of a completed MMC request
512  *	@host: MMC host
513  *	@mrq: MMC request to be processed
514  */
mmc_cqe_post_req(struct mmc_host * host,struct mmc_request * mrq)515 void mmc_cqe_post_req(struct mmc_host *host, struct mmc_request *mrq)
516 {
517 	if (host->cqe_ops->cqe_post_req)
518 		host->cqe_ops->cqe_post_req(host, mrq);
519 }
520 EXPORT_SYMBOL(mmc_cqe_post_req);
521 
522 /* Arbitrary 1 second timeout */
523 #define MMC_CQE_RECOVERY_TIMEOUT	1000
524 
525 /*
526  * mmc_cqe_recovery - Recover from CQE errors.
527  * @host: MMC host to recover
528  *
529  * Recovery consists of stopping CQE, stopping eMMC, discarding the queue in
530  * in eMMC, and discarding the queue in CQE. CQE must call
531  * mmc_cqe_request_done() on all requests. An error is returned if the eMMC
532  * fails to discard its queue.
533  */
mmc_cqe_recovery(struct mmc_host * host)534 int mmc_cqe_recovery(struct mmc_host *host)
535 {
536 	struct mmc_command cmd;
537 	int err;
538 
539 	mmc_retune_hold_now(host);
540 
541 	/*
542 	 * Recovery is expected seldom, if at all, but it reduces performance,
543 	 * so make sure it is not completely silent.
544 	 */
545 	pr_warn("%s: running CQE recovery\n", mmc_hostname(host));
546 
547 	host->cqe_ops->cqe_recovery_start(host);
548 
549 	memset(&cmd, 0, sizeof(cmd));
550 	cmd.opcode       = MMC_STOP_TRANSMISSION,
551 	cmd.flags        = MMC_RSP_R1B | MMC_CMD_AC,
552 	cmd.flags       &= ~MMC_RSP_CRC; /* Ignore CRC */
553 	cmd.busy_timeout = MMC_CQE_RECOVERY_TIMEOUT,
554 	mmc_wait_for_cmd(host, &cmd, 0);
555 
556 	memset(&cmd, 0, sizeof(cmd));
557 	cmd.opcode       = MMC_CMDQ_TASK_MGMT;
558 	cmd.arg          = 1; /* Discard entire queue */
559 	cmd.flags        = MMC_RSP_R1B | MMC_CMD_AC;
560 	cmd.flags       &= ~MMC_RSP_CRC; /* Ignore CRC */
561 	cmd.busy_timeout = MMC_CQE_RECOVERY_TIMEOUT,
562 	err = mmc_wait_for_cmd(host, &cmd, 0);
563 
564 	host->cqe_ops->cqe_recovery_finish(host);
565 
566 	mmc_retune_release(host);
567 
568 	return err;
569 }
570 EXPORT_SYMBOL(mmc_cqe_recovery);
571 
572 /**
573  *	mmc_is_req_done - Determine if a 'cap_cmd_during_tfr' request is done
574  *	@host: MMC host
575  *	@mrq: MMC request
576  *
577  *	mmc_is_req_done() is used with requests that have
578  *	mrq->cap_cmd_during_tfr = true. mmc_is_req_done() must be called after
579  *	starting a request and before waiting for it to complete. That is,
580  *	either in between calls to mmc_start_req(), or after mmc_wait_for_req()
581  *	and before mmc_wait_for_req_done(). If it is called at other times the
582  *	result is not meaningful.
583  */
mmc_is_req_done(struct mmc_host * host,struct mmc_request * mrq)584 bool mmc_is_req_done(struct mmc_host *host, struct mmc_request *mrq)
585 {
586 	return completion_done(&mrq->completion);
587 }
588 EXPORT_SYMBOL(mmc_is_req_done);
589 
590 /**
591  *	mmc_wait_for_req - start a request and wait for completion
592  *	@host: MMC host to start command
593  *	@mrq: MMC request to start
594  *
595  *	Start a new MMC custom command request for a host, and wait
596  *	for the command to complete. In the case of 'cap_cmd_during_tfr'
597  *	requests, the transfer is ongoing and the caller can issue further
598  *	commands that do not use the data lines, and then wait by calling
599  *	mmc_wait_for_req_done().
600  *	Does not attempt to parse the response.
601  */
mmc_wait_for_req(struct mmc_host * host,struct mmc_request * mrq)602 void mmc_wait_for_req(struct mmc_host *host, struct mmc_request *mrq)
603 {
604 	__mmc_start_req(host, mrq);
605 
606 	if (!mrq->cap_cmd_during_tfr)
607 		mmc_wait_for_req_done(host, mrq);
608 }
609 EXPORT_SYMBOL(mmc_wait_for_req);
610 
611 /**
612  *	mmc_wait_for_cmd - start a command and wait for completion
613  *	@host: MMC host to start command
614  *	@cmd: MMC command to start
615  *	@retries: maximum number of retries
616  *
617  *	Start a new MMC command for a host, and wait for the command
618  *	to complete.  Return any error that occurred while the command
619  *	was executing.  Do not attempt to parse the response.
620  */
mmc_wait_for_cmd(struct mmc_host * host,struct mmc_command * cmd,int retries)621 int mmc_wait_for_cmd(struct mmc_host *host, struct mmc_command *cmd, int retries)
622 {
623 	struct mmc_request mrq = {};
624 
625 	WARN_ON(!host->claimed);
626 
627 	memset(cmd->resp, 0, sizeof(cmd->resp));
628 	cmd->retries = retries;
629 
630 	mrq.cmd = cmd;
631 	cmd->data = NULL;
632 
633 	mmc_wait_for_req(host, &mrq);
634 
635 	return cmd->error;
636 }
637 
638 EXPORT_SYMBOL(mmc_wait_for_cmd);
639 
640 /**
641  *	mmc_set_data_timeout - set the timeout for a data command
642  *	@data: data phase for command
643  *	@card: the MMC card associated with the data transfer
644  *
645  *	Computes the data timeout parameters according to the
646  *	correct algorithm given the card type.
647  */
mmc_set_data_timeout(struct mmc_data * data,const struct mmc_card * card)648 void mmc_set_data_timeout(struct mmc_data *data, const struct mmc_card *card)
649 {
650 	unsigned int mult;
651 
652 	/*
653 	 * SDIO cards only define an upper 1 s limit on access.
654 	 */
655 	if (mmc_card_sdio(card)) {
656 		data->timeout_ns = 1000000000;
657 		data->timeout_clks = 0;
658 		return;
659 	}
660 
661 	/*
662 	 * SD cards use a 100 multiplier rather than 10
663 	 */
664 	mult = mmc_card_sd(card) ? 100 : 10;
665 
666 	/*
667 	 * Scale up the multiplier (and therefore the timeout) by
668 	 * the r2w factor for writes.
669 	 */
670 	if (data->flags & MMC_DATA_WRITE)
671 		mult <<= card->csd.r2w_factor;
672 
673 	data->timeout_ns = card->csd.taac_ns * mult;
674 	data->timeout_clks = card->csd.taac_clks * mult;
675 
676 	/*
677 	 * SD cards also have an upper limit on the timeout.
678 	 */
679 	if (mmc_card_sd(card)) {
680 		unsigned int timeout_us, limit_us;
681 
682 		timeout_us = data->timeout_ns / 1000;
683 		if (card->host->ios.clock)
684 			timeout_us += data->timeout_clks * 1000 /
685 				(card->host->ios.clock / 1000);
686 
687 		if (data->flags & MMC_DATA_WRITE)
688 			/*
689 			 * The MMC spec "It is strongly recommended
690 			 * for hosts to implement more than 500ms
691 			 * timeout value even if the card indicates
692 			 * the 250ms maximum busy length."  Even the
693 			 * previous value of 300ms is known to be
694 			 * insufficient for some cards.
695 			 */
696 			limit_us = 3000000;
697 		else
698 			limit_us = 100000;
699 
700 		/*
701 		 * SDHC cards always use these fixed values.
702 		 */
703 		if (timeout_us > limit_us) {
704 			data->timeout_ns = limit_us * 1000;
705 			data->timeout_clks = 0;
706 		}
707 
708 		/* assign limit value if invalid */
709 		if (timeout_us == 0)
710 			data->timeout_ns = limit_us * 1000;
711 	}
712 
713 	/*
714 	 * Some cards require longer data read timeout than indicated in CSD.
715 	 * Address this by setting the read timeout to a "reasonably high"
716 	 * value. For the cards tested, 600ms has proven enough. If necessary,
717 	 * this value can be increased if other problematic cards require this.
718 	 */
719 	if (mmc_card_long_read_time(card) && data->flags & MMC_DATA_READ) {
720 		data->timeout_ns = 600000000;
721 		data->timeout_clks = 0;
722 	}
723 
724 	/*
725 	 * Some cards need very high timeouts if driven in SPI mode.
726 	 * The worst observed timeout was 900ms after writing a
727 	 * continuous stream of data until the internal logic
728 	 * overflowed.
729 	 */
730 	if (mmc_host_is_spi(card->host)) {
731 		if (data->flags & MMC_DATA_WRITE) {
732 			if (data->timeout_ns < 1000000000)
733 				data->timeout_ns = 1000000000;	/* 1s */
734 		} else {
735 			if (data->timeout_ns < 100000000)
736 				data->timeout_ns =  100000000;	/* 100ms */
737 		}
738 	}
739 }
740 EXPORT_SYMBOL(mmc_set_data_timeout);
741 
742 /*
743  * Allow claiming an already claimed host if the context is the same or there is
744  * no context but the task is the same.
745  */
mmc_ctx_matches(struct mmc_host * host,struct mmc_ctx * ctx,struct task_struct * task)746 static inline bool mmc_ctx_matches(struct mmc_host *host, struct mmc_ctx *ctx,
747 				   struct task_struct *task)
748 {
749 	return host->claimer == ctx ||
750 	       (!ctx && task && host->claimer->task == task);
751 }
752 
mmc_ctx_set_claimer(struct mmc_host * host,struct mmc_ctx * ctx,struct task_struct * task)753 static inline void mmc_ctx_set_claimer(struct mmc_host *host,
754 				       struct mmc_ctx *ctx,
755 				       struct task_struct *task)
756 {
757 	if (!host->claimer) {
758 		if (ctx)
759 			host->claimer = ctx;
760 		else
761 			host->claimer = &host->default_ctx;
762 	}
763 	if (task)
764 		host->claimer->task = task;
765 }
766 
767 /**
768  *	__mmc_claim_host - exclusively claim a host
769  *	@host: mmc host to claim
770  *	@ctx: context that claims the host or NULL in which case the default
771  *	context will be used
772  *	@abort: whether or not the operation should be aborted
773  *
774  *	Claim a host for a set of operations.  If @abort is non null and
775  *	dereference a non-zero value then this will return prematurely with
776  *	that non-zero value without acquiring the lock.  Returns zero
777  *	with the lock held otherwise.
778  */
__mmc_claim_host(struct mmc_host * host,struct mmc_ctx * ctx,atomic_t * abort)779 int __mmc_claim_host(struct mmc_host *host, struct mmc_ctx *ctx,
780 		     atomic_t *abort)
781 {
782 	struct task_struct *task = ctx ? NULL : current;
783 	DECLARE_WAITQUEUE(wait, current);
784 	unsigned long flags;
785 	int stop;
786 	bool pm = false;
787 
788 	might_sleep();
789 
790 	add_wait_queue(&host->wq, &wait);
791 	spin_lock_irqsave(&host->lock, flags);
792 	while (1) {
793 		set_current_state(TASK_UNINTERRUPTIBLE);
794 		stop = abort ? atomic_read(abort) : 0;
795 		if (stop || !host->claimed || mmc_ctx_matches(host, ctx, task))
796 			break;
797 		spin_unlock_irqrestore(&host->lock, flags);
798 		schedule();
799 		spin_lock_irqsave(&host->lock, flags);
800 	}
801 	set_current_state(TASK_RUNNING);
802 	if (!stop) {
803 		host->claimed = 1;
804 		mmc_ctx_set_claimer(host, ctx, task);
805 		host->claim_cnt += 1;
806 		if (host->claim_cnt == 1)
807 			pm = true;
808 	} else
809 		wake_up(&host->wq);
810 	spin_unlock_irqrestore(&host->lock, flags);
811 	remove_wait_queue(&host->wq, &wait);
812 
813 	if (pm)
814 		pm_runtime_get_sync(mmc_dev(host));
815 
816 	return stop;
817 }
818 EXPORT_SYMBOL(__mmc_claim_host);
819 
820 /**
821  *	mmc_release_host - release a host
822  *	@host: mmc host to release
823  *
824  *	Release a MMC host, allowing others to claim the host
825  *	for their operations.
826  */
mmc_release_host(struct mmc_host * host)827 void mmc_release_host(struct mmc_host *host)
828 {
829 	unsigned long flags;
830 
831 	WARN_ON(!host->claimed);
832 
833 	spin_lock_irqsave(&host->lock, flags);
834 	if (--host->claim_cnt) {
835 		/* Release for nested claim */
836 		spin_unlock_irqrestore(&host->lock, flags);
837 	} else {
838 		host->claimed = 0;
839 		host->claimer->task = NULL;
840 		host->claimer = NULL;
841 		spin_unlock_irqrestore(&host->lock, flags);
842 		wake_up(&host->wq);
843 		pm_runtime_mark_last_busy(mmc_dev(host));
844 		if (host->caps & MMC_CAP_SYNC_RUNTIME_PM)
845 			pm_runtime_put_sync_suspend(mmc_dev(host));
846 		else
847 			pm_runtime_put_autosuspend(mmc_dev(host));
848 	}
849 }
850 EXPORT_SYMBOL(mmc_release_host);
851 
852 /*
853  * This is a helper function, which fetches a runtime pm reference for the
854  * card device and also claims the host.
855  */
mmc_get_card(struct mmc_card * card,struct mmc_ctx * ctx)856 void mmc_get_card(struct mmc_card *card, struct mmc_ctx *ctx)
857 {
858 	pm_runtime_get_sync(&card->dev);
859 	__mmc_claim_host(card->host, ctx, NULL);
860 }
861 EXPORT_SYMBOL(mmc_get_card);
862 
863 /*
864  * This is a helper function, which releases the host and drops the runtime
865  * pm reference for the card device.
866  */
mmc_put_card(struct mmc_card * card,struct mmc_ctx * ctx)867 void mmc_put_card(struct mmc_card *card, struct mmc_ctx *ctx)
868 {
869 	struct mmc_host *host = card->host;
870 
871 	WARN_ON(ctx && host->claimer != ctx);
872 
873 	mmc_release_host(host);
874 	pm_runtime_mark_last_busy(&card->dev);
875 	pm_runtime_put_autosuspend(&card->dev);
876 }
877 EXPORT_SYMBOL(mmc_put_card);
878 
879 /*
880  * Internal function that does the actual ios call to the host driver,
881  * optionally printing some debug output.
882  */
mmc_set_ios(struct mmc_host * host)883 static inline void mmc_set_ios(struct mmc_host *host)
884 {
885 	struct mmc_ios *ios = &host->ios;
886 
887 	pr_debug("%s: clock %uHz busmode %u powermode %u cs %u Vdd %u "
888 		"width %u timing %u\n",
889 		 mmc_hostname(host), ios->clock, ios->bus_mode,
890 		 ios->power_mode, ios->chip_select, ios->vdd,
891 		 1 << ios->bus_width, ios->timing);
892 
893 	host->ops->set_ios(host, ios);
894 }
895 
896 /*
897  * Control chip select pin on a host.
898  */
mmc_set_chip_select(struct mmc_host * host,int mode)899 void mmc_set_chip_select(struct mmc_host *host, int mode)
900 {
901 	host->ios.chip_select = mode;
902 	mmc_set_ios(host);
903 }
904 
905 /*
906  * Sets the host clock to the highest possible frequency that
907  * is below "hz".
908  */
mmc_set_clock(struct mmc_host * host,unsigned int hz)909 void mmc_set_clock(struct mmc_host *host, unsigned int hz)
910 {
911 	WARN_ON(hz && hz < host->f_min);
912 
913 	if (hz > host->f_max)
914 		hz = host->f_max;
915 
916 	host->ios.clock = hz;
917 	mmc_set_ios(host);
918 }
919 
mmc_execute_tuning(struct mmc_card * card)920 int mmc_execute_tuning(struct mmc_card *card)
921 {
922 	struct mmc_host *host = card->host;
923 	u32 opcode;
924 	int err;
925 
926 	if (!host->ops->execute_tuning)
927 		return 0;
928 
929 	if (host->cqe_on)
930 		host->cqe_ops->cqe_off(host);
931 
932 	if (mmc_card_mmc(card))
933 		opcode = MMC_SEND_TUNING_BLOCK_HS200;
934 	else
935 		opcode = MMC_SEND_TUNING_BLOCK;
936 
937 	err = host->ops->execute_tuning(host, opcode);
938 
939 	if (err) {
940 		pr_err("%s: tuning execution failed: %d\n",
941 			mmc_hostname(host), err);
942 	} else {
943 		host->retune_now = 0;
944 		host->need_retune = 0;
945 		mmc_retune_enable(host);
946 	}
947 
948 	return err;
949 }
950 
951 /*
952  * Change the bus mode (open drain/push-pull) of a host.
953  */
mmc_set_bus_mode(struct mmc_host * host,unsigned int mode)954 void mmc_set_bus_mode(struct mmc_host *host, unsigned int mode)
955 {
956 	host->ios.bus_mode = mode;
957 	mmc_set_ios(host);
958 }
959 
960 /*
961  * Change data bus width of a host.
962  */
mmc_set_bus_width(struct mmc_host * host,unsigned int width)963 void mmc_set_bus_width(struct mmc_host *host, unsigned int width)
964 {
965 	host->ios.bus_width = width;
966 	mmc_set_ios(host);
967 }
968 
969 /*
970  * Set initial state after a power cycle or a hw_reset.
971  */
mmc_set_initial_state(struct mmc_host * host)972 void mmc_set_initial_state(struct mmc_host *host)
973 {
974 	if (host->cqe_on)
975 		host->cqe_ops->cqe_off(host);
976 
977 	mmc_retune_disable(host);
978 
979 	if (mmc_host_is_spi(host))
980 		host->ios.chip_select = MMC_CS_HIGH;
981 	else
982 		host->ios.chip_select = MMC_CS_DONTCARE;
983 	host->ios.bus_mode = MMC_BUSMODE_PUSHPULL;
984 	host->ios.bus_width = MMC_BUS_WIDTH_1;
985 	host->ios.timing = MMC_TIMING_LEGACY;
986 	host->ios.drv_type = 0;
987 	host->ios.enhanced_strobe = false;
988 
989 	/*
990 	 * Make sure we are in non-enhanced strobe mode before we
991 	 * actually enable it in ext_csd.
992 	 */
993 	if ((host->caps2 & MMC_CAP2_HS400_ES) &&
994 	     host->ops->hs400_enhanced_strobe)
995 		host->ops->hs400_enhanced_strobe(host, &host->ios);
996 
997 	mmc_set_ios(host);
998 }
999 
1000 /**
1001  * mmc_vdd_to_ocrbitnum - Convert a voltage to the OCR bit number
1002  * @vdd:	voltage (mV)
1003  * @low_bits:	prefer low bits in boundary cases
1004  *
1005  * This function returns the OCR bit number according to the provided @vdd
1006  * value. If conversion is not possible a negative errno value returned.
1007  *
1008  * Depending on the @low_bits flag the function prefers low or high OCR bits
1009  * on boundary voltages. For example,
1010  * with @low_bits = true, 3300 mV translates to ilog2(MMC_VDD_32_33);
1011  * with @low_bits = false, 3300 mV translates to ilog2(MMC_VDD_33_34);
1012  *
1013  * Any value in the [1951:1999] range translates to the ilog2(MMC_VDD_20_21).
1014  */
mmc_vdd_to_ocrbitnum(int vdd,bool low_bits)1015 static int mmc_vdd_to_ocrbitnum(int vdd, bool low_bits)
1016 {
1017 	const int max_bit = ilog2(MMC_VDD_35_36);
1018 	int bit;
1019 
1020 	if (vdd < 1650 || vdd > 3600)
1021 		return -EINVAL;
1022 
1023 	if (vdd >= 1650 && vdd <= 1950)
1024 		return ilog2(MMC_VDD_165_195);
1025 
1026 	if (low_bits)
1027 		vdd -= 1;
1028 
1029 	/* Base 2000 mV, step 100 mV, bit's base 8. */
1030 	bit = (vdd - 2000) / 100 + 8;
1031 	if (bit > max_bit)
1032 		return max_bit;
1033 	return bit;
1034 }
1035 
1036 /**
1037  * mmc_vddrange_to_ocrmask - Convert a voltage range to the OCR mask
1038  * @vdd_min:	minimum voltage value (mV)
1039  * @vdd_max:	maximum voltage value (mV)
1040  *
1041  * This function returns the OCR mask bits according to the provided @vdd_min
1042  * and @vdd_max values. If conversion is not possible the function returns 0.
1043  *
1044  * Notes wrt boundary cases:
1045  * This function sets the OCR bits for all boundary voltages, for example
1046  * [3300:3400] range is translated to MMC_VDD_32_33 | MMC_VDD_33_34 |
1047  * MMC_VDD_34_35 mask.
1048  */
mmc_vddrange_to_ocrmask(int vdd_min,int vdd_max)1049 u32 mmc_vddrange_to_ocrmask(int vdd_min, int vdd_max)
1050 {
1051 	u32 mask = 0;
1052 
1053 	if (vdd_max < vdd_min)
1054 		return 0;
1055 
1056 	/* Prefer high bits for the boundary vdd_max values. */
1057 	vdd_max = mmc_vdd_to_ocrbitnum(vdd_max, false);
1058 	if (vdd_max < 0)
1059 		return 0;
1060 
1061 	/* Prefer low bits for the boundary vdd_min values. */
1062 	vdd_min = mmc_vdd_to_ocrbitnum(vdd_min, true);
1063 	if (vdd_min < 0)
1064 		return 0;
1065 
1066 	/* Fill the mask, from max bit to min bit. */
1067 	while (vdd_max >= vdd_min)
1068 		mask |= 1 << vdd_max--;
1069 
1070 	return mask;
1071 }
1072 
mmc_of_get_func_num(struct device_node * node)1073 static int mmc_of_get_func_num(struct device_node *node)
1074 {
1075 	u32 reg;
1076 	int ret;
1077 
1078 	ret = of_property_read_u32(node, "reg", &reg);
1079 	if (ret < 0)
1080 		return ret;
1081 
1082 	return reg;
1083 }
1084 
mmc_of_find_child_device(struct mmc_host * host,unsigned func_num)1085 struct device_node *mmc_of_find_child_device(struct mmc_host *host,
1086 		unsigned func_num)
1087 {
1088 	struct device_node *node;
1089 
1090 	if (!host->parent || !host->parent->of_node)
1091 		return NULL;
1092 
1093 	for_each_child_of_node(host->parent->of_node, node) {
1094 		if (mmc_of_get_func_num(node) == func_num)
1095 			return node;
1096 	}
1097 
1098 	return NULL;
1099 }
1100 
1101 /*
1102  * Mask off any voltages we don't support and select
1103  * the lowest voltage
1104  */
mmc_select_voltage(struct mmc_host * host,u32 ocr)1105 u32 mmc_select_voltage(struct mmc_host *host, u32 ocr)
1106 {
1107 	int bit;
1108 
1109 	/*
1110 	 * Sanity check the voltages that the card claims to
1111 	 * support.
1112 	 */
1113 	if (ocr & 0x7F) {
1114 		dev_warn(mmc_dev(host),
1115 		"card claims to support voltages below defined range\n");
1116 		ocr &= ~0x7F;
1117 	}
1118 
1119 	ocr &= host->ocr_avail;
1120 	if (!ocr) {
1121 		dev_warn(mmc_dev(host), "no support for card's volts\n");
1122 		return 0;
1123 	}
1124 
1125 	if (host->caps2 & MMC_CAP2_FULL_PWR_CYCLE) {
1126 		bit = ffs(ocr) - 1;
1127 		ocr &= 3 << bit;
1128 		mmc_power_cycle(host, ocr);
1129 	} else {
1130 		bit = fls(ocr) - 1;
1131 		/*
1132 		 * The bit variable represents the highest voltage bit set in
1133 		 * the OCR register.
1134 		 * To keep a range of 2 values (e.g. 3.2V/3.3V and 3.3V/3.4V),
1135 		 * we must shift the mask '3' with (bit - 1).
1136 		 */
1137 		ocr &= 3 << (bit - 1);
1138 		if (bit != host->ios.vdd)
1139 			dev_warn(mmc_dev(host), "exceeding card's volts\n");
1140 	}
1141 
1142 	return ocr;
1143 }
1144 
mmc_set_signal_voltage(struct mmc_host * host,int signal_voltage)1145 int mmc_set_signal_voltage(struct mmc_host *host, int signal_voltage)
1146 {
1147 	int err = 0;
1148 	int old_signal_voltage = host->ios.signal_voltage;
1149 
1150 	host->ios.signal_voltage = signal_voltage;
1151 	if (host->ops->start_signal_voltage_switch)
1152 		err = host->ops->start_signal_voltage_switch(host, &host->ios);
1153 
1154 	if (err)
1155 		host->ios.signal_voltage = old_signal_voltage;
1156 
1157 	return err;
1158 
1159 }
1160 
mmc_set_initial_signal_voltage(struct mmc_host * host)1161 void mmc_set_initial_signal_voltage(struct mmc_host *host)
1162 {
1163 	/* Try to set signal voltage to 3.3V but fall back to 1.8v or 1.2v */
1164 	if (!mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_330))
1165 		dev_dbg(mmc_dev(host), "Initial signal voltage of 3.3v\n");
1166 	else if (!mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_180))
1167 		dev_dbg(mmc_dev(host), "Initial signal voltage of 1.8v\n");
1168 	else if (!mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_120))
1169 		dev_dbg(mmc_dev(host), "Initial signal voltage of 1.2v\n");
1170 }
1171 
mmc_host_set_uhs_voltage(struct mmc_host * host)1172 int mmc_host_set_uhs_voltage(struct mmc_host *host)
1173 {
1174 	u32 clock;
1175 
1176 	/*
1177 	 * During a signal voltage level switch, the clock must be gated
1178 	 * for 5 ms according to the SD spec
1179 	 */
1180 	clock = host->ios.clock;
1181 	host->ios.clock = 0;
1182 	mmc_set_ios(host);
1183 
1184 	if (mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_180))
1185 		return -EAGAIN;
1186 
1187 	/* Keep clock gated for at least 10 ms, though spec only says 5 ms */
1188 	mmc_delay(10);
1189 	host->ios.clock = clock;
1190 	mmc_set_ios(host);
1191 
1192 	return 0;
1193 }
1194 
mmc_set_uhs_voltage(struct mmc_host * host,u32 ocr)1195 int mmc_set_uhs_voltage(struct mmc_host *host, u32 ocr)
1196 {
1197 	struct mmc_command cmd = {};
1198 	int err = 0;
1199 
1200 	/*
1201 	 * If we cannot switch voltages, return failure so the caller
1202 	 * can continue without UHS mode
1203 	 */
1204 	if (!host->ops->start_signal_voltage_switch)
1205 		return -EPERM;
1206 	if (!host->ops->card_busy)
1207 		pr_warn("%s: cannot verify signal voltage switch\n",
1208 			mmc_hostname(host));
1209 
1210 	cmd.opcode = SD_SWITCH_VOLTAGE;
1211 	cmd.arg = 0;
1212 	cmd.flags = MMC_RSP_R1 | MMC_CMD_AC;
1213 
1214 	err = mmc_wait_for_cmd(host, &cmd, 0);
1215 	if (err)
1216 		goto power_cycle;
1217 
1218 	if (!mmc_host_is_spi(host) && (cmd.resp[0] & R1_ERROR))
1219 		return -EIO;
1220 
1221 	/*
1222 	 * The card should drive cmd and dat[0:3] low immediately
1223 	 * after the response of cmd11, but wait 1 ms to be sure
1224 	 */
1225 	mmc_delay(1);
1226 	if (host->ops->card_busy && !host->ops->card_busy(host)) {
1227 		err = -EAGAIN;
1228 		goto power_cycle;
1229 	}
1230 
1231 	if (mmc_host_set_uhs_voltage(host)) {
1232 		/*
1233 		 * Voltages may not have been switched, but we've already
1234 		 * sent CMD11, so a power cycle is required anyway
1235 		 */
1236 		err = -EAGAIN;
1237 		goto power_cycle;
1238 	}
1239 
1240 	/* Wait for at least 1 ms according to spec */
1241 	mmc_delay(1);
1242 
1243 	/*
1244 	 * Failure to switch is indicated by the card holding
1245 	 * dat[0:3] low
1246 	 */
1247 	if (host->ops->card_busy && host->ops->card_busy(host))
1248 		err = -EAGAIN;
1249 
1250 power_cycle:
1251 	if (err) {
1252 		pr_debug("%s: Signal voltage switch failed, "
1253 			"power cycling card\n", mmc_hostname(host));
1254 		mmc_power_cycle(host, ocr);
1255 	}
1256 
1257 	return err;
1258 }
1259 
1260 /*
1261  * Select timing parameters for host.
1262  */
mmc_set_timing(struct mmc_host * host,unsigned int timing)1263 void mmc_set_timing(struct mmc_host *host, unsigned int timing)
1264 {
1265 	host->ios.timing = timing;
1266 	mmc_set_ios(host);
1267 }
1268 
1269 /*
1270  * Select appropriate driver type for host.
1271  */
mmc_set_driver_type(struct mmc_host * host,unsigned int drv_type)1272 void mmc_set_driver_type(struct mmc_host *host, unsigned int drv_type)
1273 {
1274 	host->ios.drv_type = drv_type;
1275 	mmc_set_ios(host);
1276 }
1277 
mmc_select_drive_strength(struct mmc_card * card,unsigned int max_dtr,int card_drv_type,int * drv_type)1278 int mmc_select_drive_strength(struct mmc_card *card, unsigned int max_dtr,
1279 			      int card_drv_type, int *drv_type)
1280 {
1281 	struct mmc_host *host = card->host;
1282 	int host_drv_type = SD_DRIVER_TYPE_B;
1283 
1284 	*drv_type = 0;
1285 
1286 	if (!host->ops->select_drive_strength)
1287 		return 0;
1288 
1289 	/* Use SD definition of driver strength for hosts */
1290 	if (host->caps & MMC_CAP_DRIVER_TYPE_A)
1291 		host_drv_type |= SD_DRIVER_TYPE_A;
1292 
1293 	if (host->caps & MMC_CAP_DRIVER_TYPE_C)
1294 		host_drv_type |= SD_DRIVER_TYPE_C;
1295 
1296 	if (host->caps & MMC_CAP_DRIVER_TYPE_D)
1297 		host_drv_type |= SD_DRIVER_TYPE_D;
1298 
1299 	/*
1300 	 * The drive strength that the hardware can support
1301 	 * depends on the board design.  Pass the appropriate
1302 	 * information and let the hardware specific code
1303 	 * return what is possible given the options
1304 	 */
1305 	return host->ops->select_drive_strength(card, max_dtr,
1306 						host_drv_type,
1307 						card_drv_type,
1308 						drv_type);
1309 }
1310 
1311 /*
1312  * Apply power to the MMC stack.  This is a two-stage process.
1313  * First, we enable power to the card without the clock running.
1314  * We then wait a bit for the power to stabilise.  Finally,
1315  * enable the bus drivers and clock to the card.
1316  *
1317  * We must _NOT_ enable the clock prior to power stablising.
1318  *
1319  * If a host does all the power sequencing itself, ignore the
1320  * initial MMC_POWER_UP stage.
1321  */
mmc_power_up(struct mmc_host * host,u32 ocr)1322 void mmc_power_up(struct mmc_host *host, u32 ocr)
1323 {
1324 	if (host->ios.power_mode == MMC_POWER_ON)
1325 		return;
1326 
1327 	mmc_pwrseq_pre_power_on(host);
1328 
1329 	host->ios.vdd = fls(ocr) - 1;
1330 	host->ios.power_mode = MMC_POWER_UP;
1331 	/* Set initial state and call mmc_set_ios */
1332 	mmc_set_initial_state(host);
1333 
1334 	mmc_set_initial_signal_voltage(host);
1335 
1336 	/*
1337 	 * This delay should be sufficient to allow the power supply
1338 	 * to reach the minimum voltage.
1339 	 */
1340 	mmc_delay(host->ios.power_delay_ms);
1341 
1342 	mmc_pwrseq_post_power_on(host);
1343 
1344 	host->ios.clock = host->f_init;
1345 
1346 	host->ios.power_mode = MMC_POWER_ON;
1347 	mmc_set_ios(host);
1348 
1349 	/*
1350 	 * This delay must be at least 74 clock sizes, or 1 ms, or the
1351 	 * time required to reach a stable voltage.
1352 	 */
1353 	mmc_delay(host->ios.power_delay_ms);
1354 }
1355 
mmc_power_off(struct mmc_host * host)1356 void mmc_power_off(struct mmc_host *host)
1357 {
1358 	if (host->ios.power_mode == MMC_POWER_OFF)
1359 		return;
1360 
1361 	mmc_pwrseq_power_off(host);
1362 
1363 	host->ios.clock = 0;
1364 	host->ios.vdd = 0;
1365 
1366 	host->ios.power_mode = MMC_POWER_OFF;
1367 	/* Set initial state and call mmc_set_ios */
1368 	mmc_set_initial_state(host);
1369 
1370 	/*
1371 	 * Some configurations, such as the 802.11 SDIO card in the OLPC
1372 	 * XO-1.5, require a short delay after poweroff before the card
1373 	 * can be successfully turned on again.
1374 	 */
1375 	mmc_delay(1);
1376 }
1377 
mmc_power_cycle(struct mmc_host * host,u32 ocr)1378 void mmc_power_cycle(struct mmc_host *host, u32 ocr)
1379 {
1380 	mmc_power_off(host);
1381 	/* Wait at least 1 ms according to SD spec */
1382 	mmc_delay(1);
1383 	mmc_power_up(host, ocr);
1384 }
1385 
1386 /*
1387  * Cleanup when the last reference to the bus operator is dropped.
1388  */
__mmc_release_bus(struct mmc_host * host)1389 static void __mmc_release_bus(struct mmc_host *host)
1390 {
1391 	WARN_ON(!host->bus_dead);
1392 
1393 	host->bus_ops = NULL;
1394 }
1395 
1396 /*
1397  * Increase reference count of bus operator
1398  */
mmc_bus_get(struct mmc_host * host)1399 static inline void mmc_bus_get(struct mmc_host *host)
1400 {
1401 	unsigned long flags;
1402 
1403 	spin_lock_irqsave(&host->lock, flags);
1404 	host->bus_refs++;
1405 	spin_unlock_irqrestore(&host->lock, flags);
1406 }
1407 
1408 /*
1409  * Decrease reference count of bus operator and free it if
1410  * it is the last reference.
1411  */
mmc_bus_put(struct mmc_host * host)1412 static inline void mmc_bus_put(struct mmc_host *host)
1413 {
1414 	unsigned long flags;
1415 
1416 	spin_lock_irqsave(&host->lock, flags);
1417 	host->bus_refs--;
1418 	if ((host->bus_refs == 0) && host->bus_ops)
1419 		__mmc_release_bus(host);
1420 	spin_unlock_irqrestore(&host->lock, flags);
1421 }
1422 
1423 /*
1424  * Assign a mmc bus handler to a host. Only one bus handler may control a
1425  * host at any given time.
1426  */
mmc_attach_bus(struct mmc_host * host,const struct mmc_bus_ops * ops)1427 void mmc_attach_bus(struct mmc_host *host, const struct mmc_bus_ops *ops)
1428 {
1429 	unsigned long flags;
1430 
1431 	WARN_ON(!host->claimed);
1432 
1433 	spin_lock_irqsave(&host->lock, flags);
1434 
1435 	WARN_ON(host->bus_ops);
1436 	WARN_ON(host->bus_refs);
1437 
1438 	host->bus_ops = ops;
1439 	host->bus_refs = 1;
1440 	host->bus_dead = 0;
1441 
1442 	spin_unlock_irqrestore(&host->lock, flags);
1443 }
1444 
1445 /*
1446  * Remove the current bus handler from a host.
1447  */
mmc_detach_bus(struct mmc_host * host)1448 void mmc_detach_bus(struct mmc_host *host)
1449 {
1450 	unsigned long flags;
1451 
1452 	WARN_ON(!host->claimed);
1453 	WARN_ON(!host->bus_ops);
1454 
1455 	spin_lock_irqsave(&host->lock, flags);
1456 
1457 	host->bus_dead = 1;
1458 
1459 	spin_unlock_irqrestore(&host->lock, flags);
1460 
1461 	mmc_bus_put(host);
1462 }
1463 
_mmc_detect_change(struct mmc_host * host,unsigned long delay,bool cd_irq)1464 void _mmc_detect_change(struct mmc_host *host, unsigned long delay, bool cd_irq)
1465 {
1466 	/*
1467 	 * Prevent system sleep for 5s to allow user space to consume the
1468 	 * corresponding uevent. This is especially useful, when CD irq is used
1469 	 * as a system wakeup, but doesn't hurt in other cases.
1470 	 */
1471 	if (cd_irq && !(host->caps & MMC_CAP_NEEDS_POLL))
1472 		__pm_wakeup_event(host->ws, 5000);
1473 
1474 	host->detect_change = 1;
1475 	mmc_schedule_delayed_work(&host->detect, delay);
1476 }
1477 
1478 /**
1479  *	mmc_detect_change - process change of state on a MMC socket
1480  *	@host: host which changed state.
1481  *	@delay: optional delay to wait before detection (jiffies)
1482  *
1483  *	MMC drivers should call this when they detect a card has been
1484  *	inserted or removed. The MMC layer will confirm that any
1485  *	present card is still functional, and initialize any newly
1486  *	inserted.
1487  */
mmc_detect_change(struct mmc_host * host,unsigned long delay)1488 void mmc_detect_change(struct mmc_host *host, unsigned long delay)
1489 {
1490 	_mmc_detect_change(host, delay, true);
1491 }
1492 EXPORT_SYMBOL(mmc_detect_change);
1493 
mmc_init_erase(struct mmc_card * card)1494 void mmc_init_erase(struct mmc_card *card)
1495 {
1496 	unsigned int sz;
1497 
1498 	if (is_power_of_2(card->erase_size))
1499 		card->erase_shift = ffs(card->erase_size) - 1;
1500 	else
1501 		card->erase_shift = 0;
1502 
1503 	/*
1504 	 * It is possible to erase an arbitrarily large area of an SD or MMC
1505 	 * card.  That is not desirable because it can take a long time
1506 	 * (minutes) potentially delaying more important I/O, and also the
1507 	 * timeout calculations become increasingly hugely over-estimated.
1508 	 * Consequently, 'pref_erase' is defined as a guide to limit erases
1509 	 * to that size and alignment.
1510 	 *
1511 	 * For SD cards that define Allocation Unit size, limit erases to one
1512 	 * Allocation Unit at a time.
1513 	 * For MMC, have a stab at ai good value and for modern cards it will
1514 	 * end up being 4MiB. Note that if the value is too small, it can end
1515 	 * up taking longer to erase. Also note, erase_size is already set to
1516 	 * High Capacity Erase Size if available when this function is called.
1517 	 */
1518 	if (mmc_card_sd(card) && card->ssr.au) {
1519 		card->pref_erase = card->ssr.au;
1520 		card->erase_shift = ffs(card->ssr.au) - 1;
1521 	} else if (card->erase_size) {
1522 		sz = (card->csd.capacity << (card->csd.read_blkbits - 9)) >> 11;
1523 		if (sz < 128)
1524 			card->pref_erase = 512 * 1024 / 512;
1525 		else if (sz < 512)
1526 			card->pref_erase = 1024 * 1024 / 512;
1527 		else if (sz < 1024)
1528 			card->pref_erase = 2 * 1024 * 1024 / 512;
1529 		else
1530 			card->pref_erase = 4 * 1024 * 1024 / 512;
1531 		if (card->pref_erase < card->erase_size)
1532 			card->pref_erase = card->erase_size;
1533 		else {
1534 			sz = card->pref_erase % card->erase_size;
1535 			if (sz)
1536 				card->pref_erase += card->erase_size - sz;
1537 		}
1538 	} else
1539 		card->pref_erase = 0;
1540 }
1541 
is_trim_arg(unsigned int arg)1542 static bool is_trim_arg(unsigned int arg)
1543 {
1544 	return (arg & MMC_TRIM_OR_DISCARD_ARGS) && arg != MMC_DISCARD_ARG;
1545 }
1546 
mmc_mmc_erase_timeout(struct mmc_card * card,unsigned int arg,unsigned int qty)1547 static unsigned int mmc_mmc_erase_timeout(struct mmc_card *card,
1548 				          unsigned int arg, unsigned int qty)
1549 {
1550 	unsigned int erase_timeout;
1551 
1552 	if (arg == MMC_DISCARD_ARG ||
1553 	    (arg == MMC_TRIM_ARG && card->ext_csd.rev >= 6)) {
1554 		erase_timeout = card->ext_csd.trim_timeout;
1555 	} else if (card->ext_csd.erase_group_def & 1) {
1556 		/* High Capacity Erase Group Size uses HC timeouts */
1557 		if (arg == MMC_TRIM_ARG)
1558 			erase_timeout = card->ext_csd.trim_timeout;
1559 		else
1560 			erase_timeout = card->ext_csd.hc_erase_timeout;
1561 	} else {
1562 		/* CSD Erase Group Size uses write timeout */
1563 		unsigned int mult = (10 << card->csd.r2w_factor);
1564 		unsigned int timeout_clks = card->csd.taac_clks * mult;
1565 		unsigned int timeout_us;
1566 
1567 		/* Avoid overflow: e.g. taac_ns=80000000 mult=1280 */
1568 		if (card->csd.taac_ns < 1000000)
1569 			timeout_us = (card->csd.taac_ns * mult) / 1000;
1570 		else
1571 			timeout_us = (card->csd.taac_ns / 1000) * mult;
1572 
1573 		/*
1574 		 * ios.clock is only a target.  The real clock rate might be
1575 		 * less but not that much less, so fudge it by multiplying by 2.
1576 		 */
1577 		timeout_clks <<= 1;
1578 		timeout_us += (timeout_clks * 1000) /
1579 			      (card->host->ios.clock / 1000);
1580 
1581 		erase_timeout = timeout_us / 1000;
1582 
1583 		/*
1584 		 * Theoretically, the calculation could underflow so round up
1585 		 * to 1ms in that case.
1586 		 */
1587 		if (!erase_timeout)
1588 			erase_timeout = 1;
1589 	}
1590 
1591 	/* Multiplier for secure operations */
1592 	if (arg & MMC_SECURE_ARGS) {
1593 		if (arg == MMC_SECURE_ERASE_ARG)
1594 			erase_timeout *= card->ext_csd.sec_erase_mult;
1595 		else
1596 			erase_timeout *= card->ext_csd.sec_trim_mult;
1597 	}
1598 
1599 	erase_timeout *= qty;
1600 
1601 	/*
1602 	 * Ensure at least a 1 second timeout for SPI as per
1603 	 * 'mmc_set_data_timeout()'
1604 	 */
1605 	if (mmc_host_is_spi(card->host) && erase_timeout < 1000)
1606 		erase_timeout = 1000;
1607 
1608 	return erase_timeout;
1609 }
1610 
mmc_sd_erase_timeout(struct mmc_card * card,unsigned int arg,unsigned int qty)1611 static unsigned int mmc_sd_erase_timeout(struct mmc_card *card,
1612 					 unsigned int arg,
1613 					 unsigned int qty)
1614 {
1615 	unsigned int erase_timeout;
1616 
1617 	/* for DISCARD none of the below calculation applies.
1618 	 * the busy timeout is 250msec per discard command.
1619 	 */
1620 	if (arg == SD_DISCARD_ARG)
1621 		return SD_DISCARD_TIMEOUT_MS;
1622 
1623 	if (card->ssr.erase_timeout) {
1624 		/* Erase timeout specified in SD Status Register (SSR) */
1625 		erase_timeout = card->ssr.erase_timeout * qty +
1626 				card->ssr.erase_offset;
1627 	} else {
1628 		/*
1629 		 * Erase timeout not specified in SD Status Register (SSR) so
1630 		 * use 250ms per write block.
1631 		 */
1632 		erase_timeout = 250 * qty;
1633 	}
1634 
1635 	/* Must not be less than 1 second */
1636 	if (erase_timeout < 1000)
1637 		erase_timeout = 1000;
1638 
1639 	return erase_timeout;
1640 }
1641 
mmc_erase_timeout(struct mmc_card * card,unsigned int arg,unsigned int qty)1642 static unsigned int mmc_erase_timeout(struct mmc_card *card,
1643 				      unsigned int arg,
1644 				      unsigned int qty)
1645 {
1646 	if (mmc_card_sd(card))
1647 		return mmc_sd_erase_timeout(card, arg, qty);
1648 	else
1649 		return mmc_mmc_erase_timeout(card, arg, qty);
1650 }
1651 
mmc_do_erase(struct mmc_card * card,unsigned int from,unsigned int to,unsigned int arg)1652 static int mmc_do_erase(struct mmc_card *card, unsigned int from,
1653 			unsigned int to, unsigned int arg)
1654 {
1655 	struct mmc_command cmd = {};
1656 	unsigned int qty = 0, busy_timeout = 0;
1657 	bool use_r1b_resp = false;
1658 	int err;
1659 
1660 	mmc_retune_hold(card->host);
1661 
1662 	/*
1663 	 * qty is used to calculate the erase timeout which depends on how many
1664 	 * erase groups (or allocation units in SD terminology) are affected.
1665 	 * We count erasing part of an erase group as one erase group.
1666 	 * For SD, the allocation units are always a power of 2.  For MMC, the
1667 	 * erase group size is almost certainly also power of 2, but it does not
1668 	 * seem to insist on that in the JEDEC standard, so we fall back to
1669 	 * division in that case.  SD may not specify an allocation unit size,
1670 	 * in which case the timeout is based on the number of write blocks.
1671 	 *
1672 	 * Note that the timeout for secure trim 2 will only be correct if the
1673 	 * number of erase groups specified is the same as the total of all
1674 	 * preceding secure trim 1 commands.  Since the power may have been
1675 	 * lost since the secure trim 1 commands occurred, it is generally
1676 	 * impossible to calculate the secure trim 2 timeout correctly.
1677 	 */
1678 	if (card->erase_shift)
1679 		qty += ((to >> card->erase_shift) -
1680 			(from >> card->erase_shift)) + 1;
1681 	else if (mmc_card_sd(card))
1682 		qty += to - from + 1;
1683 	else
1684 		qty += ((to / card->erase_size) -
1685 			(from / card->erase_size)) + 1;
1686 
1687 	if (!mmc_card_blockaddr(card)) {
1688 		from <<= 9;
1689 		to <<= 9;
1690 	}
1691 
1692 	if (mmc_card_sd(card))
1693 		cmd.opcode = SD_ERASE_WR_BLK_START;
1694 	else
1695 		cmd.opcode = MMC_ERASE_GROUP_START;
1696 	cmd.arg = from;
1697 	cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
1698 	err = mmc_wait_for_cmd(card->host, &cmd, 0);
1699 	if (err) {
1700 		pr_err("mmc_erase: group start error %d, "
1701 		       "status %#x\n", err, cmd.resp[0]);
1702 		err = -EIO;
1703 		goto out;
1704 	}
1705 
1706 	memset(&cmd, 0, sizeof(struct mmc_command));
1707 	if (mmc_card_sd(card))
1708 		cmd.opcode = SD_ERASE_WR_BLK_END;
1709 	else
1710 		cmd.opcode = MMC_ERASE_GROUP_END;
1711 	cmd.arg = to;
1712 	cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
1713 	err = mmc_wait_for_cmd(card->host, &cmd, 0);
1714 	if (err) {
1715 		pr_err("mmc_erase: group end error %d, status %#x\n",
1716 		       err, cmd.resp[0]);
1717 		err = -EIO;
1718 		goto out;
1719 	}
1720 
1721 	memset(&cmd, 0, sizeof(struct mmc_command));
1722 	cmd.opcode = MMC_ERASE;
1723 	cmd.arg = arg;
1724 	busy_timeout = mmc_erase_timeout(card, arg, qty);
1725 	/*
1726 	 * If the host controller supports busy signalling and the timeout for
1727 	 * the erase operation does not exceed the max_busy_timeout, we should
1728 	 * use R1B response. Or we need to prevent the host from doing hw busy
1729 	 * detection, which is done by converting to a R1 response instead.
1730 	 * Note, some hosts requires R1B, which also means they are on their own
1731 	 * when it comes to deal with the busy timeout.
1732 	 */
1733 	if (!(card->host->caps & MMC_CAP_NEED_RSP_BUSY) &&
1734 	    card->host->max_busy_timeout &&
1735 	    busy_timeout > card->host->max_busy_timeout) {
1736 		cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
1737 	} else {
1738 		cmd.flags = MMC_RSP_SPI_R1B | MMC_RSP_R1B | MMC_CMD_AC;
1739 		cmd.busy_timeout = busy_timeout;
1740 		use_r1b_resp = true;
1741 	}
1742 
1743 	err = mmc_wait_for_cmd(card->host, &cmd, 0);
1744 	if (err) {
1745 		pr_err("mmc_erase: erase error %d, status %#x\n",
1746 		       err, cmd.resp[0]);
1747 		err = -EIO;
1748 		goto out;
1749 	}
1750 
1751 	if (mmc_host_is_spi(card->host))
1752 		goto out;
1753 
1754 	/*
1755 	 * In case of when R1B + MMC_CAP_WAIT_WHILE_BUSY is used, the polling
1756 	 * shall be avoided.
1757 	 */
1758 	if ((card->host->caps & MMC_CAP_WAIT_WHILE_BUSY) && use_r1b_resp)
1759 		goto out;
1760 
1761 	/* Let's poll to find out when the erase operation completes. */
1762 	err = mmc_poll_for_busy(card, busy_timeout, MMC_BUSY_ERASE);
1763 
1764 out:
1765 	mmc_retune_release(card->host);
1766 	return err;
1767 }
1768 
mmc_align_erase_size(struct mmc_card * card,unsigned int * from,unsigned int * to,unsigned int nr)1769 static unsigned int mmc_align_erase_size(struct mmc_card *card,
1770 					 unsigned int *from,
1771 					 unsigned int *to,
1772 					 unsigned int nr)
1773 {
1774 	unsigned int from_new = *from, nr_new = nr, rem;
1775 
1776 	/*
1777 	 * When the 'card->erase_size' is power of 2, we can use round_up/down()
1778 	 * to align the erase size efficiently.
1779 	 */
1780 	if (is_power_of_2(card->erase_size)) {
1781 		unsigned int temp = from_new;
1782 
1783 		from_new = round_up(temp, card->erase_size);
1784 		rem = from_new - temp;
1785 
1786 		if (nr_new > rem)
1787 			nr_new -= rem;
1788 		else
1789 			return 0;
1790 
1791 		nr_new = round_down(nr_new, card->erase_size);
1792 	} else {
1793 		rem = from_new % card->erase_size;
1794 		if (rem) {
1795 			rem = card->erase_size - rem;
1796 			from_new += rem;
1797 			if (nr_new > rem)
1798 				nr_new -= rem;
1799 			else
1800 				return 0;
1801 		}
1802 
1803 		rem = nr_new % card->erase_size;
1804 		if (rem)
1805 			nr_new -= rem;
1806 	}
1807 
1808 	if (nr_new == 0)
1809 		return 0;
1810 
1811 	*to = from_new + nr_new;
1812 	*from = from_new;
1813 
1814 	return nr_new;
1815 }
1816 
1817 /**
1818  * mmc_erase - erase sectors.
1819  * @card: card to erase
1820  * @from: first sector to erase
1821  * @nr: number of sectors to erase
1822  * @arg: erase command argument
1823  *
1824  * Caller must claim host before calling this function.
1825  */
mmc_erase(struct mmc_card * card,unsigned int from,unsigned int nr,unsigned int arg)1826 int mmc_erase(struct mmc_card *card, unsigned int from, unsigned int nr,
1827 	      unsigned int arg)
1828 {
1829 	unsigned int rem, to = from + nr;
1830 	int err;
1831 
1832 	if (!(card->csd.cmdclass & CCC_ERASE))
1833 		return -EOPNOTSUPP;
1834 
1835 	if (!card->erase_size)
1836 		return -EOPNOTSUPP;
1837 
1838 	if (mmc_card_sd(card) && arg != SD_ERASE_ARG && arg != SD_DISCARD_ARG)
1839 		return -EOPNOTSUPP;
1840 
1841 	if (mmc_card_mmc(card) && (arg & MMC_SECURE_ARGS) &&
1842 	    !(card->ext_csd.sec_feature_support & EXT_CSD_SEC_ER_EN))
1843 		return -EOPNOTSUPP;
1844 
1845 	if (mmc_card_mmc(card) && is_trim_arg(arg) &&
1846 	    !(card->ext_csd.sec_feature_support & EXT_CSD_SEC_GB_CL_EN))
1847 		return -EOPNOTSUPP;
1848 
1849 	if (arg == MMC_SECURE_ERASE_ARG) {
1850 		if (from % card->erase_size || nr % card->erase_size)
1851 			return -EINVAL;
1852 	}
1853 
1854 	if (arg == MMC_ERASE_ARG)
1855 		nr = mmc_align_erase_size(card, &from, &to, nr);
1856 
1857 	if (nr == 0)
1858 		return 0;
1859 
1860 	if (to <= from)
1861 		return -EINVAL;
1862 
1863 	/* 'from' and 'to' are inclusive */
1864 	to -= 1;
1865 
1866 	/*
1867 	 * Special case where only one erase-group fits in the timeout budget:
1868 	 * If the region crosses an erase-group boundary on this particular
1869 	 * case, we will be trimming more than one erase-group which, does not
1870 	 * fit in the timeout budget of the controller, so we need to split it
1871 	 * and call mmc_do_erase() twice if necessary. This special case is
1872 	 * identified by the card->eg_boundary flag.
1873 	 */
1874 	rem = card->erase_size - (from % card->erase_size);
1875 	if ((arg & MMC_TRIM_OR_DISCARD_ARGS) && card->eg_boundary && nr > rem) {
1876 		err = mmc_do_erase(card, from, from + rem - 1, arg);
1877 		from += rem;
1878 		if ((err) || (to <= from))
1879 			return err;
1880 	}
1881 
1882 	return mmc_do_erase(card, from, to, arg);
1883 }
1884 EXPORT_SYMBOL(mmc_erase);
1885 
mmc_can_erase(struct mmc_card * card)1886 int mmc_can_erase(struct mmc_card *card)
1887 {
1888 	if (card->csd.cmdclass & CCC_ERASE && card->erase_size)
1889 		return 1;
1890 	return 0;
1891 }
1892 EXPORT_SYMBOL(mmc_can_erase);
1893 
mmc_can_trim(struct mmc_card * card)1894 int mmc_can_trim(struct mmc_card *card)
1895 {
1896 	if ((card->ext_csd.sec_feature_support & EXT_CSD_SEC_GB_CL_EN) &&
1897 	    (!(card->quirks & MMC_QUIRK_TRIM_BROKEN)))
1898 		return 1;
1899 	return 0;
1900 }
1901 EXPORT_SYMBOL(mmc_can_trim);
1902 
mmc_can_discard(struct mmc_card * card)1903 int mmc_can_discard(struct mmc_card *card)
1904 {
1905 	/*
1906 	 * As there's no way to detect the discard support bit at v4.5
1907 	 * use the s/w feature support filed.
1908 	 */
1909 	if (card->ext_csd.feature_support & MMC_DISCARD_FEATURE)
1910 		return 1;
1911 	return 0;
1912 }
1913 EXPORT_SYMBOL(mmc_can_discard);
1914 
mmc_can_sanitize(struct mmc_card * card)1915 int mmc_can_sanitize(struct mmc_card *card)
1916 {
1917 	if (!mmc_can_trim(card) && !mmc_can_erase(card))
1918 		return 0;
1919 	if (card->ext_csd.sec_feature_support & EXT_CSD_SEC_SANITIZE)
1920 		return 1;
1921 	return 0;
1922 }
1923 
mmc_can_secure_erase_trim(struct mmc_card * card)1924 int mmc_can_secure_erase_trim(struct mmc_card *card)
1925 {
1926 	if ((card->ext_csd.sec_feature_support & EXT_CSD_SEC_ER_EN) &&
1927 	    !(card->quirks & MMC_QUIRK_SEC_ERASE_TRIM_BROKEN))
1928 		return 1;
1929 	return 0;
1930 }
1931 EXPORT_SYMBOL(mmc_can_secure_erase_trim);
1932 
mmc_erase_group_aligned(struct mmc_card * card,unsigned int from,unsigned int nr)1933 int mmc_erase_group_aligned(struct mmc_card *card, unsigned int from,
1934 			    unsigned int nr)
1935 {
1936 	if (!card->erase_size)
1937 		return 0;
1938 	if (from % card->erase_size || nr % card->erase_size)
1939 		return 0;
1940 	return 1;
1941 }
1942 EXPORT_SYMBOL(mmc_erase_group_aligned);
1943 
mmc_do_calc_max_discard(struct mmc_card * card,unsigned int arg)1944 static unsigned int mmc_do_calc_max_discard(struct mmc_card *card,
1945 					    unsigned int arg)
1946 {
1947 	struct mmc_host *host = card->host;
1948 	unsigned int max_discard, x, y, qty = 0, max_qty, min_qty, timeout;
1949 	unsigned int last_timeout = 0;
1950 	unsigned int max_busy_timeout = host->max_busy_timeout ?
1951 			host->max_busy_timeout : MMC_ERASE_TIMEOUT_MS;
1952 
1953 	if (card->erase_shift) {
1954 		max_qty = UINT_MAX >> card->erase_shift;
1955 		min_qty = card->pref_erase >> card->erase_shift;
1956 	} else if (mmc_card_sd(card)) {
1957 		max_qty = UINT_MAX;
1958 		min_qty = card->pref_erase;
1959 	} else {
1960 		max_qty = UINT_MAX / card->erase_size;
1961 		min_qty = card->pref_erase / card->erase_size;
1962 	}
1963 
1964 	/*
1965 	 * We should not only use 'host->max_busy_timeout' as the limitation
1966 	 * when deciding the max discard sectors. We should set a balance value
1967 	 * to improve the erase speed, and it can not get too long timeout at
1968 	 * the same time.
1969 	 *
1970 	 * Here we set 'card->pref_erase' as the minimal discard sectors no
1971 	 * matter what size of 'host->max_busy_timeout', but if the
1972 	 * 'host->max_busy_timeout' is large enough for more discard sectors,
1973 	 * then we can continue to increase the max discard sectors until we
1974 	 * get a balance value. In cases when the 'host->max_busy_timeout'
1975 	 * isn't specified, use the default max erase timeout.
1976 	 */
1977 	do {
1978 		y = 0;
1979 		for (x = 1; x && x <= max_qty && max_qty - x >= qty; x <<= 1) {
1980 			timeout = mmc_erase_timeout(card, arg, qty + x);
1981 
1982 			if (qty + x > min_qty && timeout > max_busy_timeout)
1983 				break;
1984 
1985 			if (timeout < last_timeout)
1986 				break;
1987 			last_timeout = timeout;
1988 			y = x;
1989 		}
1990 		qty += y;
1991 	} while (y);
1992 
1993 	if (!qty)
1994 		return 0;
1995 
1996 	/*
1997 	 * When specifying a sector range to trim, chances are we might cross
1998 	 * an erase-group boundary even if the amount of sectors is less than
1999 	 * one erase-group.
2000 	 * If we can only fit one erase-group in the controller timeout budget,
2001 	 * we have to care that erase-group boundaries are not crossed by a
2002 	 * single trim operation. We flag that special case with "eg_boundary".
2003 	 * In all other cases we can just decrement qty and pretend that we
2004 	 * always touch (qty + 1) erase-groups as a simple optimization.
2005 	 */
2006 	if (qty == 1)
2007 		card->eg_boundary = 1;
2008 	else
2009 		qty--;
2010 
2011 	/* Convert qty to sectors */
2012 	if (card->erase_shift)
2013 		max_discard = qty << card->erase_shift;
2014 	else if (mmc_card_sd(card))
2015 		max_discard = qty + 1;
2016 	else
2017 		max_discard = qty * card->erase_size;
2018 
2019 	return max_discard;
2020 }
2021 
mmc_calc_max_discard(struct mmc_card * card)2022 unsigned int mmc_calc_max_discard(struct mmc_card *card)
2023 {
2024 	struct mmc_host *host = card->host;
2025 	unsigned int max_discard, max_trim;
2026 
2027 	/*
2028 	 * Without erase_group_def set, MMC erase timeout depends on clock
2029 	 * frequence which can change.  In that case, the best choice is
2030 	 * just the preferred erase size.
2031 	 */
2032 	if (mmc_card_mmc(card) && !(card->ext_csd.erase_group_def & 1))
2033 		return card->pref_erase;
2034 
2035 	max_discard = mmc_do_calc_max_discard(card, MMC_ERASE_ARG);
2036 	if (mmc_can_trim(card)) {
2037 		max_trim = mmc_do_calc_max_discard(card, MMC_TRIM_ARG);
2038 		if (max_trim < max_discard || max_discard == 0)
2039 			max_discard = max_trim;
2040 	} else if (max_discard < card->erase_size) {
2041 		max_discard = 0;
2042 	}
2043 	pr_debug("%s: calculated max. discard sectors %u for timeout %u ms\n",
2044 		mmc_hostname(host), max_discard, host->max_busy_timeout ?
2045 		host->max_busy_timeout : MMC_ERASE_TIMEOUT_MS);
2046 	return max_discard;
2047 }
2048 EXPORT_SYMBOL(mmc_calc_max_discard);
2049 
mmc_card_is_blockaddr(struct mmc_card * card)2050 bool mmc_card_is_blockaddr(struct mmc_card *card)
2051 {
2052 	return card ? mmc_card_blockaddr(card) : false;
2053 }
2054 EXPORT_SYMBOL(mmc_card_is_blockaddr);
2055 
mmc_set_blocklen(struct mmc_card * card,unsigned int blocklen)2056 int mmc_set_blocklen(struct mmc_card *card, unsigned int blocklen)
2057 {
2058 	struct mmc_command cmd = {};
2059 
2060 	if (mmc_card_blockaddr(card) || mmc_card_ddr52(card) ||
2061 	    mmc_card_hs400(card) || mmc_card_hs400es(card))
2062 		return 0;
2063 
2064 	cmd.opcode = MMC_SET_BLOCKLEN;
2065 	cmd.arg = blocklen;
2066 	cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
2067 	return mmc_wait_for_cmd(card->host, &cmd, 5);
2068 }
2069 EXPORT_SYMBOL(mmc_set_blocklen);
2070 
mmc_hw_reset_for_init(struct mmc_host * host)2071 static void mmc_hw_reset_for_init(struct mmc_host *host)
2072 {
2073 	mmc_pwrseq_reset(host);
2074 
2075 	if (!(host->caps & MMC_CAP_HW_RESET) || !host->ops->hw_reset)
2076 		return;
2077 	host->ops->hw_reset(host);
2078 }
2079 
2080 /**
2081  * mmc_hw_reset - reset the card in hardware
2082  * @host: MMC host to which the card is attached
2083  *
2084  * Hard reset the card. This function is only for upper layers, like the
2085  * block layer or card drivers. You cannot use it in host drivers (struct
2086  * mmc_card might be gone then).
2087  *
2088  * Return: 0 on success, -errno on failure
2089  */
mmc_hw_reset(struct mmc_host * host)2090 int mmc_hw_reset(struct mmc_host *host)
2091 {
2092 	int ret;
2093 
2094 	if (!host->card)
2095 		return -EINVAL;
2096 
2097 	mmc_bus_get(host);
2098 	if (!host->bus_ops || host->bus_dead || !host->bus_ops->hw_reset) {
2099 		mmc_bus_put(host);
2100 		return -EOPNOTSUPP;
2101 	}
2102 
2103 	ret = host->bus_ops->hw_reset(host);
2104 	mmc_bus_put(host);
2105 
2106 	if (ret < 0)
2107 		pr_warn("%s: tried to HW reset card, got error %d\n",
2108 			mmc_hostname(host), ret);
2109 
2110 	return ret;
2111 }
2112 EXPORT_SYMBOL(mmc_hw_reset);
2113 
mmc_sw_reset(struct mmc_host * host)2114 int mmc_sw_reset(struct mmc_host *host)
2115 {
2116 	int ret;
2117 
2118 	if (!host->card)
2119 		return -EINVAL;
2120 
2121 	mmc_bus_get(host);
2122 	if (!host->bus_ops || host->bus_dead || !host->bus_ops->sw_reset) {
2123 		mmc_bus_put(host);
2124 		return -EOPNOTSUPP;
2125 	}
2126 
2127 	ret = host->bus_ops->sw_reset(host);
2128 	mmc_bus_put(host);
2129 
2130 	if (ret)
2131 		pr_warn("%s: tried to SW reset card, got error %d\n",
2132 			mmc_hostname(host), ret);
2133 
2134 	return ret;
2135 }
2136 EXPORT_SYMBOL(mmc_sw_reset);
2137 
mmc_rescan_try_freq(struct mmc_host * host,unsigned freq)2138 static int mmc_rescan_try_freq(struct mmc_host *host, unsigned freq)
2139 {
2140 	host->f_init = freq;
2141 
2142 	pr_debug("%s: %s: trying to init card at %u Hz\n",
2143 		mmc_hostname(host), __func__, host->f_init);
2144 
2145 	mmc_power_up(host, host->ocr_avail);
2146 
2147 	/*
2148 	 * Some eMMCs (with VCCQ always on) may not be reset after power up, so
2149 	 * do a hardware reset if possible.
2150 	 */
2151 	mmc_hw_reset_for_init(host);
2152 
2153 	/*
2154 	 * sdio_reset sends CMD52 to reset card.  Since we do not know
2155 	 * if the card is being re-initialized, just send it.  CMD52
2156 	 * should be ignored by SD/eMMC cards.
2157 	 * Skip it if we already know that we do not support SDIO commands
2158 	 */
2159 	if (!(host->caps2 & MMC_CAP2_NO_SDIO))
2160 		sdio_reset(host);
2161 
2162 	mmc_go_idle(host);
2163 
2164 	if (!(host->caps2 & MMC_CAP2_NO_SD))
2165 		mmc_send_if_cond(host, host->ocr_avail);
2166 
2167 	/* Order's important: probe SDIO, then SD, then MMC */
2168 	if (!(host->caps2 & MMC_CAP2_NO_SDIO))
2169 		if (!mmc_attach_sdio(host))
2170 			return 0;
2171 
2172 	if (!(host->caps2 & MMC_CAP2_NO_SD))
2173 		if (!mmc_attach_sd(host))
2174 			return 0;
2175 
2176 	if (!(host->caps2 & MMC_CAP2_NO_MMC))
2177 		if (!mmc_attach_mmc(host))
2178 			return 0;
2179 
2180 	mmc_power_off(host);
2181 	return -EIO;
2182 }
2183 
_mmc_detect_card_removed(struct mmc_host * host)2184 int _mmc_detect_card_removed(struct mmc_host *host)
2185 {
2186 	int ret;
2187 
2188 	if (!host->card || mmc_card_removed(host->card))
2189 		return 1;
2190 
2191 	ret = host->bus_ops->alive(host);
2192 
2193 	/*
2194 	 * Card detect status and alive check may be out of sync if card is
2195 	 * removed slowly, when card detect switch changes while card/slot
2196 	 * pads are still contacted in hardware (refer to "SD Card Mechanical
2197 	 * Addendum, Appendix C: Card Detection Switch"). So reschedule a
2198 	 * detect work 200ms later for this case.
2199 	 */
2200 	if (!ret && host->ops->get_cd && !host->ops->get_cd(host)) {
2201 		mmc_detect_change(host, msecs_to_jiffies(200));
2202 		pr_debug("%s: card removed too slowly\n", mmc_hostname(host));
2203 	}
2204 
2205 	if (ret) {
2206 		mmc_card_set_removed(host->card);
2207 		pr_debug("%s: card remove detected\n", mmc_hostname(host));
2208 	}
2209 
2210 	return ret;
2211 }
2212 
mmc_detect_card_removed(struct mmc_host * host)2213 int mmc_detect_card_removed(struct mmc_host *host)
2214 {
2215 	struct mmc_card *card = host->card;
2216 	int ret;
2217 
2218 	WARN_ON(!host->claimed);
2219 
2220 	if (!card)
2221 		return 1;
2222 
2223 	if (!mmc_card_is_removable(host))
2224 		return 0;
2225 
2226 	ret = mmc_card_removed(card);
2227 	/*
2228 	 * The card will be considered unchanged unless we have been asked to
2229 	 * detect a change or host requires polling to provide card detection.
2230 	 */
2231 	if (!host->detect_change && !(host->caps & MMC_CAP_NEEDS_POLL))
2232 		return ret;
2233 
2234 	host->detect_change = 0;
2235 	if (!ret) {
2236 		ret = _mmc_detect_card_removed(host);
2237 		if (ret && (host->caps & MMC_CAP_NEEDS_POLL)) {
2238 			/*
2239 			 * Schedule a detect work as soon as possible to let a
2240 			 * rescan handle the card removal.
2241 			 */
2242 			cancel_delayed_work(&host->detect);
2243 			_mmc_detect_change(host, 0, false);
2244 		}
2245 	}
2246 
2247 	return ret;
2248 }
2249 EXPORT_SYMBOL(mmc_detect_card_removed);
2250 
mmc_rescan(struct work_struct * work)2251 void mmc_rescan(struct work_struct *work)
2252 {
2253 	struct mmc_host *host =
2254 		container_of(work, struct mmc_host, detect.work);
2255 	int i;
2256 
2257 	if (host->rescan_disable)
2258 		return;
2259 
2260 	/* If there is a non-removable card registered, only scan once */
2261 	if (!mmc_card_is_removable(host) && host->rescan_entered)
2262 		return;
2263 	host->rescan_entered = 1;
2264 
2265 	if (host->trigger_card_event && host->ops->card_event) {
2266 		mmc_claim_host(host);
2267 		host->ops->card_event(host);
2268 		mmc_release_host(host);
2269 		host->trigger_card_event = false;
2270 	}
2271 
2272 	mmc_bus_get(host);
2273 
2274 	/* Verify a registered card to be functional, else remove it. */
2275 	if (host->bus_ops && !host->bus_dead)
2276 		host->bus_ops->detect(host);
2277 
2278 	host->detect_change = 0;
2279 
2280 	/*
2281 	 * Let mmc_bus_put() free the bus/bus_ops if we've found that
2282 	 * the card is no longer present.
2283 	 */
2284 	mmc_bus_put(host);
2285 	mmc_bus_get(host);
2286 
2287 	/* if there still is a card present, stop here */
2288 	if (host->bus_ops != NULL) {
2289 		mmc_bus_put(host);
2290 		goto out;
2291 	}
2292 
2293 	/*
2294 	 * Only we can add a new handler, so it's safe to
2295 	 * release the lock here.
2296 	 */
2297 	mmc_bus_put(host);
2298 
2299 	mmc_claim_host(host);
2300 	if (mmc_card_is_removable(host) && host->ops->get_cd &&
2301 			host->ops->get_cd(host) == 0) {
2302 		mmc_power_off(host);
2303 		mmc_release_host(host);
2304 		goto out;
2305 	}
2306 
2307 	for (i = 0; i < ARRAY_SIZE(freqs); i++) {
2308 		unsigned int freq = freqs[i];
2309 		if (freq > host->f_max) {
2310 			if (i + 1 < ARRAY_SIZE(freqs))
2311 				continue;
2312 			freq = host->f_max;
2313 		}
2314 		if (!mmc_rescan_try_freq(host, max(freq, host->f_min)))
2315 			break;
2316 		if (freqs[i] <= host->f_min)
2317 			break;
2318 	}
2319 	mmc_release_host(host);
2320 
2321  out:
2322 	if (host->caps & MMC_CAP_NEEDS_POLL)
2323 		mmc_schedule_delayed_work(&host->detect, HZ);
2324 }
2325 
mmc_start_host(struct mmc_host * host)2326 void mmc_start_host(struct mmc_host *host)
2327 {
2328 	host->f_init = max(min(freqs[0], host->f_max), host->f_min);
2329 	host->rescan_disable = 0;
2330 
2331 	if (!(host->caps2 & MMC_CAP2_NO_PRESCAN_POWERUP)) {
2332 		mmc_claim_host(host);
2333 		mmc_power_up(host, host->ocr_avail);
2334 		mmc_release_host(host);
2335 	}
2336 
2337 	mmc_gpiod_request_cd_irq(host);
2338 	_mmc_detect_change(host, 0, false);
2339 }
2340 
__mmc_stop_host(struct mmc_host * host)2341 void __mmc_stop_host(struct mmc_host *host)
2342 {
2343 	if (host->slot.cd_irq >= 0) {
2344 		mmc_gpio_set_cd_wake(host, false);
2345 		disable_irq(host->slot.cd_irq);
2346 	}
2347 
2348 	host->rescan_disable = 1;
2349 	cancel_delayed_work_sync(&host->detect);
2350 }
2351 
mmc_stop_host(struct mmc_host * host)2352 void mmc_stop_host(struct mmc_host *host)
2353 {
2354 	__mmc_stop_host(host);
2355 
2356 	/* clear pm flags now and let card drivers set them as needed */
2357 	host->pm_flags = 0;
2358 
2359 	mmc_bus_get(host);
2360 	if (host->bus_ops && !host->bus_dead) {
2361 		/* Calling bus_ops->remove() with a claimed host can deadlock */
2362 		host->bus_ops->remove(host);
2363 		mmc_claim_host(host);
2364 		mmc_detach_bus(host);
2365 		mmc_power_off(host);
2366 		mmc_release_host(host);
2367 		mmc_bus_put(host);
2368 		return;
2369 	}
2370 	mmc_bus_put(host);
2371 
2372 	mmc_claim_host(host);
2373 	mmc_power_off(host);
2374 	mmc_release_host(host);
2375 }
2376 
mmc_init(void)2377 static int __init mmc_init(void)
2378 {
2379 	int ret;
2380 
2381 	ret = mmc_register_bus();
2382 	if (ret)
2383 		return ret;
2384 
2385 	ret = mmc_register_host_class();
2386 	if (ret)
2387 		goto unregister_bus;
2388 
2389 	ret = sdio_register_bus();
2390 	if (ret)
2391 		goto unregister_host_class;
2392 
2393 	return 0;
2394 
2395 unregister_host_class:
2396 	mmc_unregister_host_class();
2397 unregister_bus:
2398 	mmc_unregister_bus();
2399 	return ret;
2400 }
2401 
mmc_exit(void)2402 static void __exit mmc_exit(void)
2403 {
2404 	sdio_unregister_bus();
2405 	mmc_unregister_host_class();
2406 	mmc_unregister_bus();
2407 }
2408 
2409 subsys_initcall(mmc_init);
2410 module_exit(mmc_exit);
2411 
2412 MODULE_LICENSE("GPL");
2413