• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Core registration and callback routines for MTD
4  * drivers and users.
5  *
6  * Copyright © 1999-2010 David Woodhouse <dwmw2@infradead.org>
7  * Copyright © 2006      Red Hat UK Limited
8  */
9 
10 #include <linux/module.h>
11 #include <linux/kernel.h>
12 #include <linux/ptrace.h>
13 #include <linux/seq_file.h>
14 #include <linux/string.h>
15 #include <linux/timer.h>
16 #include <linux/major.h>
17 #include <linux/fs.h>
18 #include <linux/err.h>
19 #include <linux/ioctl.h>
20 #include <linux/init.h>
21 #include <linux/of.h>
22 #include <linux/proc_fs.h>
23 #include <linux/idr.h>
24 #include <linux/backing-dev.h>
25 #include <linux/gfp.h>
26 #include <linux/slab.h>
27 #include <linux/reboot.h>
28 #include <linux/leds.h>
29 #include <linux/debugfs.h>
30 #include <linux/nvmem-provider.h>
31 
32 #include <linux/mtd/mtd.h>
33 #include <linux/mtd/partitions.h>
34 
35 #include "mtdcore.h"
36 
37 struct backing_dev_info *mtd_bdi;
38 
39 #ifdef CONFIG_PM_SLEEP
40 
mtd_cls_suspend(struct device * dev)41 static int mtd_cls_suspend(struct device *dev)
42 {
43 	struct mtd_info *mtd = dev_get_drvdata(dev);
44 
45 	return mtd ? mtd_suspend(mtd) : 0;
46 }
47 
mtd_cls_resume(struct device * dev)48 static int mtd_cls_resume(struct device *dev)
49 {
50 	struct mtd_info *mtd = dev_get_drvdata(dev);
51 
52 	if (mtd)
53 		mtd_resume(mtd);
54 	return 0;
55 }
56 
57 static SIMPLE_DEV_PM_OPS(mtd_cls_pm_ops, mtd_cls_suspend, mtd_cls_resume);
58 #define MTD_CLS_PM_OPS (&mtd_cls_pm_ops)
59 #else
60 #define MTD_CLS_PM_OPS NULL
61 #endif
62 
63 static struct class mtd_class = {
64 	.name = "mtd",
65 	.owner = THIS_MODULE,
66 	.pm = MTD_CLS_PM_OPS,
67 };
68 
69 static DEFINE_IDR(mtd_idr);
70 
71 /* These are exported solely for the purpose of mtd_blkdevs.c. You
72    should not use them for _anything_ else */
73 static DEFINE_MUTEX(mtd_table_mutex);
74 static int mtd_table_mutex_depth;
75 static struct task_struct *mtd_table_mutex_owner;
76 
__mtd_next_device(int i)77 struct mtd_info *__mtd_next_device(int i)
78 {
79 	return idr_get_next(&mtd_idr, &i);
80 }
81 EXPORT_SYMBOL_GPL(__mtd_next_device);
82 
83 static LIST_HEAD(mtd_notifiers);
84 
85 
86 #define MTD_DEVT(index) MKDEV(MTD_CHAR_MAJOR, (index)*2)
87 
mtd_table_mutex_lock(void)88 void mtd_table_mutex_lock(void)
89 {
90 	if (mtd_table_mutex_owner != current) {
91 		mutex_lock(&mtd_table_mutex);
92 		mtd_table_mutex_owner = current;
93 	}
94 	mtd_table_mutex_depth++;
95 }
96 EXPORT_SYMBOL_GPL(mtd_table_mutex_lock);
97 
98 
mtd_table_mutex_unlock(void)99 void mtd_table_mutex_unlock(void)
100 {
101 	if (mtd_table_mutex_owner != current) {
102 		pr_err("MTD:lock_owner is %s, but current is %s\n",
103 				mtd_table_mutex_owner->comm, current->comm);
104 		BUG();
105 	}
106 	if (--mtd_table_mutex_depth == 0) {
107 		mtd_table_mutex_owner =  NULL;
108 		mutex_unlock(&mtd_table_mutex);
109 	}
110 }
111 EXPORT_SYMBOL_GPL(mtd_table_mutex_unlock);
112 
mtd_table_assert_mutex_locked(void)113 void mtd_table_assert_mutex_locked(void)
114 {
115 	if (mtd_table_mutex_owner != current) {
116 		pr_err("MTD:lock_owner is %s, but current is %s\n",
117 				mtd_table_mutex_owner->comm, current->comm);
118 		BUG();
119 	}
120 }
121 EXPORT_SYMBOL_GPL(mtd_table_assert_mutex_locked);
122 /* REVISIT once MTD uses the driver model better, whoever allocates
123  * the mtd_info will probably want to use the release() hook...
124  */
mtd_release(struct device * dev)125 static void mtd_release(struct device *dev)
126 {
127 	struct mtd_info *mtd = dev_get_drvdata(dev);
128 	dev_t index = MTD_DEVT(mtd->index);
129 
130 	/* remove /dev/mtdXro node */
131 	device_destroy(&mtd_class, index + 1);
132 }
133 
mtd_type_show(struct device * dev,struct device_attribute * attr,char * buf)134 static ssize_t mtd_type_show(struct device *dev,
135 		struct device_attribute *attr, char *buf)
136 {
137 	struct mtd_info *mtd = dev_get_drvdata(dev);
138 	char *type;
139 
140 	switch (mtd->type) {
141 	case MTD_ABSENT:
142 		type = "absent";
143 		break;
144 	case MTD_RAM:
145 		type = "ram";
146 		break;
147 	case MTD_ROM:
148 		type = "rom";
149 		break;
150 	case MTD_NORFLASH:
151 		type = "nor";
152 		break;
153 	case MTD_NANDFLASH:
154 		type = "nand";
155 		break;
156 	case MTD_DATAFLASH:
157 		type = "dataflash";
158 		break;
159 	case MTD_UBIVOLUME:
160 		type = "ubi";
161 		break;
162 	case MTD_MLCNANDFLASH:
163 		type = "mlc-nand";
164 		break;
165 	default:
166 		type = "unknown";
167 	}
168 
169 	return snprintf(buf, PAGE_SIZE, "%s\n", type);
170 }
171 static DEVICE_ATTR(type, S_IRUGO, mtd_type_show, NULL);
172 
mtd_flags_show(struct device * dev,struct device_attribute * attr,char * buf)173 static ssize_t mtd_flags_show(struct device *dev,
174 		struct device_attribute *attr, char *buf)
175 {
176 	struct mtd_info *mtd = dev_get_drvdata(dev);
177 
178 	return snprintf(buf, PAGE_SIZE, "0x%lx\n", (unsigned long)mtd->flags);
179 }
180 static DEVICE_ATTR(flags, S_IRUGO, mtd_flags_show, NULL);
181 
mtd_size_show(struct device * dev,struct device_attribute * attr,char * buf)182 static ssize_t mtd_size_show(struct device *dev,
183 		struct device_attribute *attr, char *buf)
184 {
185 	struct mtd_info *mtd = dev_get_drvdata(dev);
186 
187 	return snprintf(buf, PAGE_SIZE, "%llu\n",
188 		(unsigned long long)mtd->size);
189 }
190 static DEVICE_ATTR(size, S_IRUGO, mtd_size_show, NULL);
191 
mtd_erasesize_show(struct device * dev,struct device_attribute * attr,char * buf)192 static ssize_t mtd_erasesize_show(struct device *dev,
193 		struct device_attribute *attr, char *buf)
194 {
195 	struct mtd_info *mtd = dev_get_drvdata(dev);
196 
197 	return snprintf(buf, PAGE_SIZE, "%lu\n", (unsigned long)mtd->erasesize);
198 }
199 static DEVICE_ATTR(erasesize, S_IRUGO, mtd_erasesize_show, NULL);
200 
mtd_writesize_show(struct device * dev,struct device_attribute * attr,char * buf)201 static ssize_t mtd_writesize_show(struct device *dev,
202 		struct device_attribute *attr, char *buf)
203 {
204 	struct mtd_info *mtd = dev_get_drvdata(dev);
205 
206 	return snprintf(buf, PAGE_SIZE, "%lu\n", (unsigned long)mtd->writesize);
207 }
208 static DEVICE_ATTR(writesize, S_IRUGO, mtd_writesize_show, NULL);
209 
mtd_subpagesize_show(struct device * dev,struct device_attribute * attr,char * buf)210 static ssize_t mtd_subpagesize_show(struct device *dev,
211 		struct device_attribute *attr, char *buf)
212 {
213 	struct mtd_info *mtd = dev_get_drvdata(dev);
214 	unsigned int subpagesize = mtd->writesize >> mtd->subpage_sft;
215 
216 	return snprintf(buf, PAGE_SIZE, "%u\n", subpagesize);
217 }
218 static DEVICE_ATTR(subpagesize, S_IRUGO, mtd_subpagesize_show, NULL);
219 
mtd_oobsize_show(struct device * dev,struct device_attribute * attr,char * buf)220 static ssize_t mtd_oobsize_show(struct device *dev,
221 		struct device_attribute *attr, char *buf)
222 {
223 	struct mtd_info *mtd = dev_get_drvdata(dev);
224 
225 	return snprintf(buf, PAGE_SIZE, "%lu\n", (unsigned long)mtd->oobsize);
226 }
227 static DEVICE_ATTR(oobsize, S_IRUGO, mtd_oobsize_show, NULL);
228 
mtd_oobavail_show(struct device * dev,struct device_attribute * attr,char * buf)229 static ssize_t mtd_oobavail_show(struct device *dev,
230 				 struct device_attribute *attr, char *buf)
231 {
232 	struct mtd_info *mtd = dev_get_drvdata(dev);
233 
234 	return snprintf(buf, PAGE_SIZE, "%u\n", mtd->oobavail);
235 }
236 static DEVICE_ATTR(oobavail, S_IRUGO, mtd_oobavail_show, NULL);
237 
mtd_numeraseregions_show(struct device * dev,struct device_attribute * attr,char * buf)238 static ssize_t mtd_numeraseregions_show(struct device *dev,
239 		struct device_attribute *attr, char *buf)
240 {
241 	struct mtd_info *mtd = dev_get_drvdata(dev);
242 
243 	return snprintf(buf, PAGE_SIZE, "%u\n", mtd->numeraseregions);
244 }
245 static DEVICE_ATTR(numeraseregions, S_IRUGO, mtd_numeraseregions_show,
246 	NULL);
247 
mtd_name_show(struct device * dev,struct device_attribute * attr,char * buf)248 static ssize_t mtd_name_show(struct device *dev,
249 		struct device_attribute *attr, char *buf)
250 {
251 	struct mtd_info *mtd = dev_get_drvdata(dev);
252 
253 	return snprintf(buf, PAGE_SIZE, "%s\n", mtd->name);
254 }
255 static DEVICE_ATTR(name, S_IRUGO, mtd_name_show, NULL);
256 
mtd_ecc_strength_show(struct device * dev,struct device_attribute * attr,char * buf)257 static ssize_t mtd_ecc_strength_show(struct device *dev,
258 				     struct device_attribute *attr, char *buf)
259 {
260 	struct mtd_info *mtd = dev_get_drvdata(dev);
261 
262 	return snprintf(buf, PAGE_SIZE, "%u\n", mtd->ecc_strength);
263 }
264 static DEVICE_ATTR(ecc_strength, S_IRUGO, mtd_ecc_strength_show, NULL);
265 
mtd_bitflip_threshold_show(struct device * dev,struct device_attribute * attr,char * buf)266 static ssize_t mtd_bitflip_threshold_show(struct device *dev,
267 					  struct device_attribute *attr,
268 					  char *buf)
269 {
270 	struct mtd_info *mtd = dev_get_drvdata(dev);
271 
272 	return snprintf(buf, PAGE_SIZE, "%u\n", mtd->bitflip_threshold);
273 }
274 
mtd_bitflip_threshold_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)275 static ssize_t mtd_bitflip_threshold_store(struct device *dev,
276 					   struct device_attribute *attr,
277 					   const char *buf, size_t count)
278 {
279 	struct mtd_info *mtd = dev_get_drvdata(dev);
280 	unsigned int bitflip_threshold;
281 	int retval;
282 
283 	retval = kstrtouint(buf, 0, &bitflip_threshold);
284 	if (retval)
285 		return retval;
286 
287 	mtd->bitflip_threshold = bitflip_threshold;
288 	return count;
289 }
290 static DEVICE_ATTR(bitflip_threshold, S_IRUGO | S_IWUSR,
291 		   mtd_bitflip_threshold_show,
292 		   mtd_bitflip_threshold_store);
293 
mtd_ecc_step_size_show(struct device * dev,struct device_attribute * attr,char * buf)294 static ssize_t mtd_ecc_step_size_show(struct device *dev,
295 		struct device_attribute *attr, char *buf)
296 {
297 	struct mtd_info *mtd = dev_get_drvdata(dev);
298 
299 	return snprintf(buf, PAGE_SIZE, "%u\n", mtd->ecc_step_size);
300 
301 }
302 static DEVICE_ATTR(ecc_step_size, S_IRUGO, mtd_ecc_step_size_show, NULL);
303 
mtd_ecc_stats_corrected_show(struct device * dev,struct device_attribute * attr,char * buf)304 static ssize_t mtd_ecc_stats_corrected_show(struct device *dev,
305 		struct device_attribute *attr, char *buf)
306 {
307 	struct mtd_info *mtd = dev_get_drvdata(dev);
308 	struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats;
309 
310 	return snprintf(buf, PAGE_SIZE, "%u\n", ecc_stats->corrected);
311 }
312 static DEVICE_ATTR(corrected_bits, S_IRUGO,
313 		   mtd_ecc_stats_corrected_show, NULL);
314 
mtd_ecc_stats_errors_show(struct device * dev,struct device_attribute * attr,char * buf)315 static ssize_t mtd_ecc_stats_errors_show(struct device *dev,
316 		struct device_attribute *attr, char *buf)
317 {
318 	struct mtd_info *mtd = dev_get_drvdata(dev);
319 	struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats;
320 
321 	return snprintf(buf, PAGE_SIZE, "%u\n", ecc_stats->failed);
322 }
323 static DEVICE_ATTR(ecc_failures, S_IRUGO, mtd_ecc_stats_errors_show, NULL);
324 
mtd_badblocks_show(struct device * dev,struct device_attribute * attr,char * buf)325 static ssize_t mtd_badblocks_show(struct device *dev,
326 		struct device_attribute *attr, char *buf)
327 {
328 	struct mtd_info *mtd = dev_get_drvdata(dev);
329 	struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats;
330 
331 	return snprintf(buf, PAGE_SIZE, "%u\n", ecc_stats->badblocks);
332 }
333 static DEVICE_ATTR(bad_blocks, S_IRUGO, mtd_badblocks_show, NULL);
334 
mtd_bbtblocks_show(struct device * dev,struct device_attribute * attr,char * buf)335 static ssize_t mtd_bbtblocks_show(struct device *dev,
336 		struct device_attribute *attr, char *buf)
337 {
338 	struct mtd_info *mtd = dev_get_drvdata(dev);
339 	struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats;
340 
341 	return snprintf(buf, PAGE_SIZE, "%u\n", ecc_stats->bbtblocks);
342 }
343 static DEVICE_ATTR(bbt_blocks, S_IRUGO, mtd_bbtblocks_show, NULL);
344 
345 static struct attribute *mtd_attrs[] = {
346 	&dev_attr_type.attr,
347 	&dev_attr_flags.attr,
348 	&dev_attr_size.attr,
349 	&dev_attr_erasesize.attr,
350 	&dev_attr_writesize.attr,
351 	&dev_attr_subpagesize.attr,
352 	&dev_attr_oobsize.attr,
353 	&dev_attr_oobavail.attr,
354 	&dev_attr_numeraseregions.attr,
355 	&dev_attr_name.attr,
356 	&dev_attr_ecc_strength.attr,
357 	&dev_attr_ecc_step_size.attr,
358 	&dev_attr_corrected_bits.attr,
359 	&dev_attr_ecc_failures.attr,
360 	&dev_attr_bad_blocks.attr,
361 	&dev_attr_bbt_blocks.attr,
362 	&dev_attr_bitflip_threshold.attr,
363 	NULL,
364 };
365 ATTRIBUTE_GROUPS(mtd);
366 
367 static const struct device_type mtd_devtype = {
368 	.name		= "mtd",
369 	.groups		= mtd_groups,
370 	.release	= mtd_release,
371 };
372 
mtd_partid_debug_show(struct seq_file * s,void * p)373 static int mtd_partid_debug_show(struct seq_file *s, void *p)
374 {
375 	struct mtd_info *mtd = s->private;
376 
377 	seq_printf(s, "%s\n", mtd->dbg.partid);
378 
379 	return 0;
380 }
381 
382 DEFINE_SHOW_ATTRIBUTE(mtd_partid_debug);
383 
mtd_partname_debug_show(struct seq_file * s,void * p)384 static int mtd_partname_debug_show(struct seq_file *s, void *p)
385 {
386 	struct mtd_info *mtd = s->private;
387 
388 	seq_printf(s, "%s\n", mtd->dbg.partname);
389 
390 	return 0;
391 }
392 
393 DEFINE_SHOW_ATTRIBUTE(mtd_partname_debug);
394 
395 static struct dentry *dfs_dir_mtd;
396 
mtd_debugfs_populate(struct mtd_info * mtd)397 static void mtd_debugfs_populate(struct mtd_info *mtd)
398 {
399 	struct device *dev = &mtd->dev;
400 	struct dentry *root;
401 
402 	if (IS_ERR_OR_NULL(dfs_dir_mtd))
403 		return;
404 
405 	root = debugfs_create_dir(dev_name(dev), dfs_dir_mtd);
406 	mtd->dbg.dfs_dir = root;
407 
408 	if (mtd->dbg.partid)
409 		debugfs_create_file("partid", 0400, root, mtd,
410 				    &mtd_partid_debug_fops);
411 
412 	if (mtd->dbg.partname)
413 		debugfs_create_file("partname", 0400, root, mtd,
414 				    &mtd_partname_debug_fops);
415 }
416 
417 #ifndef CONFIG_MMU
mtd_mmap_capabilities(struct mtd_info * mtd)418 unsigned mtd_mmap_capabilities(struct mtd_info *mtd)
419 {
420 	switch (mtd->type) {
421 	case MTD_RAM:
422 		return NOMMU_MAP_COPY | NOMMU_MAP_DIRECT | NOMMU_MAP_EXEC |
423 			NOMMU_MAP_READ | NOMMU_MAP_WRITE;
424 	case MTD_ROM:
425 		return NOMMU_MAP_COPY | NOMMU_MAP_DIRECT | NOMMU_MAP_EXEC |
426 			NOMMU_MAP_READ;
427 	default:
428 		return NOMMU_MAP_COPY;
429 	}
430 }
431 EXPORT_SYMBOL_GPL(mtd_mmap_capabilities);
432 #endif
433 
mtd_reboot_notifier(struct notifier_block * n,unsigned long state,void * cmd)434 static int mtd_reboot_notifier(struct notifier_block *n, unsigned long state,
435 			       void *cmd)
436 {
437 	struct mtd_info *mtd;
438 
439 	mtd = container_of(n, struct mtd_info, reboot_notifier);
440 	mtd->_reboot(mtd);
441 
442 	return NOTIFY_DONE;
443 }
444 
445 /**
446  * mtd_wunit_to_pairing_info - get pairing information of a wunit
447  * @mtd: pointer to new MTD device info structure
448  * @wunit: write unit we are interested in
449  * @info: returned pairing information
450  *
451  * Retrieve pairing information associated to the wunit.
452  * This is mainly useful when dealing with MLC/TLC NANDs where pages can be
453  * paired together, and where programming a page may influence the page it is
454  * paired with.
455  * The notion of page is replaced by the term wunit (write-unit) to stay
456  * consistent with the ->writesize field.
457  *
458  * The @wunit argument can be extracted from an absolute offset using
459  * mtd_offset_to_wunit(). @info is filled with the pairing information attached
460  * to @wunit.
461  *
462  * From the pairing info the MTD user can find all the wunits paired with
463  * @wunit using the following loop:
464  *
465  * for (i = 0; i < mtd_pairing_groups(mtd); i++) {
466  *	info.pair = i;
467  *	mtd_pairing_info_to_wunit(mtd, &info);
468  *	...
469  * }
470  */
mtd_wunit_to_pairing_info(struct mtd_info * mtd,int wunit,struct mtd_pairing_info * info)471 int mtd_wunit_to_pairing_info(struct mtd_info *mtd, int wunit,
472 			      struct mtd_pairing_info *info)
473 {
474 	struct mtd_info *master = mtd_get_master(mtd);
475 	int npairs = mtd_wunit_per_eb(master) / mtd_pairing_groups(master);
476 
477 	if (wunit < 0 || wunit >= npairs)
478 		return -EINVAL;
479 
480 	if (master->pairing && master->pairing->get_info)
481 		return master->pairing->get_info(master, wunit, info);
482 
483 	info->group = 0;
484 	info->pair = wunit;
485 
486 	return 0;
487 }
488 EXPORT_SYMBOL_GPL(mtd_wunit_to_pairing_info);
489 
490 /**
491  * mtd_pairing_info_to_wunit - get wunit from pairing information
492  * @mtd: pointer to new MTD device info structure
493  * @info: pairing information struct
494  *
495  * Returns a positive number representing the wunit associated to the info
496  * struct, or a negative error code.
497  *
498  * This is the reverse of mtd_wunit_to_pairing_info(), and can help one to
499  * iterate over all wunits of a given pair (see mtd_wunit_to_pairing_info()
500  * doc).
501  *
502  * It can also be used to only program the first page of each pair (i.e.
503  * page attached to group 0), which allows one to use an MLC NAND in
504  * software-emulated SLC mode:
505  *
506  * info.group = 0;
507  * npairs = mtd_wunit_per_eb(mtd) / mtd_pairing_groups(mtd);
508  * for (info.pair = 0; info.pair < npairs; info.pair++) {
509  *	wunit = mtd_pairing_info_to_wunit(mtd, &info);
510  *	mtd_write(mtd, mtd_wunit_to_offset(mtd, blkoffs, wunit),
511  *		  mtd->writesize, &retlen, buf + (i * mtd->writesize));
512  * }
513  */
mtd_pairing_info_to_wunit(struct mtd_info * mtd,const struct mtd_pairing_info * info)514 int mtd_pairing_info_to_wunit(struct mtd_info *mtd,
515 			      const struct mtd_pairing_info *info)
516 {
517 	struct mtd_info *master = mtd_get_master(mtd);
518 	int ngroups = mtd_pairing_groups(master);
519 	int npairs = mtd_wunit_per_eb(master) / ngroups;
520 
521 	if (!info || info->pair < 0 || info->pair >= npairs ||
522 	    info->group < 0 || info->group >= ngroups)
523 		return -EINVAL;
524 
525 	if (master->pairing && master->pairing->get_wunit)
526 		return mtd->pairing->get_wunit(master, info);
527 
528 	return info->pair;
529 }
530 EXPORT_SYMBOL_GPL(mtd_pairing_info_to_wunit);
531 
532 /**
533  * mtd_pairing_groups - get the number of pairing groups
534  * @mtd: pointer to new MTD device info structure
535  *
536  * Returns the number of pairing groups.
537  *
538  * This number is usually equal to the number of bits exposed by a single
539  * cell, and can be used in conjunction with mtd_pairing_info_to_wunit()
540  * to iterate over all pages of a given pair.
541  */
mtd_pairing_groups(struct mtd_info * mtd)542 int mtd_pairing_groups(struct mtd_info *mtd)
543 {
544 	struct mtd_info *master = mtd_get_master(mtd);
545 
546 	if (!master->pairing || !master->pairing->ngroups)
547 		return 1;
548 
549 	return master->pairing->ngroups;
550 }
551 EXPORT_SYMBOL_GPL(mtd_pairing_groups);
552 
mtd_nvmem_reg_read(void * priv,unsigned int offset,void * val,size_t bytes)553 static int mtd_nvmem_reg_read(void *priv, unsigned int offset,
554 			      void *val, size_t bytes)
555 {
556 	struct mtd_info *mtd = priv;
557 	size_t retlen;
558 	int err;
559 
560 	err = mtd_read(mtd, offset, bytes, &retlen, val);
561 	if (err && err != -EUCLEAN)
562 		return err;
563 
564 	return retlen == bytes ? 0 : -EIO;
565 }
566 
mtd_nvmem_add(struct mtd_info * mtd)567 static int mtd_nvmem_add(struct mtd_info *mtd)
568 {
569 	struct nvmem_config config = {};
570 
571 	config.id = -1;
572 	config.dev = &mtd->dev;
573 	config.name = dev_name(&mtd->dev);
574 	config.owner = THIS_MODULE;
575 	config.reg_read = mtd_nvmem_reg_read;
576 	config.size = mtd->size;
577 	config.word_size = 1;
578 	config.stride = 1;
579 	config.read_only = true;
580 	config.root_only = true;
581 	config.no_of_node = true;
582 	config.priv = mtd;
583 
584 	mtd->nvmem = nvmem_register(&config);
585 	if (IS_ERR(mtd->nvmem)) {
586 		/* Just ignore if there is no NVMEM support in the kernel */
587 		if (PTR_ERR(mtd->nvmem) == -EOPNOTSUPP) {
588 			mtd->nvmem = NULL;
589 		} else {
590 			dev_err(&mtd->dev, "Failed to register NVMEM device\n");
591 			return PTR_ERR(mtd->nvmem);
592 		}
593 	}
594 
595 	return 0;
596 }
597 
598 /**
599  *	add_mtd_device - register an MTD device
600  *	@mtd: pointer to new MTD device info structure
601  *
602  *	Add a device to the list of MTD devices present in the system, and
603  *	notify each currently active MTD 'user' of its arrival. Returns
604  *	zero on success or non-zero on failure.
605  */
606 
add_mtd_device(struct mtd_info * mtd)607 int add_mtd_device(struct mtd_info *mtd)
608 {
609 	struct mtd_info *master = mtd_get_master(mtd);
610 	struct mtd_notifier *not;
611 	int i, error;
612 
613 	/*
614 	 * May occur, for instance, on buggy drivers which call
615 	 * mtd_device_parse_register() multiple times on the same master MTD,
616 	 * especially with CONFIG_MTD_PARTITIONED_MASTER=y.
617 	 */
618 	if (WARN_ONCE(mtd->dev.type, "MTD already registered\n"))
619 		return -EEXIST;
620 
621 	BUG_ON(mtd->writesize == 0);
622 
623 	/*
624 	 * MTD drivers should implement ->_{write,read}() or
625 	 * ->_{write,read}_oob(), but not both.
626 	 */
627 	if (WARN_ON((mtd->_write && mtd->_write_oob) ||
628 		    (mtd->_read && mtd->_read_oob)))
629 		return -EINVAL;
630 
631 	if (WARN_ON((!mtd->erasesize || !master->_erase) &&
632 		    !(mtd->flags & MTD_NO_ERASE)))
633 		return -EINVAL;
634 
635 	/*
636 	 * MTD_SLC_ON_MLC_EMULATION can only be set on partitions, when the
637 	 * master is an MLC NAND and has a proper pairing scheme defined.
638 	 * We also reject masters that implement ->_writev() for now, because
639 	 * NAND controller drivers don't implement this hook, and adding the
640 	 * SLC -> MLC address/length conversion to this path is useless if we
641 	 * don't have a user.
642 	 */
643 	if (mtd->flags & MTD_SLC_ON_MLC_EMULATION &&
644 	    (!mtd_is_partition(mtd) || master->type != MTD_MLCNANDFLASH ||
645 	     !master->pairing || master->_writev))
646 		return -EINVAL;
647 
648 	mtd_table_mutex_lock();
649 
650 	i = idr_alloc(&mtd_idr, mtd, 0, 0, GFP_KERNEL);
651 	if (i < 0) {
652 		error = i;
653 		goto fail_locked;
654 	}
655 
656 	mtd->index = i;
657 	mtd->usecount = 0;
658 
659 	/* default value if not set by driver */
660 	if (mtd->bitflip_threshold == 0)
661 		mtd->bitflip_threshold = mtd->ecc_strength;
662 
663 	if (mtd->flags & MTD_SLC_ON_MLC_EMULATION) {
664 		int ngroups = mtd_pairing_groups(master);
665 
666 		mtd->erasesize /= ngroups;
667 		mtd->size = (u64)mtd_div_by_eb(mtd->size, master) *
668 			    mtd->erasesize;
669 	}
670 
671 	if (is_power_of_2(mtd->erasesize))
672 		mtd->erasesize_shift = ffs(mtd->erasesize) - 1;
673 	else
674 		mtd->erasesize_shift = 0;
675 
676 	if (is_power_of_2(mtd->writesize))
677 		mtd->writesize_shift = ffs(mtd->writesize) - 1;
678 	else
679 		mtd->writesize_shift = 0;
680 
681 	mtd->erasesize_mask = (1 << mtd->erasesize_shift) - 1;
682 	mtd->writesize_mask = (1 << mtd->writesize_shift) - 1;
683 
684 	/* Some chips always power up locked. Unlock them now */
685 	if ((mtd->flags & MTD_WRITEABLE) && (mtd->flags & MTD_POWERUP_LOCK)) {
686 		error = mtd_unlock(mtd, 0, mtd->size);
687 		if (error && error != -EOPNOTSUPP)
688 			printk(KERN_WARNING
689 			       "%s: unlock failed, writes may not work\n",
690 			       mtd->name);
691 		/* Ignore unlock failures? */
692 		error = 0;
693 	}
694 
695 	/* Caller should have set dev.parent to match the
696 	 * physical device, if appropriate.
697 	 */
698 	mtd->dev.type = &mtd_devtype;
699 	mtd->dev.class = &mtd_class;
700 	mtd->dev.devt = MTD_DEVT(i);
701 	dev_set_name(&mtd->dev, "mtd%d", i);
702 	dev_set_drvdata(&mtd->dev, mtd);
703 	of_node_get(mtd_get_of_node(mtd));
704 	error = device_register(&mtd->dev);
705 	if (error) {
706 		put_device(&mtd->dev);
707 		goto fail_added;
708 	}
709 
710 	/* Add the nvmem provider */
711 	error = mtd_nvmem_add(mtd);
712 	if (error)
713 		goto fail_nvmem_add;
714 
715 	mtd_debugfs_populate(mtd);
716 
717 	device_create(&mtd_class, mtd->dev.parent, MTD_DEVT(i) + 1, NULL,
718 		      "mtd%dro", i);
719 
720 	pr_debug("mtd: Giving out device %d to %s\n", i, mtd->name);
721 	/* No need to get a refcount on the module containing
722 	   the notifier, since we hold the mtd_table_mutex */
723 	list_for_each_entry(not, &mtd_notifiers, list)
724 		not->add(mtd);
725 
726 	mtd_table_mutex_unlock();
727 	/* We _know_ we aren't being removed, because
728 	   our caller is still holding us here. So none
729 	   of this try_ nonsense, and no bitching about it
730 	   either. :) */
731 	__module_get(THIS_MODULE);
732 	return 0;
733 
734 fail_nvmem_add:
735 	device_unregister(&mtd->dev);
736 fail_added:
737 	of_node_put(mtd_get_of_node(mtd));
738 	idr_remove(&mtd_idr, i);
739 fail_locked:
740 	mtd_table_mutex_unlock();
741 	return error;
742 }
743 
744 /**
745  *	del_mtd_device - unregister an MTD device
746  *	@mtd: pointer to MTD device info structure
747  *
748  *	Remove a device from the list of MTD devices present in the system,
749  *	and notify each currently active MTD 'user' of its departure.
750  *	Returns zero on success or 1 on failure, which currently will happen
751  *	if the requested device does not appear to be present in the list.
752  */
753 
del_mtd_device(struct mtd_info * mtd)754 int del_mtd_device(struct mtd_info *mtd)
755 {
756 	int ret;
757 	struct mtd_notifier *not;
758 
759 	mtd_table_mutex_lock();
760 
761 	if (idr_find(&mtd_idr, mtd->index) != mtd) {
762 		ret = -ENODEV;
763 		goto out_error;
764 	}
765 
766 	/* No need to get a refcount on the module containing
767 		the notifier, since we hold the mtd_table_mutex */
768 	list_for_each_entry(not, &mtd_notifiers, list)
769 		not->remove(mtd);
770 
771 	if (mtd->usecount) {
772 		printk(KERN_NOTICE "Removing MTD device #%d (%s) with use count %d\n",
773 		       mtd->index, mtd->name, mtd->usecount);
774 		ret = -EBUSY;
775 	} else {
776 		debugfs_remove_recursive(mtd->dbg.dfs_dir);
777 
778 		/* Try to remove the NVMEM provider */
779 		if (mtd->nvmem)
780 			nvmem_unregister(mtd->nvmem);
781 
782 		device_unregister(&mtd->dev);
783 
784 		idr_remove(&mtd_idr, mtd->index);
785 		of_node_put(mtd_get_of_node(mtd));
786 
787 		module_put(THIS_MODULE);
788 		ret = 0;
789 	}
790 
791 out_error:
792 	mtd_table_mutex_unlock();
793 	return ret;
794 }
795 
796 /*
797  * Set a few defaults based on the parent devices, if not provided by the
798  * driver
799  */
mtd_set_dev_defaults(struct mtd_info * mtd)800 static void mtd_set_dev_defaults(struct mtd_info *mtd)
801 {
802 	if (mtd->dev.parent) {
803 		if (!mtd->owner && mtd->dev.parent->driver)
804 			mtd->owner = mtd->dev.parent->driver->owner;
805 		if (!mtd->name)
806 			mtd->name = dev_name(mtd->dev.parent);
807 	} else {
808 		pr_debug("mtd device won't show a device symlink in sysfs\n");
809 	}
810 
811 	INIT_LIST_HEAD(&mtd->partitions);
812 	mutex_init(&mtd->master.partitions_lock);
813 }
814 
815 /**
816  * mtd_device_parse_register - parse partitions and register an MTD device.
817  *
818  * @mtd: the MTD device to register
819  * @types: the list of MTD partition probes to try, see
820  *         'parse_mtd_partitions()' for more information
821  * @parser_data: MTD partition parser-specific data
822  * @parts: fallback partition information to register, if parsing fails;
823  *         only valid if %nr_parts > %0
824  * @nr_parts: the number of partitions in parts, if zero then the full
825  *            MTD device is registered if no partition info is found
826  *
827  * This function aggregates MTD partitions parsing (done by
828  * 'parse_mtd_partitions()') and MTD device and partitions registering. It
829  * basically follows the most common pattern found in many MTD drivers:
830  *
831  * * If the MTD_PARTITIONED_MASTER option is set, then the device as a whole is
832  *   registered first.
833  * * Then It tries to probe partitions on MTD device @mtd using parsers
834  *   specified in @types (if @types is %NULL, then the default list of parsers
835  *   is used, see 'parse_mtd_partitions()' for more information). If none are
836  *   found this functions tries to fallback to information specified in
837  *   @parts/@nr_parts.
838  * * If no partitions were found this function just registers the MTD device
839  *   @mtd and exits.
840  *
841  * Returns zero in case of success and a negative error code in case of failure.
842  */
mtd_device_parse_register(struct mtd_info * mtd,const char * const * types,struct mtd_part_parser_data * parser_data,const struct mtd_partition * parts,int nr_parts)843 int mtd_device_parse_register(struct mtd_info *mtd, const char * const *types,
844 			      struct mtd_part_parser_data *parser_data,
845 			      const struct mtd_partition *parts,
846 			      int nr_parts)
847 {
848 	int ret;
849 
850 	mtd_set_dev_defaults(mtd);
851 
852 	if (IS_ENABLED(CONFIG_MTD_PARTITIONED_MASTER)) {
853 		ret = add_mtd_device(mtd);
854 		if (ret)
855 			return ret;
856 	}
857 
858 	/* Prefer parsed partitions over driver-provided fallback */
859 	ret = parse_mtd_partitions(mtd, types, parser_data);
860 	if (ret == -EPROBE_DEFER)
861 		goto out;
862 
863 	if (ret > 0)
864 		ret = 0;
865 	else if (nr_parts)
866 		ret = add_mtd_partitions(mtd, parts, nr_parts);
867 	else if (!device_is_registered(&mtd->dev))
868 		ret = add_mtd_device(mtd);
869 	else
870 		ret = 0;
871 
872 	if (ret)
873 		goto out;
874 
875 	/*
876 	 * FIXME: some drivers unfortunately call this function more than once.
877 	 * So we have to check if we've already assigned the reboot notifier.
878 	 *
879 	 * Generally, we can make multiple calls work for most cases, but it
880 	 * does cause problems with parse_mtd_partitions() above (e.g.,
881 	 * cmdlineparts will register partitions more than once).
882 	 */
883 	WARN_ONCE(mtd->_reboot && mtd->reboot_notifier.notifier_call,
884 		  "MTD already registered\n");
885 	if (mtd->_reboot && !mtd->reboot_notifier.notifier_call) {
886 		mtd->reboot_notifier.notifier_call = mtd_reboot_notifier;
887 		register_reboot_notifier(&mtd->reboot_notifier);
888 	}
889 
890 out:
891 	if (ret && device_is_registered(&mtd->dev))
892 		del_mtd_device(mtd);
893 
894 	return ret;
895 }
896 EXPORT_SYMBOL_GPL(mtd_device_parse_register);
897 
898 /**
899  * mtd_device_unregister - unregister an existing MTD device.
900  *
901  * @master: the MTD device to unregister.  This will unregister both the master
902  *          and any partitions if registered.
903  */
mtd_device_unregister(struct mtd_info * master)904 int mtd_device_unregister(struct mtd_info *master)
905 {
906 	int err;
907 
908 	if (master->_reboot)
909 		unregister_reboot_notifier(&master->reboot_notifier);
910 
911 	err = del_mtd_partitions(master);
912 	if (err)
913 		return err;
914 
915 	if (!device_is_registered(&master->dev))
916 		return 0;
917 
918 	return del_mtd_device(master);
919 }
920 EXPORT_SYMBOL_GPL(mtd_device_unregister);
921 
922 /**
923  *	register_mtd_user - register a 'user' of MTD devices.
924  *	@new: pointer to notifier info structure
925  *
926  *	Registers a pair of callbacks function to be called upon addition
927  *	or removal of MTD devices. Causes the 'add' callback to be immediately
928  *	invoked for each MTD device currently present in the system.
929  */
register_mtd_user(struct mtd_notifier * new)930 void register_mtd_user (struct mtd_notifier *new)
931 {
932 	struct mtd_info *mtd;
933 
934 	mtd_table_mutex_lock();
935 
936 	list_add(&new->list, &mtd_notifiers);
937 
938 	__module_get(THIS_MODULE);
939 
940 	mtd_for_each_device(mtd)
941 		new->add(mtd);
942 
943 	mtd_table_mutex_unlock();
944 }
945 EXPORT_SYMBOL_GPL(register_mtd_user);
946 
947 /**
948  *	unregister_mtd_user - unregister a 'user' of MTD devices.
949  *	@old: pointer to notifier info structure
950  *
951  *	Removes a callback function pair from the list of 'users' to be
952  *	notified upon addition or removal of MTD devices. Causes the
953  *	'remove' callback to be immediately invoked for each MTD device
954  *	currently present in the system.
955  */
unregister_mtd_user(struct mtd_notifier * old)956 int unregister_mtd_user (struct mtd_notifier *old)
957 {
958 	struct mtd_info *mtd;
959 
960 	mtd_table_mutex_lock();
961 
962 	module_put(THIS_MODULE);
963 
964 	mtd_for_each_device(mtd)
965 		old->remove(mtd);
966 
967 	list_del(&old->list);
968 	mtd_table_mutex_unlock();
969 	return 0;
970 }
971 EXPORT_SYMBOL_GPL(unregister_mtd_user);
972 
973 /**
974  *	get_mtd_device - obtain a validated handle for an MTD device
975  *	@mtd: last known address of the required MTD device
976  *	@num: internal device number of the required MTD device
977  *
978  *	Given a number and NULL address, return the num'th entry in the device
979  *	table, if any.	Given an address and num == -1, search the device table
980  *	for a device with that address and return if it's still present. Given
981  *	both, return the num'th driver only if its address matches. Return
982  *	error code if not.
983  */
get_mtd_device(struct mtd_info * mtd,int num)984 struct mtd_info *get_mtd_device(struct mtd_info *mtd, int num)
985 {
986 	struct mtd_info *ret = NULL, *other;
987 	int err = -ENODEV;
988 
989 	mtd_table_mutex_lock();
990 
991 	if (num == -1) {
992 		mtd_for_each_device(other) {
993 			if (other == mtd) {
994 				ret = mtd;
995 				break;
996 			}
997 		}
998 	} else if (num >= 0) {
999 		ret = idr_find(&mtd_idr, num);
1000 		if (mtd && mtd != ret)
1001 			ret = NULL;
1002 	}
1003 
1004 	if (!ret) {
1005 		ret = ERR_PTR(err);
1006 		goto out;
1007 	}
1008 
1009 	err = __get_mtd_device(ret);
1010 	if (err)
1011 		ret = ERR_PTR(err);
1012 out:
1013 	mtd_table_mutex_unlock();
1014 	return ret;
1015 }
1016 EXPORT_SYMBOL_GPL(get_mtd_device);
1017 
1018 
__get_mtd_device(struct mtd_info * mtd)1019 int __get_mtd_device(struct mtd_info *mtd)
1020 {
1021 	struct mtd_info *master = mtd_get_master(mtd);
1022 	int err;
1023 
1024 	if (!try_module_get(master->owner))
1025 		return -ENODEV;
1026 
1027 	if (master->_get_device) {
1028 		err = master->_get_device(mtd);
1029 
1030 		if (err) {
1031 			module_put(master->owner);
1032 			return err;
1033 		}
1034 	}
1035 
1036 	master->usecount++;
1037 
1038 	while (mtd->parent) {
1039 		mtd->usecount++;
1040 		mtd = mtd->parent;
1041 	}
1042 
1043 	return 0;
1044 }
1045 EXPORT_SYMBOL_GPL(__get_mtd_device);
1046 
1047 /**
1048  *	get_mtd_device_nm - obtain a validated handle for an MTD device by
1049  *	device name
1050  *	@name: MTD device name to open
1051  *
1052  * 	This function returns MTD device description structure in case of
1053  * 	success and an error code in case of failure.
1054  */
get_mtd_device_nm(const char * name)1055 struct mtd_info *get_mtd_device_nm(const char *name)
1056 {
1057 	int err = -ENODEV;
1058 	struct mtd_info *mtd = NULL, *other;
1059 
1060 	mtd_table_mutex_lock();
1061 
1062 	mtd_for_each_device(other) {
1063 		if (!strcmp(name, other->name)) {
1064 			mtd = other;
1065 			break;
1066 		}
1067 	}
1068 
1069 	if (!mtd)
1070 		goto out_unlock;
1071 
1072 	err = __get_mtd_device(mtd);
1073 	if (err)
1074 		goto out_unlock;
1075 
1076 	mtd_table_mutex_unlock();
1077 	return mtd;
1078 
1079 out_unlock:
1080 	mtd_table_mutex_unlock();
1081 	return ERR_PTR(err);
1082 }
1083 EXPORT_SYMBOL_GPL(get_mtd_device_nm);
1084 
put_mtd_device(struct mtd_info * mtd)1085 void put_mtd_device(struct mtd_info *mtd)
1086 {
1087 	mtd_table_mutex_lock();
1088 	__put_mtd_device(mtd);
1089 	mtd_table_mutex_unlock();
1090 
1091 }
1092 EXPORT_SYMBOL_GPL(put_mtd_device);
1093 
__put_mtd_device(struct mtd_info * mtd)1094 void __put_mtd_device(struct mtd_info *mtd)
1095 {
1096 	struct mtd_info *master = mtd_get_master(mtd);
1097 
1098 	while (mtd->parent) {
1099 		--mtd->usecount;
1100 		BUG_ON(mtd->usecount < 0);
1101 		mtd = mtd->parent;
1102 	}
1103 
1104 	master->usecount--;
1105 
1106 	if (master->_put_device)
1107 		master->_put_device(master);
1108 
1109 	module_put(master->owner);
1110 }
1111 EXPORT_SYMBOL_GPL(__put_mtd_device);
1112 
1113 /*
1114  * Erase is an synchronous operation. Device drivers are epected to return a
1115  * negative error code if the operation failed and update instr->fail_addr
1116  * to point the portion that was not properly erased.
1117  */
mtd_erase(struct mtd_info * mtd,struct erase_info * instr)1118 int mtd_erase(struct mtd_info *mtd, struct erase_info *instr)
1119 {
1120 	struct mtd_info *master = mtd_get_master(mtd);
1121 	u64 mst_ofs = mtd_get_master_ofs(mtd, 0);
1122 	struct erase_info adjinstr;
1123 	int ret;
1124 
1125 	instr->fail_addr = MTD_FAIL_ADDR_UNKNOWN;
1126 	adjinstr = *instr;
1127 
1128 	if (!mtd->erasesize || !master->_erase)
1129 		return -ENOTSUPP;
1130 
1131 	if (instr->addr >= mtd->size || instr->len > mtd->size - instr->addr)
1132 		return -EINVAL;
1133 	if (!(mtd->flags & MTD_WRITEABLE))
1134 		return -EROFS;
1135 
1136 	if (!instr->len)
1137 		return 0;
1138 
1139 	ledtrig_mtd_activity();
1140 
1141 	if (mtd->flags & MTD_SLC_ON_MLC_EMULATION) {
1142 		adjinstr.addr = (loff_t)mtd_div_by_eb(instr->addr, mtd) *
1143 				master->erasesize;
1144 		adjinstr.len = ((u64)mtd_div_by_eb(instr->addr + instr->len, mtd) *
1145 				master->erasesize) -
1146 			       adjinstr.addr;
1147 	}
1148 
1149 	adjinstr.addr += mst_ofs;
1150 
1151 	ret = master->_erase(master, &adjinstr);
1152 
1153 	if (adjinstr.fail_addr != MTD_FAIL_ADDR_UNKNOWN) {
1154 		instr->fail_addr = adjinstr.fail_addr - mst_ofs;
1155 		if (mtd->flags & MTD_SLC_ON_MLC_EMULATION) {
1156 			instr->fail_addr = mtd_div_by_eb(instr->fail_addr,
1157 							 master);
1158 			instr->fail_addr *= mtd->erasesize;
1159 		}
1160 	}
1161 
1162 	return ret;
1163 }
1164 EXPORT_SYMBOL_GPL(mtd_erase);
1165 
1166 /*
1167  * This stuff for eXecute-In-Place. phys is optional and may be set to NULL.
1168  */
mtd_point(struct mtd_info * mtd,loff_t from,size_t len,size_t * retlen,void ** virt,resource_size_t * phys)1169 int mtd_point(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen,
1170 	      void **virt, resource_size_t *phys)
1171 {
1172 	struct mtd_info *master = mtd_get_master(mtd);
1173 
1174 	*retlen = 0;
1175 	*virt = NULL;
1176 	if (phys)
1177 		*phys = 0;
1178 	if (!master->_point)
1179 		return -EOPNOTSUPP;
1180 	if (from < 0 || from >= mtd->size || len > mtd->size - from)
1181 		return -EINVAL;
1182 	if (!len)
1183 		return 0;
1184 
1185 	from = mtd_get_master_ofs(mtd, from);
1186 	return master->_point(master, from, len, retlen, virt, phys);
1187 }
1188 EXPORT_SYMBOL_GPL(mtd_point);
1189 
1190 /* We probably shouldn't allow XIP if the unpoint isn't a NULL */
mtd_unpoint(struct mtd_info * mtd,loff_t from,size_t len)1191 int mtd_unpoint(struct mtd_info *mtd, loff_t from, size_t len)
1192 {
1193 	struct mtd_info *master = mtd_get_master(mtd);
1194 
1195 	if (!master->_unpoint)
1196 		return -EOPNOTSUPP;
1197 	if (from < 0 || from >= mtd->size || len > mtd->size - from)
1198 		return -EINVAL;
1199 	if (!len)
1200 		return 0;
1201 	return master->_unpoint(master, mtd_get_master_ofs(mtd, from), len);
1202 }
1203 EXPORT_SYMBOL_GPL(mtd_unpoint);
1204 
1205 /*
1206  * Allow NOMMU mmap() to directly map the device (if not NULL)
1207  * - return the address to which the offset maps
1208  * - return -ENOSYS to indicate refusal to do the mapping
1209  */
mtd_get_unmapped_area(struct mtd_info * mtd,unsigned long len,unsigned long offset,unsigned long flags)1210 unsigned long mtd_get_unmapped_area(struct mtd_info *mtd, unsigned long len,
1211 				    unsigned long offset, unsigned long flags)
1212 {
1213 	size_t retlen;
1214 	void *virt;
1215 	int ret;
1216 
1217 	ret = mtd_point(mtd, offset, len, &retlen, &virt, NULL);
1218 	if (ret)
1219 		return ret;
1220 	if (retlen != len) {
1221 		mtd_unpoint(mtd, offset, retlen);
1222 		return -ENOSYS;
1223 	}
1224 	return (unsigned long)virt;
1225 }
1226 EXPORT_SYMBOL_GPL(mtd_get_unmapped_area);
1227 
mtd_update_ecc_stats(struct mtd_info * mtd,struct mtd_info * master,const struct mtd_ecc_stats * old_stats)1228 static void mtd_update_ecc_stats(struct mtd_info *mtd, struct mtd_info *master,
1229 				 const struct mtd_ecc_stats *old_stats)
1230 {
1231 	struct mtd_ecc_stats diff;
1232 
1233 	if (master == mtd)
1234 		return;
1235 
1236 	diff = master->ecc_stats;
1237 	diff.failed -= old_stats->failed;
1238 	diff.corrected -= old_stats->corrected;
1239 
1240 	while (mtd->parent) {
1241 		mtd->ecc_stats.failed += diff.failed;
1242 		mtd->ecc_stats.corrected += diff.corrected;
1243 		mtd = mtd->parent;
1244 	}
1245 }
1246 
mtd_read(struct mtd_info * mtd,loff_t from,size_t len,size_t * retlen,u_char * buf)1247 int mtd_read(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen,
1248 	     u_char *buf)
1249 {
1250 	struct mtd_oob_ops ops = {
1251 		.len = len,
1252 		.datbuf = buf,
1253 	};
1254 	int ret;
1255 
1256 	ret = mtd_read_oob(mtd, from, &ops);
1257 	*retlen = ops.retlen;
1258 
1259 	return ret;
1260 }
1261 EXPORT_SYMBOL_GPL(mtd_read);
1262 
mtd_write(struct mtd_info * mtd,loff_t to,size_t len,size_t * retlen,const u_char * buf)1263 int mtd_write(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen,
1264 	      const u_char *buf)
1265 {
1266 	struct mtd_oob_ops ops = {
1267 		.len = len,
1268 		.datbuf = (u8 *)buf,
1269 	};
1270 	int ret;
1271 
1272 	ret = mtd_write_oob(mtd, to, &ops);
1273 	*retlen = ops.retlen;
1274 
1275 	return ret;
1276 }
1277 EXPORT_SYMBOL_GPL(mtd_write);
1278 
1279 /*
1280  * In blackbox flight recorder like scenarios we want to make successful writes
1281  * in interrupt context. panic_write() is only intended to be called when its
1282  * known the kernel is about to panic and we need the write to succeed. Since
1283  * the kernel is not going to be running for much longer, this function can
1284  * break locks and delay to ensure the write succeeds (but not sleep).
1285  */
mtd_panic_write(struct mtd_info * mtd,loff_t to,size_t len,size_t * retlen,const u_char * buf)1286 int mtd_panic_write(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen,
1287 		    const u_char *buf)
1288 {
1289 	struct mtd_info *master = mtd_get_master(mtd);
1290 
1291 	*retlen = 0;
1292 	if (!master->_panic_write)
1293 		return -EOPNOTSUPP;
1294 	if (to < 0 || to >= mtd->size || len > mtd->size - to)
1295 		return -EINVAL;
1296 	if (!(mtd->flags & MTD_WRITEABLE))
1297 		return -EROFS;
1298 	if (!len)
1299 		return 0;
1300 	if (!master->oops_panic_write)
1301 		master->oops_panic_write = true;
1302 
1303 	return master->_panic_write(master, mtd_get_master_ofs(mtd, to), len,
1304 				    retlen, buf);
1305 }
1306 EXPORT_SYMBOL_GPL(mtd_panic_write);
1307 
mtd_check_oob_ops(struct mtd_info * mtd,loff_t offs,struct mtd_oob_ops * ops)1308 static int mtd_check_oob_ops(struct mtd_info *mtd, loff_t offs,
1309 			     struct mtd_oob_ops *ops)
1310 {
1311 	/*
1312 	 * Some users are setting ->datbuf or ->oobbuf to NULL, but are leaving
1313 	 * ->len or ->ooblen uninitialized. Force ->len and ->ooblen to 0 in
1314 	 *  this case.
1315 	 */
1316 	if (!ops->datbuf)
1317 		ops->len = 0;
1318 
1319 	if (!ops->oobbuf)
1320 		ops->ooblen = 0;
1321 
1322 	if (offs < 0 || offs + ops->len > mtd->size)
1323 		return -EINVAL;
1324 
1325 	if (ops->ooblen) {
1326 		size_t maxooblen;
1327 
1328 		if (ops->ooboffs >= mtd_oobavail(mtd, ops))
1329 			return -EINVAL;
1330 
1331 		maxooblen = ((size_t)(mtd_div_by_ws(mtd->size, mtd) -
1332 				      mtd_div_by_ws(offs, mtd)) *
1333 			     mtd_oobavail(mtd, ops)) - ops->ooboffs;
1334 		if (ops->ooblen > maxooblen)
1335 			return -EINVAL;
1336 	}
1337 
1338 	return 0;
1339 }
1340 
mtd_read_oob_std(struct mtd_info * mtd,loff_t from,struct mtd_oob_ops * ops)1341 static int mtd_read_oob_std(struct mtd_info *mtd, loff_t from,
1342 			    struct mtd_oob_ops *ops)
1343 {
1344 	struct mtd_info *master = mtd_get_master(mtd);
1345 	int ret;
1346 
1347 	from = mtd_get_master_ofs(mtd, from);
1348 	if (master->_read_oob)
1349 		ret = master->_read_oob(master, from, ops);
1350 	else
1351 		ret = master->_read(master, from, ops->len, &ops->retlen,
1352 				    ops->datbuf);
1353 
1354 	return ret;
1355 }
1356 
mtd_write_oob_std(struct mtd_info * mtd,loff_t to,struct mtd_oob_ops * ops)1357 static int mtd_write_oob_std(struct mtd_info *mtd, loff_t to,
1358 			     struct mtd_oob_ops *ops)
1359 {
1360 	struct mtd_info *master = mtd_get_master(mtd);
1361 	int ret;
1362 
1363 	to = mtd_get_master_ofs(mtd, to);
1364 	if (master->_write_oob)
1365 		ret = master->_write_oob(master, to, ops);
1366 	else
1367 		ret = master->_write(master, to, ops->len, &ops->retlen,
1368 				     ops->datbuf);
1369 
1370 	return ret;
1371 }
1372 
mtd_io_emulated_slc(struct mtd_info * mtd,loff_t start,bool read,struct mtd_oob_ops * ops)1373 static int mtd_io_emulated_slc(struct mtd_info *mtd, loff_t start, bool read,
1374 			       struct mtd_oob_ops *ops)
1375 {
1376 	struct mtd_info *master = mtd_get_master(mtd);
1377 	int ngroups = mtd_pairing_groups(master);
1378 	int npairs = mtd_wunit_per_eb(master) / ngroups;
1379 	struct mtd_oob_ops adjops = *ops;
1380 	unsigned int wunit, oobavail;
1381 	struct mtd_pairing_info info;
1382 	int max_bitflips = 0;
1383 	u32 ebofs, pageofs;
1384 	loff_t base, pos;
1385 
1386 	ebofs = mtd_mod_by_eb(start, mtd);
1387 	base = (loff_t)mtd_div_by_eb(start, mtd) * master->erasesize;
1388 	info.group = 0;
1389 	info.pair = mtd_div_by_ws(ebofs, mtd);
1390 	pageofs = mtd_mod_by_ws(ebofs, mtd);
1391 	oobavail = mtd_oobavail(mtd, ops);
1392 
1393 	while (ops->retlen < ops->len || ops->oobretlen < ops->ooblen) {
1394 		int ret;
1395 
1396 		if (info.pair >= npairs) {
1397 			info.pair = 0;
1398 			base += master->erasesize;
1399 		}
1400 
1401 		wunit = mtd_pairing_info_to_wunit(master, &info);
1402 		pos = mtd_wunit_to_offset(mtd, base, wunit);
1403 
1404 		adjops.len = ops->len - ops->retlen;
1405 		if (adjops.len > mtd->writesize - pageofs)
1406 			adjops.len = mtd->writesize - pageofs;
1407 
1408 		adjops.ooblen = ops->ooblen - ops->oobretlen;
1409 		if (adjops.ooblen > oobavail - adjops.ooboffs)
1410 			adjops.ooblen = oobavail - adjops.ooboffs;
1411 
1412 		if (read) {
1413 			ret = mtd_read_oob_std(mtd, pos + pageofs, &adjops);
1414 			if (ret > 0)
1415 				max_bitflips = max(max_bitflips, ret);
1416 		} else {
1417 			ret = mtd_write_oob_std(mtd, pos + pageofs, &adjops);
1418 		}
1419 
1420 		if (ret < 0)
1421 			return ret;
1422 
1423 		max_bitflips = max(max_bitflips, ret);
1424 		ops->retlen += adjops.retlen;
1425 		ops->oobretlen += adjops.oobretlen;
1426 		adjops.datbuf += adjops.retlen;
1427 		adjops.oobbuf += adjops.oobretlen;
1428 		adjops.ooboffs = 0;
1429 		pageofs = 0;
1430 		info.pair++;
1431 	}
1432 
1433 	return max_bitflips;
1434 }
1435 
mtd_read_oob(struct mtd_info * mtd,loff_t from,struct mtd_oob_ops * ops)1436 int mtd_read_oob(struct mtd_info *mtd, loff_t from, struct mtd_oob_ops *ops)
1437 {
1438 	struct mtd_info *master = mtd_get_master(mtd);
1439 	struct mtd_ecc_stats old_stats = master->ecc_stats;
1440 	int ret_code;
1441 
1442 	ops->retlen = ops->oobretlen = 0;
1443 
1444 	ret_code = mtd_check_oob_ops(mtd, from, ops);
1445 	if (ret_code)
1446 		return ret_code;
1447 
1448 	ledtrig_mtd_activity();
1449 
1450 	/* Check the validity of a potential fallback on mtd->_read */
1451 	if (!master->_read_oob && (!master->_read || ops->oobbuf))
1452 		return -EOPNOTSUPP;
1453 
1454 	if (mtd->flags & MTD_SLC_ON_MLC_EMULATION)
1455 		ret_code = mtd_io_emulated_slc(mtd, from, true, ops);
1456 	else
1457 		ret_code = mtd_read_oob_std(mtd, from, ops);
1458 
1459 	mtd_update_ecc_stats(mtd, master, &old_stats);
1460 
1461 	/*
1462 	 * In cases where ops->datbuf != NULL, mtd->_read_oob() has semantics
1463 	 * similar to mtd->_read(), returning a non-negative integer
1464 	 * representing max bitflips. In other cases, mtd->_read_oob() may
1465 	 * return -EUCLEAN. In all cases, perform similar logic to mtd_read().
1466 	 */
1467 	if (unlikely(ret_code < 0))
1468 		return ret_code;
1469 	if (mtd->ecc_strength == 0)
1470 		return 0;	/* device lacks ecc */
1471 	return ret_code >= mtd->bitflip_threshold ? -EUCLEAN : 0;
1472 }
1473 EXPORT_SYMBOL_GPL(mtd_read_oob);
1474 
mtd_write_oob(struct mtd_info * mtd,loff_t to,struct mtd_oob_ops * ops)1475 int mtd_write_oob(struct mtd_info *mtd, loff_t to,
1476 				struct mtd_oob_ops *ops)
1477 {
1478 	struct mtd_info *master = mtd_get_master(mtd);
1479 	int ret;
1480 
1481 	ops->retlen = ops->oobretlen = 0;
1482 
1483 	if (!(mtd->flags & MTD_WRITEABLE))
1484 		return -EROFS;
1485 
1486 	ret = mtd_check_oob_ops(mtd, to, ops);
1487 	if (ret)
1488 		return ret;
1489 
1490 	ledtrig_mtd_activity();
1491 
1492 	/* Check the validity of a potential fallback on mtd->_write */
1493 	if (!master->_write_oob && (!master->_write || ops->oobbuf))
1494 		return -EOPNOTSUPP;
1495 
1496 	if (mtd->flags & MTD_SLC_ON_MLC_EMULATION)
1497 		return mtd_io_emulated_slc(mtd, to, false, ops);
1498 
1499 	return mtd_write_oob_std(mtd, to, ops);
1500 }
1501 EXPORT_SYMBOL_GPL(mtd_write_oob);
1502 
1503 /**
1504  * mtd_ooblayout_ecc - Get the OOB region definition of a specific ECC section
1505  * @mtd: MTD device structure
1506  * @section: ECC section. Depending on the layout you may have all the ECC
1507  *	     bytes stored in a single contiguous section, or one section
1508  *	     per ECC chunk (and sometime several sections for a single ECC
1509  *	     ECC chunk)
1510  * @oobecc: OOB region struct filled with the appropriate ECC position
1511  *	    information
1512  *
1513  * This function returns ECC section information in the OOB area. If you want
1514  * to get all the ECC bytes information, then you should call
1515  * mtd_ooblayout_ecc(mtd, section++, oobecc) until it returns -ERANGE.
1516  *
1517  * Returns zero on success, a negative error code otherwise.
1518  */
mtd_ooblayout_ecc(struct mtd_info * mtd,int section,struct mtd_oob_region * oobecc)1519 int mtd_ooblayout_ecc(struct mtd_info *mtd, int section,
1520 		      struct mtd_oob_region *oobecc)
1521 {
1522 	struct mtd_info *master = mtd_get_master(mtd);
1523 
1524 	memset(oobecc, 0, sizeof(*oobecc));
1525 
1526 	if (!master || section < 0)
1527 		return -EINVAL;
1528 
1529 	if (!master->ooblayout || !master->ooblayout->ecc)
1530 		return -ENOTSUPP;
1531 
1532 	return master->ooblayout->ecc(master, section, oobecc);
1533 }
1534 EXPORT_SYMBOL_GPL(mtd_ooblayout_ecc);
1535 
1536 /**
1537  * mtd_ooblayout_free - Get the OOB region definition of a specific free
1538  *			section
1539  * @mtd: MTD device structure
1540  * @section: Free section you are interested in. Depending on the layout
1541  *	     you may have all the free bytes stored in a single contiguous
1542  *	     section, or one section per ECC chunk plus an extra section
1543  *	     for the remaining bytes (or other funky layout).
1544  * @oobfree: OOB region struct filled with the appropriate free position
1545  *	     information
1546  *
1547  * This function returns free bytes position in the OOB area. If you want
1548  * to get all the free bytes information, then you should call
1549  * mtd_ooblayout_free(mtd, section++, oobfree) until it returns -ERANGE.
1550  *
1551  * Returns zero on success, a negative error code otherwise.
1552  */
mtd_ooblayout_free(struct mtd_info * mtd,int section,struct mtd_oob_region * oobfree)1553 int mtd_ooblayout_free(struct mtd_info *mtd, int section,
1554 		       struct mtd_oob_region *oobfree)
1555 {
1556 	struct mtd_info *master = mtd_get_master(mtd);
1557 
1558 	memset(oobfree, 0, sizeof(*oobfree));
1559 
1560 	if (!master || section < 0)
1561 		return -EINVAL;
1562 
1563 	if (!master->ooblayout || !master->ooblayout->free)
1564 		return -ENOTSUPP;
1565 
1566 	return master->ooblayout->free(master, section, oobfree);
1567 }
1568 EXPORT_SYMBOL_GPL(mtd_ooblayout_free);
1569 
1570 /**
1571  * mtd_ooblayout_find_region - Find the region attached to a specific byte
1572  * @mtd: mtd info structure
1573  * @byte: the byte we are searching for
1574  * @sectionp: pointer where the section id will be stored
1575  * @oobregion: used to retrieve the ECC position
1576  * @iter: iterator function. Should be either mtd_ooblayout_free or
1577  *	  mtd_ooblayout_ecc depending on the region type you're searching for
1578  *
1579  * This function returns the section id and oobregion information of a
1580  * specific byte. For example, say you want to know where the 4th ECC byte is
1581  * stored, you'll use:
1582  *
1583  * mtd_ooblayout_find_region(mtd, 3, &section, &oobregion, mtd_ooblayout_ecc);
1584  *
1585  * Returns zero on success, a negative error code otherwise.
1586  */
mtd_ooblayout_find_region(struct mtd_info * mtd,int byte,int * sectionp,struct mtd_oob_region * oobregion,int (* iter)(struct mtd_info *,int section,struct mtd_oob_region * oobregion))1587 static int mtd_ooblayout_find_region(struct mtd_info *mtd, int byte,
1588 				int *sectionp, struct mtd_oob_region *oobregion,
1589 				int (*iter)(struct mtd_info *,
1590 					    int section,
1591 					    struct mtd_oob_region *oobregion))
1592 {
1593 	int pos = 0, ret, section = 0;
1594 
1595 	memset(oobregion, 0, sizeof(*oobregion));
1596 
1597 	while (1) {
1598 		ret = iter(mtd, section, oobregion);
1599 		if (ret)
1600 			return ret;
1601 
1602 		if (pos + oobregion->length > byte)
1603 			break;
1604 
1605 		pos += oobregion->length;
1606 		section++;
1607 	}
1608 
1609 	/*
1610 	 * Adjust region info to make it start at the beginning at the
1611 	 * 'start' ECC byte.
1612 	 */
1613 	oobregion->offset += byte - pos;
1614 	oobregion->length -= byte - pos;
1615 	*sectionp = section;
1616 
1617 	return 0;
1618 }
1619 
1620 /**
1621  * mtd_ooblayout_find_eccregion - Find the ECC region attached to a specific
1622  *				  ECC byte
1623  * @mtd: mtd info structure
1624  * @eccbyte: the byte we are searching for
1625  * @sectionp: pointer where the section id will be stored
1626  * @oobregion: OOB region information
1627  *
1628  * Works like mtd_ooblayout_find_region() except it searches for a specific ECC
1629  * byte.
1630  *
1631  * Returns zero on success, a negative error code otherwise.
1632  */
mtd_ooblayout_find_eccregion(struct mtd_info * mtd,int eccbyte,int * section,struct mtd_oob_region * oobregion)1633 int mtd_ooblayout_find_eccregion(struct mtd_info *mtd, int eccbyte,
1634 				 int *section,
1635 				 struct mtd_oob_region *oobregion)
1636 {
1637 	return mtd_ooblayout_find_region(mtd, eccbyte, section, oobregion,
1638 					 mtd_ooblayout_ecc);
1639 }
1640 EXPORT_SYMBOL_GPL(mtd_ooblayout_find_eccregion);
1641 
1642 /**
1643  * mtd_ooblayout_get_bytes - Extract OOB bytes from the oob buffer
1644  * @mtd: mtd info structure
1645  * @buf: destination buffer to store OOB bytes
1646  * @oobbuf: OOB buffer
1647  * @start: first byte to retrieve
1648  * @nbytes: number of bytes to retrieve
1649  * @iter: section iterator
1650  *
1651  * Extract bytes attached to a specific category (ECC or free)
1652  * from the OOB buffer and copy them into buf.
1653  *
1654  * Returns zero on success, a negative error code otherwise.
1655  */
mtd_ooblayout_get_bytes(struct mtd_info * mtd,u8 * buf,const u8 * oobbuf,int start,int nbytes,int (* iter)(struct mtd_info *,int section,struct mtd_oob_region * oobregion))1656 static int mtd_ooblayout_get_bytes(struct mtd_info *mtd, u8 *buf,
1657 				const u8 *oobbuf, int start, int nbytes,
1658 				int (*iter)(struct mtd_info *,
1659 					    int section,
1660 					    struct mtd_oob_region *oobregion))
1661 {
1662 	struct mtd_oob_region oobregion;
1663 	int section, ret;
1664 
1665 	ret = mtd_ooblayout_find_region(mtd, start, &section,
1666 					&oobregion, iter);
1667 
1668 	while (!ret) {
1669 		int cnt;
1670 
1671 		cnt = min_t(int, nbytes, oobregion.length);
1672 		memcpy(buf, oobbuf + oobregion.offset, cnt);
1673 		buf += cnt;
1674 		nbytes -= cnt;
1675 
1676 		if (!nbytes)
1677 			break;
1678 
1679 		ret = iter(mtd, ++section, &oobregion);
1680 	}
1681 
1682 	return ret;
1683 }
1684 
1685 /**
1686  * mtd_ooblayout_set_bytes - put OOB bytes into the oob buffer
1687  * @mtd: mtd info structure
1688  * @buf: source buffer to get OOB bytes from
1689  * @oobbuf: OOB buffer
1690  * @start: first OOB byte to set
1691  * @nbytes: number of OOB bytes to set
1692  * @iter: section iterator
1693  *
1694  * Fill the OOB buffer with data provided in buf. The category (ECC or free)
1695  * is selected by passing the appropriate iterator.
1696  *
1697  * Returns zero on success, a negative error code otherwise.
1698  */
mtd_ooblayout_set_bytes(struct mtd_info * mtd,const u8 * buf,u8 * oobbuf,int start,int nbytes,int (* iter)(struct mtd_info *,int section,struct mtd_oob_region * oobregion))1699 static int mtd_ooblayout_set_bytes(struct mtd_info *mtd, const u8 *buf,
1700 				u8 *oobbuf, int start, int nbytes,
1701 				int (*iter)(struct mtd_info *,
1702 					    int section,
1703 					    struct mtd_oob_region *oobregion))
1704 {
1705 	struct mtd_oob_region oobregion;
1706 	int section, ret;
1707 
1708 	ret = mtd_ooblayout_find_region(mtd, start, &section,
1709 					&oobregion, iter);
1710 
1711 	while (!ret) {
1712 		int cnt;
1713 
1714 		cnt = min_t(int, nbytes, oobregion.length);
1715 		memcpy(oobbuf + oobregion.offset, buf, cnt);
1716 		buf += cnt;
1717 		nbytes -= cnt;
1718 
1719 		if (!nbytes)
1720 			break;
1721 
1722 		ret = iter(mtd, ++section, &oobregion);
1723 	}
1724 
1725 	return ret;
1726 }
1727 
1728 /**
1729  * mtd_ooblayout_count_bytes - count the number of bytes in a OOB category
1730  * @mtd: mtd info structure
1731  * @iter: category iterator
1732  *
1733  * Count the number of bytes in a given category.
1734  *
1735  * Returns a positive value on success, a negative error code otherwise.
1736  */
mtd_ooblayout_count_bytes(struct mtd_info * mtd,int (* iter)(struct mtd_info *,int section,struct mtd_oob_region * oobregion))1737 static int mtd_ooblayout_count_bytes(struct mtd_info *mtd,
1738 				int (*iter)(struct mtd_info *,
1739 					    int section,
1740 					    struct mtd_oob_region *oobregion))
1741 {
1742 	struct mtd_oob_region oobregion;
1743 	int section = 0, ret, nbytes = 0;
1744 
1745 	while (1) {
1746 		ret = iter(mtd, section++, &oobregion);
1747 		if (ret) {
1748 			if (ret == -ERANGE)
1749 				ret = nbytes;
1750 			break;
1751 		}
1752 
1753 		nbytes += oobregion.length;
1754 	}
1755 
1756 	return ret;
1757 }
1758 
1759 /**
1760  * mtd_ooblayout_get_eccbytes - extract ECC bytes from the oob buffer
1761  * @mtd: mtd info structure
1762  * @eccbuf: destination buffer to store ECC bytes
1763  * @oobbuf: OOB buffer
1764  * @start: first ECC byte to retrieve
1765  * @nbytes: number of ECC bytes to retrieve
1766  *
1767  * Works like mtd_ooblayout_get_bytes(), except it acts on ECC bytes.
1768  *
1769  * Returns zero on success, a negative error code otherwise.
1770  */
mtd_ooblayout_get_eccbytes(struct mtd_info * mtd,u8 * eccbuf,const u8 * oobbuf,int start,int nbytes)1771 int mtd_ooblayout_get_eccbytes(struct mtd_info *mtd, u8 *eccbuf,
1772 			       const u8 *oobbuf, int start, int nbytes)
1773 {
1774 	return mtd_ooblayout_get_bytes(mtd, eccbuf, oobbuf, start, nbytes,
1775 				       mtd_ooblayout_ecc);
1776 }
1777 EXPORT_SYMBOL_GPL(mtd_ooblayout_get_eccbytes);
1778 
1779 /**
1780  * mtd_ooblayout_set_eccbytes - set ECC bytes into the oob buffer
1781  * @mtd: mtd info structure
1782  * @eccbuf: source buffer to get ECC bytes from
1783  * @oobbuf: OOB buffer
1784  * @start: first ECC byte to set
1785  * @nbytes: number of ECC bytes to set
1786  *
1787  * Works like mtd_ooblayout_set_bytes(), except it acts on ECC bytes.
1788  *
1789  * Returns zero on success, a negative error code otherwise.
1790  */
mtd_ooblayout_set_eccbytes(struct mtd_info * mtd,const u8 * eccbuf,u8 * oobbuf,int start,int nbytes)1791 int mtd_ooblayout_set_eccbytes(struct mtd_info *mtd, const u8 *eccbuf,
1792 			       u8 *oobbuf, int start, int nbytes)
1793 {
1794 	return mtd_ooblayout_set_bytes(mtd, eccbuf, oobbuf, start, nbytes,
1795 				       mtd_ooblayout_ecc);
1796 }
1797 EXPORT_SYMBOL_GPL(mtd_ooblayout_set_eccbytes);
1798 
1799 /**
1800  * mtd_ooblayout_get_databytes - extract data bytes from the oob buffer
1801  * @mtd: mtd info structure
1802  * @databuf: destination buffer to store ECC bytes
1803  * @oobbuf: OOB buffer
1804  * @start: first ECC byte to retrieve
1805  * @nbytes: number of ECC bytes to retrieve
1806  *
1807  * Works like mtd_ooblayout_get_bytes(), except it acts on free bytes.
1808  *
1809  * Returns zero on success, a negative error code otherwise.
1810  */
mtd_ooblayout_get_databytes(struct mtd_info * mtd,u8 * databuf,const u8 * oobbuf,int start,int nbytes)1811 int mtd_ooblayout_get_databytes(struct mtd_info *mtd, u8 *databuf,
1812 				const u8 *oobbuf, int start, int nbytes)
1813 {
1814 	return mtd_ooblayout_get_bytes(mtd, databuf, oobbuf, start, nbytes,
1815 				       mtd_ooblayout_free);
1816 }
1817 EXPORT_SYMBOL_GPL(mtd_ooblayout_get_databytes);
1818 
1819 /**
1820  * mtd_ooblayout_set_databytes - set data bytes into the oob buffer
1821  * @mtd: mtd info structure
1822  * @databuf: source buffer to get data bytes from
1823  * @oobbuf: OOB buffer
1824  * @start: first ECC byte to set
1825  * @nbytes: number of ECC bytes to set
1826  *
1827  * Works like mtd_ooblayout_set_bytes(), except it acts on free bytes.
1828  *
1829  * Returns zero on success, a negative error code otherwise.
1830  */
mtd_ooblayout_set_databytes(struct mtd_info * mtd,const u8 * databuf,u8 * oobbuf,int start,int nbytes)1831 int mtd_ooblayout_set_databytes(struct mtd_info *mtd, const u8 *databuf,
1832 				u8 *oobbuf, int start, int nbytes)
1833 {
1834 	return mtd_ooblayout_set_bytes(mtd, databuf, oobbuf, start, nbytes,
1835 				       mtd_ooblayout_free);
1836 }
1837 EXPORT_SYMBOL_GPL(mtd_ooblayout_set_databytes);
1838 
1839 /**
1840  * mtd_ooblayout_count_freebytes - count the number of free bytes in OOB
1841  * @mtd: mtd info structure
1842  *
1843  * Works like mtd_ooblayout_count_bytes(), except it count free bytes.
1844  *
1845  * Returns zero on success, a negative error code otherwise.
1846  */
mtd_ooblayout_count_freebytes(struct mtd_info * mtd)1847 int mtd_ooblayout_count_freebytes(struct mtd_info *mtd)
1848 {
1849 	return mtd_ooblayout_count_bytes(mtd, mtd_ooblayout_free);
1850 }
1851 EXPORT_SYMBOL_GPL(mtd_ooblayout_count_freebytes);
1852 
1853 /**
1854  * mtd_ooblayout_count_eccbytes - count the number of ECC bytes in OOB
1855  * @mtd: mtd info structure
1856  *
1857  * Works like mtd_ooblayout_count_bytes(), except it count ECC bytes.
1858  *
1859  * Returns zero on success, a negative error code otherwise.
1860  */
mtd_ooblayout_count_eccbytes(struct mtd_info * mtd)1861 int mtd_ooblayout_count_eccbytes(struct mtd_info *mtd)
1862 {
1863 	return mtd_ooblayout_count_bytes(mtd, mtd_ooblayout_ecc);
1864 }
1865 EXPORT_SYMBOL_GPL(mtd_ooblayout_count_eccbytes);
1866 
1867 /*
1868  * Method to access the protection register area, present in some flash
1869  * devices. The user data is one time programmable but the factory data is read
1870  * only.
1871  */
mtd_get_fact_prot_info(struct mtd_info * mtd,size_t len,size_t * retlen,struct otp_info * buf)1872 int mtd_get_fact_prot_info(struct mtd_info *mtd, size_t len, size_t *retlen,
1873 			   struct otp_info *buf)
1874 {
1875 	struct mtd_info *master = mtd_get_master(mtd);
1876 
1877 	if (!master->_get_fact_prot_info)
1878 		return -EOPNOTSUPP;
1879 	if (!len)
1880 		return 0;
1881 	return master->_get_fact_prot_info(master, len, retlen, buf);
1882 }
1883 EXPORT_SYMBOL_GPL(mtd_get_fact_prot_info);
1884 
mtd_read_fact_prot_reg(struct mtd_info * mtd,loff_t from,size_t len,size_t * retlen,u_char * buf)1885 int mtd_read_fact_prot_reg(struct mtd_info *mtd, loff_t from, size_t len,
1886 			   size_t *retlen, u_char *buf)
1887 {
1888 	struct mtd_info *master = mtd_get_master(mtd);
1889 
1890 	*retlen = 0;
1891 	if (!master->_read_fact_prot_reg)
1892 		return -EOPNOTSUPP;
1893 	if (!len)
1894 		return 0;
1895 	return master->_read_fact_prot_reg(master, from, len, retlen, buf);
1896 }
1897 EXPORT_SYMBOL_GPL(mtd_read_fact_prot_reg);
1898 
mtd_get_user_prot_info(struct mtd_info * mtd,size_t len,size_t * retlen,struct otp_info * buf)1899 int mtd_get_user_prot_info(struct mtd_info *mtd, size_t len, size_t *retlen,
1900 			   struct otp_info *buf)
1901 {
1902 	struct mtd_info *master = mtd_get_master(mtd);
1903 
1904 	if (!master->_get_user_prot_info)
1905 		return -EOPNOTSUPP;
1906 	if (!len)
1907 		return 0;
1908 	return master->_get_user_prot_info(master, len, retlen, buf);
1909 }
1910 EXPORT_SYMBOL_GPL(mtd_get_user_prot_info);
1911 
mtd_read_user_prot_reg(struct mtd_info * mtd,loff_t from,size_t len,size_t * retlen,u_char * buf)1912 int mtd_read_user_prot_reg(struct mtd_info *mtd, loff_t from, size_t len,
1913 			   size_t *retlen, u_char *buf)
1914 {
1915 	struct mtd_info *master = mtd_get_master(mtd);
1916 
1917 	*retlen = 0;
1918 	if (!master->_read_user_prot_reg)
1919 		return -EOPNOTSUPP;
1920 	if (!len)
1921 		return 0;
1922 	return master->_read_user_prot_reg(master, from, len, retlen, buf);
1923 }
1924 EXPORT_SYMBOL_GPL(mtd_read_user_prot_reg);
1925 
mtd_write_user_prot_reg(struct mtd_info * mtd,loff_t to,size_t len,size_t * retlen,u_char * buf)1926 int mtd_write_user_prot_reg(struct mtd_info *mtd, loff_t to, size_t len,
1927 			    size_t *retlen, u_char *buf)
1928 {
1929 	struct mtd_info *master = mtd_get_master(mtd);
1930 	int ret;
1931 
1932 	*retlen = 0;
1933 	if (!master->_write_user_prot_reg)
1934 		return -EOPNOTSUPP;
1935 	if (!len)
1936 		return 0;
1937 	ret = master->_write_user_prot_reg(master, to, len, retlen, buf);
1938 	if (ret)
1939 		return ret;
1940 
1941 	/*
1942 	 * If no data could be written at all, we are out of memory and
1943 	 * must return -ENOSPC.
1944 	 */
1945 	return (*retlen) ? 0 : -ENOSPC;
1946 }
1947 EXPORT_SYMBOL_GPL(mtd_write_user_prot_reg);
1948 
mtd_lock_user_prot_reg(struct mtd_info * mtd,loff_t from,size_t len)1949 int mtd_lock_user_prot_reg(struct mtd_info *mtd, loff_t from, size_t len)
1950 {
1951 	struct mtd_info *master = mtd_get_master(mtd);
1952 
1953 	if (!master->_lock_user_prot_reg)
1954 		return -EOPNOTSUPP;
1955 	if (!len)
1956 		return 0;
1957 	return master->_lock_user_prot_reg(master, from, len);
1958 }
1959 EXPORT_SYMBOL_GPL(mtd_lock_user_prot_reg);
1960 
1961 /* Chip-supported device locking */
mtd_lock(struct mtd_info * mtd,loff_t ofs,uint64_t len)1962 int mtd_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
1963 {
1964 	struct mtd_info *master = mtd_get_master(mtd);
1965 
1966 	if (!master->_lock)
1967 		return -EOPNOTSUPP;
1968 	if (ofs < 0 || ofs >= mtd->size || len > mtd->size - ofs)
1969 		return -EINVAL;
1970 	if (!len)
1971 		return 0;
1972 
1973 	if (mtd->flags & MTD_SLC_ON_MLC_EMULATION) {
1974 		ofs = (loff_t)mtd_div_by_eb(ofs, mtd) * master->erasesize;
1975 		len = (u64)mtd_div_by_eb(len, mtd) * master->erasesize;
1976 	}
1977 
1978 	return master->_lock(master, mtd_get_master_ofs(mtd, ofs), len);
1979 }
1980 EXPORT_SYMBOL_GPL(mtd_lock);
1981 
mtd_unlock(struct mtd_info * mtd,loff_t ofs,uint64_t len)1982 int mtd_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
1983 {
1984 	struct mtd_info *master = mtd_get_master(mtd);
1985 
1986 	if (!master->_unlock)
1987 		return -EOPNOTSUPP;
1988 	if (ofs < 0 || ofs >= mtd->size || len > mtd->size - ofs)
1989 		return -EINVAL;
1990 	if (!len)
1991 		return 0;
1992 
1993 	if (mtd->flags & MTD_SLC_ON_MLC_EMULATION) {
1994 		ofs = (loff_t)mtd_div_by_eb(ofs, mtd) * master->erasesize;
1995 		len = (u64)mtd_div_by_eb(len, mtd) * master->erasesize;
1996 	}
1997 
1998 	return master->_unlock(master, mtd_get_master_ofs(mtd, ofs), len);
1999 }
2000 EXPORT_SYMBOL_GPL(mtd_unlock);
2001 
mtd_is_locked(struct mtd_info * mtd,loff_t ofs,uint64_t len)2002 int mtd_is_locked(struct mtd_info *mtd, loff_t ofs, uint64_t len)
2003 {
2004 	struct mtd_info *master = mtd_get_master(mtd);
2005 
2006 	if (!master->_is_locked)
2007 		return -EOPNOTSUPP;
2008 	if (ofs < 0 || ofs >= mtd->size || len > mtd->size - ofs)
2009 		return -EINVAL;
2010 	if (!len)
2011 		return 0;
2012 
2013 	if (mtd->flags & MTD_SLC_ON_MLC_EMULATION) {
2014 		ofs = (loff_t)mtd_div_by_eb(ofs, mtd) * master->erasesize;
2015 		len = (u64)mtd_div_by_eb(len, mtd) * master->erasesize;
2016 	}
2017 
2018 	return master->_is_locked(master, mtd_get_master_ofs(mtd, ofs), len);
2019 }
2020 EXPORT_SYMBOL_GPL(mtd_is_locked);
2021 
mtd_block_isreserved(struct mtd_info * mtd,loff_t ofs)2022 int mtd_block_isreserved(struct mtd_info *mtd, loff_t ofs)
2023 {
2024 	struct mtd_info *master = mtd_get_master(mtd);
2025 
2026 	if (ofs < 0 || ofs >= mtd->size)
2027 		return -EINVAL;
2028 	if (!master->_block_isreserved)
2029 		return 0;
2030 
2031 	if (mtd->flags & MTD_SLC_ON_MLC_EMULATION)
2032 		ofs = (loff_t)mtd_div_by_eb(ofs, mtd) * master->erasesize;
2033 
2034 	return master->_block_isreserved(master, mtd_get_master_ofs(mtd, ofs));
2035 }
2036 EXPORT_SYMBOL_GPL(mtd_block_isreserved);
2037 
mtd_block_isbad(struct mtd_info * mtd,loff_t ofs)2038 int mtd_block_isbad(struct mtd_info *mtd, loff_t ofs)
2039 {
2040 	struct mtd_info *master = mtd_get_master(mtd);
2041 
2042 	if (ofs < 0 || ofs >= mtd->size)
2043 		return -EINVAL;
2044 	if (!master->_block_isbad)
2045 		return 0;
2046 
2047 	if (mtd->flags & MTD_SLC_ON_MLC_EMULATION)
2048 		ofs = (loff_t)mtd_div_by_eb(ofs, mtd) * master->erasesize;
2049 
2050 	return master->_block_isbad(master, mtd_get_master_ofs(mtd, ofs));
2051 }
2052 EXPORT_SYMBOL_GPL(mtd_block_isbad);
2053 
mtd_block_markbad(struct mtd_info * mtd,loff_t ofs)2054 int mtd_block_markbad(struct mtd_info *mtd, loff_t ofs)
2055 {
2056 	struct mtd_info *master = mtd_get_master(mtd);
2057 	int ret;
2058 
2059 	if (!master->_block_markbad)
2060 		return -EOPNOTSUPP;
2061 	if (ofs < 0 || ofs >= mtd->size)
2062 		return -EINVAL;
2063 	if (!(mtd->flags & MTD_WRITEABLE))
2064 		return -EROFS;
2065 
2066 	if (mtd->flags & MTD_SLC_ON_MLC_EMULATION)
2067 		ofs = (loff_t)mtd_div_by_eb(ofs, mtd) * master->erasesize;
2068 
2069 	ret = master->_block_markbad(master, mtd_get_master_ofs(mtd, ofs));
2070 	if (ret)
2071 		return ret;
2072 
2073 	while (mtd->parent) {
2074 		mtd->ecc_stats.badblocks++;
2075 		mtd = mtd->parent;
2076 	}
2077 
2078 	return 0;
2079 }
2080 EXPORT_SYMBOL_GPL(mtd_block_markbad);
2081 
2082 /*
2083  * default_mtd_writev - the default writev method
2084  * @mtd: mtd device description object pointer
2085  * @vecs: the vectors to write
2086  * @count: count of vectors in @vecs
2087  * @to: the MTD device offset to write to
2088  * @retlen: on exit contains the count of bytes written to the MTD device.
2089  *
2090  * This function returns zero in case of success and a negative error code in
2091  * case of failure.
2092  */
default_mtd_writev(struct mtd_info * mtd,const struct kvec * vecs,unsigned long count,loff_t to,size_t * retlen)2093 static int default_mtd_writev(struct mtd_info *mtd, const struct kvec *vecs,
2094 			      unsigned long count, loff_t to, size_t *retlen)
2095 {
2096 	unsigned long i;
2097 	size_t totlen = 0, thislen;
2098 	int ret = 0;
2099 
2100 	for (i = 0; i < count; i++) {
2101 		if (!vecs[i].iov_len)
2102 			continue;
2103 		ret = mtd_write(mtd, to, vecs[i].iov_len, &thislen,
2104 				vecs[i].iov_base);
2105 		totlen += thislen;
2106 		if (ret || thislen != vecs[i].iov_len)
2107 			break;
2108 		to += vecs[i].iov_len;
2109 	}
2110 	*retlen = totlen;
2111 	return ret;
2112 }
2113 
2114 /*
2115  * mtd_writev - the vector-based MTD write method
2116  * @mtd: mtd device description object pointer
2117  * @vecs: the vectors to write
2118  * @count: count of vectors in @vecs
2119  * @to: the MTD device offset to write to
2120  * @retlen: on exit contains the count of bytes written to the MTD device.
2121  *
2122  * This function returns zero in case of success and a negative error code in
2123  * case of failure.
2124  */
mtd_writev(struct mtd_info * mtd,const struct kvec * vecs,unsigned long count,loff_t to,size_t * retlen)2125 int mtd_writev(struct mtd_info *mtd, const struct kvec *vecs,
2126 	       unsigned long count, loff_t to, size_t *retlen)
2127 {
2128 	struct mtd_info *master = mtd_get_master(mtd);
2129 
2130 	*retlen = 0;
2131 	if (!(mtd->flags & MTD_WRITEABLE))
2132 		return -EROFS;
2133 
2134 	if (!master->_writev)
2135 		return default_mtd_writev(mtd, vecs, count, to, retlen);
2136 
2137 	return master->_writev(master, vecs, count,
2138 			       mtd_get_master_ofs(mtd, to), retlen);
2139 }
2140 EXPORT_SYMBOL_GPL(mtd_writev);
2141 
2142 /**
2143  * mtd_kmalloc_up_to - allocate a contiguous buffer up to the specified size
2144  * @mtd: mtd device description object pointer
2145  * @size: a pointer to the ideal or maximum size of the allocation, points
2146  *        to the actual allocation size on success.
2147  *
2148  * This routine attempts to allocate a contiguous kernel buffer up to
2149  * the specified size, backing off the size of the request exponentially
2150  * until the request succeeds or until the allocation size falls below
2151  * the system page size. This attempts to make sure it does not adversely
2152  * impact system performance, so when allocating more than one page, we
2153  * ask the memory allocator to avoid re-trying, swapping, writing back
2154  * or performing I/O.
2155  *
2156  * Note, this function also makes sure that the allocated buffer is aligned to
2157  * the MTD device's min. I/O unit, i.e. the "mtd->writesize" value.
2158  *
2159  * This is called, for example by mtd_{read,write} and jffs2_scan_medium,
2160  * to handle smaller (i.e. degraded) buffer allocations under low- or
2161  * fragmented-memory situations where such reduced allocations, from a
2162  * requested ideal, are allowed.
2163  *
2164  * Returns a pointer to the allocated buffer on success; otherwise, NULL.
2165  */
mtd_kmalloc_up_to(const struct mtd_info * mtd,size_t * size)2166 void *mtd_kmalloc_up_to(const struct mtd_info *mtd, size_t *size)
2167 {
2168 	gfp_t flags = __GFP_NOWARN | __GFP_DIRECT_RECLAIM | __GFP_NORETRY;
2169 	size_t min_alloc = max_t(size_t, mtd->writesize, PAGE_SIZE);
2170 	void *kbuf;
2171 
2172 	*size = min_t(size_t, *size, KMALLOC_MAX_SIZE);
2173 
2174 	while (*size > min_alloc) {
2175 		kbuf = kmalloc(*size, flags);
2176 		if (kbuf)
2177 			return kbuf;
2178 
2179 		*size >>= 1;
2180 		*size = ALIGN(*size, mtd->writesize);
2181 	}
2182 
2183 	/*
2184 	 * For the last resort allocation allow 'kmalloc()' to do all sorts of
2185 	 * things (write-back, dropping caches, etc) by using GFP_KERNEL.
2186 	 */
2187 	return kmalloc(*size, GFP_KERNEL);
2188 }
2189 EXPORT_SYMBOL_GPL(mtd_kmalloc_up_to);
2190 
2191 #ifdef CONFIG_PROC_FS
2192 
2193 /*====================================================================*/
2194 /* Support for /proc/mtd */
2195 
mtd_proc_show(struct seq_file * m,void * v)2196 static int mtd_proc_show(struct seq_file *m, void *v)
2197 {
2198 	struct mtd_info *mtd;
2199 
2200 	seq_puts(m, "dev:    size   erasesize  name\n");
2201 	mtd_table_mutex_lock();
2202 	mtd_for_each_device(mtd) {
2203 		seq_printf(m, "mtd%d: %8.8llx %8.8x \"%s\"\n",
2204 			   mtd->index, (unsigned long long)mtd->size,
2205 			   mtd->erasesize, mtd->name);
2206 	}
2207 	mtd_table_mutex_unlock();
2208 	return 0;
2209 }
2210 #endif /* CONFIG_PROC_FS */
2211 
2212 /*====================================================================*/
2213 /* Init code */
2214 
mtd_bdi_init(char * name)2215 static struct backing_dev_info * __init mtd_bdi_init(char *name)
2216 {
2217 	struct backing_dev_info *bdi;
2218 	int ret;
2219 
2220 	bdi = bdi_alloc(NUMA_NO_NODE);
2221 	if (!bdi)
2222 		return ERR_PTR(-ENOMEM);
2223 	bdi->ra_pages = 0;
2224 	bdi->io_pages = 0;
2225 
2226 	/*
2227 	 * We put '-0' suffix to the name to get the same name format as we
2228 	 * used to get. Since this is called only once, we get a unique name.
2229 	 */
2230 	ret = bdi_register(bdi, "%.28s-0", name);
2231 	if (ret)
2232 		bdi_put(bdi);
2233 
2234 	return ret ? ERR_PTR(ret) : bdi;
2235 }
2236 
2237 static struct proc_dir_entry *proc_mtd;
2238 
init_mtd(void)2239 static int __init init_mtd(void)
2240 {
2241 	int ret;
2242 
2243 	ret = class_register(&mtd_class);
2244 	if (ret)
2245 		goto err_reg;
2246 
2247 	mtd_bdi = mtd_bdi_init("mtd");
2248 	if (IS_ERR(mtd_bdi)) {
2249 		ret = PTR_ERR(mtd_bdi);
2250 		goto err_bdi;
2251 	}
2252 
2253 	proc_mtd = proc_create_single("mtd", 0, NULL, mtd_proc_show);
2254 
2255 	ret = init_mtdchar();
2256 	if (ret)
2257 		goto out_procfs;
2258 
2259 	dfs_dir_mtd = debugfs_create_dir("mtd", NULL);
2260 
2261 	return 0;
2262 
2263 out_procfs:
2264 	if (proc_mtd)
2265 		remove_proc_entry("mtd", NULL);
2266 	bdi_put(mtd_bdi);
2267 err_bdi:
2268 	class_unregister(&mtd_class);
2269 err_reg:
2270 	pr_err("Error registering mtd class or bdi: %d\n", ret);
2271 	return ret;
2272 }
2273 
cleanup_mtd(void)2274 static void __exit cleanup_mtd(void)
2275 {
2276 	debugfs_remove_recursive(dfs_dir_mtd);
2277 	cleanup_mtdchar();
2278 	if (proc_mtd)
2279 		remove_proc_entry("mtd", NULL);
2280 	class_unregister(&mtd_class);
2281 	bdi_put(mtd_bdi);
2282 	idr_destroy(&mtd_idr);
2283 }
2284 
2285 module_init(init_mtd);
2286 module_exit(cleanup_mtd);
2287 
2288 MODULE_LICENSE("GPL");
2289 MODULE_AUTHOR("David Woodhouse <dwmw2@infradead.org>");
2290 MODULE_DESCRIPTION("Core MTD registration and access routines");
2291