1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * Core registration and callback routines for MTD
4 * drivers and users.
5 *
6 * Copyright © 1999-2010 David Woodhouse <dwmw2@infradead.org>
7 * Copyright © 2006 Red Hat UK Limited
8 */
9
10 #include <linux/module.h>
11 #include <linux/kernel.h>
12 #include <linux/ptrace.h>
13 #include <linux/seq_file.h>
14 #include <linux/string.h>
15 #include <linux/timer.h>
16 #include <linux/major.h>
17 #include <linux/fs.h>
18 #include <linux/err.h>
19 #include <linux/ioctl.h>
20 #include <linux/init.h>
21 #include <linux/of.h>
22 #include <linux/proc_fs.h>
23 #include <linux/idr.h>
24 #include <linux/backing-dev.h>
25 #include <linux/gfp.h>
26 #include <linux/slab.h>
27 #include <linux/reboot.h>
28 #include <linux/leds.h>
29 #include <linux/debugfs.h>
30 #include <linux/nvmem-provider.h>
31
32 #include <linux/mtd/mtd.h>
33 #include <linux/mtd/partitions.h>
34
35 #include "mtdcore.h"
36
37 struct backing_dev_info *mtd_bdi;
38
39 #ifdef CONFIG_PM_SLEEP
40
mtd_cls_suspend(struct device * dev)41 static int mtd_cls_suspend(struct device *dev)
42 {
43 struct mtd_info *mtd = dev_get_drvdata(dev);
44
45 return mtd ? mtd_suspend(mtd) : 0;
46 }
47
mtd_cls_resume(struct device * dev)48 static int mtd_cls_resume(struct device *dev)
49 {
50 struct mtd_info *mtd = dev_get_drvdata(dev);
51
52 if (mtd)
53 mtd_resume(mtd);
54 return 0;
55 }
56
57 static SIMPLE_DEV_PM_OPS(mtd_cls_pm_ops, mtd_cls_suspend, mtd_cls_resume);
58 #define MTD_CLS_PM_OPS (&mtd_cls_pm_ops)
59 #else
60 #define MTD_CLS_PM_OPS NULL
61 #endif
62
63 static struct class mtd_class = {
64 .name = "mtd",
65 .owner = THIS_MODULE,
66 .pm = MTD_CLS_PM_OPS,
67 };
68
69 static DEFINE_IDR(mtd_idr);
70
71 /* These are exported solely for the purpose of mtd_blkdevs.c. You
72 should not use them for _anything_ else */
73 static DEFINE_MUTEX(mtd_table_mutex);
74 static int mtd_table_mutex_depth;
75 static struct task_struct *mtd_table_mutex_owner;
76
__mtd_next_device(int i)77 struct mtd_info *__mtd_next_device(int i)
78 {
79 return idr_get_next(&mtd_idr, &i);
80 }
81 EXPORT_SYMBOL_GPL(__mtd_next_device);
82
83 static LIST_HEAD(mtd_notifiers);
84
85
86 #define MTD_DEVT(index) MKDEV(MTD_CHAR_MAJOR, (index)*2)
87
mtd_table_mutex_lock(void)88 void mtd_table_mutex_lock(void)
89 {
90 if (mtd_table_mutex_owner != current) {
91 mutex_lock(&mtd_table_mutex);
92 mtd_table_mutex_owner = current;
93 }
94 mtd_table_mutex_depth++;
95 }
96 EXPORT_SYMBOL_GPL(mtd_table_mutex_lock);
97
98
mtd_table_mutex_unlock(void)99 void mtd_table_mutex_unlock(void)
100 {
101 if (mtd_table_mutex_owner != current) {
102 pr_err("MTD:lock_owner is %s, but current is %s\n",
103 mtd_table_mutex_owner->comm, current->comm);
104 BUG();
105 }
106 if (--mtd_table_mutex_depth == 0) {
107 mtd_table_mutex_owner = NULL;
108 mutex_unlock(&mtd_table_mutex);
109 }
110 }
111 EXPORT_SYMBOL_GPL(mtd_table_mutex_unlock);
112
mtd_table_assert_mutex_locked(void)113 void mtd_table_assert_mutex_locked(void)
114 {
115 if (mtd_table_mutex_owner != current) {
116 pr_err("MTD:lock_owner is %s, but current is %s\n",
117 mtd_table_mutex_owner->comm, current->comm);
118 BUG();
119 }
120 }
121 EXPORT_SYMBOL_GPL(mtd_table_assert_mutex_locked);
122 /* REVISIT once MTD uses the driver model better, whoever allocates
123 * the mtd_info will probably want to use the release() hook...
124 */
mtd_release(struct device * dev)125 static void mtd_release(struct device *dev)
126 {
127 struct mtd_info *mtd = dev_get_drvdata(dev);
128 dev_t index = MTD_DEVT(mtd->index);
129
130 /* remove /dev/mtdXro node */
131 device_destroy(&mtd_class, index + 1);
132 }
133
mtd_type_show(struct device * dev,struct device_attribute * attr,char * buf)134 static ssize_t mtd_type_show(struct device *dev,
135 struct device_attribute *attr, char *buf)
136 {
137 struct mtd_info *mtd = dev_get_drvdata(dev);
138 char *type;
139
140 switch (mtd->type) {
141 case MTD_ABSENT:
142 type = "absent";
143 break;
144 case MTD_RAM:
145 type = "ram";
146 break;
147 case MTD_ROM:
148 type = "rom";
149 break;
150 case MTD_NORFLASH:
151 type = "nor";
152 break;
153 case MTD_NANDFLASH:
154 type = "nand";
155 break;
156 case MTD_DATAFLASH:
157 type = "dataflash";
158 break;
159 case MTD_UBIVOLUME:
160 type = "ubi";
161 break;
162 case MTD_MLCNANDFLASH:
163 type = "mlc-nand";
164 break;
165 default:
166 type = "unknown";
167 }
168
169 return snprintf(buf, PAGE_SIZE, "%s\n", type);
170 }
171 static DEVICE_ATTR(type, S_IRUGO, mtd_type_show, NULL);
172
mtd_flags_show(struct device * dev,struct device_attribute * attr,char * buf)173 static ssize_t mtd_flags_show(struct device *dev,
174 struct device_attribute *attr, char *buf)
175 {
176 struct mtd_info *mtd = dev_get_drvdata(dev);
177
178 return snprintf(buf, PAGE_SIZE, "0x%lx\n", (unsigned long)mtd->flags);
179 }
180 static DEVICE_ATTR(flags, S_IRUGO, mtd_flags_show, NULL);
181
mtd_size_show(struct device * dev,struct device_attribute * attr,char * buf)182 static ssize_t mtd_size_show(struct device *dev,
183 struct device_attribute *attr, char *buf)
184 {
185 struct mtd_info *mtd = dev_get_drvdata(dev);
186
187 return snprintf(buf, PAGE_SIZE, "%llu\n",
188 (unsigned long long)mtd->size);
189 }
190 static DEVICE_ATTR(size, S_IRUGO, mtd_size_show, NULL);
191
mtd_erasesize_show(struct device * dev,struct device_attribute * attr,char * buf)192 static ssize_t mtd_erasesize_show(struct device *dev,
193 struct device_attribute *attr, char *buf)
194 {
195 struct mtd_info *mtd = dev_get_drvdata(dev);
196
197 return snprintf(buf, PAGE_SIZE, "%lu\n", (unsigned long)mtd->erasesize);
198 }
199 static DEVICE_ATTR(erasesize, S_IRUGO, mtd_erasesize_show, NULL);
200
mtd_writesize_show(struct device * dev,struct device_attribute * attr,char * buf)201 static ssize_t mtd_writesize_show(struct device *dev,
202 struct device_attribute *attr, char *buf)
203 {
204 struct mtd_info *mtd = dev_get_drvdata(dev);
205
206 return snprintf(buf, PAGE_SIZE, "%lu\n", (unsigned long)mtd->writesize);
207 }
208 static DEVICE_ATTR(writesize, S_IRUGO, mtd_writesize_show, NULL);
209
mtd_subpagesize_show(struct device * dev,struct device_attribute * attr,char * buf)210 static ssize_t mtd_subpagesize_show(struct device *dev,
211 struct device_attribute *attr, char *buf)
212 {
213 struct mtd_info *mtd = dev_get_drvdata(dev);
214 unsigned int subpagesize = mtd->writesize >> mtd->subpage_sft;
215
216 return snprintf(buf, PAGE_SIZE, "%u\n", subpagesize);
217 }
218 static DEVICE_ATTR(subpagesize, S_IRUGO, mtd_subpagesize_show, NULL);
219
mtd_oobsize_show(struct device * dev,struct device_attribute * attr,char * buf)220 static ssize_t mtd_oobsize_show(struct device *dev,
221 struct device_attribute *attr, char *buf)
222 {
223 struct mtd_info *mtd = dev_get_drvdata(dev);
224
225 return snprintf(buf, PAGE_SIZE, "%lu\n", (unsigned long)mtd->oobsize);
226 }
227 static DEVICE_ATTR(oobsize, S_IRUGO, mtd_oobsize_show, NULL);
228
mtd_oobavail_show(struct device * dev,struct device_attribute * attr,char * buf)229 static ssize_t mtd_oobavail_show(struct device *dev,
230 struct device_attribute *attr, char *buf)
231 {
232 struct mtd_info *mtd = dev_get_drvdata(dev);
233
234 return snprintf(buf, PAGE_SIZE, "%u\n", mtd->oobavail);
235 }
236 static DEVICE_ATTR(oobavail, S_IRUGO, mtd_oobavail_show, NULL);
237
mtd_numeraseregions_show(struct device * dev,struct device_attribute * attr,char * buf)238 static ssize_t mtd_numeraseregions_show(struct device *dev,
239 struct device_attribute *attr, char *buf)
240 {
241 struct mtd_info *mtd = dev_get_drvdata(dev);
242
243 return snprintf(buf, PAGE_SIZE, "%u\n", mtd->numeraseregions);
244 }
245 static DEVICE_ATTR(numeraseregions, S_IRUGO, mtd_numeraseregions_show,
246 NULL);
247
mtd_name_show(struct device * dev,struct device_attribute * attr,char * buf)248 static ssize_t mtd_name_show(struct device *dev,
249 struct device_attribute *attr, char *buf)
250 {
251 struct mtd_info *mtd = dev_get_drvdata(dev);
252
253 return snprintf(buf, PAGE_SIZE, "%s\n", mtd->name);
254 }
255 static DEVICE_ATTR(name, S_IRUGO, mtd_name_show, NULL);
256
mtd_ecc_strength_show(struct device * dev,struct device_attribute * attr,char * buf)257 static ssize_t mtd_ecc_strength_show(struct device *dev,
258 struct device_attribute *attr, char *buf)
259 {
260 struct mtd_info *mtd = dev_get_drvdata(dev);
261
262 return snprintf(buf, PAGE_SIZE, "%u\n", mtd->ecc_strength);
263 }
264 static DEVICE_ATTR(ecc_strength, S_IRUGO, mtd_ecc_strength_show, NULL);
265
mtd_bitflip_threshold_show(struct device * dev,struct device_attribute * attr,char * buf)266 static ssize_t mtd_bitflip_threshold_show(struct device *dev,
267 struct device_attribute *attr,
268 char *buf)
269 {
270 struct mtd_info *mtd = dev_get_drvdata(dev);
271
272 return snprintf(buf, PAGE_SIZE, "%u\n", mtd->bitflip_threshold);
273 }
274
mtd_bitflip_threshold_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)275 static ssize_t mtd_bitflip_threshold_store(struct device *dev,
276 struct device_attribute *attr,
277 const char *buf, size_t count)
278 {
279 struct mtd_info *mtd = dev_get_drvdata(dev);
280 unsigned int bitflip_threshold;
281 int retval;
282
283 retval = kstrtouint(buf, 0, &bitflip_threshold);
284 if (retval)
285 return retval;
286
287 mtd->bitflip_threshold = bitflip_threshold;
288 return count;
289 }
290 static DEVICE_ATTR(bitflip_threshold, S_IRUGO | S_IWUSR,
291 mtd_bitflip_threshold_show,
292 mtd_bitflip_threshold_store);
293
mtd_ecc_step_size_show(struct device * dev,struct device_attribute * attr,char * buf)294 static ssize_t mtd_ecc_step_size_show(struct device *dev,
295 struct device_attribute *attr, char *buf)
296 {
297 struct mtd_info *mtd = dev_get_drvdata(dev);
298
299 return snprintf(buf, PAGE_SIZE, "%u\n", mtd->ecc_step_size);
300
301 }
302 static DEVICE_ATTR(ecc_step_size, S_IRUGO, mtd_ecc_step_size_show, NULL);
303
mtd_ecc_stats_corrected_show(struct device * dev,struct device_attribute * attr,char * buf)304 static ssize_t mtd_ecc_stats_corrected_show(struct device *dev,
305 struct device_attribute *attr, char *buf)
306 {
307 struct mtd_info *mtd = dev_get_drvdata(dev);
308 struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats;
309
310 return snprintf(buf, PAGE_SIZE, "%u\n", ecc_stats->corrected);
311 }
312 static DEVICE_ATTR(corrected_bits, S_IRUGO,
313 mtd_ecc_stats_corrected_show, NULL);
314
mtd_ecc_stats_errors_show(struct device * dev,struct device_attribute * attr,char * buf)315 static ssize_t mtd_ecc_stats_errors_show(struct device *dev,
316 struct device_attribute *attr, char *buf)
317 {
318 struct mtd_info *mtd = dev_get_drvdata(dev);
319 struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats;
320
321 return snprintf(buf, PAGE_SIZE, "%u\n", ecc_stats->failed);
322 }
323 static DEVICE_ATTR(ecc_failures, S_IRUGO, mtd_ecc_stats_errors_show, NULL);
324
mtd_badblocks_show(struct device * dev,struct device_attribute * attr,char * buf)325 static ssize_t mtd_badblocks_show(struct device *dev,
326 struct device_attribute *attr, char *buf)
327 {
328 struct mtd_info *mtd = dev_get_drvdata(dev);
329 struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats;
330
331 return snprintf(buf, PAGE_SIZE, "%u\n", ecc_stats->badblocks);
332 }
333 static DEVICE_ATTR(bad_blocks, S_IRUGO, mtd_badblocks_show, NULL);
334
mtd_bbtblocks_show(struct device * dev,struct device_attribute * attr,char * buf)335 static ssize_t mtd_bbtblocks_show(struct device *dev,
336 struct device_attribute *attr, char *buf)
337 {
338 struct mtd_info *mtd = dev_get_drvdata(dev);
339 struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats;
340
341 return snprintf(buf, PAGE_SIZE, "%u\n", ecc_stats->bbtblocks);
342 }
343 static DEVICE_ATTR(bbt_blocks, S_IRUGO, mtd_bbtblocks_show, NULL);
344
345 static struct attribute *mtd_attrs[] = {
346 &dev_attr_type.attr,
347 &dev_attr_flags.attr,
348 &dev_attr_size.attr,
349 &dev_attr_erasesize.attr,
350 &dev_attr_writesize.attr,
351 &dev_attr_subpagesize.attr,
352 &dev_attr_oobsize.attr,
353 &dev_attr_oobavail.attr,
354 &dev_attr_numeraseregions.attr,
355 &dev_attr_name.attr,
356 &dev_attr_ecc_strength.attr,
357 &dev_attr_ecc_step_size.attr,
358 &dev_attr_corrected_bits.attr,
359 &dev_attr_ecc_failures.attr,
360 &dev_attr_bad_blocks.attr,
361 &dev_attr_bbt_blocks.attr,
362 &dev_attr_bitflip_threshold.attr,
363 NULL,
364 };
365 ATTRIBUTE_GROUPS(mtd);
366
367 static const struct device_type mtd_devtype = {
368 .name = "mtd",
369 .groups = mtd_groups,
370 .release = mtd_release,
371 };
372
mtd_partid_debug_show(struct seq_file * s,void * p)373 static int mtd_partid_debug_show(struct seq_file *s, void *p)
374 {
375 struct mtd_info *mtd = s->private;
376
377 seq_printf(s, "%s\n", mtd->dbg.partid);
378
379 return 0;
380 }
381
382 DEFINE_SHOW_ATTRIBUTE(mtd_partid_debug);
383
mtd_partname_debug_show(struct seq_file * s,void * p)384 static int mtd_partname_debug_show(struct seq_file *s, void *p)
385 {
386 struct mtd_info *mtd = s->private;
387
388 seq_printf(s, "%s\n", mtd->dbg.partname);
389
390 return 0;
391 }
392
393 DEFINE_SHOW_ATTRIBUTE(mtd_partname_debug);
394
395 static struct dentry *dfs_dir_mtd;
396
mtd_debugfs_populate(struct mtd_info * mtd)397 static void mtd_debugfs_populate(struct mtd_info *mtd)
398 {
399 struct device *dev = &mtd->dev;
400 struct dentry *root;
401
402 if (IS_ERR_OR_NULL(dfs_dir_mtd))
403 return;
404
405 root = debugfs_create_dir(dev_name(dev), dfs_dir_mtd);
406 mtd->dbg.dfs_dir = root;
407
408 if (mtd->dbg.partid)
409 debugfs_create_file("partid", 0400, root, mtd,
410 &mtd_partid_debug_fops);
411
412 if (mtd->dbg.partname)
413 debugfs_create_file("partname", 0400, root, mtd,
414 &mtd_partname_debug_fops);
415 }
416
417 #ifndef CONFIG_MMU
mtd_mmap_capabilities(struct mtd_info * mtd)418 unsigned mtd_mmap_capabilities(struct mtd_info *mtd)
419 {
420 switch (mtd->type) {
421 case MTD_RAM:
422 return NOMMU_MAP_COPY | NOMMU_MAP_DIRECT | NOMMU_MAP_EXEC |
423 NOMMU_MAP_READ | NOMMU_MAP_WRITE;
424 case MTD_ROM:
425 return NOMMU_MAP_COPY | NOMMU_MAP_DIRECT | NOMMU_MAP_EXEC |
426 NOMMU_MAP_READ;
427 default:
428 return NOMMU_MAP_COPY;
429 }
430 }
431 EXPORT_SYMBOL_GPL(mtd_mmap_capabilities);
432 #endif
433
mtd_reboot_notifier(struct notifier_block * n,unsigned long state,void * cmd)434 static int mtd_reboot_notifier(struct notifier_block *n, unsigned long state,
435 void *cmd)
436 {
437 struct mtd_info *mtd;
438
439 mtd = container_of(n, struct mtd_info, reboot_notifier);
440 mtd->_reboot(mtd);
441
442 return NOTIFY_DONE;
443 }
444
445 /**
446 * mtd_wunit_to_pairing_info - get pairing information of a wunit
447 * @mtd: pointer to new MTD device info structure
448 * @wunit: write unit we are interested in
449 * @info: returned pairing information
450 *
451 * Retrieve pairing information associated to the wunit.
452 * This is mainly useful when dealing with MLC/TLC NANDs where pages can be
453 * paired together, and where programming a page may influence the page it is
454 * paired with.
455 * The notion of page is replaced by the term wunit (write-unit) to stay
456 * consistent with the ->writesize field.
457 *
458 * The @wunit argument can be extracted from an absolute offset using
459 * mtd_offset_to_wunit(). @info is filled with the pairing information attached
460 * to @wunit.
461 *
462 * From the pairing info the MTD user can find all the wunits paired with
463 * @wunit using the following loop:
464 *
465 * for (i = 0; i < mtd_pairing_groups(mtd); i++) {
466 * info.pair = i;
467 * mtd_pairing_info_to_wunit(mtd, &info);
468 * ...
469 * }
470 */
mtd_wunit_to_pairing_info(struct mtd_info * mtd,int wunit,struct mtd_pairing_info * info)471 int mtd_wunit_to_pairing_info(struct mtd_info *mtd, int wunit,
472 struct mtd_pairing_info *info)
473 {
474 struct mtd_info *master = mtd_get_master(mtd);
475 int npairs = mtd_wunit_per_eb(master) / mtd_pairing_groups(master);
476
477 if (wunit < 0 || wunit >= npairs)
478 return -EINVAL;
479
480 if (master->pairing && master->pairing->get_info)
481 return master->pairing->get_info(master, wunit, info);
482
483 info->group = 0;
484 info->pair = wunit;
485
486 return 0;
487 }
488 EXPORT_SYMBOL_GPL(mtd_wunit_to_pairing_info);
489
490 /**
491 * mtd_pairing_info_to_wunit - get wunit from pairing information
492 * @mtd: pointer to new MTD device info structure
493 * @info: pairing information struct
494 *
495 * Returns a positive number representing the wunit associated to the info
496 * struct, or a negative error code.
497 *
498 * This is the reverse of mtd_wunit_to_pairing_info(), and can help one to
499 * iterate over all wunits of a given pair (see mtd_wunit_to_pairing_info()
500 * doc).
501 *
502 * It can also be used to only program the first page of each pair (i.e.
503 * page attached to group 0), which allows one to use an MLC NAND in
504 * software-emulated SLC mode:
505 *
506 * info.group = 0;
507 * npairs = mtd_wunit_per_eb(mtd) / mtd_pairing_groups(mtd);
508 * for (info.pair = 0; info.pair < npairs; info.pair++) {
509 * wunit = mtd_pairing_info_to_wunit(mtd, &info);
510 * mtd_write(mtd, mtd_wunit_to_offset(mtd, blkoffs, wunit),
511 * mtd->writesize, &retlen, buf + (i * mtd->writesize));
512 * }
513 */
mtd_pairing_info_to_wunit(struct mtd_info * mtd,const struct mtd_pairing_info * info)514 int mtd_pairing_info_to_wunit(struct mtd_info *mtd,
515 const struct mtd_pairing_info *info)
516 {
517 struct mtd_info *master = mtd_get_master(mtd);
518 int ngroups = mtd_pairing_groups(master);
519 int npairs = mtd_wunit_per_eb(master) / ngroups;
520
521 if (!info || info->pair < 0 || info->pair >= npairs ||
522 info->group < 0 || info->group >= ngroups)
523 return -EINVAL;
524
525 if (master->pairing && master->pairing->get_wunit)
526 return mtd->pairing->get_wunit(master, info);
527
528 return info->pair;
529 }
530 EXPORT_SYMBOL_GPL(mtd_pairing_info_to_wunit);
531
532 /**
533 * mtd_pairing_groups - get the number of pairing groups
534 * @mtd: pointer to new MTD device info structure
535 *
536 * Returns the number of pairing groups.
537 *
538 * This number is usually equal to the number of bits exposed by a single
539 * cell, and can be used in conjunction with mtd_pairing_info_to_wunit()
540 * to iterate over all pages of a given pair.
541 */
mtd_pairing_groups(struct mtd_info * mtd)542 int mtd_pairing_groups(struct mtd_info *mtd)
543 {
544 struct mtd_info *master = mtd_get_master(mtd);
545
546 if (!master->pairing || !master->pairing->ngroups)
547 return 1;
548
549 return master->pairing->ngroups;
550 }
551 EXPORT_SYMBOL_GPL(mtd_pairing_groups);
552
mtd_nvmem_reg_read(void * priv,unsigned int offset,void * val,size_t bytes)553 static int mtd_nvmem_reg_read(void *priv, unsigned int offset,
554 void *val, size_t bytes)
555 {
556 struct mtd_info *mtd = priv;
557 size_t retlen;
558 int err;
559
560 err = mtd_read(mtd, offset, bytes, &retlen, val);
561 if (err && err != -EUCLEAN)
562 return err;
563
564 return retlen == bytes ? 0 : -EIO;
565 }
566
mtd_nvmem_add(struct mtd_info * mtd)567 static int mtd_nvmem_add(struct mtd_info *mtd)
568 {
569 struct nvmem_config config = {};
570
571 config.id = -1;
572 config.dev = &mtd->dev;
573 config.name = dev_name(&mtd->dev);
574 config.owner = THIS_MODULE;
575 config.reg_read = mtd_nvmem_reg_read;
576 config.size = mtd->size;
577 config.word_size = 1;
578 config.stride = 1;
579 config.read_only = true;
580 config.root_only = true;
581 config.no_of_node = true;
582 config.priv = mtd;
583
584 mtd->nvmem = nvmem_register(&config);
585 if (IS_ERR(mtd->nvmem)) {
586 /* Just ignore if there is no NVMEM support in the kernel */
587 if (PTR_ERR(mtd->nvmem) == -EOPNOTSUPP) {
588 mtd->nvmem = NULL;
589 } else {
590 dev_err(&mtd->dev, "Failed to register NVMEM device\n");
591 return PTR_ERR(mtd->nvmem);
592 }
593 }
594
595 return 0;
596 }
597
598 /**
599 * add_mtd_device - register an MTD device
600 * @mtd: pointer to new MTD device info structure
601 *
602 * Add a device to the list of MTD devices present in the system, and
603 * notify each currently active MTD 'user' of its arrival. Returns
604 * zero on success or non-zero on failure.
605 */
606
add_mtd_device(struct mtd_info * mtd)607 int add_mtd_device(struct mtd_info *mtd)
608 {
609 struct mtd_info *master = mtd_get_master(mtd);
610 struct mtd_notifier *not;
611 int i, error;
612
613 /*
614 * May occur, for instance, on buggy drivers which call
615 * mtd_device_parse_register() multiple times on the same master MTD,
616 * especially with CONFIG_MTD_PARTITIONED_MASTER=y.
617 */
618 if (WARN_ONCE(mtd->dev.type, "MTD already registered\n"))
619 return -EEXIST;
620
621 BUG_ON(mtd->writesize == 0);
622
623 /*
624 * MTD drivers should implement ->_{write,read}() or
625 * ->_{write,read}_oob(), but not both.
626 */
627 if (WARN_ON((mtd->_write && mtd->_write_oob) ||
628 (mtd->_read && mtd->_read_oob)))
629 return -EINVAL;
630
631 if (WARN_ON((!mtd->erasesize || !master->_erase) &&
632 !(mtd->flags & MTD_NO_ERASE)))
633 return -EINVAL;
634
635 /*
636 * MTD_SLC_ON_MLC_EMULATION can only be set on partitions, when the
637 * master is an MLC NAND and has a proper pairing scheme defined.
638 * We also reject masters that implement ->_writev() for now, because
639 * NAND controller drivers don't implement this hook, and adding the
640 * SLC -> MLC address/length conversion to this path is useless if we
641 * don't have a user.
642 */
643 if (mtd->flags & MTD_SLC_ON_MLC_EMULATION &&
644 (!mtd_is_partition(mtd) || master->type != MTD_MLCNANDFLASH ||
645 !master->pairing || master->_writev))
646 return -EINVAL;
647
648 mtd_table_mutex_lock();
649
650 i = idr_alloc(&mtd_idr, mtd, 0, 0, GFP_KERNEL);
651 if (i < 0) {
652 error = i;
653 goto fail_locked;
654 }
655
656 mtd->index = i;
657 mtd->usecount = 0;
658
659 /* default value if not set by driver */
660 if (mtd->bitflip_threshold == 0)
661 mtd->bitflip_threshold = mtd->ecc_strength;
662
663 if (mtd->flags & MTD_SLC_ON_MLC_EMULATION) {
664 int ngroups = mtd_pairing_groups(master);
665
666 mtd->erasesize /= ngroups;
667 mtd->size = (u64)mtd_div_by_eb(mtd->size, master) *
668 mtd->erasesize;
669 }
670
671 if (is_power_of_2(mtd->erasesize))
672 mtd->erasesize_shift = ffs(mtd->erasesize) - 1;
673 else
674 mtd->erasesize_shift = 0;
675
676 if (is_power_of_2(mtd->writesize))
677 mtd->writesize_shift = ffs(mtd->writesize) - 1;
678 else
679 mtd->writesize_shift = 0;
680
681 mtd->erasesize_mask = (1 << mtd->erasesize_shift) - 1;
682 mtd->writesize_mask = (1 << mtd->writesize_shift) - 1;
683
684 /* Some chips always power up locked. Unlock them now */
685 if ((mtd->flags & MTD_WRITEABLE) && (mtd->flags & MTD_POWERUP_LOCK)) {
686 error = mtd_unlock(mtd, 0, mtd->size);
687 if (error && error != -EOPNOTSUPP)
688 printk(KERN_WARNING
689 "%s: unlock failed, writes may not work\n",
690 mtd->name);
691 /* Ignore unlock failures? */
692 error = 0;
693 }
694
695 /* Caller should have set dev.parent to match the
696 * physical device, if appropriate.
697 */
698 mtd->dev.type = &mtd_devtype;
699 mtd->dev.class = &mtd_class;
700 mtd->dev.devt = MTD_DEVT(i);
701 dev_set_name(&mtd->dev, "mtd%d", i);
702 dev_set_drvdata(&mtd->dev, mtd);
703 of_node_get(mtd_get_of_node(mtd));
704 error = device_register(&mtd->dev);
705 if (error) {
706 put_device(&mtd->dev);
707 goto fail_added;
708 }
709
710 /* Add the nvmem provider */
711 error = mtd_nvmem_add(mtd);
712 if (error)
713 goto fail_nvmem_add;
714
715 mtd_debugfs_populate(mtd);
716
717 device_create(&mtd_class, mtd->dev.parent, MTD_DEVT(i) + 1, NULL,
718 "mtd%dro", i);
719
720 pr_debug("mtd: Giving out device %d to %s\n", i, mtd->name);
721 /* No need to get a refcount on the module containing
722 the notifier, since we hold the mtd_table_mutex */
723 list_for_each_entry(not, &mtd_notifiers, list)
724 not->add(mtd);
725
726 mtd_table_mutex_unlock();
727 /* We _know_ we aren't being removed, because
728 our caller is still holding us here. So none
729 of this try_ nonsense, and no bitching about it
730 either. :) */
731 __module_get(THIS_MODULE);
732 return 0;
733
734 fail_nvmem_add:
735 device_unregister(&mtd->dev);
736 fail_added:
737 of_node_put(mtd_get_of_node(mtd));
738 idr_remove(&mtd_idr, i);
739 fail_locked:
740 mtd_table_mutex_unlock();
741 return error;
742 }
743
744 /**
745 * del_mtd_device - unregister an MTD device
746 * @mtd: pointer to MTD device info structure
747 *
748 * Remove a device from the list of MTD devices present in the system,
749 * and notify each currently active MTD 'user' of its departure.
750 * Returns zero on success or 1 on failure, which currently will happen
751 * if the requested device does not appear to be present in the list.
752 */
753
del_mtd_device(struct mtd_info * mtd)754 int del_mtd_device(struct mtd_info *mtd)
755 {
756 int ret;
757 struct mtd_notifier *not;
758
759 mtd_table_mutex_lock();
760
761 if (idr_find(&mtd_idr, mtd->index) != mtd) {
762 ret = -ENODEV;
763 goto out_error;
764 }
765
766 /* No need to get a refcount on the module containing
767 the notifier, since we hold the mtd_table_mutex */
768 list_for_each_entry(not, &mtd_notifiers, list)
769 not->remove(mtd);
770
771 if (mtd->usecount) {
772 printk(KERN_NOTICE "Removing MTD device #%d (%s) with use count %d\n",
773 mtd->index, mtd->name, mtd->usecount);
774 ret = -EBUSY;
775 } else {
776 debugfs_remove_recursive(mtd->dbg.dfs_dir);
777
778 /* Try to remove the NVMEM provider */
779 if (mtd->nvmem)
780 nvmem_unregister(mtd->nvmem);
781
782 device_unregister(&mtd->dev);
783
784 idr_remove(&mtd_idr, mtd->index);
785 of_node_put(mtd_get_of_node(mtd));
786
787 module_put(THIS_MODULE);
788 ret = 0;
789 }
790
791 out_error:
792 mtd_table_mutex_unlock();
793 return ret;
794 }
795
796 /*
797 * Set a few defaults based on the parent devices, if not provided by the
798 * driver
799 */
mtd_set_dev_defaults(struct mtd_info * mtd)800 static void mtd_set_dev_defaults(struct mtd_info *mtd)
801 {
802 if (mtd->dev.parent) {
803 if (!mtd->owner && mtd->dev.parent->driver)
804 mtd->owner = mtd->dev.parent->driver->owner;
805 if (!mtd->name)
806 mtd->name = dev_name(mtd->dev.parent);
807 } else {
808 pr_debug("mtd device won't show a device symlink in sysfs\n");
809 }
810
811 INIT_LIST_HEAD(&mtd->partitions);
812 mutex_init(&mtd->master.partitions_lock);
813 }
814
815 /**
816 * mtd_device_parse_register - parse partitions and register an MTD device.
817 *
818 * @mtd: the MTD device to register
819 * @types: the list of MTD partition probes to try, see
820 * 'parse_mtd_partitions()' for more information
821 * @parser_data: MTD partition parser-specific data
822 * @parts: fallback partition information to register, if parsing fails;
823 * only valid if %nr_parts > %0
824 * @nr_parts: the number of partitions in parts, if zero then the full
825 * MTD device is registered if no partition info is found
826 *
827 * This function aggregates MTD partitions parsing (done by
828 * 'parse_mtd_partitions()') and MTD device and partitions registering. It
829 * basically follows the most common pattern found in many MTD drivers:
830 *
831 * * If the MTD_PARTITIONED_MASTER option is set, then the device as a whole is
832 * registered first.
833 * * Then It tries to probe partitions on MTD device @mtd using parsers
834 * specified in @types (if @types is %NULL, then the default list of parsers
835 * is used, see 'parse_mtd_partitions()' for more information). If none are
836 * found this functions tries to fallback to information specified in
837 * @parts/@nr_parts.
838 * * If no partitions were found this function just registers the MTD device
839 * @mtd and exits.
840 *
841 * Returns zero in case of success and a negative error code in case of failure.
842 */
mtd_device_parse_register(struct mtd_info * mtd,const char * const * types,struct mtd_part_parser_data * parser_data,const struct mtd_partition * parts,int nr_parts)843 int mtd_device_parse_register(struct mtd_info *mtd, const char * const *types,
844 struct mtd_part_parser_data *parser_data,
845 const struct mtd_partition *parts,
846 int nr_parts)
847 {
848 int ret;
849
850 mtd_set_dev_defaults(mtd);
851
852 if (IS_ENABLED(CONFIG_MTD_PARTITIONED_MASTER)) {
853 ret = add_mtd_device(mtd);
854 if (ret)
855 return ret;
856 }
857
858 /* Prefer parsed partitions over driver-provided fallback */
859 ret = parse_mtd_partitions(mtd, types, parser_data);
860 if (ret == -EPROBE_DEFER)
861 goto out;
862
863 if (ret > 0)
864 ret = 0;
865 else if (nr_parts)
866 ret = add_mtd_partitions(mtd, parts, nr_parts);
867 else if (!device_is_registered(&mtd->dev))
868 ret = add_mtd_device(mtd);
869 else
870 ret = 0;
871
872 if (ret)
873 goto out;
874
875 /*
876 * FIXME: some drivers unfortunately call this function more than once.
877 * So we have to check if we've already assigned the reboot notifier.
878 *
879 * Generally, we can make multiple calls work for most cases, but it
880 * does cause problems with parse_mtd_partitions() above (e.g.,
881 * cmdlineparts will register partitions more than once).
882 */
883 WARN_ONCE(mtd->_reboot && mtd->reboot_notifier.notifier_call,
884 "MTD already registered\n");
885 if (mtd->_reboot && !mtd->reboot_notifier.notifier_call) {
886 mtd->reboot_notifier.notifier_call = mtd_reboot_notifier;
887 register_reboot_notifier(&mtd->reboot_notifier);
888 }
889
890 out:
891 if (ret && device_is_registered(&mtd->dev))
892 del_mtd_device(mtd);
893
894 return ret;
895 }
896 EXPORT_SYMBOL_GPL(mtd_device_parse_register);
897
898 /**
899 * mtd_device_unregister - unregister an existing MTD device.
900 *
901 * @master: the MTD device to unregister. This will unregister both the master
902 * and any partitions if registered.
903 */
mtd_device_unregister(struct mtd_info * master)904 int mtd_device_unregister(struct mtd_info *master)
905 {
906 int err;
907
908 if (master->_reboot)
909 unregister_reboot_notifier(&master->reboot_notifier);
910
911 err = del_mtd_partitions(master);
912 if (err)
913 return err;
914
915 if (!device_is_registered(&master->dev))
916 return 0;
917
918 return del_mtd_device(master);
919 }
920 EXPORT_SYMBOL_GPL(mtd_device_unregister);
921
922 /**
923 * register_mtd_user - register a 'user' of MTD devices.
924 * @new: pointer to notifier info structure
925 *
926 * Registers a pair of callbacks function to be called upon addition
927 * or removal of MTD devices. Causes the 'add' callback to be immediately
928 * invoked for each MTD device currently present in the system.
929 */
register_mtd_user(struct mtd_notifier * new)930 void register_mtd_user (struct mtd_notifier *new)
931 {
932 struct mtd_info *mtd;
933
934 mtd_table_mutex_lock();
935
936 list_add(&new->list, &mtd_notifiers);
937
938 __module_get(THIS_MODULE);
939
940 mtd_for_each_device(mtd)
941 new->add(mtd);
942
943 mtd_table_mutex_unlock();
944 }
945 EXPORT_SYMBOL_GPL(register_mtd_user);
946
947 /**
948 * unregister_mtd_user - unregister a 'user' of MTD devices.
949 * @old: pointer to notifier info structure
950 *
951 * Removes a callback function pair from the list of 'users' to be
952 * notified upon addition or removal of MTD devices. Causes the
953 * 'remove' callback to be immediately invoked for each MTD device
954 * currently present in the system.
955 */
unregister_mtd_user(struct mtd_notifier * old)956 int unregister_mtd_user (struct mtd_notifier *old)
957 {
958 struct mtd_info *mtd;
959
960 mtd_table_mutex_lock();
961
962 module_put(THIS_MODULE);
963
964 mtd_for_each_device(mtd)
965 old->remove(mtd);
966
967 list_del(&old->list);
968 mtd_table_mutex_unlock();
969 return 0;
970 }
971 EXPORT_SYMBOL_GPL(unregister_mtd_user);
972
973 /**
974 * get_mtd_device - obtain a validated handle for an MTD device
975 * @mtd: last known address of the required MTD device
976 * @num: internal device number of the required MTD device
977 *
978 * Given a number and NULL address, return the num'th entry in the device
979 * table, if any. Given an address and num == -1, search the device table
980 * for a device with that address and return if it's still present. Given
981 * both, return the num'th driver only if its address matches. Return
982 * error code if not.
983 */
get_mtd_device(struct mtd_info * mtd,int num)984 struct mtd_info *get_mtd_device(struct mtd_info *mtd, int num)
985 {
986 struct mtd_info *ret = NULL, *other;
987 int err = -ENODEV;
988
989 mtd_table_mutex_lock();
990
991 if (num == -1) {
992 mtd_for_each_device(other) {
993 if (other == mtd) {
994 ret = mtd;
995 break;
996 }
997 }
998 } else if (num >= 0) {
999 ret = idr_find(&mtd_idr, num);
1000 if (mtd && mtd != ret)
1001 ret = NULL;
1002 }
1003
1004 if (!ret) {
1005 ret = ERR_PTR(err);
1006 goto out;
1007 }
1008
1009 err = __get_mtd_device(ret);
1010 if (err)
1011 ret = ERR_PTR(err);
1012 out:
1013 mtd_table_mutex_unlock();
1014 return ret;
1015 }
1016 EXPORT_SYMBOL_GPL(get_mtd_device);
1017
1018
__get_mtd_device(struct mtd_info * mtd)1019 int __get_mtd_device(struct mtd_info *mtd)
1020 {
1021 struct mtd_info *master = mtd_get_master(mtd);
1022 int err;
1023
1024 if (!try_module_get(master->owner))
1025 return -ENODEV;
1026
1027 if (master->_get_device) {
1028 err = master->_get_device(mtd);
1029
1030 if (err) {
1031 module_put(master->owner);
1032 return err;
1033 }
1034 }
1035
1036 master->usecount++;
1037
1038 while (mtd->parent) {
1039 mtd->usecount++;
1040 mtd = mtd->parent;
1041 }
1042
1043 return 0;
1044 }
1045 EXPORT_SYMBOL_GPL(__get_mtd_device);
1046
1047 /**
1048 * get_mtd_device_nm - obtain a validated handle for an MTD device by
1049 * device name
1050 * @name: MTD device name to open
1051 *
1052 * This function returns MTD device description structure in case of
1053 * success and an error code in case of failure.
1054 */
get_mtd_device_nm(const char * name)1055 struct mtd_info *get_mtd_device_nm(const char *name)
1056 {
1057 int err = -ENODEV;
1058 struct mtd_info *mtd = NULL, *other;
1059
1060 mtd_table_mutex_lock();
1061
1062 mtd_for_each_device(other) {
1063 if (!strcmp(name, other->name)) {
1064 mtd = other;
1065 break;
1066 }
1067 }
1068
1069 if (!mtd)
1070 goto out_unlock;
1071
1072 err = __get_mtd_device(mtd);
1073 if (err)
1074 goto out_unlock;
1075
1076 mtd_table_mutex_unlock();
1077 return mtd;
1078
1079 out_unlock:
1080 mtd_table_mutex_unlock();
1081 return ERR_PTR(err);
1082 }
1083 EXPORT_SYMBOL_GPL(get_mtd_device_nm);
1084
put_mtd_device(struct mtd_info * mtd)1085 void put_mtd_device(struct mtd_info *mtd)
1086 {
1087 mtd_table_mutex_lock();
1088 __put_mtd_device(mtd);
1089 mtd_table_mutex_unlock();
1090
1091 }
1092 EXPORT_SYMBOL_GPL(put_mtd_device);
1093
__put_mtd_device(struct mtd_info * mtd)1094 void __put_mtd_device(struct mtd_info *mtd)
1095 {
1096 struct mtd_info *master = mtd_get_master(mtd);
1097
1098 while (mtd->parent) {
1099 --mtd->usecount;
1100 BUG_ON(mtd->usecount < 0);
1101 mtd = mtd->parent;
1102 }
1103
1104 master->usecount--;
1105
1106 if (master->_put_device)
1107 master->_put_device(master);
1108
1109 module_put(master->owner);
1110 }
1111 EXPORT_SYMBOL_GPL(__put_mtd_device);
1112
1113 /*
1114 * Erase is an synchronous operation. Device drivers are epected to return a
1115 * negative error code if the operation failed and update instr->fail_addr
1116 * to point the portion that was not properly erased.
1117 */
mtd_erase(struct mtd_info * mtd,struct erase_info * instr)1118 int mtd_erase(struct mtd_info *mtd, struct erase_info *instr)
1119 {
1120 struct mtd_info *master = mtd_get_master(mtd);
1121 u64 mst_ofs = mtd_get_master_ofs(mtd, 0);
1122 struct erase_info adjinstr;
1123 int ret;
1124
1125 instr->fail_addr = MTD_FAIL_ADDR_UNKNOWN;
1126 adjinstr = *instr;
1127
1128 if (!mtd->erasesize || !master->_erase)
1129 return -ENOTSUPP;
1130
1131 if (instr->addr >= mtd->size || instr->len > mtd->size - instr->addr)
1132 return -EINVAL;
1133 if (!(mtd->flags & MTD_WRITEABLE))
1134 return -EROFS;
1135
1136 if (!instr->len)
1137 return 0;
1138
1139 ledtrig_mtd_activity();
1140
1141 if (mtd->flags & MTD_SLC_ON_MLC_EMULATION) {
1142 adjinstr.addr = (loff_t)mtd_div_by_eb(instr->addr, mtd) *
1143 master->erasesize;
1144 adjinstr.len = ((u64)mtd_div_by_eb(instr->addr + instr->len, mtd) *
1145 master->erasesize) -
1146 adjinstr.addr;
1147 }
1148
1149 adjinstr.addr += mst_ofs;
1150
1151 ret = master->_erase(master, &adjinstr);
1152
1153 if (adjinstr.fail_addr != MTD_FAIL_ADDR_UNKNOWN) {
1154 instr->fail_addr = adjinstr.fail_addr - mst_ofs;
1155 if (mtd->flags & MTD_SLC_ON_MLC_EMULATION) {
1156 instr->fail_addr = mtd_div_by_eb(instr->fail_addr,
1157 master);
1158 instr->fail_addr *= mtd->erasesize;
1159 }
1160 }
1161
1162 return ret;
1163 }
1164 EXPORT_SYMBOL_GPL(mtd_erase);
1165
1166 /*
1167 * This stuff for eXecute-In-Place. phys is optional and may be set to NULL.
1168 */
mtd_point(struct mtd_info * mtd,loff_t from,size_t len,size_t * retlen,void ** virt,resource_size_t * phys)1169 int mtd_point(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen,
1170 void **virt, resource_size_t *phys)
1171 {
1172 struct mtd_info *master = mtd_get_master(mtd);
1173
1174 *retlen = 0;
1175 *virt = NULL;
1176 if (phys)
1177 *phys = 0;
1178 if (!master->_point)
1179 return -EOPNOTSUPP;
1180 if (from < 0 || from >= mtd->size || len > mtd->size - from)
1181 return -EINVAL;
1182 if (!len)
1183 return 0;
1184
1185 from = mtd_get_master_ofs(mtd, from);
1186 return master->_point(master, from, len, retlen, virt, phys);
1187 }
1188 EXPORT_SYMBOL_GPL(mtd_point);
1189
1190 /* We probably shouldn't allow XIP if the unpoint isn't a NULL */
mtd_unpoint(struct mtd_info * mtd,loff_t from,size_t len)1191 int mtd_unpoint(struct mtd_info *mtd, loff_t from, size_t len)
1192 {
1193 struct mtd_info *master = mtd_get_master(mtd);
1194
1195 if (!master->_unpoint)
1196 return -EOPNOTSUPP;
1197 if (from < 0 || from >= mtd->size || len > mtd->size - from)
1198 return -EINVAL;
1199 if (!len)
1200 return 0;
1201 return master->_unpoint(master, mtd_get_master_ofs(mtd, from), len);
1202 }
1203 EXPORT_SYMBOL_GPL(mtd_unpoint);
1204
1205 /*
1206 * Allow NOMMU mmap() to directly map the device (if not NULL)
1207 * - return the address to which the offset maps
1208 * - return -ENOSYS to indicate refusal to do the mapping
1209 */
mtd_get_unmapped_area(struct mtd_info * mtd,unsigned long len,unsigned long offset,unsigned long flags)1210 unsigned long mtd_get_unmapped_area(struct mtd_info *mtd, unsigned long len,
1211 unsigned long offset, unsigned long flags)
1212 {
1213 size_t retlen;
1214 void *virt;
1215 int ret;
1216
1217 ret = mtd_point(mtd, offset, len, &retlen, &virt, NULL);
1218 if (ret)
1219 return ret;
1220 if (retlen != len) {
1221 mtd_unpoint(mtd, offset, retlen);
1222 return -ENOSYS;
1223 }
1224 return (unsigned long)virt;
1225 }
1226 EXPORT_SYMBOL_GPL(mtd_get_unmapped_area);
1227
mtd_update_ecc_stats(struct mtd_info * mtd,struct mtd_info * master,const struct mtd_ecc_stats * old_stats)1228 static void mtd_update_ecc_stats(struct mtd_info *mtd, struct mtd_info *master,
1229 const struct mtd_ecc_stats *old_stats)
1230 {
1231 struct mtd_ecc_stats diff;
1232
1233 if (master == mtd)
1234 return;
1235
1236 diff = master->ecc_stats;
1237 diff.failed -= old_stats->failed;
1238 diff.corrected -= old_stats->corrected;
1239
1240 while (mtd->parent) {
1241 mtd->ecc_stats.failed += diff.failed;
1242 mtd->ecc_stats.corrected += diff.corrected;
1243 mtd = mtd->parent;
1244 }
1245 }
1246
mtd_read(struct mtd_info * mtd,loff_t from,size_t len,size_t * retlen,u_char * buf)1247 int mtd_read(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen,
1248 u_char *buf)
1249 {
1250 struct mtd_oob_ops ops = {
1251 .len = len,
1252 .datbuf = buf,
1253 };
1254 int ret;
1255
1256 ret = mtd_read_oob(mtd, from, &ops);
1257 *retlen = ops.retlen;
1258
1259 return ret;
1260 }
1261 EXPORT_SYMBOL_GPL(mtd_read);
1262
mtd_write(struct mtd_info * mtd,loff_t to,size_t len,size_t * retlen,const u_char * buf)1263 int mtd_write(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen,
1264 const u_char *buf)
1265 {
1266 struct mtd_oob_ops ops = {
1267 .len = len,
1268 .datbuf = (u8 *)buf,
1269 };
1270 int ret;
1271
1272 ret = mtd_write_oob(mtd, to, &ops);
1273 *retlen = ops.retlen;
1274
1275 return ret;
1276 }
1277 EXPORT_SYMBOL_GPL(mtd_write);
1278
1279 /*
1280 * In blackbox flight recorder like scenarios we want to make successful writes
1281 * in interrupt context. panic_write() is only intended to be called when its
1282 * known the kernel is about to panic and we need the write to succeed. Since
1283 * the kernel is not going to be running for much longer, this function can
1284 * break locks and delay to ensure the write succeeds (but not sleep).
1285 */
mtd_panic_write(struct mtd_info * mtd,loff_t to,size_t len,size_t * retlen,const u_char * buf)1286 int mtd_panic_write(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen,
1287 const u_char *buf)
1288 {
1289 struct mtd_info *master = mtd_get_master(mtd);
1290
1291 *retlen = 0;
1292 if (!master->_panic_write)
1293 return -EOPNOTSUPP;
1294 if (to < 0 || to >= mtd->size || len > mtd->size - to)
1295 return -EINVAL;
1296 if (!(mtd->flags & MTD_WRITEABLE))
1297 return -EROFS;
1298 if (!len)
1299 return 0;
1300 if (!master->oops_panic_write)
1301 master->oops_panic_write = true;
1302
1303 return master->_panic_write(master, mtd_get_master_ofs(mtd, to), len,
1304 retlen, buf);
1305 }
1306 EXPORT_SYMBOL_GPL(mtd_panic_write);
1307
mtd_check_oob_ops(struct mtd_info * mtd,loff_t offs,struct mtd_oob_ops * ops)1308 static int mtd_check_oob_ops(struct mtd_info *mtd, loff_t offs,
1309 struct mtd_oob_ops *ops)
1310 {
1311 /*
1312 * Some users are setting ->datbuf or ->oobbuf to NULL, but are leaving
1313 * ->len or ->ooblen uninitialized. Force ->len and ->ooblen to 0 in
1314 * this case.
1315 */
1316 if (!ops->datbuf)
1317 ops->len = 0;
1318
1319 if (!ops->oobbuf)
1320 ops->ooblen = 0;
1321
1322 if (offs < 0 || offs + ops->len > mtd->size)
1323 return -EINVAL;
1324
1325 if (ops->ooblen) {
1326 size_t maxooblen;
1327
1328 if (ops->ooboffs >= mtd_oobavail(mtd, ops))
1329 return -EINVAL;
1330
1331 maxooblen = ((size_t)(mtd_div_by_ws(mtd->size, mtd) -
1332 mtd_div_by_ws(offs, mtd)) *
1333 mtd_oobavail(mtd, ops)) - ops->ooboffs;
1334 if (ops->ooblen > maxooblen)
1335 return -EINVAL;
1336 }
1337
1338 return 0;
1339 }
1340
mtd_read_oob_std(struct mtd_info * mtd,loff_t from,struct mtd_oob_ops * ops)1341 static int mtd_read_oob_std(struct mtd_info *mtd, loff_t from,
1342 struct mtd_oob_ops *ops)
1343 {
1344 struct mtd_info *master = mtd_get_master(mtd);
1345 int ret;
1346
1347 from = mtd_get_master_ofs(mtd, from);
1348 if (master->_read_oob)
1349 ret = master->_read_oob(master, from, ops);
1350 else
1351 ret = master->_read(master, from, ops->len, &ops->retlen,
1352 ops->datbuf);
1353
1354 return ret;
1355 }
1356
mtd_write_oob_std(struct mtd_info * mtd,loff_t to,struct mtd_oob_ops * ops)1357 static int mtd_write_oob_std(struct mtd_info *mtd, loff_t to,
1358 struct mtd_oob_ops *ops)
1359 {
1360 struct mtd_info *master = mtd_get_master(mtd);
1361 int ret;
1362
1363 to = mtd_get_master_ofs(mtd, to);
1364 if (master->_write_oob)
1365 ret = master->_write_oob(master, to, ops);
1366 else
1367 ret = master->_write(master, to, ops->len, &ops->retlen,
1368 ops->datbuf);
1369
1370 return ret;
1371 }
1372
mtd_io_emulated_slc(struct mtd_info * mtd,loff_t start,bool read,struct mtd_oob_ops * ops)1373 static int mtd_io_emulated_slc(struct mtd_info *mtd, loff_t start, bool read,
1374 struct mtd_oob_ops *ops)
1375 {
1376 struct mtd_info *master = mtd_get_master(mtd);
1377 int ngroups = mtd_pairing_groups(master);
1378 int npairs = mtd_wunit_per_eb(master) / ngroups;
1379 struct mtd_oob_ops adjops = *ops;
1380 unsigned int wunit, oobavail;
1381 struct mtd_pairing_info info;
1382 int max_bitflips = 0;
1383 u32 ebofs, pageofs;
1384 loff_t base, pos;
1385
1386 ebofs = mtd_mod_by_eb(start, mtd);
1387 base = (loff_t)mtd_div_by_eb(start, mtd) * master->erasesize;
1388 info.group = 0;
1389 info.pair = mtd_div_by_ws(ebofs, mtd);
1390 pageofs = mtd_mod_by_ws(ebofs, mtd);
1391 oobavail = mtd_oobavail(mtd, ops);
1392
1393 while (ops->retlen < ops->len || ops->oobretlen < ops->ooblen) {
1394 int ret;
1395
1396 if (info.pair >= npairs) {
1397 info.pair = 0;
1398 base += master->erasesize;
1399 }
1400
1401 wunit = mtd_pairing_info_to_wunit(master, &info);
1402 pos = mtd_wunit_to_offset(mtd, base, wunit);
1403
1404 adjops.len = ops->len - ops->retlen;
1405 if (adjops.len > mtd->writesize - pageofs)
1406 adjops.len = mtd->writesize - pageofs;
1407
1408 adjops.ooblen = ops->ooblen - ops->oobretlen;
1409 if (adjops.ooblen > oobavail - adjops.ooboffs)
1410 adjops.ooblen = oobavail - adjops.ooboffs;
1411
1412 if (read) {
1413 ret = mtd_read_oob_std(mtd, pos + pageofs, &adjops);
1414 if (ret > 0)
1415 max_bitflips = max(max_bitflips, ret);
1416 } else {
1417 ret = mtd_write_oob_std(mtd, pos + pageofs, &adjops);
1418 }
1419
1420 if (ret < 0)
1421 return ret;
1422
1423 max_bitflips = max(max_bitflips, ret);
1424 ops->retlen += adjops.retlen;
1425 ops->oobretlen += adjops.oobretlen;
1426 adjops.datbuf += adjops.retlen;
1427 adjops.oobbuf += adjops.oobretlen;
1428 adjops.ooboffs = 0;
1429 pageofs = 0;
1430 info.pair++;
1431 }
1432
1433 return max_bitflips;
1434 }
1435
mtd_read_oob(struct mtd_info * mtd,loff_t from,struct mtd_oob_ops * ops)1436 int mtd_read_oob(struct mtd_info *mtd, loff_t from, struct mtd_oob_ops *ops)
1437 {
1438 struct mtd_info *master = mtd_get_master(mtd);
1439 struct mtd_ecc_stats old_stats = master->ecc_stats;
1440 int ret_code;
1441
1442 ops->retlen = ops->oobretlen = 0;
1443
1444 ret_code = mtd_check_oob_ops(mtd, from, ops);
1445 if (ret_code)
1446 return ret_code;
1447
1448 ledtrig_mtd_activity();
1449
1450 /* Check the validity of a potential fallback on mtd->_read */
1451 if (!master->_read_oob && (!master->_read || ops->oobbuf))
1452 return -EOPNOTSUPP;
1453
1454 if (mtd->flags & MTD_SLC_ON_MLC_EMULATION)
1455 ret_code = mtd_io_emulated_slc(mtd, from, true, ops);
1456 else
1457 ret_code = mtd_read_oob_std(mtd, from, ops);
1458
1459 mtd_update_ecc_stats(mtd, master, &old_stats);
1460
1461 /*
1462 * In cases where ops->datbuf != NULL, mtd->_read_oob() has semantics
1463 * similar to mtd->_read(), returning a non-negative integer
1464 * representing max bitflips. In other cases, mtd->_read_oob() may
1465 * return -EUCLEAN. In all cases, perform similar logic to mtd_read().
1466 */
1467 if (unlikely(ret_code < 0))
1468 return ret_code;
1469 if (mtd->ecc_strength == 0)
1470 return 0; /* device lacks ecc */
1471 return ret_code >= mtd->bitflip_threshold ? -EUCLEAN : 0;
1472 }
1473 EXPORT_SYMBOL_GPL(mtd_read_oob);
1474
mtd_write_oob(struct mtd_info * mtd,loff_t to,struct mtd_oob_ops * ops)1475 int mtd_write_oob(struct mtd_info *mtd, loff_t to,
1476 struct mtd_oob_ops *ops)
1477 {
1478 struct mtd_info *master = mtd_get_master(mtd);
1479 int ret;
1480
1481 ops->retlen = ops->oobretlen = 0;
1482
1483 if (!(mtd->flags & MTD_WRITEABLE))
1484 return -EROFS;
1485
1486 ret = mtd_check_oob_ops(mtd, to, ops);
1487 if (ret)
1488 return ret;
1489
1490 ledtrig_mtd_activity();
1491
1492 /* Check the validity of a potential fallback on mtd->_write */
1493 if (!master->_write_oob && (!master->_write || ops->oobbuf))
1494 return -EOPNOTSUPP;
1495
1496 if (mtd->flags & MTD_SLC_ON_MLC_EMULATION)
1497 return mtd_io_emulated_slc(mtd, to, false, ops);
1498
1499 return mtd_write_oob_std(mtd, to, ops);
1500 }
1501 EXPORT_SYMBOL_GPL(mtd_write_oob);
1502
1503 /**
1504 * mtd_ooblayout_ecc - Get the OOB region definition of a specific ECC section
1505 * @mtd: MTD device structure
1506 * @section: ECC section. Depending on the layout you may have all the ECC
1507 * bytes stored in a single contiguous section, or one section
1508 * per ECC chunk (and sometime several sections for a single ECC
1509 * ECC chunk)
1510 * @oobecc: OOB region struct filled with the appropriate ECC position
1511 * information
1512 *
1513 * This function returns ECC section information in the OOB area. If you want
1514 * to get all the ECC bytes information, then you should call
1515 * mtd_ooblayout_ecc(mtd, section++, oobecc) until it returns -ERANGE.
1516 *
1517 * Returns zero on success, a negative error code otherwise.
1518 */
mtd_ooblayout_ecc(struct mtd_info * mtd,int section,struct mtd_oob_region * oobecc)1519 int mtd_ooblayout_ecc(struct mtd_info *mtd, int section,
1520 struct mtd_oob_region *oobecc)
1521 {
1522 struct mtd_info *master = mtd_get_master(mtd);
1523
1524 memset(oobecc, 0, sizeof(*oobecc));
1525
1526 if (!master || section < 0)
1527 return -EINVAL;
1528
1529 if (!master->ooblayout || !master->ooblayout->ecc)
1530 return -ENOTSUPP;
1531
1532 return master->ooblayout->ecc(master, section, oobecc);
1533 }
1534 EXPORT_SYMBOL_GPL(mtd_ooblayout_ecc);
1535
1536 /**
1537 * mtd_ooblayout_free - Get the OOB region definition of a specific free
1538 * section
1539 * @mtd: MTD device structure
1540 * @section: Free section you are interested in. Depending on the layout
1541 * you may have all the free bytes stored in a single contiguous
1542 * section, or one section per ECC chunk plus an extra section
1543 * for the remaining bytes (or other funky layout).
1544 * @oobfree: OOB region struct filled with the appropriate free position
1545 * information
1546 *
1547 * This function returns free bytes position in the OOB area. If you want
1548 * to get all the free bytes information, then you should call
1549 * mtd_ooblayout_free(mtd, section++, oobfree) until it returns -ERANGE.
1550 *
1551 * Returns zero on success, a negative error code otherwise.
1552 */
mtd_ooblayout_free(struct mtd_info * mtd,int section,struct mtd_oob_region * oobfree)1553 int mtd_ooblayout_free(struct mtd_info *mtd, int section,
1554 struct mtd_oob_region *oobfree)
1555 {
1556 struct mtd_info *master = mtd_get_master(mtd);
1557
1558 memset(oobfree, 0, sizeof(*oobfree));
1559
1560 if (!master || section < 0)
1561 return -EINVAL;
1562
1563 if (!master->ooblayout || !master->ooblayout->free)
1564 return -ENOTSUPP;
1565
1566 return master->ooblayout->free(master, section, oobfree);
1567 }
1568 EXPORT_SYMBOL_GPL(mtd_ooblayout_free);
1569
1570 /**
1571 * mtd_ooblayout_find_region - Find the region attached to a specific byte
1572 * @mtd: mtd info structure
1573 * @byte: the byte we are searching for
1574 * @sectionp: pointer where the section id will be stored
1575 * @oobregion: used to retrieve the ECC position
1576 * @iter: iterator function. Should be either mtd_ooblayout_free or
1577 * mtd_ooblayout_ecc depending on the region type you're searching for
1578 *
1579 * This function returns the section id and oobregion information of a
1580 * specific byte. For example, say you want to know where the 4th ECC byte is
1581 * stored, you'll use:
1582 *
1583 * mtd_ooblayout_find_region(mtd, 3, §ion, &oobregion, mtd_ooblayout_ecc);
1584 *
1585 * Returns zero on success, a negative error code otherwise.
1586 */
mtd_ooblayout_find_region(struct mtd_info * mtd,int byte,int * sectionp,struct mtd_oob_region * oobregion,int (* iter)(struct mtd_info *,int section,struct mtd_oob_region * oobregion))1587 static int mtd_ooblayout_find_region(struct mtd_info *mtd, int byte,
1588 int *sectionp, struct mtd_oob_region *oobregion,
1589 int (*iter)(struct mtd_info *,
1590 int section,
1591 struct mtd_oob_region *oobregion))
1592 {
1593 int pos = 0, ret, section = 0;
1594
1595 memset(oobregion, 0, sizeof(*oobregion));
1596
1597 while (1) {
1598 ret = iter(mtd, section, oobregion);
1599 if (ret)
1600 return ret;
1601
1602 if (pos + oobregion->length > byte)
1603 break;
1604
1605 pos += oobregion->length;
1606 section++;
1607 }
1608
1609 /*
1610 * Adjust region info to make it start at the beginning at the
1611 * 'start' ECC byte.
1612 */
1613 oobregion->offset += byte - pos;
1614 oobregion->length -= byte - pos;
1615 *sectionp = section;
1616
1617 return 0;
1618 }
1619
1620 /**
1621 * mtd_ooblayout_find_eccregion - Find the ECC region attached to a specific
1622 * ECC byte
1623 * @mtd: mtd info structure
1624 * @eccbyte: the byte we are searching for
1625 * @sectionp: pointer where the section id will be stored
1626 * @oobregion: OOB region information
1627 *
1628 * Works like mtd_ooblayout_find_region() except it searches for a specific ECC
1629 * byte.
1630 *
1631 * Returns zero on success, a negative error code otherwise.
1632 */
mtd_ooblayout_find_eccregion(struct mtd_info * mtd,int eccbyte,int * section,struct mtd_oob_region * oobregion)1633 int mtd_ooblayout_find_eccregion(struct mtd_info *mtd, int eccbyte,
1634 int *section,
1635 struct mtd_oob_region *oobregion)
1636 {
1637 return mtd_ooblayout_find_region(mtd, eccbyte, section, oobregion,
1638 mtd_ooblayout_ecc);
1639 }
1640 EXPORT_SYMBOL_GPL(mtd_ooblayout_find_eccregion);
1641
1642 /**
1643 * mtd_ooblayout_get_bytes - Extract OOB bytes from the oob buffer
1644 * @mtd: mtd info structure
1645 * @buf: destination buffer to store OOB bytes
1646 * @oobbuf: OOB buffer
1647 * @start: first byte to retrieve
1648 * @nbytes: number of bytes to retrieve
1649 * @iter: section iterator
1650 *
1651 * Extract bytes attached to a specific category (ECC or free)
1652 * from the OOB buffer and copy them into buf.
1653 *
1654 * Returns zero on success, a negative error code otherwise.
1655 */
mtd_ooblayout_get_bytes(struct mtd_info * mtd,u8 * buf,const u8 * oobbuf,int start,int nbytes,int (* iter)(struct mtd_info *,int section,struct mtd_oob_region * oobregion))1656 static int mtd_ooblayout_get_bytes(struct mtd_info *mtd, u8 *buf,
1657 const u8 *oobbuf, int start, int nbytes,
1658 int (*iter)(struct mtd_info *,
1659 int section,
1660 struct mtd_oob_region *oobregion))
1661 {
1662 struct mtd_oob_region oobregion;
1663 int section, ret;
1664
1665 ret = mtd_ooblayout_find_region(mtd, start, §ion,
1666 &oobregion, iter);
1667
1668 while (!ret) {
1669 int cnt;
1670
1671 cnt = min_t(int, nbytes, oobregion.length);
1672 memcpy(buf, oobbuf + oobregion.offset, cnt);
1673 buf += cnt;
1674 nbytes -= cnt;
1675
1676 if (!nbytes)
1677 break;
1678
1679 ret = iter(mtd, ++section, &oobregion);
1680 }
1681
1682 return ret;
1683 }
1684
1685 /**
1686 * mtd_ooblayout_set_bytes - put OOB bytes into the oob buffer
1687 * @mtd: mtd info structure
1688 * @buf: source buffer to get OOB bytes from
1689 * @oobbuf: OOB buffer
1690 * @start: first OOB byte to set
1691 * @nbytes: number of OOB bytes to set
1692 * @iter: section iterator
1693 *
1694 * Fill the OOB buffer with data provided in buf. The category (ECC or free)
1695 * is selected by passing the appropriate iterator.
1696 *
1697 * Returns zero on success, a negative error code otherwise.
1698 */
mtd_ooblayout_set_bytes(struct mtd_info * mtd,const u8 * buf,u8 * oobbuf,int start,int nbytes,int (* iter)(struct mtd_info *,int section,struct mtd_oob_region * oobregion))1699 static int mtd_ooblayout_set_bytes(struct mtd_info *mtd, const u8 *buf,
1700 u8 *oobbuf, int start, int nbytes,
1701 int (*iter)(struct mtd_info *,
1702 int section,
1703 struct mtd_oob_region *oobregion))
1704 {
1705 struct mtd_oob_region oobregion;
1706 int section, ret;
1707
1708 ret = mtd_ooblayout_find_region(mtd, start, §ion,
1709 &oobregion, iter);
1710
1711 while (!ret) {
1712 int cnt;
1713
1714 cnt = min_t(int, nbytes, oobregion.length);
1715 memcpy(oobbuf + oobregion.offset, buf, cnt);
1716 buf += cnt;
1717 nbytes -= cnt;
1718
1719 if (!nbytes)
1720 break;
1721
1722 ret = iter(mtd, ++section, &oobregion);
1723 }
1724
1725 return ret;
1726 }
1727
1728 /**
1729 * mtd_ooblayout_count_bytes - count the number of bytes in a OOB category
1730 * @mtd: mtd info structure
1731 * @iter: category iterator
1732 *
1733 * Count the number of bytes in a given category.
1734 *
1735 * Returns a positive value on success, a negative error code otherwise.
1736 */
mtd_ooblayout_count_bytes(struct mtd_info * mtd,int (* iter)(struct mtd_info *,int section,struct mtd_oob_region * oobregion))1737 static int mtd_ooblayout_count_bytes(struct mtd_info *mtd,
1738 int (*iter)(struct mtd_info *,
1739 int section,
1740 struct mtd_oob_region *oobregion))
1741 {
1742 struct mtd_oob_region oobregion;
1743 int section = 0, ret, nbytes = 0;
1744
1745 while (1) {
1746 ret = iter(mtd, section++, &oobregion);
1747 if (ret) {
1748 if (ret == -ERANGE)
1749 ret = nbytes;
1750 break;
1751 }
1752
1753 nbytes += oobregion.length;
1754 }
1755
1756 return ret;
1757 }
1758
1759 /**
1760 * mtd_ooblayout_get_eccbytes - extract ECC bytes from the oob buffer
1761 * @mtd: mtd info structure
1762 * @eccbuf: destination buffer to store ECC bytes
1763 * @oobbuf: OOB buffer
1764 * @start: first ECC byte to retrieve
1765 * @nbytes: number of ECC bytes to retrieve
1766 *
1767 * Works like mtd_ooblayout_get_bytes(), except it acts on ECC bytes.
1768 *
1769 * Returns zero on success, a negative error code otherwise.
1770 */
mtd_ooblayout_get_eccbytes(struct mtd_info * mtd,u8 * eccbuf,const u8 * oobbuf,int start,int nbytes)1771 int mtd_ooblayout_get_eccbytes(struct mtd_info *mtd, u8 *eccbuf,
1772 const u8 *oobbuf, int start, int nbytes)
1773 {
1774 return mtd_ooblayout_get_bytes(mtd, eccbuf, oobbuf, start, nbytes,
1775 mtd_ooblayout_ecc);
1776 }
1777 EXPORT_SYMBOL_GPL(mtd_ooblayout_get_eccbytes);
1778
1779 /**
1780 * mtd_ooblayout_set_eccbytes - set ECC bytes into the oob buffer
1781 * @mtd: mtd info structure
1782 * @eccbuf: source buffer to get ECC bytes from
1783 * @oobbuf: OOB buffer
1784 * @start: first ECC byte to set
1785 * @nbytes: number of ECC bytes to set
1786 *
1787 * Works like mtd_ooblayout_set_bytes(), except it acts on ECC bytes.
1788 *
1789 * Returns zero on success, a negative error code otherwise.
1790 */
mtd_ooblayout_set_eccbytes(struct mtd_info * mtd,const u8 * eccbuf,u8 * oobbuf,int start,int nbytes)1791 int mtd_ooblayout_set_eccbytes(struct mtd_info *mtd, const u8 *eccbuf,
1792 u8 *oobbuf, int start, int nbytes)
1793 {
1794 return mtd_ooblayout_set_bytes(mtd, eccbuf, oobbuf, start, nbytes,
1795 mtd_ooblayout_ecc);
1796 }
1797 EXPORT_SYMBOL_GPL(mtd_ooblayout_set_eccbytes);
1798
1799 /**
1800 * mtd_ooblayout_get_databytes - extract data bytes from the oob buffer
1801 * @mtd: mtd info structure
1802 * @databuf: destination buffer to store ECC bytes
1803 * @oobbuf: OOB buffer
1804 * @start: first ECC byte to retrieve
1805 * @nbytes: number of ECC bytes to retrieve
1806 *
1807 * Works like mtd_ooblayout_get_bytes(), except it acts on free bytes.
1808 *
1809 * Returns zero on success, a negative error code otherwise.
1810 */
mtd_ooblayout_get_databytes(struct mtd_info * mtd,u8 * databuf,const u8 * oobbuf,int start,int nbytes)1811 int mtd_ooblayout_get_databytes(struct mtd_info *mtd, u8 *databuf,
1812 const u8 *oobbuf, int start, int nbytes)
1813 {
1814 return mtd_ooblayout_get_bytes(mtd, databuf, oobbuf, start, nbytes,
1815 mtd_ooblayout_free);
1816 }
1817 EXPORT_SYMBOL_GPL(mtd_ooblayout_get_databytes);
1818
1819 /**
1820 * mtd_ooblayout_set_databytes - set data bytes into the oob buffer
1821 * @mtd: mtd info structure
1822 * @databuf: source buffer to get data bytes from
1823 * @oobbuf: OOB buffer
1824 * @start: first ECC byte to set
1825 * @nbytes: number of ECC bytes to set
1826 *
1827 * Works like mtd_ooblayout_set_bytes(), except it acts on free bytes.
1828 *
1829 * Returns zero on success, a negative error code otherwise.
1830 */
mtd_ooblayout_set_databytes(struct mtd_info * mtd,const u8 * databuf,u8 * oobbuf,int start,int nbytes)1831 int mtd_ooblayout_set_databytes(struct mtd_info *mtd, const u8 *databuf,
1832 u8 *oobbuf, int start, int nbytes)
1833 {
1834 return mtd_ooblayout_set_bytes(mtd, databuf, oobbuf, start, nbytes,
1835 mtd_ooblayout_free);
1836 }
1837 EXPORT_SYMBOL_GPL(mtd_ooblayout_set_databytes);
1838
1839 /**
1840 * mtd_ooblayout_count_freebytes - count the number of free bytes in OOB
1841 * @mtd: mtd info structure
1842 *
1843 * Works like mtd_ooblayout_count_bytes(), except it count free bytes.
1844 *
1845 * Returns zero on success, a negative error code otherwise.
1846 */
mtd_ooblayout_count_freebytes(struct mtd_info * mtd)1847 int mtd_ooblayout_count_freebytes(struct mtd_info *mtd)
1848 {
1849 return mtd_ooblayout_count_bytes(mtd, mtd_ooblayout_free);
1850 }
1851 EXPORT_SYMBOL_GPL(mtd_ooblayout_count_freebytes);
1852
1853 /**
1854 * mtd_ooblayout_count_eccbytes - count the number of ECC bytes in OOB
1855 * @mtd: mtd info structure
1856 *
1857 * Works like mtd_ooblayout_count_bytes(), except it count ECC bytes.
1858 *
1859 * Returns zero on success, a negative error code otherwise.
1860 */
mtd_ooblayout_count_eccbytes(struct mtd_info * mtd)1861 int mtd_ooblayout_count_eccbytes(struct mtd_info *mtd)
1862 {
1863 return mtd_ooblayout_count_bytes(mtd, mtd_ooblayout_ecc);
1864 }
1865 EXPORT_SYMBOL_GPL(mtd_ooblayout_count_eccbytes);
1866
1867 /*
1868 * Method to access the protection register area, present in some flash
1869 * devices. The user data is one time programmable but the factory data is read
1870 * only.
1871 */
mtd_get_fact_prot_info(struct mtd_info * mtd,size_t len,size_t * retlen,struct otp_info * buf)1872 int mtd_get_fact_prot_info(struct mtd_info *mtd, size_t len, size_t *retlen,
1873 struct otp_info *buf)
1874 {
1875 struct mtd_info *master = mtd_get_master(mtd);
1876
1877 if (!master->_get_fact_prot_info)
1878 return -EOPNOTSUPP;
1879 if (!len)
1880 return 0;
1881 return master->_get_fact_prot_info(master, len, retlen, buf);
1882 }
1883 EXPORT_SYMBOL_GPL(mtd_get_fact_prot_info);
1884
mtd_read_fact_prot_reg(struct mtd_info * mtd,loff_t from,size_t len,size_t * retlen,u_char * buf)1885 int mtd_read_fact_prot_reg(struct mtd_info *mtd, loff_t from, size_t len,
1886 size_t *retlen, u_char *buf)
1887 {
1888 struct mtd_info *master = mtd_get_master(mtd);
1889
1890 *retlen = 0;
1891 if (!master->_read_fact_prot_reg)
1892 return -EOPNOTSUPP;
1893 if (!len)
1894 return 0;
1895 return master->_read_fact_prot_reg(master, from, len, retlen, buf);
1896 }
1897 EXPORT_SYMBOL_GPL(mtd_read_fact_prot_reg);
1898
mtd_get_user_prot_info(struct mtd_info * mtd,size_t len,size_t * retlen,struct otp_info * buf)1899 int mtd_get_user_prot_info(struct mtd_info *mtd, size_t len, size_t *retlen,
1900 struct otp_info *buf)
1901 {
1902 struct mtd_info *master = mtd_get_master(mtd);
1903
1904 if (!master->_get_user_prot_info)
1905 return -EOPNOTSUPP;
1906 if (!len)
1907 return 0;
1908 return master->_get_user_prot_info(master, len, retlen, buf);
1909 }
1910 EXPORT_SYMBOL_GPL(mtd_get_user_prot_info);
1911
mtd_read_user_prot_reg(struct mtd_info * mtd,loff_t from,size_t len,size_t * retlen,u_char * buf)1912 int mtd_read_user_prot_reg(struct mtd_info *mtd, loff_t from, size_t len,
1913 size_t *retlen, u_char *buf)
1914 {
1915 struct mtd_info *master = mtd_get_master(mtd);
1916
1917 *retlen = 0;
1918 if (!master->_read_user_prot_reg)
1919 return -EOPNOTSUPP;
1920 if (!len)
1921 return 0;
1922 return master->_read_user_prot_reg(master, from, len, retlen, buf);
1923 }
1924 EXPORT_SYMBOL_GPL(mtd_read_user_prot_reg);
1925
mtd_write_user_prot_reg(struct mtd_info * mtd,loff_t to,size_t len,size_t * retlen,u_char * buf)1926 int mtd_write_user_prot_reg(struct mtd_info *mtd, loff_t to, size_t len,
1927 size_t *retlen, u_char *buf)
1928 {
1929 struct mtd_info *master = mtd_get_master(mtd);
1930 int ret;
1931
1932 *retlen = 0;
1933 if (!master->_write_user_prot_reg)
1934 return -EOPNOTSUPP;
1935 if (!len)
1936 return 0;
1937 ret = master->_write_user_prot_reg(master, to, len, retlen, buf);
1938 if (ret)
1939 return ret;
1940
1941 /*
1942 * If no data could be written at all, we are out of memory and
1943 * must return -ENOSPC.
1944 */
1945 return (*retlen) ? 0 : -ENOSPC;
1946 }
1947 EXPORT_SYMBOL_GPL(mtd_write_user_prot_reg);
1948
mtd_lock_user_prot_reg(struct mtd_info * mtd,loff_t from,size_t len)1949 int mtd_lock_user_prot_reg(struct mtd_info *mtd, loff_t from, size_t len)
1950 {
1951 struct mtd_info *master = mtd_get_master(mtd);
1952
1953 if (!master->_lock_user_prot_reg)
1954 return -EOPNOTSUPP;
1955 if (!len)
1956 return 0;
1957 return master->_lock_user_prot_reg(master, from, len);
1958 }
1959 EXPORT_SYMBOL_GPL(mtd_lock_user_prot_reg);
1960
1961 /* Chip-supported device locking */
mtd_lock(struct mtd_info * mtd,loff_t ofs,uint64_t len)1962 int mtd_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
1963 {
1964 struct mtd_info *master = mtd_get_master(mtd);
1965
1966 if (!master->_lock)
1967 return -EOPNOTSUPP;
1968 if (ofs < 0 || ofs >= mtd->size || len > mtd->size - ofs)
1969 return -EINVAL;
1970 if (!len)
1971 return 0;
1972
1973 if (mtd->flags & MTD_SLC_ON_MLC_EMULATION) {
1974 ofs = (loff_t)mtd_div_by_eb(ofs, mtd) * master->erasesize;
1975 len = (u64)mtd_div_by_eb(len, mtd) * master->erasesize;
1976 }
1977
1978 return master->_lock(master, mtd_get_master_ofs(mtd, ofs), len);
1979 }
1980 EXPORT_SYMBOL_GPL(mtd_lock);
1981
mtd_unlock(struct mtd_info * mtd,loff_t ofs,uint64_t len)1982 int mtd_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
1983 {
1984 struct mtd_info *master = mtd_get_master(mtd);
1985
1986 if (!master->_unlock)
1987 return -EOPNOTSUPP;
1988 if (ofs < 0 || ofs >= mtd->size || len > mtd->size - ofs)
1989 return -EINVAL;
1990 if (!len)
1991 return 0;
1992
1993 if (mtd->flags & MTD_SLC_ON_MLC_EMULATION) {
1994 ofs = (loff_t)mtd_div_by_eb(ofs, mtd) * master->erasesize;
1995 len = (u64)mtd_div_by_eb(len, mtd) * master->erasesize;
1996 }
1997
1998 return master->_unlock(master, mtd_get_master_ofs(mtd, ofs), len);
1999 }
2000 EXPORT_SYMBOL_GPL(mtd_unlock);
2001
mtd_is_locked(struct mtd_info * mtd,loff_t ofs,uint64_t len)2002 int mtd_is_locked(struct mtd_info *mtd, loff_t ofs, uint64_t len)
2003 {
2004 struct mtd_info *master = mtd_get_master(mtd);
2005
2006 if (!master->_is_locked)
2007 return -EOPNOTSUPP;
2008 if (ofs < 0 || ofs >= mtd->size || len > mtd->size - ofs)
2009 return -EINVAL;
2010 if (!len)
2011 return 0;
2012
2013 if (mtd->flags & MTD_SLC_ON_MLC_EMULATION) {
2014 ofs = (loff_t)mtd_div_by_eb(ofs, mtd) * master->erasesize;
2015 len = (u64)mtd_div_by_eb(len, mtd) * master->erasesize;
2016 }
2017
2018 return master->_is_locked(master, mtd_get_master_ofs(mtd, ofs), len);
2019 }
2020 EXPORT_SYMBOL_GPL(mtd_is_locked);
2021
mtd_block_isreserved(struct mtd_info * mtd,loff_t ofs)2022 int mtd_block_isreserved(struct mtd_info *mtd, loff_t ofs)
2023 {
2024 struct mtd_info *master = mtd_get_master(mtd);
2025
2026 if (ofs < 0 || ofs >= mtd->size)
2027 return -EINVAL;
2028 if (!master->_block_isreserved)
2029 return 0;
2030
2031 if (mtd->flags & MTD_SLC_ON_MLC_EMULATION)
2032 ofs = (loff_t)mtd_div_by_eb(ofs, mtd) * master->erasesize;
2033
2034 return master->_block_isreserved(master, mtd_get_master_ofs(mtd, ofs));
2035 }
2036 EXPORT_SYMBOL_GPL(mtd_block_isreserved);
2037
mtd_block_isbad(struct mtd_info * mtd,loff_t ofs)2038 int mtd_block_isbad(struct mtd_info *mtd, loff_t ofs)
2039 {
2040 struct mtd_info *master = mtd_get_master(mtd);
2041
2042 if (ofs < 0 || ofs >= mtd->size)
2043 return -EINVAL;
2044 if (!master->_block_isbad)
2045 return 0;
2046
2047 if (mtd->flags & MTD_SLC_ON_MLC_EMULATION)
2048 ofs = (loff_t)mtd_div_by_eb(ofs, mtd) * master->erasesize;
2049
2050 return master->_block_isbad(master, mtd_get_master_ofs(mtd, ofs));
2051 }
2052 EXPORT_SYMBOL_GPL(mtd_block_isbad);
2053
mtd_block_markbad(struct mtd_info * mtd,loff_t ofs)2054 int mtd_block_markbad(struct mtd_info *mtd, loff_t ofs)
2055 {
2056 struct mtd_info *master = mtd_get_master(mtd);
2057 int ret;
2058
2059 if (!master->_block_markbad)
2060 return -EOPNOTSUPP;
2061 if (ofs < 0 || ofs >= mtd->size)
2062 return -EINVAL;
2063 if (!(mtd->flags & MTD_WRITEABLE))
2064 return -EROFS;
2065
2066 if (mtd->flags & MTD_SLC_ON_MLC_EMULATION)
2067 ofs = (loff_t)mtd_div_by_eb(ofs, mtd) * master->erasesize;
2068
2069 ret = master->_block_markbad(master, mtd_get_master_ofs(mtd, ofs));
2070 if (ret)
2071 return ret;
2072
2073 while (mtd->parent) {
2074 mtd->ecc_stats.badblocks++;
2075 mtd = mtd->parent;
2076 }
2077
2078 return 0;
2079 }
2080 EXPORT_SYMBOL_GPL(mtd_block_markbad);
2081
2082 /*
2083 * default_mtd_writev - the default writev method
2084 * @mtd: mtd device description object pointer
2085 * @vecs: the vectors to write
2086 * @count: count of vectors in @vecs
2087 * @to: the MTD device offset to write to
2088 * @retlen: on exit contains the count of bytes written to the MTD device.
2089 *
2090 * This function returns zero in case of success and a negative error code in
2091 * case of failure.
2092 */
default_mtd_writev(struct mtd_info * mtd,const struct kvec * vecs,unsigned long count,loff_t to,size_t * retlen)2093 static int default_mtd_writev(struct mtd_info *mtd, const struct kvec *vecs,
2094 unsigned long count, loff_t to, size_t *retlen)
2095 {
2096 unsigned long i;
2097 size_t totlen = 0, thislen;
2098 int ret = 0;
2099
2100 for (i = 0; i < count; i++) {
2101 if (!vecs[i].iov_len)
2102 continue;
2103 ret = mtd_write(mtd, to, vecs[i].iov_len, &thislen,
2104 vecs[i].iov_base);
2105 totlen += thislen;
2106 if (ret || thislen != vecs[i].iov_len)
2107 break;
2108 to += vecs[i].iov_len;
2109 }
2110 *retlen = totlen;
2111 return ret;
2112 }
2113
2114 /*
2115 * mtd_writev - the vector-based MTD write method
2116 * @mtd: mtd device description object pointer
2117 * @vecs: the vectors to write
2118 * @count: count of vectors in @vecs
2119 * @to: the MTD device offset to write to
2120 * @retlen: on exit contains the count of bytes written to the MTD device.
2121 *
2122 * This function returns zero in case of success and a negative error code in
2123 * case of failure.
2124 */
mtd_writev(struct mtd_info * mtd,const struct kvec * vecs,unsigned long count,loff_t to,size_t * retlen)2125 int mtd_writev(struct mtd_info *mtd, const struct kvec *vecs,
2126 unsigned long count, loff_t to, size_t *retlen)
2127 {
2128 struct mtd_info *master = mtd_get_master(mtd);
2129
2130 *retlen = 0;
2131 if (!(mtd->flags & MTD_WRITEABLE))
2132 return -EROFS;
2133
2134 if (!master->_writev)
2135 return default_mtd_writev(mtd, vecs, count, to, retlen);
2136
2137 return master->_writev(master, vecs, count,
2138 mtd_get_master_ofs(mtd, to), retlen);
2139 }
2140 EXPORT_SYMBOL_GPL(mtd_writev);
2141
2142 /**
2143 * mtd_kmalloc_up_to - allocate a contiguous buffer up to the specified size
2144 * @mtd: mtd device description object pointer
2145 * @size: a pointer to the ideal or maximum size of the allocation, points
2146 * to the actual allocation size on success.
2147 *
2148 * This routine attempts to allocate a contiguous kernel buffer up to
2149 * the specified size, backing off the size of the request exponentially
2150 * until the request succeeds or until the allocation size falls below
2151 * the system page size. This attempts to make sure it does not adversely
2152 * impact system performance, so when allocating more than one page, we
2153 * ask the memory allocator to avoid re-trying, swapping, writing back
2154 * or performing I/O.
2155 *
2156 * Note, this function also makes sure that the allocated buffer is aligned to
2157 * the MTD device's min. I/O unit, i.e. the "mtd->writesize" value.
2158 *
2159 * This is called, for example by mtd_{read,write} and jffs2_scan_medium,
2160 * to handle smaller (i.e. degraded) buffer allocations under low- or
2161 * fragmented-memory situations where such reduced allocations, from a
2162 * requested ideal, are allowed.
2163 *
2164 * Returns a pointer to the allocated buffer on success; otherwise, NULL.
2165 */
mtd_kmalloc_up_to(const struct mtd_info * mtd,size_t * size)2166 void *mtd_kmalloc_up_to(const struct mtd_info *mtd, size_t *size)
2167 {
2168 gfp_t flags = __GFP_NOWARN | __GFP_DIRECT_RECLAIM | __GFP_NORETRY;
2169 size_t min_alloc = max_t(size_t, mtd->writesize, PAGE_SIZE);
2170 void *kbuf;
2171
2172 *size = min_t(size_t, *size, KMALLOC_MAX_SIZE);
2173
2174 while (*size > min_alloc) {
2175 kbuf = kmalloc(*size, flags);
2176 if (kbuf)
2177 return kbuf;
2178
2179 *size >>= 1;
2180 *size = ALIGN(*size, mtd->writesize);
2181 }
2182
2183 /*
2184 * For the last resort allocation allow 'kmalloc()' to do all sorts of
2185 * things (write-back, dropping caches, etc) by using GFP_KERNEL.
2186 */
2187 return kmalloc(*size, GFP_KERNEL);
2188 }
2189 EXPORT_SYMBOL_GPL(mtd_kmalloc_up_to);
2190
2191 #ifdef CONFIG_PROC_FS
2192
2193 /*====================================================================*/
2194 /* Support for /proc/mtd */
2195
mtd_proc_show(struct seq_file * m,void * v)2196 static int mtd_proc_show(struct seq_file *m, void *v)
2197 {
2198 struct mtd_info *mtd;
2199
2200 seq_puts(m, "dev: size erasesize name\n");
2201 mtd_table_mutex_lock();
2202 mtd_for_each_device(mtd) {
2203 seq_printf(m, "mtd%d: %8.8llx %8.8x \"%s\"\n",
2204 mtd->index, (unsigned long long)mtd->size,
2205 mtd->erasesize, mtd->name);
2206 }
2207 mtd_table_mutex_unlock();
2208 return 0;
2209 }
2210 #endif /* CONFIG_PROC_FS */
2211
2212 /*====================================================================*/
2213 /* Init code */
2214
mtd_bdi_init(char * name)2215 static struct backing_dev_info * __init mtd_bdi_init(char *name)
2216 {
2217 struct backing_dev_info *bdi;
2218 int ret;
2219
2220 bdi = bdi_alloc(NUMA_NO_NODE);
2221 if (!bdi)
2222 return ERR_PTR(-ENOMEM);
2223 bdi->ra_pages = 0;
2224 bdi->io_pages = 0;
2225
2226 /*
2227 * We put '-0' suffix to the name to get the same name format as we
2228 * used to get. Since this is called only once, we get a unique name.
2229 */
2230 ret = bdi_register(bdi, "%.28s-0", name);
2231 if (ret)
2232 bdi_put(bdi);
2233
2234 return ret ? ERR_PTR(ret) : bdi;
2235 }
2236
2237 static struct proc_dir_entry *proc_mtd;
2238
init_mtd(void)2239 static int __init init_mtd(void)
2240 {
2241 int ret;
2242
2243 ret = class_register(&mtd_class);
2244 if (ret)
2245 goto err_reg;
2246
2247 mtd_bdi = mtd_bdi_init("mtd");
2248 if (IS_ERR(mtd_bdi)) {
2249 ret = PTR_ERR(mtd_bdi);
2250 goto err_bdi;
2251 }
2252
2253 proc_mtd = proc_create_single("mtd", 0, NULL, mtd_proc_show);
2254
2255 ret = init_mtdchar();
2256 if (ret)
2257 goto out_procfs;
2258
2259 dfs_dir_mtd = debugfs_create_dir("mtd", NULL);
2260
2261 return 0;
2262
2263 out_procfs:
2264 if (proc_mtd)
2265 remove_proc_entry("mtd", NULL);
2266 bdi_put(mtd_bdi);
2267 err_bdi:
2268 class_unregister(&mtd_class);
2269 err_reg:
2270 pr_err("Error registering mtd class or bdi: %d\n", ret);
2271 return ret;
2272 }
2273
cleanup_mtd(void)2274 static void __exit cleanup_mtd(void)
2275 {
2276 debugfs_remove_recursive(dfs_dir_mtd);
2277 cleanup_mtdchar();
2278 if (proc_mtd)
2279 remove_proc_entry("mtd", NULL);
2280 class_unregister(&mtd_class);
2281 bdi_put(mtd_bdi);
2282 idr_destroy(&mtd_idr);
2283 }
2284
2285 module_init(init_mtd);
2286 module_exit(cleanup_mtd);
2287
2288 MODULE_LICENSE("GPL");
2289 MODULE_AUTHOR("David Woodhouse <dwmw2@infradead.org>");
2290 MODULE_DESCRIPTION("Core MTD registration and access routines");
2291