1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * linux/kernel/fork.c
4 *
5 * Copyright (C) 1991, 1992 Linus Torvalds
6 */
7
8 /*
9 * 'fork.c' contains the help-routines for the 'fork' system call
10 * (see also entry.S and others).
11 * Fork is rather simple, once you get the hang of it, but the memory
12 * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
13 */
14
15 #include <linux/anon_inodes.h>
16 #include <linux/slab.h>
17 #include <linux/sched/autogroup.h>
18 #include <linux/sched/mm.h>
19 #include <linux/sched/coredump.h>
20 #include <linux/sched/user.h>
21 #include <linux/sched/numa_balancing.h>
22 #include <linux/sched/stat.h>
23 #include <linux/sched/task.h>
24 #include <linux/sched/task_stack.h>
25 #include <linux/sched/cputime.h>
26 #include <linux/seq_file.h>
27 #include <linux/rtmutex.h>
28 #include <linux/init.h>
29 #include <linux/unistd.h>
30 #include <linux/module.h>
31 #include <linux/vmalloc.h>
32 #include <linux/completion.h>
33 #include <linux/personality.h>
34 #include <linux/mempolicy.h>
35 #include <linux/sem.h>
36 #include <linux/file.h>
37 #include <linux/fdtable.h>
38 #include <linux/iocontext.h>
39 #include <linux/key.h>
40 #include <linux/binfmts.h>
41 #include <linux/mman.h>
42 #include <linux/mmu_notifier.h>
43 #include <linux/fs.h>
44 #include <linux/mm.h>
45 #include <linux/mm_inline.h>
46 #include <linux/vmacache.h>
47 #include <linux/nsproxy.h>
48 #include <linux/capability.h>
49 #include <linux/cpu.h>
50 #include <linux/cgroup.h>
51 #include <linux/security.h>
52 #include <linux/hugetlb.h>
53 #include <linux/seccomp.h>
54 #include <linux/swap.h>
55 #include <linux/syscalls.h>
56 #include <linux/jiffies.h>
57 #include <linux/futex.h>
58 #include <linux/compat.h>
59 #include <linux/kthread.h>
60 #include <linux/task_io_accounting_ops.h>
61 #include <linux/rcupdate.h>
62 #include <linux/ptrace.h>
63 #include <linux/mount.h>
64 #include <linux/audit.h>
65 #include <linux/memcontrol.h>
66 #include <linux/ftrace.h>
67 #include <linux/proc_fs.h>
68 #include <linux/profile.h>
69 #include <linux/rmap.h>
70 #include <linux/ksm.h>
71 #include <linux/acct.h>
72 #include <linux/userfaultfd_k.h>
73 #include <linux/tsacct_kern.h>
74 #include <linux/cn_proc.h>
75 #include <linux/freezer.h>
76 #include <linux/delayacct.h>
77 #include <linux/taskstats_kern.h>
78 #include <linux/random.h>
79 #include <linux/tty.h>
80 #include <linux/blkdev.h>
81 #include <linux/fs_struct.h>
82 #include <linux/magic.h>
83 #include <linux/perf_event.h>
84 #include <linux/posix-timers.h>
85 #include <linux/user-return-notifier.h>
86 #include <linux/oom.h>
87 #include <linux/khugepaged.h>
88 #include <linux/signalfd.h>
89 #include <linux/uprobes.h>
90 #include <linux/aio.h>
91 #include <linux/compiler.h>
92 #include <linux/sysctl.h>
93 #include <linux/kcov.h>
94 #include <linux/livepatch.h>
95 #include <linux/thread_info.h>
96 #include <linux/stackleak.h>
97 #include <linux/kasan.h>
98 #include <linux/scs.h>
99 #include <linux/io_uring.h>
100 #ifdef CONFIG_RECLAIM_ACCT
101 #include <linux/reclaim_acct.h>
102 #endif
103 #include <linux/mm_purgeable.h>
104
105 #include <asm/pgalloc.h>
106 #include <linux/uaccess.h>
107 #include <asm/mmu_context.h>
108 #include <asm/cacheflush.h>
109 #include <asm/tlbflush.h>
110
111 #include <trace/events/sched.h>
112
113 #define CREATE_TRACE_POINTS
114 #include <trace/events/task.h>
115
116 /*
117 * Minimum number of threads to boot the kernel
118 */
119 #define MIN_THREADS 20
120
121 /*
122 * Maximum number of threads
123 */
124 #define MAX_THREADS FUTEX_TID_MASK
125
126 /*
127 * Protected counters by write_lock_irq(&tasklist_lock)
128 */
129 unsigned long total_forks; /* Handle normal Linux uptimes. */
130 int nr_threads; /* The idle threads do not count.. */
131
132 static int max_threads; /* tunable limit on nr_threads */
133
134 #define NAMED_ARRAY_INDEX(x) [x] = __stringify(x)
135
136 static const char * const resident_page_types[] = {
137 NAMED_ARRAY_INDEX(MM_FILEPAGES),
138 NAMED_ARRAY_INDEX(MM_ANONPAGES),
139 NAMED_ARRAY_INDEX(MM_SWAPENTS),
140 NAMED_ARRAY_INDEX(MM_SHMEMPAGES),
141 };
142
143 DEFINE_PER_CPU(unsigned long, process_counts) = 0;
144
145 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock); /* outer */
146
147 #ifdef CONFIG_PROVE_RCU
lockdep_tasklist_lock_is_held(void)148 int lockdep_tasklist_lock_is_held(void)
149 {
150 return lockdep_is_held(&tasklist_lock);
151 }
152 EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held);
153 #endif /* #ifdef CONFIG_PROVE_RCU */
154
nr_processes(void)155 int nr_processes(void)
156 {
157 int cpu;
158 int total = 0;
159
160 for_each_possible_cpu(cpu)
161 total += per_cpu(process_counts, cpu);
162
163 return total;
164 }
165
arch_release_task_struct(struct task_struct * tsk)166 void __weak arch_release_task_struct(struct task_struct *tsk)
167 {
168 }
169
170 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
171 static struct kmem_cache *task_struct_cachep;
172
alloc_task_struct_node(int node)173 static inline struct task_struct *alloc_task_struct_node(int node)
174 {
175 return kmem_cache_alloc_node(task_struct_cachep, GFP_KERNEL, node);
176 }
177
free_task_struct(struct task_struct * tsk)178 static inline void free_task_struct(struct task_struct *tsk)
179 {
180 kmem_cache_free(task_struct_cachep, tsk);
181 }
182 #endif
183
184 #ifndef CONFIG_ARCH_THREAD_STACK_ALLOCATOR
185
186 /*
187 * Allocate pages if THREAD_SIZE is >= PAGE_SIZE, otherwise use a
188 * kmemcache based allocator.
189 */
190 # if THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK)
191
192 #ifdef CONFIG_VMAP_STACK
193 /*
194 * vmalloc() is a bit slow, and calling vfree() enough times will force a TLB
195 * flush. Try to minimize the number of calls by caching stacks.
196 */
197 #define NR_CACHED_STACKS 2
198 static DEFINE_PER_CPU(struct vm_struct *, cached_stacks[NR_CACHED_STACKS]);
199
free_vm_stack_cache(unsigned int cpu)200 static int free_vm_stack_cache(unsigned int cpu)
201 {
202 struct vm_struct **cached_vm_stacks = per_cpu_ptr(cached_stacks, cpu);
203 int i;
204
205 for (i = 0; i < NR_CACHED_STACKS; i++) {
206 struct vm_struct *vm_stack = cached_vm_stacks[i];
207
208 if (!vm_stack)
209 continue;
210
211 vfree(vm_stack->addr);
212 cached_vm_stacks[i] = NULL;
213 }
214
215 return 0;
216 }
217 #endif
218
alloc_thread_stack_node(struct task_struct * tsk,int node)219 static unsigned long *alloc_thread_stack_node(struct task_struct *tsk, int node)
220 {
221 #ifdef CONFIG_VMAP_STACK
222 void *stack;
223 int i;
224
225 for (i = 0; i < NR_CACHED_STACKS; i++) {
226 struct vm_struct *s;
227
228 s = this_cpu_xchg(cached_stacks[i], NULL);
229
230 if (!s)
231 continue;
232
233 /* Clear the KASAN shadow of the stack. */
234 kasan_unpoison_shadow(s->addr, THREAD_SIZE);
235
236 /* Clear stale pointers from reused stack. */
237 memset(s->addr, 0, THREAD_SIZE);
238
239 tsk->stack_vm_area = s;
240 tsk->stack = s->addr;
241 return s->addr;
242 }
243
244 /*
245 * Allocated stacks are cached and later reused by new threads,
246 * so memcg accounting is performed manually on assigning/releasing
247 * stacks to tasks. Drop __GFP_ACCOUNT.
248 */
249 stack = __vmalloc_node_range(THREAD_SIZE, THREAD_ALIGN,
250 VMALLOC_START, VMALLOC_END,
251 THREADINFO_GFP & ~__GFP_ACCOUNT,
252 PAGE_KERNEL,
253 0, node, __builtin_return_address(0));
254
255 /*
256 * We can't call find_vm_area() in interrupt context, and
257 * free_thread_stack() can be called in interrupt context,
258 * so cache the vm_struct.
259 */
260 if (stack) {
261 tsk->stack_vm_area = find_vm_area(stack);
262 tsk->stack = stack;
263 }
264 return stack;
265 #else
266 struct page *page = alloc_pages_node(node, THREADINFO_GFP,
267 THREAD_SIZE_ORDER);
268
269 if (likely(page)) {
270 tsk->stack = kasan_reset_tag(page_address(page));
271 return tsk->stack;
272 }
273 return NULL;
274 #endif
275 }
276
free_thread_stack(struct task_struct * tsk)277 static inline void free_thread_stack(struct task_struct *tsk)
278 {
279 #ifdef CONFIG_VMAP_STACK
280 struct vm_struct *vm = task_stack_vm_area(tsk);
281
282 if (vm) {
283 int i;
284
285 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++)
286 memcg_kmem_uncharge_page(vm->pages[i], 0);
287
288 for (i = 0; i < NR_CACHED_STACKS; i++) {
289 if (this_cpu_cmpxchg(cached_stacks[i],
290 NULL, tsk->stack_vm_area) != NULL)
291 continue;
292
293 return;
294 }
295
296 vfree_atomic(tsk->stack);
297 return;
298 }
299 #endif
300
301 __free_pages(virt_to_page(tsk->stack), THREAD_SIZE_ORDER);
302 }
303 # else
304 static struct kmem_cache *thread_stack_cache;
305
alloc_thread_stack_node(struct task_struct * tsk,int node)306 static unsigned long *alloc_thread_stack_node(struct task_struct *tsk,
307 int node)
308 {
309 unsigned long *stack;
310 stack = kmem_cache_alloc_node(thread_stack_cache, THREADINFO_GFP, node);
311 stack = kasan_reset_tag(stack);
312 tsk->stack = stack;
313 return stack;
314 }
315
free_thread_stack(struct task_struct * tsk)316 static void free_thread_stack(struct task_struct *tsk)
317 {
318 kmem_cache_free(thread_stack_cache, tsk->stack);
319 }
320
thread_stack_cache_init(void)321 void thread_stack_cache_init(void)
322 {
323 thread_stack_cache = kmem_cache_create_usercopy("thread_stack",
324 THREAD_SIZE, THREAD_SIZE, 0, 0,
325 THREAD_SIZE, NULL);
326 BUG_ON(thread_stack_cache == NULL);
327 }
328 # endif
329 #endif
330
331 /* SLAB cache for signal_struct structures (tsk->signal) */
332 static struct kmem_cache *signal_cachep;
333
334 /* SLAB cache for sighand_struct structures (tsk->sighand) */
335 struct kmem_cache *sighand_cachep;
336
337 /* SLAB cache for files_struct structures (tsk->files) */
338 struct kmem_cache *files_cachep;
339
340 /* SLAB cache for fs_struct structures (tsk->fs) */
341 struct kmem_cache *fs_cachep;
342
343 /* SLAB cache for vm_area_struct structures */
344 static struct kmem_cache *vm_area_cachep;
345
346 /* SLAB cache for mm_struct structures (tsk->mm) */
347 static struct kmem_cache *mm_cachep;
348
vm_area_alloc(struct mm_struct * mm)349 struct vm_area_struct *vm_area_alloc(struct mm_struct *mm)
350 {
351 struct vm_area_struct *vma;
352
353 vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
354 if (vma)
355 vma_init(vma, mm);
356 return vma;
357 }
358
vm_area_dup(struct vm_area_struct * orig)359 struct vm_area_struct *vm_area_dup(struct vm_area_struct *orig)
360 {
361 struct vm_area_struct *new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
362
363 if (new) {
364 ASSERT_EXCLUSIVE_WRITER(orig->vm_flags);
365 ASSERT_EXCLUSIVE_WRITER(orig->vm_file);
366 /*
367 * orig->shared.rb may be modified concurrently, but the clone
368 * will be reinitialized.
369 */
370 *new = data_race(*orig);
371 INIT_LIST_HEAD(&new->anon_vma_chain);
372 new->vm_next = new->vm_prev = NULL;
373 dup_anon_vma_name(orig, new);
374 }
375 return new;
376 }
377
vm_area_free(struct vm_area_struct * vma)378 void vm_area_free(struct vm_area_struct *vma)
379 {
380 free_anon_vma_name(vma);
381 kmem_cache_free(vm_area_cachep, vma);
382 }
383
account_kernel_stack(struct task_struct * tsk,int account)384 static void account_kernel_stack(struct task_struct *tsk, int account)
385 {
386 void *stack = task_stack_page(tsk);
387 struct vm_struct *vm = task_stack_vm_area(tsk);
388
389
390 /* All stack pages are in the same node. */
391 if (vm)
392 mod_lruvec_page_state(vm->pages[0], NR_KERNEL_STACK_KB,
393 account * (THREAD_SIZE / 1024));
394 else
395 mod_lruvec_slab_state(stack, NR_KERNEL_STACK_KB,
396 account * (THREAD_SIZE / 1024));
397 }
398
memcg_charge_kernel_stack(struct task_struct * tsk)399 static int memcg_charge_kernel_stack(struct task_struct *tsk)
400 {
401 #ifdef CONFIG_VMAP_STACK
402 struct vm_struct *vm = task_stack_vm_area(tsk);
403 int ret;
404
405 BUILD_BUG_ON(IS_ENABLED(CONFIG_VMAP_STACK) && PAGE_SIZE % 1024 != 0);
406
407 if (vm) {
408 int i;
409
410 BUG_ON(vm->nr_pages != THREAD_SIZE / PAGE_SIZE);
411
412 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) {
413 /*
414 * If memcg_kmem_charge_page() fails, page->mem_cgroup
415 * pointer is NULL, and memcg_kmem_uncharge_page() in
416 * free_thread_stack() will ignore this page.
417 */
418 ret = memcg_kmem_charge_page(vm->pages[i], GFP_KERNEL,
419 0);
420 if (ret)
421 return ret;
422 }
423 }
424 #endif
425 return 0;
426 }
427
release_task_stack(struct task_struct * tsk)428 static void release_task_stack(struct task_struct *tsk)
429 {
430 if (WARN_ON(tsk->state != TASK_DEAD))
431 return; /* Better to leak the stack than to free prematurely */
432
433 account_kernel_stack(tsk, -1);
434 free_thread_stack(tsk);
435 tsk->stack = NULL;
436 #ifdef CONFIG_VMAP_STACK
437 tsk->stack_vm_area = NULL;
438 #endif
439 }
440
441 #ifdef CONFIG_THREAD_INFO_IN_TASK
put_task_stack(struct task_struct * tsk)442 void put_task_stack(struct task_struct *tsk)
443 {
444 if (refcount_dec_and_test(&tsk->stack_refcount))
445 release_task_stack(tsk);
446 }
447 #endif
448
free_task(struct task_struct * tsk)449 void free_task(struct task_struct *tsk)
450 {
451 scs_release(tsk);
452
453 #ifndef CONFIG_THREAD_INFO_IN_TASK
454 /*
455 * The task is finally done with both the stack and thread_info,
456 * so free both.
457 */
458 release_task_stack(tsk);
459 #else
460 /*
461 * If the task had a separate stack allocation, it should be gone
462 * by now.
463 */
464 WARN_ON_ONCE(refcount_read(&tsk->stack_refcount) != 0);
465 #endif
466 rt_mutex_debug_task_free(tsk);
467 ftrace_graph_exit_task(tsk);
468 arch_release_task_struct(tsk);
469 if (tsk->flags & PF_KTHREAD)
470 free_kthread_struct(tsk);
471 free_task_struct(tsk);
472 }
473 EXPORT_SYMBOL(free_task);
474
475 #ifdef CONFIG_MMU
dup_mmap(struct mm_struct * mm,struct mm_struct * oldmm)476 static __latent_entropy int dup_mmap(struct mm_struct *mm,
477 struct mm_struct *oldmm)
478 {
479 struct vm_area_struct *mpnt, *tmp, *prev, **pprev;
480 struct rb_node **rb_link, *rb_parent;
481 int retval;
482 unsigned long charge;
483 LIST_HEAD(uf);
484
485 uprobe_start_dup_mmap();
486 if (mmap_write_lock_killable(oldmm)) {
487 retval = -EINTR;
488 goto fail_uprobe_end;
489 }
490 flush_cache_dup_mm(oldmm);
491 uprobe_dup_mmap(oldmm, mm);
492 /*
493 * Not linked in yet - no deadlock potential:
494 */
495 mmap_write_lock_nested(mm, SINGLE_DEPTH_NESTING);
496
497 /* No ordering required: file already has been exposed. */
498 RCU_INIT_POINTER(mm->exe_file, get_mm_exe_file(oldmm));
499
500 mm->total_vm = oldmm->total_vm;
501 mm->data_vm = oldmm->data_vm;
502 mm->exec_vm = oldmm->exec_vm;
503 mm->stack_vm = oldmm->stack_vm;
504
505 rb_link = &mm->mm_rb.rb_node;
506 rb_parent = NULL;
507 pprev = &mm->mmap;
508 retval = ksm_fork(mm, oldmm);
509 if (retval)
510 goto out;
511 retval = khugepaged_fork(mm, oldmm);
512 if (retval)
513 goto out;
514
515 prev = NULL;
516 for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) {
517 struct file *file;
518
519 if (mpnt->vm_flags & VM_DONTCOPY) {
520 vm_stat_account(mm, mpnt->vm_flags, -vma_pages(mpnt));
521 continue;
522 }
523 charge = 0;
524 /*
525 * Don't duplicate many vmas if we've been oom-killed (for
526 * example)
527 */
528 if (fatal_signal_pending(current)) {
529 retval = -EINTR;
530 goto out;
531 }
532 if (mpnt->vm_flags & VM_ACCOUNT) {
533 unsigned long len = vma_pages(mpnt);
534
535 if (security_vm_enough_memory_mm(oldmm, len)) /* sic */
536 goto fail_nomem;
537 charge = len;
538 }
539 tmp = vm_area_dup(mpnt);
540 if (!tmp)
541 goto fail_nomem;
542 retval = vma_dup_policy(mpnt, tmp);
543 if (retval)
544 goto fail_nomem_policy;
545 tmp->vm_mm = mm;
546 retval = dup_userfaultfd(tmp, &uf);
547 if (retval)
548 goto fail_nomem_anon_vma_fork;
549 if (tmp->vm_flags & VM_WIPEONFORK) {
550 /*
551 * VM_WIPEONFORK gets a clean slate in the child.
552 * Don't prepare anon_vma until fault since we don't
553 * copy page for current vma.
554 */
555 tmp->anon_vma = NULL;
556 } else if (anon_vma_fork(tmp, mpnt))
557 goto fail_nomem_anon_vma_fork;
558 tmp->vm_flags &= ~(VM_LOCKED | VM_LOCKONFAULT);
559 file = tmp->vm_file;
560 if (file) {
561 struct inode *inode = file_inode(file);
562 struct address_space *mapping = file->f_mapping;
563
564 get_file(file);
565 if (tmp->vm_flags & VM_DENYWRITE)
566 put_write_access(inode);
567 i_mmap_lock_write(mapping);
568 if (tmp->vm_flags & VM_SHARED)
569 mapping_allow_writable(mapping);
570 flush_dcache_mmap_lock(mapping);
571 /* insert tmp into the share list, just after mpnt */
572 vma_interval_tree_insert_after(tmp, mpnt,
573 &mapping->i_mmap);
574 flush_dcache_mmap_unlock(mapping);
575 i_mmap_unlock_write(mapping);
576 }
577
578 /*
579 * Clear hugetlb-related page reserves for children. This only
580 * affects MAP_PRIVATE mappings. Faults generated by the child
581 * are not guaranteed to succeed, even if read-only
582 */
583 if (is_vm_hugetlb_page(tmp))
584 reset_vma_resv_huge_pages(tmp);
585
586 /*
587 * Link in the new vma and copy the page table entries.
588 */
589 *pprev = tmp;
590 pprev = &tmp->vm_next;
591 tmp->vm_prev = prev;
592 prev = tmp;
593
594 __vma_link_rb(mm, tmp, rb_link, rb_parent);
595 rb_link = &tmp->vm_rb.rb_right;
596 rb_parent = &tmp->vm_rb;
597
598 mm->map_count++;
599 if (!(tmp->vm_flags & VM_WIPEONFORK))
600 retval = copy_page_range(tmp, mpnt);
601
602 if (tmp->vm_ops && tmp->vm_ops->open)
603 tmp->vm_ops->open(tmp);
604
605 if (retval)
606 goto out;
607 }
608 /* a new mm has just been created */
609 retval = arch_dup_mmap(oldmm, mm);
610 out:
611 mmap_write_unlock(mm);
612 flush_tlb_mm(oldmm);
613 mmap_write_unlock(oldmm);
614 dup_userfaultfd_complete(&uf);
615 fail_uprobe_end:
616 uprobe_end_dup_mmap();
617 return retval;
618 fail_nomem_anon_vma_fork:
619 mpol_put(vma_policy(tmp));
620 fail_nomem_policy:
621 vm_area_free(tmp);
622 fail_nomem:
623 retval = -ENOMEM;
624 vm_unacct_memory(charge);
625 goto out;
626 }
627
mm_alloc_pgd(struct mm_struct * mm)628 static inline int mm_alloc_pgd(struct mm_struct *mm)
629 {
630 mm_init_uxpgd(mm);
631 mm->pgd = pgd_alloc(mm);
632 if (unlikely(!mm->pgd))
633 return -ENOMEM;
634 return 0;
635 }
636
mm_free_pgd(struct mm_struct * mm)637 static inline void mm_free_pgd(struct mm_struct *mm)
638 {
639 pgd_free(mm, mm->pgd);
640 mm_clear_uxpgd(mm);
641 }
642 #else
dup_mmap(struct mm_struct * mm,struct mm_struct * oldmm)643 static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
644 {
645 mmap_write_lock(oldmm);
646 RCU_INIT_POINTER(mm->exe_file, get_mm_exe_file(oldmm));
647 mmap_write_unlock(oldmm);
648 return 0;
649 }
650 #define mm_alloc_pgd(mm) (0)
651 #define mm_free_pgd(mm)
652 #endif /* CONFIG_MMU */
653
check_mm(struct mm_struct * mm)654 static void check_mm(struct mm_struct *mm)
655 {
656 int i;
657
658 BUILD_BUG_ON_MSG(ARRAY_SIZE(resident_page_types) != NR_MM_COUNTERS,
659 "Please make sure 'struct resident_page_types[]' is updated as well");
660
661 for (i = 0; i < NR_MM_COUNTERS; i++) {
662 long x = atomic_long_read(&mm->rss_stat.count[i]);
663
664 if (unlikely(x))
665 pr_alert("BUG: Bad rss-counter state mm:%p type:%s val:%ld\n",
666 mm, resident_page_types[i], x);
667 }
668
669 if (mm_pgtables_bytes(mm))
670 pr_alert("BUG: non-zero pgtables_bytes on freeing mm: %ld\n",
671 mm_pgtables_bytes(mm));
672
673 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
674 VM_BUG_ON_MM(mm->pmd_huge_pte, mm);
675 #endif
676 }
677
678 #define allocate_mm() (kmem_cache_alloc(mm_cachep, GFP_KERNEL))
679 #define free_mm(mm) (kmem_cache_free(mm_cachep, (mm)))
680
681 /*
682 * Called when the last reference to the mm
683 * is dropped: either by a lazy thread or by
684 * mmput. Free the page directory and the mm.
685 */
__mmdrop(struct mm_struct * mm)686 void __mmdrop(struct mm_struct *mm)
687 {
688 BUG_ON(mm == &init_mm);
689 WARN_ON_ONCE(mm == current->mm);
690 WARN_ON_ONCE(mm == current->active_mm);
691 mm_free_pgd(mm);
692 destroy_context(mm);
693 mmu_notifier_subscriptions_destroy(mm);
694 check_mm(mm);
695 put_user_ns(mm->user_ns);
696 free_mm(mm);
697 }
698 EXPORT_SYMBOL_GPL(__mmdrop);
699
mmdrop_async_fn(struct work_struct * work)700 static void mmdrop_async_fn(struct work_struct *work)
701 {
702 struct mm_struct *mm;
703
704 mm = container_of(work, struct mm_struct, async_put_work);
705 __mmdrop(mm);
706 }
707
mmdrop_async(struct mm_struct * mm)708 static void mmdrop_async(struct mm_struct *mm)
709 {
710 if (unlikely(atomic_dec_and_test(&mm->mm_count))) {
711 INIT_WORK(&mm->async_put_work, mmdrop_async_fn);
712 schedule_work(&mm->async_put_work);
713 }
714 }
715
free_signal_struct(struct signal_struct * sig)716 static inline void free_signal_struct(struct signal_struct *sig)
717 {
718 taskstats_tgid_free(sig);
719 sched_autogroup_exit(sig);
720 /*
721 * __mmdrop is not safe to call from softirq context on x86 due to
722 * pgd_dtor so postpone it to the async context
723 */
724 if (sig->oom_mm)
725 mmdrop_async(sig->oom_mm);
726 kmem_cache_free(signal_cachep, sig);
727 }
728
put_signal_struct(struct signal_struct * sig)729 static inline void put_signal_struct(struct signal_struct *sig)
730 {
731 if (refcount_dec_and_test(&sig->sigcnt))
732 free_signal_struct(sig);
733 }
734
__put_task_struct(struct task_struct * tsk)735 void __put_task_struct(struct task_struct *tsk)
736 {
737 WARN_ON(!tsk->exit_state);
738 WARN_ON(refcount_read(&tsk->usage));
739 WARN_ON(tsk == current);
740
741 io_uring_free(tsk);
742 cgroup_free(tsk);
743 task_numa_free(tsk, true);
744 security_task_free(tsk);
745 exit_creds(tsk);
746 delayacct_tsk_free(tsk);
747 put_signal_struct(tsk->signal);
748
749 if (!profile_handoff_task(tsk))
750 free_task(tsk);
751 }
752 EXPORT_SYMBOL_GPL(__put_task_struct);
753
arch_task_cache_init(void)754 void __init __weak arch_task_cache_init(void) { }
755
756 /*
757 * set_max_threads
758 */
set_max_threads(unsigned int max_threads_suggested)759 static void set_max_threads(unsigned int max_threads_suggested)
760 {
761 u64 threads;
762 unsigned long nr_pages = totalram_pages();
763
764 /*
765 * The number of threads shall be limited such that the thread
766 * structures may only consume a small part of the available memory.
767 */
768 if (fls64(nr_pages) + fls64(PAGE_SIZE) > 64)
769 threads = MAX_THREADS;
770 else
771 threads = div64_u64((u64) nr_pages * (u64) PAGE_SIZE,
772 (u64) THREAD_SIZE * 8UL);
773
774 if (threads > max_threads_suggested)
775 threads = max_threads_suggested;
776
777 max_threads = clamp_t(u64, threads, MIN_THREADS, MAX_THREADS);
778 }
779
780 #ifdef CONFIG_ARCH_WANTS_DYNAMIC_TASK_STRUCT
781 /* Initialized by the architecture: */
782 int arch_task_struct_size __read_mostly;
783 #endif
784
785 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
task_struct_whitelist(unsigned long * offset,unsigned long * size)786 static void task_struct_whitelist(unsigned long *offset, unsigned long *size)
787 {
788 /* Fetch thread_struct whitelist for the architecture. */
789 arch_thread_struct_whitelist(offset, size);
790
791 /*
792 * Handle zero-sized whitelist or empty thread_struct, otherwise
793 * adjust offset to position of thread_struct in task_struct.
794 */
795 if (unlikely(*size == 0))
796 *offset = 0;
797 else
798 *offset += offsetof(struct task_struct, thread);
799 }
800 #endif /* CONFIG_ARCH_TASK_STRUCT_ALLOCATOR */
801
fork_init(void)802 void __init fork_init(void)
803 {
804 int i;
805 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
806 #ifndef ARCH_MIN_TASKALIGN
807 #define ARCH_MIN_TASKALIGN 0
808 #endif
809 int align = max_t(int, L1_CACHE_BYTES, ARCH_MIN_TASKALIGN);
810 unsigned long useroffset, usersize;
811
812 /* create a slab on which task_structs can be allocated */
813 task_struct_whitelist(&useroffset, &usersize);
814 task_struct_cachep = kmem_cache_create_usercopy("task_struct",
815 arch_task_struct_size, align,
816 SLAB_PANIC|SLAB_ACCOUNT,
817 useroffset, usersize, NULL);
818 #endif
819
820 /* do the arch specific task caches init */
821 arch_task_cache_init();
822
823 set_max_threads(MAX_THREADS);
824
825 init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
826 init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
827 init_task.signal->rlim[RLIMIT_SIGPENDING] =
828 init_task.signal->rlim[RLIMIT_NPROC];
829
830 for (i = 0; i < UCOUNT_COUNTS; i++) {
831 init_user_ns.ucount_max[i] = max_threads/2;
832 }
833
834 #ifdef CONFIG_VMAP_STACK
835 cpuhp_setup_state(CPUHP_BP_PREPARE_DYN, "fork:vm_stack_cache",
836 NULL, free_vm_stack_cache);
837 #endif
838
839 scs_init();
840
841 lockdep_init_task(&init_task);
842 uprobes_init();
843 }
844
arch_dup_task_struct(struct task_struct * dst,struct task_struct * src)845 int __weak arch_dup_task_struct(struct task_struct *dst,
846 struct task_struct *src)
847 {
848 *dst = *src;
849 return 0;
850 }
851
set_task_stack_end_magic(struct task_struct * tsk)852 void set_task_stack_end_magic(struct task_struct *tsk)
853 {
854 unsigned long *stackend;
855
856 stackend = end_of_stack(tsk);
857 *stackend = STACK_END_MAGIC; /* for overflow detection */
858 }
859
dup_task_struct(struct task_struct * orig,int node)860 static struct task_struct *dup_task_struct(struct task_struct *orig, int node)
861 {
862 struct task_struct *tsk;
863 unsigned long *stack;
864 struct vm_struct *stack_vm_area __maybe_unused;
865 int err;
866
867 if (node == NUMA_NO_NODE)
868 node = tsk_fork_get_node(orig);
869 tsk = alloc_task_struct_node(node);
870 if (!tsk)
871 return NULL;
872
873 stack = alloc_thread_stack_node(tsk, node);
874 if (!stack)
875 goto free_tsk;
876
877 if (memcg_charge_kernel_stack(tsk))
878 goto free_stack;
879
880 stack_vm_area = task_stack_vm_area(tsk);
881
882 err = arch_dup_task_struct(tsk, orig);
883
884 #ifdef CONFIG_ACCESS_TOKENID
885 tsk->token = orig->token;
886 tsk->ftoken = 0;
887 #endif
888 /*
889 * arch_dup_task_struct() clobbers the stack-related fields. Make
890 * sure they're properly initialized before using any stack-related
891 * functions again.
892 */
893 tsk->stack = stack;
894 #ifdef CONFIG_VMAP_STACK
895 tsk->stack_vm_area = stack_vm_area;
896 #endif
897 #ifdef CONFIG_THREAD_INFO_IN_TASK
898 refcount_set(&tsk->stack_refcount, 1);
899 #endif
900
901 if (err)
902 goto free_stack;
903
904 err = scs_prepare(tsk, node);
905 if (err)
906 goto free_stack;
907
908 #ifdef CONFIG_SECCOMP
909 /*
910 * We must handle setting up seccomp filters once we're under
911 * the sighand lock in case orig has changed between now and
912 * then. Until then, filter must be NULL to avoid messing up
913 * the usage counts on the error path calling free_task.
914 */
915 tsk->seccomp.filter = NULL;
916 #endif
917
918 setup_thread_stack(tsk, orig);
919 clear_user_return_notifier(tsk);
920 clear_tsk_need_resched(tsk);
921 set_task_stack_end_magic(tsk);
922
923 #ifdef CONFIG_STACKPROTECTOR
924 tsk->stack_canary = get_random_canary();
925 #endif
926 if (orig->cpus_ptr == &orig->cpus_mask)
927 tsk->cpus_ptr = &tsk->cpus_mask;
928
929 /*
930 * One for the user space visible state that goes away when reaped.
931 * One for the scheduler.
932 */
933 refcount_set(&tsk->rcu_users, 2);
934 /* One for the rcu users */
935 refcount_set(&tsk->usage, 1);
936 #ifdef CONFIG_BLK_DEV_IO_TRACE
937 tsk->btrace_seq = 0;
938 #endif
939 tsk->splice_pipe = NULL;
940 tsk->task_frag.page = NULL;
941 tsk->wake_q.next = NULL;
942 tsk->pf_io_worker = NULL;
943
944 account_kernel_stack(tsk, 1);
945
946 kcov_task_init(tsk);
947
948 #ifdef CONFIG_FAULT_INJECTION
949 tsk->fail_nth = 0;
950 #endif
951
952 #ifdef CONFIG_BLK_CGROUP
953 tsk->throttle_queue = NULL;
954 tsk->use_memdelay = 0;
955 #endif
956
957 #ifdef CONFIG_MEMCG
958 tsk->active_memcg = NULL;
959 #endif
960 return tsk;
961
962 free_stack:
963 free_thread_stack(tsk);
964 free_tsk:
965 free_task_struct(tsk);
966 return NULL;
967 }
968
969 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
970
971 static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT;
972
coredump_filter_setup(char * s)973 static int __init coredump_filter_setup(char *s)
974 {
975 default_dump_filter =
976 (simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) &
977 MMF_DUMP_FILTER_MASK;
978 return 1;
979 }
980
981 __setup("coredump_filter=", coredump_filter_setup);
982
983 #include <linux/init_task.h>
984
mm_init_aio(struct mm_struct * mm)985 static void mm_init_aio(struct mm_struct *mm)
986 {
987 #ifdef CONFIG_AIO
988 spin_lock_init(&mm->ioctx_lock);
989 mm->ioctx_table = NULL;
990 #endif
991 }
992
mm_clear_owner(struct mm_struct * mm,struct task_struct * p)993 static __always_inline void mm_clear_owner(struct mm_struct *mm,
994 struct task_struct *p)
995 {
996 #ifdef CONFIG_MEMCG
997 if (mm->owner == p)
998 WRITE_ONCE(mm->owner, NULL);
999 #endif
1000 }
1001
mm_init_owner(struct mm_struct * mm,struct task_struct * p)1002 static void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
1003 {
1004 #ifdef CONFIG_MEMCG
1005 mm->owner = p;
1006 #endif
1007 }
1008
mm_init_pasid(struct mm_struct * mm)1009 static void mm_init_pasid(struct mm_struct *mm)
1010 {
1011 #ifdef CONFIG_IOMMU_SUPPORT
1012 mm->pasid = INIT_PASID;
1013 #endif
1014 }
1015
mm_init_uprobes_state(struct mm_struct * mm)1016 static void mm_init_uprobes_state(struct mm_struct *mm)
1017 {
1018 #ifdef CONFIG_UPROBES
1019 mm->uprobes_state.xol_area = NULL;
1020 #endif
1021 }
1022
mm_init(struct mm_struct * mm,struct task_struct * p,struct user_namespace * user_ns)1023 static struct mm_struct *mm_init(struct mm_struct *mm, struct task_struct *p,
1024 struct user_namespace *user_ns)
1025 {
1026 mm->mmap = NULL;
1027 mm->mm_rb = RB_ROOT;
1028 mm->vmacache_seqnum = 0;
1029 #ifdef CONFIG_RSS_THRESHOLD
1030 mm->rss_threshold = 0;
1031 #endif
1032 atomic_set(&mm->mm_users, 1);
1033 atomic_set(&mm->mm_count, 1);
1034 seqcount_init(&mm->write_protect_seq);
1035 mmap_init_lock(mm);
1036 INIT_LIST_HEAD(&mm->mmlist);
1037 mm->core_state = NULL;
1038 mm_pgtables_bytes_init(mm);
1039 mm->map_count = 0;
1040 mm->locked_vm = 0;
1041 atomic_set(&mm->has_pinned, 0);
1042 atomic64_set(&mm->pinned_vm, 0);
1043 memset(&mm->rss_stat, 0, sizeof(mm->rss_stat));
1044 spin_lock_init(&mm->page_table_lock);
1045 spin_lock_init(&mm->arg_lock);
1046 mm_init_cpumask(mm);
1047 mm_init_aio(mm);
1048 mm_init_owner(mm, p);
1049 mm_init_pasid(mm);
1050 RCU_INIT_POINTER(mm->exe_file, NULL);
1051 mmu_notifier_subscriptions_init(mm);
1052 init_tlb_flush_pending(mm);
1053 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
1054 mm->pmd_huge_pte = NULL;
1055 #endif
1056 mm_init_uprobes_state(mm);
1057 hugetlb_count_init(mm);
1058
1059 if (current->mm) {
1060 mm->flags = current->mm->flags & MMF_INIT_MASK;
1061 mm->def_flags = current->mm->def_flags & VM_INIT_DEF_MASK;
1062 } else {
1063 mm->flags = default_dump_filter;
1064 mm->def_flags = 0;
1065 }
1066
1067 if (mm_alloc_pgd(mm))
1068 goto fail_nopgd;
1069
1070 if (init_new_context(p, mm))
1071 goto fail_nocontext;
1072
1073 mm->user_ns = get_user_ns(user_ns);
1074 return mm;
1075
1076 fail_nocontext:
1077 mm_free_pgd(mm);
1078 fail_nopgd:
1079 free_mm(mm);
1080 return NULL;
1081 }
1082
1083 /*
1084 * Allocate and initialize an mm_struct.
1085 */
mm_alloc(void)1086 struct mm_struct *mm_alloc(void)
1087 {
1088 struct mm_struct *mm;
1089
1090 mm = allocate_mm();
1091 if (!mm)
1092 return NULL;
1093
1094 memset(mm, 0, sizeof(*mm));
1095 return mm_init(mm, current, current_user_ns());
1096 }
1097
__mmput(struct mm_struct * mm)1098 static inline void __mmput(struct mm_struct *mm)
1099 {
1100 VM_BUG_ON(atomic_read(&mm->mm_users));
1101
1102 uprobe_clear_state(mm);
1103 exit_aio(mm);
1104 ksm_exit(mm);
1105 khugepaged_exit(mm); /* must run before exit_mmap */
1106 exit_mmap(mm);
1107 mm_put_huge_zero_page(mm);
1108 set_mm_exe_file(mm, NULL);
1109 if (!list_empty(&mm->mmlist)) {
1110 spin_lock(&mmlist_lock);
1111 list_del(&mm->mmlist);
1112 spin_unlock(&mmlist_lock);
1113 }
1114 if (mm->binfmt)
1115 module_put(mm->binfmt->module);
1116 mmdrop(mm);
1117 }
1118
1119 /*
1120 * Decrement the use count and release all resources for an mm.
1121 */
mmput(struct mm_struct * mm)1122 void mmput(struct mm_struct *mm)
1123 {
1124 might_sleep();
1125
1126 if (atomic_dec_and_test(&mm->mm_users))
1127 __mmput(mm);
1128 }
1129 EXPORT_SYMBOL_GPL(mmput);
1130
1131 #ifdef CONFIG_MMU
mmput_async_fn(struct work_struct * work)1132 static void mmput_async_fn(struct work_struct *work)
1133 {
1134 struct mm_struct *mm = container_of(work, struct mm_struct,
1135 async_put_work);
1136
1137 __mmput(mm);
1138 }
1139
mmput_async(struct mm_struct * mm)1140 void mmput_async(struct mm_struct *mm)
1141 {
1142 if (atomic_dec_and_test(&mm->mm_users)) {
1143 INIT_WORK(&mm->async_put_work, mmput_async_fn);
1144 schedule_work(&mm->async_put_work);
1145 }
1146 }
1147 EXPORT_SYMBOL_GPL(mmput_async);
1148 #endif
1149
1150 /**
1151 * set_mm_exe_file - change a reference to the mm's executable file
1152 *
1153 * This changes mm's executable file (shown as symlink /proc/[pid]/exe).
1154 *
1155 * Main users are mmput() and sys_execve(). Callers prevent concurrent
1156 * invocations: in mmput() nobody alive left, in execve task is single
1157 * threaded. sys_prctl(PR_SET_MM_MAP/EXE_FILE) also needs to set the
1158 * mm->exe_file, but does so without using set_mm_exe_file() in order
1159 * to do avoid the need for any locks.
1160 */
set_mm_exe_file(struct mm_struct * mm,struct file * new_exe_file)1161 void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
1162 {
1163 struct file *old_exe_file;
1164
1165 /*
1166 * It is safe to dereference the exe_file without RCU as
1167 * this function is only called if nobody else can access
1168 * this mm -- see comment above for justification.
1169 */
1170 old_exe_file = rcu_dereference_raw(mm->exe_file);
1171
1172 if (new_exe_file)
1173 get_file(new_exe_file);
1174 rcu_assign_pointer(mm->exe_file, new_exe_file);
1175 if (old_exe_file)
1176 fput(old_exe_file);
1177 }
1178
1179 /**
1180 * get_mm_exe_file - acquire a reference to the mm's executable file
1181 *
1182 * Returns %NULL if mm has no associated executable file.
1183 * User must release file via fput().
1184 */
get_mm_exe_file(struct mm_struct * mm)1185 struct file *get_mm_exe_file(struct mm_struct *mm)
1186 {
1187 struct file *exe_file;
1188
1189 rcu_read_lock();
1190 exe_file = rcu_dereference(mm->exe_file);
1191 if (exe_file && !get_file_rcu(exe_file))
1192 exe_file = NULL;
1193 rcu_read_unlock();
1194 return exe_file;
1195 }
1196 EXPORT_SYMBOL(get_mm_exe_file);
1197
1198 /**
1199 * get_task_exe_file - acquire a reference to the task's executable file
1200 *
1201 * Returns %NULL if task's mm (if any) has no associated executable file or
1202 * this is a kernel thread with borrowed mm (see the comment above get_task_mm).
1203 * User must release file via fput().
1204 */
get_task_exe_file(struct task_struct * task)1205 struct file *get_task_exe_file(struct task_struct *task)
1206 {
1207 struct file *exe_file = NULL;
1208 struct mm_struct *mm;
1209
1210 task_lock(task);
1211 mm = task->mm;
1212 if (mm) {
1213 if (!(task->flags & PF_KTHREAD))
1214 exe_file = get_mm_exe_file(mm);
1215 }
1216 task_unlock(task);
1217 return exe_file;
1218 }
1219 EXPORT_SYMBOL(get_task_exe_file);
1220
1221 /**
1222 * get_task_mm - acquire a reference to the task's mm
1223 *
1224 * Returns %NULL if the task has no mm. Checks PF_KTHREAD (meaning
1225 * this kernel workthread has transiently adopted a user mm with use_mm,
1226 * to do its AIO) is not set and if so returns a reference to it, after
1227 * bumping up the use count. User must release the mm via mmput()
1228 * after use. Typically used by /proc and ptrace.
1229 */
get_task_mm(struct task_struct * task)1230 struct mm_struct *get_task_mm(struct task_struct *task)
1231 {
1232 struct mm_struct *mm;
1233
1234 task_lock(task);
1235 mm = task->mm;
1236 if (mm) {
1237 if (task->flags & PF_KTHREAD)
1238 mm = NULL;
1239 else
1240 mmget(mm);
1241 }
1242 task_unlock(task);
1243 return mm;
1244 }
1245 EXPORT_SYMBOL_GPL(get_task_mm);
1246
mm_access(struct task_struct * task,unsigned int mode)1247 struct mm_struct *mm_access(struct task_struct *task, unsigned int mode)
1248 {
1249 struct mm_struct *mm;
1250 int err;
1251
1252 err = down_read_killable(&task->signal->exec_update_lock);
1253 if (err)
1254 return ERR_PTR(err);
1255
1256 mm = get_task_mm(task);
1257 if (mm && mm != current->mm &&
1258 !ptrace_may_access(task, mode)) {
1259 mmput(mm);
1260 mm = ERR_PTR(-EACCES);
1261 }
1262 up_read(&task->signal->exec_update_lock);
1263
1264 return mm;
1265 }
1266
complete_vfork_done(struct task_struct * tsk)1267 static void complete_vfork_done(struct task_struct *tsk)
1268 {
1269 struct completion *vfork;
1270
1271 task_lock(tsk);
1272 vfork = tsk->vfork_done;
1273 if (likely(vfork)) {
1274 tsk->vfork_done = NULL;
1275 complete(vfork);
1276 }
1277 task_unlock(tsk);
1278 }
1279
wait_for_vfork_done(struct task_struct * child,struct completion * vfork)1280 static int wait_for_vfork_done(struct task_struct *child,
1281 struct completion *vfork)
1282 {
1283 int killed;
1284
1285 freezer_do_not_count();
1286 cgroup_enter_frozen();
1287 killed = wait_for_completion_killable(vfork);
1288 cgroup_leave_frozen(false);
1289 freezer_count();
1290
1291 if (killed) {
1292 task_lock(child);
1293 child->vfork_done = NULL;
1294 task_unlock(child);
1295 }
1296
1297 put_task_struct(child);
1298 return killed;
1299 }
1300
1301 /* Please note the differences between mmput and mm_release.
1302 * mmput is called whenever we stop holding onto a mm_struct,
1303 * error success whatever.
1304 *
1305 * mm_release is called after a mm_struct has been removed
1306 * from the current process.
1307 *
1308 * This difference is important for error handling, when we
1309 * only half set up a mm_struct for a new process and need to restore
1310 * the old one. Because we mmput the new mm_struct before
1311 * restoring the old one. . .
1312 * Eric Biederman 10 January 1998
1313 */
mm_release(struct task_struct * tsk,struct mm_struct * mm)1314 static void mm_release(struct task_struct *tsk, struct mm_struct *mm)
1315 {
1316 uprobe_free_utask(tsk);
1317
1318 /* Get rid of any cached register state */
1319 deactivate_mm(tsk, mm);
1320
1321 /*
1322 * Signal userspace if we're not exiting with a core dump
1323 * because we want to leave the value intact for debugging
1324 * purposes.
1325 */
1326 if (tsk->clear_child_tid) {
1327 if (!(tsk->signal->flags & SIGNAL_GROUP_COREDUMP) &&
1328 atomic_read(&mm->mm_users) > 1) {
1329 /*
1330 * We don't check the error code - if userspace has
1331 * not set up a proper pointer then tough luck.
1332 */
1333 put_user(0, tsk->clear_child_tid);
1334 do_futex(tsk->clear_child_tid, FUTEX_WAKE,
1335 1, NULL, NULL, 0, 0);
1336 }
1337 tsk->clear_child_tid = NULL;
1338 }
1339
1340 /*
1341 * All done, finally we can wake up parent and return this mm to him.
1342 * Also kthread_stop() uses this completion for synchronization.
1343 */
1344 if (tsk->vfork_done)
1345 complete_vfork_done(tsk);
1346 }
1347
exit_mm_release(struct task_struct * tsk,struct mm_struct * mm)1348 void exit_mm_release(struct task_struct *tsk, struct mm_struct *mm)
1349 {
1350 futex_exit_release(tsk);
1351 mm_release(tsk, mm);
1352 }
1353
exec_mm_release(struct task_struct * tsk,struct mm_struct * mm)1354 void exec_mm_release(struct task_struct *tsk, struct mm_struct *mm)
1355 {
1356 futex_exec_release(tsk);
1357 mm_release(tsk, mm);
1358 }
1359
1360 /**
1361 * dup_mm() - duplicates an existing mm structure
1362 * @tsk: the task_struct with which the new mm will be associated.
1363 * @oldmm: the mm to duplicate.
1364 *
1365 * Allocates a new mm structure and duplicates the provided @oldmm structure
1366 * content into it.
1367 *
1368 * Return: the duplicated mm or NULL on failure.
1369 */
dup_mm(struct task_struct * tsk,struct mm_struct * oldmm)1370 static struct mm_struct *dup_mm(struct task_struct *tsk,
1371 struct mm_struct *oldmm)
1372 {
1373 struct mm_struct *mm;
1374 int err;
1375
1376 mm = allocate_mm();
1377 if (!mm)
1378 goto fail_nomem;
1379
1380 memcpy(mm, oldmm, sizeof(*mm));
1381
1382 if (!mm_init(mm, tsk, mm->user_ns))
1383 goto fail_nomem;
1384
1385 err = dup_mmap(mm, oldmm);
1386 if (err)
1387 goto free_pt;
1388
1389 mm->hiwater_rss = get_mm_rss(mm);
1390 mm->hiwater_vm = mm->total_vm;
1391 #ifdef CONFIG_RSS_THRESHOLD
1392 mm->rss_threshold = oldmm->rss_threshold;
1393 #endif
1394
1395 if (mm->binfmt && !try_module_get(mm->binfmt->module))
1396 goto free_pt;
1397
1398 return mm;
1399
1400 free_pt:
1401 /* don't put binfmt in mmput, we haven't got module yet */
1402 mm->binfmt = NULL;
1403 mm_init_owner(mm, NULL);
1404 mmput(mm);
1405
1406 fail_nomem:
1407 return NULL;
1408 }
1409
copy_mm(unsigned long clone_flags,struct task_struct * tsk)1410 static int copy_mm(unsigned long clone_flags, struct task_struct *tsk)
1411 {
1412 struct mm_struct *mm, *oldmm;
1413 int retval;
1414
1415 tsk->min_flt = tsk->maj_flt = 0;
1416 tsk->nvcsw = tsk->nivcsw = 0;
1417 #ifdef CONFIG_DETECT_HUNG_TASK
1418 tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw;
1419 tsk->last_switch_time = 0;
1420 #endif
1421
1422 tsk->mm = NULL;
1423 tsk->active_mm = NULL;
1424
1425 /*
1426 * Are we cloning a kernel thread?
1427 *
1428 * We need to steal a active VM for that..
1429 */
1430 oldmm = current->mm;
1431 if (!oldmm)
1432 return 0;
1433
1434 /* initialize the new vmacache entries */
1435 vmacache_flush(tsk);
1436
1437 if (clone_flags & CLONE_VM) {
1438 mmget(oldmm);
1439 mm = oldmm;
1440 goto good_mm;
1441 }
1442
1443 retval = -ENOMEM;
1444 mm = dup_mm(tsk, current->mm);
1445 if (!mm)
1446 goto fail_nomem;
1447
1448 good_mm:
1449 tsk->mm = mm;
1450 tsk->active_mm = mm;
1451 return 0;
1452
1453 fail_nomem:
1454 return retval;
1455 }
1456
copy_fs(unsigned long clone_flags,struct task_struct * tsk)1457 static int copy_fs(unsigned long clone_flags, struct task_struct *tsk)
1458 {
1459 struct fs_struct *fs = current->fs;
1460 if (clone_flags & CLONE_FS) {
1461 /* tsk->fs is already what we want */
1462 spin_lock(&fs->lock);
1463 if (fs->in_exec) {
1464 spin_unlock(&fs->lock);
1465 return -EAGAIN;
1466 }
1467 fs->users++;
1468 spin_unlock(&fs->lock);
1469 return 0;
1470 }
1471 tsk->fs = copy_fs_struct(fs);
1472 if (!tsk->fs)
1473 return -ENOMEM;
1474 return 0;
1475 }
1476
copy_files(unsigned long clone_flags,struct task_struct * tsk)1477 static int copy_files(unsigned long clone_flags, struct task_struct *tsk)
1478 {
1479 struct files_struct *oldf, *newf;
1480 int error = 0;
1481
1482 /*
1483 * A background process may not have any files ...
1484 */
1485 oldf = current->files;
1486 if (!oldf)
1487 goto out;
1488
1489 if (clone_flags & CLONE_FILES) {
1490 atomic_inc(&oldf->count);
1491 goto out;
1492 }
1493
1494 newf = dup_fd(oldf, NR_OPEN_MAX, &error);
1495 if (!newf)
1496 goto out;
1497
1498 tsk->files = newf;
1499 error = 0;
1500 out:
1501 return error;
1502 }
1503
copy_io(unsigned long clone_flags,struct task_struct * tsk)1504 static int copy_io(unsigned long clone_flags, struct task_struct *tsk)
1505 {
1506 #ifdef CONFIG_BLOCK
1507 struct io_context *ioc = current->io_context;
1508 struct io_context *new_ioc;
1509
1510 if (!ioc)
1511 return 0;
1512 /*
1513 * Share io context with parent, if CLONE_IO is set
1514 */
1515 if (clone_flags & CLONE_IO) {
1516 ioc_task_link(ioc);
1517 tsk->io_context = ioc;
1518 } else if (ioprio_valid(ioc->ioprio)) {
1519 new_ioc = get_task_io_context(tsk, GFP_KERNEL, NUMA_NO_NODE);
1520 if (unlikely(!new_ioc))
1521 return -ENOMEM;
1522
1523 new_ioc->ioprio = ioc->ioprio;
1524 put_io_context(new_ioc);
1525 }
1526 #endif
1527 return 0;
1528 }
1529
copy_sighand(unsigned long clone_flags,struct task_struct * tsk)1530 static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk)
1531 {
1532 struct sighand_struct *sig;
1533
1534 if (clone_flags & CLONE_SIGHAND) {
1535 refcount_inc(¤t->sighand->count);
1536 return 0;
1537 }
1538 sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
1539 RCU_INIT_POINTER(tsk->sighand, sig);
1540 if (!sig)
1541 return -ENOMEM;
1542
1543 refcount_set(&sig->count, 1);
1544 spin_lock_irq(¤t->sighand->siglock);
1545 memcpy(sig->action, current->sighand->action, sizeof(sig->action));
1546 spin_unlock_irq(¤t->sighand->siglock);
1547
1548 /* Reset all signal handler not set to SIG_IGN to SIG_DFL. */
1549 if (clone_flags & CLONE_CLEAR_SIGHAND)
1550 flush_signal_handlers(tsk, 0);
1551
1552 return 0;
1553 }
1554
__cleanup_sighand(struct sighand_struct * sighand)1555 void __cleanup_sighand(struct sighand_struct *sighand)
1556 {
1557 if (refcount_dec_and_test(&sighand->count)) {
1558 signalfd_cleanup(sighand);
1559 /*
1560 * sighand_cachep is SLAB_TYPESAFE_BY_RCU so we can free it
1561 * without an RCU grace period, see __lock_task_sighand().
1562 */
1563 kmem_cache_free(sighand_cachep, sighand);
1564 }
1565 }
1566
1567 /*
1568 * Initialize POSIX timer handling for a thread group.
1569 */
posix_cpu_timers_init_group(struct signal_struct * sig)1570 static void posix_cpu_timers_init_group(struct signal_struct *sig)
1571 {
1572 struct posix_cputimers *pct = &sig->posix_cputimers;
1573 unsigned long cpu_limit;
1574
1575 cpu_limit = READ_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur);
1576 posix_cputimers_group_init(pct, cpu_limit);
1577 }
1578
copy_signal(unsigned long clone_flags,struct task_struct * tsk)1579 static int copy_signal(unsigned long clone_flags, struct task_struct *tsk)
1580 {
1581 struct signal_struct *sig;
1582
1583 if (clone_flags & CLONE_THREAD)
1584 return 0;
1585
1586 sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL);
1587 tsk->signal = sig;
1588 if (!sig)
1589 return -ENOMEM;
1590
1591 sig->nr_threads = 1;
1592 atomic_set(&sig->live, 1);
1593 refcount_set(&sig->sigcnt, 1);
1594
1595 /* list_add(thread_node, thread_head) without INIT_LIST_HEAD() */
1596 sig->thread_head = (struct list_head)LIST_HEAD_INIT(tsk->thread_node);
1597 tsk->thread_node = (struct list_head)LIST_HEAD_INIT(sig->thread_head);
1598
1599 init_waitqueue_head(&sig->wait_chldexit);
1600 sig->curr_target = tsk;
1601 init_sigpending(&sig->shared_pending);
1602 INIT_HLIST_HEAD(&sig->multiprocess);
1603 seqlock_init(&sig->stats_lock);
1604 prev_cputime_init(&sig->prev_cputime);
1605
1606 #ifdef CONFIG_POSIX_TIMERS
1607 INIT_LIST_HEAD(&sig->posix_timers);
1608 hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1609 sig->real_timer.function = it_real_fn;
1610 #endif
1611
1612 task_lock(current->group_leader);
1613 memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
1614 task_unlock(current->group_leader);
1615
1616 posix_cpu_timers_init_group(sig);
1617
1618 tty_audit_fork(sig);
1619 sched_autogroup_fork(sig);
1620
1621 sig->oom_score_adj = current->signal->oom_score_adj;
1622 sig->oom_score_adj_min = current->signal->oom_score_adj_min;
1623
1624 mutex_init(&sig->cred_guard_mutex);
1625 init_rwsem(&sig->exec_update_lock);
1626
1627 return 0;
1628 }
1629
copy_seccomp(struct task_struct * p)1630 static void copy_seccomp(struct task_struct *p)
1631 {
1632 #ifdef CONFIG_SECCOMP
1633 /*
1634 * Must be called with sighand->lock held, which is common to
1635 * all threads in the group. Holding cred_guard_mutex is not
1636 * needed because this new task is not yet running and cannot
1637 * be racing exec.
1638 */
1639 assert_spin_locked(¤t->sighand->siglock);
1640
1641 /* Ref-count the new filter user, and assign it. */
1642 get_seccomp_filter(current);
1643 p->seccomp = current->seccomp;
1644
1645 /*
1646 * Explicitly enable no_new_privs here in case it got set
1647 * between the task_struct being duplicated and holding the
1648 * sighand lock. The seccomp state and nnp must be in sync.
1649 */
1650 if (task_no_new_privs(current))
1651 task_set_no_new_privs(p);
1652
1653 /*
1654 * If the parent gained a seccomp mode after copying thread
1655 * flags and between before we held the sighand lock, we have
1656 * to manually enable the seccomp thread flag here.
1657 */
1658 if (p->seccomp.mode != SECCOMP_MODE_DISABLED)
1659 set_tsk_thread_flag(p, TIF_SECCOMP);
1660 #endif
1661 }
1662
SYSCALL_DEFINE1(set_tid_address,int __user *,tidptr)1663 SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr)
1664 {
1665 current->clear_child_tid = tidptr;
1666
1667 return task_pid_vnr(current);
1668 }
1669
rt_mutex_init_task(struct task_struct * p)1670 static void rt_mutex_init_task(struct task_struct *p)
1671 {
1672 raw_spin_lock_init(&p->pi_lock);
1673 #ifdef CONFIG_RT_MUTEXES
1674 p->pi_waiters = RB_ROOT_CACHED;
1675 p->pi_top_task = NULL;
1676 p->pi_blocked_on = NULL;
1677 #endif
1678 }
1679
init_task_pid_links(struct task_struct * task)1680 static inline void init_task_pid_links(struct task_struct *task)
1681 {
1682 enum pid_type type;
1683
1684 for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) {
1685 INIT_HLIST_NODE(&task->pid_links[type]);
1686 }
1687 }
1688
1689 static inline void
init_task_pid(struct task_struct * task,enum pid_type type,struct pid * pid)1690 init_task_pid(struct task_struct *task, enum pid_type type, struct pid *pid)
1691 {
1692 if (type == PIDTYPE_PID)
1693 task->thread_pid = pid;
1694 else
1695 task->signal->pids[type] = pid;
1696 }
1697
rcu_copy_process(struct task_struct * p)1698 static inline void rcu_copy_process(struct task_struct *p)
1699 {
1700 #ifdef CONFIG_PREEMPT_RCU
1701 p->rcu_read_lock_nesting = 0;
1702 p->rcu_read_unlock_special.s = 0;
1703 p->rcu_blocked_node = NULL;
1704 INIT_LIST_HEAD(&p->rcu_node_entry);
1705 #endif /* #ifdef CONFIG_PREEMPT_RCU */
1706 #ifdef CONFIG_TASKS_RCU
1707 p->rcu_tasks_holdout = false;
1708 INIT_LIST_HEAD(&p->rcu_tasks_holdout_list);
1709 p->rcu_tasks_idle_cpu = -1;
1710 #endif /* #ifdef CONFIG_TASKS_RCU */
1711 #ifdef CONFIG_TASKS_TRACE_RCU
1712 p->trc_reader_nesting = 0;
1713 p->trc_reader_special.s = 0;
1714 INIT_LIST_HEAD(&p->trc_holdout_list);
1715 #endif /* #ifdef CONFIG_TASKS_TRACE_RCU */
1716 }
1717
pidfd_pid(const struct file * file)1718 struct pid *pidfd_pid(const struct file *file)
1719 {
1720 if (file->f_op == &pidfd_fops)
1721 return file->private_data;
1722
1723 return ERR_PTR(-EBADF);
1724 }
1725
pidfd_release(struct inode * inode,struct file * file)1726 static int pidfd_release(struct inode *inode, struct file *file)
1727 {
1728 struct pid *pid = file->private_data;
1729
1730 file->private_data = NULL;
1731 put_pid(pid);
1732 return 0;
1733 }
1734
1735 #ifdef CONFIG_PROC_FS
1736 /**
1737 * pidfd_show_fdinfo - print information about a pidfd
1738 * @m: proc fdinfo file
1739 * @f: file referencing a pidfd
1740 *
1741 * Pid:
1742 * This function will print the pid that a given pidfd refers to in the
1743 * pid namespace of the procfs instance.
1744 * If the pid namespace of the process is not a descendant of the pid
1745 * namespace of the procfs instance 0 will be shown as its pid. This is
1746 * similar to calling getppid() on a process whose parent is outside of
1747 * its pid namespace.
1748 *
1749 * NSpid:
1750 * If pid namespaces are supported then this function will also print
1751 * the pid of a given pidfd refers to for all descendant pid namespaces
1752 * starting from the current pid namespace of the instance, i.e. the
1753 * Pid field and the first entry in the NSpid field will be identical.
1754 * If the pid namespace of the process is not a descendant of the pid
1755 * namespace of the procfs instance 0 will be shown as its first NSpid
1756 * entry and no others will be shown.
1757 * Note that this differs from the Pid and NSpid fields in
1758 * /proc/<pid>/status where Pid and NSpid are always shown relative to
1759 * the pid namespace of the procfs instance. The difference becomes
1760 * obvious when sending around a pidfd between pid namespaces from a
1761 * different branch of the tree, i.e. where no ancestoral relation is
1762 * present between the pid namespaces:
1763 * - create two new pid namespaces ns1 and ns2 in the initial pid
1764 * namespace (also take care to create new mount namespaces in the
1765 * new pid namespace and mount procfs)
1766 * - create a process with a pidfd in ns1
1767 * - send pidfd from ns1 to ns2
1768 * - read /proc/self/fdinfo/<pidfd> and observe that both Pid and NSpid
1769 * have exactly one entry, which is 0
1770 */
pidfd_show_fdinfo(struct seq_file * m,struct file * f)1771 static void pidfd_show_fdinfo(struct seq_file *m, struct file *f)
1772 {
1773 struct pid *pid = f->private_data;
1774 struct pid_namespace *ns;
1775 pid_t nr = -1;
1776
1777 if (likely(pid_has_task(pid, PIDTYPE_PID))) {
1778 ns = proc_pid_ns(file_inode(m->file)->i_sb);
1779 nr = pid_nr_ns(pid, ns);
1780 }
1781
1782 seq_put_decimal_ll(m, "Pid:\t", nr);
1783
1784 #ifdef CONFIG_PID_NS
1785 seq_put_decimal_ll(m, "\nNSpid:\t", nr);
1786 if (nr > 0) {
1787 int i;
1788
1789 /* If nr is non-zero it means that 'pid' is valid and that
1790 * ns, i.e. the pid namespace associated with the procfs
1791 * instance, is in the pid namespace hierarchy of pid.
1792 * Start at one below the already printed level.
1793 */
1794 for (i = ns->level + 1; i <= pid->level; i++)
1795 seq_put_decimal_ll(m, "\t", pid->numbers[i].nr);
1796 }
1797 #endif
1798 seq_putc(m, '\n');
1799 }
1800 #endif
1801
1802 /*
1803 * Poll support for process exit notification.
1804 */
pidfd_poll(struct file * file,struct poll_table_struct * pts)1805 static __poll_t pidfd_poll(struct file *file, struct poll_table_struct *pts)
1806 {
1807 struct pid *pid = file->private_data;
1808 __poll_t poll_flags = 0;
1809
1810 poll_wait(file, &pid->wait_pidfd, pts);
1811
1812 /*
1813 * Inform pollers only when the whole thread group exits.
1814 * If the thread group leader exits before all other threads in the
1815 * group, then poll(2) should block, similar to the wait(2) family.
1816 */
1817 if (thread_group_exited(pid))
1818 poll_flags = EPOLLIN | EPOLLRDNORM;
1819
1820 return poll_flags;
1821 }
1822
1823 const struct file_operations pidfd_fops = {
1824 .release = pidfd_release,
1825 .poll = pidfd_poll,
1826 #ifdef CONFIG_PROC_FS
1827 .show_fdinfo = pidfd_show_fdinfo,
1828 #endif
1829 };
1830
__delayed_free_task(struct rcu_head * rhp)1831 static void __delayed_free_task(struct rcu_head *rhp)
1832 {
1833 struct task_struct *tsk = container_of(rhp, struct task_struct, rcu);
1834
1835 free_task(tsk);
1836 }
1837
delayed_free_task(struct task_struct * tsk)1838 static __always_inline void delayed_free_task(struct task_struct *tsk)
1839 {
1840 if (IS_ENABLED(CONFIG_MEMCG))
1841 call_rcu(&tsk->rcu, __delayed_free_task);
1842 else
1843 free_task(tsk);
1844 }
1845
copy_oom_score_adj(u64 clone_flags,struct task_struct * tsk)1846 static void copy_oom_score_adj(u64 clone_flags, struct task_struct *tsk)
1847 {
1848 /* Skip if kernel thread */
1849 if (!tsk->mm)
1850 return;
1851
1852 /* Skip if spawning a thread or using vfork */
1853 if ((clone_flags & (CLONE_VM | CLONE_THREAD | CLONE_VFORK)) != CLONE_VM)
1854 return;
1855
1856 /* We need to synchronize with __set_oom_adj */
1857 mutex_lock(&oom_adj_mutex);
1858 set_bit(MMF_MULTIPROCESS, &tsk->mm->flags);
1859 /* Update the values in case they were changed after copy_signal */
1860 tsk->signal->oom_score_adj = current->signal->oom_score_adj;
1861 tsk->signal->oom_score_adj_min = current->signal->oom_score_adj_min;
1862 mutex_unlock(&oom_adj_mutex);
1863 }
1864
1865 /*
1866 * This creates a new process as a copy of the old one,
1867 * but does not actually start it yet.
1868 *
1869 * It copies the registers, and all the appropriate
1870 * parts of the process environment (as per the clone
1871 * flags). The actual kick-off is left to the caller.
1872 */
copy_process(struct pid * pid,int trace,int node,struct kernel_clone_args * args)1873 static __latent_entropy struct task_struct *copy_process(
1874 struct pid *pid,
1875 int trace,
1876 int node,
1877 struct kernel_clone_args *args)
1878 {
1879 int pidfd = -1, retval;
1880 struct task_struct *p;
1881 struct multiprocess_signals delayed;
1882 struct file *pidfile = NULL;
1883 u64 clone_flags = args->flags;
1884 struct nsproxy *nsp = current->nsproxy;
1885
1886 /*
1887 * Don't allow sharing the root directory with processes in a different
1888 * namespace
1889 */
1890 if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
1891 return ERR_PTR(-EINVAL);
1892
1893 if ((clone_flags & (CLONE_NEWUSER|CLONE_FS)) == (CLONE_NEWUSER|CLONE_FS))
1894 return ERR_PTR(-EINVAL);
1895
1896 /*
1897 * Thread groups must share signals as well, and detached threads
1898 * can only be started up within the thread group.
1899 */
1900 if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
1901 return ERR_PTR(-EINVAL);
1902
1903 /*
1904 * Shared signal handlers imply shared VM. By way of the above,
1905 * thread groups also imply shared VM. Blocking this case allows
1906 * for various simplifications in other code.
1907 */
1908 if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
1909 return ERR_PTR(-EINVAL);
1910
1911 /*
1912 * Siblings of global init remain as zombies on exit since they are
1913 * not reaped by their parent (swapper). To solve this and to avoid
1914 * multi-rooted process trees, prevent global and container-inits
1915 * from creating siblings.
1916 */
1917 if ((clone_flags & CLONE_PARENT) &&
1918 current->signal->flags & SIGNAL_UNKILLABLE)
1919 return ERR_PTR(-EINVAL);
1920
1921 /*
1922 * If the new process will be in a different pid or user namespace
1923 * do not allow it to share a thread group with the forking task.
1924 */
1925 if (clone_flags & CLONE_THREAD) {
1926 if ((clone_flags & (CLONE_NEWUSER | CLONE_NEWPID)) ||
1927 (task_active_pid_ns(current) != nsp->pid_ns_for_children))
1928 return ERR_PTR(-EINVAL);
1929 }
1930
1931 /*
1932 * If the new process will be in a different time namespace
1933 * do not allow it to share VM or a thread group with the forking task.
1934 */
1935 if (clone_flags & (CLONE_THREAD | CLONE_VM)) {
1936 if (nsp->time_ns != nsp->time_ns_for_children)
1937 return ERR_PTR(-EINVAL);
1938 }
1939
1940 if (clone_flags & CLONE_PIDFD) {
1941 /*
1942 * - CLONE_DETACHED is blocked so that we can potentially
1943 * reuse it later for CLONE_PIDFD.
1944 * - CLONE_THREAD is blocked until someone really needs it.
1945 */
1946 if (clone_flags & (CLONE_DETACHED | CLONE_THREAD))
1947 return ERR_PTR(-EINVAL);
1948 }
1949
1950 /*
1951 * Force any signals received before this point to be delivered
1952 * before the fork happens. Collect up signals sent to multiple
1953 * processes that happen during the fork and delay them so that
1954 * they appear to happen after the fork.
1955 */
1956 sigemptyset(&delayed.signal);
1957 INIT_HLIST_NODE(&delayed.node);
1958
1959 spin_lock_irq(¤t->sighand->siglock);
1960 if (!(clone_flags & CLONE_THREAD))
1961 hlist_add_head(&delayed.node, ¤t->signal->multiprocess);
1962 recalc_sigpending();
1963 spin_unlock_irq(¤t->sighand->siglock);
1964 retval = -ERESTARTNOINTR;
1965 if (task_sigpending(current))
1966 goto fork_out;
1967
1968 retval = -ENOMEM;
1969 p = dup_task_struct(current, node);
1970 if (!p)
1971 goto fork_out;
1972 if (args->io_thread) {
1973 /*
1974 * Mark us an IO worker, and block any signal that isn't
1975 * fatal or STOP
1976 */
1977 p->flags |= PF_IO_WORKER;
1978 siginitsetinv(&p->blocked, sigmask(SIGKILL)|sigmask(SIGSTOP));
1979 }
1980
1981 /*
1982 * This _must_ happen before we call free_task(), i.e. before we jump
1983 * to any of the bad_fork_* labels. This is to avoid freeing
1984 * p->set_child_tid which is (ab)used as a kthread's data pointer for
1985 * kernel threads (PF_KTHREAD).
1986 */
1987 p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? args->child_tid : NULL;
1988 /*
1989 * Clear TID on mm_release()?
1990 */
1991 p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? args->child_tid : NULL;
1992
1993 ftrace_graph_init_task(p);
1994
1995 rt_mutex_init_task(p);
1996
1997 lockdep_assert_irqs_enabled();
1998 #ifdef CONFIG_PROVE_LOCKING
1999 DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
2000 #endif
2001 retval = -EAGAIN;
2002 if (atomic_read(&p->real_cred->user->processes) >=
2003 task_rlimit(p, RLIMIT_NPROC)) {
2004 if (p->real_cred->user != INIT_USER &&
2005 !capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN))
2006 goto bad_fork_free;
2007 }
2008 current->flags &= ~PF_NPROC_EXCEEDED;
2009
2010 retval = copy_creds(p, clone_flags);
2011 if (retval < 0)
2012 goto bad_fork_free;
2013
2014 /*
2015 * If multiple threads are within copy_process(), then this check
2016 * triggers too late. This doesn't hurt, the check is only there
2017 * to stop root fork bombs.
2018 */
2019 retval = -EAGAIN;
2020 if (data_race(nr_threads >= max_threads))
2021 goto bad_fork_cleanup_count;
2022
2023 delayacct_tsk_init(p); /* Must remain after dup_task_struct() */
2024 #ifdef CONFIG_RECLAIM_ACCT
2025 reclaimacct_tsk_init(p);
2026 #endif
2027 p->flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER | PF_IDLE);
2028 p->flags |= PF_FORKNOEXEC;
2029 INIT_LIST_HEAD(&p->children);
2030 INIT_LIST_HEAD(&p->sibling);
2031 rcu_copy_process(p);
2032 p->vfork_done = NULL;
2033 spin_lock_init(&p->alloc_lock);
2034
2035 init_sigpending(&p->pending);
2036
2037 p->utime = p->stime = p->gtime = 0;
2038 #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
2039 p->utimescaled = p->stimescaled = 0;
2040 #endif
2041 prev_cputime_init(&p->prev_cputime);
2042
2043 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
2044 seqcount_init(&p->vtime.seqcount);
2045 p->vtime.starttime = 0;
2046 p->vtime.state = VTIME_INACTIVE;
2047 #endif
2048
2049 #ifdef CONFIG_IO_URING
2050 p->io_uring = NULL;
2051 #endif
2052
2053 #if defined(SPLIT_RSS_COUNTING)
2054 memset(&p->rss_stat, 0, sizeof(p->rss_stat));
2055 #endif
2056
2057 p->default_timer_slack_ns = current->timer_slack_ns;
2058
2059 #ifdef CONFIG_PSI
2060 p->psi_flags = 0;
2061 #endif
2062
2063 task_io_accounting_init(&p->ioac);
2064 acct_clear_integrals(p);
2065
2066 posix_cputimers_init(&p->posix_cputimers);
2067
2068 p->io_context = NULL;
2069 audit_set_context(p, NULL);
2070 cgroup_fork(p);
2071 #ifdef CONFIG_NUMA
2072 p->mempolicy = mpol_dup(p->mempolicy);
2073 if (IS_ERR(p->mempolicy)) {
2074 retval = PTR_ERR(p->mempolicy);
2075 p->mempolicy = NULL;
2076 goto bad_fork_cleanup_threadgroup_lock;
2077 }
2078 #endif
2079 #ifdef CONFIG_CPUSETS
2080 p->cpuset_mem_spread_rotor = NUMA_NO_NODE;
2081 p->cpuset_slab_spread_rotor = NUMA_NO_NODE;
2082 seqcount_spinlock_init(&p->mems_allowed_seq, &p->alloc_lock);
2083 #endif
2084 #ifdef CONFIG_TRACE_IRQFLAGS
2085 memset(&p->irqtrace, 0, sizeof(p->irqtrace));
2086 p->irqtrace.hardirq_disable_ip = _THIS_IP_;
2087 p->irqtrace.softirq_enable_ip = _THIS_IP_;
2088 p->softirqs_enabled = 1;
2089 p->softirq_context = 0;
2090 #endif
2091
2092 p->pagefault_disabled = 0;
2093
2094 #ifdef CONFIG_LOCKDEP
2095 lockdep_init_task(p);
2096 #endif
2097
2098 #ifdef CONFIG_DEBUG_MUTEXES
2099 p->blocked_on = NULL; /* not blocked yet */
2100 #endif
2101 #ifdef CONFIG_BCACHE
2102 p->sequential_io = 0;
2103 p->sequential_io_avg = 0;
2104 #endif
2105 #ifdef CONFIG_BPF_SYSCALL
2106 p->bpf_ctx = NULL;
2107 #endif
2108
2109 /* Perform scheduler related setup. Assign this task to a CPU. */
2110 retval = sched_fork(clone_flags, p);
2111 if (retval)
2112 goto bad_fork_cleanup_policy;
2113
2114 retval = perf_event_init_task(p);
2115 if (retval)
2116 goto bad_fork_cleanup_policy;
2117 retval = audit_alloc(p);
2118 if (retval)
2119 goto bad_fork_cleanup_perf;
2120 /* copy all the process information */
2121 shm_init_task(p);
2122 retval = security_task_alloc(p, clone_flags);
2123 if (retval)
2124 goto bad_fork_cleanup_audit;
2125 retval = copy_semundo(clone_flags, p);
2126 if (retval)
2127 goto bad_fork_cleanup_security;
2128 retval = copy_files(clone_flags, p);
2129 if (retval)
2130 goto bad_fork_cleanup_semundo;
2131 retval = copy_fs(clone_flags, p);
2132 if (retval)
2133 goto bad_fork_cleanup_files;
2134 retval = copy_sighand(clone_flags, p);
2135 if (retval)
2136 goto bad_fork_cleanup_fs;
2137 retval = copy_signal(clone_flags, p);
2138 if (retval)
2139 goto bad_fork_cleanup_sighand;
2140 retval = copy_mm(clone_flags, p);
2141 if (retval)
2142 goto bad_fork_cleanup_signal;
2143 retval = copy_namespaces(clone_flags, p);
2144 if (retval)
2145 goto bad_fork_cleanup_mm;
2146 retval = copy_io(clone_flags, p);
2147 if (retval)
2148 goto bad_fork_cleanup_namespaces;
2149 retval = copy_thread(clone_flags, args->stack, args->stack_size, p, args->tls);
2150 if (retval)
2151 goto bad_fork_cleanup_io;
2152
2153 stackleak_task_init(p);
2154
2155 if (pid != &init_struct_pid) {
2156 pid = alloc_pid(p->nsproxy->pid_ns_for_children, args->set_tid,
2157 args->set_tid_size);
2158 if (IS_ERR(pid)) {
2159 retval = PTR_ERR(pid);
2160 goto bad_fork_cleanup_thread;
2161 }
2162 }
2163
2164 /*
2165 * This has to happen after we've potentially unshared the file
2166 * descriptor table (so that the pidfd doesn't leak into the child
2167 * if the fd table isn't shared).
2168 */
2169 if (clone_flags & CLONE_PIDFD) {
2170 retval = get_unused_fd_flags(O_RDWR | O_CLOEXEC);
2171 if (retval < 0)
2172 goto bad_fork_free_pid;
2173
2174 pidfd = retval;
2175
2176 pidfile = anon_inode_getfile("[pidfd]", &pidfd_fops, pid,
2177 O_RDWR | O_CLOEXEC);
2178 if (IS_ERR(pidfile)) {
2179 put_unused_fd(pidfd);
2180 retval = PTR_ERR(pidfile);
2181 goto bad_fork_free_pid;
2182 }
2183 get_pid(pid); /* held by pidfile now */
2184
2185 retval = put_user(pidfd, args->pidfd);
2186 if (retval)
2187 goto bad_fork_put_pidfd;
2188 }
2189
2190 #ifdef CONFIG_BLOCK
2191 p->plug = NULL;
2192 #endif
2193 futex_init_task(p);
2194
2195 /*
2196 * sigaltstack should be cleared when sharing the same VM
2197 */
2198 if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
2199 sas_ss_reset(p);
2200
2201 /*
2202 * Syscall tracing and stepping should be turned off in the
2203 * child regardless of CLONE_PTRACE.
2204 */
2205 user_disable_single_step(p);
2206 clear_tsk_thread_flag(p, TIF_SYSCALL_TRACE);
2207 #ifdef TIF_SYSCALL_EMU
2208 clear_tsk_thread_flag(p, TIF_SYSCALL_EMU);
2209 #endif
2210 clear_tsk_latency_tracing(p);
2211
2212 /* ok, now we should be set up.. */
2213 p->pid = pid_nr(pid);
2214 if (clone_flags & CLONE_THREAD) {
2215 p->group_leader = current->group_leader;
2216 p->tgid = current->tgid;
2217 } else {
2218 p->group_leader = p;
2219 p->tgid = p->pid;
2220 }
2221
2222 p->nr_dirtied = 0;
2223 p->nr_dirtied_pause = 128 >> (PAGE_SHIFT - 10);
2224 p->dirty_paused_when = 0;
2225
2226 p->pdeath_signal = 0;
2227 INIT_LIST_HEAD(&p->thread_group);
2228 p->task_works = NULL;
2229 clear_posix_cputimers_work(p);
2230
2231 /*
2232 * Ensure that the cgroup subsystem policies allow the new process to be
2233 * forked. It should be noted that the new process's css_set can be changed
2234 * between here and cgroup_post_fork() if an organisation operation is in
2235 * progress.
2236 */
2237 retval = cgroup_can_fork(p, args);
2238 if (retval)
2239 goto bad_fork_put_pidfd;
2240
2241 /*
2242 * From this point on we must avoid any synchronous user-space
2243 * communication until we take the tasklist-lock. In particular, we do
2244 * not want user-space to be able to predict the process start-time by
2245 * stalling fork(2) after we recorded the start_time but before it is
2246 * visible to the system.
2247 */
2248
2249 p->start_time = ktime_get_ns();
2250 p->start_boottime = ktime_get_boottime_ns();
2251
2252 /*
2253 * Make it visible to the rest of the system, but dont wake it up yet.
2254 * Need tasklist lock for parent etc handling!
2255 */
2256 write_lock_irq(&tasklist_lock);
2257
2258 /* CLONE_PARENT re-uses the old parent */
2259 if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) {
2260 p->real_parent = current->real_parent;
2261 p->parent_exec_id = current->parent_exec_id;
2262 if (clone_flags & CLONE_THREAD)
2263 p->exit_signal = -1;
2264 else
2265 p->exit_signal = current->group_leader->exit_signal;
2266 } else {
2267 p->real_parent = current;
2268 p->parent_exec_id = current->self_exec_id;
2269 p->exit_signal = args->exit_signal;
2270 }
2271
2272 klp_copy_process(p);
2273
2274 spin_lock(¤t->sighand->siglock);
2275
2276 /*
2277 * Copy seccomp details explicitly here, in case they were changed
2278 * before holding sighand lock.
2279 */
2280 copy_seccomp(p);
2281
2282 rseq_fork(p, clone_flags);
2283
2284 /* Don't start children in a dying pid namespace */
2285 if (unlikely(!(ns_of_pid(pid)->pid_allocated & PIDNS_ADDING))) {
2286 retval = -ENOMEM;
2287 goto bad_fork_cancel_cgroup;
2288 }
2289
2290 /* Let kill terminate clone/fork in the middle */
2291 if (fatal_signal_pending(current)) {
2292 retval = -EINTR;
2293 goto bad_fork_cancel_cgroup;
2294 }
2295
2296 init_task_pid_links(p);
2297 if (likely(p->pid)) {
2298 ptrace_init_task(p, (clone_flags & CLONE_PTRACE) || trace);
2299
2300 init_task_pid(p, PIDTYPE_PID, pid);
2301 if (thread_group_leader(p)) {
2302 init_task_pid(p, PIDTYPE_TGID, pid);
2303 init_task_pid(p, PIDTYPE_PGID, task_pgrp(current));
2304 init_task_pid(p, PIDTYPE_SID, task_session(current));
2305
2306 if (is_child_reaper(pid)) {
2307 ns_of_pid(pid)->child_reaper = p;
2308 p->signal->flags |= SIGNAL_UNKILLABLE;
2309 }
2310 p->signal->shared_pending.signal = delayed.signal;
2311 p->signal->tty = tty_kref_get(current->signal->tty);
2312 /*
2313 * Inherit has_child_subreaper flag under the same
2314 * tasklist_lock with adding child to the process tree
2315 * for propagate_has_child_subreaper optimization.
2316 */
2317 p->signal->has_child_subreaper = p->real_parent->signal->has_child_subreaper ||
2318 p->real_parent->signal->is_child_subreaper;
2319 list_add_tail(&p->sibling, &p->real_parent->children);
2320 list_add_tail_rcu(&p->tasks, &init_task.tasks);
2321 attach_pid(p, PIDTYPE_TGID);
2322 attach_pid(p, PIDTYPE_PGID);
2323 attach_pid(p, PIDTYPE_SID);
2324 __this_cpu_inc(process_counts);
2325 } else {
2326 current->signal->nr_threads++;
2327 atomic_inc(¤t->signal->live);
2328 refcount_inc(¤t->signal->sigcnt);
2329 task_join_group_stop(p);
2330 list_add_tail_rcu(&p->thread_group,
2331 &p->group_leader->thread_group);
2332 list_add_tail_rcu(&p->thread_node,
2333 &p->signal->thread_head);
2334 }
2335 attach_pid(p, PIDTYPE_PID);
2336 nr_threads++;
2337 }
2338 total_forks++;
2339 hlist_del_init(&delayed.node);
2340 spin_unlock(¤t->sighand->siglock);
2341 syscall_tracepoint_update(p);
2342 write_unlock_irq(&tasklist_lock);
2343
2344 if (pidfile)
2345 fd_install(pidfd, pidfile);
2346
2347 proc_fork_connector(p);
2348 sched_post_fork(p, args);
2349 cgroup_post_fork(p, args);
2350 perf_event_fork(p);
2351
2352 trace_task_newtask(p, clone_flags);
2353 uprobe_copy_process(p, clone_flags);
2354
2355 copy_oom_score_adj(clone_flags, p);
2356
2357 return p;
2358
2359 bad_fork_cancel_cgroup:
2360 spin_unlock(¤t->sighand->siglock);
2361 write_unlock_irq(&tasklist_lock);
2362 cgroup_cancel_fork(p, args);
2363 bad_fork_put_pidfd:
2364 if (clone_flags & CLONE_PIDFD) {
2365 fput(pidfile);
2366 put_unused_fd(pidfd);
2367 }
2368 bad_fork_free_pid:
2369 if (pid != &init_struct_pid)
2370 free_pid(pid);
2371 bad_fork_cleanup_thread:
2372 exit_thread(p);
2373 bad_fork_cleanup_io:
2374 if (p->io_context)
2375 exit_io_context(p);
2376 bad_fork_cleanup_namespaces:
2377 exit_task_namespaces(p);
2378 bad_fork_cleanup_mm:
2379 if (p->mm) {
2380 mm_clear_owner(p->mm, p);
2381 mmput(p->mm);
2382 }
2383 bad_fork_cleanup_signal:
2384 if (!(clone_flags & CLONE_THREAD))
2385 free_signal_struct(p->signal);
2386 bad_fork_cleanup_sighand:
2387 __cleanup_sighand(p->sighand);
2388 bad_fork_cleanup_fs:
2389 exit_fs(p); /* blocking */
2390 bad_fork_cleanup_files:
2391 exit_files(p); /* blocking */
2392 bad_fork_cleanup_semundo:
2393 exit_sem(p);
2394 bad_fork_cleanup_security:
2395 security_task_free(p);
2396 bad_fork_cleanup_audit:
2397 audit_free(p);
2398 bad_fork_cleanup_perf:
2399 perf_event_free_task(p);
2400 bad_fork_cleanup_policy:
2401 lockdep_free_task(p);
2402 free_task_load_ptrs(p);
2403 #ifdef CONFIG_NUMA
2404 mpol_put(p->mempolicy);
2405 bad_fork_cleanup_threadgroup_lock:
2406 #endif
2407 delayacct_tsk_free(p);
2408 bad_fork_cleanup_count:
2409 atomic_dec(&p->cred->user->processes);
2410 exit_creds(p);
2411 bad_fork_free:
2412 p->state = TASK_DEAD;
2413 put_task_stack(p);
2414 delayed_free_task(p);
2415 fork_out:
2416 spin_lock_irq(¤t->sighand->siglock);
2417 hlist_del_init(&delayed.node);
2418 spin_unlock_irq(¤t->sighand->siglock);
2419 return ERR_PTR(retval);
2420 }
2421
init_idle_pids(struct task_struct * idle)2422 static inline void init_idle_pids(struct task_struct *idle)
2423 {
2424 enum pid_type type;
2425
2426 for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) {
2427 INIT_HLIST_NODE(&idle->pid_links[type]); /* not really needed */
2428 init_task_pid(idle, type, &init_struct_pid);
2429 }
2430 }
2431
fork_idle(int cpu)2432 struct task_struct * __init fork_idle(int cpu)
2433 {
2434 struct task_struct *task;
2435 struct kernel_clone_args args = {
2436 .flags = CLONE_VM,
2437 };
2438
2439 task = copy_process(&init_struct_pid, 0, cpu_to_node(cpu), &args);
2440 if (!IS_ERR(task)) {
2441 init_idle_pids(task);
2442 init_idle(task, cpu);
2443 }
2444
2445 return task;
2446 }
2447
copy_init_mm(void)2448 struct mm_struct *copy_init_mm(void)
2449 {
2450 return dup_mm(NULL, &init_mm);
2451 }
2452
2453 /*
2454 * This is like kernel_clone(), but shaved down and tailored to just
2455 * creating io_uring workers. It returns a created task, or an error pointer.
2456 * The returned task is inactive, and the caller must fire it up through
2457 * wake_up_new_task(p). All signals are blocked in the created task.
2458 */
create_io_thread(int (* fn)(void *),void * arg,int node)2459 struct task_struct *create_io_thread(int (*fn)(void *), void *arg, int node)
2460 {
2461 unsigned long flags = CLONE_FS|CLONE_FILES|CLONE_SIGHAND|CLONE_THREAD|
2462 CLONE_IO;
2463 struct kernel_clone_args args = {
2464 .flags = ((lower_32_bits(flags) | CLONE_VM |
2465 CLONE_UNTRACED) & ~CSIGNAL),
2466 .exit_signal = (lower_32_bits(flags) & CSIGNAL),
2467 .stack = (unsigned long)fn,
2468 .stack_size = (unsigned long)arg,
2469 .io_thread = 1,
2470 };
2471
2472 return copy_process(NULL, 0, node, &args);
2473 }
2474
2475 /*
2476 * Ok, this is the main fork-routine.
2477 *
2478 * It copies the process, and if successful kick-starts
2479 * it and waits for it to finish using the VM if required.
2480 *
2481 * args->exit_signal is expected to be checked for sanity by the caller.
2482 */
kernel_clone(struct kernel_clone_args * args)2483 pid_t kernel_clone(struct kernel_clone_args *args)
2484 {
2485 u64 clone_flags = args->flags;
2486 struct completion vfork;
2487 struct pid *pid;
2488 struct task_struct *p;
2489 int trace = 0;
2490 pid_t nr;
2491
2492 /*
2493 * For legacy clone() calls, CLONE_PIDFD uses the parent_tid argument
2494 * to return the pidfd. Hence, CLONE_PIDFD and CLONE_PARENT_SETTID are
2495 * mutually exclusive. With clone3() CLONE_PIDFD has grown a separate
2496 * field in struct clone_args and it still doesn't make sense to have
2497 * them both point at the same memory location. Performing this check
2498 * here has the advantage that we don't need to have a separate helper
2499 * to check for legacy clone().
2500 */
2501 if ((args->flags & CLONE_PIDFD) &&
2502 (args->flags & CLONE_PARENT_SETTID) &&
2503 (args->pidfd == args->parent_tid))
2504 return -EINVAL;
2505
2506 /*
2507 * Determine whether and which event to report to ptracer. When
2508 * called from kernel_thread or CLONE_UNTRACED is explicitly
2509 * requested, no event is reported; otherwise, report if the event
2510 * for the type of forking is enabled.
2511 */
2512 if (!(clone_flags & CLONE_UNTRACED)) {
2513 if (clone_flags & CLONE_VFORK)
2514 trace = PTRACE_EVENT_VFORK;
2515 else if (args->exit_signal != SIGCHLD)
2516 trace = PTRACE_EVENT_CLONE;
2517 else
2518 trace = PTRACE_EVENT_FORK;
2519
2520 if (likely(!ptrace_event_enabled(current, trace)))
2521 trace = 0;
2522 }
2523
2524 p = copy_process(NULL, trace, NUMA_NO_NODE, args);
2525 add_latent_entropy();
2526
2527 if (IS_ERR(p))
2528 return PTR_ERR(p);
2529
2530 /*
2531 * Do this prior waking up the new thread - the thread pointer
2532 * might get invalid after that point, if the thread exits quickly.
2533 */
2534 trace_sched_process_fork(current, p);
2535
2536 pid = get_task_pid(p, PIDTYPE_PID);
2537 nr = pid_vnr(pid);
2538
2539 if (clone_flags & CLONE_PARENT_SETTID)
2540 put_user(nr, args->parent_tid);
2541
2542 if (clone_flags & CLONE_VFORK) {
2543 p->vfork_done = &vfork;
2544 init_completion(&vfork);
2545 get_task_struct(p);
2546 }
2547
2548 wake_up_new_task(p);
2549
2550 /* forking complete and child started to run, tell ptracer */
2551 if (unlikely(trace))
2552 ptrace_event_pid(trace, pid);
2553
2554 if (clone_flags & CLONE_VFORK) {
2555 if (!wait_for_vfork_done(p, &vfork))
2556 ptrace_event_pid(PTRACE_EVENT_VFORK_DONE, pid);
2557 }
2558
2559 put_pid(pid);
2560 return nr;
2561 }
2562
2563 /*
2564 * Create a kernel thread.
2565 */
kernel_thread(int (* fn)(void *),void * arg,unsigned long flags)2566 pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags)
2567 {
2568 struct kernel_clone_args args = {
2569 .flags = ((lower_32_bits(flags) | CLONE_VM |
2570 CLONE_UNTRACED) & ~CSIGNAL),
2571 .exit_signal = (lower_32_bits(flags) & CSIGNAL),
2572 .stack = (unsigned long)fn,
2573 .stack_size = (unsigned long)arg,
2574 };
2575
2576 return kernel_clone(&args);
2577 }
2578
2579 #ifdef __ARCH_WANT_SYS_FORK
SYSCALL_DEFINE0(fork)2580 SYSCALL_DEFINE0(fork)
2581 {
2582 #ifdef CONFIG_MMU
2583 struct kernel_clone_args args = {
2584 .exit_signal = SIGCHLD,
2585 };
2586
2587 return kernel_clone(&args);
2588 #else
2589 /* can not support in nommu mode */
2590 return -EINVAL;
2591 #endif
2592 }
2593 #endif
2594
2595 #ifdef __ARCH_WANT_SYS_VFORK
SYSCALL_DEFINE0(vfork)2596 SYSCALL_DEFINE0(vfork)
2597 {
2598 struct kernel_clone_args args = {
2599 .flags = CLONE_VFORK | CLONE_VM,
2600 .exit_signal = SIGCHLD,
2601 };
2602
2603 return kernel_clone(&args);
2604 }
2605 #endif
2606
2607 #ifdef __ARCH_WANT_SYS_CLONE
2608 #ifdef CONFIG_CLONE_BACKWARDS
SYSCALL_DEFINE5(clone,unsigned long,clone_flags,unsigned long,newsp,int __user *,parent_tidptr,unsigned long,tls,int __user *,child_tidptr)2609 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
2610 int __user *, parent_tidptr,
2611 unsigned long, tls,
2612 int __user *, child_tidptr)
2613 #elif defined(CONFIG_CLONE_BACKWARDS2)
2614 SYSCALL_DEFINE5(clone, unsigned long, newsp, unsigned long, clone_flags,
2615 int __user *, parent_tidptr,
2616 int __user *, child_tidptr,
2617 unsigned long, tls)
2618 #elif defined(CONFIG_CLONE_BACKWARDS3)
2619 SYSCALL_DEFINE6(clone, unsigned long, clone_flags, unsigned long, newsp,
2620 int, stack_size,
2621 int __user *, parent_tidptr,
2622 int __user *, child_tidptr,
2623 unsigned long, tls)
2624 #else
2625 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
2626 int __user *, parent_tidptr,
2627 int __user *, child_tidptr,
2628 unsigned long, tls)
2629 #endif
2630 {
2631 struct kernel_clone_args args = {
2632 .flags = (lower_32_bits(clone_flags) & ~CSIGNAL),
2633 .pidfd = parent_tidptr,
2634 .child_tid = child_tidptr,
2635 .parent_tid = parent_tidptr,
2636 .exit_signal = (lower_32_bits(clone_flags) & CSIGNAL),
2637 .stack = newsp,
2638 .tls = tls,
2639 };
2640
2641 return kernel_clone(&args);
2642 }
2643 #endif
2644
2645 #ifdef __ARCH_WANT_SYS_CLONE3
2646
copy_clone_args_from_user(struct kernel_clone_args * kargs,struct clone_args __user * uargs,size_t usize)2647 noinline static int copy_clone_args_from_user(struct kernel_clone_args *kargs,
2648 struct clone_args __user *uargs,
2649 size_t usize)
2650 {
2651 int err;
2652 struct clone_args args;
2653 pid_t *kset_tid = kargs->set_tid;
2654
2655 BUILD_BUG_ON(offsetofend(struct clone_args, tls) !=
2656 CLONE_ARGS_SIZE_VER0);
2657 BUILD_BUG_ON(offsetofend(struct clone_args, set_tid_size) !=
2658 CLONE_ARGS_SIZE_VER1);
2659 BUILD_BUG_ON(offsetofend(struct clone_args, cgroup) !=
2660 CLONE_ARGS_SIZE_VER2);
2661 BUILD_BUG_ON(sizeof(struct clone_args) != CLONE_ARGS_SIZE_VER2);
2662
2663 if (unlikely(usize > PAGE_SIZE))
2664 return -E2BIG;
2665 if (unlikely(usize < CLONE_ARGS_SIZE_VER0))
2666 return -EINVAL;
2667
2668 err = copy_struct_from_user(&args, sizeof(args), uargs, usize);
2669 if (err)
2670 return err;
2671
2672 if (unlikely(args.set_tid_size > MAX_PID_NS_LEVEL))
2673 return -EINVAL;
2674
2675 if (unlikely(!args.set_tid && args.set_tid_size > 0))
2676 return -EINVAL;
2677
2678 if (unlikely(args.set_tid && args.set_tid_size == 0))
2679 return -EINVAL;
2680
2681 /*
2682 * Verify that higher 32bits of exit_signal are unset and that
2683 * it is a valid signal
2684 */
2685 if (unlikely((args.exit_signal & ~((u64)CSIGNAL)) ||
2686 !valid_signal(args.exit_signal)))
2687 return -EINVAL;
2688
2689 if ((args.flags & CLONE_INTO_CGROUP) &&
2690 (args.cgroup > INT_MAX || usize < CLONE_ARGS_SIZE_VER2))
2691 return -EINVAL;
2692
2693 *kargs = (struct kernel_clone_args){
2694 .flags = args.flags,
2695 .pidfd = u64_to_user_ptr(args.pidfd),
2696 .child_tid = u64_to_user_ptr(args.child_tid),
2697 .parent_tid = u64_to_user_ptr(args.parent_tid),
2698 .exit_signal = args.exit_signal,
2699 .stack = args.stack,
2700 .stack_size = args.stack_size,
2701 .tls = args.tls,
2702 .set_tid_size = args.set_tid_size,
2703 .cgroup = args.cgroup,
2704 };
2705
2706 if (args.set_tid &&
2707 copy_from_user(kset_tid, u64_to_user_ptr(args.set_tid),
2708 (kargs->set_tid_size * sizeof(pid_t))))
2709 return -EFAULT;
2710
2711 kargs->set_tid = kset_tid;
2712
2713 return 0;
2714 }
2715
2716 /**
2717 * clone3_stack_valid - check and prepare stack
2718 * @kargs: kernel clone args
2719 *
2720 * Verify that the stack arguments userspace gave us are sane.
2721 * In addition, set the stack direction for userspace since it's easy for us to
2722 * determine.
2723 */
clone3_stack_valid(struct kernel_clone_args * kargs)2724 static inline bool clone3_stack_valid(struct kernel_clone_args *kargs)
2725 {
2726 if (kargs->stack == 0) {
2727 if (kargs->stack_size > 0)
2728 return false;
2729 } else {
2730 if (kargs->stack_size == 0)
2731 return false;
2732
2733 if (!access_ok((void __user *)kargs->stack, kargs->stack_size))
2734 return false;
2735
2736 #if !defined(CONFIG_STACK_GROWSUP) && !defined(CONFIG_IA64)
2737 kargs->stack += kargs->stack_size;
2738 #endif
2739 }
2740
2741 return true;
2742 }
2743
clone3_args_valid(struct kernel_clone_args * kargs)2744 static bool clone3_args_valid(struct kernel_clone_args *kargs)
2745 {
2746 /* Verify that no unknown flags are passed along. */
2747 if (kargs->flags &
2748 ~(CLONE_LEGACY_FLAGS | CLONE_CLEAR_SIGHAND | CLONE_INTO_CGROUP))
2749 return false;
2750
2751 /*
2752 * - make the CLONE_DETACHED bit reuseable for clone3
2753 * - make the CSIGNAL bits reuseable for clone3
2754 */
2755 if (kargs->flags & (CLONE_DETACHED | CSIGNAL))
2756 return false;
2757
2758 if ((kargs->flags & (CLONE_SIGHAND | CLONE_CLEAR_SIGHAND)) ==
2759 (CLONE_SIGHAND | CLONE_CLEAR_SIGHAND))
2760 return false;
2761
2762 if ((kargs->flags & (CLONE_THREAD | CLONE_PARENT)) &&
2763 kargs->exit_signal)
2764 return false;
2765
2766 if (!clone3_stack_valid(kargs))
2767 return false;
2768
2769 return true;
2770 }
2771
2772 /**
2773 * clone3 - create a new process with specific properties
2774 * @uargs: argument structure
2775 * @size: size of @uargs
2776 *
2777 * clone3() is the extensible successor to clone()/clone2().
2778 * It takes a struct as argument that is versioned by its size.
2779 *
2780 * Return: On success, a positive PID for the child process.
2781 * On error, a negative errno number.
2782 */
SYSCALL_DEFINE2(clone3,struct clone_args __user *,uargs,size_t,size)2783 SYSCALL_DEFINE2(clone3, struct clone_args __user *, uargs, size_t, size)
2784 {
2785 int err;
2786
2787 struct kernel_clone_args kargs;
2788 pid_t set_tid[MAX_PID_NS_LEVEL];
2789
2790 kargs.set_tid = set_tid;
2791
2792 err = copy_clone_args_from_user(&kargs, uargs, size);
2793 if (err)
2794 return err;
2795
2796 if (!clone3_args_valid(&kargs))
2797 return -EINVAL;
2798
2799 return kernel_clone(&kargs);
2800 }
2801 #endif
2802
walk_process_tree(struct task_struct * top,proc_visitor visitor,void * data)2803 void walk_process_tree(struct task_struct *top, proc_visitor visitor, void *data)
2804 {
2805 struct task_struct *leader, *parent, *child;
2806 int res;
2807
2808 read_lock(&tasklist_lock);
2809 leader = top = top->group_leader;
2810 down:
2811 for_each_thread(leader, parent) {
2812 list_for_each_entry(child, &parent->children, sibling) {
2813 res = visitor(child, data);
2814 if (res) {
2815 if (res < 0)
2816 goto out;
2817 leader = child;
2818 goto down;
2819 }
2820 up:
2821 ;
2822 }
2823 }
2824
2825 if (leader != top) {
2826 child = leader;
2827 parent = child->real_parent;
2828 leader = parent->group_leader;
2829 goto up;
2830 }
2831 out:
2832 read_unlock(&tasklist_lock);
2833 }
2834
2835 #ifndef ARCH_MIN_MMSTRUCT_ALIGN
2836 #define ARCH_MIN_MMSTRUCT_ALIGN 0
2837 #endif
2838
sighand_ctor(void * data)2839 static void sighand_ctor(void *data)
2840 {
2841 struct sighand_struct *sighand = data;
2842
2843 spin_lock_init(&sighand->siglock);
2844 init_waitqueue_head(&sighand->signalfd_wqh);
2845 }
2846
proc_caches_init(void)2847 void __init proc_caches_init(void)
2848 {
2849 unsigned int mm_size;
2850
2851 sighand_cachep = kmem_cache_create("sighand_cache",
2852 sizeof(struct sighand_struct), 0,
2853 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_TYPESAFE_BY_RCU|
2854 SLAB_ACCOUNT, sighand_ctor);
2855 signal_cachep = kmem_cache_create("signal_cache",
2856 sizeof(struct signal_struct), 0,
2857 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
2858 NULL);
2859 files_cachep = kmem_cache_create("files_cache",
2860 sizeof(struct files_struct), 0,
2861 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
2862 NULL);
2863 fs_cachep = kmem_cache_create("fs_cache",
2864 sizeof(struct fs_struct), 0,
2865 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
2866 NULL);
2867
2868 /*
2869 * The mm_cpumask is located at the end of mm_struct, and is
2870 * dynamically sized based on the maximum CPU number this system
2871 * can have, taking hotplug into account (nr_cpu_ids).
2872 */
2873 mm_size = sizeof(struct mm_struct) + cpumask_size();
2874
2875 mm_cachep = kmem_cache_create_usercopy("mm_struct",
2876 mm_size, ARCH_MIN_MMSTRUCT_ALIGN,
2877 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
2878 offsetof(struct mm_struct, saved_auxv),
2879 sizeof_field(struct mm_struct, saved_auxv),
2880 NULL);
2881 vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC|SLAB_ACCOUNT);
2882 mmap_init();
2883 nsproxy_cache_init();
2884 }
2885
2886 /*
2887 * Check constraints on flags passed to the unshare system call.
2888 */
check_unshare_flags(unsigned long unshare_flags)2889 static int check_unshare_flags(unsigned long unshare_flags)
2890 {
2891 if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
2892 CLONE_VM|CLONE_FILES|CLONE_SYSVSEM|
2893 CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET|
2894 CLONE_NEWUSER|CLONE_NEWPID|CLONE_NEWCGROUP|
2895 CLONE_NEWTIME))
2896 return -EINVAL;
2897 /*
2898 * Not implemented, but pretend it works if there is nothing
2899 * to unshare. Note that unsharing the address space or the
2900 * signal handlers also need to unshare the signal queues (aka
2901 * CLONE_THREAD).
2902 */
2903 if (unshare_flags & (CLONE_THREAD | CLONE_SIGHAND | CLONE_VM)) {
2904 if (!thread_group_empty(current))
2905 return -EINVAL;
2906 }
2907 if (unshare_flags & (CLONE_SIGHAND | CLONE_VM)) {
2908 if (refcount_read(¤t->sighand->count) > 1)
2909 return -EINVAL;
2910 }
2911 if (unshare_flags & CLONE_VM) {
2912 if (!current_is_single_threaded())
2913 return -EINVAL;
2914 }
2915
2916 return 0;
2917 }
2918
2919 /*
2920 * Unshare the filesystem structure if it is being shared
2921 */
unshare_fs(unsigned long unshare_flags,struct fs_struct ** new_fsp)2922 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
2923 {
2924 struct fs_struct *fs = current->fs;
2925
2926 if (!(unshare_flags & CLONE_FS) || !fs)
2927 return 0;
2928
2929 /* don't need lock here; in the worst case we'll do useless copy */
2930 if (fs->users == 1)
2931 return 0;
2932
2933 *new_fsp = copy_fs_struct(fs);
2934 if (!*new_fsp)
2935 return -ENOMEM;
2936
2937 return 0;
2938 }
2939
2940 /*
2941 * Unshare file descriptor table if it is being shared
2942 */
unshare_fd(unsigned long unshare_flags,unsigned int max_fds,struct files_struct ** new_fdp)2943 int unshare_fd(unsigned long unshare_flags, unsigned int max_fds,
2944 struct files_struct **new_fdp)
2945 {
2946 struct files_struct *fd = current->files;
2947 int error = 0;
2948
2949 if ((unshare_flags & CLONE_FILES) &&
2950 (fd && atomic_read(&fd->count) > 1)) {
2951 *new_fdp = dup_fd(fd, max_fds, &error);
2952 if (!*new_fdp)
2953 return error;
2954 }
2955
2956 return 0;
2957 }
2958
2959 /*
2960 * unshare allows a process to 'unshare' part of the process
2961 * context which was originally shared using clone. copy_*
2962 * functions used by kernel_clone() cannot be used here directly
2963 * because they modify an inactive task_struct that is being
2964 * constructed. Here we are modifying the current, active,
2965 * task_struct.
2966 */
ksys_unshare(unsigned long unshare_flags)2967 int ksys_unshare(unsigned long unshare_flags)
2968 {
2969 struct fs_struct *fs, *new_fs = NULL;
2970 struct files_struct *fd, *new_fd = NULL;
2971 struct cred *new_cred = NULL;
2972 struct nsproxy *new_nsproxy = NULL;
2973 int do_sysvsem = 0;
2974 int err;
2975
2976 /*
2977 * If unsharing a user namespace must also unshare the thread group
2978 * and unshare the filesystem root and working directories.
2979 */
2980 if (unshare_flags & CLONE_NEWUSER)
2981 unshare_flags |= CLONE_THREAD | CLONE_FS;
2982 /*
2983 * If unsharing vm, must also unshare signal handlers.
2984 */
2985 if (unshare_flags & CLONE_VM)
2986 unshare_flags |= CLONE_SIGHAND;
2987 /*
2988 * If unsharing a signal handlers, must also unshare the signal queues.
2989 */
2990 if (unshare_flags & CLONE_SIGHAND)
2991 unshare_flags |= CLONE_THREAD;
2992 /*
2993 * If unsharing namespace, must also unshare filesystem information.
2994 */
2995 if (unshare_flags & CLONE_NEWNS)
2996 unshare_flags |= CLONE_FS;
2997
2998 err = check_unshare_flags(unshare_flags);
2999 if (err)
3000 goto bad_unshare_out;
3001 /*
3002 * CLONE_NEWIPC must also detach from the undolist: after switching
3003 * to a new ipc namespace, the semaphore arrays from the old
3004 * namespace are unreachable.
3005 */
3006 if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM))
3007 do_sysvsem = 1;
3008 err = unshare_fs(unshare_flags, &new_fs);
3009 if (err)
3010 goto bad_unshare_out;
3011 err = unshare_fd(unshare_flags, NR_OPEN_MAX, &new_fd);
3012 if (err)
3013 goto bad_unshare_cleanup_fs;
3014 err = unshare_userns(unshare_flags, &new_cred);
3015 if (err)
3016 goto bad_unshare_cleanup_fd;
3017 err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy,
3018 new_cred, new_fs);
3019 if (err)
3020 goto bad_unshare_cleanup_cred;
3021
3022 if (new_fs || new_fd || do_sysvsem || new_cred || new_nsproxy) {
3023 if (do_sysvsem) {
3024 /*
3025 * CLONE_SYSVSEM is equivalent to sys_exit().
3026 */
3027 exit_sem(current);
3028 }
3029 if (unshare_flags & CLONE_NEWIPC) {
3030 /* Orphan segments in old ns (see sem above). */
3031 exit_shm(current);
3032 shm_init_task(current);
3033 }
3034
3035 if (new_nsproxy)
3036 switch_task_namespaces(current, new_nsproxy);
3037
3038 task_lock(current);
3039
3040 if (new_fs) {
3041 fs = current->fs;
3042 spin_lock(&fs->lock);
3043 current->fs = new_fs;
3044 if (--fs->users)
3045 new_fs = NULL;
3046 else
3047 new_fs = fs;
3048 spin_unlock(&fs->lock);
3049 }
3050
3051 if (new_fd) {
3052 fd = current->files;
3053 current->files = new_fd;
3054 new_fd = fd;
3055 }
3056
3057 task_unlock(current);
3058
3059 if (new_cred) {
3060 /* Install the new user namespace */
3061 commit_creds(new_cred);
3062 new_cred = NULL;
3063 }
3064 }
3065
3066 perf_event_namespaces(current);
3067
3068 bad_unshare_cleanup_cred:
3069 if (new_cred)
3070 put_cred(new_cred);
3071 bad_unshare_cleanup_fd:
3072 if (new_fd)
3073 put_files_struct(new_fd);
3074
3075 bad_unshare_cleanup_fs:
3076 if (new_fs)
3077 free_fs_struct(new_fs);
3078
3079 bad_unshare_out:
3080 return err;
3081 }
3082
SYSCALL_DEFINE1(unshare,unsigned long,unshare_flags)3083 SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags)
3084 {
3085 return ksys_unshare(unshare_flags);
3086 }
3087
3088 /*
3089 * Helper to unshare the files of the current task.
3090 * We don't want to expose copy_files internals to
3091 * the exec layer of the kernel.
3092 */
3093
unshare_files(struct files_struct ** displaced)3094 int unshare_files(struct files_struct **displaced)
3095 {
3096 struct task_struct *task = current;
3097 struct files_struct *copy = NULL;
3098 int error;
3099
3100 error = unshare_fd(CLONE_FILES, NR_OPEN_MAX, ©);
3101 if (error || !copy) {
3102 *displaced = NULL;
3103 return error;
3104 }
3105 *displaced = task->files;
3106 task_lock(task);
3107 task->files = copy;
3108 task_unlock(task);
3109 return 0;
3110 }
3111
sysctl_max_threads(struct ctl_table * table,int write,void * buffer,size_t * lenp,loff_t * ppos)3112 int sysctl_max_threads(struct ctl_table *table, int write,
3113 void *buffer, size_t *lenp, loff_t *ppos)
3114 {
3115 struct ctl_table t;
3116 int ret;
3117 int threads = max_threads;
3118 int min = 1;
3119 int max = MAX_THREADS;
3120
3121 t = *table;
3122 t.data = &threads;
3123 t.extra1 = &min;
3124 t.extra2 = &max;
3125
3126 ret = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
3127 if (ret || !write)
3128 return ret;
3129
3130 max_threads = threads;
3131
3132 return 0;
3133 }
3134