• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/kernel/signal.c
4  *
5  *  Copyright (C) 1991, 1992  Linus Torvalds
6  *
7  *  1997-11-02  Modified for POSIX.1b signals by Richard Henderson
8  *
9  *  2003-06-02  Jim Houston - Concurrent Computer Corp.
10  *		Changes to use preallocated sigqueue structures
11  *		to allow signals to be sent reliably.
12  */
13 
14 #include <linux/slab.h>
15 #include <linux/export.h>
16 #include <linux/init.h>
17 #include <linux/sched/mm.h>
18 #include <linux/sched/user.h>
19 #include <linux/sched/debug.h>
20 #include <linux/sched/task.h>
21 #include <linux/sched/task_stack.h>
22 #include <linux/sched/cputime.h>
23 #include <linux/file.h>
24 #include <linux/fs.h>
25 #include <linux/proc_fs.h>
26 #include <linux/tty.h>
27 #include <linux/binfmts.h>
28 #include <linux/coredump.h>
29 #include <linux/security.h>
30 #include <linux/syscalls.h>
31 #include <linux/ptrace.h>
32 #include <linux/signal.h>
33 #include <linux/signalfd.h>
34 #include <linux/ratelimit.h>
35 #include <linux/tracehook.h>
36 #include <linux/capability.h>
37 #include <linux/freezer.h>
38 #include <linux/pid_namespace.h>
39 #include <linux/nsproxy.h>
40 #include <linux/user_namespace.h>
41 #include <linux/uprobes.h>
42 #include <linux/compat.h>
43 #include <linux/cn_proc.h>
44 #include <linux/compiler.h>
45 #include <linux/posix-timers.h>
46 #include <linux/livepatch.h>
47 #include <linux/cgroup.h>
48 #include <linux/audit.h>
49 
50 #define CREATE_TRACE_POINTS
51 #include <trace/events/signal.h>
52 
53 #include <asm/param.h>
54 #include <linux/uaccess.h>
55 #include <asm/unistd.h>
56 #include <asm/siginfo.h>
57 #include <asm/cacheflush.h>
58 
59 /*
60  * SLAB caches for signal bits.
61  */
62 
63 static struct kmem_cache *sigqueue_cachep;
64 
65 int print_fatal_signals __read_mostly;
66 
sig_handler(struct task_struct * t,int sig)67 static void __user *sig_handler(struct task_struct *t, int sig)
68 {
69 	return t->sighand->action[sig - 1].sa.sa_handler;
70 }
71 
sig_handler_ignored(void __user * handler,int sig)72 static inline bool sig_handler_ignored(void __user *handler, int sig)
73 {
74 	/* Is it explicitly or implicitly ignored? */
75 	return handler == SIG_IGN ||
76 	       (handler == SIG_DFL && sig_kernel_ignore(sig));
77 }
78 
sig_task_ignored(struct task_struct * t,int sig,bool force)79 static bool sig_task_ignored(struct task_struct *t, int sig, bool force)
80 {
81 	void __user *handler;
82 
83 	handler = sig_handler(t, sig);
84 
85 	/* SIGKILL and SIGSTOP may not be sent to the global init */
86 	if (unlikely(is_global_init(t) && sig_kernel_only(sig)))
87 		return true;
88 
89 	if (unlikely(t->signal->flags & SIGNAL_UNKILLABLE) &&
90 	    handler == SIG_DFL && !(force && sig_kernel_only(sig)))
91 		return true;
92 
93 	/* Only allow kernel generated signals to this kthread */
94 	if (unlikely((t->flags & PF_KTHREAD) &&
95 		     (handler == SIG_KTHREAD_KERNEL) && !force))
96 		return true;
97 
98 	return sig_handler_ignored(handler, sig);
99 }
100 
sig_ignored(struct task_struct * t,int sig,bool force)101 static bool sig_ignored(struct task_struct *t, int sig, bool force)
102 {
103 	/*
104 	 * Blocked signals are never ignored, since the
105 	 * signal handler may change by the time it is
106 	 * unblocked.
107 	 */
108 	if (sigismember(&t->blocked, sig) || sigismember(&t->real_blocked, sig))
109 		return false;
110 
111 	/*
112 	 * Tracers may want to know about even ignored signal unless it
113 	 * is SIGKILL which can't be reported anyway but can be ignored
114 	 * by SIGNAL_UNKILLABLE task.
115 	 */
116 	if (t->ptrace && sig != SIGKILL)
117 		return false;
118 
119 	return sig_task_ignored(t, sig, force);
120 }
121 
122 /*
123  * Re-calculate pending state from the set of locally pending
124  * signals, globally pending signals, and blocked signals.
125  */
has_pending_signals(sigset_t * signal,sigset_t * blocked)126 static inline bool has_pending_signals(sigset_t *signal, sigset_t *blocked)
127 {
128 	unsigned long ready;
129 	long i;
130 
131 	switch (_NSIG_WORDS) {
132 	default:
133 		for (i = _NSIG_WORDS, ready = 0; --i >= 0 ;)
134 			ready |= signal->sig[i] &~ blocked->sig[i];
135 		break;
136 
137 	case 4: ready  = signal->sig[3] &~ blocked->sig[3];
138 		ready |= signal->sig[2] &~ blocked->sig[2];
139 		ready |= signal->sig[1] &~ blocked->sig[1];
140 		ready |= signal->sig[0] &~ blocked->sig[0];
141 		break;
142 
143 	case 2: ready  = signal->sig[1] &~ blocked->sig[1];
144 		ready |= signal->sig[0] &~ blocked->sig[0];
145 		break;
146 
147 	case 1: ready  = signal->sig[0] &~ blocked->sig[0];
148 	}
149 	return ready !=	0;
150 }
151 
152 #define PENDING(p,b) has_pending_signals(&(p)->signal, (b))
153 
recalc_sigpending_tsk(struct task_struct * t)154 static bool recalc_sigpending_tsk(struct task_struct *t)
155 {
156 	if ((t->jobctl & (JOBCTL_PENDING_MASK | JOBCTL_TRAP_FREEZE)) ||
157 	    PENDING(&t->pending, &t->blocked) ||
158 	    PENDING(&t->signal->shared_pending, &t->blocked) ||
159 	    cgroup_task_frozen(t)) {
160 		set_tsk_thread_flag(t, TIF_SIGPENDING);
161 		return true;
162 	}
163 
164 	/*
165 	 * We must never clear the flag in another thread, or in current
166 	 * when it's possible the current syscall is returning -ERESTART*.
167 	 * So we don't clear it here, and only callers who know they should do.
168 	 */
169 	return false;
170 }
171 
172 /*
173  * After recalculating TIF_SIGPENDING, we need to make sure the task wakes up.
174  * This is superfluous when called on current, the wakeup is a harmless no-op.
175  */
recalc_sigpending_and_wake(struct task_struct * t)176 void recalc_sigpending_and_wake(struct task_struct *t)
177 {
178 	if (recalc_sigpending_tsk(t))
179 		signal_wake_up(t, 0);
180 }
181 
recalc_sigpending(void)182 void recalc_sigpending(void)
183 {
184 	if (!recalc_sigpending_tsk(current) && !freezing(current) &&
185 	    !klp_patch_pending(current))
186 		clear_thread_flag(TIF_SIGPENDING);
187 
188 }
189 EXPORT_SYMBOL(recalc_sigpending);
190 
calculate_sigpending(void)191 void calculate_sigpending(void)
192 {
193 	/* Have any signals or users of TIF_SIGPENDING been delayed
194 	 * until after fork?
195 	 */
196 	spin_lock_irq(&current->sighand->siglock);
197 	set_tsk_thread_flag(current, TIF_SIGPENDING);
198 	recalc_sigpending();
199 	spin_unlock_irq(&current->sighand->siglock);
200 }
201 
202 /* Given the mask, find the first available signal that should be serviced. */
203 
204 #define SYNCHRONOUS_MASK \
205 	(sigmask(SIGSEGV) | sigmask(SIGBUS) | sigmask(SIGILL) | \
206 	 sigmask(SIGTRAP) | sigmask(SIGFPE) | sigmask(SIGSYS))
207 
next_signal(struct sigpending * pending,sigset_t * mask)208 int next_signal(struct sigpending *pending, sigset_t *mask)
209 {
210 	unsigned long i, *s, *m, x;
211 	int sig = 0;
212 
213 	s = pending->signal.sig;
214 	m = mask->sig;
215 
216 	/*
217 	 * Handle the first word specially: it contains the
218 	 * synchronous signals that need to be dequeued first.
219 	 */
220 	x = *s &~ *m;
221 	if (x) {
222 		if (x & SYNCHRONOUS_MASK)
223 			x &= SYNCHRONOUS_MASK;
224 		sig = ffz(~x) + 1;
225 		return sig;
226 	}
227 
228 	switch (_NSIG_WORDS) {
229 	default:
230 		for (i = 1; i < _NSIG_WORDS; ++i) {
231 			x = *++s &~ *++m;
232 			if (!x)
233 				continue;
234 			sig = ffz(~x) + i*_NSIG_BPW + 1;
235 			break;
236 		}
237 		break;
238 
239 	case 2:
240 		x = s[1] &~ m[1];
241 		if (!x)
242 			break;
243 		sig = ffz(~x) + _NSIG_BPW + 1;
244 		break;
245 
246 	case 1:
247 		/* Nothing to do */
248 		break;
249 	}
250 
251 	return sig;
252 }
253 
print_dropped_signal(int sig)254 static inline void print_dropped_signal(int sig)
255 {
256 	static DEFINE_RATELIMIT_STATE(ratelimit_state, 5 * HZ, 10);
257 
258 	if (!print_fatal_signals)
259 		return;
260 
261 	if (!__ratelimit(&ratelimit_state))
262 		return;
263 
264 	pr_info("%s/%d: reached RLIMIT_SIGPENDING, dropped signal %d\n",
265 				current->comm, current->pid, sig);
266 }
267 
268 /**
269  * task_set_jobctl_pending - set jobctl pending bits
270  * @task: target task
271  * @mask: pending bits to set
272  *
273  * Clear @mask from @task->jobctl.  @mask must be subset of
274  * %JOBCTL_PENDING_MASK | %JOBCTL_STOP_CONSUME | %JOBCTL_STOP_SIGMASK |
275  * %JOBCTL_TRAPPING.  If stop signo is being set, the existing signo is
276  * cleared.  If @task is already being killed or exiting, this function
277  * becomes noop.
278  *
279  * CONTEXT:
280  * Must be called with @task->sighand->siglock held.
281  *
282  * RETURNS:
283  * %true if @mask is set, %false if made noop because @task was dying.
284  */
task_set_jobctl_pending(struct task_struct * task,unsigned long mask)285 bool task_set_jobctl_pending(struct task_struct *task, unsigned long mask)
286 {
287 	BUG_ON(mask & ~(JOBCTL_PENDING_MASK | JOBCTL_STOP_CONSUME |
288 			JOBCTL_STOP_SIGMASK | JOBCTL_TRAPPING));
289 	BUG_ON((mask & JOBCTL_TRAPPING) && !(mask & JOBCTL_PENDING_MASK));
290 
291 	if (unlikely(fatal_signal_pending(task) || (task->flags & PF_EXITING)))
292 		return false;
293 
294 	if (mask & JOBCTL_STOP_SIGMASK)
295 		task->jobctl &= ~JOBCTL_STOP_SIGMASK;
296 
297 	task->jobctl |= mask;
298 	return true;
299 }
300 
301 /**
302  * task_clear_jobctl_trapping - clear jobctl trapping bit
303  * @task: target task
304  *
305  * If JOBCTL_TRAPPING is set, a ptracer is waiting for us to enter TRACED.
306  * Clear it and wake up the ptracer.  Note that we don't need any further
307  * locking.  @task->siglock guarantees that @task->parent points to the
308  * ptracer.
309  *
310  * CONTEXT:
311  * Must be called with @task->sighand->siglock held.
312  */
task_clear_jobctl_trapping(struct task_struct * task)313 void task_clear_jobctl_trapping(struct task_struct *task)
314 {
315 	if (unlikely(task->jobctl & JOBCTL_TRAPPING)) {
316 		task->jobctl &= ~JOBCTL_TRAPPING;
317 		smp_mb();	/* advised by wake_up_bit() */
318 		wake_up_bit(&task->jobctl, JOBCTL_TRAPPING_BIT);
319 	}
320 }
321 
322 /**
323  * task_clear_jobctl_pending - clear jobctl pending bits
324  * @task: target task
325  * @mask: pending bits to clear
326  *
327  * Clear @mask from @task->jobctl.  @mask must be subset of
328  * %JOBCTL_PENDING_MASK.  If %JOBCTL_STOP_PENDING is being cleared, other
329  * STOP bits are cleared together.
330  *
331  * If clearing of @mask leaves no stop or trap pending, this function calls
332  * task_clear_jobctl_trapping().
333  *
334  * CONTEXT:
335  * Must be called with @task->sighand->siglock held.
336  */
task_clear_jobctl_pending(struct task_struct * task,unsigned long mask)337 void task_clear_jobctl_pending(struct task_struct *task, unsigned long mask)
338 {
339 	BUG_ON(mask & ~JOBCTL_PENDING_MASK);
340 
341 	if (mask & JOBCTL_STOP_PENDING)
342 		mask |= JOBCTL_STOP_CONSUME | JOBCTL_STOP_DEQUEUED;
343 
344 	task->jobctl &= ~mask;
345 
346 	if (!(task->jobctl & JOBCTL_PENDING_MASK))
347 		task_clear_jobctl_trapping(task);
348 }
349 
350 /**
351  * task_participate_group_stop - participate in a group stop
352  * @task: task participating in a group stop
353  *
354  * @task has %JOBCTL_STOP_PENDING set and is participating in a group stop.
355  * Group stop states are cleared and the group stop count is consumed if
356  * %JOBCTL_STOP_CONSUME was set.  If the consumption completes the group
357  * stop, the appropriate `SIGNAL_*` flags are set.
358  *
359  * CONTEXT:
360  * Must be called with @task->sighand->siglock held.
361  *
362  * RETURNS:
363  * %true if group stop completion should be notified to the parent, %false
364  * otherwise.
365  */
task_participate_group_stop(struct task_struct * task)366 static bool task_participate_group_stop(struct task_struct *task)
367 {
368 	struct signal_struct *sig = task->signal;
369 	bool consume = task->jobctl & JOBCTL_STOP_CONSUME;
370 
371 	WARN_ON_ONCE(!(task->jobctl & JOBCTL_STOP_PENDING));
372 
373 	task_clear_jobctl_pending(task, JOBCTL_STOP_PENDING);
374 
375 	if (!consume)
376 		return false;
377 
378 	if (!WARN_ON_ONCE(sig->group_stop_count == 0))
379 		sig->group_stop_count--;
380 
381 	/*
382 	 * Tell the caller to notify completion iff we are entering into a
383 	 * fresh group stop.  Read comment in do_signal_stop() for details.
384 	 */
385 	if (!sig->group_stop_count && !(sig->flags & SIGNAL_STOP_STOPPED)) {
386 		signal_set_stop_flags(sig, SIGNAL_STOP_STOPPED);
387 		return true;
388 	}
389 	return false;
390 }
391 
task_join_group_stop(struct task_struct * task)392 void task_join_group_stop(struct task_struct *task)
393 {
394 	unsigned long mask = current->jobctl & JOBCTL_STOP_SIGMASK;
395 	struct signal_struct *sig = current->signal;
396 
397 	if (sig->group_stop_count) {
398 		sig->group_stop_count++;
399 		mask |= JOBCTL_STOP_CONSUME;
400 	} else if (!(sig->flags & SIGNAL_STOP_STOPPED))
401 		return;
402 
403 	/* Have the new thread join an on-going signal group stop */
404 	task_set_jobctl_pending(task, mask | JOBCTL_STOP_PENDING);
405 }
406 
407 /*
408  * allocate a new signal queue record
409  * - this may be called without locks if and only if t == current, otherwise an
410  *   appropriate lock must be held to stop the target task from exiting
411  */
412 static struct sigqueue *
__sigqueue_alloc(int sig,struct task_struct * t,gfp_t flags,int override_rlimit)413 __sigqueue_alloc(int sig, struct task_struct *t, gfp_t flags, int override_rlimit)
414 {
415 	struct sigqueue *q = NULL;
416 	struct user_struct *user;
417 	int sigpending;
418 
419 	/*
420 	 * Protect access to @t credentials. This can go away when all
421 	 * callers hold rcu read lock.
422 	 *
423 	 * NOTE! A pending signal will hold on to the user refcount,
424 	 * and we get/put the refcount only when the sigpending count
425 	 * changes from/to zero.
426 	 */
427 	rcu_read_lock();
428 	user = __task_cred(t)->user;
429 	sigpending = atomic_inc_return(&user->sigpending);
430 	if (sigpending == 1)
431 		get_uid(user);
432 	rcu_read_unlock();
433 
434 	if (override_rlimit || likely(sigpending <= task_rlimit(t, RLIMIT_SIGPENDING))) {
435 		q = kmem_cache_alloc(sigqueue_cachep, flags);
436 	} else {
437 		print_dropped_signal(sig);
438 	}
439 
440 	if (unlikely(q == NULL)) {
441 		if (atomic_dec_and_test(&user->sigpending))
442 			free_uid(user);
443 	} else {
444 		INIT_LIST_HEAD(&q->list);
445 		q->flags = 0;
446 		q->user = user;
447 	}
448 
449 	return q;
450 }
451 
__sigqueue_free(struct sigqueue * q)452 static void __sigqueue_free(struct sigqueue *q)
453 {
454 	if (q->flags & SIGQUEUE_PREALLOC)
455 		return;
456 	if (atomic_dec_and_test(&q->user->sigpending))
457 		free_uid(q->user);
458 	kmem_cache_free(sigqueue_cachep, q);
459 }
460 
flush_sigqueue(struct sigpending * queue)461 void flush_sigqueue(struct sigpending *queue)
462 {
463 	struct sigqueue *q;
464 
465 	sigemptyset(&queue->signal);
466 	while (!list_empty(&queue->list)) {
467 		q = list_entry(queue->list.next, struct sigqueue , list);
468 		list_del_init(&q->list);
469 		__sigqueue_free(q);
470 	}
471 }
472 
473 /*
474  * Flush all pending signals for this kthread.
475  */
flush_signals(struct task_struct * t)476 void flush_signals(struct task_struct *t)
477 {
478 	unsigned long flags;
479 
480 	spin_lock_irqsave(&t->sighand->siglock, flags);
481 	clear_tsk_thread_flag(t, TIF_SIGPENDING);
482 	flush_sigqueue(&t->pending);
483 	flush_sigqueue(&t->signal->shared_pending);
484 	spin_unlock_irqrestore(&t->sighand->siglock, flags);
485 }
486 EXPORT_SYMBOL(flush_signals);
487 
488 #ifdef CONFIG_POSIX_TIMERS
__flush_itimer_signals(struct sigpending * pending)489 static void __flush_itimer_signals(struct sigpending *pending)
490 {
491 	sigset_t signal, retain;
492 	struct sigqueue *q, *n;
493 
494 	signal = pending->signal;
495 	sigemptyset(&retain);
496 
497 	list_for_each_entry_safe(q, n, &pending->list, list) {
498 		int sig = q->info.si_signo;
499 
500 		if (likely(q->info.si_code != SI_TIMER)) {
501 			sigaddset(&retain, sig);
502 		} else {
503 			sigdelset(&signal, sig);
504 			list_del_init(&q->list);
505 			__sigqueue_free(q);
506 		}
507 	}
508 
509 	sigorsets(&pending->signal, &signal, &retain);
510 }
511 
flush_itimer_signals(void)512 void flush_itimer_signals(void)
513 {
514 	struct task_struct *tsk = current;
515 	unsigned long flags;
516 
517 	spin_lock_irqsave(&tsk->sighand->siglock, flags);
518 	__flush_itimer_signals(&tsk->pending);
519 	__flush_itimer_signals(&tsk->signal->shared_pending);
520 	spin_unlock_irqrestore(&tsk->sighand->siglock, flags);
521 }
522 #endif
523 
ignore_signals(struct task_struct * t)524 void ignore_signals(struct task_struct *t)
525 {
526 	int i;
527 
528 	for (i = 0; i < _NSIG; ++i)
529 		t->sighand->action[i].sa.sa_handler = SIG_IGN;
530 
531 	flush_signals(t);
532 }
533 
534 /*
535  * Flush all handlers for a task.
536  */
537 
538 void
flush_signal_handlers(struct task_struct * t,int force_default)539 flush_signal_handlers(struct task_struct *t, int force_default)
540 {
541 	int i;
542 	struct k_sigaction *ka = &t->sighand->action[0];
543 	for (i = _NSIG ; i != 0 ; i--) {
544 		if (force_default || ka->sa.sa_handler != SIG_IGN)
545 			ka->sa.sa_handler = SIG_DFL;
546 		ka->sa.sa_flags = 0;
547 #ifdef __ARCH_HAS_SA_RESTORER
548 		ka->sa.sa_restorer = NULL;
549 #endif
550 		sigemptyset(&ka->sa.sa_mask);
551 		ka++;
552 	}
553 }
554 
unhandled_signal(struct task_struct * tsk,int sig)555 bool unhandled_signal(struct task_struct *tsk, int sig)
556 {
557 	void __user *handler = tsk->sighand->action[sig-1].sa.sa_handler;
558 	if (is_global_init(tsk))
559 		return true;
560 
561 	if (handler != SIG_IGN && handler != SIG_DFL)
562 		return false;
563 
564 	/* if ptraced, let the tracer determine */
565 	return !tsk->ptrace;
566 }
567 
collect_signal(int sig,struct sigpending * list,kernel_siginfo_t * info,bool * resched_timer)568 static void collect_signal(int sig, struct sigpending *list, kernel_siginfo_t *info,
569 			   bool *resched_timer)
570 {
571 	struct sigqueue *q, *first = NULL;
572 
573 	/*
574 	 * Collect the siginfo appropriate to this signal.  Check if
575 	 * there is another siginfo for the same signal.
576 	*/
577 	list_for_each_entry(q, &list->list, list) {
578 		if (q->info.si_signo == sig) {
579 			if (first)
580 				goto still_pending;
581 			first = q;
582 		}
583 	}
584 
585 	sigdelset(&list->signal, sig);
586 
587 	if (first) {
588 still_pending:
589 		list_del_init(&first->list);
590 		copy_siginfo(info, &first->info);
591 
592 		*resched_timer =
593 			(first->flags & SIGQUEUE_PREALLOC) &&
594 			(info->si_code == SI_TIMER) &&
595 			(info->si_sys_private);
596 
597 		__sigqueue_free(first);
598 	} else {
599 		/*
600 		 * Ok, it wasn't in the queue.  This must be
601 		 * a fast-pathed signal or we must have been
602 		 * out of queue space.  So zero out the info.
603 		 */
604 		clear_siginfo(info);
605 		info->si_signo = sig;
606 		info->si_errno = 0;
607 		info->si_code = SI_USER;
608 		info->si_pid = 0;
609 		info->si_uid = 0;
610 	}
611 }
612 
__dequeue_signal(struct sigpending * pending,sigset_t * mask,kernel_siginfo_t * info,bool * resched_timer)613 static int __dequeue_signal(struct sigpending *pending, sigset_t *mask,
614 			kernel_siginfo_t *info, bool *resched_timer)
615 {
616 	int sig = next_signal(pending, mask);
617 
618 	if (sig)
619 		collect_signal(sig, pending, info, resched_timer);
620 	return sig;
621 }
622 
623 /*
624  * Dequeue a signal and return the element to the caller, which is
625  * expected to free it.
626  *
627  * All callers have to hold the siglock.
628  */
dequeue_signal(struct task_struct * tsk,sigset_t * mask,kernel_siginfo_t * info)629 int dequeue_signal(struct task_struct *tsk, sigset_t *mask, kernel_siginfo_t *info)
630 {
631 	bool resched_timer = false;
632 	int signr;
633 
634 	/* We only dequeue private signals from ourselves, we don't let
635 	 * signalfd steal them
636 	 */
637 	signr = __dequeue_signal(&tsk->pending, mask, info, &resched_timer);
638 	if (!signr) {
639 		signr = __dequeue_signal(&tsk->signal->shared_pending,
640 					 mask, info, &resched_timer);
641 #ifdef CONFIG_POSIX_TIMERS
642 		/*
643 		 * itimer signal ?
644 		 *
645 		 * itimers are process shared and we restart periodic
646 		 * itimers in the signal delivery path to prevent DoS
647 		 * attacks in the high resolution timer case. This is
648 		 * compliant with the old way of self-restarting
649 		 * itimers, as the SIGALRM is a legacy signal and only
650 		 * queued once. Changing the restart behaviour to
651 		 * restart the timer in the signal dequeue path is
652 		 * reducing the timer noise on heavy loaded !highres
653 		 * systems too.
654 		 */
655 		if (unlikely(signr == SIGALRM)) {
656 			struct hrtimer *tmr = &tsk->signal->real_timer;
657 
658 			if (!hrtimer_is_queued(tmr) &&
659 			    tsk->signal->it_real_incr != 0) {
660 				hrtimer_forward(tmr, tmr->base->get_time(),
661 						tsk->signal->it_real_incr);
662 				hrtimer_restart(tmr);
663 			}
664 		}
665 #endif
666 	}
667 
668 	recalc_sigpending();
669 	if (!signr)
670 		return 0;
671 
672 	if (unlikely(sig_kernel_stop(signr))) {
673 		/*
674 		 * Set a marker that we have dequeued a stop signal.  Our
675 		 * caller might release the siglock and then the pending
676 		 * stop signal it is about to process is no longer in the
677 		 * pending bitmasks, but must still be cleared by a SIGCONT
678 		 * (and overruled by a SIGKILL).  So those cases clear this
679 		 * shared flag after we've set it.  Note that this flag may
680 		 * remain set after the signal we return is ignored or
681 		 * handled.  That doesn't matter because its only purpose
682 		 * is to alert stop-signal processing code when another
683 		 * processor has come along and cleared the flag.
684 		 */
685 		current->jobctl |= JOBCTL_STOP_DEQUEUED;
686 	}
687 #ifdef CONFIG_POSIX_TIMERS
688 	if (resched_timer) {
689 		/*
690 		 * Release the siglock to ensure proper locking order
691 		 * of timer locks outside of siglocks.  Note, we leave
692 		 * irqs disabled here, since the posix-timers code is
693 		 * about to disable them again anyway.
694 		 */
695 		spin_unlock(&tsk->sighand->siglock);
696 		posixtimer_rearm(info);
697 		spin_lock(&tsk->sighand->siglock);
698 
699 		/* Don't expose the si_sys_private value to userspace */
700 		info->si_sys_private = 0;
701 	}
702 #endif
703 	return signr;
704 }
705 EXPORT_SYMBOL_GPL(dequeue_signal);
706 
dequeue_synchronous_signal(kernel_siginfo_t * info)707 static int dequeue_synchronous_signal(kernel_siginfo_t *info)
708 {
709 	struct task_struct *tsk = current;
710 	struct sigpending *pending = &tsk->pending;
711 	struct sigqueue *q, *sync = NULL;
712 
713 	/*
714 	 * Might a synchronous signal be in the queue?
715 	 */
716 	if (!((pending->signal.sig[0] & ~tsk->blocked.sig[0]) & SYNCHRONOUS_MASK))
717 		return 0;
718 
719 	/*
720 	 * Return the first synchronous signal in the queue.
721 	 */
722 	list_for_each_entry(q, &pending->list, list) {
723 		/* Synchronous signals have a positive si_code */
724 		if ((q->info.si_code > SI_USER) &&
725 		    (sigmask(q->info.si_signo) & SYNCHRONOUS_MASK)) {
726 			sync = q;
727 			goto next;
728 		}
729 	}
730 	return 0;
731 next:
732 	/*
733 	 * Check if there is another siginfo for the same signal.
734 	 */
735 	list_for_each_entry_continue(q, &pending->list, list) {
736 		if (q->info.si_signo == sync->info.si_signo)
737 			goto still_pending;
738 	}
739 
740 	sigdelset(&pending->signal, sync->info.si_signo);
741 	recalc_sigpending();
742 still_pending:
743 	list_del_init(&sync->list);
744 	copy_siginfo(info, &sync->info);
745 	__sigqueue_free(sync);
746 	return info->si_signo;
747 }
748 
749 /*
750  * Tell a process that it has a new active signal..
751  *
752  * NOTE! we rely on the previous spin_lock to
753  * lock interrupts for us! We can only be called with
754  * "siglock" held, and the local interrupt must
755  * have been disabled when that got acquired!
756  *
757  * No need to set need_resched since signal event passing
758  * goes through ->blocked
759  */
signal_wake_up_state(struct task_struct * t,unsigned int state)760 void signal_wake_up_state(struct task_struct *t, unsigned int state)
761 {
762 	set_tsk_thread_flag(t, TIF_SIGPENDING);
763 	/*
764 	 * TASK_WAKEKILL also means wake it up in the stopped/traced/killable
765 	 * case. We don't check t->state here because there is a race with it
766 	 * executing another processor and just now entering stopped state.
767 	 * By using wake_up_state, we ensure the process will wake up and
768 	 * handle its death signal.
769 	 */
770 	if (!wake_up_state(t, state | TASK_INTERRUPTIBLE))
771 		kick_process(t);
772 }
773 
774 /*
775  * Remove signals in mask from the pending set and queue.
776  * Returns 1 if any signals were found.
777  *
778  * All callers must be holding the siglock.
779  */
flush_sigqueue_mask(sigset_t * mask,struct sigpending * s)780 static void flush_sigqueue_mask(sigset_t *mask, struct sigpending *s)
781 {
782 	struct sigqueue *q, *n;
783 	sigset_t m;
784 
785 	sigandsets(&m, mask, &s->signal);
786 	if (sigisemptyset(&m))
787 		return;
788 
789 	sigandnsets(&s->signal, &s->signal, mask);
790 	list_for_each_entry_safe(q, n, &s->list, list) {
791 		if (sigismember(mask, q->info.si_signo)) {
792 			list_del_init(&q->list);
793 			__sigqueue_free(q);
794 		}
795 	}
796 }
797 
is_si_special(const struct kernel_siginfo * info)798 static inline int is_si_special(const struct kernel_siginfo *info)
799 {
800 	return info <= SEND_SIG_PRIV;
801 }
802 
si_fromuser(const struct kernel_siginfo * info)803 static inline bool si_fromuser(const struct kernel_siginfo *info)
804 {
805 	return info == SEND_SIG_NOINFO ||
806 		(!is_si_special(info) && SI_FROMUSER(info));
807 }
808 
809 /*
810  * called with RCU read lock from check_kill_permission()
811  */
kill_ok_by_cred(struct task_struct * t)812 static bool kill_ok_by_cred(struct task_struct *t)
813 {
814 	const struct cred *cred = current_cred();
815 	const struct cred *tcred = __task_cred(t);
816 
817 	return uid_eq(cred->euid, tcred->suid) ||
818 	       uid_eq(cred->euid, tcred->uid) ||
819 	       uid_eq(cred->uid, tcred->suid) ||
820 	       uid_eq(cred->uid, tcred->uid) ||
821 	       ns_capable(tcred->user_ns, CAP_KILL);
822 }
823 
824 /*
825  * Bad permissions for sending the signal
826  * - the caller must hold the RCU read lock
827  */
check_kill_permission(int sig,struct kernel_siginfo * info,struct task_struct * t)828 static int check_kill_permission(int sig, struct kernel_siginfo *info,
829 				 struct task_struct *t)
830 {
831 	struct pid *sid;
832 	int error;
833 
834 	if (!valid_signal(sig))
835 		return -EINVAL;
836 
837 	if (!si_fromuser(info))
838 		return 0;
839 
840 	error = audit_signal_info(sig, t); /* Let audit system see the signal */
841 	if (error)
842 		return error;
843 
844 	if (!same_thread_group(current, t) &&
845 	    !kill_ok_by_cred(t)) {
846 		switch (sig) {
847 		case SIGCONT:
848 			sid = task_session(t);
849 			/*
850 			 * We don't return the error if sid == NULL. The
851 			 * task was unhashed, the caller must notice this.
852 			 */
853 			if (!sid || sid == task_session(current))
854 				break;
855 			fallthrough;
856 		default:
857 			return -EPERM;
858 		}
859 	}
860 
861 	return security_task_kill(t, info, sig, NULL);
862 }
863 
864 /**
865  * ptrace_trap_notify - schedule trap to notify ptracer
866  * @t: tracee wanting to notify tracer
867  *
868  * This function schedules sticky ptrace trap which is cleared on the next
869  * TRAP_STOP to notify ptracer of an event.  @t must have been seized by
870  * ptracer.
871  *
872  * If @t is running, STOP trap will be taken.  If trapped for STOP and
873  * ptracer is listening for events, tracee is woken up so that it can
874  * re-trap for the new event.  If trapped otherwise, STOP trap will be
875  * eventually taken without returning to userland after the existing traps
876  * are finished by PTRACE_CONT.
877  *
878  * CONTEXT:
879  * Must be called with @task->sighand->siglock held.
880  */
ptrace_trap_notify(struct task_struct * t)881 static void ptrace_trap_notify(struct task_struct *t)
882 {
883 	WARN_ON_ONCE(!(t->ptrace & PT_SEIZED));
884 	assert_spin_locked(&t->sighand->siglock);
885 
886 	task_set_jobctl_pending(t, JOBCTL_TRAP_NOTIFY);
887 	ptrace_signal_wake_up(t, t->jobctl & JOBCTL_LISTENING);
888 }
889 
890 /*
891  * Handle magic process-wide effects of stop/continue signals. Unlike
892  * the signal actions, these happen immediately at signal-generation
893  * time regardless of blocking, ignoring, or handling.  This does the
894  * actual continuing for SIGCONT, but not the actual stopping for stop
895  * signals. The process stop is done as a signal action for SIG_DFL.
896  *
897  * Returns true if the signal should be actually delivered, otherwise
898  * it should be dropped.
899  */
prepare_signal(int sig,struct task_struct * p,bool force)900 static bool prepare_signal(int sig, struct task_struct *p, bool force)
901 {
902 	struct signal_struct *signal = p->signal;
903 	struct task_struct *t;
904 	sigset_t flush;
905 
906 	if (signal->flags & (SIGNAL_GROUP_EXIT | SIGNAL_GROUP_COREDUMP)) {
907 		if (!(signal->flags & SIGNAL_GROUP_EXIT))
908 			return sig == SIGKILL;
909 		/*
910 		 * The process is in the middle of dying, nothing to do.
911 		 */
912 	} else if (sig_kernel_stop(sig)) {
913 		/*
914 		 * This is a stop signal.  Remove SIGCONT from all queues.
915 		 */
916 		siginitset(&flush, sigmask(SIGCONT));
917 		flush_sigqueue_mask(&flush, &signal->shared_pending);
918 		for_each_thread(p, t)
919 			flush_sigqueue_mask(&flush, &t->pending);
920 	} else if (sig == SIGCONT) {
921 		unsigned int why;
922 		/*
923 		 * Remove all stop signals from all queues, wake all threads.
924 		 */
925 		siginitset(&flush, SIG_KERNEL_STOP_MASK);
926 		flush_sigqueue_mask(&flush, &signal->shared_pending);
927 		for_each_thread(p, t) {
928 			flush_sigqueue_mask(&flush, &t->pending);
929 			task_clear_jobctl_pending(t, JOBCTL_STOP_PENDING);
930 			if (likely(!(t->ptrace & PT_SEIZED)))
931 				wake_up_state(t, __TASK_STOPPED);
932 			else
933 				ptrace_trap_notify(t);
934 		}
935 
936 		/*
937 		 * Notify the parent with CLD_CONTINUED if we were stopped.
938 		 *
939 		 * If we were in the middle of a group stop, we pretend it
940 		 * was already finished, and then continued. Since SIGCHLD
941 		 * doesn't queue we report only CLD_STOPPED, as if the next
942 		 * CLD_CONTINUED was dropped.
943 		 */
944 		why = 0;
945 		if (signal->flags & SIGNAL_STOP_STOPPED)
946 			why |= SIGNAL_CLD_CONTINUED;
947 		else if (signal->group_stop_count)
948 			why |= SIGNAL_CLD_STOPPED;
949 
950 		if (why) {
951 			/*
952 			 * The first thread which returns from do_signal_stop()
953 			 * will take ->siglock, notice SIGNAL_CLD_MASK, and
954 			 * notify its parent. See get_signal().
955 			 */
956 			signal_set_stop_flags(signal, why | SIGNAL_STOP_CONTINUED);
957 			signal->group_stop_count = 0;
958 			signal->group_exit_code = 0;
959 		}
960 	}
961 
962 	return !sig_ignored(p, sig, force);
963 }
964 
965 /*
966  * Test if P wants to take SIG.  After we've checked all threads with this,
967  * it's equivalent to finding no threads not blocking SIG.  Any threads not
968  * blocking SIG were ruled out because they are not running and already
969  * have pending signals.  Such threads will dequeue from the shared queue
970  * as soon as they're available, so putting the signal on the shared queue
971  * will be equivalent to sending it to one such thread.
972  */
wants_signal(int sig,struct task_struct * p)973 static inline bool wants_signal(int sig, struct task_struct *p)
974 {
975 	if (sigismember(&p->blocked, sig))
976 		return false;
977 
978 	if (p->flags & PF_EXITING)
979 		return false;
980 
981 	if (sig == SIGKILL)
982 		return true;
983 
984 	if (task_is_stopped_or_traced(p))
985 		return false;
986 
987 	return task_curr(p) || !task_sigpending(p);
988 }
989 
complete_signal(int sig,struct task_struct * p,enum pid_type type)990 static void complete_signal(int sig, struct task_struct *p, enum pid_type type)
991 {
992 	struct signal_struct *signal = p->signal;
993 	struct task_struct *t;
994 
995 	/*
996 	 * Now find a thread we can wake up to take the signal off the queue.
997 	 *
998 	 * If the main thread wants the signal, it gets first crack.
999 	 * Probably the least surprising to the average bear.
1000 	 */
1001 	if (wants_signal(sig, p))
1002 		t = p;
1003 	else if ((type == PIDTYPE_PID) || thread_group_empty(p))
1004 		/*
1005 		 * There is just one thread and it does not need to be woken.
1006 		 * It will dequeue unblocked signals before it runs again.
1007 		 */
1008 		return;
1009 	else {
1010 		/*
1011 		 * Otherwise try to find a suitable thread.
1012 		 */
1013 		t = signal->curr_target;
1014 		while (!wants_signal(sig, t)) {
1015 			t = next_thread(t);
1016 			if (t == signal->curr_target)
1017 				/*
1018 				 * No thread needs to be woken.
1019 				 * Any eligible threads will see
1020 				 * the signal in the queue soon.
1021 				 */
1022 				return;
1023 		}
1024 		signal->curr_target = t;
1025 	}
1026 
1027 	/*
1028 	 * Found a killable thread.  If the signal will be fatal,
1029 	 * then start taking the whole group down immediately.
1030 	 */
1031 	if (sig_fatal(p, sig) &&
1032 	    !(signal->flags & SIGNAL_GROUP_EXIT) &&
1033 	    !sigismember(&t->real_blocked, sig) &&
1034 	    (sig == SIGKILL || !p->ptrace)) {
1035 		/*
1036 		 * This signal will be fatal to the whole group.
1037 		 */
1038 		if (!sig_kernel_coredump(sig)) {
1039 			/*
1040 			 * Start a group exit and wake everybody up.
1041 			 * This way we don't have other threads
1042 			 * running and doing things after a slower
1043 			 * thread has the fatal signal pending.
1044 			 */
1045 			signal->flags = SIGNAL_GROUP_EXIT;
1046 			signal->group_exit_code = sig;
1047 			signal->group_stop_count = 0;
1048 			t = p;
1049 			do {
1050 				task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK);
1051 				sigaddset(&t->pending.signal, SIGKILL);
1052 				signal_wake_up(t, 1);
1053 			} while_each_thread(p, t);
1054 			return;
1055 		}
1056 	}
1057 
1058 	/*
1059 	 * The signal is already in the shared-pending queue.
1060 	 * Tell the chosen thread to wake up and dequeue it.
1061 	 */
1062 	signal_wake_up(t, sig == SIGKILL);
1063 	return;
1064 }
1065 
legacy_queue(struct sigpending * signals,int sig)1066 static inline bool legacy_queue(struct sigpending *signals, int sig)
1067 {
1068 	return (sig < SIGRTMIN) && sigismember(&signals->signal, sig);
1069 }
1070 
__send_signal(int sig,struct kernel_siginfo * info,struct task_struct * t,enum pid_type type,bool force)1071 static int __send_signal(int sig, struct kernel_siginfo *info, struct task_struct *t,
1072 			enum pid_type type, bool force)
1073 {
1074 	struct sigpending *pending;
1075 	struct sigqueue *q;
1076 	int override_rlimit;
1077 	int ret = 0, result;
1078 
1079 	assert_spin_locked(&t->sighand->siglock);
1080 
1081 	result = TRACE_SIGNAL_IGNORED;
1082 	if (!prepare_signal(sig, t, force))
1083 		goto ret;
1084 
1085 	pending = (type != PIDTYPE_PID) ? &t->signal->shared_pending : &t->pending;
1086 	/*
1087 	 * Short-circuit ignored signals and support queuing
1088 	 * exactly one non-rt signal, so that we can get more
1089 	 * detailed information about the cause of the signal.
1090 	 */
1091 	result = TRACE_SIGNAL_ALREADY_PENDING;
1092 	if (legacy_queue(pending, sig))
1093 		goto ret;
1094 
1095 	result = TRACE_SIGNAL_DELIVERED;
1096 	/*
1097 	 * Skip useless siginfo allocation for SIGKILL and kernel threads.
1098 	 */
1099 	if ((sig == SIGKILL) || (t->flags & PF_KTHREAD))
1100 		goto out_set;
1101 
1102 	/*
1103 	 * Real-time signals must be queued if sent by sigqueue, or
1104 	 * some other real-time mechanism.  It is implementation
1105 	 * defined whether kill() does so.  We attempt to do so, on
1106 	 * the principle of least surprise, but since kill is not
1107 	 * allowed to fail with EAGAIN when low on memory we just
1108 	 * make sure at least one signal gets delivered and don't
1109 	 * pass on the info struct.
1110 	 */
1111 	if (sig < SIGRTMIN)
1112 		override_rlimit = (is_si_special(info) || info->si_code >= 0);
1113 	else
1114 		override_rlimit = 0;
1115 
1116 	q = __sigqueue_alloc(sig, t, GFP_ATOMIC, override_rlimit);
1117 	if (q) {
1118 		list_add_tail(&q->list, &pending->list);
1119 		switch ((unsigned long) info) {
1120 		case (unsigned long) SEND_SIG_NOINFO:
1121 			clear_siginfo(&q->info);
1122 			q->info.si_signo = sig;
1123 			q->info.si_errno = 0;
1124 			q->info.si_code = SI_USER;
1125 			q->info.si_pid = task_tgid_nr_ns(current,
1126 							task_active_pid_ns(t));
1127 			rcu_read_lock();
1128 			q->info.si_uid =
1129 				from_kuid_munged(task_cred_xxx(t, user_ns),
1130 						 current_uid());
1131 			rcu_read_unlock();
1132 			break;
1133 		case (unsigned long) SEND_SIG_PRIV:
1134 			clear_siginfo(&q->info);
1135 			q->info.si_signo = sig;
1136 			q->info.si_errno = 0;
1137 			q->info.si_code = SI_KERNEL;
1138 			q->info.si_pid = 0;
1139 			q->info.si_uid = 0;
1140 			break;
1141 		default:
1142 			copy_siginfo(&q->info, info);
1143 			break;
1144 		}
1145 	} else if (!is_si_special(info) &&
1146 		   sig >= SIGRTMIN && info->si_code != SI_USER) {
1147 		/*
1148 		 * Queue overflow, abort.  We may abort if the
1149 		 * signal was rt and sent by user using something
1150 		 * other than kill().
1151 		 */
1152 		result = TRACE_SIGNAL_OVERFLOW_FAIL;
1153 		ret = -EAGAIN;
1154 		goto ret;
1155 	} else {
1156 		/*
1157 		 * This is a silent loss of information.  We still
1158 		 * send the signal, but the *info bits are lost.
1159 		 */
1160 		result = TRACE_SIGNAL_LOSE_INFO;
1161 	}
1162 
1163 out_set:
1164 	signalfd_notify(t, sig);
1165 	sigaddset(&pending->signal, sig);
1166 
1167 	/* Let multiprocess signals appear after on-going forks */
1168 	if (type > PIDTYPE_TGID) {
1169 		struct multiprocess_signals *delayed;
1170 		hlist_for_each_entry(delayed, &t->signal->multiprocess, node) {
1171 			sigset_t *signal = &delayed->signal;
1172 			/* Can't queue both a stop and a continue signal */
1173 			if (sig == SIGCONT)
1174 				sigdelsetmask(signal, SIG_KERNEL_STOP_MASK);
1175 			else if (sig_kernel_stop(sig))
1176 				sigdelset(signal, SIGCONT);
1177 			sigaddset(signal, sig);
1178 		}
1179 	}
1180 
1181 	complete_signal(sig, t, type);
1182 ret:
1183 	trace_signal_generate(sig, info, t, type != PIDTYPE_PID, result);
1184 	return ret;
1185 }
1186 
has_si_pid_and_uid(struct kernel_siginfo * info)1187 static inline bool has_si_pid_and_uid(struct kernel_siginfo *info)
1188 {
1189 	bool ret = false;
1190 	switch (siginfo_layout(info->si_signo, info->si_code)) {
1191 	case SIL_KILL:
1192 	case SIL_CHLD:
1193 	case SIL_RT:
1194 		ret = true;
1195 		break;
1196 	case SIL_TIMER:
1197 	case SIL_POLL:
1198 	case SIL_FAULT:
1199 	case SIL_FAULT_MCEERR:
1200 	case SIL_FAULT_BNDERR:
1201 	case SIL_FAULT_PKUERR:
1202 	case SIL_SYS:
1203 		ret = false;
1204 		break;
1205 	}
1206 	return ret;
1207 }
1208 
send_signal(int sig,struct kernel_siginfo * info,struct task_struct * t,enum pid_type type)1209 static int send_signal(int sig, struct kernel_siginfo *info, struct task_struct *t,
1210 			enum pid_type type)
1211 {
1212 	/* Should SIGKILL or SIGSTOP be received by a pid namespace init? */
1213 	bool force = false;
1214 
1215 	if (info == SEND_SIG_NOINFO) {
1216 		/* Force if sent from an ancestor pid namespace */
1217 		force = !task_pid_nr_ns(current, task_active_pid_ns(t));
1218 	} else if (info == SEND_SIG_PRIV) {
1219 		/* Don't ignore kernel generated signals */
1220 		force = true;
1221 	} else if (has_si_pid_and_uid(info)) {
1222 		/* SIGKILL and SIGSTOP is special or has ids */
1223 		struct user_namespace *t_user_ns;
1224 
1225 		rcu_read_lock();
1226 		t_user_ns = task_cred_xxx(t, user_ns);
1227 		if (current_user_ns() != t_user_ns) {
1228 			kuid_t uid = make_kuid(current_user_ns(), info->si_uid);
1229 			info->si_uid = from_kuid_munged(t_user_ns, uid);
1230 		}
1231 		rcu_read_unlock();
1232 
1233 		/* A kernel generated signal? */
1234 		force = (info->si_code == SI_KERNEL);
1235 
1236 		/* From an ancestor pid namespace? */
1237 		if (!task_pid_nr_ns(current, task_active_pid_ns(t))) {
1238 			info->si_pid = 0;
1239 			force = true;
1240 		}
1241 	}
1242 	return __send_signal(sig, info, t, type, force);
1243 }
1244 
print_fatal_signal(int signr)1245 static void print_fatal_signal(int signr)
1246 {
1247 	struct pt_regs *regs = signal_pt_regs();
1248 	pr_info("potentially unexpected fatal signal %d.\n", signr);
1249 
1250 #if defined(__i386__) && !defined(__arch_um__)
1251 	pr_info("code at %08lx: ", regs->ip);
1252 	{
1253 		int i;
1254 		for (i = 0; i < 16; i++) {
1255 			unsigned char insn;
1256 
1257 			if (get_user(insn, (unsigned char *)(regs->ip + i)))
1258 				break;
1259 			pr_cont("%02x ", insn);
1260 		}
1261 	}
1262 	pr_cont("\n");
1263 #endif
1264 	preempt_disable();
1265 	show_regs(regs);
1266 	preempt_enable();
1267 }
1268 
setup_print_fatal_signals(char * str)1269 static int __init setup_print_fatal_signals(char *str)
1270 {
1271 	get_option (&str, &print_fatal_signals);
1272 
1273 	return 1;
1274 }
1275 
1276 __setup("print-fatal-signals=", setup_print_fatal_signals);
1277 
1278 int
__group_send_sig_info(int sig,struct kernel_siginfo * info,struct task_struct * p)1279 __group_send_sig_info(int sig, struct kernel_siginfo *info, struct task_struct *p)
1280 {
1281 	return send_signal(sig, info, p, PIDTYPE_TGID);
1282 }
1283 
do_send_sig_info(int sig,struct kernel_siginfo * info,struct task_struct * p,enum pid_type type)1284 int do_send_sig_info(int sig, struct kernel_siginfo *info, struct task_struct *p,
1285 			enum pid_type type)
1286 {
1287 	unsigned long flags;
1288 	int ret = -ESRCH;
1289 
1290 	if (lock_task_sighand(p, &flags)) {
1291 		ret = send_signal(sig, info, p, type);
1292 		unlock_task_sighand(p, &flags);
1293 	}
1294 
1295 	return ret;
1296 }
1297 
1298 /*
1299  * Force a signal that the process can't ignore: if necessary
1300  * we unblock the signal and change any SIG_IGN to SIG_DFL.
1301  *
1302  * Note: If we unblock the signal, we always reset it to SIG_DFL,
1303  * since we do not want to have a signal handler that was blocked
1304  * be invoked when user space had explicitly blocked it.
1305  *
1306  * We don't want to have recursive SIGSEGV's etc, for example,
1307  * that is why we also clear SIGNAL_UNKILLABLE.
1308  */
1309 static int
force_sig_info_to_task(struct kernel_siginfo * info,struct task_struct * t)1310 force_sig_info_to_task(struct kernel_siginfo *info, struct task_struct *t)
1311 {
1312 	unsigned long int flags;
1313 	int ret, blocked, ignored;
1314 	struct k_sigaction *action;
1315 	int sig = info->si_signo;
1316 
1317 	spin_lock_irqsave(&t->sighand->siglock, flags);
1318 	action = &t->sighand->action[sig-1];
1319 	ignored = action->sa.sa_handler == SIG_IGN;
1320 	blocked = sigismember(&t->blocked, sig);
1321 	if (blocked || ignored) {
1322 		action->sa.sa_handler = SIG_DFL;
1323 		if (blocked) {
1324 			sigdelset(&t->blocked, sig);
1325 			recalc_sigpending_and_wake(t);
1326 		}
1327 	}
1328 	/*
1329 	 * Don't clear SIGNAL_UNKILLABLE for traced tasks, users won't expect
1330 	 * debugging to leave init killable.
1331 	 */
1332 	if (action->sa.sa_handler == SIG_DFL && !t->ptrace)
1333 		t->signal->flags &= ~SIGNAL_UNKILLABLE;
1334 	ret = send_signal(sig, info, t, PIDTYPE_PID);
1335 	spin_unlock_irqrestore(&t->sighand->siglock, flags);
1336 
1337 	return ret;
1338 }
1339 
force_sig_info(struct kernel_siginfo * info)1340 int force_sig_info(struct kernel_siginfo *info)
1341 {
1342 	return force_sig_info_to_task(info, current);
1343 }
1344 
1345 /*
1346  * Nuke all other threads in the group.
1347  */
zap_other_threads(struct task_struct * p)1348 int zap_other_threads(struct task_struct *p)
1349 {
1350 	struct task_struct *t = p;
1351 	int count = 0;
1352 
1353 	p->signal->group_stop_count = 0;
1354 
1355 	while_each_thread(p, t) {
1356 		task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK);
1357 		count++;
1358 
1359 		/* Don't bother with already dead threads */
1360 		if (t->exit_state)
1361 			continue;
1362 		sigaddset(&t->pending.signal, SIGKILL);
1363 		signal_wake_up(t, 1);
1364 	}
1365 
1366 	return count;
1367 }
1368 
__lock_task_sighand(struct task_struct * tsk,unsigned long * flags)1369 struct sighand_struct *__lock_task_sighand(struct task_struct *tsk,
1370 					   unsigned long *flags)
1371 {
1372 	struct sighand_struct *sighand;
1373 
1374 	rcu_read_lock();
1375 	for (;;) {
1376 		sighand = rcu_dereference(tsk->sighand);
1377 		if (unlikely(sighand == NULL))
1378 			break;
1379 
1380 		/*
1381 		 * This sighand can be already freed and even reused, but
1382 		 * we rely on SLAB_TYPESAFE_BY_RCU and sighand_ctor() which
1383 		 * initializes ->siglock: this slab can't go away, it has
1384 		 * the same object type, ->siglock can't be reinitialized.
1385 		 *
1386 		 * We need to ensure that tsk->sighand is still the same
1387 		 * after we take the lock, we can race with de_thread() or
1388 		 * __exit_signal(). In the latter case the next iteration
1389 		 * must see ->sighand == NULL.
1390 		 */
1391 		spin_lock_irqsave(&sighand->siglock, *flags);
1392 		if (likely(sighand == rcu_access_pointer(tsk->sighand)))
1393 			break;
1394 		spin_unlock_irqrestore(&sighand->siglock, *flags);
1395 	}
1396 	rcu_read_unlock();
1397 
1398 	return sighand;
1399 }
1400 
1401 /*
1402  * send signal info to all the members of a group
1403  */
group_send_sig_info(int sig,struct kernel_siginfo * info,struct task_struct * p,enum pid_type type)1404 int group_send_sig_info(int sig, struct kernel_siginfo *info,
1405 			struct task_struct *p, enum pid_type type)
1406 {
1407 	int ret;
1408 
1409 	rcu_read_lock();
1410 	ret = check_kill_permission(sig, info, p);
1411 	rcu_read_unlock();
1412 
1413 	if (!ret && sig)
1414 		ret = do_send_sig_info(sig, info, p, type);
1415 
1416 	return ret;
1417 }
1418 
1419 /*
1420  * __kill_pgrp_info() sends a signal to a process group: this is what the tty
1421  * control characters do (^C, ^Z etc)
1422  * - the caller must hold at least a readlock on tasklist_lock
1423  */
__kill_pgrp_info(int sig,struct kernel_siginfo * info,struct pid * pgrp)1424 int __kill_pgrp_info(int sig, struct kernel_siginfo *info, struct pid *pgrp)
1425 {
1426 	struct task_struct *p = NULL;
1427 	int retval, success;
1428 
1429 	success = 0;
1430 	retval = -ESRCH;
1431 	do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
1432 		int err = group_send_sig_info(sig, info, p, PIDTYPE_PGID);
1433 		success |= !err;
1434 		retval = err;
1435 	} while_each_pid_task(pgrp, PIDTYPE_PGID, p);
1436 	return success ? 0 : retval;
1437 }
1438 
kill_pid_info(int sig,struct kernel_siginfo * info,struct pid * pid)1439 int kill_pid_info(int sig, struct kernel_siginfo *info, struct pid *pid)
1440 {
1441 	int error = -ESRCH;
1442 	struct task_struct *p;
1443 
1444 	for (;;) {
1445 		rcu_read_lock();
1446 		p = pid_task(pid, PIDTYPE_PID);
1447 		if (p)
1448 			error = group_send_sig_info(sig, info, p, PIDTYPE_TGID);
1449 		rcu_read_unlock();
1450 		if (likely(!p || error != -ESRCH))
1451 			return error;
1452 
1453 		/*
1454 		 * The task was unhashed in between, try again.  If it
1455 		 * is dead, pid_task() will return NULL, if we race with
1456 		 * de_thread() it will find the new leader.
1457 		 */
1458 	}
1459 }
1460 
kill_proc_info(int sig,struct kernel_siginfo * info,pid_t pid)1461 static int kill_proc_info(int sig, struct kernel_siginfo *info, pid_t pid)
1462 {
1463 	int error;
1464 	rcu_read_lock();
1465 	error = kill_pid_info(sig, info, find_vpid(pid));
1466 	rcu_read_unlock();
1467 	return error;
1468 }
1469 
kill_as_cred_perm(const struct cred * cred,struct task_struct * target)1470 static inline bool kill_as_cred_perm(const struct cred *cred,
1471 				     struct task_struct *target)
1472 {
1473 	const struct cred *pcred = __task_cred(target);
1474 
1475 	return uid_eq(cred->euid, pcred->suid) ||
1476 	       uid_eq(cred->euid, pcred->uid) ||
1477 	       uid_eq(cred->uid, pcred->suid) ||
1478 	       uid_eq(cred->uid, pcred->uid);
1479 }
1480 
1481 /*
1482  * The usb asyncio usage of siginfo is wrong.  The glibc support
1483  * for asyncio which uses SI_ASYNCIO assumes the layout is SIL_RT.
1484  * AKA after the generic fields:
1485  *	kernel_pid_t	si_pid;
1486  *	kernel_uid32_t	si_uid;
1487  *	sigval_t	si_value;
1488  *
1489  * Unfortunately when usb generates SI_ASYNCIO it assumes the layout
1490  * after the generic fields is:
1491  *	void __user 	*si_addr;
1492  *
1493  * This is a practical problem when there is a 64bit big endian kernel
1494  * and a 32bit userspace.  As the 32bit address will encoded in the low
1495  * 32bits of the pointer.  Those low 32bits will be stored at higher
1496  * address than appear in a 32 bit pointer.  So userspace will not
1497  * see the address it was expecting for it's completions.
1498  *
1499  * There is nothing in the encoding that can allow
1500  * copy_siginfo_to_user32 to detect this confusion of formats, so
1501  * handle this by requiring the caller of kill_pid_usb_asyncio to
1502  * notice when this situration takes place and to store the 32bit
1503  * pointer in sival_int, instead of sival_addr of the sigval_t addr
1504  * parameter.
1505  */
kill_pid_usb_asyncio(int sig,int errno,sigval_t addr,struct pid * pid,const struct cred * cred)1506 int kill_pid_usb_asyncio(int sig, int errno, sigval_t addr,
1507 			 struct pid *pid, const struct cred *cred)
1508 {
1509 	struct kernel_siginfo info;
1510 	struct task_struct *p;
1511 	unsigned long flags;
1512 	int ret = -EINVAL;
1513 
1514 	if (!valid_signal(sig))
1515 		return ret;
1516 
1517 	clear_siginfo(&info);
1518 	info.si_signo = sig;
1519 	info.si_errno = errno;
1520 	info.si_code = SI_ASYNCIO;
1521 	*((sigval_t *)&info.si_pid) = addr;
1522 
1523 	rcu_read_lock();
1524 	p = pid_task(pid, PIDTYPE_PID);
1525 	if (!p) {
1526 		ret = -ESRCH;
1527 		goto out_unlock;
1528 	}
1529 	if (!kill_as_cred_perm(cred, p)) {
1530 		ret = -EPERM;
1531 		goto out_unlock;
1532 	}
1533 	ret = security_task_kill(p, &info, sig, cred);
1534 	if (ret)
1535 		goto out_unlock;
1536 
1537 	if (sig) {
1538 		if (lock_task_sighand(p, &flags)) {
1539 			ret = __send_signal(sig, &info, p, PIDTYPE_TGID, false);
1540 			unlock_task_sighand(p, &flags);
1541 		} else
1542 			ret = -ESRCH;
1543 	}
1544 out_unlock:
1545 	rcu_read_unlock();
1546 	return ret;
1547 }
1548 EXPORT_SYMBOL_GPL(kill_pid_usb_asyncio);
1549 
1550 /*
1551  * kill_something_info() interprets pid in interesting ways just like kill(2).
1552  *
1553  * POSIX specifies that kill(-1,sig) is unspecified, but what we have
1554  * is probably wrong.  Should make it like BSD or SYSV.
1555  */
1556 
kill_something_info(int sig,struct kernel_siginfo * info,pid_t pid)1557 static int kill_something_info(int sig, struct kernel_siginfo *info, pid_t pid)
1558 {
1559 	int ret;
1560 
1561 	if (pid > 0)
1562 		return kill_proc_info(sig, info, pid);
1563 
1564 	/* -INT_MIN is undefined.  Exclude this case to avoid a UBSAN warning */
1565 	if (pid == INT_MIN)
1566 		return -ESRCH;
1567 
1568 	read_lock(&tasklist_lock);
1569 	if (pid != -1) {
1570 		ret = __kill_pgrp_info(sig, info,
1571 				pid ? find_vpid(-pid) : task_pgrp(current));
1572 	} else {
1573 		int retval = 0, count = 0;
1574 		struct task_struct * p;
1575 
1576 		for_each_process(p) {
1577 			if (task_pid_vnr(p) > 1 &&
1578 					!same_thread_group(p, current)) {
1579 				int err = group_send_sig_info(sig, info, p,
1580 							      PIDTYPE_MAX);
1581 				++count;
1582 				if (err != -EPERM)
1583 					retval = err;
1584 			}
1585 		}
1586 		ret = count ? retval : -ESRCH;
1587 	}
1588 	read_unlock(&tasklist_lock);
1589 
1590 	return ret;
1591 }
1592 
1593 /*
1594  * These are for backward compatibility with the rest of the kernel source.
1595  */
1596 
send_sig_info(int sig,struct kernel_siginfo * info,struct task_struct * p)1597 int send_sig_info(int sig, struct kernel_siginfo *info, struct task_struct *p)
1598 {
1599 	/*
1600 	 * Make sure legacy kernel users don't send in bad values
1601 	 * (normal paths check this in check_kill_permission).
1602 	 */
1603 	if (!valid_signal(sig))
1604 		return -EINVAL;
1605 
1606 	return do_send_sig_info(sig, info, p, PIDTYPE_PID);
1607 }
1608 EXPORT_SYMBOL(send_sig_info);
1609 
1610 #define __si_special(priv) \
1611 	((priv) ? SEND_SIG_PRIV : SEND_SIG_NOINFO)
1612 
1613 int
send_sig(int sig,struct task_struct * p,int priv)1614 send_sig(int sig, struct task_struct *p, int priv)
1615 {
1616 	return send_sig_info(sig, __si_special(priv), p);
1617 }
1618 EXPORT_SYMBOL(send_sig);
1619 
force_sig(int sig)1620 void force_sig(int sig)
1621 {
1622 	struct kernel_siginfo info;
1623 
1624 	clear_siginfo(&info);
1625 	info.si_signo = sig;
1626 	info.si_errno = 0;
1627 	info.si_code = SI_KERNEL;
1628 	info.si_pid = 0;
1629 	info.si_uid = 0;
1630 	force_sig_info(&info);
1631 }
1632 EXPORT_SYMBOL(force_sig);
1633 
1634 /*
1635  * When things go south during signal handling, we
1636  * will force a SIGSEGV. And if the signal that caused
1637  * the problem was already a SIGSEGV, we'll want to
1638  * make sure we don't even try to deliver the signal..
1639  */
force_sigsegv(int sig)1640 void force_sigsegv(int sig)
1641 {
1642 	struct task_struct *p = current;
1643 
1644 	if (sig == SIGSEGV) {
1645 		unsigned long flags;
1646 		spin_lock_irqsave(&p->sighand->siglock, flags);
1647 		p->sighand->action[sig - 1].sa.sa_handler = SIG_DFL;
1648 		spin_unlock_irqrestore(&p->sighand->siglock, flags);
1649 	}
1650 	force_sig(SIGSEGV);
1651 }
1652 
force_sig_fault_to_task(int sig,int code,void __user * addr ___ARCH_SI_TRAPNO (int trapno)___ARCH_SI_IA64 (int imm,unsigned int flags,unsigned long isr),struct task_struct * t)1653 int force_sig_fault_to_task(int sig, int code, void __user *addr
1654 	___ARCH_SI_TRAPNO(int trapno)
1655 	___ARCH_SI_IA64(int imm, unsigned int flags, unsigned long isr)
1656 	, struct task_struct *t)
1657 {
1658 	struct kernel_siginfo info;
1659 
1660 	clear_siginfo(&info);
1661 	info.si_signo = sig;
1662 	info.si_errno = 0;
1663 	info.si_code  = code;
1664 	info.si_addr  = addr;
1665 #ifdef __ARCH_SI_TRAPNO
1666 	info.si_trapno = trapno;
1667 #endif
1668 #ifdef __ia64__
1669 	info.si_imm = imm;
1670 	info.si_flags = flags;
1671 	info.si_isr = isr;
1672 #endif
1673 	return force_sig_info_to_task(&info, t);
1674 }
1675 
force_sig_fault(int sig,int code,void __user * addr ___ARCH_SI_TRAPNO (int trapno)___ARCH_SI_IA64 (int imm,unsigned int flags,unsigned long isr))1676 int force_sig_fault(int sig, int code, void __user *addr
1677 	___ARCH_SI_TRAPNO(int trapno)
1678 	___ARCH_SI_IA64(int imm, unsigned int flags, unsigned long isr))
1679 {
1680 	return force_sig_fault_to_task(sig, code, addr
1681 				       ___ARCH_SI_TRAPNO(trapno)
1682 				       ___ARCH_SI_IA64(imm, flags, isr), current);
1683 }
1684 
send_sig_fault(int sig,int code,void __user * addr ___ARCH_SI_TRAPNO (int trapno)___ARCH_SI_IA64 (int imm,unsigned int flags,unsigned long isr),struct task_struct * t)1685 int send_sig_fault(int sig, int code, void __user *addr
1686 	___ARCH_SI_TRAPNO(int trapno)
1687 	___ARCH_SI_IA64(int imm, unsigned int flags, unsigned long isr)
1688 	, struct task_struct *t)
1689 {
1690 	struct kernel_siginfo info;
1691 
1692 	clear_siginfo(&info);
1693 	info.si_signo = sig;
1694 	info.si_errno = 0;
1695 	info.si_code  = code;
1696 	info.si_addr  = addr;
1697 #ifdef __ARCH_SI_TRAPNO
1698 	info.si_trapno = trapno;
1699 #endif
1700 #ifdef __ia64__
1701 	info.si_imm = imm;
1702 	info.si_flags = flags;
1703 	info.si_isr = isr;
1704 #endif
1705 	return send_sig_info(info.si_signo, &info, t);
1706 }
1707 
force_sig_mceerr(int code,void __user * addr,short lsb)1708 int force_sig_mceerr(int code, void __user *addr, short lsb)
1709 {
1710 	struct kernel_siginfo info;
1711 
1712 	WARN_ON((code != BUS_MCEERR_AO) && (code != BUS_MCEERR_AR));
1713 	clear_siginfo(&info);
1714 	info.si_signo = SIGBUS;
1715 	info.si_errno = 0;
1716 	info.si_code = code;
1717 	info.si_addr = addr;
1718 	info.si_addr_lsb = lsb;
1719 	return force_sig_info(&info);
1720 }
1721 
send_sig_mceerr(int code,void __user * addr,short lsb,struct task_struct * t)1722 int send_sig_mceerr(int code, void __user *addr, short lsb, struct task_struct *t)
1723 {
1724 	struct kernel_siginfo info;
1725 
1726 	WARN_ON((code != BUS_MCEERR_AO) && (code != BUS_MCEERR_AR));
1727 	clear_siginfo(&info);
1728 	info.si_signo = SIGBUS;
1729 	info.si_errno = 0;
1730 	info.si_code = code;
1731 	info.si_addr = addr;
1732 	info.si_addr_lsb = lsb;
1733 	return send_sig_info(info.si_signo, &info, t);
1734 }
1735 EXPORT_SYMBOL(send_sig_mceerr);
1736 
force_sig_bnderr(void __user * addr,void __user * lower,void __user * upper)1737 int force_sig_bnderr(void __user *addr, void __user *lower, void __user *upper)
1738 {
1739 	struct kernel_siginfo info;
1740 
1741 	clear_siginfo(&info);
1742 	info.si_signo = SIGSEGV;
1743 	info.si_errno = 0;
1744 	info.si_code  = SEGV_BNDERR;
1745 	info.si_addr  = addr;
1746 	info.si_lower = lower;
1747 	info.si_upper = upper;
1748 	return force_sig_info(&info);
1749 }
1750 
1751 #ifdef SEGV_PKUERR
force_sig_pkuerr(void __user * addr,u32 pkey)1752 int force_sig_pkuerr(void __user *addr, u32 pkey)
1753 {
1754 	struct kernel_siginfo info;
1755 
1756 	clear_siginfo(&info);
1757 	info.si_signo = SIGSEGV;
1758 	info.si_errno = 0;
1759 	info.si_code  = SEGV_PKUERR;
1760 	info.si_addr  = addr;
1761 	info.si_pkey  = pkey;
1762 	return force_sig_info(&info);
1763 }
1764 #endif
1765 
1766 /* For the crazy architectures that include trap information in
1767  * the errno field, instead of an actual errno value.
1768  */
force_sig_ptrace_errno_trap(int errno,void __user * addr)1769 int force_sig_ptrace_errno_trap(int errno, void __user *addr)
1770 {
1771 	struct kernel_siginfo info;
1772 
1773 	clear_siginfo(&info);
1774 	info.si_signo = SIGTRAP;
1775 	info.si_errno = errno;
1776 	info.si_code  = TRAP_HWBKPT;
1777 	info.si_addr  = addr;
1778 	return force_sig_info(&info);
1779 }
1780 
kill_pgrp(struct pid * pid,int sig,int priv)1781 int kill_pgrp(struct pid *pid, int sig, int priv)
1782 {
1783 	int ret;
1784 
1785 	read_lock(&tasklist_lock);
1786 	ret = __kill_pgrp_info(sig, __si_special(priv), pid);
1787 	read_unlock(&tasklist_lock);
1788 
1789 	return ret;
1790 }
1791 EXPORT_SYMBOL(kill_pgrp);
1792 
kill_pid(struct pid * pid,int sig,int priv)1793 int kill_pid(struct pid *pid, int sig, int priv)
1794 {
1795 	return kill_pid_info(sig, __si_special(priv), pid);
1796 }
1797 EXPORT_SYMBOL(kill_pid);
1798 
1799 /*
1800  * These functions support sending signals using preallocated sigqueue
1801  * structures.  This is needed "because realtime applications cannot
1802  * afford to lose notifications of asynchronous events, like timer
1803  * expirations or I/O completions".  In the case of POSIX Timers
1804  * we allocate the sigqueue structure from the timer_create.  If this
1805  * allocation fails we are able to report the failure to the application
1806  * with an EAGAIN error.
1807  */
sigqueue_alloc(void)1808 struct sigqueue *sigqueue_alloc(void)
1809 {
1810 	struct sigqueue *q = __sigqueue_alloc(-1, current, GFP_KERNEL, 0);
1811 
1812 	if (q)
1813 		q->flags |= SIGQUEUE_PREALLOC;
1814 
1815 	return q;
1816 }
1817 
sigqueue_free(struct sigqueue * q)1818 void sigqueue_free(struct sigqueue *q)
1819 {
1820 	unsigned long flags;
1821 	spinlock_t *lock = &current->sighand->siglock;
1822 
1823 	BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1824 	/*
1825 	 * We must hold ->siglock while testing q->list
1826 	 * to serialize with collect_signal() or with
1827 	 * __exit_signal()->flush_sigqueue().
1828 	 */
1829 	spin_lock_irqsave(lock, flags);
1830 	q->flags &= ~SIGQUEUE_PREALLOC;
1831 	/*
1832 	 * If it is queued it will be freed when dequeued,
1833 	 * like the "regular" sigqueue.
1834 	 */
1835 	if (!list_empty(&q->list))
1836 		q = NULL;
1837 	spin_unlock_irqrestore(lock, flags);
1838 
1839 	if (q)
1840 		__sigqueue_free(q);
1841 }
1842 
send_sigqueue(struct sigqueue * q,struct pid * pid,enum pid_type type)1843 int send_sigqueue(struct sigqueue *q, struct pid *pid, enum pid_type type)
1844 {
1845 	int sig = q->info.si_signo;
1846 	struct sigpending *pending;
1847 	struct task_struct *t;
1848 	unsigned long flags;
1849 	int ret, result;
1850 
1851 	BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1852 
1853 	ret = -1;
1854 	rcu_read_lock();
1855 	t = pid_task(pid, type);
1856 	if (!t || !likely(lock_task_sighand(t, &flags)))
1857 		goto ret;
1858 
1859 	ret = 1; /* the signal is ignored */
1860 	result = TRACE_SIGNAL_IGNORED;
1861 	if (!prepare_signal(sig, t, false))
1862 		goto out;
1863 
1864 	ret = 0;
1865 	if (unlikely(!list_empty(&q->list))) {
1866 		/*
1867 		 * If an SI_TIMER entry is already queue just increment
1868 		 * the overrun count.
1869 		 */
1870 		BUG_ON(q->info.si_code != SI_TIMER);
1871 		q->info.si_overrun++;
1872 		result = TRACE_SIGNAL_ALREADY_PENDING;
1873 		goto out;
1874 	}
1875 	q->info.si_overrun = 0;
1876 
1877 	signalfd_notify(t, sig);
1878 	pending = (type != PIDTYPE_PID) ? &t->signal->shared_pending : &t->pending;
1879 	list_add_tail(&q->list, &pending->list);
1880 	sigaddset(&pending->signal, sig);
1881 	complete_signal(sig, t, type);
1882 	result = TRACE_SIGNAL_DELIVERED;
1883 out:
1884 	trace_signal_generate(sig, &q->info, t, type != PIDTYPE_PID, result);
1885 	unlock_task_sighand(t, &flags);
1886 ret:
1887 	rcu_read_unlock();
1888 	return ret;
1889 }
1890 
do_notify_pidfd(struct task_struct * task)1891 static void do_notify_pidfd(struct task_struct *task)
1892 {
1893 	struct pid *pid;
1894 
1895 	WARN_ON(task->exit_state == 0);
1896 	pid = task_pid(task);
1897 	wake_up_all(&pid->wait_pidfd);
1898 }
1899 
1900 /*
1901  * Let a parent know about the death of a child.
1902  * For a stopped/continued status change, use do_notify_parent_cldstop instead.
1903  *
1904  * Returns true if our parent ignored us and so we've switched to
1905  * self-reaping.
1906  */
do_notify_parent(struct task_struct * tsk,int sig)1907 bool do_notify_parent(struct task_struct *tsk, int sig)
1908 {
1909 	struct kernel_siginfo info;
1910 	unsigned long flags;
1911 	struct sighand_struct *psig;
1912 	bool autoreap = false;
1913 	u64 utime, stime;
1914 
1915 	WARN_ON_ONCE(sig == -1);
1916 
1917 	/* do_notify_parent_cldstop should have been called instead.  */
1918 	WARN_ON_ONCE(task_is_stopped_or_traced(tsk));
1919 
1920 	WARN_ON_ONCE(!tsk->ptrace &&
1921 	       (tsk->group_leader != tsk || !thread_group_empty(tsk)));
1922 
1923 	/* Wake up all pidfd waiters */
1924 	do_notify_pidfd(tsk);
1925 
1926 	if (sig != SIGCHLD) {
1927 		/*
1928 		 * This is only possible if parent == real_parent.
1929 		 * Check if it has changed security domain.
1930 		 */
1931 		if (tsk->parent_exec_id != READ_ONCE(tsk->parent->self_exec_id))
1932 			sig = SIGCHLD;
1933 	}
1934 
1935 	clear_siginfo(&info);
1936 	info.si_signo = sig;
1937 	info.si_errno = 0;
1938 	/*
1939 	 * We are under tasklist_lock here so our parent is tied to
1940 	 * us and cannot change.
1941 	 *
1942 	 * task_active_pid_ns will always return the same pid namespace
1943 	 * until a task passes through release_task.
1944 	 *
1945 	 * write_lock() currently calls preempt_disable() which is the
1946 	 * same as rcu_read_lock(), but according to Oleg, this is not
1947 	 * correct to rely on this
1948 	 */
1949 	rcu_read_lock();
1950 	info.si_pid = task_pid_nr_ns(tsk, task_active_pid_ns(tsk->parent));
1951 	info.si_uid = from_kuid_munged(task_cred_xxx(tsk->parent, user_ns),
1952 				       task_uid(tsk));
1953 	rcu_read_unlock();
1954 
1955 	task_cputime(tsk, &utime, &stime);
1956 	info.si_utime = nsec_to_clock_t(utime + tsk->signal->utime);
1957 	info.si_stime = nsec_to_clock_t(stime + tsk->signal->stime);
1958 
1959 	info.si_status = tsk->exit_code & 0x7f;
1960 	if (tsk->exit_code & 0x80)
1961 		info.si_code = CLD_DUMPED;
1962 	else if (tsk->exit_code & 0x7f)
1963 		info.si_code = CLD_KILLED;
1964 	else {
1965 		info.si_code = CLD_EXITED;
1966 		info.si_status = tsk->exit_code >> 8;
1967 	}
1968 
1969 	psig = tsk->parent->sighand;
1970 	spin_lock_irqsave(&psig->siglock, flags);
1971 	if (!tsk->ptrace && sig == SIGCHLD &&
1972 	    (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN ||
1973 	     (psig->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDWAIT))) {
1974 		/*
1975 		 * We are exiting and our parent doesn't care.  POSIX.1
1976 		 * defines special semantics for setting SIGCHLD to SIG_IGN
1977 		 * or setting the SA_NOCLDWAIT flag: we should be reaped
1978 		 * automatically and not left for our parent's wait4 call.
1979 		 * Rather than having the parent do it as a magic kind of
1980 		 * signal handler, we just set this to tell do_exit that we
1981 		 * can be cleaned up without becoming a zombie.  Note that
1982 		 * we still call __wake_up_parent in this case, because a
1983 		 * blocked sys_wait4 might now return -ECHILD.
1984 		 *
1985 		 * Whether we send SIGCHLD or not for SA_NOCLDWAIT
1986 		 * is implementation-defined: we do (if you don't want
1987 		 * it, just use SIG_IGN instead).
1988 		 */
1989 		autoreap = true;
1990 		if (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN)
1991 			sig = 0;
1992 	}
1993 	/*
1994 	 * Send with __send_signal as si_pid and si_uid are in the
1995 	 * parent's namespaces.
1996 	 */
1997 	if (valid_signal(sig) && sig)
1998 		__send_signal(sig, &info, tsk->parent, PIDTYPE_TGID, false);
1999 	__wake_up_parent(tsk, tsk->parent);
2000 	spin_unlock_irqrestore(&psig->siglock, flags);
2001 
2002 	return autoreap;
2003 }
2004 
2005 /**
2006  * do_notify_parent_cldstop - notify parent of stopped/continued state change
2007  * @tsk: task reporting the state change
2008  * @for_ptracer: the notification is for ptracer
2009  * @why: CLD_{CONTINUED|STOPPED|TRAPPED} to report
2010  *
2011  * Notify @tsk's parent that the stopped/continued state has changed.  If
2012  * @for_ptracer is %false, @tsk's group leader notifies to its real parent.
2013  * If %true, @tsk reports to @tsk->parent which should be the ptracer.
2014  *
2015  * CONTEXT:
2016  * Must be called with tasklist_lock at least read locked.
2017  */
do_notify_parent_cldstop(struct task_struct * tsk,bool for_ptracer,int why)2018 static void do_notify_parent_cldstop(struct task_struct *tsk,
2019 				     bool for_ptracer, int why)
2020 {
2021 	struct kernel_siginfo info;
2022 	unsigned long flags;
2023 	struct task_struct *parent;
2024 	struct sighand_struct *sighand;
2025 	u64 utime, stime;
2026 
2027 	if (for_ptracer) {
2028 		parent = tsk->parent;
2029 	} else {
2030 		tsk = tsk->group_leader;
2031 		parent = tsk->real_parent;
2032 	}
2033 
2034 	clear_siginfo(&info);
2035 	info.si_signo = SIGCHLD;
2036 	info.si_errno = 0;
2037 	/*
2038 	 * see comment in do_notify_parent() about the following 4 lines
2039 	 */
2040 	rcu_read_lock();
2041 	info.si_pid = task_pid_nr_ns(tsk, task_active_pid_ns(parent));
2042 	info.si_uid = from_kuid_munged(task_cred_xxx(parent, user_ns), task_uid(tsk));
2043 	rcu_read_unlock();
2044 
2045 	task_cputime(tsk, &utime, &stime);
2046 	info.si_utime = nsec_to_clock_t(utime);
2047 	info.si_stime = nsec_to_clock_t(stime);
2048 
2049  	info.si_code = why;
2050  	switch (why) {
2051  	case CLD_CONTINUED:
2052  		info.si_status = SIGCONT;
2053  		break;
2054  	case CLD_STOPPED:
2055  		info.si_status = tsk->signal->group_exit_code & 0x7f;
2056  		break;
2057  	case CLD_TRAPPED:
2058  		info.si_status = tsk->exit_code & 0x7f;
2059  		break;
2060  	default:
2061  		BUG();
2062  	}
2063 
2064 	sighand = parent->sighand;
2065 	spin_lock_irqsave(&sighand->siglock, flags);
2066 	if (sighand->action[SIGCHLD-1].sa.sa_handler != SIG_IGN &&
2067 	    !(sighand->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDSTOP))
2068 		__group_send_sig_info(SIGCHLD, &info, parent);
2069 	/*
2070 	 * Even if SIGCHLD is not generated, we must wake up wait4 calls.
2071 	 */
2072 	__wake_up_parent(tsk, parent);
2073 	spin_unlock_irqrestore(&sighand->siglock, flags);
2074 }
2075 
may_ptrace_stop(void)2076 static inline bool may_ptrace_stop(void)
2077 {
2078 	if (!likely(current->ptrace))
2079 		return false;
2080 	/*
2081 	 * Are we in the middle of do_coredump?
2082 	 * If so and our tracer is also part of the coredump stopping
2083 	 * is a deadlock situation, and pointless because our tracer
2084 	 * is dead so don't allow us to stop.
2085 	 * If SIGKILL was already sent before the caller unlocked
2086 	 * ->siglock we must see ->core_state != NULL. Otherwise it
2087 	 * is safe to enter schedule().
2088 	 *
2089 	 * This is almost outdated, a task with the pending SIGKILL can't
2090 	 * block in TASK_TRACED. But PTRACE_EVENT_EXIT can be reported
2091 	 * after SIGKILL was already dequeued.
2092 	 */
2093 	if (unlikely(current->mm->core_state) &&
2094 	    unlikely(current->mm == current->parent->mm))
2095 		return false;
2096 
2097 	return true;
2098 }
2099 
2100 
2101 /*
2102  * This must be called with current->sighand->siglock held.
2103  *
2104  * This should be the path for all ptrace stops.
2105  * We always set current->last_siginfo while stopped here.
2106  * That makes it a way to test a stopped process for
2107  * being ptrace-stopped vs being job-control-stopped.
2108  *
2109  * If we actually decide not to stop at all because the tracer
2110  * is gone, we keep current->exit_code unless clear_code.
2111  */
ptrace_stop(int exit_code,int why,int clear_code,kernel_siginfo_t * info)2112 static void ptrace_stop(int exit_code, int why, int clear_code, kernel_siginfo_t *info)
2113 	__releases(&current->sighand->siglock)
2114 	__acquires(&current->sighand->siglock)
2115 {
2116 	bool gstop_done = false;
2117 
2118 	if (arch_ptrace_stop_needed(exit_code, info)) {
2119 		/*
2120 		 * The arch code has something special to do before a
2121 		 * ptrace stop.  This is allowed to block, e.g. for faults
2122 		 * on user stack pages.  We can't keep the siglock while
2123 		 * calling arch_ptrace_stop, so we must release it now.
2124 		 * To preserve proper semantics, we must do this before
2125 		 * any signal bookkeeping like checking group_stop_count.
2126 		 */
2127 		spin_unlock_irq(&current->sighand->siglock);
2128 		arch_ptrace_stop(exit_code, info);
2129 		spin_lock_irq(&current->sighand->siglock);
2130 	}
2131 
2132 	/*
2133 	 * schedule() will not sleep if there is a pending signal that
2134 	 * can awaken the task.
2135 	 */
2136 	set_special_state(TASK_TRACED);
2137 
2138 	/*
2139 	 * We're committing to trapping.  TRACED should be visible before
2140 	 * TRAPPING is cleared; otherwise, the tracer might fail do_wait().
2141 	 * Also, transition to TRACED and updates to ->jobctl should be
2142 	 * atomic with respect to siglock and should be done after the arch
2143 	 * hook as siglock is released and regrabbed across it.
2144 	 *
2145 	 *     TRACER				    TRACEE
2146 	 *
2147 	 *     ptrace_attach()
2148 	 * [L]   wait_on_bit(JOBCTL_TRAPPING)	[S] set_special_state(TRACED)
2149 	 *     do_wait()
2150 	 *       set_current_state()                smp_wmb();
2151 	 *       ptrace_do_wait()
2152 	 *         wait_task_stopped()
2153 	 *           task_stopped_code()
2154 	 * [L]         task_is_traced()		[S] task_clear_jobctl_trapping();
2155 	 */
2156 	smp_wmb();
2157 
2158 	current->last_siginfo = info;
2159 	current->exit_code = exit_code;
2160 
2161 	/*
2162 	 * If @why is CLD_STOPPED, we're trapping to participate in a group
2163 	 * stop.  Do the bookkeeping.  Note that if SIGCONT was delievered
2164 	 * across siglock relocks since INTERRUPT was scheduled, PENDING
2165 	 * could be clear now.  We act as if SIGCONT is received after
2166 	 * TASK_TRACED is entered - ignore it.
2167 	 */
2168 	if (why == CLD_STOPPED && (current->jobctl & JOBCTL_STOP_PENDING))
2169 		gstop_done = task_participate_group_stop(current);
2170 
2171 	/* any trap clears pending STOP trap, STOP trap clears NOTIFY */
2172 	task_clear_jobctl_pending(current, JOBCTL_TRAP_STOP);
2173 	if (info && info->si_code >> 8 == PTRACE_EVENT_STOP)
2174 		task_clear_jobctl_pending(current, JOBCTL_TRAP_NOTIFY);
2175 
2176 	/* entering a trap, clear TRAPPING */
2177 	task_clear_jobctl_trapping(current);
2178 
2179 	spin_unlock_irq(&current->sighand->siglock);
2180 	read_lock(&tasklist_lock);
2181 	if (may_ptrace_stop()) {
2182 		/*
2183 		 * Notify parents of the stop.
2184 		 *
2185 		 * While ptraced, there are two parents - the ptracer and
2186 		 * the real_parent of the group_leader.  The ptracer should
2187 		 * know about every stop while the real parent is only
2188 		 * interested in the completion of group stop.  The states
2189 		 * for the two don't interact with each other.  Notify
2190 		 * separately unless they're gonna be duplicates.
2191 		 */
2192 		do_notify_parent_cldstop(current, true, why);
2193 		if (gstop_done && ptrace_reparented(current))
2194 			do_notify_parent_cldstop(current, false, why);
2195 
2196 		/*
2197 		 * Don't want to allow preemption here, because
2198 		 * sys_ptrace() needs this task to be inactive.
2199 		 *
2200 		 * XXX: implement read_unlock_no_resched().
2201 		 */
2202 		preempt_disable();
2203 		read_unlock(&tasklist_lock);
2204 		cgroup_enter_frozen();
2205 		preempt_enable_no_resched();
2206 		freezable_schedule();
2207 		cgroup_leave_frozen(true);
2208 	} else {
2209 		/*
2210 		 * By the time we got the lock, our tracer went away.
2211 		 * Don't drop the lock yet, another tracer may come.
2212 		 *
2213 		 * If @gstop_done, the ptracer went away between group stop
2214 		 * completion and here.  During detach, it would have set
2215 		 * JOBCTL_STOP_PENDING on us and we'll re-enter
2216 		 * TASK_STOPPED in do_signal_stop() on return, so notifying
2217 		 * the real parent of the group stop completion is enough.
2218 		 */
2219 		if (gstop_done)
2220 			do_notify_parent_cldstop(current, false, why);
2221 
2222 		/* tasklist protects us from ptrace_freeze_traced() */
2223 		__set_current_state(TASK_RUNNING);
2224 		if (clear_code)
2225 			current->exit_code = 0;
2226 		read_unlock(&tasklist_lock);
2227 	}
2228 
2229 	/*
2230 	 * We are back.  Now reacquire the siglock before touching
2231 	 * last_siginfo, so that we are sure to have synchronized with
2232 	 * any signal-sending on another CPU that wants to examine it.
2233 	 */
2234 	spin_lock_irq(&current->sighand->siglock);
2235 	current->last_siginfo = NULL;
2236 
2237 	/* LISTENING can be set only during STOP traps, clear it */
2238 	current->jobctl &= ~JOBCTL_LISTENING;
2239 
2240 	/*
2241 	 * Queued signals ignored us while we were stopped for tracing.
2242 	 * So check for any that we should take before resuming user mode.
2243 	 * This sets TIF_SIGPENDING, but never clears it.
2244 	 */
2245 	recalc_sigpending_tsk(current);
2246 }
2247 
ptrace_do_notify(int signr,int exit_code,int why)2248 static void ptrace_do_notify(int signr, int exit_code, int why)
2249 {
2250 	kernel_siginfo_t info;
2251 
2252 	clear_siginfo(&info);
2253 	info.si_signo = signr;
2254 	info.si_code = exit_code;
2255 	info.si_pid = task_pid_vnr(current);
2256 	info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
2257 
2258 	/* Let the debugger run.  */
2259 	ptrace_stop(exit_code, why, 1, &info);
2260 }
2261 
ptrace_notify(int exit_code)2262 void ptrace_notify(int exit_code)
2263 {
2264 	BUG_ON((exit_code & (0x7f | ~0xffff)) != SIGTRAP);
2265 	if (unlikely(current->task_works))
2266 		task_work_run();
2267 
2268 	spin_lock_irq(&current->sighand->siglock);
2269 	ptrace_do_notify(SIGTRAP, exit_code, CLD_TRAPPED);
2270 	spin_unlock_irq(&current->sighand->siglock);
2271 }
2272 
2273 /**
2274  * do_signal_stop - handle group stop for SIGSTOP and other stop signals
2275  * @signr: signr causing group stop if initiating
2276  *
2277  * If %JOBCTL_STOP_PENDING is not set yet, initiate group stop with @signr
2278  * and participate in it.  If already set, participate in the existing
2279  * group stop.  If participated in a group stop (and thus slept), %true is
2280  * returned with siglock released.
2281  *
2282  * If ptraced, this function doesn't handle stop itself.  Instead,
2283  * %JOBCTL_TRAP_STOP is scheduled and %false is returned with siglock
2284  * untouched.  The caller must ensure that INTERRUPT trap handling takes
2285  * places afterwards.
2286  *
2287  * CONTEXT:
2288  * Must be called with @current->sighand->siglock held, which is released
2289  * on %true return.
2290  *
2291  * RETURNS:
2292  * %false if group stop is already cancelled or ptrace trap is scheduled.
2293  * %true if participated in group stop.
2294  */
do_signal_stop(int signr)2295 static bool do_signal_stop(int signr)
2296 	__releases(&current->sighand->siglock)
2297 {
2298 	struct signal_struct *sig = current->signal;
2299 
2300 	if (!(current->jobctl & JOBCTL_STOP_PENDING)) {
2301 		unsigned long gstop = JOBCTL_STOP_PENDING | JOBCTL_STOP_CONSUME;
2302 		struct task_struct *t;
2303 
2304 		/* signr will be recorded in task->jobctl for retries */
2305 		WARN_ON_ONCE(signr & ~JOBCTL_STOP_SIGMASK);
2306 
2307 		if (!likely(current->jobctl & JOBCTL_STOP_DEQUEUED) ||
2308 		    unlikely(signal_group_exit(sig)))
2309 			return false;
2310 		/*
2311 		 * There is no group stop already in progress.  We must
2312 		 * initiate one now.
2313 		 *
2314 		 * While ptraced, a task may be resumed while group stop is
2315 		 * still in effect and then receive a stop signal and
2316 		 * initiate another group stop.  This deviates from the
2317 		 * usual behavior as two consecutive stop signals can't
2318 		 * cause two group stops when !ptraced.  That is why we
2319 		 * also check !task_is_stopped(t) below.
2320 		 *
2321 		 * The condition can be distinguished by testing whether
2322 		 * SIGNAL_STOP_STOPPED is already set.  Don't generate
2323 		 * group_exit_code in such case.
2324 		 *
2325 		 * This is not necessary for SIGNAL_STOP_CONTINUED because
2326 		 * an intervening stop signal is required to cause two
2327 		 * continued events regardless of ptrace.
2328 		 */
2329 		if (!(sig->flags & SIGNAL_STOP_STOPPED))
2330 			sig->group_exit_code = signr;
2331 
2332 		sig->group_stop_count = 0;
2333 
2334 		if (task_set_jobctl_pending(current, signr | gstop))
2335 			sig->group_stop_count++;
2336 
2337 		t = current;
2338 		while_each_thread(current, t) {
2339 			/*
2340 			 * Setting state to TASK_STOPPED for a group
2341 			 * stop is always done with the siglock held,
2342 			 * so this check has no races.
2343 			 */
2344 			if (!task_is_stopped(t) &&
2345 			    task_set_jobctl_pending(t, signr | gstop)) {
2346 				sig->group_stop_count++;
2347 				if (likely(!(t->ptrace & PT_SEIZED)))
2348 					signal_wake_up(t, 0);
2349 				else
2350 					ptrace_trap_notify(t);
2351 			}
2352 		}
2353 	}
2354 
2355 	if (likely(!current->ptrace)) {
2356 		int notify = 0;
2357 
2358 		/*
2359 		 * If there are no other threads in the group, or if there
2360 		 * is a group stop in progress and we are the last to stop,
2361 		 * report to the parent.
2362 		 */
2363 		if (task_participate_group_stop(current))
2364 			notify = CLD_STOPPED;
2365 
2366 		set_special_state(TASK_STOPPED);
2367 		spin_unlock_irq(&current->sighand->siglock);
2368 
2369 		/*
2370 		 * Notify the parent of the group stop completion.  Because
2371 		 * we're not holding either the siglock or tasklist_lock
2372 		 * here, ptracer may attach inbetween; however, this is for
2373 		 * group stop and should always be delivered to the real
2374 		 * parent of the group leader.  The new ptracer will get
2375 		 * its notification when this task transitions into
2376 		 * TASK_TRACED.
2377 		 */
2378 		if (notify) {
2379 			read_lock(&tasklist_lock);
2380 			do_notify_parent_cldstop(current, false, notify);
2381 			read_unlock(&tasklist_lock);
2382 		}
2383 
2384 		/* Now we don't run again until woken by SIGCONT or SIGKILL */
2385 		cgroup_enter_frozen();
2386 		freezable_schedule();
2387 		return true;
2388 	} else {
2389 		/*
2390 		 * While ptraced, group stop is handled by STOP trap.
2391 		 * Schedule it and let the caller deal with it.
2392 		 */
2393 		task_set_jobctl_pending(current, JOBCTL_TRAP_STOP);
2394 		return false;
2395 	}
2396 }
2397 
2398 /**
2399  * do_jobctl_trap - take care of ptrace jobctl traps
2400  *
2401  * When PT_SEIZED, it's used for both group stop and explicit
2402  * SEIZE/INTERRUPT traps.  Both generate PTRACE_EVENT_STOP trap with
2403  * accompanying siginfo.  If stopped, lower eight bits of exit_code contain
2404  * the stop signal; otherwise, %SIGTRAP.
2405  *
2406  * When !PT_SEIZED, it's used only for group stop trap with stop signal
2407  * number as exit_code and no siginfo.
2408  *
2409  * CONTEXT:
2410  * Must be called with @current->sighand->siglock held, which may be
2411  * released and re-acquired before returning with intervening sleep.
2412  */
do_jobctl_trap(void)2413 static void do_jobctl_trap(void)
2414 {
2415 	struct signal_struct *signal = current->signal;
2416 	int signr = current->jobctl & JOBCTL_STOP_SIGMASK;
2417 
2418 	if (current->ptrace & PT_SEIZED) {
2419 		if (!signal->group_stop_count &&
2420 		    !(signal->flags & SIGNAL_STOP_STOPPED))
2421 			signr = SIGTRAP;
2422 		WARN_ON_ONCE(!signr);
2423 		ptrace_do_notify(signr, signr | (PTRACE_EVENT_STOP << 8),
2424 				 CLD_STOPPED);
2425 	} else {
2426 		WARN_ON_ONCE(!signr);
2427 		ptrace_stop(signr, CLD_STOPPED, 0, NULL);
2428 		current->exit_code = 0;
2429 	}
2430 }
2431 
2432 /**
2433  * do_freezer_trap - handle the freezer jobctl trap
2434  *
2435  * Puts the task into frozen state, if only the task is not about to quit.
2436  * In this case it drops JOBCTL_TRAP_FREEZE.
2437  *
2438  * CONTEXT:
2439  * Must be called with @current->sighand->siglock held,
2440  * which is always released before returning.
2441  */
do_freezer_trap(void)2442 static void do_freezer_trap(void)
2443 	__releases(&current->sighand->siglock)
2444 {
2445 	/*
2446 	 * If there are other trap bits pending except JOBCTL_TRAP_FREEZE,
2447 	 * let's make another loop to give it a chance to be handled.
2448 	 * In any case, we'll return back.
2449 	 */
2450 	if ((current->jobctl & (JOBCTL_PENDING_MASK | JOBCTL_TRAP_FREEZE)) !=
2451 	     JOBCTL_TRAP_FREEZE) {
2452 		spin_unlock_irq(&current->sighand->siglock);
2453 		return;
2454 	}
2455 
2456 	/*
2457 	 * Now we're sure that there is no pending fatal signal and no
2458 	 * pending traps. Clear TIF_SIGPENDING to not get out of schedule()
2459 	 * immediately (if there is a non-fatal signal pending), and
2460 	 * put the task into sleep.
2461 	 */
2462 	__set_current_state(TASK_INTERRUPTIBLE);
2463 	clear_thread_flag(TIF_SIGPENDING);
2464 	spin_unlock_irq(&current->sighand->siglock);
2465 	cgroup_enter_frozen();
2466 	freezable_schedule();
2467 }
2468 
ptrace_signal(int signr,kernel_siginfo_t * info)2469 static int ptrace_signal(int signr, kernel_siginfo_t *info)
2470 {
2471 	/*
2472 	 * We do not check sig_kernel_stop(signr) but set this marker
2473 	 * unconditionally because we do not know whether debugger will
2474 	 * change signr. This flag has no meaning unless we are going
2475 	 * to stop after return from ptrace_stop(). In this case it will
2476 	 * be checked in do_signal_stop(), we should only stop if it was
2477 	 * not cleared by SIGCONT while we were sleeping. See also the
2478 	 * comment in dequeue_signal().
2479 	 */
2480 	current->jobctl |= JOBCTL_STOP_DEQUEUED;
2481 	ptrace_stop(signr, CLD_TRAPPED, 0, info);
2482 
2483 	/* We're back.  Did the debugger cancel the sig?  */
2484 	signr = current->exit_code;
2485 	if (signr == 0)
2486 		return signr;
2487 
2488 	current->exit_code = 0;
2489 
2490 	/*
2491 	 * Update the siginfo structure if the signal has
2492 	 * changed.  If the debugger wanted something
2493 	 * specific in the siginfo structure then it should
2494 	 * have updated *info via PTRACE_SETSIGINFO.
2495 	 */
2496 	if (signr != info->si_signo) {
2497 		clear_siginfo(info);
2498 		info->si_signo = signr;
2499 		info->si_errno = 0;
2500 		info->si_code = SI_USER;
2501 		rcu_read_lock();
2502 		info->si_pid = task_pid_vnr(current->parent);
2503 		info->si_uid = from_kuid_munged(current_user_ns(),
2504 						task_uid(current->parent));
2505 		rcu_read_unlock();
2506 	}
2507 
2508 	/* If the (new) signal is now blocked, requeue it.  */
2509 	if (sigismember(&current->blocked, signr)) {
2510 		send_signal(signr, info, current, PIDTYPE_PID);
2511 		signr = 0;
2512 	}
2513 
2514 	return signr;
2515 }
2516 
get_signal(struct ksignal * ksig)2517 bool get_signal(struct ksignal *ksig)
2518 {
2519 	struct sighand_struct *sighand = current->sighand;
2520 	struct signal_struct *signal = current->signal;
2521 	int signr;
2522 
2523 	if (unlikely(current->task_works))
2524 		task_work_run();
2525 
2526 	/*
2527 	 * For non-generic architectures, check for TIF_NOTIFY_SIGNAL so
2528 	 * that the arch handlers don't all have to do it. If we get here
2529 	 * without TIF_SIGPENDING, just exit after running signal work.
2530 	 */
2531 	if (!IS_ENABLED(CONFIG_GENERIC_ENTRY)) {
2532 		if (test_thread_flag(TIF_NOTIFY_SIGNAL))
2533 			tracehook_notify_signal();
2534 		if (!task_sigpending(current))
2535 			return false;
2536 	}
2537 
2538 	if (unlikely(uprobe_deny_signal()))
2539 		return false;
2540 
2541 	/*
2542 	 * Do this once, we can't return to user-mode if freezing() == T.
2543 	 * do_signal_stop() and ptrace_stop() do freezable_schedule() and
2544 	 * thus do not need another check after return.
2545 	 */
2546 	try_to_freeze();
2547 
2548 relock:
2549 	spin_lock_irq(&sighand->siglock);
2550 
2551 	/*
2552 	 * Every stopped thread goes here after wakeup. Check to see if
2553 	 * we should notify the parent, prepare_signal(SIGCONT) encodes
2554 	 * the CLD_ si_code into SIGNAL_CLD_MASK bits.
2555 	 */
2556 	if (unlikely(signal->flags & SIGNAL_CLD_MASK)) {
2557 		int why;
2558 
2559 		if (signal->flags & SIGNAL_CLD_CONTINUED)
2560 			why = CLD_CONTINUED;
2561 		else
2562 			why = CLD_STOPPED;
2563 
2564 		signal->flags &= ~SIGNAL_CLD_MASK;
2565 
2566 		spin_unlock_irq(&sighand->siglock);
2567 
2568 		/*
2569 		 * Notify the parent that we're continuing.  This event is
2570 		 * always per-process and doesn't make whole lot of sense
2571 		 * for ptracers, who shouldn't consume the state via
2572 		 * wait(2) either, but, for backward compatibility, notify
2573 		 * the ptracer of the group leader too unless it's gonna be
2574 		 * a duplicate.
2575 		 */
2576 		read_lock(&tasklist_lock);
2577 		do_notify_parent_cldstop(current, false, why);
2578 
2579 		if (ptrace_reparented(current->group_leader))
2580 			do_notify_parent_cldstop(current->group_leader,
2581 						true, why);
2582 		read_unlock(&tasklist_lock);
2583 
2584 		goto relock;
2585 	}
2586 
2587 	/* Has this task already been marked for death? */
2588 	if (signal_group_exit(signal)) {
2589 		ksig->info.si_signo = signr = SIGKILL;
2590 		sigdelset(&current->pending.signal, SIGKILL);
2591 		trace_signal_deliver(SIGKILL, SEND_SIG_NOINFO,
2592 				&sighand->action[SIGKILL - 1]);
2593 		recalc_sigpending();
2594 		goto fatal;
2595 	}
2596 
2597 	for (;;) {
2598 		struct k_sigaction *ka;
2599 
2600 		if (unlikely(current->jobctl & JOBCTL_STOP_PENDING) &&
2601 		    do_signal_stop(0))
2602 			goto relock;
2603 
2604 		if (unlikely(current->jobctl &
2605 			     (JOBCTL_TRAP_MASK | JOBCTL_TRAP_FREEZE))) {
2606 			if (current->jobctl & JOBCTL_TRAP_MASK) {
2607 				do_jobctl_trap();
2608 				spin_unlock_irq(&sighand->siglock);
2609 			} else if (current->jobctl & JOBCTL_TRAP_FREEZE)
2610 				do_freezer_trap();
2611 
2612 			goto relock;
2613 		}
2614 
2615 		/*
2616 		 * If the task is leaving the frozen state, let's update
2617 		 * cgroup counters and reset the frozen bit.
2618 		 */
2619 		if (unlikely(cgroup_task_frozen(current))) {
2620 			spin_unlock_irq(&sighand->siglock);
2621 			cgroup_leave_frozen(false);
2622 			goto relock;
2623 		}
2624 
2625 		/*
2626 		 * Signals generated by the execution of an instruction
2627 		 * need to be delivered before any other pending signals
2628 		 * so that the instruction pointer in the signal stack
2629 		 * frame points to the faulting instruction.
2630 		 */
2631 		signr = dequeue_synchronous_signal(&ksig->info);
2632 		if (!signr)
2633 			signr = dequeue_signal(current, &current->blocked, &ksig->info);
2634 
2635 		if (!signr)
2636 			break; /* will return 0 */
2637 
2638 		if (unlikely(current->ptrace) && signr != SIGKILL) {
2639 			signr = ptrace_signal(signr, &ksig->info);
2640 			if (!signr)
2641 				continue;
2642 		}
2643 
2644 		ka = &sighand->action[signr-1];
2645 
2646 		/* Trace actually delivered signals. */
2647 		trace_signal_deliver(signr, &ksig->info, ka);
2648 
2649 		if (ka->sa.sa_handler == SIG_IGN) /* Do nothing.  */
2650 			continue;
2651 		if (ka->sa.sa_handler != SIG_DFL) {
2652 			/* Run the handler.  */
2653 			ksig->ka = *ka;
2654 
2655 			if (ka->sa.sa_flags & SA_ONESHOT)
2656 				ka->sa.sa_handler = SIG_DFL;
2657 
2658 			break; /* will return non-zero "signr" value */
2659 		}
2660 
2661 		/*
2662 		 * Now we are doing the default action for this signal.
2663 		 */
2664 		if (sig_kernel_ignore(signr)) /* Default is nothing. */
2665 			continue;
2666 
2667 		/*
2668 		 * Global init gets no signals it doesn't want.
2669 		 * Container-init gets no signals it doesn't want from same
2670 		 * container.
2671 		 *
2672 		 * Note that if global/container-init sees a sig_kernel_only()
2673 		 * signal here, the signal must have been generated internally
2674 		 * or must have come from an ancestor namespace. In either
2675 		 * case, the signal cannot be dropped.
2676 		 */
2677 		if (unlikely(signal->flags & SIGNAL_UNKILLABLE) &&
2678 				!sig_kernel_only(signr))
2679 			continue;
2680 
2681 		if (sig_kernel_stop(signr)) {
2682 			/*
2683 			 * The default action is to stop all threads in
2684 			 * the thread group.  The job control signals
2685 			 * do nothing in an orphaned pgrp, but SIGSTOP
2686 			 * always works.  Note that siglock needs to be
2687 			 * dropped during the call to is_orphaned_pgrp()
2688 			 * because of lock ordering with tasklist_lock.
2689 			 * This allows an intervening SIGCONT to be posted.
2690 			 * We need to check for that and bail out if necessary.
2691 			 */
2692 			if (signr != SIGSTOP) {
2693 				spin_unlock_irq(&sighand->siglock);
2694 
2695 				/* signals can be posted during this window */
2696 
2697 				if (is_current_pgrp_orphaned())
2698 					goto relock;
2699 
2700 				spin_lock_irq(&sighand->siglock);
2701 			}
2702 
2703 			if (likely(do_signal_stop(ksig->info.si_signo))) {
2704 				/* It released the siglock.  */
2705 				goto relock;
2706 			}
2707 
2708 			/*
2709 			 * We didn't actually stop, due to a race
2710 			 * with SIGCONT or something like that.
2711 			 */
2712 			continue;
2713 		}
2714 
2715 	fatal:
2716 		spin_unlock_irq(&sighand->siglock);
2717 		if (unlikely(cgroup_task_frozen(current)))
2718 			cgroup_leave_frozen(true);
2719 
2720 		/*
2721 		 * Anything else is fatal, maybe with a core dump.
2722 		 */
2723 		current->flags |= PF_SIGNALED;
2724 
2725 		if (sig_kernel_coredump(signr)) {
2726 			if (print_fatal_signals)
2727 				print_fatal_signal(ksig->info.si_signo);
2728 			proc_coredump_connector(current);
2729 			/*
2730 			 * If it was able to dump core, this kills all
2731 			 * other threads in the group and synchronizes with
2732 			 * their demise.  If we lost the race with another
2733 			 * thread getting here, it set group_exit_code
2734 			 * first and our do_group_exit call below will use
2735 			 * that value and ignore the one we pass it.
2736 			 */
2737 			do_coredump(&ksig->info);
2738 		}
2739 
2740 		/*
2741 		 * PF_IO_WORKER threads will catch and exit on fatal signals
2742 		 * themselves. They have cleanup that must be performed, so
2743 		 * we cannot call do_exit() on their behalf.
2744 		 */
2745 		if (current->flags & PF_IO_WORKER)
2746 			goto out;
2747 
2748 		/*
2749 		 * Death signals, no core dump.
2750 		 */
2751 		do_group_exit(ksig->info.si_signo);
2752 		/* NOTREACHED */
2753 	}
2754 	spin_unlock_irq(&sighand->siglock);
2755 out:
2756 	ksig->sig = signr;
2757 	return ksig->sig > 0;
2758 }
2759 
2760 /**
2761  * signal_delivered -
2762  * @ksig:		kernel signal struct
2763  * @stepping:		nonzero if debugger single-step or block-step in use
2764  *
2765  * This function should be called when a signal has successfully been
2766  * delivered. It updates the blocked signals accordingly (@ksig->ka.sa.sa_mask
2767  * is always blocked, and the signal itself is blocked unless %SA_NODEFER
2768  * is set in @ksig->ka.sa.sa_flags.  Tracing is notified.
2769  */
signal_delivered(struct ksignal * ksig,int stepping)2770 static void signal_delivered(struct ksignal *ksig, int stepping)
2771 {
2772 	sigset_t blocked;
2773 
2774 	/* A signal was successfully delivered, and the
2775 	   saved sigmask was stored on the signal frame,
2776 	   and will be restored by sigreturn.  So we can
2777 	   simply clear the restore sigmask flag.  */
2778 	clear_restore_sigmask();
2779 
2780 	sigorsets(&blocked, &current->blocked, &ksig->ka.sa.sa_mask);
2781 	if (!(ksig->ka.sa.sa_flags & SA_NODEFER))
2782 		sigaddset(&blocked, ksig->sig);
2783 	set_current_blocked(&blocked);
2784 	tracehook_signal_handler(stepping);
2785 }
2786 
signal_setup_done(int failed,struct ksignal * ksig,int stepping)2787 void signal_setup_done(int failed, struct ksignal *ksig, int stepping)
2788 {
2789 	if (failed)
2790 		force_sigsegv(ksig->sig);
2791 	else
2792 		signal_delivered(ksig, stepping);
2793 }
2794 
2795 /*
2796  * It could be that complete_signal() picked us to notify about the
2797  * group-wide signal. Other threads should be notified now to take
2798  * the shared signals in @which since we will not.
2799  */
retarget_shared_pending(struct task_struct * tsk,sigset_t * which)2800 static void retarget_shared_pending(struct task_struct *tsk, sigset_t *which)
2801 {
2802 	sigset_t retarget;
2803 	struct task_struct *t;
2804 
2805 	sigandsets(&retarget, &tsk->signal->shared_pending.signal, which);
2806 	if (sigisemptyset(&retarget))
2807 		return;
2808 
2809 	t = tsk;
2810 	while_each_thread(tsk, t) {
2811 		if (t->flags & PF_EXITING)
2812 			continue;
2813 
2814 		if (!has_pending_signals(&retarget, &t->blocked))
2815 			continue;
2816 		/* Remove the signals this thread can handle. */
2817 		sigandsets(&retarget, &retarget, &t->blocked);
2818 
2819 		if (!task_sigpending(t))
2820 			signal_wake_up(t, 0);
2821 
2822 		if (sigisemptyset(&retarget))
2823 			break;
2824 	}
2825 }
2826 
exit_signals(struct task_struct * tsk)2827 void exit_signals(struct task_struct *tsk)
2828 {
2829 	int group_stop = 0;
2830 	sigset_t unblocked;
2831 
2832 	/*
2833 	 * @tsk is about to have PF_EXITING set - lock out users which
2834 	 * expect stable threadgroup.
2835 	 */
2836 	cgroup_threadgroup_change_begin(tsk);
2837 
2838 	if (thread_group_empty(tsk) || signal_group_exit(tsk->signal)) {
2839 		tsk->flags |= PF_EXITING;
2840 		cgroup_threadgroup_change_end(tsk);
2841 		return;
2842 	}
2843 
2844 	spin_lock_irq(&tsk->sighand->siglock);
2845 	/*
2846 	 * From now this task is not visible for group-wide signals,
2847 	 * see wants_signal(), do_signal_stop().
2848 	 */
2849 	tsk->flags |= PF_EXITING;
2850 
2851 	cgroup_threadgroup_change_end(tsk);
2852 
2853 	if (!task_sigpending(tsk))
2854 		goto out;
2855 
2856 	unblocked = tsk->blocked;
2857 	signotset(&unblocked);
2858 	retarget_shared_pending(tsk, &unblocked);
2859 
2860 	if (unlikely(tsk->jobctl & JOBCTL_STOP_PENDING) &&
2861 	    task_participate_group_stop(tsk))
2862 		group_stop = CLD_STOPPED;
2863 out:
2864 	spin_unlock_irq(&tsk->sighand->siglock);
2865 
2866 	/*
2867 	 * If group stop has completed, deliver the notification.  This
2868 	 * should always go to the real parent of the group leader.
2869 	 */
2870 	if (unlikely(group_stop)) {
2871 		read_lock(&tasklist_lock);
2872 		do_notify_parent_cldstop(tsk, false, group_stop);
2873 		read_unlock(&tasklist_lock);
2874 	}
2875 }
2876 
2877 /*
2878  * System call entry points.
2879  */
2880 
2881 /**
2882  *  sys_restart_syscall - restart a system call
2883  */
SYSCALL_DEFINE0(restart_syscall)2884 SYSCALL_DEFINE0(restart_syscall)
2885 {
2886 	struct restart_block *restart = &current->restart_block;
2887 	return restart->fn(restart);
2888 }
2889 
do_no_restart_syscall(struct restart_block * param)2890 long do_no_restart_syscall(struct restart_block *param)
2891 {
2892 	return -EINTR;
2893 }
2894 
__set_task_blocked(struct task_struct * tsk,const sigset_t * newset)2895 static void __set_task_blocked(struct task_struct *tsk, const sigset_t *newset)
2896 {
2897 	if (task_sigpending(tsk) && !thread_group_empty(tsk)) {
2898 		sigset_t newblocked;
2899 		/* A set of now blocked but previously unblocked signals. */
2900 		sigandnsets(&newblocked, newset, &current->blocked);
2901 		retarget_shared_pending(tsk, &newblocked);
2902 	}
2903 	tsk->blocked = *newset;
2904 	recalc_sigpending();
2905 }
2906 
2907 /**
2908  * set_current_blocked - change current->blocked mask
2909  * @newset: new mask
2910  *
2911  * It is wrong to change ->blocked directly, this helper should be used
2912  * to ensure the process can't miss a shared signal we are going to block.
2913  */
set_current_blocked(sigset_t * newset)2914 void set_current_blocked(sigset_t *newset)
2915 {
2916 	sigdelsetmask(newset, sigmask(SIGKILL) | sigmask(SIGSTOP));
2917 	__set_current_blocked(newset);
2918 }
2919 
__set_current_blocked(const sigset_t * newset)2920 void __set_current_blocked(const sigset_t *newset)
2921 {
2922 	struct task_struct *tsk = current;
2923 
2924 	/*
2925 	 * In case the signal mask hasn't changed, there is nothing we need
2926 	 * to do. The current->blocked shouldn't be modified by other task.
2927 	 */
2928 	if (sigequalsets(&tsk->blocked, newset))
2929 		return;
2930 
2931 	spin_lock_irq(&tsk->sighand->siglock);
2932 	__set_task_blocked(tsk, newset);
2933 	spin_unlock_irq(&tsk->sighand->siglock);
2934 }
2935 
2936 /*
2937  * This is also useful for kernel threads that want to temporarily
2938  * (or permanently) block certain signals.
2939  *
2940  * NOTE! Unlike the user-mode sys_sigprocmask(), the kernel
2941  * interface happily blocks "unblockable" signals like SIGKILL
2942  * and friends.
2943  */
sigprocmask(int how,sigset_t * set,sigset_t * oldset)2944 int sigprocmask(int how, sigset_t *set, sigset_t *oldset)
2945 {
2946 	struct task_struct *tsk = current;
2947 	sigset_t newset;
2948 
2949 	/* Lockless, only current can change ->blocked, never from irq */
2950 	if (oldset)
2951 		*oldset = tsk->blocked;
2952 
2953 	switch (how) {
2954 	case SIG_BLOCK:
2955 		sigorsets(&newset, &tsk->blocked, set);
2956 		break;
2957 	case SIG_UNBLOCK:
2958 		sigandnsets(&newset, &tsk->blocked, set);
2959 		break;
2960 	case SIG_SETMASK:
2961 		newset = *set;
2962 		break;
2963 	default:
2964 		return -EINVAL;
2965 	}
2966 
2967 	__set_current_blocked(&newset);
2968 	return 0;
2969 }
2970 EXPORT_SYMBOL(sigprocmask);
2971 
2972 /*
2973  * The api helps set app-provided sigmasks.
2974  *
2975  * This is useful for syscalls such as ppoll, pselect, io_pgetevents and
2976  * epoll_pwait where a new sigmask is passed from userland for the syscalls.
2977  *
2978  * Note that it does set_restore_sigmask() in advance, so it must be always
2979  * paired with restore_saved_sigmask_unless() before return from syscall.
2980  */
set_user_sigmask(const sigset_t __user * umask,size_t sigsetsize)2981 int set_user_sigmask(const sigset_t __user *umask, size_t sigsetsize)
2982 {
2983 	sigset_t kmask;
2984 
2985 	if (!umask)
2986 		return 0;
2987 	if (sigsetsize != sizeof(sigset_t))
2988 		return -EINVAL;
2989 	if (copy_from_user(&kmask, umask, sizeof(sigset_t)))
2990 		return -EFAULT;
2991 
2992 	set_restore_sigmask();
2993 	current->saved_sigmask = current->blocked;
2994 	set_current_blocked(&kmask);
2995 
2996 	return 0;
2997 }
2998 
2999 #ifdef CONFIG_COMPAT
set_compat_user_sigmask(const compat_sigset_t __user * umask,size_t sigsetsize)3000 int set_compat_user_sigmask(const compat_sigset_t __user *umask,
3001 			    size_t sigsetsize)
3002 {
3003 	sigset_t kmask;
3004 
3005 	if (!umask)
3006 		return 0;
3007 	if (sigsetsize != sizeof(compat_sigset_t))
3008 		return -EINVAL;
3009 	if (get_compat_sigset(&kmask, umask))
3010 		return -EFAULT;
3011 
3012 	set_restore_sigmask();
3013 	current->saved_sigmask = current->blocked;
3014 	set_current_blocked(&kmask);
3015 
3016 	return 0;
3017 }
3018 #endif
3019 
3020 /**
3021  *  sys_rt_sigprocmask - change the list of currently blocked signals
3022  *  @how: whether to add, remove, or set signals
3023  *  @nset: stores pending signals
3024  *  @oset: previous value of signal mask if non-null
3025  *  @sigsetsize: size of sigset_t type
3026  */
SYSCALL_DEFINE4(rt_sigprocmask,int,how,sigset_t __user *,nset,sigset_t __user *,oset,size_t,sigsetsize)3027 SYSCALL_DEFINE4(rt_sigprocmask, int, how, sigset_t __user *, nset,
3028 		sigset_t __user *, oset, size_t, sigsetsize)
3029 {
3030 	sigset_t old_set, new_set;
3031 	int error;
3032 
3033 	/* XXX: Don't preclude handling different sized sigset_t's.  */
3034 	if (sigsetsize != sizeof(sigset_t))
3035 		return -EINVAL;
3036 
3037 	old_set = current->blocked;
3038 
3039 	if (nset) {
3040 		if (copy_from_user(&new_set, nset, sizeof(sigset_t)))
3041 			return -EFAULT;
3042 		sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP));
3043 
3044 		error = sigprocmask(how, &new_set, NULL);
3045 		if (error)
3046 			return error;
3047 	}
3048 
3049 	if (oset) {
3050 		if (copy_to_user(oset, &old_set, sizeof(sigset_t)))
3051 			return -EFAULT;
3052 	}
3053 
3054 	return 0;
3055 }
3056 
3057 #ifdef CONFIG_COMPAT
COMPAT_SYSCALL_DEFINE4(rt_sigprocmask,int,how,compat_sigset_t __user *,nset,compat_sigset_t __user *,oset,compat_size_t,sigsetsize)3058 COMPAT_SYSCALL_DEFINE4(rt_sigprocmask, int, how, compat_sigset_t __user *, nset,
3059 		compat_sigset_t __user *, oset, compat_size_t, sigsetsize)
3060 {
3061 	sigset_t old_set = current->blocked;
3062 
3063 	/* XXX: Don't preclude handling different sized sigset_t's.  */
3064 	if (sigsetsize != sizeof(sigset_t))
3065 		return -EINVAL;
3066 
3067 	if (nset) {
3068 		sigset_t new_set;
3069 		int error;
3070 		if (get_compat_sigset(&new_set, nset))
3071 			return -EFAULT;
3072 		sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP));
3073 
3074 		error = sigprocmask(how, &new_set, NULL);
3075 		if (error)
3076 			return error;
3077 	}
3078 	return oset ? put_compat_sigset(oset, &old_set, sizeof(*oset)) : 0;
3079 }
3080 #endif
3081 
do_sigpending(sigset_t * set)3082 static void do_sigpending(sigset_t *set)
3083 {
3084 	spin_lock_irq(&current->sighand->siglock);
3085 	sigorsets(set, &current->pending.signal,
3086 		  &current->signal->shared_pending.signal);
3087 	spin_unlock_irq(&current->sighand->siglock);
3088 
3089 	/* Outside the lock because only this thread touches it.  */
3090 	sigandsets(set, &current->blocked, set);
3091 }
3092 
3093 /**
3094  *  sys_rt_sigpending - examine a pending signal that has been raised
3095  *			while blocked
3096  *  @uset: stores pending signals
3097  *  @sigsetsize: size of sigset_t type or larger
3098  */
SYSCALL_DEFINE2(rt_sigpending,sigset_t __user *,uset,size_t,sigsetsize)3099 SYSCALL_DEFINE2(rt_sigpending, sigset_t __user *, uset, size_t, sigsetsize)
3100 {
3101 	sigset_t set;
3102 
3103 	if (sigsetsize > sizeof(*uset))
3104 		return -EINVAL;
3105 
3106 	do_sigpending(&set);
3107 
3108 	if (copy_to_user(uset, &set, sigsetsize))
3109 		return -EFAULT;
3110 
3111 	return 0;
3112 }
3113 
3114 #ifdef CONFIG_COMPAT
COMPAT_SYSCALL_DEFINE2(rt_sigpending,compat_sigset_t __user *,uset,compat_size_t,sigsetsize)3115 COMPAT_SYSCALL_DEFINE2(rt_sigpending, compat_sigset_t __user *, uset,
3116 		compat_size_t, sigsetsize)
3117 {
3118 	sigset_t set;
3119 
3120 	if (sigsetsize > sizeof(*uset))
3121 		return -EINVAL;
3122 
3123 	do_sigpending(&set);
3124 
3125 	return put_compat_sigset(uset, &set, sigsetsize);
3126 }
3127 #endif
3128 
3129 static const struct {
3130 	unsigned char limit, layout;
3131 } sig_sicodes[] = {
3132 	[SIGILL]  = { NSIGILL,  SIL_FAULT },
3133 	[SIGFPE]  = { NSIGFPE,  SIL_FAULT },
3134 	[SIGSEGV] = { NSIGSEGV, SIL_FAULT },
3135 	[SIGBUS]  = { NSIGBUS,  SIL_FAULT },
3136 	[SIGTRAP] = { NSIGTRAP, SIL_FAULT },
3137 #if defined(SIGEMT)
3138 	[SIGEMT]  = { NSIGEMT,  SIL_FAULT },
3139 #endif
3140 	[SIGCHLD] = { NSIGCHLD, SIL_CHLD },
3141 	[SIGPOLL] = { NSIGPOLL, SIL_POLL },
3142 	[SIGSYS]  = { NSIGSYS,  SIL_SYS },
3143 };
3144 
known_siginfo_layout(unsigned sig,int si_code)3145 static bool known_siginfo_layout(unsigned sig, int si_code)
3146 {
3147 	if (si_code == SI_KERNEL)
3148 		return true;
3149 	else if ((si_code > SI_USER)) {
3150 		if (sig_specific_sicodes(sig)) {
3151 			if (si_code <= sig_sicodes[sig].limit)
3152 				return true;
3153 		}
3154 		else if (si_code <= NSIGPOLL)
3155 			return true;
3156 	}
3157 	else if (si_code >= SI_DETHREAD)
3158 		return true;
3159 	else if (si_code == SI_ASYNCNL)
3160 		return true;
3161 	return false;
3162 }
3163 
siginfo_layout(unsigned sig,int si_code)3164 enum siginfo_layout siginfo_layout(unsigned sig, int si_code)
3165 {
3166 	enum siginfo_layout layout = SIL_KILL;
3167 	if ((si_code > SI_USER) && (si_code < SI_KERNEL)) {
3168 		if ((sig < ARRAY_SIZE(sig_sicodes)) &&
3169 		    (si_code <= sig_sicodes[sig].limit)) {
3170 			layout = sig_sicodes[sig].layout;
3171 			/* Handle the exceptions */
3172 			if ((sig == SIGBUS) &&
3173 			    (si_code >= BUS_MCEERR_AR) && (si_code <= BUS_MCEERR_AO))
3174 				layout = SIL_FAULT_MCEERR;
3175 			else if ((sig == SIGSEGV) && (si_code == SEGV_BNDERR))
3176 				layout = SIL_FAULT_BNDERR;
3177 #ifdef SEGV_PKUERR
3178 			else if ((sig == SIGSEGV) && (si_code == SEGV_PKUERR))
3179 				layout = SIL_FAULT_PKUERR;
3180 #endif
3181 		}
3182 		else if (si_code <= NSIGPOLL)
3183 			layout = SIL_POLL;
3184 	} else {
3185 		if (si_code == SI_TIMER)
3186 			layout = SIL_TIMER;
3187 		else if (si_code == SI_SIGIO)
3188 			layout = SIL_POLL;
3189 		else if (si_code < 0)
3190 			layout = SIL_RT;
3191 	}
3192 	return layout;
3193 }
3194 
si_expansion(const siginfo_t __user * info)3195 static inline char __user *si_expansion(const siginfo_t __user *info)
3196 {
3197 	return ((char __user *)info) + sizeof(struct kernel_siginfo);
3198 }
3199 
copy_siginfo_to_user(siginfo_t __user * to,const kernel_siginfo_t * from)3200 int copy_siginfo_to_user(siginfo_t __user *to, const kernel_siginfo_t *from)
3201 {
3202 	char __user *expansion = si_expansion(to);
3203 	if (copy_to_user(to, from , sizeof(struct kernel_siginfo)))
3204 		return -EFAULT;
3205 	if (clear_user(expansion, SI_EXPANSION_SIZE))
3206 		return -EFAULT;
3207 	return 0;
3208 }
3209 
post_copy_siginfo_from_user(kernel_siginfo_t * info,const siginfo_t __user * from)3210 static int post_copy_siginfo_from_user(kernel_siginfo_t *info,
3211 				       const siginfo_t __user *from)
3212 {
3213 	if (unlikely(!known_siginfo_layout(info->si_signo, info->si_code))) {
3214 		char __user *expansion = si_expansion(from);
3215 		char buf[SI_EXPANSION_SIZE];
3216 		int i;
3217 		/*
3218 		 * An unknown si_code might need more than
3219 		 * sizeof(struct kernel_siginfo) bytes.  Verify all of the
3220 		 * extra bytes are 0.  This guarantees copy_siginfo_to_user
3221 		 * will return this data to userspace exactly.
3222 		 */
3223 		if (copy_from_user(&buf, expansion, SI_EXPANSION_SIZE))
3224 			return -EFAULT;
3225 		for (i = 0; i < SI_EXPANSION_SIZE; i++) {
3226 			if (buf[i] != 0)
3227 				return -E2BIG;
3228 		}
3229 	}
3230 	return 0;
3231 }
3232 
__copy_siginfo_from_user(int signo,kernel_siginfo_t * to,const siginfo_t __user * from)3233 static int __copy_siginfo_from_user(int signo, kernel_siginfo_t *to,
3234 				    const siginfo_t __user *from)
3235 {
3236 	if (copy_from_user(to, from, sizeof(struct kernel_siginfo)))
3237 		return -EFAULT;
3238 	to->si_signo = signo;
3239 	return post_copy_siginfo_from_user(to, from);
3240 }
3241 
copy_siginfo_from_user(kernel_siginfo_t * to,const siginfo_t __user * from)3242 int copy_siginfo_from_user(kernel_siginfo_t *to, const siginfo_t __user *from)
3243 {
3244 	if (copy_from_user(to, from, sizeof(struct kernel_siginfo)))
3245 		return -EFAULT;
3246 	return post_copy_siginfo_from_user(to, from);
3247 }
3248 
3249 #ifdef CONFIG_COMPAT
3250 /**
3251  * copy_siginfo_to_external32 - copy a kernel siginfo into a compat user siginfo
3252  * @to: compat siginfo destination
3253  * @from: kernel siginfo source
3254  *
3255  * Note: This function does not work properly for the SIGCHLD on x32, but
3256  * fortunately it doesn't have to.  The only valid callers for this function are
3257  * copy_siginfo_to_user32, which is overriden for x32 and the coredump code.
3258  * The latter does not care because SIGCHLD will never cause a coredump.
3259  */
copy_siginfo_to_external32(struct compat_siginfo * to,const struct kernel_siginfo * from)3260 void copy_siginfo_to_external32(struct compat_siginfo *to,
3261 		const struct kernel_siginfo *from)
3262 {
3263 	memset(to, 0, sizeof(*to));
3264 
3265 	to->si_signo = from->si_signo;
3266 	to->si_errno = from->si_errno;
3267 	to->si_code  = from->si_code;
3268 	switch(siginfo_layout(from->si_signo, from->si_code)) {
3269 	case SIL_KILL:
3270 		to->si_pid = from->si_pid;
3271 		to->si_uid = from->si_uid;
3272 		break;
3273 	case SIL_TIMER:
3274 		to->si_tid     = from->si_tid;
3275 		to->si_overrun = from->si_overrun;
3276 		to->si_int     = from->si_int;
3277 		break;
3278 	case SIL_POLL:
3279 		to->si_band = from->si_band;
3280 		to->si_fd   = from->si_fd;
3281 		break;
3282 	case SIL_FAULT:
3283 		to->si_addr = ptr_to_compat(from->si_addr);
3284 #ifdef __ARCH_SI_TRAPNO
3285 		to->si_trapno = from->si_trapno;
3286 #endif
3287 		break;
3288 	case SIL_FAULT_MCEERR:
3289 		to->si_addr = ptr_to_compat(from->si_addr);
3290 #ifdef __ARCH_SI_TRAPNO
3291 		to->si_trapno = from->si_trapno;
3292 #endif
3293 		to->si_addr_lsb = from->si_addr_lsb;
3294 		break;
3295 	case SIL_FAULT_BNDERR:
3296 		to->si_addr = ptr_to_compat(from->si_addr);
3297 #ifdef __ARCH_SI_TRAPNO
3298 		to->si_trapno = from->si_trapno;
3299 #endif
3300 		to->si_lower = ptr_to_compat(from->si_lower);
3301 		to->si_upper = ptr_to_compat(from->si_upper);
3302 		break;
3303 	case SIL_FAULT_PKUERR:
3304 		to->si_addr = ptr_to_compat(from->si_addr);
3305 #ifdef __ARCH_SI_TRAPNO
3306 		to->si_trapno = from->si_trapno;
3307 #endif
3308 		to->si_pkey = from->si_pkey;
3309 		break;
3310 	case SIL_CHLD:
3311 		to->si_pid = from->si_pid;
3312 		to->si_uid = from->si_uid;
3313 		to->si_status = from->si_status;
3314 		to->si_utime = from->si_utime;
3315 		to->si_stime = from->si_stime;
3316 		break;
3317 	case SIL_RT:
3318 		to->si_pid = from->si_pid;
3319 		to->si_uid = from->si_uid;
3320 		to->si_int = from->si_int;
3321 		break;
3322 	case SIL_SYS:
3323 		to->si_call_addr = ptr_to_compat(from->si_call_addr);
3324 		to->si_syscall   = from->si_syscall;
3325 		to->si_arch      = from->si_arch;
3326 		break;
3327 	}
3328 }
3329 
__copy_siginfo_to_user32(struct compat_siginfo __user * to,const struct kernel_siginfo * from)3330 int __copy_siginfo_to_user32(struct compat_siginfo __user *to,
3331 			   const struct kernel_siginfo *from)
3332 {
3333 	struct compat_siginfo new;
3334 
3335 	copy_siginfo_to_external32(&new, from);
3336 	if (copy_to_user(to, &new, sizeof(struct compat_siginfo)))
3337 		return -EFAULT;
3338 	return 0;
3339 }
3340 
post_copy_siginfo_from_user32(kernel_siginfo_t * to,const struct compat_siginfo * from)3341 static int post_copy_siginfo_from_user32(kernel_siginfo_t *to,
3342 					 const struct compat_siginfo *from)
3343 {
3344 	clear_siginfo(to);
3345 	to->si_signo = from->si_signo;
3346 	to->si_errno = from->si_errno;
3347 	to->si_code  = from->si_code;
3348 	switch(siginfo_layout(from->si_signo, from->si_code)) {
3349 	case SIL_KILL:
3350 		to->si_pid = from->si_pid;
3351 		to->si_uid = from->si_uid;
3352 		break;
3353 	case SIL_TIMER:
3354 		to->si_tid     = from->si_tid;
3355 		to->si_overrun = from->si_overrun;
3356 		to->si_int     = from->si_int;
3357 		break;
3358 	case SIL_POLL:
3359 		to->si_band = from->si_band;
3360 		to->si_fd   = from->si_fd;
3361 		break;
3362 	case SIL_FAULT:
3363 		to->si_addr = compat_ptr(from->si_addr);
3364 #ifdef __ARCH_SI_TRAPNO
3365 		to->si_trapno = from->si_trapno;
3366 #endif
3367 		break;
3368 	case SIL_FAULT_MCEERR:
3369 		to->si_addr = compat_ptr(from->si_addr);
3370 #ifdef __ARCH_SI_TRAPNO
3371 		to->si_trapno = from->si_trapno;
3372 #endif
3373 		to->si_addr_lsb = from->si_addr_lsb;
3374 		break;
3375 	case SIL_FAULT_BNDERR:
3376 		to->si_addr = compat_ptr(from->si_addr);
3377 #ifdef __ARCH_SI_TRAPNO
3378 		to->si_trapno = from->si_trapno;
3379 #endif
3380 		to->si_lower = compat_ptr(from->si_lower);
3381 		to->si_upper = compat_ptr(from->si_upper);
3382 		break;
3383 	case SIL_FAULT_PKUERR:
3384 		to->si_addr = compat_ptr(from->si_addr);
3385 #ifdef __ARCH_SI_TRAPNO
3386 		to->si_trapno = from->si_trapno;
3387 #endif
3388 		to->si_pkey = from->si_pkey;
3389 		break;
3390 	case SIL_CHLD:
3391 		to->si_pid    = from->si_pid;
3392 		to->si_uid    = from->si_uid;
3393 		to->si_status = from->si_status;
3394 #ifdef CONFIG_X86_X32_ABI
3395 		if (in_x32_syscall()) {
3396 			to->si_utime = from->_sifields._sigchld_x32._utime;
3397 			to->si_stime = from->_sifields._sigchld_x32._stime;
3398 		} else
3399 #endif
3400 		{
3401 			to->si_utime = from->si_utime;
3402 			to->si_stime = from->si_stime;
3403 		}
3404 		break;
3405 	case SIL_RT:
3406 		to->si_pid = from->si_pid;
3407 		to->si_uid = from->si_uid;
3408 		to->si_int = from->si_int;
3409 		break;
3410 	case SIL_SYS:
3411 		to->si_call_addr = compat_ptr(from->si_call_addr);
3412 		to->si_syscall   = from->si_syscall;
3413 		to->si_arch      = from->si_arch;
3414 		break;
3415 	}
3416 	return 0;
3417 }
3418 
__copy_siginfo_from_user32(int signo,struct kernel_siginfo * to,const struct compat_siginfo __user * ufrom)3419 static int __copy_siginfo_from_user32(int signo, struct kernel_siginfo *to,
3420 				      const struct compat_siginfo __user *ufrom)
3421 {
3422 	struct compat_siginfo from;
3423 
3424 	if (copy_from_user(&from, ufrom, sizeof(struct compat_siginfo)))
3425 		return -EFAULT;
3426 
3427 	from.si_signo = signo;
3428 	return post_copy_siginfo_from_user32(to, &from);
3429 }
3430 
copy_siginfo_from_user32(struct kernel_siginfo * to,const struct compat_siginfo __user * ufrom)3431 int copy_siginfo_from_user32(struct kernel_siginfo *to,
3432 			     const struct compat_siginfo __user *ufrom)
3433 {
3434 	struct compat_siginfo from;
3435 
3436 	if (copy_from_user(&from, ufrom, sizeof(struct compat_siginfo)))
3437 		return -EFAULT;
3438 
3439 	return post_copy_siginfo_from_user32(to, &from);
3440 }
3441 #endif /* CONFIG_COMPAT */
3442 
3443 /**
3444  *  do_sigtimedwait - wait for queued signals specified in @which
3445  *  @which: queued signals to wait for
3446  *  @info: if non-null, the signal's siginfo is returned here
3447  *  @ts: upper bound on process time suspension
3448  */
do_sigtimedwait(const sigset_t * which,kernel_siginfo_t * info,const struct timespec64 * ts)3449 static int do_sigtimedwait(const sigset_t *which, kernel_siginfo_t *info,
3450 		    const struct timespec64 *ts)
3451 {
3452 	ktime_t *to = NULL, timeout = KTIME_MAX;
3453 	struct task_struct *tsk = current;
3454 	sigset_t mask = *which;
3455 	int sig, ret = 0;
3456 
3457 	if (ts) {
3458 		if (!timespec64_valid(ts))
3459 			return -EINVAL;
3460 		timeout = timespec64_to_ktime(*ts);
3461 		to = &timeout;
3462 	}
3463 
3464 	/*
3465 	 * Invert the set of allowed signals to get those we want to block.
3466 	 */
3467 	sigdelsetmask(&mask, sigmask(SIGKILL) | sigmask(SIGSTOP));
3468 	signotset(&mask);
3469 
3470 	spin_lock_irq(&tsk->sighand->siglock);
3471 	sig = dequeue_signal(tsk, &mask, info);
3472 	if (!sig && timeout) {
3473 		/*
3474 		 * None ready, temporarily unblock those we're interested
3475 		 * while we are sleeping in so that we'll be awakened when
3476 		 * they arrive. Unblocking is always fine, we can avoid
3477 		 * set_current_blocked().
3478 		 */
3479 		tsk->real_blocked = tsk->blocked;
3480 		sigandsets(&tsk->blocked, &tsk->blocked, &mask);
3481 		recalc_sigpending();
3482 		spin_unlock_irq(&tsk->sighand->siglock);
3483 
3484 		__set_current_state(TASK_INTERRUPTIBLE);
3485 		ret = freezable_schedule_hrtimeout_range(to, tsk->timer_slack_ns,
3486 							 HRTIMER_MODE_REL);
3487 		spin_lock_irq(&tsk->sighand->siglock);
3488 		__set_task_blocked(tsk, &tsk->real_blocked);
3489 		sigemptyset(&tsk->real_blocked);
3490 		sig = dequeue_signal(tsk, &mask, info);
3491 	}
3492 	spin_unlock_irq(&tsk->sighand->siglock);
3493 
3494 	if (sig)
3495 		return sig;
3496 	return ret ? -EINTR : -EAGAIN;
3497 }
3498 
3499 /**
3500  *  sys_rt_sigtimedwait - synchronously wait for queued signals specified
3501  *			in @uthese
3502  *  @uthese: queued signals to wait for
3503  *  @uinfo: if non-null, the signal's siginfo is returned here
3504  *  @uts: upper bound on process time suspension
3505  *  @sigsetsize: size of sigset_t type
3506  */
SYSCALL_DEFINE4(rt_sigtimedwait,const sigset_t __user *,uthese,siginfo_t __user *,uinfo,const struct __kernel_timespec __user *,uts,size_t,sigsetsize)3507 SYSCALL_DEFINE4(rt_sigtimedwait, const sigset_t __user *, uthese,
3508 		siginfo_t __user *, uinfo,
3509 		const struct __kernel_timespec __user *, uts,
3510 		size_t, sigsetsize)
3511 {
3512 	sigset_t these;
3513 	struct timespec64 ts;
3514 	kernel_siginfo_t info;
3515 	int ret;
3516 
3517 	/* XXX: Don't preclude handling different sized sigset_t's.  */
3518 	if (sigsetsize != sizeof(sigset_t))
3519 		return -EINVAL;
3520 
3521 	if (copy_from_user(&these, uthese, sizeof(these)))
3522 		return -EFAULT;
3523 
3524 	if (uts) {
3525 		if (get_timespec64(&ts, uts))
3526 			return -EFAULT;
3527 	}
3528 
3529 	ret = do_sigtimedwait(&these, &info, uts ? &ts : NULL);
3530 
3531 	if (ret > 0 && uinfo) {
3532 		if (copy_siginfo_to_user(uinfo, &info))
3533 			ret = -EFAULT;
3534 	}
3535 
3536 	return ret;
3537 }
3538 
3539 #ifdef CONFIG_COMPAT_32BIT_TIME
SYSCALL_DEFINE4(rt_sigtimedwait_time32,const sigset_t __user *,uthese,siginfo_t __user *,uinfo,const struct old_timespec32 __user *,uts,size_t,sigsetsize)3540 SYSCALL_DEFINE4(rt_sigtimedwait_time32, const sigset_t __user *, uthese,
3541 		siginfo_t __user *, uinfo,
3542 		const struct old_timespec32 __user *, uts,
3543 		size_t, sigsetsize)
3544 {
3545 	sigset_t these;
3546 	struct timespec64 ts;
3547 	kernel_siginfo_t info;
3548 	int ret;
3549 
3550 	if (sigsetsize != sizeof(sigset_t))
3551 		return -EINVAL;
3552 
3553 	if (copy_from_user(&these, uthese, sizeof(these)))
3554 		return -EFAULT;
3555 
3556 	if (uts) {
3557 		if (get_old_timespec32(&ts, uts))
3558 			return -EFAULT;
3559 	}
3560 
3561 	ret = do_sigtimedwait(&these, &info, uts ? &ts : NULL);
3562 
3563 	if (ret > 0 && uinfo) {
3564 		if (copy_siginfo_to_user(uinfo, &info))
3565 			ret = -EFAULT;
3566 	}
3567 
3568 	return ret;
3569 }
3570 #endif
3571 
3572 #ifdef CONFIG_COMPAT
COMPAT_SYSCALL_DEFINE4(rt_sigtimedwait_time64,compat_sigset_t __user *,uthese,struct compat_siginfo __user *,uinfo,struct __kernel_timespec __user *,uts,compat_size_t,sigsetsize)3573 COMPAT_SYSCALL_DEFINE4(rt_sigtimedwait_time64, compat_sigset_t __user *, uthese,
3574 		struct compat_siginfo __user *, uinfo,
3575 		struct __kernel_timespec __user *, uts, compat_size_t, sigsetsize)
3576 {
3577 	sigset_t s;
3578 	struct timespec64 t;
3579 	kernel_siginfo_t info;
3580 	long ret;
3581 
3582 	if (sigsetsize != sizeof(sigset_t))
3583 		return -EINVAL;
3584 
3585 	if (get_compat_sigset(&s, uthese))
3586 		return -EFAULT;
3587 
3588 	if (uts) {
3589 		if (get_timespec64(&t, uts))
3590 			return -EFAULT;
3591 	}
3592 
3593 	ret = do_sigtimedwait(&s, &info, uts ? &t : NULL);
3594 
3595 	if (ret > 0 && uinfo) {
3596 		if (copy_siginfo_to_user32(uinfo, &info))
3597 			ret = -EFAULT;
3598 	}
3599 
3600 	return ret;
3601 }
3602 
3603 #ifdef CONFIG_COMPAT_32BIT_TIME
COMPAT_SYSCALL_DEFINE4(rt_sigtimedwait_time32,compat_sigset_t __user *,uthese,struct compat_siginfo __user *,uinfo,struct old_timespec32 __user *,uts,compat_size_t,sigsetsize)3604 COMPAT_SYSCALL_DEFINE4(rt_sigtimedwait_time32, compat_sigset_t __user *, uthese,
3605 		struct compat_siginfo __user *, uinfo,
3606 		struct old_timespec32 __user *, uts, compat_size_t, sigsetsize)
3607 {
3608 	sigset_t s;
3609 	struct timespec64 t;
3610 	kernel_siginfo_t info;
3611 	long ret;
3612 
3613 	if (sigsetsize != sizeof(sigset_t))
3614 		return -EINVAL;
3615 
3616 	if (get_compat_sigset(&s, uthese))
3617 		return -EFAULT;
3618 
3619 	if (uts) {
3620 		if (get_old_timespec32(&t, uts))
3621 			return -EFAULT;
3622 	}
3623 
3624 	ret = do_sigtimedwait(&s, &info, uts ? &t : NULL);
3625 
3626 	if (ret > 0 && uinfo) {
3627 		if (copy_siginfo_to_user32(uinfo, &info))
3628 			ret = -EFAULT;
3629 	}
3630 
3631 	return ret;
3632 }
3633 #endif
3634 #endif
3635 
prepare_kill_siginfo(int sig,struct kernel_siginfo * info)3636 static inline void prepare_kill_siginfo(int sig, struct kernel_siginfo *info)
3637 {
3638 	clear_siginfo(info);
3639 	info->si_signo = sig;
3640 	info->si_errno = 0;
3641 	info->si_code = SI_USER;
3642 	info->si_pid = task_tgid_vnr(current);
3643 	info->si_uid = from_kuid_munged(current_user_ns(), current_uid());
3644 }
3645 
3646 /**
3647  *  sys_kill - send a signal to a process
3648  *  @pid: the PID of the process
3649  *  @sig: signal to be sent
3650  */
SYSCALL_DEFINE2(kill,pid_t,pid,int,sig)3651 SYSCALL_DEFINE2(kill, pid_t, pid, int, sig)
3652 {
3653 	struct kernel_siginfo info;
3654 
3655 	prepare_kill_siginfo(sig, &info);
3656 
3657 	return kill_something_info(sig, &info, pid);
3658 }
3659 
3660 /*
3661  * Verify that the signaler and signalee either are in the same pid namespace
3662  * or that the signaler's pid namespace is an ancestor of the signalee's pid
3663  * namespace.
3664  */
access_pidfd_pidns(struct pid * pid)3665 static bool access_pidfd_pidns(struct pid *pid)
3666 {
3667 	struct pid_namespace *active = task_active_pid_ns(current);
3668 	struct pid_namespace *p = ns_of_pid(pid);
3669 
3670 	for (;;) {
3671 		if (!p)
3672 			return false;
3673 		if (p == active)
3674 			break;
3675 		p = p->parent;
3676 	}
3677 
3678 	return true;
3679 }
3680 
copy_siginfo_from_user_any(kernel_siginfo_t * kinfo,siginfo_t * info)3681 static int copy_siginfo_from_user_any(kernel_siginfo_t *kinfo, siginfo_t *info)
3682 {
3683 #ifdef CONFIG_COMPAT
3684 	/*
3685 	 * Avoid hooking up compat syscalls and instead handle necessary
3686 	 * conversions here. Note, this is a stop-gap measure and should not be
3687 	 * considered a generic solution.
3688 	 */
3689 	if (in_compat_syscall())
3690 		return copy_siginfo_from_user32(
3691 			kinfo, (struct compat_siginfo __user *)info);
3692 #endif
3693 	return copy_siginfo_from_user(kinfo, info);
3694 }
3695 
pidfd_to_pid(const struct file * file)3696 static struct pid *pidfd_to_pid(const struct file *file)
3697 {
3698 	struct pid *pid;
3699 
3700 	pid = pidfd_pid(file);
3701 	if (!IS_ERR(pid))
3702 		return pid;
3703 
3704 	return tgid_pidfd_to_pid(file);
3705 }
3706 
3707 /**
3708  * sys_pidfd_send_signal - Signal a process through a pidfd
3709  * @pidfd:  file descriptor of the process
3710  * @sig:    signal to send
3711  * @info:   signal info
3712  * @flags:  future flags
3713  *
3714  * The syscall currently only signals via PIDTYPE_PID which covers
3715  * kill(<positive-pid>, <signal>. It does not signal threads or process
3716  * groups.
3717  * In order to extend the syscall to threads and process groups the @flags
3718  * argument should be used. In essence, the @flags argument will determine
3719  * what is signaled and not the file descriptor itself. Put in other words,
3720  * grouping is a property of the flags argument not a property of the file
3721  * descriptor.
3722  *
3723  * Return: 0 on success, negative errno on failure
3724  */
SYSCALL_DEFINE4(pidfd_send_signal,int,pidfd,int,sig,siginfo_t __user *,info,unsigned int,flags)3725 SYSCALL_DEFINE4(pidfd_send_signal, int, pidfd, int, sig,
3726 		siginfo_t __user *, info, unsigned int, flags)
3727 {
3728 	int ret;
3729 	struct fd f;
3730 	struct pid *pid;
3731 	kernel_siginfo_t kinfo;
3732 
3733 	/* Enforce flags be set to 0 until we add an extension. */
3734 	if (flags)
3735 		return -EINVAL;
3736 
3737 	f = fdget(pidfd);
3738 	if (!f.file)
3739 		return -EBADF;
3740 
3741 	/* Is this a pidfd? */
3742 	pid = pidfd_to_pid(f.file);
3743 	if (IS_ERR(pid)) {
3744 		ret = PTR_ERR(pid);
3745 		goto err;
3746 	}
3747 
3748 	ret = -EINVAL;
3749 	if (!access_pidfd_pidns(pid))
3750 		goto err;
3751 
3752 	if (info) {
3753 		ret = copy_siginfo_from_user_any(&kinfo, info);
3754 		if (unlikely(ret))
3755 			goto err;
3756 
3757 		ret = -EINVAL;
3758 		if (unlikely(sig != kinfo.si_signo))
3759 			goto err;
3760 
3761 		/* Only allow sending arbitrary signals to yourself. */
3762 		ret = -EPERM;
3763 		if ((task_pid(current) != pid) &&
3764 		    (kinfo.si_code >= 0 || kinfo.si_code == SI_TKILL))
3765 			goto err;
3766 	} else {
3767 		prepare_kill_siginfo(sig, &kinfo);
3768 	}
3769 
3770 	ret = kill_pid_info(sig, &kinfo, pid);
3771 
3772 err:
3773 	fdput(f);
3774 	return ret;
3775 }
3776 
3777 static int
do_send_specific(pid_t tgid,pid_t pid,int sig,struct kernel_siginfo * info)3778 do_send_specific(pid_t tgid, pid_t pid, int sig, struct kernel_siginfo *info)
3779 {
3780 	struct task_struct *p;
3781 	int error = -ESRCH;
3782 
3783 	rcu_read_lock();
3784 	p = find_task_by_vpid(pid);
3785 	if (p && (tgid <= 0 || task_tgid_vnr(p) == tgid)) {
3786 		error = check_kill_permission(sig, info, p);
3787 		/*
3788 		 * The null signal is a permissions and process existence
3789 		 * probe.  No signal is actually delivered.
3790 		 */
3791 		if (!error && sig) {
3792 			error = do_send_sig_info(sig, info, p, PIDTYPE_PID);
3793 			/*
3794 			 * If lock_task_sighand() failed we pretend the task
3795 			 * dies after receiving the signal. The window is tiny,
3796 			 * and the signal is private anyway.
3797 			 */
3798 			if (unlikely(error == -ESRCH))
3799 				error = 0;
3800 		}
3801 	}
3802 	rcu_read_unlock();
3803 
3804 	return error;
3805 }
3806 
do_tkill(pid_t tgid,pid_t pid,int sig)3807 static int do_tkill(pid_t tgid, pid_t pid, int sig)
3808 {
3809 	struct kernel_siginfo info;
3810 
3811 	clear_siginfo(&info);
3812 	info.si_signo = sig;
3813 	info.si_errno = 0;
3814 	info.si_code = SI_TKILL;
3815 	info.si_pid = task_tgid_vnr(current);
3816 	info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
3817 
3818 	return do_send_specific(tgid, pid, sig, &info);
3819 }
3820 
3821 /**
3822  *  sys_tgkill - send signal to one specific thread
3823  *  @tgid: the thread group ID of the thread
3824  *  @pid: the PID of the thread
3825  *  @sig: signal to be sent
3826  *
3827  *  This syscall also checks the @tgid and returns -ESRCH even if the PID
3828  *  exists but it's not belonging to the target process anymore. This
3829  *  method solves the problem of threads exiting and PIDs getting reused.
3830  */
SYSCALL_DEFINE3(tgkill,pid_t,tgid,pid_t,pid,int,sig)3831 SYSCALL_DEFINE3(tgkill, pid_t, tgid, pid_t, pid, int, sig)
3832 {
3833 	/* This is only valid for single tasks */
3834 	if (pid <= 0 || tgid <= 0)
3835 		return -EINVAL;
3836 
3837 	return do_tkill(tgid, pid, sig);
3838 }
3839 
3840 /**
3841  *  sys_tkill - send signal to one specific task
3842  *  @pid: the PID of the task
3843  *  @sig: signal to be sent
3844  *
3845  *  Send a signal to only one task, even if it's a CLONE_THREAD task.
3846  */
SYSCALL_DEFINE2(tkill,pid_t,pid,int,sig)3847 SYSCALL_DEFINE2(tkill, pid_t, pid, int, sig)
3848 {
3849 	/* This is only valid for single tasks */
3850 	if (pid <= 0)
3851 		return -EINVAL;
3852 
3853 	return do_tkill(0, pid, sig);
3854 }
3855 
do_rt_sigqueueinfo(pid_t pid,int sig,kernel_siginfo_t * info)3856 static int do_rt_sigqueueinfo(pid_t pid, int sig, kernel_siginfo_t *info)
3857 {
3858 	/* Not even root can pretend to send signals from the kernel.
3859 	 * Nor can they impersonate a kill()/tgkill(), which adds source info.
3860 	 */
3861 	if ((info->si_code >= 0 || info->si_code == SI_TKILL) &&
3862 	    (task_pid_vnr(current) != pid))
3863 		return -EPERM;
3864 
3865 	/* POSIX.1b doesn't mention process groups.  */
3866 	return kill_proc_info(sig, info, pid);
3867 }
3868 
3869 /**
3870  *  sys_rt_sigqueueinfo - send signal information to a signal
3871  *  @pid: the PID of the thread
3872  *  @sig: signal to be sent
3873  *  @uinfo: signal info to be sent
3874  */
SYSCALL_DEFINE3(rt_sigqueueinfo,pid_t,pid,int,sig,siginfo_t __user *,uinfo)3875 SYSCALL_DEFINE3(rt_sigqueueinfo, pid_t, pid, int, sig,
3876 		siginfo_t __user *, uinfo)
3877 {
3878 	kernel_siginfo_t info;
3879 	int ret = __copy_siginfo_from_user(sig, &info, uinfo);
3880 	if (unlikely(ret))
3881 		return ret;
3882 	return do_rt_sigqueueinfo(pid, sig, &info);
3883 }
3884 
3885 #ifdef CONFIG_COMPAT
COMPAT_SYSCALL_DEFINE3(rt_sigqueueinfo,compat_pid_t,pid,int,sig,struct compat_siginfo __user *,uinfo)3886 COMPAT_SYSCALL_DEFINE3(rt_sigqueueinfo,
3887 			compat_pid_t, pid,
3888 			int, sig,
3889 			struct compat_siginfo __user *, uinfo)
3890 {
3891 	kernel_siginfo_t info;
3892 	int ret = __copy_siginfo_from_user32(sig, &info, uinfo);
3893 	if (unlikely(ret))
3894 		return ret;
3895 	return do_rt_sigqueueinfo(pid, sig, &info);
3896 }
3897 #endif
3898 
do_rt_tgsigqueueinfo(pid_t tgid,pid_t pid,int sig,kernel_siginfo_t * info)3899 static int do_rt_tgsigqueueinfo(pid_t tgid, pid_t pid, int sig, kernel_siginfo_t *info)
3900 {
3901 	/* This is only valid for single tasks */
3902 	if (pid <= 0 || tgid <= 0)
3903 		return -EINVAL;
3904 
3905 	/* Not even root can pretend to send signals from the kernel.
3906 	 * Nor can they impersonate a kill()/tgkill(), which adds source info.
3907 	 */
3908 	if ((info->si_code >= 0 || info->si_code == SI_TKILL) &&
3909 	    (task_pid_vnr(current) != pid))
3910 		return -EPERM;
3911 
3912 	return do_send_specific(tgid, pid, sig, info);
3913 }
3914 
SYSCALL_DEFINE4(rt_tgsigqueueinfo,pid_t,tgid,pid_t,pid,int,sig,siginfo_t __user *,uinfo)3915 SYSCALL_DEFINE4(rt_tgsigqueueinfo, pid_t, tgid, pid_t, pid, int, sig,
3916 		siginfo_t __user *, uinfo)
3917 {
3918 	kernel_siginfo_t info;
3919 	int ret = __copy_siginfo_from_user(sig, &info, uinfo);
3920 	if (unlikely(ret))
3921 		return ret;
3922 	return do_rt_tgsigqueueinfo(tgid, pid, sig, &info);
3923 }
3924 
3925 #ifdef CONFIG_COMPAT
COMPAT_SYSCALL_DEFINE4(rt_tgsigqueueinfo,compat_pid_t,tgid,compat_pid_t,pid,int,sig,struct compat_siginfo __user *,uinfo)3926 COMPAT_SYSCALL_DEFINE4(rt_tgsigqueueinfo,
3927 			compat_pid_t, tgid,
3928 			compat_pid_t, pid,
3929 			int, sig,
3930 			struct compat_siginfo __user *, uinfo)
3931 {
3932 	kernel_siginfo_t info;
3933 	int ret = __copy_siginfo_from_user32(sig, &info, uinfo);
3934 	if (unlikely(ret))
3935 		return ret;
3936 	return do_rt_tgsigqueueinfo(tgid, pid, sig, &info);
3937 }
3938 #endif
3939 
3940 /*
3941  * For kthreads only, must not be used if cloned with CLONE_SIGHAND
3942  */
kernel_sigaction(int sig,__sighandler_t action)3943 void kernel_sigaction(int sig, __sighandler_t action)
3944 {
3945 	spin_lock_irq(&current->sighand->siglock);
3946 	current->sighand->action[sig - 1].sa.sa_handler = action;
3947 	if (action == SIG_IGN) {
3948 		sigset_t mask;
3949 
3950 		sigemptyset(&mask);
3951 		sigaddset(&mask, sig);
3952 
3953 		flush_sigqueue_mask(&mask, &current->signal->shared_pending);
3954 		flush_sigqueue_mask(&mask, &current->pending);
3955 		recalc_sigpending();
3956 	}
3957 	spin_unlock_irq(&current->sighand->siglock);
3958 }
3959 EXPORT_SYMBOL(kernel_sigaction);
3960 
sigaction_compat_abi(struct k_sigaction * act,struct k_sigaction * oact)3961 void __weak sigaction_compat_abi(struct k_sigaction *act,
3962 		struct k_sigaction *oact)
3963 {
3964 }
3965 
do_sigaction(int sig,struct k_sigaction * act,struct k_sigaction * oact)3966 int do_sigaction(int sig, struct k_sigaction *act, struct k_sigaction *oact)
3967 {
3968 	struct task_struct *p = current, *t;
3969 	struct k_sigaction *k;
3970 	sigset_t mask;
3971 
3972 	if (!valid_signal(sig) || sig < 1 || (act && sig_kernel_only(sig)))
3973 		return -EINVAL;
3974 
3975 	k = &p->sighand->action[sig-1];
3976 
3977 	spin_lock_irq(&p->sighand->siglock);
3978 	if (oact)
3979 		*oact = *k;
3980 
3981 	sigaction_compat_abi(act, oact);
3982 
3983 	if (act) {
3984 		sigdelsetmask(&act->sa.sa_mask,
3985 			      sigmask(SIGKILL) | sigmask(SIGSTOP));
3986 		*k = *act;
3987 		/*
3988 		 * POSIX 3.3.1.3:
3989 		 *  "Setting a signal action to SIG_IGN for a signal that is
3990 		 *   pending shall cause the pending signal to be discarded,
3991 		 *   whether or not it is blocked."
3992 		 *
3993 		 *  "Setting a signal action to SIG_DFL for a signal that is
3994 		 *   pending and whose default action is to ignore the signal
3995 		 *   (for example, SIGCHLD), shall cause the pending signal to
3996 		 *   be discarded, whether or not it is blocked"
3997 		 */
3998 		if (sig_handler_ignored(sig_handler(p, sig), sig)) {
3999 			sigemptyset(&mask);
4000 			sigaddset(&mask, sig);
4001 			flush_sigqueue_mask(&mask, &p->signal->shared_pending);
4002 			for_each_thread(p, t)
4003 				flush_sigqueue_mask(&mask, &t->pending);
4004 		}
4005 	}
4006 
4007 	spin_unlock_irq(&p->sighand->siglock);
4008 	return 0;
4009 }
4010 
4011 static int
do_sigaltstack(const stack_t * ss,stack_t * oss,unsigned long sp,size_t min_ss_size)4012 do_sigaltstack (const stack_t *ss, stack_t *oss, unsigned long sp,
4013 		size_t min_ss_size)
4014 {
4015 	struct task_struct *t = current;
4016 
4017 	if (oss) {
4018 		memset(oss, 0, sizeof(stack_t));
4019 		oss->ss_sp = (void __user *) t->sas_ss_sp;
4020 		oss->ss_size = t->sas_ss_size;
4021 		oss->ss_flags = sas_ss_flags(sp) |
4022 			(current->sas_ss_flags & SS_FLAG_BITS);
4023 	}
4024 
4025 	if (ss) {
4026 		void __user *ss_sp = ss->ss_sp;
4027 		size_t ss_size = ss->ss_size;
4028 		unsigned ss_flags = ss->ss_flags;
4029 		int ss_mode;
4030 
4031 		if (unlikely(on_sig_stack(sp)))
4032 			return -EPERM;
4033 
4034 		ss_mode = ss_flags & ~SS_FLAG_BITS;
4035 		if (unlikely(ss_mode != SS_DISABLE && ss_mode != SS_ONSTACK &&
4036 				ss_mode != 0))
4037 			return -EINVAL;
4038 
4039 		if (ss_mode == SS_DISABLE) {
4040 			ss_size = 0;
4041 			ss_sp = NULL;
4042 		} else {
4043 			if (unlikely(ss_size < min_ss_size))
4044 				return -ENOMEM;
4045 		}
4046 
4047 		t->sas_ss_sp = (unsigned long) ss_sp;
4048 		t->sas_ss_size = ss_size;
4049 		t->sas_ss_flags = ss_flags;
4050 	}
4051 	return 0;
4052 }
4053 
SYSCALL_DEFINE2(sigaltstack,const stack_t __user *,uss,stack_t __user *,uoss)4054 SYSCALL_DEFINE2(sigaltstack,const stack_t __user *,uss, stack_t __user *,uoss)
4055 {
4056 	stack_t new, old;
4057 	int err;
4058 	if (uss && copy_from_user(&new, uss, sizeof(stack_t)))
4059 		return -EFAULT;
4060 	err = do_sigaltstack(uss ? &new : NULL, uoss ? &old : NULL,
4061 			      current_user_stack_pointer(),
4062 			      MINSIGSTKSZ);
4063 	if (!err && uoss && copy_to_user(uoss, &old, sizeof(stack_t)))
4064 		err = -EFAULT;
4065 	return err;
4066 }
4067 
restore_altstack(const stack_t __user * uss)4068 int restore_altstack(const stack_t __user *uss)
4069 {
4070 	stack_t new;
4071 	if (copy_from_user(&new, uss, sizeof(stack_t)))
4072 		return -EFAULT;
4073 	(void)do_sigaltstack(&new, NULL, current_user_stack_pointer(),
4074 			     MINSIGSTKSZ);
4075 	/* squash all but EFAULT for now */
4076 	return 0;
4077 }
4078 
__save_altstack(stack_t __user * uss,unsigned long sp)4079 int __save_altstack(stack_t __user *uss, unsigned long sp)
4080 {
4081 	struct task_struct *t = current;
4082 	int err = __put_user((void __user *)t->sas_ss_sp, &uss->ss_sp) |
4083 		__put_user(t->sas_ss_flags, &uss->ss_flags) |
4084 		__put_user(t->sas_ss_size, &uss->ss_size);
4085 	if (err)
4086 		return err;
4087 	if (t->sas_ss_flags & SS_AUTODISARM)
4088 		sas_ss_reset(t);
4089 	return 0;
4090 }
4091 
4092 #ifdef CONFIG_COMPAT
do_compat_sigaltstack(const compat_stack_t __user * uss_ptr,compat_stack_t __user * uoss_ptr)4093 static int do_compat_sigaltstack(const compat_stack_t __user *uss_ptr,
4094 				 compat_stack_t __user *uoss_ptr)
4095 {
4096 	stack_t uss, uoss;
4097 	int ret;
4098 
4099 	if (uss_ptr) {
4100 		compat_stack_t uss32;
4101 		if (copy_from_user(&uss32, uss_ptr, sizeof(compat_stack_t)))
4102 			return -EFAULT;
4103 		uss.ss_sp = compat_ptr(uss32.ss_sp);
4104 		uss.ss_flags = uss32.ss_flags;
4105 		uss.ss_size = uss32.ss_size;
4106 	}
4107 	ret = do_sigaltstack(uss_ptr ? &uss : NULL, &uoss,
4108 			     compat_user_stack_pointer(),
4109 			     COMPAT_MINSIGSTKSZ);
4110 	if (ret >= 0 && uoss_ptr)  {
4111 		compat_stack_t old;
4112 		memset(&old, 0, sizeof(old));
4113 		old.ss_sp = ptr_to_compat(uoss.ss_sp);
4114 		old.ss_flags = uoss.ss_flags;
4115 		old.ss_size = uoss.ss_size;
4116 		if (copy_to_user(uoss_ptr, &old, sizeof(compat_stack_t)))
4117 			ret = -EFAULT;
4118 	}
4119 	return ret;
4120 }
4121 
COMPAT_SYSCALL_DEFINE2(sigaltstack,const compat_stack_t __user *,uss_ptr,compat_stack_t __user *,uoss_ptr)4122 COMPAT_SYSCALL_DEFINE2(sigaltstack,
4123 			const compat_stack_t __user *, uss_ptr,
4124 			compat_stack_t __user *, uoss_ptr)
4125 {
4126 	return do_compat_sigaltstack(uss_ptr, uoss_ptr);
4127 }
4128 
compat_restore_altstack(const compat_stack_t __user * uss)4129 int compat_restore_altstack(const compat_stack_t __user *uss)
4130 {
4131 	int err = do_compat_sigaltstack(uss, NULL);
4132 	/* squash all but -EFAULT for now */
4133 	return err == -EFAULT ? err : 0;
4134 }
4135 
__compat_save_altstack(compat_stack_t __user * uss,unsigned long sp)4136 int __compat_save_altstack(compat_stack_t __user *uss, unsigned long sp)
4137 {
4138 	int err;
4139 	struct task_struct *t = current;
4140 	err = __put_user(ptr_to_compat((void __user *)t->sas_ss_sp),
4141 			 &uss->ss_sp) |
4142 		__put_user(t->sas_ss_flags, &uss->ss_flags) |
4143 		__put_user(t->sas_ss_size, &uss->ss_size);
4144 	if (err)
4145 		return err;
4146 	if (t->sas_ss_flags & SS_AUTODISARM)
4147 		sas_ss_reset(t);
4148 	return 0;
4149 }
4150 #endif
4151 
4152 #ifdef __ARCH_WANT_SYS_SIGPENDING
4153 
4154 /**
4155  *  sys_sigpending - examine pending signals
4156  *  @uset: where mask of pending signal is returned
4157  */
SYSCALL_DEFINE1(sigpending,old_sigset_t __user *,uset)4158 SYSCALL_DEFINE1(sigpending, old_sigset_t __user *, uset)
4159 {
4160 	sigset_t set;
4161 
4162 	if (sizeof(old_sigset_t) > sizeof(*uset))
4163 		return -EINVAL;
4164 
4165 	do_sigpending(&set);
4166 
4167 	if (copy_to_user(uset, &set, sizeof(old_sigset_t)))
4168 		return -EFAULT;
4169 
4170 	return 0;
4171 }
4172 
4173 #ifdef CONFIG_COMPAT
COMPAT_SYSCALL_DEFINE1(sigpending,compat_old_sigset_t __user *,set32)4174 COMPAT_SYSCALL_DEFINE1(sigpending, compat_old_sigset_t __user *, set32)
4175 {
4176 	sigset_t set;
4177 
4178 	do_sigpending(&set);
4179 
4180 	return put_user(set.sig[0], set32);
4181 }
4182 #endif
4183 
4184 #endif
4185 
4186 #ifdef __ARCH_WANT_SYS_SIGPROCMASK
4187 /**
4188  *  sys_sigprocmask - examine and change blocked signals
4189  *  @how: whether to add, remove, or set signals
4190  *  @nset: signals to add or remove (if non-null)
4191  *  @oset: previous value of signal mask if non-null
4192  *
4193  * Some platforms have their own version with special arguments;
4194  * others support only sys_rt_sigprocmask.
4195  */
4196 
SYSCALL_DEFINE3(sigprocmask,int,how,old_sigset_t __user *,nset,old_sigset_t __user *,oset)4197 SYSCALL_DEFINE3(sigprocmask, int, how, old_sigset_t __user *, nset,
4198 		old_sigset_t __user *, oset)
4199 {
4200 	old_sigset_t old_set, new_set;
4201 	sigset_t new_blocked;
4202 
4203 	old_set = current->blocked.sig[0];
4204 
4205 	if (nset) {
4206 		if (copy_from_user(&new_set, nset, sizeof(*nset)))
4207 			return -EFAULT;
4208 
4209 		new_blocked = current->blocked;
4210 
4211 		switch (how) {
4212 		case SIG_BLOCK:
4213 			sigaddsetmask(&new_blocked, new_set);
4214 			break;
4215 		case SIG_UNBLOCK:
4216 			sigdelsetmask(&new_blocked, new_set);
4217 			break;
4218 		case SIG_SETMASK:
4219 			new_blocked.sig[0] = new_set;
4220 			break;
4221 		default:
4222 			return -EINVAL;
4223 		}
4224 
4225 		set_current_blocked(&new_blocked);
4226 	}
4227 
4228 	if (oset) {
4229 		if (copy_to_user(oset, &old_set, sizeof(*oset)))
4230 			return -EFAULT;
4231 	}
4232 
4233 	return 0;
4234 }
4235 #endif /* __ARCH_WANT_SYS_SIGPROCMASK */
4236 
4237 #ifndef CONFIG_ODD_RT_SIGACTION
4238 /**
4239  *  sys_rt_sigaction - alter an action taken by a process
4240  *  @sig: signal to be sent
4241  *  @act: new sigaction
4242  *  @oact: used to save the previous sigaction
4243  *  @sigsetsize: size of sigset_t type
4244  */
SYSCALL_DEFINE4(rt_sigaction,int,sig,const struct sigaction __user *,act,struct sigaction __user *,oact,size_t,sigsetsize)4245 SYSCALL_DEFINE4(rt_sigaction, int, sig,
4246 		const struct sigaction __user *, act,
4247 		struct sigaction __user *, oact,
4248 		size_t, sigsetsize)
4249 {
4250 	struct k_sigaction new_sa, old_sa;
4251 	int ret;
4252 
4253 	/* XXX: Don't preclude handling different sized sigset_t's.  */
4254 	if (sigsetsize != sizeof(sigset_t))
4255 		return -EINVAL;
4256 
4257 	if (act && copy_from_user(&new_sa.sa, act, sizeof(new_sa.sa)))
4258 		return -EFAULT;
4259 
4260 	ret = do_sigaction(sig, act ? &new_sa : NULL, oact ? &old_sa : NULL);
4261 	if (ret)
4262 		return ret;
4263 
4264 	if (oact && copy_to_user(oact, &old_sa.sa, sizeof(old_sa.sa)))
4265 		return -EFAULT;
4266 
4267 	return 0;
4268 }
4269 #ifdef CONFIG_COMPAT
COMPAT_SYSCALL_DEFINE4(rt_sigaction,int,sig,const struct compat_sigaction __user *,act,struct compat_sigaction __user *,oact,compat_size_t,sigsetsize)4270 COMPAT_SYSCALL_DEFINE4(rt_sigaction, int, sig,
4271 		const struct compat_sigaction __user *, act,
4272 		struct compat_sigaction __user *, oact,
4273 		compat_size_t, sigsetsize)
4274 {
4275 	struct k_sigaction new_ka, old_ka;
4276 #ifdef __ARCH_HAS_SA_RESTORER
4277 	compat_uptr_t restorer;
4278 #endif
4279 	int ret;
4280 
4281 	/* XXX: Don't preclude handling different sized sigset_t's.  */
4282 	if (sigsetsize != sizeof(compat_sigset_t))
4283 		return -EINVAL;
4284 
4285 	if (act) {
4286 		compat_uptr_t handler;
4287 		ret = get_user(handler, &act->sa_handler);
4288 		new_ka.sa.sa_handler = compat_ptr(handler);
4289 #ifdef __ARCH_HAS_SA_RESTORER
4290 		ret |= get_user(restorer, &act->sa_restorer);
4291 		new_ka.sa.sa_restorer = compat_ptr(restorer);
4292 #endif
4293 		ret |= get_compat_sigset(&new_ka.sa.sa_mask, &act->sa_mask);
4294 		ret |= get_user(new_ka.sa.sa_flags, &act->sa_flags);
4295 		if (ret)
4296 			return -EFAULT;
4297 	}
4298 
4299 	ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
4300 	if (!ret && oact) {
4301 		ret = put_user(ptr_to_compat(old_ka.sa.sa_handler),
4302 			       &oact->sa_handler);
4303 		ret |= put_compat_sigset(&oact->sa_mask, &old_ka.sa.sa_mask,
4304 					 sizeof(oact->sa_mask));
4305 		ret |= put_user(old_ka.sa.sa_flags, &oact->sa_flags);
4306 #ifdef __ARCH_HAS_SA_RESTORER
4307 		ret |= put_user(ptr_to_compat(old_ka.sa.sa_restorer),
4308 				&oact->sa_restorer);
4309 #endif
4310 	}
4311 	return ret;
4312 }
4313 #endif
4314 #endif /* !CONFIG_ODD_RT_SIGACTION */
4315 
4316 #ifdef CONFIG_OLD_SIGACTION
SYSCALL_DEFINE3(sigaction,int,sig,const struct old_sigaction __user *,act,struct old_sigaction __user *,oact)4317 SYSCALL_DEFINE3(sigaction, int, sig,
4318 		const struct old_sigaction __user *, act,
4319 	        struct old_sigaction __user *, oact)
4320 {
4321 	struct k_sigaction new_ka, old_ka;
4322 	int ret;
4323 
4324 	if (act) {
4325 		old_sigset_t mask;
4326 		if (!access_ok(act, sizeof(*act)) ||
4327 		    __get_user(new_ka.sa.sa_handler, &act->sa_handler) ||
4328 		    __get_user(new_ka.sa.sa_restorer, &act->sa_restorer) ||
4329 		    __get_user(new_ka.sa.sa_flags, &act->sa_flags) ||
4330 		    __get_user(mask, &act->sa_mask))
4331 			return -EFAULT;
4332 #ifdef __ARCH_HAS_KA_RESTORER
4333 		new_ka.ka_restorer = NULL;
4334 #endif
4335 		siginitset(&new_ka.sa.sa_mask, mask);
4336 	}
4337 
4338 	ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
4339 
4340 	if (!ret && oact) {
4341 		if (!access_ok(oact, sizeof(*oact)) ||
4342 		    __put_user(old_ka.sa.sa_handler, &oact->sa_handler) ||
4343 		    __put_user(old_ka.sa.sa_restorer, &oact->sa_restorer) ||
4344 		    __put_user(old_ka.sa.sa_flags, &oact->sa_flags) ||
4345 		    __put_user(old_ka.sa.sa_mask.sig[0], &oact->sa_mask))
4346 			return -EFAULT;
4347 	}
4348 
4349 	return ret;
4350 }
4351 #endif
4352 #ifdef CONFIG_COMPAT_OLD_SIGACTION
COMPAT_SYSCALL_DEFINE3(sigaction,int,sig,const struct compat_old_sigaction __user *,act,struct compat_old_sigaction __user *,oact)4353 COMPAT_SYSCALL_DEFINE3(sigaction, int, sig,
4354 		const struct compat_old_sigaction __user *, act,
4355 	        struct compat_old_sigaction __user *, oact)
4356 {
4357 	struct k_sigaction new_ka, old_ka;
4358 	int ret;
4359 	compat_old_sigset_t mask;
4360 	compat_uptr_t handler, restorer;
4361 
4362 	if (act) {
4363 		if (!access_ok(act, sizeof(*act)) ||
4364 		    __get_user(handler, &act->sa_handler) ||
4365 		    __get_user(restorer, &act->sa_restorer) ||
4366 		    __get_user(new_ka.sa.sa_flags, &act->sa_flags) ||
4367 		    __get_user(mask, &act->sa_mask))
4368 			return -EFAULT;
4369 
4370 #ifdef __ARCH_HAS_KA_RESTORER
4371 		new_ka.ka_restorer = NULL;
4372 #endif
4373 		new_ka.sa.sa_handler = compat_ptr(handler);
4374 		new_ka.sa.sa_restorer = compat_ptr(restorer);
4375 		siginitset(&new_ka.sa.sa_mask, mask);
4376 	}
4377 
4378 	ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
4379 
4380 	if (!ret && oact) {
4381 		if (!access_ok(oact, sizeof(*oact)) ||
4382 		    __put_user(ptr_to_compat(old_ka.sa.sa_handler),
4383 			       &oact->sa_handler) ||
4384 		    __put_user(ptr_to_compat(old_ka.sa.sa_restorer),
4385 			       &oact->sa_restorer) ||
4386 		    __put_user(old_ka.sa.sa_flags, &oact->sa_flags) ||
4387 		    __put_user(old_ka.sa.sa_mask.sig[0], &oact->sa_mask))
4388 			return -EFAULT;
4389 	}
4390 	return ret;
4391 }
4392 #endif
4393 
4394 #ifdef CONFIG_SGETMASK_SYSCALL
4395 
4396 /*
4397  * For backwards compatibility.  Functionality superseded by sigprocmask.
4398  */
SYSCALL_DEFINE0(sgetmask)4399 SYSCALL_DEFINE0(sgetmask)
4400 {
4401 	/* SMP safe */
4402 	return current->blocked.sig[0];
4403 }
4404 
SYSCALL_DEFINE1(ssetmask,int,newmask)4405 SYSCALL_DEFINE1(ssetmask, int, newmask)
4406 {
4407 	int old = current->blocked.sig[0];
4408 	sigset_t newset;
4409 
4410 	siginitset(&newset, newmask);
4411 	set_current_blocked(&newset);
4412 
4413 	return old;
4414 }
4415 #endif /* CONFIG_SGETMASK_SYSCALL */
4416 
4417 #ifdef __ARCH_WANT_SYS_SIGNAL
4418 /*
4419  * For backwards compatibility.  Functionality superseded by sigaction.
4420  */
SYSCALL_DEFINE2(signal,int,sig,__sighandler_t,handler)4421 SYSCALL_DEFINE2(signal, int, sig, __sighandler_t, handler)
4422 {
4423 	struct k_sigaction new_sa, old_sa;
4424 	int ret;
4425 
4426 	new_sa.sa.sa_handler = handler;
4427 	new_sa.sa.sa_flags = SA_ONESHOT | SA_NOMASK;
4428 	sigemptyset(&new_sa.sa.sa_mask);
4429 
4430 	ret = do_sigaction(sig, &new_sa, &old_sa);
4431 
4432 	return ret ? ret : (unsigned long)old_sa.sa.sa_handler;
4433 }
4434 #endif /* __ARCH_WANT_SYS_SIGNAL */
4435 
4436 #ifdef __ARCH_WANT_SYS_PAUSE
4437 
SYSCALL_DEFINE0(pause)4438 SYSCALL_DEFINE0(pause)
4439 {
4440 	while (!signal_pending(current)) {
4441 		__set_current_state(TASK_INTERRUPTIBLE);
4442 		schedule();
4443 	}
4444 	return -ERESTARTNOHAND;
4445 }
4446 
4447 #endif
4448 
sigsuspend(sigset_t * set)4449 static int sigsuspend(sigset_t *set)
4450 {
4451 	current->saved_sigmask = current->blocked;
4452 	set_current_blocked(set);
4453 
4454 	while (!signal_pending(current)) {
4455 		__set_current_state(TASK_INTERRUPTIBLE);
4456 		schedule();
4457 	}
4458 	set_restore_sigmask();
4459 	return -ERESTARTNOHAND;
4460 }
4461 
4462 /**
4463  *  sys_rt_sigsuspend - replace the signal mask for a value with the
4464  *	@unewset value until a signal is received
4465  *  @unewset: new signal mask value
4466  *  @sigsetsize: size of sigset_t type
4467  */
SYSCALL_DEFINE2(rt_sigsuspend,sigset_t __user *,unewset,size_t,sigsetsize)4468 SYSCALL_DEFINE2(rt_sigsuspend, sigset_t __user *, unewset, size_t, sigsetsize)
4469 {
4470 	sigset_t newset;
4471 
4472 	/* XXX: Don't preclude handling different sized sigset_t's.  */
4473 	if (sigsetsize != sizeof(sigset_t))
4474 		return -EINVAL;
4475 
4476 	if (copy_from_user(&newset, unewset, sizeof(newset)))
4477 		return -EFAULT;
4478 	return sigsuspend(&newset);
4479 }
4480 
4481 #ifdef CONFIG_COMPAT
COMPAT_SYSCALL_DEFINE2(rt_sigsuspend,compat_sigset_t __user *,unewset,compat_size_t,sigsetsize)4482 COMPAT_SYSCALL_DEFINE2(rt_sigsuspend, compat_sigset_t __user *, unewset, compat_size_t, sigsetsize)
4483 {
4484 	sigset_t newset;
4485 
4486 	/* XXX: Don't preclude handling different sized sigset_t's.  */
4487 	if (sigsetsize != sizeof(sigset_t))
4488 		return -EINVAL;
4489 
4490 	if (get_compat_sigset(&newset, unewset))
4491 		return -EFAULT;
4492 	return sigsuspend(&newset);
4493 }
4494 #endif
4495 
4496 #ifdef CONFIG_OLD_SIGSUSPEND
SYSCALL_DEFINE1(sigsuspend,old_sigset_t,mask)4497 SYSCALL_DEFINE1(sigsuspend, old_sigset_t, mask)
4498 {
4499 	sigset_t blocked;
4500 	siginitset(&blocked, mask);
4501 	return sigsuspend(&blocked);
4502 }
4503 #endif
4504 #ifdef CONFIG_OLD_SIGSUSPEND3
SYSCALL_DEFINE3(sigsuspend,int,unused1,int,unused2,old_sigset_t,mask)4505 SYSCALL_DEFINE3(sigsuspend, int, unused1, int, unused2, old_sigset_t, mask)
4506 {
4507 	sigset_t blocked;
4508 	siginitset(&blocked, mask);
4509 	return sigsuspend(&blocked);
4510 }
4511 #endif
4512 
arch_vma_name(struct vm_area_struct * vma)4513 __weak const char *arch_vma_name(struct vm_area_struct *vma)
4514 {
4515 	return NULL;
4516 }
4517 
siginfo_buildtime_checks(void)4518 static inline void siginfo_buildtime_checks(void)
4519 {
4520 	BUILD_BUG_ON(sizeof(struct siginfo) != SI_MAX_SIZE);
4521 
4522 	/* Verify the offsets in the two siginfos match */
4523 #define CHECK_OFFSET(field) \
4524 	BUILD_BUG_ON(offsetof(siginfo_t, field) != offsetof(kernel_siginfo_t, field))
4525 
4526 	/* kill */
4527 	CHECK_OFFSET(si_pid);
4528 	CHECK_OFFSET(si_uid);
4529 
4530 	/* timer */
4531 	CHECK_OFFSET(si_tid);
4532 	CHECK_OFFSET(si_overrun);
4533 	CHECK_OFFSET(si_value);
4534 
4535 	/* rt */
4536 	CHECK_OFFSET(si_pid);
4537 	CHECK_OFFSET(si_uid);
4538 	CHECK_OFFSET(si_value);
4539 
4540 	/* sigchld */
4541 	CHECK_OFFSET(si_pid);
4542 	CHECK_OFFSET(si_uid);
4543 	CHECK_OFFSET(si_status);
4544 	CHECK_OFFSET(si_utime);
4545 	CHECK_OFFSET(si_stime);
4546 
4547 	/* sigfault */
4548 	CHECK_OFFSET(si_addr);
4549 	CHECK_OFFSET(si_addr_lsb);
4550 	CHECK_OFFSET(si_lower);
4551 	CHECK_OFFSET(si_upper);
4552 	CHECK_OFFSET(si_pkey);
4553 
4554 	/* sigpoll */
4555 	CHECK_OFFSET(si_band);
4556 	CHECK_OFFSET(si_fd);
4557 
4558 	/* sigsys */
4559 	CHECK_OFFSET(si_call_addr);
4560 	CHECK_OFFSET(si_syscall);
4561 	CHECK_OFFSET(si_arch);
4562 #undef CHECK_OFFSET
4563 
4564 	/* usb asyncio */
4565 	BUILD_BUG_ON(offsetof(struct siginfo, si_pid) !=
4566 		     offsetof(struct siginfo, si_addr));
4567 	if (sizeof(int) == sizeof(void __user *)) {
4568 		BUILD_BUG_ON(sizeof_field(struct siginfo, si_pid) !=
4569 			     sizeof(void __user *));
4570 	} else {
4571 		BUILD_BUG_ON((sizeof_field(struct siginfo, si_pid) +
4572 			      sizeof_field(struct siginfo, si_uid)) !=
4573 			     sizeof(void __user *));
4574 		BUILD_BUG_ON(offsetofend(struct siginfo, si_pid) !=
4575 			     offsetof(struct siginfo, si_uid));
4576 	}
4577 #ifdef CONFIG_COMPAT
4578 	BUILD_BUG_ON(offsetof(struct compat_siginfo, si_pid) !=
4579 		     offsetof(struct compat_siginfo, si_addr));
4580 	BUILD_BUG_ON(sizeof_field(struct compat_siginfo, si_pid) !=
4581 		     sizeof(compat_uptr_t));
4582 	BUILD_BUG_ON(sizeof_field(struct compat_siginfo, si_pid) !=
4583 		     sizeof_field(struct siginfo, si_pid));
4584 #endif
4585 }
4586 
signals_init(void)4587 void __init signals_init(void)
4588 {
4589 	siginfo_buildtime_checks();
4590 
4591 	sigqueue_cachep = KMEM_CACHE(sigqueue, SLAB_PANIC | SLAB_ACCOUNT);
4592 }
4593 
4594 #ifdef CONFIG_KGDB_KDB
4595 #include <linux/kdb.h>
4596 /*
4597  * kdb_send_sig - Allows kdb to send signals without exposing
4598  * signal internals.  This function checks if the required locks are
4599  * available before calling the main signal code, to avoid kdb
4600  * deadlocks.
4601  */
kdb_send_sig(struct task_struct * t,int sig)4602 void kdb_send_sig(struct task_struct *t, int sig)
4603 {
4604 	static struct task_struct *kdb_prev_t;
4605 	int new_t, ret;
4606 	if (!spin_trylock(&t->sighand->siglock)) {
4607 		kdb_printf("Can't do kill command now.\n"
4608 			   "The sigmask lock is held somewhere else in "
4609 			   "kernel, try again later\n");
4610 		return;
4611 	}
4612 	new_t = kdb_prev_t != t;
4613 	kdb_prev_t = t;
4614 	if (t->state != TASK_RUNNING && new_t) {
4615 		spin_unlock(&t->sighand->siglock);
4616 		kdb_printf("Process is not RUNNING, sending a signal from "
4617 			   "kdb risks deadlock\n"
4618 			   "on the run queue locks. "
4619 			   "The signal has _not_ been sent.\n"
4620 			   "Reissue the kill command if you want to risk "
4621 			   "the deadlock.\n");
4622 		return;
4623 	}
4624 	ret = send_signal(sig, SEND_SIG_PRIV, t, PIDTYPE_PID);
4625 	spin_unlock(&t->sighand->siglock);
4626 	if (ret)
4627 		kdb_printf("Fail to deliver Signal %d to process %d.\n",
4628 			   sig, t->pid);
4629 	else
4630 		kdb_printf("Signal %d is sent to process %d.\n", sig, t->pid);
4631 }
4632 #endif	/* CONFIG_KGDB_KDB */
4633