• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright © 2016 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  */
23 
24 #include "nir.h"
25 #include "nir_builder.h"
26 #include "nir_deref.h"
27 
28 #include "util/bitscan.h"
29 #include "util/u_dynarray.h"
30 
31 static const bool debug = false;
32 
33 /**
34  * Variable-based copy propagation
35  *
36  * Normally, NIR trusts in SSA form for most of its copy-propagation needs.
37  * However, there are cases, especially when dealing with indirects, where SSA
38  * won't help you.  This pass is for those times.  Specifically, it handles
39  * the following things that the rest of NIR can't:
40  *
41  *  1) Copy-propagation on variables that have indirect access.  This includes
42  *     propagating from indirect stores into indirect loads.
43  *
44  *  2) Removal of redundant load_deref intrinsics.  We can't trust regular CSE
45  *     to do this because it isn't aware of variable writes that may alias the
46  *     value and make the former load invalid.
47  *
48  * This pass uses an intermediate solution between being local / "per-block"
49  * and a complete data-flow analysis.  It follows the control flow graph, and
50  * propagate the available copy information forward, invalidating data at each
51  * cf_node.
52  *
53  * Removal of dead writes to variables is handled by another pass.
54  */
55 
56 struct vars_written {
57    nir_variable_mode modes;
58 
59    /* Key is deref and value is the uintptr_t with the write mask. */
60    struct hash_table *derefs;
61 };
62 
63 struct value {
64    bool is_ssa;
65    union {
66       struct {
67          nir_ssa_def *def[NIR_MAX_VEC_COMPONENTS];
68          uint8_t component[NIR_MAX_VEC_COMPONENTS];
69       } ssa;
70       nir_deref_and_path deref;
71    };
72 };
73 
74 static void
value_set_ssa_components(struct value * value,nir_ssa_def * def,unsigned num_components)75 value_set_ssa_components(struct value *value, nir_ssa_def *def,
76                          unsigned num_components)
77 {
78    if (!value->is_ssa)
79       memset(&value->ssa, 0, sizeof(value->ssa));
80    value->is_ssa = true;
81    for (unsigned i = 0; i < num_components; i++) {
82       value->ssa.def[i] = def;
83       value->ssa.component[i] = i;
84    }
85 }
86 
87 struct copy_entry {
88    struct value src;
89 
90    nir_deref_and_path dst;
91 };
92 
93 struct copy_prop_var_state {
94    nir_function_impl *impl;
95 
96    void *mem_ctx;
97    void *lin_ctx;
98 
99    /* Maps nodes to vars_written.  Used to invalidate copy entries when
100     * visiting each node.
101     */
102    struct hash_table *vars_written_map;
103 
104    bool progress;
105 };
106 
107 static bool
value_equals_store_src(struct value * value,nir_intrinsic_instr * intrin)108 value_equals_store_src(struct value *value, nir_intrinsic_instr *intrin)
109 {
110    assert(intrin->intrinsic == nir_intrinsic_store_deref);
111    nir_component_mask_t write_mask = nir_intrinsic_write_mask(intrin);
112 
113    for (unsigned i = 0; i < intrin->num_components; i++) {
114       if ((write_mask & (1 << i)) &&
115           (value->ssa.def[i] != intrin->src[1].ssa ||
116            value->ssa.component[i] != i))
117          return false;
118    }
119 
120    return true;
121 }
122 
123 static struct vars_written *
create_vars_written(struct copy_prop_var_state * state)124 create_vars_written(struct copy_prop_var_state *state)
125 {
126    struct vars_written *written =
127       linear_zalloc_child(state->lin_ctx, sizeof(struct vars_written));
128    written->derefs = _mesa_pointer_hash_table_create(state->mem_ctx);
129    return written;
130 }
131 
132 static void
gather_vars_written(struct copy_prop_var_state * state,struct vars_written * written,nir_cf_node * cf_node)133 gather_vars_written(struct copy_prop_var_state *state,
134                     struct vars_written *written,
135                     nir_cf_node *cf_node)
136 {
137    struct vars_written *new_written = NULL;
138 
139    switch (cf_node->type) {
140    case nir_cf_node_function: {
141       nir_function_impl *impl = nir_cf_node_as_function(cf_node);
142       foreach_list_typed_safe(nir_cf_node, cf_node, node, &impl->body)
143          gather_vars_written(state, NULL, cf_node);
144       break;
145    }
146 
147    case nir_cf_node_block: {
148       if (!written)
149          break;
150 
151       nir_block *block = nir_cf_node_as_block(cf_node);
152       nir_foreach_instr(instr, block) {
153          if (instr->type == nir_instr_type_call) {
154             written->modes |= nir_var_shader_out |
155                               nir_var_shader_temp |
156                               nir_var_function_temp |
157                               nir_var_mem_ssbo |
158                               nir_var_mem_shared |
159                               nir_var_mem_global;
160             continue;
161          }
162 
163          if (instr->type != nir_instr_type_intrinsic)
164             continue;
165 
166          nir_intrinsic_instr *intrin = nir_instr_as_intrinsic(instr);
167          switch (intrin->intrinsic) {
168          case nir_intrinsic_control_barrier:
169          case nir_intrinsic_group_memory_barrier:
170          case nir_intrinsic_memory_barrier:
171             written->modes |= nir_var_shader_out |
172                               nir_var_mem_ssbo |
173                               nir_var_mem_shared |
174                               nir_var_mem_global;
175             break;
176 
177          case nir_intrinsic_scoped_barrier:
178             if (nir_intrinsic_memory_semantics(intrin) & NIR_MEMORY_ACQUIRE)
179                written->modes |= nir_intrinsic_memory_modes(intrin);
180             break;
181 
182          case nir_intrinsic_emit_vertex:
183          case nir_intrinsic_emit_vertex_with_counter:
184             written->modes = nir_var_shader_out;
185             break;
186 
187          case nir_intrinsic_trace_ray:
188          case nir_intrinsic_execute_callable:
189          case nir_intrinsic_rt_trace_ray:
190          case nir_intrinsic_rt_execute_callable: {
191             nir_deref_instr *payload =
192                nir_src_as_deref(*nir_get_shader_call_payload_src(intrin));
193 
194             nir_component_mask_t mask = (1 << glsl_get_vector_elements(payload->type)) - 1;
195 
196             struct hash_entry *ht_entry =
197                _mesa_hash_table_search(written->derefs, payload);
198             if (ht_entry) {
199                ht_entry->data = (void *)(mask | (uintptr_t)ht_entry->data);
200             } else {
201                _mesa_hash_table_insert(written->derefs, payload,
202                                        (void *)(uintptr_t)mask);
203             }
204             break;
205          }
206 
207          case nir_intrinsic_report_ray_intersection:
208             written->modes |= nir_var_mem_ssbo |
209                               nir_var_mem_global |
210                               nir_var_shader_call_data |
211                               nir_var_ray_hit_attrib;
212             break;
213 
214          case nir_intrinsic_ignore_ray_intersection:
215          case nir_intrinsic_terminate_ray:
216             written->modes |= nir_var_mem_ssbo |
217                               nir_var_mem_global |
218                               nir_var_shader_call_data;
219             break;
220 
221          case nir_intrinsic_deref_atomic_add:
222          case nir_intrinsic_deref_atomic_fadd:
223          case nir_intrinsic_deref_atomic_imin:
224          case nir_intrinsic_deref_atomic_umin:
225          case nir_intrinsic_deref_atomic_fmin:
226          case nir_intrinsic_deref_atomic_imax:
227          case nir_intrinsic_deref_atomic_umax:
228          case nir_intrinsic_deref_atomic_fmax:
229          case nir_intrinsic_deref_atomic_and:
230          case nir_intrinsic_deref_atomic_or:
231          case nir_intrinsic_deref_atomic_xor:
232          case nir_intrinsic_deref_atomic_exchange:
233          case nir_intrinsic_deref_atomic_comp_swap:
234          case nir_intrinsic_deref_atomic_fcomp_swap:
235          case nir_intrinsic_store_deref:
236          case nir_intrinsic_copy_deref:
237          case nir_intrinsic_memcpy_deref: {
238             /* Destination in all of store_deref, copy_deref and the atomics is src[0]. */
239             nir_deref_instr *dst = nir_src_as_deref(intrin->src[0]);
240 
241             uintptr_t mask = intrin->intrinsic == nir_intrinsic_store_deref ?
242                nir_intrinsic_write_mask(intrin) : (1 << glsl_get_vector_elements(dst->type)) - 1;
243 
244             struct hash_entry *ht_entry = _mesa_hash_table_search(written->derefs, dst);
245             if (ht_entry)
246                ht_entry->data = (void *)(mask | (uintptr_t)ht_entry->data);
247             else
248                _mesa_hash_table_insert(written->derefs, dst, (void *)mask);
249 
250             break;
251          }
252 
253          default:
254             break;
255          }
256       }
257 
258       break;
259    }
260 
261    case nir_cf_node_if: {
262       nir_if *if_stmt = nir_cf_node_as_if(cf_node);
263 
264       new_written = create_vars_written(state);
265 
266       foreach_list_typed_safe(nir_cf_node, cf_node, node, &if_stmt->then_list)
267          gather_vars_written(state, new_written, cf_node);
268 
269       foreach_list_typed_safe(nir_cf_node, cf_node, node, &if_stmt->else_list)
270          gather_vars_written(state, new_written, cf_node);
271 
272       break;
273    }
274 
275    case nir_cf_node_loop: {
276       nir_loop *loop = nir_cf_node_as_loop(cf_node);
277 
278       new_written = create_vars_written(state);
279 
280       foreach_list_typed_safe(nir_cf_node, cf_node, node, &loop->body)
281          gather_vars_written(state, new_written, cf_node);
282 
283       break;
284    }
285 
286    default:
287       unreachable("Invalid CF node type");
288    }
289 
290    if (new_written) {
291       /* Merge new information to the parent control flow node. */
292       if (written) {
293          written->modes |= new_written->modes;
294          hash_table_foreach(new_written->derefs, new_entry) {
295             struct hash_entry *old_entry =
296                _mesa_hash_table_search_pre_hashed(written->derefs, new_entry->hash,
297                                                   new_entry->key);
298             if (old_entry) {
299                nir_component_mask_t merged = (uintptr_t) new_entry->data |
300                                              (uintptr_t) old_entry->data;
301                old_entry->data = (void *) ((uintptr_t) merged);
302             } else {
303                _mesa_hash_table_insert_pre_hashed(written->derefs, new_entry->hash,
304                                                   new_entry->key, new_entry->data);
305             }
306          }
307       }
308       _mesa_hash_table_insert(state->vars_written_map, cf_node, new_written);
309    }
310 }
311 
312 static struct copy_entry *
copy_entry_create(struct util_dynarray * copies,nir_deref_and_path * deref)313 copy_entry_create(struct util_dynarray *copies,
314                   nir_deref_and_path *deref)
315 {
316    struct copy_entry new_entry = {
317       .dst = *deref,
318    };
319    util_dynarray_append(copies, struct copy_entry, new_entry);
320    return util_dynarray_top_ptr(copies, struct copy_entry);
321 }
322 
323 /* Remove copy entry by swapping it with the last element and reducing the
324  * size.  If used inside an iteration on copies, it must be a reverse
325  * (backwards) iteration.  It is safe to use in those cases because the swap
326  * will not affect the rest of the iteration.
327  */
328 static void
copy_entry_remove(struct util_dynarray * copies,struct copy_entry * entry)329 copy_entry_remove(struct util_dynarray *copies,
330                   struct copy_entry *entry)
331 {
332    const struct copy_entry *src =
333       util_dynarray_pop_ptr(copies, struct copy_entry);
334    if (src != entry)
335       *entry = *src;
336 }
337 
338 static bool
is_array_deref_of_vector(const nir_deref_and_path * deref)339 is_array_deref_of_vector(const nir_deref_and_path *deref)
340 {
341    if (deref->instr->deref_type != nir_deref_type_array)
342       return false;
343    nir_deref_instr *parent = nir_deref_instr_parent(deref->instr);
344    return glsl_type_is_vector(parent->type);
345 }
346 
347 static struct copy_entry *
lookup_entry_for_deref(struct copy_prop_var_state * state,struct util_dynarray * copies,nir_deref_and_path * deref,nir_deref_compare_result allowed_comparisons,bool * equal)348 lookup_entry_for_deref(struct copy_prop_var_state *state,
349                        struct util_dynarray *copies,
350                        nir_deref_and_path *deref,
351                        nir_deref_compare_result allowed_comparisons,
352                        bool *equal)
353 {
354    struct copy_entry *entry = NULL;
355    util_dynarray_foreach(copies, struct copy_entry, iter) {
356       nir_deref_compare_result result =
357          nir_compare_derefs_and_paths(state->mem_ctx, &iter->dst, deref);
358       if (result & allowed_comparisons) {
359          entry = iter;
360          if (result & nir_derefs_equal_bit) {
361             if (equal != NULL)
362                *equal = true;
363             break;
364          }
365          /* Keep looking in case we have an equal match later in the array. */
366       }
367    }
368 
369    return entry;
370 }
371 
372 static struct copy_entry *
lookup_entry_and_kill_aliases(struct copy_prop_var_state * state,struct util_dynarray * copies,nir_deref_and_path * deref,unsigned write_mask)373 lookup_entry_and_kill_aliases(struct copy_prop_var_state *state,
374                               struct util_dynarray *copies,
375                               nir_deref_and_path *deref,
376                               unsigned write_mask)
377 {
378    /* TODO: Take into account the write_mask. */
379 
380    nir_deref_instr *dst_match = NULL;
381    util_dynarray_foreach_reverse(copies, struct copy_entry, iter) {
382       if (!iter->src.is_ssa) {
383          /* If this write aliases the source of some entry, get rid of it */
384          nir_deref_compare_result result =
385             nir_compare_derefs_and_paths(state->mem_ctx, &iter->src.deref, deref);
386          if (result & nir_derefs_may_alias_bit) {
387             copy_entry_remove(copies, iter);
388             continue;
389          }
390       }
391 
392       nir_deref_compare_result comp =
393          nir_compare_derefs_and_paths(state->mem_ctx, &iter->dst, deref);
394 
395       if (comp & nir_derefs_equal_bit) {
396          /* Removing entries invalidate previous iter pointers, so we'll
397           * collect the matching entry later.  Just make sure it is unique.
398           */
399          assert(!dst_match);
400          dst_match = iter->dst.instr;
401       } else if (comp & nir_derefs_may_alias_bit) {
402          copy_entry_remove(copies, iter);
403       }
404    }
405 
406    struct copy_entry *entry = NULL;
407    if (dst_match) {
408       util_dynarray_foreach(copies, struct copy_entry, iter) {
409          if (iter->dst.instr == dst_match) {
410             entry = iter;
411             break;
412          }
413       }
414       assert(entry);
415    }
416    return entry;
417 }
418 
419 static void
kill_aliases(struct copy_prop_var_state * state,struct util_dynarray * copies,nir_deref_and_path * deref,unsigned write_mask)420 kill_aliases(struct copy_prop_var_state *state,
421              struct util_dynarray *copies,
422              nir_deref_and_path *deref,
423              unsigned write_mask)
424 {
425    /* TODO: Take into account the write_mask. */
426 
427    struct copy_entry *entry =
428       lookup_entry_and_kill_aliases(state, copies, deref, write_mask);
429    if (entry)
430       copy_entry_remove(copies, entry);
431 }
432 
433 static struct copy_entry *
get_entry_and_kill_aliases(struct copy_prop_var_state * state,struct util_dynarray * copies,nir_deref_and_path * deref,unsigned write_mask)434 get_entry_and_kill_aliases(struct copy_prop_var_state *state,
435                            struct util_dynarray *copies,
436                            nir_deref_and_path *deref,
437                            unsigned write_mask)
438 {
439    /* TODO: Take into account the write_mask. */
440 
441    struct copy_entry *entry =
442       lookup_entry_and_kill_aliases(state, copies, deref, write_mask);
443 
444    if (entry == NULL)
445       entry = copy_entry_create(copies, deref);
446 
447    return entry;
448 }
449 
450 static void
apply_barrier_for_modes(struct util_dynarray * copies,nir_variable_mode modes)451 apply_barrier_for_modes(struct util_dynarray *copies,
452                         nir_variable_mode modes)
453 {
454    util_dynarray_foreach_reverse(copies, struct copy_entry, iter) {
455       if (nir_deref_mode_may_be(iter->dst.instr, modes) ||
456           (!iter->src.is_ssa && nir_deref_mode_may_be(iter->src.deref.instr, modes)))
457          copy_entry_remove(copies, iter);
458    }
459 }
460 
461 static void
value_set_from_value(struct value * value,const struct value * from,unsigned base_index,unsigned write_mask)462 value_set_from_value(struct value *value, const struct value *from,
463                      unsigned base_index, unsigned write_mask)
464 {
465    /* We can't have non-zero indexes with non-trivial write masks */
466    assert(base_index == 0 || write_mask == 1);
467 
468    if (from->is_ssa) {
469       /* Clear value if it was being used as non-SSA. */
470       if (!value->is_ssa)
471          memset(&value->ssa, 0, sizeof(value->ssa));
472       value->is_ssa = true;
473       /* Only overwrite the written components */
474       for (unsigned i = 0; i < NIR_MAX_VEC_COMPONENTS; i++) {
475          if (write_mask & (1 << i)) {
476             value->ssa.def[base_index + i] = from->ssa.def[i];
477             value->ssa.component[base_index + i] = from->ssa.component[i];
478          }
479       }
480    } else {
481       /* Non-ssa stores always write everything */
482       value->is_ssa = false;
483       value->deref = from->deref;
484    }
485 }
486 
487 /* Try to load a single element of a vector from the copy_entry.  If the data
488  * isn't available, just let the original intrinsic do the work.
489  */
490 static bool
load_element_from_ssa_entry_value(struct copy_prop_var_state * state,struct copy_entry * entry,nir_builder * b,nir_intrinsic_instr * intrin,struct value * value,unsigned index)491 load_element_from_ssa_entry_value(struct copy_prop_var_state *state,
492                                   struct copy_entry *entry,
493                                   nir_builder *b, nir_intrinsic_instr *intrin,
494                                   struct value *value, unsigned index)
495 {
496    assert(index < glsl_get_vector_elements(entry->dst.instr->type));
497 
498    /* We don't have the element available, so let the instruction do the work. */
499    if (!entry->src.ssa.def[index])
500       return false;
501 
502    b->cursor = nir_instr_remove(&intrin->instr);
503    intrin->instr.block = NULL;
504 
505    assert(entry->src.ssa.component[index] <
506           entry->src.ssa.def[index]->num_components);
507    nir_ssa_def *def = nir_channel(b, entry->src.ssa.def[index],
508                                      entry->src.ssa.component[index]);
509 
510    *value = (struct value) {
511       .is_ssa = true,
512       {
513 	.ssa = {
514 	  .def = { def },
515 	  .component = { 0 },
516 	},
517       }
518    };
519 
520    return true;
521 }
522 
523 /* Do a "load" from an SSA-based entry return it in "value" as a value with a
524  * single SSA def.  Because an entry could reference multiple different SSA
525  * defs, a vecN operation may be inserted to combine them into a single SSA
526  * def before handing it back to the caller.  If the load instruction is no
527  * longer needed, it is removed and nir_instr::block is set to NULL.  (It is
528  * possible, in some cases, for the load to be used in the vecN operation in
529  * which case it isn't deleted.)
530  */
531 static bool
load_from_ssa_entry_value(struct copy_prop_var_state * state,struct copy_entry * entry,nir_builder * b,nir_intrinsic_instr * intrin,nir_deref_and_path * src,struct value * value)532 load_from_ssa_entry_value(struct copy_prop_var_state *state,
533                           struct copy_entry *entry,
534                           nir_builder *b, nir_intrinsic_instr *intrin,
535                           nir_deref_and_path *src, struct value *value)
536 {
537    if (is_array_deref_of_vector(src)) {
538       if (nir_src_is_const(src->instr->arr.index)) {
539          unsigned index = nir_src_as_uint(src->instr->arr.index);
540          return load_element_from_ssa_entry_value(state, entry, b, intrin,
541                                                   value, index);
542       }
543 
544       /* An SSA copy_entry for the vector won't help indirect load. */
545       if (glsl_type_is_vector(entry->dst.instr->type)) {
546          assert(entry->dst.instr->type == nir_deref_instr_parent(src->instr)->type);
547          /* TODO: If all SSA entries are there, try an if-ladder. */
548          return false;
549       }
550    }
551 
552    *value = entry->src;
553    assert(value->is_ssa);
554 
555    const struct glsl_type *type = entry->dst.instr->type;
556    unsigned num_components = glsl_get_vector_elements(type);
557 
558    nir_component_mask_t available = 0;
559    bool all_same = true;
560    for (unsigned i = 0; i < num_components; i++) {
561       if (value->ssa.def[i])
562          available |= (1 << i);
563 
564       if (value->ssa.def[i] != value->ssa.def[0])
565          all_same = false;
566 
567       if (value->ssa.component[i] != i)
568          all_same = false;
569    }
570 
571    if (all_same) {
572       /* Our work here is done */
573       b->cursor = nir_instr_remove(&intrin->instr);
574       intrin->instr.block = NULL;
575       return true;
576    }
577 
578    if (available != (1 << num_components) - 1 &&
579        intrin->intrinsic == nir_intrinsic_load_deref &&
580        (available & nir_ssa_def_components_read(&intrin->dest.ssa)) == 0) {
581       /* If none of the components read are available as SSA values, then we
582        * should just bail.  Otherwise, we would end up replacing the uses of
583        * the load_deref a vecN() that just gathers up its components.
584        */
585       return false;
586    }
587 
588    b->cursor = nir_after_instr(&intrin->instr);
589 
590    nir_ssa_def *load_def =
591       intrin->intrinsic == nir_intrinsic_load_deref ? &intrin->dest.ssa : NULL;
592 
593    bool keep_intrin = false;
594    nir_ssa_scalar comps[NIR_MAX_VEC_COMPONENTS];
595    for (unsigned i = 0; i < num_components; i++) {
596       if (value->ssa.def[i]) {
597          comps[i] = nir_get_ssa_scalar(value->ssa.def[i], value->ssa.component[i]);
598       } else {
599          /* We don't have anything for this component in our
600           * list.  Just re-use a channel from the load.
601           */
602          if (load_def == NULL)
603             load_def = nir_load_deref(b, entry->dst.instr);
604 
605          if (load_def->parent_instr == &intrin->instr)
606             keep_intrin = true;
607 
608          comps[i] = nir_get_ssa_scalar(load_def, i);
609       }
610    }
611 
612    nir_ssa_def *vec = nir_vec_scalars(b, comps, num_components);
613    value_set_ssa_components(value, vec, num_components);
614 
615    if (!keep_intrin) {
616       /* Removing this instruction should not touch the cursor because we
617        * created the cursor after the intrinsic and have added at least one
618        * instruction (the vec) since then.
619        */
620       assert(b->cursor.instr != &intrin->instr);
621       nir_instr_remove(&intrin->instr);
622       intrin->instr.block = NULL;
623    }
624 
625    return true;
626 }
627 
628 /**
629  * Specialize the wildcards in a deref chain
630  *
631  * This function returns a deref chain identical to \param deref except that
632  * some of its wildcards are replaced with indices from \param specific.  The
633  * process is guided by \param guide which references the same type as \param
634  * specific but has the same wildcard array lengths as \param deref.
635  */
636 static nir_deref_instr *
specialize_wildcards(nir_builder * b,nir_deref_path * deref,nir_deref_path * guide,nir_deref_path * specific)637 specialize_wildcards(nir_builder *b,
638                      nir_deref_path *deref,
639                      nir_deref_path *guide,
640                      nir_deref_path *specific)
641 {
642    nir_deref_instr **deref_p = &deref->path[1];
643    nir_deref_instr **guide_p = &guide->path[1];
644    nir_deref_instr **spec_p = &specific->path[1];
645    nir_deref_instr *ret_tail = deref->path[0];
646    for (; *deref_p; deref_p++) {
647       if ((*deref_p)->deref_type == nir_deref_type_array_wildcard) {
648          /* This is where things get tricky.  We have to search through
649           * the entry deref to find its corresponding wildcard and fill
650           * this slot in with the value from the src.
651           */
652          while (*guide_p &&
653                 (*guide_p)->deref_type != nir_deref_type_array_wildcard) {
654             guide_p++;
655             spec_p++;
656          }
657          assert(*guide_p && *spec_p);
658 
659          ret_tail = nir_build_deref_follower(b, ret_tail, *spec_p);
660 
661          guide_p++;
662          spec_p++;
663       } else {
664          ret_tail = nir_build_deref_follower(b, ret_tail, *deref_p);
665       }
666    }
667 
668    return ret_tail;
669 }
670 
671 /* Do a "load" from an deref-based entry return it in "value" as a value.  The
672  * deref returned in "value" will always be a fresh copy so the caller can
673  * steal it and assign it to the instruction directly without copying it
674  * again.
675  */
676 static bool
load_from_deref_entry_value(struct copy_prop_var_state * state,struct copy_entry * entry,nir_builder * b,nir_intrinsic_instr * intrin,nir_deref_and_path * src,struct value * value)677 load_from_deref_entry_value(struct copy_prop_var_state *state,
678                             struct copy_entry *entry,
679                             nir_builder *b, nir_intrinsic_instr *intrin,
680                             nir_deref_and_path *src, struct value *value)
681 {
682    *value = entry->src;
683 
684    b->cursor = nir_instr_remove(&intrin->instr);
685 
686    nir_deref_path *entry_dst_path = nir_get_deref_path(state->mem_ctx, &entry->dst);
687    nir_deref_path *src_path = nir_get_deref_path(state->mem_ctx, src);
688 
689    bool need_to_specialize_wildcards = false;
690    nir_deref_instr **entry_p = &entry_dst_path->path[1];
691    nir_deref_instr **src_p = &src_path->path[1];
692    while (*entry_p && *src_p) {
693       nir_deref_instr *entry_tail = *entry_p++;
694       nir_deref_instr *src_tail = *src_p++;
695 
696       if (src_tail->deref_type == nir_deref_type_array &&
697           entry_tail->deref_type == nir_deref_type_array_wildcard)
698          need_to_specialize_wildcards = true;
699    }
700 
701    /* If the entry deref is longer than the source deref then it refers to a
702     * smaller type and we can't source from it.
703     */
704    assert(*entry_p == NULL);
705 
706    value->deref._path = NULL;
707 
708    if (need_to_specialize_wildcards) {
709       /* The entry has some wildcards that are not in src.  This means we need
710        * to construct a new deref based on the entry but using the wildcards
711        * from the source and guided by the entry dst.  Oof.
712        */
713       nir_deref_path *entry_src_path =
714          nir_get_deref_path(state->mem_ctx, &entry->src.deref);
715       value->deref.instr = specialize_wildcards(b, entry_src_path,
716                                                 entry_dst_path, src_path);
717    }
718 
719    /* If our source deref is longer than the entry deref, that's ok because
720     * it just means the entry deref needs to be extended a bit.
721     */
722    while (*src_p) {
723       nir_deref_instr *src_tail = *src_p++;
724       value->deref.instr = nir_build_deref_follower(b, value->deref.instr, src_tail);
725    }
726 
727    return true;
728 }
729 
730 static bool
try_load_from_entry(struct copy_prop_var_state * state,struct copy_entry * entry,nir_builder * b,nir_intrinsic_instr * intrin,nir_deref_and_path * src,struct value * value)731 try_load_from_entry(struct copy_prop_var_state *state, struct copy_entry *entry,
732                     nir_builder *b, nir_intrinsic_instr *intrin,
733                     nir_deref_and_path *src, struct value *value)
734 {
735    if (entry == NULL)
736       return false;
737 
738    if (entry->src.is_ssa) {
739       return load_from_ssa_entry_value(state, entry, b, intrin, src, value);
740    } else {
741       return load_from_deref_entry_value(state, entry, b, intrin, src, value);
742    }
743 }
744 
745 static void
invalidate_copies_for_cf_node(struct copy_prop_var_state * state,struct util_dynarray * copies,nir_cf_node * cf_node)746 invalidate_copies_for_cf_node(struct copy_prop_var_state *state,
747                               struct util_dynarray *copies,
748                               nir_cf_node *cf_node)
749 {
750    struct hash_entry *ht_entry = _mesa_hash_table_search(state->vars_written_map, cf_node);
751    assert(ht_entry);
752 
753    struct vars_written *written = ht_entry->data;
754    if (written->modes) {
755       util_dynarray_foreach_reverse(copies, struct copy_entry, entry) {
756          if (nir_deref_mode_may_be(entry->dst.instr, written->modes))
757             copy_entry_remove(copies, entry);
758       }
759    }
760 
761    hash_table_foreach (written->derefs, entry) {
762       nir_deref_instr *deref_written = (nir_deref_instr *)entry->key;
763       nir_deref_and_path deref = {deref_written, NULL};
764       kill_aliases(state, copies, &deref, (uintptr_t)entry->data);
765    }
766 }
767 
768 static void
print_value(struct value * value,unsigned num_components)769 print_value(struct value *value, unsigned num_components)
770 {
771    if (!value->is_ssa) {
772       printf(" %s ", glsl_get_type_name(value->deref.instr->type));
773       nir_print_deref(value->deref.instr, stdout);
774       return;
775    }
776 
777    bool same_ssa = true;
778    for (unsigned i = 0; i < num_components; i++) {
779       if (value->ssa.component[i] != i ||
780           (i > 0 && value->ssa.def[i - 1] != value->ssa.def[i])) {
781          same_ssa = false;
782          break;
783       }
784    }
785    if (same_ssa) {
786       printf(" ssa_%d", value->ssa.def[0]->index);
787    } else {
788       for (int i = 0; i < num_components; i++) {
789          if (value->ssa.def[i])
790             printf(" ssa_%d[%u]", value->ssa.def[i]->index, value->ssa.component[i]);
791          else
792             printf(" _");
793       }
794    }
795 }
796 
797 static void
print_copy_entry(struct copy_entry * entry)798 print_copy_entry(struct copy_entry *entry)
799 {
800    printf("    %s ", glsl_get_type_name(entry->dst.instr->type));
801    nir_print_deref(entry->dst.instr, stdout);
802    printf(":\t");
803 
804    unsigned num_components = glsl_get_vector_elements(entry->dst.instr->type);
805    print_value(&entry->src, num_components);
806    printf("\n");
807 }
808 
809 static void
dump_instr(nir_instr * instr)810 dump_instr(nir_instr *instr)
811 {
812    printf("  ");
813    nir_print_instr(instr, stdout);
814    printf("\n");
815 }
816 
817 static void
dump_copy_entries(struct util_dynarray * copies)818 dump_copy_entries(struct util_dynarray *copies)
819 {
820    util_dynarray_foreach(copies, struct copy_entry, iter)
821       print_copy_entry(iter);
822    printf("\n");
823 }
824 
825 static void
copy_prop_vars_block(struct copy_prop_var_state * state,nir_builder * b,nir_block * block,struct util_dynarray * copies)826 copy_prop_vars_block(struct copy_prop_var_state *state,
827                      nir_builder *b, nir_block *block,
828                      struct util_dynarray *copies)
829 {
830    if (debug) {
831       printf("# block%d\n", block->index);
832       dump_copy_entries(copies);
833    }
834 
835    nir_foreach_instr_safe(instr, block) {
836       if (debug && instr->type == nir_instr_type_deref)
837          dump_instr(instr);
838 
839       if (instr->type == nir_instr_type_call) {
840          if (debug) dump_instr(instr);
841          apply_barrier_for_modes(copies, nir_var_shader_out |
842                                          nir_var_shader_temp |
843                                          nir_var_function_temp |
844                                          nir_var_mem_ssbo |
845                                          nir_var_mem_shared |
846                                          nir_var_mem_global);
847          if (debug) dump_copy_entries(copies);
848          continue;
849       }
850 
851       if (instr->type != nir_instr_type_intrinsic)
852          continue;
853 
854       nir_intrinsic_instr *intrin = nir_instr_as_intrinsic(instr);
855       switch (intrin->intrinsic) {
856       case nir_intrinsic_control_barrier:
857       case nir_intrinsic_memory_barrier:
858          if (debug) dump_instr(instr);
859 
860          apply_barrier_for_modes(copies, nir_var_shader_out |
861                                          nir_var_mem_ssbo |
862                                          nir_var_mem_shared |
863                                          nir_var_mem_global);
864          break;
865 
866       case nir_intrinsic_memory_barrier_buffer:
867          if (debug) dump_instr(instr);
868 
869          apply_barrier_for_modes(copies, nir_var_mem_ssbo |
870                                          nir_var_mem_global);
871          break;
872 
873       case nir_intrinsic_memory_barrier_shared:
874          if (debug) dump_instr(instr);
875 
876          apply_barrier_for_modes(copies, nir_var_mem_shared);
877          break;
878 
879       case nir_intrinsic_memory_barrier_tcs_patch:
880          if (debug) dump_instr(instr);
881 
882          apply_barrier_for_modes(copies, nir_var_shader_out);
883          break;
884 
885       case nir_intrinsic_scoped_barrier:
886          if (debug) dump_instr(instr);
887 
888          if (nir_intrinsic_memory_semantics(intrin) & NIR_MEMORY_ACQUIRE)
889             apply_barrier_for_modes(copies, nir_intrinsic_memory_modes(intrin));
890          break;
891 
892       case nir_intrinsic_emit_vertex:
893       case nir_intrinsic_emit_vertex_with_counter:
894          if (debug) dump_instr(instr);
895 
896          apply_barrier_for_modes(copies, nir_var_shader_out);
897          break;
898 
899       case nir_intrinsic_report_ray_intersection:
900          apply_barrier_for_modes(copies, nir_var_mem_ssbo |
901                                          nir_var_mem_global |
902                                          nir_var_shader_call_data |
903                                          nir_var_ray_hit_attrib);
904          break;
905 
906       case nir_intrinsic_ignore_ray_intersection:
907       case nir_intrinsic_terminate_ray:
908          apply_barrier_for_modes(copies, nir_var_mem_ssbo |
909                                          nir_var_mem_global |
910                                          nir_var_shader_call_data);
911          break;
912 
913       case nir_intrinsic_load_deref: {
914          if (debug) dump_instr(instr);
915 
916          if (nir_intrinsic_access(intrin) & ACCESS_VOLATILE)
917             break;
918 
919          nir_deref_and_path src = {nir_src_as_deref(intrin->src[0]), NULL};
920 
921          /* If this is a load from a read-only mode, then all this pass would
922           * do is combine redundant loads and CSE should be more efficient for
923           * that.
924           */
925          nir_variable_mode ignore = nir_var_read_only_modes & ~nir_var_vec_indexable_modes;
926          if (nir_deref_mode_must_be(src.instr, ignore))
927             break;
928 
929          /* Direct array_derefs of vectors operate on the vectors (the parent
930           * deref).  Indirects will be handled like other derefs.
931           */
932          int vec_index = 0;
933          nir_deref_and_path vec_src = src;
934          if (is_array_deref_of_vector(&src) && nir_src_is_const(src.instr->arr.index)) {
935             vec_src.instr = nir_deref_instr_parent(src.instr);
936             unsigned vec_comps = glsl_get_vector_elements(vec_src.instr->type);
937             vec_index = nir_src_as_uint(src.instr->arr.index);
938 
939             /* Loading from an invalid index yields an undef */
940             if (vec_index >= vec_comps) {
941                b->cursor = nir_instr_remove(instr);
942                nir_ssa_def *u = nir_ssa_undef(b, 1, intrin->dest.ssa.bit_size);
943                nir_ssa_def_rewrite_uses(&intrin->dest.ssa, u);
944                state->progress = true;
945                break;
946             }
947          }
948 
949          bool src_entry_equal = false;
950          struct copy_entry *src_entry =
951             lookup_entry_for_deref(state, copies, &src,
952                                    nir_derefs_a_contains_b_bit, &src_entry_equal);
953          struct value value = {0};
954          if (try_load_from_entry(state, src_entry, b, intrin, &src, &value)) {
955             if (value.is_ssa) {
956                /* lookup_load has already ensured that we get a single SSA
957                 * value that has all of the channels.  We just have to do the
958                 * rewrite operation.  Note for array derefs of vectors, the
959                 * channel 0 is used.
960                 */
961                if (intrin->instr.block) {
962                   /* The lookup left our instruction in-place.  This means it
963                    * must have used it to vec up a bunch of different sources.
964                    * We need to be careful when rewriting uses so we don't
965                    * rewrite the vecN itself.
966                    */
967                   nir_ssa_def_rewrite_uses_after(&intrin->dest.ssa,
968                                                  value.ssa.def[0],
969                                                  value.ssa.def[0]->parent_instr);
970                } else {
971                   nir_ssa_def_rewrite_uses(&intrin->dest.ssa,
972                                            value.ssa.def[0]);
973                }
974             } else {
975                /* We're turning it into a load of a different variable */
976                intrin->src[0] = nir_src_for_ssa(&value.deref.instr->dest.ssa);
977 
978                /* Put it back in again. */
979                nir_builder_instr_insert(b, instr);
980                value_set_ssa_components(&value, &intrin->dest.ssa,
981                                         intrin->num_components);
982             }
983             state->progress = true;
984          } else {
985             value_set_ssa_components(&value, &intrin->dest.ssa,
986                                      intrin->num_components);
987          }
988 
989          /* Now that we have a value, we're going to store it back so that we
990           * have the right value next time we come looking for it.  In order
991           * to do this, we need an exact match, not just something that
992           * contains what we're looking for.
993           *
994           * We avoid doing another lookup if src.instr == vec_src.instr.
995           */
996          struct copy_entry *entry = src_entry;
997          if (src.instr != vec_src.instr)
998             entry = lookup_entry_for_deref(state, copies, &vec_src,
999                                            nir_derefs_equal_bit, NULL);
1000          else if (!src_entry_equal)
1001             entry = NULL;
1002 
1003          if (!entry)
1004             entry = copy_entry_create(copies, &vec_src);
1005 
1006          /* Update the entry with the value of the load.  This way
1007           * we can potentially remove subsequent loads.
1008           */
1009          value_set_from_value(&entry->src, &value, vec_index,
1010                               (1 << intrin->num_components) - 1);
1011          break;
1012       }
1013 
1014       case nir_intrinsic_store_deref: {
1015          if (debug) dump_instr(instr);
1016 
1017          nir_deref_and_path dst = {nir_src_as_deref(intrin->src[0]), NULL};
1018          assert(glsl_type_is_vector_or_scalar(dst.instr->type));
1019 
1020          /* Direct array_derefs of vectors operate on the vectors (the parent
1021           * deref).  Indirects will be handled like other derefs.
1022           */
1023          int vec_index = 0;
1024          nir_deref_and_path vec_dst = dst;
1025          if (is_array_deref_of_vector(&dst) && nir_src_is_const(dst.instr->arr.index)) {
1026             vec_dst.instr = nir_deref_instr_parent(dst.instr);
1027             unsigned vec_comps = glsl_get_vector_elements(vec_dst.instr->type);
1028 
1029             vec_index = nir_src_as_uint(dst.instr->arr.index);
1030 
1031             /* Storing to an invalid index is a no-op. */
1032             if (vec_index >= vec_comps) {
1033                nir_instr_remove(instr);
1034                state->progress = true;
1035                break;
1036             }
1037          }
1038 
1039          if (nir_intrinsic_access(intrin) & ACCESS_VOLATILE) {
1040             unsigned wrmask = nir_intrinsic_write_mask(intrin);
1041             kill_aliases(state, copies, &dst, wrmask);
1042             break;
1043          }
1044 
1045          struct copy_entry *entry =
1046             lookup_entry_for_deref(state, copies, &dst, nir_derefs_equal_bit, NULL);
1047          if (entry && value_equals_store_src(&entry->src, intrin)) {
1048             /* If we are storing the value from a load of the same var the
1049              * store is redundant so remove it.
1050              */
1051             nir_instr_remove(instr);
1052             state->progress = true;
1053          } else {
1054             struct value value = {0};
1055             value_set_ssa_components(&value, intrin->src[1].ssa,
1056                                      intrin->num_components);
1057             unsigned wrmask = nir_intrinsic_write_mask(intrin);
1058             struct copy_entry *entry =
1059                get_entry_and_kill_aliases(state, copies, &vec_dst, wrmask);
1060             value_set_from_value(&entry->src, &value, vec_index, wrmask);
1061          }
1062 
1063          break;
1064       }
1065 
1066       case nir_intrinsic_copy_deref: {
1067          if (debug) dump_instr(instr);
1068 
1069          nir_deref_and_path dst = {nir_src_as_deref(intrin->src[0]), NULL};
1070          nir_deref_and_path src = {nir_src_as_deref(intrin->src[1]), NULL};
1071 
1072          /* The copy_deref intrinsic doesn't keep track of num_components, so
1073           * get it ourselves.
1074           */
1075          unsigned num_components = glsl_get_vector_elements(dst.instr->type);
1076          unsigned full_mask = (1 << num_components) - 1;
1077 
1078          if ((nir_intrinsic_src_access(intrin) & ACCESS_VOLATILE) ||
1079              (nir_intrinsic_dst_access(intrin) & ACCESS_VOLATILE)) {
1080             kill_aliases(state, copies, &dst, full_mask);
1081             break;
1082          }
1083 
1084          nir_deref_compare_result comp =
1085             nir_compare_derefs_and_paths(state->mem_ctx, &src, &dst);
1086          if (comp & nir_derefs_equal_bit) {
1087             /* This is a no-op self-copy.  Get rid of it */
1088             nir_instr_remove(instr);
1089             state->progress = true;
1090             continue;
1091          }
1092 
1093          /* Copy of direct array derefs of vectors are not handled.  Just
1094           * invalidate what's written and bail.
1095           */
1096          if ((is_array_deref_of_vector(&src) && nir_src_is_const(src.instr->arr.index)) ||
1097              (is_array_deref_of_vector(&dst) && nir_src_is_const(dst.instr->arr.index))) {
1098             kill_aliases(state, copies, &dst, full_mask);
1099             break;
1100          }
1101 
1102          struct copy_entry *src_entry =
1103             lookup_entry_for_deref(state, copies, &src, nir_derefs_a_contains_b_bit, NULL);
1104          struct value value;
1105          if (try_load_from_entry(state, src_entry, b, intrin, &src, &value)) {
1106             /* If load works, intrin (the copy_deref) is removed. */
1107             if (value.is_ssa) {
1108                nir_store_deref(b, dst.instr, value.ssa.def[0], full_mask);
1109             } else {
1110                /* If this would be a no-op self-copy, don't bother. */
1111                comp = nir_compare_derefs_and_paths(state->mem_ctx, &value.deref, &dst);
1112                if (comp & nir_derefs_equal_bit)
1113                   continue;
1114 
1115                /* Just turn it into a copy of a different deref */
1116                intrin->src[1] = nir_src_for_ssa(&value.deref.instr->dest.ssa);
1117 
1118                /* Put it back in again. */
1119                nir_builder_instr_insert(b, instr);
1120             }
1121 
1122             state->progress = true;
1123          } else {
1124             value = (struct value) {
1125                .is_ssa = false,
1126                { .deref = src },
1127             };
1128          }
1129 
1130          nir_variable *src_var = nir_deref_instr_get_variable(src.instr);
1131          if (src_var && src_var->data.cannot_coalesce) {
1132             /* The source cannot be coaleseced, which means we can't propagate
1133              * this copy.
1134              */
1135             break;
1136          }
1137 
1138          struct copy_entry *dst_entry =
1139             get_entry_and_kill_aliases(state, copies, &dst, full_mask);
1140          value_set_from_value(&dst_entry->src, &value, 0, full_mask);
1141          break;
1142       }
1143 
1144       case nir_intrinsic_trace_ray:
1145       case nir_intrinsic_execute_callable:
1146       case nir_intrinsic_rt_trace_ray:
1147       case nir_intrinsic_rt_execute_callable: {
1148          if (debug) dump_instr(instr);
1149 
1150          nir_deref_and_path payload = {
1151             nir_src_as_deref(*nir_get_shader_call_payload_src(intrin)), NULL};
1152          nir_component_mask_t full_mask = (1 << glsl_get_vector_elements(payload.instr->type)) - 1;
1153          kill_aliases(state, copies, &payload, full_mask);
1154          break;
1155       }
1156 
1157       case nir_intrinsic_memcpy_deref:
1158       case nir_intrinsic_deref_atomic_add:
1159       case nir_intrinsic_deref_atomic_fadd:
1160       case nir_intrinsic_deref_atomic_imin:
1161       case nir_intrinsic_deref_atomic_umin:
1162       case nir_intrinsic_deref_atomic_fmin:
1163       case nir_intrinsic_deref_atomic_imax:
1164       case nir_intrinsic_deref_atomic_umax:
1165       case nir_intrinsic_deref_atomic_fmax:
1166       case nir_intrinsic_deref_atomic_and:
1167       case nir_intrinsic_deref_atomic_or:
1168       case nir_intrinsic_deref_atomic_xor:
1169       case nir_intrinsic_deref_atomic_exchange:
1170       case nir_intrinsic_deref_atomic_comp_swap:
1171       case nir_intrinsic_deref_atomic_fcomp_swap:
1172          if (debug) dump_instr(instr);
1173 
1174          nir_deref_and_path dst = {nir_src_as_deref(intrin->src[0]), NULL};
1175          unsigned num_components = glsl_get_vector_elements(dst.instr->type);
1176          unsigned full_mask = (1 << num_components) - 1;
1177          kill_aliases(state, copies, &dst, full_mask);
1178          break;
1179 
1180       case nir_intrinsic_store_deref_block_intel: {
1181          if (debug) dump_instr(instr);
1182 
1183          /* Invalidate the whole variable (or cast) and anything that alias
1184           * with it.
1185           */
1186          nir_deref_and_path dst = {nir_src_as_deref(intrin->src[0]), NULL};
1187          while (nir_deref_instr_parent(dst.instr))
1188             dst.instr = nir_deref_instr_parent(dst.instr);
1189          assert(dst.instr->deref_type == nir_deref_type_var ||
1190                 dst.instr->deref_type == nir_deref_type_cast);
1191 
1192          unsigned num_components = glsl_get_vector_elements(dst.instr->type);
1193          unsigned full_mask = (1 << num_components) - 1;
1194          kill_aliases(state, copies, &dst, full_mask);
1195          break;
1196       }
1197 
1198       default:
1199          continue; /* To skip the debug below. */
1200       }
1201 
1202       if (debug) dump_copy_entries(copies);
1203    }
1204 }
1205 
1206 static void
copy_prop_vars_cf_node(struct copy_prop_var_state * state,struct util_dynarray * copies,nir_cf_node * cf_node)1207 copy_prop_vars_cf_node(struct copy_prop_var_state *state,
1208                        struct util_dynarray *copies,
1209                        nir_cf_node *cf_node)
1210 {
1211    switch (cf_node->type) {
1212    case nir_cf_node_function: {
1213       nir_function_impl *impl = nir_cf_node_as_function(cf_node);
1214 
1215       struct util_dynarray impl_copies;
1216       util_dynarray_init(&impl_copies, state->mem_ctx);
1217 
1218       foreach_list_typed_safe(nir_cf_node, cf_node, node, &impl->body)
1219          copy_prop_vars_cf_node(state, &impl_copies, cf_node);
1220 
1221       break;
1222    }
1223 
1224    case nir_cf_node_block: {
1225       nir_block *block = nir_cf_node_as_block(cf_node);
1226       nir_builder b;
1227       nir_builder_init(&b, state->impl);
1228       copy_prop_vars_block(state, &b, block, copies);
1229       break;
1230    }
1231 
1232    case nir_cf_node_if: {
1233       nir_if *if_stmt = nir_cf_node_as_if(cf_node);
1234 
1235       /* Clone the copies for each branch of the if statement.  The idea is
1236        * that they both see the same state of available copies, but do not
1237        * interfere to each other.
1238        */
1239 
1240       struct util_dynarray then_copies;
1241       util_dynarray_clone(&then_copies, state->mem_ctx, copies);
1242 
1243       struct util_dynarray else_copies;
1244       util_dynarray_clone(&else_copies, state->mem_ctx, copies);
1245 
1246       foreach_list_typed_safe(nir_cf_node, cf_node, node, &if_stmt->then_list)
1247          copy_prop_vars_cf_node(state, &then_copies, cf_node);
1248 
1249       foreach_list_typed_safe(nir_cf_node, cf_node, node, &if_stmt->else_list)
1250          copy_prop_vars_cf_node(state, &else_copies, cf_node);
1251 
1252       /* Both branches copies can be ignored, since the effect of running both
1253        * branches was captured in the first pass that collects vars_written.
1254        */
1255 
1256       invalidate_copies_for_cf_node(state, copies, cf_node);
1257 
1258       break;
1259    }
1260 
1261    case nir_cf_node_loop: {
1262       nir_loop *loop = nir_cf_node_as_loop(cf_node);
1263 
1264       /* Invalidate before cloning the copies for the loop, since the loop
1265        * body can be executed more than once.
1266        */
1267 
1268       invalidate_copies_for_cf_node(state, copies, cf_node);
1269 
1270       struct util_dynarray loop_copies;
1271       util_dynarray_clone(&loop_copies, state->mem_ctx, copies);
1272 
1273       foreach_list_typed_safe(nir_cf_node, cf_node, node, &loop->body)
1274          copy_prop_vars_cf_node(state, &loop_copies, cf_node);
1275 
1276       break;
1277    }
1278 
1279    default:
1280       unreachable("Invalid CF node type");
1281    }
1282 }
1283 
1284 static bool
nir_copy_prop_vars_impl(nir_function_impl * impl)1285 nir_copy_prop_vars_impl(nir_function_impl *impl)
1286 {
1287    void *mem_ctx = ralloc_context(NULL);
1288 
1289    if (debug) {
1290       nir_metadata_require(impl, nir_metadata_block_index);
1291       printf("## nir_copy_prop_vars_impl for %s\n", impl->function->name);
1292    }
1293 
1294    struct copy_prop_var_state state = {
1295       .impl = impl,
1296       .mem_ctx = mem_ctx,
1297       .lin_ctx = linear_zalloc_parent(mem_ctx, 0),
1298 
1299       .vars_written_map = _mesa_pointer_hash_table_create(mem_ctx),
1300    };
1301 
1302    gather_vars_written(&state, NULL, &impl->cf_node);
1303 
1304    copy_prop_vars_cf_node(&state, NULL, &impl->cf_node);
1305 
1306    if (state.progress) {
1307       nir_metadata_preserve(impl, nir_metadata_block_index |
1308                                   nir_metadata_dominance);
1309    } else {
1310       nir_metadata_preserve(impl, nir_metadata_all);
1311    }
1312 
1313    ralloc_free(mem_ctx);
1314    return state.progress;
1315 }
1316 
1317 bool
nir_opt_copy_prop_vars(nir_shader * shader)1318 nir_opt_copy_prop_vars(nir_shader *shader)
1319 {
1320    bool progress = false;
1321 
1322    nir_foreach_function(function, shader) {
1323       if (!function->impl)
1324          continue;
1325       progress |= nir_copy_prop_vars_impl(function->impl);
1326    }
1327 
1328    return progress;
1329 }
1330