1 /*
2 ** Copyright (C) 1999-2014 Erik de Castro Lopo <erikd@mega-nerd.com>
3 ** Copyright (C) 2017 Arthur Taylor <art@ified.ca>
4 **
5 ** This program is free software; you can redistribute it and/or modify
6 ** it under the terms of the GNU Lesser General Public License as published by
7 ** the Free Software Foundation; either version 2.1 of the License, or
8 ** (at your option) any later version.
9 **
10 ** This program is distributed in the hope that it will be useful,
11 ** but WITHOUT ANY WARRANTY; without even the implied warranty of
12 ** MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 ** GNU Lesser General Public License for more details.
14 **
15 ** You should have received a copy of the GNU Lesser General Public License
16 ** along with this program; if not, write to the Free Software
17 ** Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
18 */
19
20 /*
21 ** This is a Natural MicroSystems ADPCM encoder/decoder. It converts 14 bit linear
22 ** PCM to and from either a 2, 3, or 4 bit ADPCM. NMS-ADPCM does not have appeared
23 ** to have ever been publicly documented, and appears to have debuted in the early
24 ** 90s in the Natural Access suite of PC-based telephony products. Raw NMS ADPCM
25 ** files usually have a .vce extension, although this does not encode what bitrate
26 ** is used.
27 **
28 ** NMS-ADPCM is an 'optimised variation' of the ITU G.726 ADPCM scheme. The dominant
29 ** variation is that it removes the tone (modem) operation mode, and it's associated
30 ** voice/modem transition detection. This simplifies the computation of the step
31 ** size multiplier, as all operations on it remain in a log domain.
32 */
33
34 #include "sfconfig.h"
35
36 #include <math.h>
37
38 #include "sndfile.h"
39 #include "sfendian.h"
40 #include "common.h"
41
42
43 #define NMS_SAMPLES_PER_BLOCK 160
44 #define NMS_BLOCK_SHORTS_32 41
45 #define NMS_BLOCK_SHORTS_24 31
46 #define NMS_BLOCK_SHORTS_16 21
47
48 /* Variable names from ITU G.726 spec */
49 struct nms_adpcm_state
50 { /* Log of the step size multiplier. Operated on by codewords. */
51 int yl ;
52
53 /* Quantizer step size multiplier. Generated from yl. */
54 int y ;
55
56 /* Coefficents of the pole predictor */
57 int a [2] ;
58
59 /* Coefficents of the zero predictor */
60 int b [6] ;
61
62 /* Previous quantized deltas (multiplied by 2^14) */
63 int d_q [7] ;
64
65 /* d_q [x] + s_ez [x], used by the pole-predictor for signs only. */
66 int p [3] ;
67
68 /* Previous reconstructed signal values. */
69 int s_r [2] ;
70
71 /* Zero predictor components of the signal estimate. */
72 int s_ez ;
73
74 /* Signal estimate, (including s_ez). */
75 int s_e ;
76
77 /* The most recent codeword (enc:generated, dec:inputted) */
78 int Ik ;
79
80 int parity ;
81
82 /*
83 ** Offset into code tables for the bitrate.
84 ** 2-bit words: +0
85 ** 3-bit words: +8
86 ** 4-bit words: +16
87 */
88 int t_off ;
89 } ;
90
91 enum nms_enc_type
92 { NMS16,
93 NMS24,
94 NMS32
95 } ;
96
97 typedef struct
98 { struct nms_adpcm_state state ;
99
100 /* The encoding type */
101 enum nms_enc_type type ;
102
103 int shortsperblock ;
104 int blocks_total ;
105 int block_curr, sample_curr ;
106
107 unsigned short block [NMS_BLOCK_SHORTS_32] ;
108 short samples [NMS_SAMPLES_PER_BLOCK] ;
109 } NMS_ADPCM_PRIVATE ;
110
111 /* Pre-computed exponential interval used in the antilog approximation. */
112 static unsigned int table_expn [] =
113 { 0x4000, 0x4167, 0x42d5, 0x444c, 0x45cb, 0x4752, 0x48e2, 0x4a7a,
114 0x4c1b, 0x4dc7, 0x4f7a, 0x5138, 0x52ff, 0x54d1, 0x56ac, 0x5892,
115 0x5a82, 0x5c7e, 0x5e84, 0x6096, 0x62b4, 0x64dd, 0x6712, 0x6954,
116 0x6ba2, 0x6dfe, 0x7066, 0x72dc, 0x7560, 0x77f2, 0x7a93, 0x7d42,
117 } ;
118
119 /* Table mapping codewords to scale factor deltas. */
120 static int table_scale_factor_step [] =
121 { 0x0, 0x0, 0x0, 0x0, 0x4b0, 0x0, 0x0, 0x0, /* 2-bit */
122 -0x3c, 0x0, 0x90, 0x0, 0x2ee, 0x0, 0x898, 0x0, /* 3-bit */
123 -0x30, 0x12, 0x6b, 0xc8, 0x188, 0x2e0, 0x551, 0x1150, /* 4-bit */
124 } ;
125
126 /* Table mapping codewords to quantized delta interval steps. */
127 static unsigned int table_step [] =
128 { 0x73F, 0, 0, 0, 0x1829, 0, 0, 0, /* 2-bit */
129 0x3EB, 0, 0xC18, 0, 0x1581, 0, 0x226E, 0, /* 3-bit */
130 0x20C, 0x635, 0xA83, 0xF12, 0x1418, 0x19E3, 0x211A, 0x2BBA, /* 4-bit */
131 } ;
132
133 /* Binary search lookup table for quantizing using table_step. */
134 static int table_step_search [] =
135 { 0, 0x1F6D, 0, -0x1F6D, 0, 0, 0, 0, /* 2-bit */
136 0x1008, 0x1192, 0, -0x219A, 0x1656, -0x1656, 0, 0, /* 3-bit */
137 0x872, 0x1277, -0x8E6, -0x232B, 0xD06, -0x17D7, -0x11D3, 0, /* 4-bit */
138 } ;
139
140
141 /*============================================================================================
142 ** Static functions.
143 */
144
145 static void nms_adpcm_update (struct nms_adpcm_state *s) ;
146 static void nms_adpcm_codec_init (struct nms_adpcm_state *s, enum nms_enc_type type) ;
147
148 static int16_t nms_adpcm_reconstruct_sample (struct nms_adpcm_state *s, uint8_t I) ;
149 static uint8_t nms_adpcm_encode_sample (struct nms_adpcm_state *s, int16_t sl) ;
150 static int16_t nms_adpcm_decode_sample (struct nms_adpcm_state *s, uint8_t code) ;
151
152 static void nms_adpcm_block_pack_16 (const int16_t codewords [], uint16_t block [], int16_t rms) ;
153 static void nms_adpcm_block_pack_24 (const int16_t codewords [], uint16_t block [], int16_t rms) ;
154 static void nms_adpcm_block_pack_32 (const int16_t codewords [], uint16_t block [], int16_t rms) ;
155
156 static void nms_adpcm_block_unpack_16 (const uint16_t block [], int16_t codewords [], int16_t *rms) ;
157 static void nms_adpcm_block_unpack_24 (const uint16_t block [], int16_t codewords [], int16_t *rms) ;
158 static void nms_adpcm_block_unpack_32 (const uint16_t block [], int16_t codewords [], int16_t *rms) ;
159
160 static int nms_adpcm_decode_block (SF_PRIVATE *psf, NMS_ADPCM_PRIVATE *pnms, uint16_t block [], int16_t samples []) ;
161 static int nms_adpcm_encode_block (SF_PRIVATE *psf, NMS_ADPCM_PRIVATE *pnms, int16_t samples [], uint16_t block []) ;
162
163 static sf_count_t nms_adpcm_read_s (SF_PRIVATE *psf, short *ptr, sf_count_t len) ;
164 static sf_count_t nms_adpcm_read_i (SF_PRIVATE *psf, int *ptr, sf_count_t len) ;
165 static sf_count_t nms_adpcm_read_f (SF_PRIVATE *psf, float *ptr, sf_count_t len) ;
166 static sf_count_t nms_adpcm_read_d (SF_PRIVATE *psf, double *ptr, sf_count_t len) ;
167
168 static sf_count_t nms_adpcm_write_s (SF_PRIVATE *psf, const short *ptr, sf_count_t len) ;
169 static sf_count_t nms_adpcm_write_i (SF_PRIVATE *psf, const int *ptr, sf_count_t len) ;
170 static sf_count_t nms_adpcm_write_f (SF_PRIVATE *psf, const float *ptr, sf_count_t len) ;
171 static sf_count_t nms_adpcm_write_d (SF_PRIVATE *psf, const double *ptr, sf_count_t len) ;
172
173 static int nms_adpcm_close (SF_PRIVATE *psf) ;
174 static sf_count_t nms_adpcm_seek (SF_PRIVATE *psf, int mode, sf_count_t offset) ;
175
176 /*
177 ** An exponential function (antilog) approximation.
178 **
179 ** Maps [1,20480] to [1,1024] in an exponential relationship. This is
180 ** approximately ret = b^exp where b = e^(ln(1024)/ln(20480)) ~= 1.0003385
181 */
182 static inline int
nms_adpcm_antilog(int exp)183 nms_adpcm_antilog (int exp)
184 { int ret ;
185
186 ret = 0x1000 ;
187 ret += (((exp & 0x3f) * 0x166b) >> 12) ;
188 ret *= table_expn [(exp & 0x7c0) >> 6] ;
189 ret >>= (26 - (exp >> 11)) ;
190
191 return ret ;
192 } /* nms_adpcm_antilog */
193
194 static void
nms_adpcm_update(struct nms_adpcm_state * s)195 nms_adpcm_update (struct nms_adpcm_state *s)
196 { /* Variable names from ITU G.726 spec */
197 int a1ul ;
198 int fa1 ;
199 int i ;
200
201 /* Decay and Modify the scale factor in the log domain based on the codeword. */
202 s->yl = ((s->yl *0xf8) >> 8) + table_scale_factor_step [s->t_off + (s->Ik & 7)] ;
203 if (s->yl < 2171)
204 s->yl = 2171 ;
205 else if (s->yl > 20480)
206 s->yl = 20480 ;
207 s->y = nms_adpcm_antilog (s->yl) ;
208
209 /* Update the zero predictor coefficents. */
210 for (i = 0 ; i < 6 ; i++)
211 { s->b [i] = (s->b [i] * 0xff) >> 8 ;
212 if ((s->d_q [0] ^ s->d_q [i + 1]) >= 0)
213 s->b [i] += 128 ;
214 else
215 s->b [i] -= 128 ;
216 }
217
218 /* Update the pole predictor coefficents. */
219 fa1 = s->a [0] >> 5 ;
220 if (fa1 < -256)
221 fa1 = -256 ;
222 else if (fa1 > 256)
223 fa1 = 256 ;
224
225 s->a [0] = (0xff * s->a [0]) >> 8 ;
226 if (s->p [0] != 0 && s->p [1] != 0 && ((s->p [0] ^ s->p [1]) < 0))
227 s->a [0] -= 192 ;
228 else
229 { s->a [0] += 192 ;
230 fa1 = -fa1 ;
231 }
232
233 s->a [1] = fa1 + ((0xfe * s->a [1]) >> 8) ;
234 if (s->p [0] != 0 && s->p [2] != 0 && ((s->p [0] ^ s->p [2]) < 0))
235 s->a [1] -= 128 ;
236 else
237 s->a [1] += 128 ;
238
239 /* Stability constraints. */
240 if (s->a [1] < -12288)
241 s->a [1] = -12288 ;
242 else if (s->a [1] > 12288)
243 s->a [1] = 12288 ;
244 a1ul = 15360 - s->a [1] ;
245 if (s->a [0] >= a1ul)
246 s->a [0] = a1ul ;
247 else
248 { a1ul = -a1ul ;
249 if (s->a [0] < a1ul)
250 s->a [0] = a1ul ;
251 } ;
252
253 /* Compute the zero predictor estimate. Rotate past deltas too. */
254 s->s_ez = 0 ;
255 for (i = 5 ; i >= 0 ; i--)
256 { s->s_ez += s->d_q [i] * s->b [i] ;
257 s->d_q [i + 1] = s->d_q [i] ;
258 } ;
259
260 /* Compute the signal estimate. */
261 s->s_e = s->a [0] * s->s_r [0] + s->a [1] * s->s_r [1] + s->s_ez ;
262
263 /* Return to scale */
264 s->s_ez >>= 14 ;
265 s->s_e >>= 14 ;
266
267 /* Rotate members to prepare for next iteration. */
268 s->s_r [1] = s->s_r [0] ;
269 s->p [2] = s->p [1] ;
270 s->p [1] = s->p [0] ;
271 } /* nms_adpcm_update */
272
273
274 static int16_t
nms_adpcm_reconstruct_sample(struct nms_adpcm_state * s,uint8_t I)275 nms_adpcm_reconstruct_sample (struct nms_adpcm_state *s, uint8_t I)
276 { /* Variable names from ITU G.726 spec */
277 int dqx ;
278
279 /*
280 ** The ordering of the 12-bit right-shift is a precision loss. It agrees
281 ** with the output of a 16-bit NMSVCE.DLL, but disagrees with the output
282 ** of a CG6565 board.
283 */
284
285 /* Look up the delta, scale and sign it. */
286 dqx = table_step [s->t_off + (I & 7)] * s->y ;
287 if (I & 8)
288 dqx = -dqx ;
289
290 /* Take from delta scale to actual scale. */
291 dqx >>= 12 ;
292
293 /* Set variables used as input for the next predictor update. */
294 s->d_q [0] = dqx ;
295 s->s_r [0] = s->s_e + dqx ;
296 s->Ik = I & 0xf ;
297 s->p [0] = s->s_ez + dqx ;
298
299 return s->s_r [0] ;
300 } /* nms_adpcm_reconstruct_sample */
301
302 static void
nms_adpcm_codec_init(struct nms_adpcm_state * s,enum nms_enc_type type)303 nms_adpcm_codec_init (struct nms_adpcm_state *s, enum nms_enc_type type)
304 { memset (s, 0, sizeof (struct nms_adpcm_state)) ;
305 s->t_off = (type == NMS32) ? 16 : (type == NMS24) ? 8 : 0 ;
306 } /* nms_adpcm_codec_init */
307
308 /*
309 ** nms_adpcm_encode_sample()
310 **
311 ** Encode a linear 16-bit pcm sample into a 2,3, or 4 bit NMS-ADPCM codeword
312 ** using and updating the predictor state.
313 */
314 static uint8_t
nms_adpcm_encode_sample(struct nms_adpcm_state * s,int16_t sl)315 nms_adpcm_encode_sample (struct nms_adpcm_state *s, int16_t sl)
316 { /* Variable names from ITU G.726 spec */
317 int d ;
318 uint8_t I ;
319
320 /* Down scale the sample from 16 => ~14 bits. */
321 sl = (sl * 0x1fdf) / 0x7fff ;
322
323 /* Compute estimate, and delta from actual value */
324 nms_adpcm_update (s) ;
325 d = sl - s->s_e ;
326
327 /*
328 ** Vary the input signal. Not sure why. It agrees with NMSVCE.DLL and
329 ** a CG6565 board.
330 */
331 if (s->parity ^= 1)
332 d -= 2 ;
333
334 /* Encode the delta signed-ness (Codeword bit 4) */
335 if (d < 0)
336 { d = -d ;
337 I = 8 ;
338 }
339 else
340 I = 0 ;
341
342 /* Increase magnitude to be in the range of the delta steps */
343 d <<= 13 ;
344
345 /* Quantize the delta using a binary search. */
346 d += table_step_search [s->t_off + 3] * s->y ;
347 /* Codeword bit 3 */
348 if (d >= 0)
349 { d += table_step_search [s->t_off + 5] * s->y ;
350 /* Codeword bit 2 */
351 if (d >= 0)
352 { d += table_step_search [s->t_off + 6] * s->y ;
353 /* Codeword bit 1 */
354 if (d >= 0)
355 I |= 7 ;
356 else
357 I |= 6 ;
358 }
359 else
360 { d += table_step_search [s->t_off + 4] * s->y ;
361 /* Codeword bit 1 */
362 if (d >= 0)
363 I |= 5 ;
364 else
365 I |= 4 ;
366 } ;
367 }
368 else {
369 d += table_step_search [s->t_off + 1] * s->y ;
370 /* Codeword bit 2 */
371 if (d >= 0)
372 { d += table_step_search [s->t_off + 2] * s->y ;
373 /* Codeword bit 1 */
374 if (d >= 0)
375 I |= 3 ;
376 else
377 I |= 2 ;
378 }
379 else {
380 d += table_step_search [s->t_off + 0] * s->y ;
381 /* Codeword bit 1 */
382 if (d >= 0)
383 I |= 1 ;
384 else
385 I |= 0 ;
386 } ;
387 } ;
388 /* What's left in d is actually our quantizer noise. */
389
390 /* Reduce the codeword size for the bitrate accordingly. */
391 if (s->t_off == 8)
392 I &= 0xe ;
393 else if (s->t_off == 0)
394 I &= 0xc ;
395
396 /* Call reconstruct for side effects preparing for the next update. */
397 nms_adpcm_reconstruct_sample (s, I) ;
398
399 return I ;
400 } /* nms_adpcm_encode_sample */
401
402 /*
403 ** nms_adpcm_decode_sample()
404 **
405 ** Given a 2,3 or 4-bit NMS-ADPCM codeword, decode the next 16-bit linear PCM
406 ** sample using and updating the predictor state.
407 */
408 static int16_t
nms_adpcm_decode_sample(struct nms_adpcm_state * s,uint8_t I)409 nms_adpcm_decode_sample (struct nms_adpcm_state *s, uint8_t I)
410 { int sl ;
411
412 nms_adpcm_update (s) ;
413 sl = nms_adpcm_reconstruct_sample (s, I) ;
414
415 /* Clamp to [-0x1fdf, 0x1fdf] (just under 14 bits resolution) */
416 if (sl < -0x1fdf)
417 sl = -0x1fdf ;
418 else if (sl > 0x1fdf)
419 sl = 0x1fdf ;
420
421 /* Expand from 14 to 16 bits */
422 sl = (sl * 0x7fff) / 0x1fdf ;
423
424 return (int16_t) sl ;
425 } /* nms_adpcm_decode_sample */
426
427 /**
428 ** NMS ADPCM Codeword packing scheme.
429 **
430 ** The serialized form of NMS-ADPCM operates on blocks of 160 mono samples
431 ** (20ms at 8000Hz.) Blocks are 42, 62 and 82 bytes in size for the 2, 3, and
432 ** 4 bit codeword sizes respectively. The data is treated as an array of
433 ** little-endian 2-byte shorts, and the data is packed into the first 20, 30
434 ** or 40 shorts. The last short represents the block's root-mean-square
435 ** average. This is apparently an optimization so that energy/silence
436 ** detection processes can avoid decoding a block.
437 **
438 ** All codewords are nibbles, with the least significant bits dropped as
439 ** required for the 3 and 2 bit codeword sizes.
440 **
441 ** Nibbles are packed into shorts in order of most significant to least. The
442 ** 4-bit scheme is trivial. The three bit scheme reconstructs a fourth sample
443 ** from the leftover bits of the proceeding three samples. The 2-bit scheme
444 ** uses a two-pass, left two bit shift.
445 */
446
447 /*
448 ** Reads 21 shorts from block, unpacks 160 codewords of 2-bits each, writing
449 ** each to its sequential array index of codewords. If rms is non-null, the
450 ** read block rms is copied to its location.
451 */
452 static void
nms_adpcm_block_unpack_16(const uint16_t block[],int16_t codewords[],int16_t * rms)453 nms_adpcm_block_unpack_16 (const uint16_t block [], int16_t codewords [], int16_t *rms)
454 { int k ;
455 uint16_t w = 0 ;
456
457 for (k = 0 ; k < NMS_SAMPLES_PER_BLOCK ; )
458 { /*
459 ** k % 8 == [0-3]: Top 2-bits of a nibble
460 ** k % 8 == [4-7]: Bottom 2-bits of a nibble
461 */
462 if ((k & 4) == 0)
463 w = *(block++) ;
464 else
465 w <<= 2 ;
466 codewords [k++] = (w >> 12) & 0xc ;
467 codewords [k++] = (w >> 8) & 0xc ;
468 codewords [k++] = (w >> 4) & 0xc ;
469 codewords [k++] = w & 0xc ;
470 } ;
471
472 /*
473 ** Every block ends with a short representing a RMS-approximation for the
474 ** block.
475 **/
476 if (rms)
477 *rms = *block ;
478 } /* nms_adpcm_unpack_16 */
479
480 /*
481 ** Reads 31 shorts from block, unpacks 160 codewords of 3-bits each, writing
482 ** each to its sequential array index of codewords. If rms is non-null, the
483 ** read block rms is copied to its location.
484 */
485 static void
nms_adpcm_block_unpack_24(const uint16_t block[],int16_t codewords[],int16_t * rms)486 nms_adpcm_block_unpack_24 (const uint16_t block [], int16_t codewords [], int16_t *rms)
487 { int k ;
488 uint16_t w = 0, residual = 0 ;
489
490 for (k = 0 ; k < NMS_SAMPLES_PER_BLOCK ; )
491 { /*
492 ** k % 16 == [0, 11]: Unpack new nibble, build residual
493 ** k % 16 == [12, 15]: Unpack residual
494 */
495 if ((k & 12) != 12)
496 { w = *(block++) ;
497 residual = (residual << 1) | (w & 0x1111) ;
498 }
499 else
500 { w = residual << 1 ;
501 residual = 0 ;
502 } ;
503 codewords [k++] = (w >> 12) & 0xe ;
504 codewords [k++] = (w >> 8) & 0xe ;
505 codewords [k++] = (w >> 4) & 0xe ;
506 codewords [k++] = w & 0xe ;
507 } ;
508
509 /*
510 ** Every block ends with a short representing a RMS-approximation for the
511 ** block.
512 **/
513 if (rms)
514 *rms = *block ;
515 } /* nms_adpcm_unpack_24 */
516
517 /*
518 ** Reads 41 shorts from block, unpacks 160 codewords of 4-bits each, writing
519 ** each to its sequential array index of codewords. If rms is non-null, the
520 ** read block rms is copied to its location.
521 */
522 static void
nms_adpcm_block_unpack_32(const uint16_t block[],int16_t codewords[],int16_t * rms)523 nms_adpcm_block_unpack_32 (const uint16_t block [], int16_t codewords [], int16_t *rms)
524 { int k ;
525 uint16_t w = 0 ;
526
527 for (k = 0 ; k < NMS_SAMPLES_PER_BLOCK ; )
528 { w = *(block++) ;
529 codewords [k++] = (w >> 12) & 0xf ;
530 codewords [k++] = (w >> 8) & 0xf ;
531 codewords [k++] = (w >> 4) & 0xf ;
532 codewords [k++] = w & 0xf ;
533 } ;
534 /*
535 ** Every block ends with a short representing a RMS-approximation for the
536 ** block.
537 **/
538 if (rms)
539 *rms = *block ;
540 } /* nms_adpcm_unpack_32 */
541
542 /*
543 ** Reads 160 indicies of codewords for one 2-bit codeword each, packing them
544 ** into 20 shorts of block, and writes the short rms for a total of 42 bytes.
545 */
546 static void
nms_adpcm_block_pack_16(const int16_t codewords[],uint16_t block[],int16_t rms)547 nms_adpcm_block_pack_16 (const int16_t codewords [], uint16_t block [], int16_t rms)
548 { int k ;
549 uint16_t w ;
550
551 for (k = 0 ; k < NMS_SAMPLES_PER_BLOCK ; )
552 { w = codewords [k++] << 12 ;
553 w |= codewords [k++] << 8 ;
554 w |= codewords [k++] << 4 ;
555 w |= codewords [k++] ;
556 w |= codewords [k++] << 10 ;
557 w |= codewords [k++] << 6 ;
558 w |= codewords [k++] << 2 ;
559 w |= codewords [k++] >> 2 ;
560
561 *(block++) = w ;
562 } ;
563
564 /* Every block ends with a short representing the blocks RMS */
565 *block = rms ;
566 } /* nms_adpcm_pack_16 */
567
568 /*
569 ** Reads 160 indicies of codewords for one 3-bit codeword each, packing them
570 ** into 30 shorts of block, and writes the short rms for a total of 62 bytes.
571 */
572 static void
nms_adpcm_block_pack_24(const int16_t codewords[],uint16_t block[],int16_t rms)573 nms_adpcm_block_pack_24 (const int16_t codewords [], uint16_t block [], int16_t rms)
574 { int k ;
575 uint16_t w [3] ;
576 uint16_t residual ;
577
578 for (k = 0 ; k < NMS_SAMPLES_PER_BLOCK ; )
579 { w [0] = codewords [k++] << 12 ;
580 w [0] |= codewords [k++] << 8 ;
581 w [0] |= codewords [k++] << 4 ;
582 w [0] |= codewords [k++] ;
583
584 w [1] = codewords [k++] << 12 ;
585 w [1] |= codewords [k++] << 8 ;
586 w [1] |= codewords [k++] << 4 ;
587 w [1] |= codewords [k++] ;
588
589 w [2] = codewords [k++] << 12 ;
590 w [2] |= codewords [k++] << 8 ;
591 w [2] |= codewords [k++] << 4 ;
592 w [2] |= codewords [k++] ;
593
594 residual = codewords [k++] << 12 ;
595 residual |= codewords [k++] << 8 ;
596 residual |= codewords [k++] << 4 ;
597 residual |= codewords [k++] ;
598
599 residual >>= 1 ;
600 w [2] |= (residual & 0x1111) ;
601 residual >>= 1 ;
602 w [1] |= (residual & 0x1111) ;
603 residual >>= 1 ;
604 w [0] |= (residual & 0x1111) ;
605
606 *(block++) = w [0] ;
607 *(block++) = w [1] ;
608 *(block++) = w [2] ;
609 } ;
610
611 /* Every block ends with a short representing the blocks RMS */
612 *block = rms ;
613 } /* nms_adpcm_pack_24 */
614
615 /*
616 ** Reads 160 indicies of codewords for one 4-bit codeword each, packing them
617 ** into 40 shorts of block, and writes the short rms for a total of 82 bytes.
618 */
619 static void
nms_adpcm_block_pack_32(const int16_t codewords[],uint16_t block[],int16_t rms)620 nms_adpcm_block_pack_32 (const int16_t codewords [], uint16_t block [], int16_t rms)
621 { int k ;
622 uint16_t w ;
623
624 for (k = 0 ; k < NMS_SAMPLES_PER_BLOCK ; )
625 { w = codewords [k++] << 12 ;
626 w |= codewords [k++] << 8 ;
627 w |= codewords [k++] << 4 ;
628 w |= codewords [k++] ;
629
630 *(block++) = w ;
631 } ;
632
633 /* Every block ends with a short representing the blocks RMS */
634 *block = rms ;
635 } /*nms_adpcm_block_pack_32 */
636
637 static int
nms_adpcm_decode_block(SF_PRIVATE * psf,NMS_ADPCM_PRIVATE * pnms,uint16_t block[],int16_t samples[])638 nms_adpcm_decode_block (SF_PRIVATE *psf, NMS_ADPCM_PRIVATE *pnms, uint16_t block [], int16_t samples [])
639 { int k ;
640
641 switch (pnms->type)
642 { case NMS16 :
643 nms_adpcm_block_unpack_16 (block, samples, NULL) ;
644 break ;
645 case NMS24 :
646 nms_adpcm_block_unpack_24 (block, samples, NULL) ;
647 break ;
648 case NMS32 :
649 nms_adpcm_block_unpack_32 (block, samples, NULL) ;
650 break ;
651
652 default :
653 psf_log_printf (psf, "*** Error : Unhandled NMS ADPCM type %d.\n", pnms->type) ;
654 return 0 ;
655 } ;
656
657 for (k = 0 ; k < NMS_SAMPLES_PER_BLOCK ; k++)
658 samples [k] = nms_adpcm_decode_sample (&pnms->state, samples [k]) ;
659
660 return NMS_SAMPLES_PER_BLOCK ;
661 } /* nms_adpcm_decode_block */
662
663 static int
nms_adpcm_encode_block(SF_PRIVATE * psf,NMS_ADPCM_PRIVATE * pnms,int16_t samples[],uint16_t block[])664 nms_adpcm_encode_block (SF_PRIVATE *psf, NMS_ADPCM_PRIVATE *pnms, int16_t samples [], uint16_t block [])
665 { int k ;
666 unsigned int rms = 0 ;
667
668 /*
669 ** The rms we write is a complete lie. Considering that the various
670 ** other implementations I've tested don't completely agree, that this data
671 ** is usually ignored, and except for some weird offloading of "energy
672 ** detection", so long as we don't write zeros for non-zero data, I don't
673 ** think it really matters.
674 */
675
676 for (k = 0 ; k < NMS_SAMPLES_PER_BLOCK ; k++)
677 { rms += (samples [k] * samples [k]) >> 2 ;
678 samples [k] = nms_adpcm_encode_sample (&pnms->state, samples [k]) ;
679 } ;
680
681 rms <<= 12 ;
682 switch (pnms->type)
683 { case NMS16 :
684 nms_adpcm_block_pack_16 (samples, block, rms) ;
685 break ;
686 case NMS24 :
687 nms_adpcm_block_pack_24 (samples, block, rms) ;
688 break ;
689 case NMS32 :
690 nms_adpcm_block_pack_32 (samples, block, rms) ;
691 break ;
692
693 default :
694 psf_log_printf (psf, "*** Error : Unhandled NMS ADPCM type %d.\n", pnms->type) ;
695 return 0 ;
696 } ;
697
698 return NMS_SAMPLES_PER_BLOCK ;
699 } /* nms_adpcm_encode_block */
700
701 static int
psf_nms_adpcm_decode_block(SF_PRIVATE * psf,NMS_ADPCM_PRIVATE * pnms)702 psf_nms_adpcm_decode_block (SF_PRIVATE *psf, NMS_ADPCM_PRIVATE *pnms)
703 { int k ;
704
705 if ((k = psf_fread (pnms->block, sizeof (short), pnms->shortsperblock, psf)) != pnms->shortsperblock)
706 { psf_log_printf (psf, "*** Warning : short read (%d != %d).\n", k, pnms->shortsperblock) ;
707 memset (pnms->block + (k * sizeof (short)), 0, (pnms->shortsperblock - k) * sizeof (short)) ;
708 } ;
709
710 if (CPU_IS_BIG_ENDIAN)
711 endswap_short_array ((signed short *) pnms->block, pnms->shortsperblock) ;
712
713 nms_adpcm_decode_block (psf, pnms, pnms->block, pnms->samples) ;
714
715 return 1 ;
716 } /* nms_adpcm_decode_block */
717
718 static int
nms_adpcm_read_block(SF_PRIVATE * psf,NMS_ADPCM_PRIVATE * pnms,short * ptr,int len)719 nms_adpcm_read_block (SF_PRIVATE *psf, NMS_ADPCM_PRIVATE *pnms, short *ptr, int len)
720 { int count, indx = 0 ;
721
722 while (indx < len)
723 { if (pnms->sample_curr >= NMS_SAMPLES_PER_BLOCK)
724 { pnms->block_curr ++ ;
725 pnms->sample_curr = 0 ;
726 } ;
727
728 if (pnms->block_curr > pnms->blocks_total)
729 { memset (&(ptr [indx]), 0, (len - indx) * sizeof (short)) ;
730 return indx ;
731 } ;
732
733 if (pnms->sample_curr == 0)
734 psf_nms_adpcm_decode_block (psf, pnms) ;
735
736 count = NMS_SAMPLES_PER_BLOCK - pnms->sample_curr ;
737 if (len - indx < count)
738 count = len - indx ;
739
740 memcpy (&(ptr [indx]), &(pnms->samples [pnms->sample_curr]), count * sizeof (short)) ;
741 indx += count ;
742 pnms->sample_curr += count ;
743 } ;
744
745 return indx ;
746 } /* nms_adpcm_read_block */
747
748 static sf_count_t
nms_adpcm_read_s(SF_PRIVATE * psf,short * ptr,sf_count_t len)749 nms_adpcm_read_s (SF_PRIVATE *psf, short *ptr, sf_count_t len)
750 { NMS_ADPCM_PRIVATE *pnms ;
751 int readcount, count ;
752 sf_count_t total = 0 ;
753
754 if (psf->codec_data == NULL)
755 return 0 ;
756 pnms = (NMS_ADPCM_PRIVATE*) psf->codec_data ;
757
758 while (len > 0)
759 { readcount = (len > 0x10000000) ? 0x10000000 : (int) len ;
760
761 count = nms_adpcm_read_block (psf, pnms, ptr, readcount) ;
762
763 total += count ;
764 len -= count ;
765
766 if (count != readcount)
767 break ;
768 } ;
769
770 return total ;
771 } /* nms_adpcm_read_s */
772
773 static sf_count_t
nms_adpcm_read_i(SF_PRIVATE * psf,int * ptr,sf_count_t len)774 nms_adpcm_read_i (SF_PRIVATE *psf, int *ptr, sf_count_t len)
775 { BUF_UNION ubuf ;
776 NMS_ADPCM_PRIVATE *pnms ;
777 short *sptr ;
778 int k, bufferlen, readcount = 0, count ;
779 sf_count_t total = 0 ;
780
781 if (psf->codec_data == NULL)
782 return 0 ;
783 pnms = (NMS_ADPCM_PRIVATE *) psf->codec_data ;
784
785 sptr = ubuf.sbuf ;
786 bufferlen = SF_BUFFER_LEN / sizeof (short) ;
787 while (len > 0)
788 { readcount = (len >= bufferlen) ? bufferlen : len ;
789 count = nms_adpcm_read_block (psf, pnms, sptr, readcount) ;
790
791 for (k = 0 ; k < readcount ; k++)
792 ptr [total + k] = arith_shift_left (sptr [k], 16) ;
793
794 total += count ;
795 len -= readcount ;
796 if (count != readcount)
797 break ;
798 } ;
799
800 return total ;
801 } /* nms_adpcm_read_i */
802
803 static sf_count_t
nms_adpcm_read_f(SF_PRIVATE * psf,float * ptr,sf_count_t len)804 nms_adpcm_read_f (SF_PRIVATE *psf, float *ptr, sf_count_t len)
805 { BUF_UNION ubuf ;
806 NMS_ADPCM_PRIVATE *pnms ;
807 short *sptr ;
808 int k, bufferlen, readcount = 0, count ;
809 sf_count_t total = 0 ;
810 float normfact ;
811
812 if (psf->codec_data == NULL)
813 return 0 ;
814 pnms = (NMS_ADPCM_PRIVATE*) psf->codec_data ;
815
816 normfact = (psf->norm_float == SF_TRUE) ? 1.0 / ((float) 0x8000) : 1.0 ;
817
818 sptr = ubuf.sbuf ;
819 bufferlen = SF_BUFFER_LEN / sizeof (short) ;
820 while (len > 0)
821 { readcount = (len >= bufferlen) ? bufferlen : len ;
822 count = nms_adpcm_read_block (psf, pnms, sptr, readcount) ;
823 for (k = 0 ; k < readcount ; k++)
824 ptr [total + k] = normfact * sptr [k] ;
825
826 total += count ;
827 len -= readcount ;
828 if (count != readcount)
829 break ;
830 } ;
831
832 return total ;
833 } /* nms_adpcm_read_f */
834
835 static sf_count_t
nms_adpcm_read_d(SF_PRIVATE * psf,double * ptr,sf_count_t len)836 nms_adpcm_read_d (SF_PRIVATE *psf, double *ptr, sf_count_t len)
837 { BUF_UNION ubuf ;
838 NMS_ADPCM_PRIVATE *pnms ;
839 short *sptr ;
840 int k, bufferlen, readcount = 0, count ;
841 sf_count_t total = 0 ;
842 double normfact ;
843
844 if (psf->codec_data == NULL)
845 return 0 ;
846 pnms = (NMS_ADPCM_PRIVATE*) psf->codec_data ;
847
848 normfact = (psf->norm_double == SF_TRUE) ? 1.0 / ((double) 0x8000) : 1.0 ;
849
850 sptr = ubuf.sbuf ;
851 bufferlen = SF_BUFFER_LEN / sizeof (short) ;
852 while (len > 0)
853 { readcount = (len >= bufferlen) ? bufferlen : len ;
854 count = nms_adpcm_read_block (psf, pnms, sptr, readcount) ;
855 for (k = 0 ; k < readcount ; k++)
856 ptr [total + k] = normfact * (double) (sptr [k]) ;
857
858 total += count ;
859 len -= readcount ;
860 if (count != readcount)
861 break ;
862 } ;
863
864 return total ;
865 } /* nms_adpcm_read_d */
866
867 static int
psf_nms_adpcm_encode_block(SF_PRIVATE * psf,NMS_ADPCM_PRIVATE * pnms)868 psf_nms_adpcm_encode_block (SF_PRIVATE *psf, NMS_ADPCM_PRIVATE *pnms)
869 { int k ;
870
871 /* Encode the samples. */
872 nms_adpcm_encode_block (psf, pnms, pnms->samples, pnms->block) ;
873
874 if (CPU_IS_BIG_ENDIAN)
875 endswap_short_array ((signed short *) pnms->block, pnms->shortsperblock) ;
876
877 /* Write the block to disk. */
878 if ((k = psf_fwrite (pnms->block, sizeof (short), pnms->shortsperblock, psf)) != pnms->shortsperblock)
879 psf_log_printf (psf, "*** Warning : short write (%d != %d).\n", k, pnms->shortsperblock) ;
880
881 pnms->sample_curr = 0 ;
882 pnms->block_curr ++ ;
883
884 return 1 ;
885 } /* psf_nms_adpcm_encode_block */
886
887 static int
nms_adpcm_write_block(SF_PRIVATE * psf,NMS_ADPCM_PRIVATE * pnms,const short * ptr,int len)888 nms_adpcm_write_block (SF_PRIVATE *psf, NMS_ADPCM_PRIVATE *pnms, const short *ptr, int len)
889 { int count, total = 0, indx = 0 ;
890
891 while (indx < len)
892 { count = NMS_SAMPLES_PER_BLOCK - pnms->sample_curr ;
893
894 if (count > len - indx)
895 count = len - indx ;
896
897 memcpy (&(pnms->samples [pnms->sample_curr]), &(ptr [indx]), count * sizeof (short)) ;
898 indx += count ;
899 pnms->sample_curr += count ;
900 total = indx ;
901
902 if (pnms->sample_curr >= NMS_SAMPLES_PER_BLOCK)
903 psf_nms_adpcm_encode_block (psf, pnms) ;
904 } ;
905
906 return total ;
907 } /* nms_adpcm_write_block */
908
909 static sf_count_t
nms_adpcm_write_s(SF_PRIVATE * psf,const short * ptr,sf_count_t len)910 nms_adpcm_write_s (SF_PRIVATE *psf, const short *ptr, sf_count_t len)
911 { NMS_ADPCM_PRIVATE *pnms ;
912 int writecount, count ;
913 sf_count_t total = 0 ;
914
915 if (psf->codec_data == NULL)
916 return 0 ;
917 pnms = (NMS_ADPCM_PRIVATE*) psf->codec_data ;
918
919 while (len > 0)
920 { writecount = (len > 0x10000000) ? 0x10000000 : (int) len ;
921
922 count = nms_adpcm_write_block (psf, pnms, ptr, writecount) ;
923
924 total += count ;
925 len -= count ;
926 if (count != writecount)
927 break ;
928 } ;
929
930 return total ;
931 } /* nms_adpcm_write_s */
932
933 static sf_count_t
nms_adpcm_write_i(SF_PRIVATE * psf,const int * ptr,sf_count_t len)934 nms_adpcm_write_i (SF_PRIVATE *psf, const int *ptr, sf_count_t len)
935 { BUF_UNION ubuf ;
936 NMS_ADPCM_PRIVATE *pnms ;
937 short *sptr ;
938 int k, bufferlen, writecount = 0, count ;
939 sf_count_t total = 0 ;
940
941 if (psf->codec_data == NULL)
942 return 0 ;
943 pnms = (NMS_ADPCM_PRIVATE*) psf->codec_data ;
944
945 sptr = ubuf.sbuf ;
946 bufferlen = SF_BUFFER_LEN / sizeof (short) ;
947 while (len > 0)
948 { writecount = (len >= bufferlen) ? bufferlen : len ;
949 for (k = 0 ; k < writecount ; k++)
950 sptr [k] = ptr [total + k] >> 16 ;
951 count = nms_adpcm_write_block (psf, pnms, sptr, writecount) ;
952
953 total += count ;
954 len -= writecount ;
955 if (count != writecount)
956 break ;
957 } ;
958 return total ;
959 } /* nms_adpcm_write_i */
960
961 static sf_count_t
nms_adpcm_write_f(SF_PRIVATE * psf,const float * ptr,sf_count_t len)962 nms_adpcm_write_f (SF_PRIVATE *psf, const float *ptr, sf_count_t len)
963 { BUF_UNION ubuf ;
964 NMS_ADPCM_PRIVATE *pnms ;
965 short *sptr ;
966 int k, bufferlen, writecount = 0, count ;
967 sf_count_t total = 0 ;
968 float normfact ;
969
970 if (psf->codec_data == NULL)
971 return 0 ;
972 pnms = (NMS_ADPCM_PRIVATE*) psf->codec_data ;
973
974 normfact = (psf->norm_float == SF_TRUE) ? (1.0 * 0x8000) : 1.0 ;
975
976 sptr = ubuf.sbuf ;
977 bufferlen = SF_BUFFER_LEN / sizeof (short) ;
978 while (len > 0)
979 { writecount = (len >= bufferlen) ? bufferlen : len ;
980 for (k = 0 ; k < writecount ; k++)
981 sptr [k] = psf_lrintf (normfact * ptr [total + k]) ;
982 count = nms_adpcm_write_block (psf, pnms, sptr, writecount) ;
983
984 total += count ;
985 len -= writecount ;
986 if (count != writecount)
987 break ;
988 } ;
989
990 return total ;
991 } /* nms_adpcm_write_f */
992
993 static sf_count_t
nms_adpcm_write_d(SF_PRIVATE * psf,const double * ptr,sf_count_t len)994 nms_adpcm_write_d (SF_PRIVATE *psf, const double *ptr, sf_count_t len)
995 { BUF_UNION ubuf ;
996 NMS_ADPCM_PRIVATE *pnms ;
997 short *sptr ;
998 int k, bufferlen, writecount = 0, count ;
999 sf_count_t total = 0 ;
1000 double normfact ;
1001
1002 if (psf->codec_data == NULL)
1003 return 0 ;
1004 pnms = (NMS_ADPCM_PRIVATE*) psf->codec_data ;
1005
1006 normfact = (psf->norm_double == SF_TRUE) ? (1.0 * 0x8000) : 1.0 ;
1007
1008 sptr = ubuf.sbuf ;
1009 bufferlen = SF_BUFFER_LEN / sizeof (short) ;
1010 while (len > 0)
1011 { writecount = (len >= bufferlen) ? bufferlen : len ;
1012 for (k = 0 ; k < writecount ; k++)
1013 sptr [k] = psf_lrint (normfact * ptr [total + k]) ;
1014 count = nms_adpcm_write_block (psf, pnms, sptr, writecount) ;
1015
1016 total += count ;
1017 len -= writecount ;
1018 if (count != writecount)
1019 break ;
1020 } ;
1021
1022 return total ;
1023 } /* nms_adpcm_write_d */
1024
1025 int
nms_adpcm_init(SF_PRIVATE * psf)1026 nms_adpcm_init (SF_PRIVATE *psf)
1027 { NMS_ADPCM_PRIVATE *pnms ;
1028
1029 if (psf->codec_data != NULL)
1030 { psf_log_printf (psf, "*** psf->codec_data is not NULL.\n") ;
1031 return SFE_INTERNAL ;
1032 } ;
1033
1034 psf->sf.seekable = SF_FALSE ;
1035
1036 if (psf->sf.channels != 1)
1037 return SFE_NMS_ADPCM_NOT_MONO ;
1038
1039 if ((pnms = calloc (1, sizeof (NMS_ADPCM_PRIVATE))) == NULL)
1040 return SFE_MALLOC_FAILED ;
1041
1042 psf->codec_data = (void*) pnms ;
1043
1044 pnms->block_curr = 0 ;
1045 pnms->sample_curr = 0 ;
1046
1047 switch (SF_CODEC (psf->sf.format))
1048 { case SF_FORMAT_NMS_ADPCM_16 :
1049 pnms->type = NMS16 ;
1050 pnms->shortsperblock = NMS_BLOCK_SHORTS_16 ;
1051 break ;
1052 case SF_FORMAT_NMS_ADPCM_24 :
1053 pnms->type = NMS24 ;
1054 pnms->shortsperblock = NMS_BLOCK_SHORTS_24 ;
1055 break ;
1056 case SF_FORMAT_NMS_ADPCM_32 :
1057 pnms->type = NMS32 ;
1058 pnms->shortsperblock = NMS_BLOCK_SHORTS_32 ;
1059 break ;
1060
1061 default : return SFE_UNIMPLEMENTED ;
1062 } ;
1063 nms_adpcm_codec_init (&pnms->state, pnms->type) ;
1064
1065 psf->filelength = psf_get_filelen (psf) ;
1066 if (psf->filelength < psf->dataoffset)
1067 psf->filelength = psf->dataoffset ;
1068
1069 psf->datalength = psf->filelength - psf->dataoffset ;
1070 if (psf->dataend > 0)
1071 psf->datalength -= psf->filelength - psf->dataend ;
1072
1073 if (psf->file.mode == SFM_READ)
1074 { psf->read_short = nms_adpcm_read_s ;
1075 psf->read_int = nms_adpcm_read_i ;
1076 psf->read_float = nms_adpcm_read_f ;
1077 psf->read_double = nms_adpcm_read_d ;
1078 }
1079 else if (psf->file.mode == SFM_WRITE)
1080 { psf->write_short = nms_adpcm_write_s ;
1081 psf->write_int = nms_adpcm_write_i ;
1082 psf->write_float = nms_adpcm_write_f ;
1083 psf->write_double = nms_adpcm_write_d ;
1084 } ;
1085
1086 if (psf->datalength % (pnms->shortsperblock * sizeof (short)))
1087 { psf_log_printf (psf, "*** Odd psf->datalength (%D) should be a multiple of %d\n",
1088 psf->datalength, pnms->shortsperblock * sizeof (short)) ;
1089 pnms->blocks_total = (psf->datalength / (pnms->shortsperblock * sizeof (short))) + 1 ;
1090 }
1091 else
1092 pnms->blocks_total = psf->datalength / (pnms->shortsperblock * sizeof (short)) ;
1093
1094 psf->sf.frames = pnms->blocks_total * NMS_SAMPLES_PER_BLOCK ;
1095 psf->codec_close = nms_adpcm_close ;
1096 psf->seek = nms_adpcm_seek ;
1097
1098 return 0 ;
1099 } /* nms_adpcm_init */
1100
1101 static int
nms_adpcm_close(SF_PRIVATE * psf)1102 nms_adpcm_close (SF_PRIVATE *psf)
1103 { NMS_ADPCM_PRIVATE *pnms ;
1104
1105 pnms = (NMS_ADPCM_PRIVATE*) psf->codec_data ;
1106
1107 /*
1108 ** If a block has been partially assembled, write it out as the final
1109 ** block.
1110 */
1111 if (psf->file.mode == SFM_WRITE)
1112 { if (pnms->sample_curr && pnms->sample_curr < NMS_SAMPLES_PER_BLOCK)
1113 { memset (pnms->samples + pnms->sample_curr, 0, (NMS_SAMPLES_PER_BLOCK - pnms->sample_curr) * sizeof (short)) ;
1114 psf_nms_adpcm_encode_block (psf, pnms) ;
1115 }
1116
1117 if (psf->write_header)
1118 psf->write_header (psf, SF_FALSE) ;
1119 }
1120
1121 return 0 ;
1122 } /* nms_adpcm_close */
1123
1124 static sf_count_t
nms_adpcm_seek(SF_PRIVATE * psf,int mode,sf_count_t offset)1125 nms_adpcm_seek (SF_PRIVATE *psf, int mode, sf_count_t offset)
1126 { NMS_ADPCM_PRIVATE *pnms ;
1127
1128 pnms = (NMS_ADPCM_PRIVATE *) psf->codec_data ;
1129
1130 /*
1131 ** NMS ADPCM is symmetric, so transitioning from reading and writing is
1132 ** possible, but unimplemented, as it would require syncing partial blocks.
1133 */
1134 if (mode != psf->file.mode)
1135 { psf->error = SFE_BAD_SEEK ;
1136 return PSF_SEEK_ERROR ;
1137 } ;
1138
1139 /*
1140 ** NMS ADPCM cannot be seek'ed, as codec state depends on previous samples,
1141 ** so only a seek to 0 is supported.
1142 */
1143 if (offset != 0)
1144 { psf->error = SFE_BAD_SEEK ;
1145 return PSF_SEEK_ERROR ;
1146 } ;
1147
1148 if (psf_fseek (psf, psf->dataoffset, SEEK_SET) == PSF_SEEK_ERROR)
1149 return PSF_SEEK_ERROR ;
1150
1151 nms_adpcm_codec_init (&pnms->state, pnms->type) ;
1152 pnms->block_curr = 0 ;
1153 pnms->sample_curr = 0 ;
1154 return 0 ;
1155 } /* nms_adpcm_seek */
1156
1157