• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (c) 2013, The WebRTC project authors. All rights reserved.
3  *
4  * Redistribution and use in source and binary forms, with or without
5  * modification, are permitted provided that the following conditions are
6  * met:
7  *
8  *   * Redistributions of source code must retain the above copyright
9  *     notice, this list of conditions and the following disclaimer.
10  *
11  *   * Redistributions in binary form must reproduce the above copyright
12  *     notice, this list of conditions and the following disclaimer in
13  *     the documentation and/or other materials provided with the
14  *     distribution.
15  *
16  *   * Neither the name of Google nor the names of its contributors may
17  *     be used to endorse or promote products derived from this software
18  *     without specific prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
21  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
22  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
23  * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
24  * HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
25  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
26  * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
27  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
28  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
29  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
30  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
31  */
32 
33 #include "avcodec.h"
34 #include "internal.h"
35 #include "get_bits.h"
36 #include "ilbcdata.h"
37 
38 #define LPC_N_20MS            1
39 #define LPC_N_30MS            2
40 #define LPC_N_MAX             2
41 #define LSF_NSPLIT            3
42 #define NASUB_MAX             4
43 #define LPC_FILTERORDER       10
44 #define NSUB_MAX              6
45 #define SUBL                  40
46 
47 #define ST_MEM_L_TBL          85
48 #define MEM_LF_TBL            147
49 #define STATE_SHORT_LEN_20MS  57
50 #define STATE_SHORT_LEN_30MS  58
51 
52 #define BLOCKL_MAX            240
53 #define CB_MEML               147
54 #define CB_NSTAGES            3
55 #define CB_HALFFILTERLEN      4
56 #define CB_FILTERLEN          8
57 
58 #define ENH_NBLOCKS_TOT 8
59 #define ENH_BLOCKL     80
60 #define ENH_BUFL     (ENH_NBLOCKS_TOT)*ENH_BLOCKL
61 #define ENH_BUFL_FILTEROVERHEAD  3
62 #define BLOCKL_MAX      240
63 #define NSUB_20MS         4
64 #define NSUB_30MS         6
65 #define NSUB_MAX          6
66 #define NASUB_20MS        2
67 #define NASUB_30MS        4
68 #define NASUB_MAX         4
69 #define STATE_LEN        80
70 #define STATE_SHORT_LEN_30MS  58
71 #define STATE_SHORT_LEN_20MS  57
72 
73 #define SPL_MUL_16_16(a, b) ((int32_t) (((int16_t)(a)) * ((int16_t)(b))))
74 #define SPL_MUL_16_16_RSFT(a, b, c) (SPL_MUL_16_16(a, b) >> (c))
75 
76 typedef struct ILBCFrame {
77     int16_t  lsf[LSF_NSPLIT*LPC_N_MAX];
78     int16_t  cb_index[CB_NSTAGES*(NASUB_MAX + 1)];
79     int16_t  gain_index[CB_NSTAGES*(NASUB_MAX + 1)];
80     int16_t  ifm;
81     int16_t  state_first;
82     int16_t  idx[STATE_SHORT_LEN_30MS];
83     int16_t  firstbits;
84     int16_t  start;
85 } ILBCFrame;
86 
87 typedef struct ILBCContext {
88     AVClass         *class;
89     int              enhancer;
90 
91     int              mode;
92     GetBitContext    gb;
93     ILBCFrame        frame;
94 
95     int              prev_enh_pl;
96     int              consPLICount;
97     int              last_lag;
98     int              state_short_len;
99     int              lpc_n;
100     int16_t          nasub;
101     int16_t          nsub;
102     int              block_samples;
103     int16_t          no_of_words;
104     int16_t          no_of_bytes;
105     int16_t          lsfdeq[LPC_FILTERORDER*LPC_N_MAX];
106     int16_t          lsfold[LPC_FILTERORDER];
107     int16_t          syntMem[LPC_FILTERORDER];
108     int16_t          lsfdeqold[LPC_FILTERORDER];
109     int16_t          weightdenum[(LPC_FILTERORDER + 1) * NSUB_MAX];
110     int16_t          syntdenum[NSUB_MAX * (LPC_FILTERORDER + 1)];
111     int16_t          old_syntdenum[NSUB_MAX * (LPC_FILTERORDER + 1)];
112     int16_t          enh_buf[ENH_BUFL+ENH_BUFL_FILTEROVERHEAD];
113     int16_t          enh_period[ENH_NBLOCKS_TOT];
114     int16_t          prevResidual[NSUB_MAX*SUBL];
115     int16_t          decresidual[BLOCKL_MAX];
116     int16_t          plc_residual[BLOCKL_MAX + LPC_FILTERORDER];
117     int16_t          seed;
118     int16_t          prevPLI;
119     int16_t          prevScale;
120     int16_t          prevLag;
121     int16_t          per_square;
122     int16_t          prev_lpc[LPC_FILTERORDER + 1];
123     int16_t          plc_lpc[LPC_FILTERORDER + 1];
124     int16_t          hpimemx[2];
125     int16_t          hpimemy[4];
126 } ILBCContext;
127 
unpack_frame(ILBCContext * s)128 static int unpack_frame(ILBCContext *s)
129 {
130     ILBCFrame *frame = &s->frame;
131     GetBitContext *gb = &s->gb;
132     int j;
133 
134     frame->lsf[0] = get_bits(gb, 6);
135     frame->lsf[1] = get_bits(gb, 7);
136     frame->lsf[2] = get_bits(gb, 7);
137 
138     if (s->mode == 20) {
139         frame->start          = get_bits(gb, 2);
140         frame->state_first    = get_bits1(gb);
141         frame->ifm            = get_bits(gb, 6);
142         frame->cb_index[0]    = get_bits(gb, 6) << 1;
143         frame->gain_index[0]  = get_bits(gb, 2) << 3;
144         frame->gain_index[1]  = get_bits1(gb) << 3;
145         frame->cb_index[3]    = get_bits(gb, 7) << 1;
146         frame->gain_index[3]  = get_bits1(gb) << 4;
147         frame->gain_index[4]  = get_bits1(gb) << 3;
148         frame->gain_index[6]  = get_bits1(gb) << 4;
149     } else {
150         frame->lsf[3]         = get_bits(gb, 6);
151         frame->lsf[4]         = get_bits(gb, 7);
152         frame->lsf[5]         = get_bits(gb, 7);
153         frame->start          = get_bits(gb, 3);
154         frame->state_first    = get_bits1(gb);
155         frame->ifm            = get_bits(gb, 6);
156         frame->cb_index[0]    = get_bits(gb, 4) << 3;
157         frame->gain_index[0]  = get_bits1(gb) << 4;
158         frame->gain_index[1]  = get_bits1(gb) << 3;
159         frame->cb_index[3]    = get_bits(gb, 6) << 2;
160         frame->gain_index[3]  = get_bits1(gb) << 4;
161         frame->gain_index[4]  = get_bits1(gb) << 3;
162     }
163 
164     for (j = 0; j < 48; j++)
165         frame->idx[j] = get_bits1(gb) << 2;
166 
167     if (s->mode == 20) {
168         for (; j < 57; j++)
169             frame->idx[j] = get_bits1(gb) << 2;
170 
171         frame->gain_index[1] |= get_bits1(gb) << 2;
172         frame->gain_index[3] |= get_bits(gb, 2) << 2;
173         frame->gain_index[4] |= get_bits1(gb) << 2;
174         frame->gain_index[6] |= get_bits1(gb) << 3;
175         frame->gain_index[7]  = get_bits(gb, 2) << 2;
176     } else {
177         for (; j < 58; j++)
178             frame->idx[j] = get_bits1(gb) << 2;
179 
180         frame->cb_index[0]    |= get_bits(gb, 2) << 1;
181         frame->gain_index[0]  |= get_bits1(gb) << 3;
182         frame->gain_index[1]  |= get_bits1(gb) << 2;
183         frame->cb_index[3]    |= get_bits1(gb) << 1;
184         frame->cb_index[6]     = get_bits1(gb) << 7;
185         frame->cb_index[6]    |= get_bits(gb, 6) << 1;
186         frame->cb_index[9]     = get_bits(gb, 7) << 1;
187         frame->cb_index[12]    = get_bits(gb, 3) << 5;
188         frame->cb_index[12]   |= get_bits(gb, 4) << 1;
189         frame->gain_index[3]  |= get_bits(gb, 2) << 2;
190         frame->gain_index[4]  |= get_bits(gb, 2) << 1;
191         frame->gain_index[6]   = get_bits(gb, 2) << 3;
192         frame->gain_index[7]   = get_bits(gb, 2) << 2;
193         frame->gain_index[9]   = get_bits1(gb) << 4;
194         frame->gain_index[10]  = get_bits1(gb) << 3;
195         frame->gain_index[12]  = get_bits1(gb) << 4;
196         frame->gain_index[13]  = get_bits1(gb) << 3;
197     }
198 
199     for (j = 0; j < 56; j++)
200         frame->idx[j] |= get_bits(gb, 2);
201 
202     if (s->mode == 20) {
203         frame->idx[56]        |= get_bits(gb, 2);
204         frame->cb_index[0]    |= get_bits1(gb);
205         frame->cb_index[1]     = get_bits(gb, 7);
206         frame->cb_index[2]     = get_bits(gb, 6) << 1;
207         frame->cb_index[2]    |= get_bits1(gb);
208         frame->gain_index[0]  |= get_bits(gb, 3);
209         frame->gain_index[1]  |= get_bits(gb, 2);
210         frame->gain_index[2]   = get_bits(gb, 3);
211         frame->cb_index[3]    |= get_bits1(gb);
212         frame->cb_index[4]     = get_bits(gb, 6) << 1;
213         frame->cb_index[4]    |= get_bits1(gb);
214         frame->cb_index[5]     = get_bits(gb, 7);
215         frame->cb_index[6]     = get_bits(gb, 8);
216         frame->cb_index[7]     = get_bits(gb, 8);
217         frame->cb_index[8]     = get_bits(gb, 8);
218         frame->gain_index[3]  |= get_bits(gb, 2);
219         frame->gain_index[4]  |= get_bits(gb, 2);
220         frame->gain_index[5]   = get_bits(gb, 3);
221         frame->gain_index[6]  |= get_bits(gb, 3);
222         frame->gain_index[7]  |= get_bits(gb, 2);
223         frame->gain_index[8]   = get_bits(gb, 3);
224     } else {
225         frame->idx[56]        |= get_bits(gb, 2);
226         frame->idx[57]        |= get_bits(gb, 2);
227         frame->cb_index[0]    |= get_bits1(gb);
228         frame->cb_index[1]     = get_bits(gb, 7);
229         frame->cb_index[2]     = get_bits(gb, 4) << 3;
230         frame->cb_index[2]    |= get_bits(gb, 3);
231         frame->gain_index[0]  |= get_bits(gb, 3);
232         frame->gain_index[1]  |= get_bits(gb, 2);
233         frame->gain_index[2]   = get_bits(gb, 3);
234         frame->cb_index[3]    |= get_bits1(gb);
235         frame->cb_index[4]     = get_bits(gb, 4) << 3;
236         frame->cb_index[4]    |= get_bits(gb, 3);
237         frame->cb_index[5]     = get_bits(gb, 7);
238         frame->cb_index[6]    |= get_bits1(gb);
239         frame->cb_index[7]     = get_bits(gb, 5) << 3;
240         frame->cb_index[7]    |= get_bits(gb, 3);
241         frame->cb_index[8]     = get_bits(gb, 8);
242         frame->cb_index[9]    |= get_bits1(gb);
243         frame->cb_index[10]    = get_bits(gb, 4) << 4;
244         frame->cb_index[10]   |= get_bits(gb, 4);
245         frame->cb_index[11]    = get_bits(gb, 8);
246         frame->cb_index[12]   |= get_bits1(gb);
247         frame->cb_index[13]    = get_bits(gb, 3) << 5;
248         frame->cb_index[13]   |= get_bits(gb, 5);
249         frame->cb_index[14]    = get_bits(gb, 8);
250         frame->gain_index[3]  |= get_bits(gb, 2);
251         frame->gain_index[4]  |= get_bits1(gb);
252         frame->gain_index[5]   = get_bits(gb, 3);
253         frame->gain_index[6]  |= get_bits(gb, 3);
254         frame->gain_index[7]  |= get_bits(gb, 2);
255         frame->gain_index[8]   = get_bits(gb, 3);
256         frame->gain_index[9]  |= get_bits(gb, 4);
257         frame->gain_index[10] |= get_bits1(gb) << 2;
258         frame->gain_index[10] |= get_bits(gb, 2);
259         frame->gain_index[11]  = get_bits(gb, 3);
260         frame->gain_index[12] |= get_bits(gb, 4);
261         frame->gain_index[13] |= get_bits(gb, 3);
262         frame->gain_index[14]  = get_bits(gb, 3);
263     }
264 
265     return get_bits1(gb);
266 }
267 
index_conv(int16_t * index)268 static void index_conv(int16_t *index)
269 {
270     int k;
271 
272     for (k = 4; k < 6; k++) {
273         if (index[k] >= 44 && index[k] < 108) {
274             index[k] += 64;
275         } else if (index[k] >= 108 && index[k] < 128) {
276             index[k] += 128;
277         }
278     }
279 }
280 
lsf_dequantization(int16_t * lsfdeq,int16_t * index,int16_t lpc_n)281 static void lsf_dequantization(int16_t *lsfdeq, int16_t *index, int16_t lpc_n)
282 {
283     int i, j, pos = 0, cb_pos = 0;
284 
285     for (i = 0; i < LSF_NSPLIT; i++) {
286         for (j = 0; j < lsf_dim_codebook[i]; j++) {
287             lsfdeq[pos + j] = lsf_codebook[cb_pos + index[i] * lsf_dim_codebook[i] + j];
288         }
289 
290         pos    += lsf_dim_codebook[i];
291         cb_pos += lsf_size_codebook[i] * lsf_dim_codebook[i];
292     }
293 
294     if (lpc_n > 1) {
295         pos = 0;
296         cb_pos = 0;
297         for (i = 0; i < LSF_NSPLIT; i++) {
298             for (j = 0; j < lsf_dim_codebook[i]; j++) {
299                 lsfdeq[LPC_FILTERORDER + pos + j] = lsf_codebook[cb_pos +
300                     index[LSF_NSPLIT + i] * lsf_dim_codebook[i] + j];
301             }
302 
303             pos    += lsf_dim_codebook[i];
304             cb_pos += lsf_size_codebook[i] * lsf_dim_codebook[i];
305         }
306     }
307 }
308 
lsf_check_stability(int16_t * lsf,int dim,int nb_vectors)309 static void lsf_check_stability(int16_t *lsf, int dim, int nb_vectors)
310 {
311     for (int n = 0; n < 2; n++) {
312         for (int m = 0; m < nb_vectors; m++) {
313             for (int k = 0; k < dim - 1; k++) {
314                 int i = m * dim + k;
315 
316                 if ((lsf[i + 1] - lsf[i]) < 319) {
317                     if (lsf[i + 1] < lsf[i]) {
318                         lsf[i + 1] = lsf[i] + 160;
319                         lsf[i]     = lsf[i + 1] - 160;
320                     } else {
321                         lsf[i]     -= 160;
322                         lsf[i + 1] += 160;
323                     }
324                 }
325 
326                 lsf[i] = av_clip(lsf[i], 82, 25723);
327             }
328         }
329     }
330 }
331 
lsf_interpolate(int16_t * out,int16_t * in1,int16_t * in2,int16_t coef,int size)332 static void lsf_interpolate(int16_t *out, int16_t *in1,
333                             int16_t *in2, int16_t coef,
334                             int size)
335 {
336     int invcoef = 16384 - coef, i;
337 
338     for (i = 0; i < size; i++)
339         out[i] = (coef * in1[i] + invcoef * in2[i] + 8192) >> 14;
340 }
341 
lsf2lsp(int16_t * lsf,int16_t * lsp,int order)342 static void lsf2lsp(int16_t *lsf, int16_t *lsp, int order)
343 {
344     int16_t diff, freq;
345     int32_t tmp;
346     int i, k;
347 
348     for (i = 0; i < order; i++) {
349         freq = (lsf[i] * 20861) >> 15;
350         /* 20861: 1.0/(2.0*PI) in Q17 */
351         /*
352            Upper 8 bits give the index k and
353            Lower 8 bits give the difference, which needs
354            to be approximated linearly
355          */
356         k = FFMIN(freq >> 8, 63);
357         diff = freq & 0xFF;
358 
359         /* Calculate linear approximation */
360         tmp = cos_derivative_tbl[k] * diff;
361         lsp[i] = cos_tbl[k] + (tmp >> 12);
362     }
363 }
364 
get_lsp_poly(int16_t * lsp,int32_t * f)365 static void get_lsp_poly(int16_t *lsp, int32_t *f)
366 {
367     int16_t high, low;
368     int i, j, k, l;
369     int32_t tmp;
370 
371     f[0] = 16777216;
372     f[1] = lsp[0] * -1024;
373 
374     for (i = 2, k = 2, l = 2; i <= 5; i++, k += 2) {
375         f[l] = f[l - 2];
376 
377         for (j = i; j > 1; j--, l--) {
378             high = f[l - 1] >> 16;
379             low = (f[l - 1] - (high * (1 << 16))) >> 1;
380 
381             tmp = ((high * lsp[k]) * 4) + (((low * lsp[k]) >> 15) * 4);
382 
383             f[l] += f[l - 2];
384             f[l] -= (unsigned)tmp;
385         }
386 
387         f[l] -= lsp[k] * (1 << 10);
388         l += i;
389     }
390 }
391 
lsf2poly(int16_t * a,int16_t * lsf)392 static void lsf2poly(int16_t *a, int16_t *lsf)
393 {
394     int32_t f[2][6];
395     int16_t lsp[10];
396     int32_t tmp;
397     int i;
398 
399     lsf2lsp(lsf, lsp, LPC_FILTERORDER);
400 
401     get_lsp_poly(&lsp[0], f[0]);
402     get_lsp_poly(&lsp[1], f[1]);
403 
404     for (i = 5; i > 0; i--) {
405         f[0][i] += (unsigned)f[0][i - 1];
406         f[1][i] -= (unsigned)f[1][i - 1];
407     }
408 
409     a[0] = 4096;
410     for (i = 5; i > 0; i--) {
411         tmp = f[0][6 - i] + (unsigned)f[1][6 - i] + 4096;
412         a[6 - i] = tmp >> 13;
413 
414         tmp = f[0][6 - i] - (unsigned)f[1][6 - i] + 4096;
415         a[5 + i] = tmp >> 13;
416     }
417 }
418 
lsp_interpolate2polydec(int16_t * a,int16_t * lsf1,int16_t * lsf2,int coef,int length)419 static void lsp_interpolate2polydec(int16_t *a, int16_t *lsf1,
420                                    int16_t *lsf2, int coef, int length)
421 {
422     int16_t lsftmp[LPC_FILTERORDER];
423 
424     lsf_interpolate(lsftmp, lsf1, lsf2, coef, length);
425     lsf2poly(a, lsftmp);
426 }
427 
bw_expand(int16_t * out,const int16_t * in,const int16_t * coef,int length)428 static void bw_expand(int16_t *out, const int16_t *in, const int16_t *coef, int length)
429 {
430     int i;
431 
432     out[0] = in[0];
433     for (i = 1; i < length; i++)
434         out[i] = (coef[i] * in[i] + 16384) >> 15;
435 }
436 
lsp_interpolate(int16_t * syntdenum,int16_t * weightdenum,int16_t * lsfdeq,int16_t length,ILBCContext * s)437 static void lsp_interpolate(int16_t *syntdenum, int16_t *weightdenum,
438                             int16_t *lsfdeq, int16_t length,
439                             ILBCContext *s)
440 {
441     int16_t lp[LPC_FILTERORDER + 1], *lsfdeq2;
442     int i, pos, lp_length;
443 
444     lsfdeq2 = lsfdeq + length;
445     lp_length = length + 1;
446 
447     if (s->mode == 30) {
448         lsp_interpolate2polydec(lp, (*s).lsfdeqold, lsfdeq, lsf_weight_30ms[0], length);
449         memcpy(syntdenum, lp, lp_length * 2);
450         bw_expand(weightdenum, lp, kLpcChirpSyntDenum, lp_length);
451 
452         pos = lp_length;
453         for (i = 1; i < 6; i++) {
454             lsp_interpolate2polydec(lp, lsfdeq, lsfdeq2,
455                                                  lsf_weight_30ms[i],
456                                                  length);
457             memcpy(syntdenum + pos, lp, lp_length * 2);
458             bw_expand(weightdenum + pos, lp, kLpcChirpSyntDenum, lp_length);
459             pos += lp_length;
460         }
461     } else {
462         pos = 0;
463         for (i = 0; i < s->nsub; i++) {
464             lsp_interpolate2polydec(lp, s->lsfdeqold, lsfdeq,
465                                     lsf_weight_20ms[i], length);
466             memcpy(syntdenum + pos, lp, lp_length * 2);
467             bw_expand(weightdenum + pos, lp, kLpcChirpSyntDenum, lp_length);
468             pos += lp_length;
469         }
470     }
471 
472     if (s->mode == 30) {
473         memcpy(s->lsfdeqold, lsfdeq2, length * 2);
474     } else {
475         memcpy(s->lsfdeqold, lsfdeq, length * 2);
476     }
477 }
478 
filter_mafq12(int16_t * in_ptr,int16_t * out_ptr,int16_t * B,int16_t B_length,int16_t length)479 static void filter_mafq12(int16_t *in_ptr, int16_t *out_ptr,
480                           int16_t *B, int16_t B_length,
481                           int16_t length)
482 {
483     int o, i, j;
484 
485     for (i = 0; i < length; i++) {
486         const int16_t *b_ptr = &B[0];
487         const int16_t *x_ptr = &in_ptr[i];
488 
489         o = 0;
490         for (j = 0; j < B_length; j++)
491             o += b_ptr[j] * *x_ptr--;
492 
493         o = av_clip(o, -134217728, 134215679);
494 
495         out_ptr[i] = ((o + 2048) >> 12);
496     }
497 }
498 
filter_arfq12(const int16_t * data_in,int16_t * data_out,const int16_t * coefficients,int coefficients_length,int data_length)499 static void filter_arfq12(const int16_t *data_in,
500                           int16_t *data_out,
501                           const int16_t *coefficients,
502                           int coefficients_length,
503                           int data_length)
504 {
505     int i, j;
506 
507     for (i = 0; i < data_length; i++) {
508         int output = 0, sum = 0;
509 
510         for (j = coefficients_length - 1; j > 0; j--) {
511             sum += (unsigned)(coefficients[j] * data_out[i - j]);
512         }
513 
514         output = coefficients[0] * data_in[i] - (unsigned)sum;
515         output = av_clip(output, -134217728, 134215679);
516 
517         data_out[i] = (output + 2048) >> 12;
518     }
519 }
520 
state_construct(int16_t ifm,int16_t * idx,int16_t * synt_denum,int16_t * Out_fix,int16_t len)521 static void state_construct(int16_t ifm, int16_t *idx,
522                            int16_t *synt_denum, int16_t *Out_fix,
523                            int16_t len)
524 {
525     int k;
526     int16_t maxVal;
527     int16_t *tmp1, *tmp2, *tmp3;
528     /* Stack based */
529     int16_t numerator[1 + LPC_FILTERORDER];
530     int16_t sampleValVec[2 * STATE_SHORT_LEN_30MS + LPC_FILTERORDER];
531     int16_t sampleMaVec[2 * STATE_SHORT_LEN_30MS + LPC_FILTERORDER];
532     int16_t *sampleVal = &sampleValVec[LPC_FILTERORDER];
533     int16_t *sampleMa = &sampleMaVec[LPC_FILTERORDER];
534     int16_t *sampleAr = &sampleValVec[LPC_FILTERORDER];
535 
536     /* initialization of coefficients */
537 
538     for (k = 0; k < LPC_FILTERORDER + 1; k++) {
539         numerator[k] = synt_denum[LPC_FILTERORDER - k];
540     }
541 
542     /* decoding of the maximum value */
543 
544     maxVal = frg_quant_mod[ifm];
545 
546     /* decoding of the sample values */
547     tmp1 = sampleVal;
548     tmp2 = &idx[len - 1];
549 
550     if (ifm < 37) {
551         for (k = 0; k < len; k++) {
552             /*the shifting is due to the Q13 in sq4_fixQ13[i], also the adding of 2097152 (= 0.5 << 22)
553                maxVal is in Q8 and result is in Q(-1) */
554             (*tmp1) = (int16_t) ((SPL_MUL_16_16(maxVal, ilbc_state[(*tmp2)]) + 2097152) >> 22);
555             tmp1++;
556             tmp2--;
557         }
558     } else if (ifm < 59) {
559         for (k = 0; k < len; k++) {
560             /*the shifting is due to the Q13 in sq4_fixQ13[i], also the adding of 262144 (= 0.5 << 19)
561                maxVal is in Q5 and result is in Q(-1) */
562             (*tmp1) = (int16_t) ((SPL_MUL_16_16(maxVal, ilbc_state[(*tmp2)]) + 262144) >> 19);
563             tmp1++;
564             tmp2--;
565         }
566     } else {
567         for (k = 0; k < len; k++) {
568             /*the shifting is due to the Q13 in sq4_fixQ13[i], also the adding of 65536 (= 0.5 << 17)
569                maxVal is in Q3 and result is in Q(-1) */
570             (*tmp1) = (int16_t) ((SPL_MUL_16_16(maxVal, ilbc_state[(*tmp2)]) + 65536) >> 17);
571             tmp1++;
572             tmp2--;
573         }
574     }
575 
576     /* Set the rest of the data to zero */
577     memset(&sampleVal[len], 0, len * 2);
578 
579     /* circular convolution with all-pass filter */
580 
581     /* Set the state to zero */
582     memset(sampleValVec, 0, LPC_FILTERORDER * 2);
583 
584     /* Run MA filter + AR filter */
585     filter_mafq12(sampleVal, sampleMa, numerator, LPC_FILTERORDER + 1, len + LPC_FILTERORDER);
586     memset(&sampleMa[len + LPC_FILTERORDER], 0, (len - LPC_FILTERORDER) * 2);
587     filter_arfq12(sampleMa, sampleAr, synt_denum, LPC_FILTERORDER + 1, 2 * len);
588 
589     tmp1 = &sampleAr[len - 1];
590     tmp2 = &sampleAr[2 * len - 1];
591     tmp3 = Out_fix;
592     for (k = 0; k < len; k++) {
593         (*tmp3) = (*tmp1) + (*tmp2);
594         tmp1--;
595         tmp2--;
596         tmp3++;
597     }
598 }
599 
gain_dequantization(int index,int max_in,int stage)600 static int16_t gain_dequantization(int index, int max_in, int stage)
601 {
602     int16_t scale = FFMAX(1638, FFABS(max_in));
603 
604     return ((scale * ilbc_gain[stage][index]) + 8192) >> 14;
605 }
606 
vector_rmultiplication(int16_t * out,const int16_t * in,const int16_t * win,int length,int shift)607 static void vector_rmultiplication(int16_t *out, const int16_t *in,
608                                    const int16_t *win,
609                                    int length, int shift)
610 {
611     for (int i = 0; i < length; i++)
612         out[i] = (in[i] * win[-i]) >> shift;
613 }
614 
vector_multiplication(int16_t * out,const int16_t * in,const int16_t * win,int length,int shift)615 static void vector_multiplication(int16_t *out, const int16_t *in,
616                                   const int16_t *win, int length,
617                                   int shift)
618 {
619     for (int i = 0; i < length; i++)
620         out[i] = (in[i] * win[i]) >> shift;
621 }
622 
add_vector_and_shift(int16_t * out,const int16_t * in1,const int16_t * in2,int length,int shift)623 static void add_vector_and_shift(int16_t *out, const int16_t *in1,
624                                  const int16_t *in2, int length,
625                                  int shift)
626 {
627     for (int i = 0; i < length; i++)
628         out[i] = (in1[i] + in2[i]) >> shift;
629 }
630 
create_augmented_vector(int index,int16_t * buffer,int16_t * cbVec)631 static void create_augmented_vector(int index, int16_t *buffer, int16_t *cbVec)
632 {
633     int16_t cbVecTmp[4];
634     int interpolation_length = FFMIN(4, index);
635     int16_t ilow = index - interpolation_length;
636 
637     memcpy(cbVec, buffer - index, index * 2);
638 
639     vector_multiplication(&cbVec[ilow], buffer - index - interpolation_length, alpha, interpolation_length, 15);
640     vector_rmultiplication(cbVecTmp, buffer - interpolation_length, &alpha[interpolation_length - 1], interpolation_length, 15);
641     add_vector_and_shift(&cbVec[ilow], &cbVec[ilow], cbVecTmp, interpolation_length, 0);
642 
643     memcpy(cbVec + index, buffer - index, FFMIN(SUBL - index, index) * sizeof(*cbVec));
644 }
645 
get_codebook(int16_t * cbvec,int16_t * mem,int16_t index,int16_t lMem,int16_t cbveclen)646 static void get_codebook(int16_t * cbvec,   /* (o) Constructed codebook vector */
647                      int16_t * mem,     /* (i) Codebook buffer */
648                      int16_t index,     /* (i) Codebook index */
649                      int16_t lMem,      /* (i) Length of codebook buffer */
650                      int16_t cbveclen   /* (i) Codebook vector length */
651 )
652 {
653     int16_t k, base_size;
654     int16_t lag;
655     /* Stack based */
656     int16_t tempbuff2[SUBL + 5];
657 
658     /* Determine size of codebook sections */
659     base_size = lMem - cbveclen + 1;
660 
661     if (cbveclen == SUBL) {
662         base_size += cbveclen / 2;
663     }
664 
665     /* No filter -> First codebook section */
666     if (index < lMem - cbveclen + 1) {
667         /* first non-interpolated vectors */
668 
669         k = index + cbveclen;
670         /* get vector */
671         memcpy(cbvec, mem + lMem - k, cbveclen * 2);
672     } else if (index < base_size) {
673 
674         /* Calculate lag */
675 
676         k = (int16_t) SPL_MUL_16_16(2, (index - (lMem - cbveclen + 1))) + cbveclen;
677 
678         lag = k / 2;
679 
680         create_augmented_vector(lag, mem + lMem, cbvec);
681     } else {
682         int16_t memIndTest;
683 
684         /* first non-interpolated vectors */
685 
686         if (index - base_size < lMem - cbveclen + 1) {
687 
688             /* Set up filter memory, stuff zeros outside memory buffer */
689 
690             memIndTest = lMem - (index - base_size + cbveclen);
691 
692             memset(mem - CB_HALFFILTERLEN, 0, CB_HALFFILTERLEN * 2);
693             memset(mem + lMem, 0, CB_HALFFILTERLEN * 2);
694 
695             /* do filtering to get the codebook vector */
696 
697             filter_mafq12(&mem[memIndTest + 4], cbvec, (int16_t *) kCbFiltersRev, CB_FILTERLEN, cbveclen);
698         } else {
699             /* interpolated vectors */
700             /* Stuff zeros outside memory buffer  */
701             memIndTest = lMem - cbveclen - CB_FILTERLEN;
702             memset(mem + lMem, 0, CB_HALFFILTERLEN * 2);
703 
704             /* do filtering */
705             filter_mafq12(&mem[memIndTest + 7], tempbuff2, (int16_t *) kCbFiltersRev, CB_FILTERLEN, (int16_t) (cbveclen + 5));
706 
707             /* Calculate lag index */
708             lag = (cbveclen << 1) - 20 + index - base_size - lMem - 1;
709 
710             create_augmented_vector(lag, tempbuff2 + SUBL + 5, cbvec);
711         }
712     }
713 }
714 
construct_vector(int16_t * decvector,int16_t * index,int16_t * gain_index,int16_t * mem,int16_t lMem,int16_t veclen)715 static void construct_vector (
716     int16_t *decvector,   /* (o) Decoded vector */
717     int16_t *index,       /* (i) Codebook indices */
718     int16_t *gain_index,  /* (i) Gain quantization indices */
719     int16_t *mem,         /* (i) Buffer for codevector construction */
720     int16_t lMem,         /* (i) Length of buffer */
721     int16_t veclen)
722 {
723     int16_t gain[CB_NSTAGES];
724     int16_t cbvec0[SUBL];
725     int16_t cbvec1[SUBL];
726     int16_t cbvec2[SUBL];
727     unsigned a32;
728     int16_t *gainPtr;
729     int j;
730 
731     /* gain de-quantization */
732 
733     gain[0] = gain_dequantization(gain_index[0], 16384, 0);
734     gain[1] = gain_dequantization(gain_index[1], gain[0], 1);
735     gain[2] = gain_dequantization(gain_index[2], gain[1], 2);
736 
737     /* codebook vector construction and construction of total vector */
738 
739     /* Stack based */
740     get_codebook(cbvec0, mem, index[0], lMem, veclen);
741     get_codebook(cbvec1, mem, index[1], lMem, veclen);
742     get_codebook(cbvec2, mem, index[2], lMem, veclen);
743 
744     gainPtr = &gain[0];
745     for (j = 0; j < veclen; j++) {
746         a32 = SPL_MUL_16_16(*gainPtr++, cbvec0[j]);
747         a32 += SPL_MUL_16_16(*gainPtr++, cbvec1[j]);
748         a32 += SPL_MUL_16_16(*gainPtr, cbvec2[j]);
749         gainPtr -= 2;
750         decvector[j] = (int)(a32 + 8192) >> 14;
751     }
752 }
753 
reverse_memcpy(int16_t * dest,int16_t * source,int length)754 static void reverse_memcpy(int16_t *dest, int16_t *source, int length)
755 {
756     int16_t* destPtr = dest;
757     int16_t* sourcePtr = source;
758     int j;
759 
760     for (j = 0; j < length; j++)
761         *destPtr-- = *sourcePtr++;
762 }
763 
decode_residual(ILBCContext * s,ILBCFrame * encbits,int16_t * decresidual,int16_t * syntdenum)764 static void decode_residual(ILBCContext *s,
765                             ILBCFrame *encbits,
766                             int16_t *decresidual,
767                             int16_t *syntdenum)
768 {
769     int16_t meml_gotten, Nfor, Nback, diff, start_pos;
770     int16_t subcount, subframe;
771     int16_t *reverseDecresidual = s->enh_buf;        /* Reversed decoded data, used for decoding backwards in time (reuse memory in state) */
772     int16_t *memVec = s->prevResidual;
773     int16_t *mem = &memVec[CB_HALFFILTERLEN];   /* Memory for codebook */
774 
775     diff = STATE_LEN - s->state_short_len;
776 
777     if (encbits->state_first == 1) {
778         start_pos = (encbits->start - 1) * SUBL;
779     } else {
780         start_pos = (encbits->start - 1) * SUBL + diff;
781     }
782 
783     /* decode scalar part of start state */
784 
785     state_construct(encbits->ifm, encbits->idx, &syntdenum[(encbits->start - 1) * (LPC_FILTERORDER + 1)], &decresidual[start_pos], s->state_short_len);
786 
787     if (encbits->state_first) { /* put adaptive part in the end */
788         /* setup memory */
789         memset(mem, 0, (int16_t) (CB_MEML - s->state_short_len) * 2);
790         memcpy(mem + CB_MEML - s->state_short_len, decresidual + start_pos, s->state_short_len * 2);
791 
792         /* construct decoded vector */
793 
794         construct_vector(&decresidual[start_pos + s->state_short_len], encbits->cb_index, encbits->gain_index, mem + CB_MEML - ST_MEM_L_TBL, ST_MEM_L_TBL, (int16_t) diff);
795 
796     } else { /* put adaptive part in the beginning */
797         /* setup memory */
798         meml_gotten = s->state_short_len;
799         reverse_memcpy(mem + CB_MEML - 1, decresidual + start_pos, meml_gotten);
800         memset(mem, 0, (int16_t) (CB_MEML - meml_gotten) * 2);
801 
802         /* construct decoded vector */
803         construct_vector(reverseDecresidual, encbits->cb_index, encbits->gain_index, mem + CB_MEML - ST_MEM_L_TBL, ST_MEM_L_TBL, diff);
804 
805         /* get decoded residual from reversed vector */
806         reverse_memcpy(&decresidual[start_pos - 1], reverseDecresidual, diff);
807     }
808 
809     /* counter for predicted subframes */
810     subcount = 1;
811 
812     /* forward prediction of subframes */
813     Nfor = s->nsub - encbits->start - 1;
814 
815     if (Nfor > 0) {
816         /* setup memory */
817         memset(mem, 0, (CB_MEML - STATE_LEN) * 2);
818         memcpy(mem + CB_MEML - STATE_LEN, decresidual + (encbits->start - 1) * SUBL, STATE_LEN * 2);
819 
820         /* loop over subframes to encode */
821         for (subframe = 0; subframe < Nfor; subframe++) {
822             /* construct decoded vector */
823             construct_vector(&decresidual[(encbits->start + 1 + subframe) * SUBL], encbits->cb_index + subcount * CB_NSTAGES, encbits->gain_index + subcount * CB_NSTAGES, mem, MEM_LF_TBL, SUBL);
824 
825             /* update memory */
826             memmove(mem, mem + SUBL, (CB_MEML - SUBL) * sizeof(*mem));
827             memcpy(mem + CB_MEML - SUBL, &decresidual[(encbits->start + 1 + subframe) * SUBL], SUBL * 2);
828 
829             subcount++;
830         }
831 
832     }
833 
834     /* backward prediction of subframes */
835     Nback = encbits->start - 1;
836 
837     if (Nback > 0) {
838         /* setup memory */
839         meml_gotten = SUBL * (s->nsub + 1 - encbits->start);
840         if (meml_gotten > CB_MEML) {
841             meml_gotten = CB_MEML;
842         }
843 
844         reverse_memcpy(mem + CB_MEML - 1, decresidual + (encbits->start - 1) * SUBL, meml_gotten);
845         memset(mem, 0, (int16_t) (CB_MEML - meml_gotten) * 2);
846 
847         /* loop over subframes to decode */
848         for (subframe = 0; subframe < Nback; subframe++) {
849             /* construct decoded vector */
850             construct_vector(&reverseDecresidual[subframe * SUBL], encbits->cb_index + subcount * CB_NSTAGES,
851                         encbits->gain_index + subcount * CB_NSTAGES, mem, MEM_LF_TBL, SUBL);
852 
853             /* update memory */
854             memmove(mem, mem + SUBL, (CB_MEML - SUBL) * sizeof(*mem));
855             memcpy(mem + CB_MEML - SUBL, &reverseDecresidual[subframe * SUBL], SUBL * 2);
856 
857             subcount++;
858         }
859 
860         /* get decoded residual from reversed vector */
861         reverse_memcpy(decresidual + SUBL * Nback - 1, reverseDecresidual, SUBL * Nback);
862     }
863 }
864 
max_abs_value_w16(const int16_t * vector,int length)865 static int16_t max_abs_value_w16(const int16_t* vector, int length)
866 {
867     int i = 0, absolute = 0, maximum = 0;
868 
869     if (vector == NULL || length <= 0) {
870         return -1;
871     }
872 
873     for (i = 0; i < length; i++) {
874         absolute = FFABS(vector[i]);
875         if (absolute > maximum)
876             maximum = absolute;
877     }
878 
879     // Guard the case for abs(-32768).
880     return FFMIN(maximum, INT16_MAX);
881 }
882 
get_size_in_bits(uint32_t n)883 static int16_t get_size_in_bits(uint32_t n)
884 {
885     int16_t bits;
886 
887     if (0xFFFF0000 & n) {
888         bits = 16;
889     } else {
890         bits = 0;
891     }
892 
893     if (0x0000FF00 & (n >> bits)) bits += 8;
894     if (0x000000F0 & (n >> bits)) bits += 4;
895     if (0x0000000C & (n >> bits)) bits += 2;
896     if (0x00000002 & (n >> bits)) bits += 1;
897     if (0x00000001 & (n >> bits)) bits += 1;
898 
899     return bits;
900 }
901 
scale_dot_product(const int16_t * v1,const int16_t * v2,int length,int scaling)902 static int32_t scale_dot_product(const int16_t *v1, const int16_t *v2, int length, int scaling)
903 {
904     int64_t sum = 0;
905 
906     for (int i = 0; i < length; i++)
907         sum += (v1[i] * v2[i]) >> scaling;
908 
909     return av_clipl_int32(sum);
910 }
911 
correlation(int32_t * corr,int32_t * ener,int16_t * buffer,int16_t lag,int16_t blen,int16_t srange,int16_t scale)912 static void correlation(int32_t *corr, int32_t *ener, int16_t *buffer,
913                         int16_t lag, int16_t blen, int16_t srange, int16_t scale)
914 {
915     int16_t *w16ptr;
916 
917     w16ptr = &buffer[blen - srange - lag];
918 
919     *corr = scale_dot_product(&buffer[blen - srange], w16ptr, srange, scale);
920     *ener = scale_dot_product(w16ptr, w16ptr, srange, scale);
921 
922     if (*ener == 0) {
923         *corr = 0;
924         *ener = 1;
925     }
926 }
927 
928 #define SPL_SHIFT_W32(x, c) (((c) >= 0) ? ((x) << (c)) : ((x) >> (-(c))))
929 
norm_w32(int32_t a)930 static int16_t norm_w32(int32_t a)
931 {
932     if (a == 0) {
933         return 0;
934     } else if (a < 0) {
935         a = ~a;
936     }
937 
938     return ff_clz(a);
939 }
940 
div_w32_w16(int32_t num,int16_t den)941 static int32_t div_w32_w16(int32_t num, int16_t den)
942 {
943     if (den != 0)
944         return num / den;
945     else
946         return 0x7FFFFFFF;
947 }
948 
do_plc(int16_t * plc_residual,int16_t * plc_lpc,int16_t PLI,int16_t * decresidual,int16_t * lpc,int16_t inlag,ILBCContext * s)949 static void do_plc(int16_t *plc_residual,      /* (o) concealed residual */
950                    int16_t *plc_lpc,           /* (o) concealed LP parameters */
951                    int16_t PLI,                /* (i) packet loss indicator
952                                                       0 - no PL, 1 = PL */
953                    int16_t *decresidual,       /* (i) decoded residual */
954                    int16_t *lpc,               /* (i) decoded LPC (only used for no PL) */
955                    int16_t inlag,              /* (i) pitch lag */
956                    ILBCContext *s)             /* (i/o) decoder instance */
957 {
958     int16_t i, pick;
959     int32_t cross, ener, cross_comp, ener_comp = 0;
960     int32_t measure, max_measure, energy;
961     int16_t max, cross_square_max, cross_square;
962     int16_t j, lag, tmp1, tmp2, randlag;
963     int16_t shift1, shift2, shift3, shift_max;
964     int16_t scale3;
965     int16_t corrLen;
966     int32_t tmpW32, tmp2W32;
967     int16_t use_gain;
968     int16_t tot_gain;
969     int16_t max_perSquare;
970     int16_t scale1, scale2;
971     int16_t totscale;
972     int32_t nom;
973     int16_t denom;
974     int16_t pitchfact;
975     int16_t use_lag;
976     int ind;
977     int16_t randvec[BLOCKL_MAX];
978 
979     /* Packet Loss */
980     if (PLI == 1) {
981 
982         s->consPLICount += 1;
983 
984         /* if previous frame not lost,
985            determine pitch pred. gain */
986 
987         if (s->prevPLI != 1) {
988 
989             /* Maximum 60 samples are correlated, preserve as high accuracy
990                as possible without getting overflow */
991             max = max_abs_value_w16(s->prevResidual, s->block_samples);
992             scale3 = (get_size_in_bits(max) << 1) - 25;
993             if (scale3 < 0) {
994                 scale3 = 0;
995             }
996 
997             /* Store scale for use when interpolating between the
998              * concealment and the received packet */
999             s->prevScale = scale3;
1000 
1001             /* Search around the previous lag +/-3 to find the
1002                best pitch period */
1003             lag = inlag - 3;
1004 
1005             /* Guard against getting outside the frame */
1006             corrLen = FFMIN(60, s->block_samples - (inlag + 3));
1007 
1008             correlation(&cross, &ener, s->prevResidual, lag, s->block_samples, corrLen, scale3);
1009 
1010             /* Normalize and store cross^2 and the number of shifts */
1011             shift_max = get_size_in_bits(FFABS(cross)) - 15;
1012             cross_square_max = (int16_t) SPL_MUL_16_16_RSFT(SPL_SHIFT_W32(cross, -shift_max), SPL_SHIFT_W32(cross, -shift_max), 15);
1013 
1014             for (j = inlag - 2; j <= inlag + 3; j++) {
1015                 correlation(&cross_comp, &ener_comp, s->prevResidual, j, s->block_samples, corrLen, scale3);
1016 
1017                 /* Use the criteria (corr*corr)/energy to compare if
1018                    this lag is better or not. To avoid the division,
1019                    do a cross multiplication */
1020                 shift1 = get_size_in_bits(FFABS(cross_comp)) - 15;
1021                 cross_square = (int16_t) SPL_MUL_16_16_RSFT(SPL_SHIFT_W32(cross_comp, -shift1), SPL_SHIFT_W32(cross_comp, -shift1), 15);
1022 
1023                 shift2 = get_size_in_bits(ener) - 15;
1024                 measure = SPL_MUL_16_16(SPL_SHIFT_W32(ener, -shift2), cross_square);
1025 
1026                 shift3 = get_size_in_bits(ener_comp) - 15;
1027                 max_measure = SPL_MUL_16_16(SPL_SHIFT_W32(ener_comp, -shift3), cross_square_max);
1028 
1029                 /* Calculate shift value, so that the two measures can
1030                    be put in the same Q domain */
1031                 if (((shift_max << 1) + shift3) > ((shift1 << 1) + shift2)) {
1032                     tmp1 = FFMIN(31, (shift_max << 1) + shift3 - (shift1 << 1) - shift2);
1033                     tmp2 = 0;
1034                 } else {
1035                     tmp1 = 0;
1036                     tmp2 = FFMIN(31, (shift1 << 1) + shift2 - (shift_max << 1) - shift3);
1037                 }
1038 
1039                 if ((measure >> tmp1) > (max_measure >> tmp2)) {
1040                     /* New lag is better => record lag, measure and domain */
1041                     lag = j;
1042                     cross_square_max = cross_square;
1043                     cross = cross_comp;
1044                     shift_max = shift1;
1045                     ener = ener_comp;
1046                 }
1047             }
1048 
1049             /* Calculate the periodicity for the lag with the maximum correlation.
1050 
1051                Definition of the periodicity:
1052                abs(corr(vec1, vec2))/(sqrt(energy(vec1))*sqrt(energy(vec2)))
1053 
1054                Work in the Square domain to simplify the calculations
1055                max_perSquare is less than 1 (in Q15)
1056              */
1057             tmp2W32 = scale_dot_product(&s->prevResidual[s->block_samples - corrLen], &s->prevResidual[s->block_samples - corrLen], corrLen, scale3);
1058 
1059             if ((tmp2W32 > 0) && (ener_comp > 0)) {
1060                 /* norm energies to int16_t, compute the product of the energies and
1061                    use the upper int16_t as the denominator */
1062 
1063                 scale1 = norm_w32(tmp2W32) - 16;
1064                 tmp1 = SPL_SHIFT_W32(tmp2W32, scale1);
1065 
1066                 scale2 = norm_w32(ener) - 16;
1067                 tmp2 =  SPL_SHIFT_W32(ener, scale2);
1068                 denom = SPL_MUL_16_16_RSFT(tmp1, tmp2, 16);    /* denom in Q(scale1+scale2-16) */
1069 
1070                 /* Square the cross correlation and norm it such that max_perSquare
1071                    will be in Q15 after the division */
1072 
1073                 totscale = scale1 + scale2 - 1;
1074                 tmp1 = SPL_SHIFT_W32(cross, (totscale >> 1));
1075                 tmp2 = SPL_SHIFT_W32(cross, totscale - (totscale >> 1));
1076 
1077                 nom = SPL_MUL_16_16(tmp1, tmp2);
1078                 max_perSquare = div_w32_w16(nom, denom);
1079             } else {
1080                 max_perSquare = 0;
1081             }
1082         } else {
1083             /* previous frame lost, use recorded lag and gain */
1084             lag = s->prevLag;
1085             max_perSquare = s->per_square;
1086         }
1087 
1088         /* Attenuate signal and scale down pitch pred gain if
1089            several frames lost consecutively */
1090 
1091         use_gain = 32767;       /* 1.0 in Q15 */
1092 
1093         if (s->consPLICount * s->block_samples > 320) {
1094             use_gain = 29491;   /* 0.9 in Q15 */
1095         } else if (s->consPLICount * s->block_samples > 640) {
1096             use_gain = 22938;   /* 0.7 in Q15 */
1097         } else if (s->consPLICount * s->block_samples > 960) {
1098             use_gain = 16384;   /* 0.5 in Q15 */
1099         } else if (s->consPLICount * s->block_samples > 1280) {
1100             use_gain = 0;       /* 0.0 in Q15 */
1101         }
1102 
1103         /* Compute mixing factor of picth repeatition and noise:
1104            for max_per>0.7 set periodicity to 1.0
1105            0.4<max_per<0.7 set periodicity to (maxper-0.4)/0.7-0.4)
1106            max_per<0.4 set periodicity to 0.0
1107          */
1108 
1109         if (max_perSquare > 7868) {     /* periodicity > 0.7  (0.7^4=0.2401 in Q15) */
1110             pitchfact = 32767;
1111         } else if (max_perSquare > 839) {       /* 0.4 < periodicity < 0.7 (0.4^4=0.0256 in Q15) */
1112             /* find best index and interpolate from that */
1113             ind = 5;
1114             while ((max_perSquare < kPlcPerSqr[ind]) && (ind > 0)) {
1115                 ind--;
1116             }
1117             /* pitch fact is approximated by first order */
1118             tmpW32 = kPlcPitchFact[ind] + SPL_MUL_16_16_RSFT(kPlcPfSlope[ind], (max_perSquare - kPlcPerSqr[ind]), 11);
1119 
1120             pitchfact = FFMIN(tmpW32, 32767); /* guard against overflow */
1121 
1122         } else {                /* periodicity < 0.4 */
1123             pitchfact = 0;
1124         }
1125 
1126         /* avoid repetition of same pitch cycle (buzzyness) */
1127         use_lag = lag;
1128         if (lag < 80) {
1129             use_lag = 2 * lag;
1130         }
1131 
1132         /* compute concealed residual */
1133         energy = 0;
1134 
1135         for (i = 0; i < s->block_samples; i++) {
1136             /* noise component -  52 < randlagFIX < 117 */
1137             s->seed = SPL_MUL_16_16(s->seed, 31821) + 13849;
1138             randlag = 53 + (s->seed & 63);
1139 
1140             pick = i - randlag;
1141 
1142             if (pick < 0) {
1143                 randvec[i] = s->prevResidual[s->block_samples + pick];
1144             } else {
1145                 randvec[i] = s->prevResidual[pick];
1146             }
1147 
1148             /* pitch repeatition component */
1149             pick = i - use_lag;
1150 
1151             if (pick < 0) {
1152                 plc_residual[i] = s->prevResidual[s->block_samples + pick];
1153             } else {
1154                 plc_residual[i] = plc_residual[pick];
1155             }
1156 
1157             /* Attinuate total gain for each 10 ms */
1158             if (i < 80) {
1159                 tot_gain = use_gain;
1160             } else if (i < 160) {
1161                 tot_gain = SPL_MUL_16_16_RSFT(31130, use_gain, 15);    /* 0.95*use_gain */
1162             } else {
1163                 tot_gain = SPL_MUL_16_16_RSFT(29491, use_gain, 15);    /* 0.9*use_gain */
1164             }
1165 
1166             /* mix noise and pitch repeatition */
1167             plc_residual[i] = SPL_MUL_16_16_RSFT(tot_gain, (pitchfact * plc_residual[i] + (32767 - pitchfact) * randvec[i] + 16384) >> 15, 15);
1168 
1169             /* Shifting down the result one step extra to ensure that no overflow
1170                will occur */
1171             energy += SPL_MUL_16_16_RSFT(plc_residual[i], plc_residual[i], (s->prevScale + 1));
1172 
1173         }
1174 
1175         /* less than 30 dB, use only noise */
1176         if (energy < SPL_SHIFT_W32(s->block_samples * 900, -s->prevScale - 1)) {
1177             energy = 0;
1178             for (i = 0; i < s->block_samples; i++) {
1179                 plc_residual[i] = randvec[i];
1180             }
1181         }
1182 
1183         /* use the old LPC */
1184         memcpy(plc_lpc, (*s).prev_lpc, (LPC_FILTERORDER + 1) * 2);
1185 
1186         /* Update state in case there are multiple frame losses */
1187         s->prevLag = lag;
1188         s->per_square = max_perSquare;
1189     } else { /* no packet loss, copy input */
1190         memcpy(plc_residual, decresidual, s->block_samples * 2);
1191         memcpy(plc_lpc, lpc, (LPC_FILTERORDER + 1) * 2);
1192         s->consPLICount = 0;
1193     }
1194 
1195     /* update state */
1196     s->prevPLI = PLI;
1197     memcpy(s->prev_lpc, plc_lpc, (LPC_FILTERORDER + 1) * 2);
1198     memcpy(s->prevResidual, plc_residual, s->block_samples * 2);
1199 
1200     return;
1201 }
1202 
xcorr_coeff(int16_t * target,int16_t * regressor,int16_t subl,int16_t searchLen,int16_t offset,int16_t step)1203 static int xcorr_coeff(int16_t *target, int16_t *regressor,
1204                        int16_t subl, int16_t searchLen,
1205                        int16_t offset, int16_t step)
1206 {
1207     int16_t maxlag;
1208     int16_t pos;
1209     int16_t max;
1210     int16_t cross_corr_scale, energy_scale;
1211     int16_t cross_corr_sg_mod, cross_corr_sg_mod_max;
1212     int32_t cross_corr, energy;
1213     int16_t cross_corr_mod, energy_mod, enery_mod_max;
1214     int16_t *tp, *rp;
1215     int16_t *rp_beg, *rp_end;
1216     int16_t totscale, totscale_max;
1217     int16_t scalediff;
1218     int32_t new_crit, max_crit;
1219     int shifts;
1220     int k;
1221 
1222     /* Initializations, to make sure that the first one is selected */
1223     cross_corr_sg_mod_max = 0;
1224     enery_mod_max = INT16_MAX;
1225     totscale_max = -500;
1226     maxlag = 0;
1227     pos = 0;
1228 
1229     /* Find scale value and start position */
1230     if (step == 1) {
1231         max = max_abs_value_w16(regressor, (int16_t) (subl + searchLen - 1));
1232         rp_beg = regressor;
1233         rp_end = &regressor[subl];
1234     } else {                    /* step== -1 */
1235         max = max_abs_value_w16(&regressor[-searchLen], (int16_t) (subl + searchLen - 1));
1236         rp_beg = &regressor[-1];
1237         rp_end = &regressor[subl - 1];
1238     }
1239 
1240     /* Introduce a scale factor on the energy in int32_t in
1241        order to make sure that the calculation does not
1242        overflow */
1243 
1244     if (max > 5000) {
1245         shifts = 2;
1246     } else {
1247         shifts = 0;
1248     }
1249 
1250     /* Calculate the first energy, then do a +/- to get the other energies */
1251     energy = scale_dot_product(regressor, regressor, subl, shifts);
1252 
1253     for (k = 0; k < searchLen; k++) {
1254         tp = target;
1255         rp = &regressor[pos];
1256 
1257         cross_corr = scale_dot_product(tp, rp, subl, shifts);
1258 
1259         if ((energy > 0) && (cross_corr > 0)) {
1260             /* Put cross correlation and energy on 16 bit word */
1261             cross_corr_scale = norm_w32(cross_corr) - 16;
1262             cross_corr_mod = (int16_t) SPL_SHIFT_W32(cross_corr, cross_corr_scale);
1263             energy_scale = norm_w32(energy) - 16;
1264             energy_mod = (int16_t) SPL_SHIFT_W32(energy, energy_scale);
1265 
1266             /* Square cross correlation and store upper int16_t */
1267             cross_corr_sg_mod = (int16_t) SPL_MUL_16_16_RSFT(cross_corr_mod, cross_corr_mod, 16);
1268 
1269             /* Calculate the total number of (dynamic) right shifts that have
1270                been performed on (cross_corr*cross_corr)/energy
1271              */
1272             totscale = energy_scale - (cross_corr_scale * 2);
1273 
1274             /* Calculate the shift difference in order to be able to compare the two
1275                (cross_corr*cross_corr)/energy in the same domain
1276              */
1277             scalediff = totscale - totscale_max;
1278             scalediff = FFMIN(scalediff, 31);
1279             scalediff = FFMAX(scalediff, -31);
1280 
1281             /* Compute the cross multiplication between the old best criteria
1282                and the new one to be able to compare them without using a
1283                division */
1284 
1285             if (scalediff < 0) {
1286                 new_crit = ((int32_t) cross_corr_sg_mod * enery_mod_max) >> (-scalediff);
1287                 max_crit = ((int32_t) cross_corr_sg_mod_max * energy_mod);
1288             } else {
1289                 new_crit = ((int32_t) cross_corr_sg_mod * enery_mod_max);
1290                 max_crit = ((int32_t) cross_corr_sg_mod_max * energy_mod) >> scalediff;
1291             }
1292 
1293             /* Store the new lag value if the new criteria is larger
1294                than previous largest criteria */
1295 
1296             if (new_crit > max_crit) {
1297                 cross_corr_sg_mod_max = cross_corr_sg_mod;
1298                 enery_mod_max = energy_mod;
1299                 totscale_max = totscale;
1300                 maxlag = k;
1301             }
1302         }
1303         pos += step;
1304 
1305         /* Do a +/- to get the next energy */
1306         energy += (unsigned)step * ((*rp_end * *rp_end - *rp_beg * *rp_beg) >> shifts);
1307 
1308         rp_beg += step;
1309         rp_end += step;
1310     }
1311 
1312     return maxlag + offset;
1313 }
1314 
hp_output(int16_t * signal,const int16_t * ba,int16_t * y,int16_t * x,int16_t len)1315 static void hp_output(int16_t *signal, const int16_t *ba, int16_t *y,
1316                       int16_t *x, int16_t len)
1317 {
1318     int32_t tmp;
1319 
1320     for (int i = 0; i < len; i++) {
1321         tmp = SPL_MUL_16_16(y[1], ba[3]);     /* (-a[1])*y[i-1] (low part) */
1322         tmp += SPL_MUL_16_16(y[3], ba[4]);    /* (-a[2])*y[i-2] (low part) */
1323         tmp = (tmp >> 15);
1324         tmp += SPL_MUL_16_16(y[0], ba[3]);    /* (-a[1])*y[i-1] (high part) */
1325         tmp += SPL_MUL_16_16(y[2], ba[4]);    /* (-a[2])*y[i-2] (high part) */
1326         tmp = (tmp * 2);
1327 
1328         tmp += SPL_MUL_16_16(signal[i], ba[0]);       /* b[0]*x[0] */
1329         tmp += SPL_MUL_16_16(x[0], ba[1]);    /* b[1]*x[i-1] */
1330         tmp += SPL_MUL_16_16(x[1], ba[2]);    /* b[2]*x[i-2] */
1331 
1332         /* Update state (input part) */
1333         x[1] = x[0];
1334         x[0] = signal[i];
1335 
1336         /* Convert back to Q0 and multiply with 2 */
1337         signal[i] = av_clip_intp2(tmp + 1024, 26) >> 11;
1338 
1339         /* Update state (filtered part) */
1340         y[2] = y[0];
1341         y[3] = y[1];
1342 
1343         /* upshift tmp by 3 with saturation */
1344         if (tmp > 268435455) {
1345             tmp = INT32_MAX;
1346         } else if (tmp < -268435456) {
1347             tmp = INT32_MIN;
1348         } else {
1349             tmp = tmp * 8;
1350         }
1351 
1352         y[0] = tmp >> 16;
1353         y[1] = (tmp - (y[0] * (1 << 16))) >> 1;
1354     }
1355 }
1356 
ilbc_decode_frame(AVCodecContext * avctx,void * data,int * got_frame_ptr,AVPacket * avpkt)1357 static int ilbc_decode_frame(AVCodecContext *avctx, void *data,
1358                              int *got_frame_ptr, AVPacket *avpkt)
1359 {
1360     const uint8_t *buf = avpkt->data;
1361     AVFrame *frame     = data;
1362     ILBCContext *s     = avctx->priv_data;
1363     int mode = s->mode, ret;
1364     int16_t *plc_data = &s->plc_residual[LPC_FILTERORDER];
1365 
1366     if ((ret = init_get_bits8(&s->gb, buf, avpkt->size)) < 0)
1367         return ret;
1368     memset(&s->frame, 0, sizeof(ILBCFrame));
1369 
1370     frame->nb_samples = s->block_samples;
1371     if ((ret = ff_get_buffer(avctx, frame, 0)) < 0)
1372         return ret;
1373 
1374     if (unpack_frame(s))
1375         mode = 0;
1376     if (s->frame.start < 1 || s->frame.start > 5)
1377         mode = 0;
1378 
1379     if (mode) {
1380         index_conv(s->frame.cb_index);
1381 
1382         lsf_dequantization(s->lsfdeq, s->frame.lsf, s->lpc_n);
1383         lsf_check_stability(s->lsfdeq, LPC_FILTERORDER, s->lpc_n);
1384         lsp_interpolate(s->syntdenum, s->weightdenum,
1385                         s->lsfdeq, LPC_FILTERORDER, s);
1386         decode_residual(s, &s->frame, s->decresidual, s->syntdenum);
1387 
1388         do_plc(s->plc_residual, s->plc_lpc, 0,
1389                                s->decresidual, s->syntdenum + (LPC_FILTERORDER + 1) * (s->nsub - 1),
1390                                s->last_lag, s);
1391 
1392         memcpy(s->decresidual, s->plc_residual, s->block_samples * 2);
1393     }
1394 
1395     if (s->enhancer) {
1396         /* TODO */
1397     } else {
1398         int16_t lag, i;
1399 
1400         /* Find last lag (since the enhancer is not called to give this info) */
1401         if (s->mode == 20) {
1402             lag = xcorr_coeff(&s->decresidual[s->block_samples-60], &s->decresidual[s->block_samples-80],
1403                               60, 80, 20, -1);
1404         } else {
1405             lag = xcorr_coeff(&s->decresidual[s->block_samples-ENH_BLOCKL],
1406                               &s->decresidual[s->block_samples-ENH_BLOCKL-20],
1407                               ENH_BLOCKL, 100, 20, -1);
1408         }
1409 
1410         /* Store lag (it is needed if next packet is lost) */
1411         s->last_lag = lag;
1412 
1413         /* copy data and run synthesis filter */
1414         memcpy(plc_data, s->decresidual, s->block_samples * 2);
1415 
1416         /* Set up the filter state */
1417         memcpy(&plc_data[-LPC_FILTERORDER], s->syntMem, LPC_FILTERORDER * 2);
1418 
1419         for (i = 0; i < s->nsub; i++) {
1420             filter_arfq12(plc_data+i*SUBL, plc_data+i*SUBL,
1421                                       s->syntdenum + i*(LPC_FILTERORDER + 1),
1422                                       LPC_FILTERORDER + 1, SUBL);
1423         }
1424 
1425         /* Save the filter state */
1426         memcpy(s->syntMem, &plc_data[s->block_samples-LPC_FILTERORDER], LPC_FILTERORDER * 2);
1427     }
1428 
1429     memcpy(frame->data[0], plc_data, s->block_samples * 2);
1430 
1431     hp_output((int16_t *)frame->data[0], hp_out_coeffs,
1432               s->hpimemy, s->hpimemx, s->block_samples);
1433 
1434     memcpy(s->old_syntdenum, s->syntdenum, s->nsub*(LPC_FILTERORDER + 1) * 2);
1435 
1436     s->prev_enh_pl = 0;
1437     if (mode == 0)
1438         s->prev_enh_pl = 1;
1439 
1440     *got_frame_ptr = 1;
1441 
1442     return avpkt->size;
1443 }
1444 
ilbc_decode_init(AVCodecContext * avctx)1445 static av_cold int ilbc_decode_init(AVCodecContext *avctx)
1446 {
1447     ILBCContext *s  = avctx->priv_data;
1448 
1449     if (avctx->block_align == 38)
1450         s->mode = 20;
1451     else if (avctx->block_align == 50)
1452         s->mode = 30;
1453     else if (avctx->bit_rate > 0)
1454         s->mode = avctx->bit_rate <= 14000 ? 30 : 20;
1455     else
1456         return AVERROR_INVALIDDATA;
1457 
1458     avctx->channels       = 1;
1459     avctx->channel_layout = AV_CH_LAYOUT_MONO;
1460     avctx->sample_rate    = 8000;
1461     avctx->sample_fmt     = AV_SAMPLE_FMT_S16;
1462 
1463     if (s->mode == 30) {
1464         s->block_samples = 240;
1465         s->nsub = NSUB_30MS;
1466         s->nasub = NASUB_30MS;
1467         s->lpc_n = LPC_N_30MS;
1468         s->state_short_len = STATE_SHORT_LEN_30MS;
1469     } else {
1470         s->block_samples = 160;
1471         s->nsub = NSUB_20MS;
1472         s->nasub = NASUB_20MS;
1473         s->lpc_n = LPC_N_20MS;
1474         s->state_short_len = STATE_SHORT_LEN_20MS;
1475     }
1476 
1477     return 0;
1478 }
1479 
1480 AVCodec ff_ilbc_decoder = {
1481     .name           = "ilbc",
1482     .long_name      = NULL_IF_CONFIG_SMALL("iLBC (Internet Low Bitrate Codec)"),
1483     .type           = AVMEDIA_TYPE_AUDIO,
1484     .id             = AV_CODEC_ID_ILBC,
1485     .init           = ilbc_decode_init,
1486     .decode         = ilbc_decode_frame,
1487     .capabilities   = AV_CODEC_CAP_DR1 | AV_CODEC_CAP_CHANNEL_CONF,
1488     .priv_data_size = sizeof(ILBCContext),
1489 };
1490