• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * NVM Express device driver
4  * Copyright (c) 2011-2014, Intel Corporation.
5  */
6 
7 #include <linux/acpi.h>
8 #include <linux/aer.h>
9 #include <linux/async.h>
10 #include <linux/blkdev.h>
11 #include <linux/blk-mq.h>
12 #include <linux/blk-mq-pci.h>
13 #include <linux/dmi.h>
14 #include <linux/init.h>
15 #include <linux/interrupt.h>
16 #include <linux/io.h>
17 #include <linux/mm.h>
18 #include <linux/module.h>
19 #include <linux/mutex.h>
20 #include <linux/once.h>
21 #include <linux/pci.h>
22 #include <linux/suspend.h>
23 #include <linux/t10-pi.h>
24 #include <linux/types.h>
25 #include <linux/io-64-nonatomic-lo-hi.h>
26 #include <linux/io-64-nonatomic-hi-lo.h>
27 #include <linux/sed-opal.h>
28 #include <linux/pci-p2pdma.h>
29 
30 #include "trace.h"
31 #include "nvme.h"
32 
33 #define SQ_SIZE(q)	((q)->q_depth << (q)->sqes)
34 #define CQ_SIZE(q)	((q)->q_depth * sizeof(struct nvme_completion))
35 
36 #define SGES_PER_PAGE	(NVME_CTRL_PAGE_SIZE / sizeof(struct nvme_sgl_desc))
37 
38 /*
39  * These can be higher, but we need to ensure that any command doesn't
40  * require an sg allocation that needs more than a page of data.
41  */
42 #define NVME_MAX_KB_SZ	4096
43 #define NVME_MAX_SEGS	127
44 
45 static int use_threaded_interrupts;
46 module_param(use_threaded_interrupts, int, 0);
47 
48 static bool use_cmb_sqes = true;
49 module_param(use_cmb_sqes, bool, 0444);
50 MODULE_PARM_DESC(use_cmb_sqes, "use controller's memory buffer for I/O SQes");
51 
52 static unsigned int max_host_mem_size_mb = 128;
53 module_param(max_host_mem_size_mb, uint, 0444);
54 MODULE_PARM_DESC(max_host_mem_size_mb,
55 	"Maximum Host Memory Buffer (HMB) size per controller (in MiB)");
56 
57 static unsigned int sgl_threshold = SZ_32K;
58 module_param(sgl_threshold, uint, 0644);
59 MODULE_PARM_DESC(sgl_threshold,
60 		"Use SGLs when average request segment size is larger or equal to "
61 		"this size. Use 0 to disable SGLs.");
62 
63 static int io_queue_depth_set(const char *val, const struct kernel_param *kp);
64 static const struct kernel_param_ops io_queue_depth_ops = {
65 	.set = io_queue_depth_set,
66 	.get = param_get_uint,
67 };
68 
69 static unsigned int io_queue_depth = 1024;
70 module_param_cb(io_queue_depth, &io_queue_depth_ops, &io_queue_depth, 0644);
71 MODULE_PARM_DESC(io_queue_depth, "set io queue depth, should >= 2");
72 
io_queue_count_set(const char * val,const struct kernel_param * kp)73 static int io_queue_count_set(const char *val, const struct kernel_param *kp)
74 {
75 	unsigned int n;
76 	int ret;
77 
78 	ret = kstrtouint(val, 10, &n);
79 	if (ret != 0 || n > num_possible_cpus())
80 		return -EINVAL;
81 	return param_set_uint(val, kp);
82 }
83 
84 static const struct kernel_param_ops io_queue_count_ops = {
85 	.set = io_queue_count_set,
86 	.get = param_get_uint,
87 };
88 
89 static unsigned int write_queues;
90 module_param_cb(write_queues, &io_queue_count_ops, &write_queues, 0644);
91 MODULE_PARM_DESC(write_queues,
92 	"Number of queues to use for writes. If not set, reads and writes "
93 	"will share a queue set.");
94 
95 static unsigned int poll_queues;
96 module_param_cb(poll_queues, &io_queue_count_ops, &poll_queues, 0644);
97 MODULE_PARM_DESC(poll_queues, "Number of queues to use for polled IO.");
98 
99 static bool noacpi;
100 module_param(noacpi, bool, 0444);
101 MODULE_PARM_DESC(noacpi, "disable acpi bios quirks");
102 
103 struct nvme_dev;
104 struct nvme_queue;
105 
106 static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown);
107 static bool __nvme_disable_io_queues(struct nvme_dev *dev, u8 opcode);
108 
109 /*
110  * Represents an NVM Express device.  Each nvme_dev is a PCI function.
111  */
112 struct nvme_dev {
113 	struct nvme_queue *queues;
114 	struct blk_mq_tag_set tagset;
115 	struct blk_mq_tag_set admin_tagset;
116 	u32 __iomem *dbs;
117 	struct device *dev;
118 	struct dma_pool *prp_page_pool;
119 	struct dma_pool *prp_small_pool;
120 	unsigned online_queues;
121 	unsigned max_qid;
122 	unsigned io_queues[HCTX_MAX_TYPES];
123 	unsigned int num_vecs;
124 	u32 q_depth;
125 	int io_sqes;
126 	u32 db_stride;
127 	void __iomem *bar;
128 	unsigned long bar_mapped_size;
129 	struct work_struct remove_work;
130 	struct mutex shutdown_lock;
131 	bool subsystem;
132 	u64 cmb_size;
133 	bool cmb_use_sqes;
134 	u32 cmbsz;
135 	u32 cmbloc;
136 	struct nvme_ctrl ctrl;
137 	u32 last_ps;
138 
139 	mempool_t *iod_mempool;
140 
141 	/* shadow doorbell buffer support: */
142 	__le32 *dbbuf_dbs;
143 	dma_addr_t dbbuf_dbs_dma_addr;
144 	__le32 *dbbuf_eis;
145 	dma_addr_t dbbuf_eis_dma_addr;
146 
147 	/* host memory buffer support: */
148 	u64 host_mem_size;
149 	u32 nr_host_mem_descs;
150 	dma_addr_t host_mem_descs_dma;
151 	struct nvme_host_mem_buf_desc *host_mem_descs;
152 	void **host_mem_desc_bufs;
153 	unsigned int nr_allocated_queues;
154 	unsigned int nr_write_queues;
155 	unsigned int nr_poll_queues;
156 };
157 
io_queue_depth_set(const char * val,const struct kernel_param * kp)158 static int io_queue_depth_set(const char *val, const struct kernel_param *kp)
159 {
160 	int ret;
161 	u32 n;
162 
163 	ret = kstrtou32(val, 10, &n);
164 	if (ret != 0 || n < 2)
165 		return -EINVAL;
166 
167 	return param_set_uint(val, kp);
168 }
169 
sq_idx(unsigned int qid,u32 stride)170 static inline unsigned int sq_idx(unsigned int qid, u32 stride)
171 {
172 	return qid * 2 * stride;
173 }
174 
cq_idx(unsigned int qid,u32 stride)175 static inline unsigned int cq_idx(unsigned int qid, u32 stride)
176 {
177 	return (qid * 2 + 1) * stride;
178 }
179 
to_nvme_dev(struct nvme_ctrl * ctrl)180 static inline struct nvme_dev *to_nvme_dev(struct nvme_ctrl *ctrl)
181 {
182 	return container_of(ctrl, struct nvme_dev, ctrl);
183 }
184 
185 /*
186  * An NVM Express queue.  Each device has at least two (one for admin
187  * commands and one for I/O commands).
188  */
189 struct nvme_queue {
190 	struct nvme_dev *dev;
191 	spinlock_t sq_lock;
192 	void *sq_cmds;
193 	 /* only used for poll queues: */
194 	spinlock_t cq_poll_lock ____cacheline_aligned_in_smp;
195 	struct nvme_completion *cqes;
196 	dma_addr_t sq_dma_addr;
197 	dma_addr_t cq_dma_addr;
198 	u32 __iomem *q_db;
199 	u32 q_depth;
200 	u16 cq_vector;
201 	u16 sq_tail;
202 	u16 last_sq_tail;
203 	u16 cq_head;
204 	u16 qid;
205 	u8 cq_phase;
206 	u8 sqes;
207 	unsigned long flags;
208 #define NVMEQ_ENABLED		0
209 #define NVMEQ_SQ_CMB		1
210 #define NVMEQ_DELETE_ERROR	2
211 #define NVMEQ_POLLED		3
212 	__le32 *dbbuf_sq_db;
213 	__le32 *dbbuf_cq_db;
214 	__le32 *dbbuf_sq_ei;
215 	__le32 *dbbuf_cq_ei;
216 	struct completion delete_done;
217 };
218 
219 /*
220  * The nvme_iod describes the data in an I/O.
221  *
222  * The sg pointer contains the list of PRP/SGL chunk allocations in addition
223  * to the actual struct scatterlist.
224  */
225 struct nvme_iod {
226 	struct nvme_request req;
227 	struct nvme_command cmd;
228 	struct nvme_queue *nvmeq;
229 	bool use_sgl;
230 	int aborted;
231 	int npages;		/* In the PRP list. 0 means small pool in use */
232 	int nents;		/* Used in scatterlist */
233 	dma_addr_t first_dma;
234 	unsigned int dma_len;	/* length of single DMA segment mapping */
235 	dma_addr_t meta_dma;
236 	struct scatterlist *sg;
237 };
238 
nvme_dbbuf_size(struct nvme_dev * dev)239 static inline unsigned int nvme_dbbuf_size(struct nvme_dev *dev)
240 {
241 	return dev->nr_allocated_queues * 8 * dev->db_stride;
242 }
243 
nvme_dbbuf_dma_alloc(struct nvme_dev * dev)244 static int nvme_dbbuf_dma_alloc(struct nvme_dev *dev)
245 {
246 	unsigned int mem_size = nvme_dbbuf_size(dev);
247 
248 	if (dev->dbbuf_dbs)
249 		return 0;
250 
251 	dev->dbbuf_dbs = dma_alloc_coherent(dev->dev, mem_size,
252 					    &dev->dbbuf_dbs_dma_addr,
253 					    GFP_KERNEL);
254 	if (!dev->dbbuf_dbs)
255 		return -ENOMEM;
256 	dev->dbbuf_eis = dma_alloc_coherent(dev->dev, mem_size,
257 					    &dev->dbbuf_eis_dma_addr,
258 					    GFP_KERNEL);
259 	if (!dev->dbbuf_eis) {
260 		dma_free_coherent(dev->dev, mem_size,
261 				  dev->dbbuf_dbs, dev->dbbuf_dbs_dma_addr);
262 		dev->dbbuf_dbs = NULL;
263 		return -ENOMEM;
264 	}
265 
266 	return 0;
267 }
268 
nvme_dbbuf_dma_free(struct nvme_dev * dev)269 static void nvme_dbbuf_dma_free(struct nvme_dev *dev)
270 {
271 	unsigned int mem_size = nvme_dbbuf_size(dev);
272 
273 	if (dev->dbbuf_dbs) {
274 		dma_free_coherent(dev->dev, mem_size,
275 				  dev->dbbuf_dbs, dev->dbbuf_dbs_dma_addr);
276 		dev->dbbuf_dbs = NULL;
277 	}
278 	if (dev->dbbuf_eis) {
279 		dma_free_coherent(dev->dev, mem_size,
280 				  dev->dbbuf_eis, dev->dbbuf_eis_dma_addr);
281 		dev->dbbuf_eis = NULL;
282 	}
283 }
284 
nvme_dbbuf_init(struct nvme_dev * dev,struct nvme_queue * nvmeq,int qid)285 static void nvme_dbbuf_init(struct nvme_dev *dev,
286 			    struct nvme_queue *nvmeq, int qid)
287 {
288 	if (!dev->dbbuf_dbs || !qid)
289 		return;
290 
291 	nvmeq->dbbuf_sq_db = &dev->dbbuf_dbs[sq_idx(qid, dev->db_stride)];
292 	nvmeq->dbbuf_cq_db = &dev->dbbuf_dbs[cq_idx(qid, dev->db_stride)];
293 	nvmeq->dbbuf_sq_ei = &dev->dbbuf_eis[sq_idx(qid, dev->db_stride)];
294 	nvmeq->dbbuf_cq_ei = &dev->dbbuf_eis[cq_idx(qid, dev->db_stride)];
295 }
296 
nvme_dbbuf_free(struct nvme_queue * nvmeq)297 static void nvme_dbbuf_free(struct nvme_queue *nvmeq)
298 {
299 	if (!nvmeq->qid)
300 		return;
301 
302 	nvmeq->dbbuf_sq_db = NULL;
303 	nvmeq->dbbuf_cq_db = NULL;
304 	nvmeq->dbbuf_sq_ei = NULL;
305 	nvmeq->dbbuf_cq_ei = NULL;
306 }
307 
nvme_dbbuf_set(struct nvme_dev * dev)308 static void nvme_dbbuf_set(struct nvme_dev *dev)
309 {
310 	struct nvme_command c;
311 	unsigned int i;
312 
313 	if (!dev->dbbuf_dbs)
314 		return;
315 
316 	memset(&c, 0, sizeof(c));
317 	c.dbbuf.opcode = nvme_admin_dbbuf;
318 	c.dbbuf.prp1 = cpu_to_le64(dev->dbbuf_dbs_dma_addr);
319 	c.dbbuf.prp2 = cpu_to_le64(dev->dbbuf_eis_dma_addr);
320 
321 	if (nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0)) {
322 		dev_warn(dev->ctrl.device, "unable to set dbbuf\n");
323 		/* Free memory and continue on */
324 		nvme_dbbuf_dma_free(dev);
325 
326 		for (i = 1; i <= dev->online_queues; i++)
327 			nvme_dbbuf_free(&dev->queues[i]);
328 	}
329 }
330 
nvme_dbbuf_need_event(u16 event_idx,u16 new_idx,u16 old)331 static inline int nvme_dbbuf_need_event(u16 event_idx, u16 new_idx, u16 old)
332 {
333 	return (u16)(new_idx - event_idx - 1) < (u16)(new_idx - old);
334 }
335 
336 /* Update dbbuf and return true if an MMIO is required */
nvme_dbbuf_update_and_check_event(u16 value,__le32 * dbbuf_db,volatile __le32 * dbbuf_ei)337 static bool nvme_dbbuf_update_and_check_event(u16 value, __le32 *dbbuf_db,
338 					      volatile __le32 *dbbuf_ei)
339 {
340 	if (dbbuf_db) {
341 		u16 old_value, event_idx;
342 
343 		/*
344 		 * Ensure that the queue is written before updating
345 		 * the doorbell in memory
346 		 */
347 		wmb();
348 
349 		old_value = le32_to_cpu(*dbbuf_db);
350 		*dbbuf_db = cpu_to_le32(value);
351 
352 		/*
353 		 * Ensure that the doorbell is updated before reading the event
354 		 * index from memory.  The controller needs to provide similar
355 		 * ordering to ensure the envent index is updated before reading
356 		 * the doorbell.
357 		 */
358 		mb();
359 
360 		event_idx = le32_to_cpu(*dbbuf_ei);
361 		if (!nvme_dbbuf_need_event(event_idx, value, old_value))
362 			return false;
363 	}
364 
365 	return true;
366 }
367 
368 /*
369  * Will slightly overestimate the number of pages needed.  This is OK
370  * as it only leads to a small amount of wasted memory for the lifetime of
371  * the I/O.
372  */
nvme_pci_npages_prp(void)373 static int nvme_pci_npages_prp(void)
374 {
375 	unsigned max_bytes = (NVME_MAX_KB_SZ * 1024) + NVME_CTRL_PAGE_SIZE;
376 	unsigned nprps = DIV_ROUND_UP(max_bytes, NVME_CTRL_PAGE_SIZE);
377 	return DIV_ROUND_UP(8 * nprps, NVME_CTRL_PAGE_SIZE - 8);
378 }
379 
380 /*
381  * Calculates the number of pages needed for the SGL segments. For example a 4k
382  * page can accommodate 256 SGL descriptors.
383  */
nvme_pci_npages_sgl(void)384 static int nvme_pci_npages_sgl(void)
385 {
386 	return DIV_ROUND_UP(NVME_MAX_SEGS * sizeof(struct nvme_sgl_desc),
387 			NVME_CTRL_PAGE_SIZE);
388 }
389 
nvme_pci_iod_alloc_size(void)390 static size_t nvme_pci_iod_alloc_size(void)
391 {
392 	size_t npages = max(nvme_pci_npages_prp(), nvme_pci_npages_sgl());
393 
394 	return sizeof(__le64 *) * npages +
395 		sizeof(struct scatterlist) * NVME_MAX_SEGS;
396 }
397 
nvme_admin_init_hctx(struct blk_mq_hw_ctx * hctx,void * data,unsigned int hctx_idx)398 static int nvme_admin_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
399 				unsigned int hctx_idx)
400 {
401 	struct nvme_dev *dev = data;
402 	struct nvme_queue *nvmeq = &dev->queues[0];
403 
404 	WARN_ON(hctx_idx != 0);
405 	WARN_ON(dev->admin_tagset.tags[0] != hctx->tags);
406 
407 	hctx->driver_data = nvmeq;
408 	return 0;
409 }
410 
nvme_init_hctx(struct blk_mq_hw_ctx * hctx,void * data,unsigned int hctx_idx)411 static int nvme_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
412 			  unsigned int hctx_idx)
413 {
414 	struct nvme_dev *dev = data;
415 	struct nvme_queue *nvmeq = &dev->queues[hctx_idx + 1];
416 
417 	WARN_ON(dev->tagset.tags[hctx_idx] != hctx->tags);
418 	hctx->driver_data = nvmeq;
419 	return 0;
420 }
421 
nvme_init_request(struct blk_mq_tag_set * set,struct request * req,unsigned int hctx_idx,unsigned int numa_node)422 static int nvme_init_request(struct blk_mq_tag_set *set, struct request *req,
423 		unsigned int hctx_idx, unsigned int numa_node)
424 {
425 	struct nvme_dev *dev = set->driver_data;
426 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
427 	int queue_idx = (set == &dev->tagset) ? hctx_idx + 1 : 0;
428 	struct nvme_queue *nvmeq = &dev->queues[queue_idx];
429 
430 	BUG_ON(!nvmeq);
431 	iod->nvmeq = nvmeq;
432 
433 	nvme_req(req)->ctrl = &dev->ctrl;
434 	return 0;
435 }
436 
queue_irq_offset(struct nvme_dev * dev)437 static int queue_irq_offset(struct nvme_dev *dev)
438 {
439 	/* if we have more than 1 vec, admin queue offsets us by 1 */
440 	if (dev->num_vecs > 1)
441 		return 1;
442 
443 	return 0;
444 }
445 
nvme_pci_map_queues(struct blk_mq_tag_set * set)446 static int nvme_pci_map_queues(struct blk_mq_tag_set *set)
447 {
448 	struct nvme_dev *dev = set->driver_data;
449 	int i, qoff, offset;
450 
451 	offset = queue_irq_offset(dev);
452 	for (i = 0, qoff = 0; i < set->nr_maps; i++) {
453 		struct blk_mq_queue_map *map = &set->map[i];
454 
455 		map->nr_queues = dev->io_queues[i];
456 		if (!map->nr_queues) {
457 			BUG_ON(i == HCTX_TYPE_DEFAULT);
458 			continue;
459 		}
460 
461 		/*
462 		 * The poll queue(s) doesn't have an IRQ (and hence IRQ
463 		 * affinity), so use the regular blk-mq cpu mapping
464 		 */
465 		map->queue_offset = qoff;
466 		if (i != HCTX_TYPE_POLL && offset)
467 			blk_mq_pci_map_queues(map, to_pci_dev(dev->dev), offset);
468 		else
469 			blk_mq_map_queues(map);
470 		qoff += map->nr_queues;
471 		offset += map->nr_queues;
472 	}
473 
474 	return 0;
475 }
476 
477 /*
478  * Write sq tail if we are asked to, or if the next command would wrap.
479  */
nvme_write_sq_db(struct nvme_queue * nvmeq,bool write_sq)480 static inline void nvme_write_sq_db(struct nvme_queue *nvmeq, bool write_sq)
481 {
482 	if (!write_sq) {
483 		u16 next_tail = nvmeq->sq_tail + 1;
484 
485 		if (next_tail == nvmeq->q_depth)
486 			next_tail = 0;
487 		if (next_tail != nvmeq->last_sq_tail)
488 			return;
489 	}
490 
491 	if (nvme_dbbuf_update_and_check_event(nvmeq->sq_tail,
492 			nvmeq->dbbuf_sq_db, nvmeq->dbbuf_sq_ei))
493 		writel(nvmeq->sq_tail, nvmeq->q_db);
494 	nvmeq->last_sq_tail = nvmeq->sq_tail;
495 }
496 
497 /**
498  * nvme_submit_cmd() - Copy a command into a queue and ring the doorbell
499  * @nvmeq: The queue to use
500  * @cmd: The command to send
501  * @write_sq: whether to write to the SQ doorbell
502  */
nvme_submit_cmd(struct nvme_queue * nvmeq,struct nvme_command * cmd,bool write_sq)503 static void nvme_submit_cmd(struct nvme_queue *nvmeq, struct nvme_command *cmd,
504 			    bool write_sq)
505 {
506 	spin_lock(&nvmeq->sq_lock);
507 	memcpy(nvmeq->sq_cmds + (nvmeq->sq_tail << nvmeq->sqes),
508 	       cmd, sizeof(*cmd));
509 	if (++nvmeq->sq_tail == nvmeq->q_depth)
510 		nvmeq->sq_tail = 0;
511 	nvme_write_sq_db(nvmeq, write_sq);
512 	spin_unlock(&nvmeq->sq_lock);
513 }
514 
nvme_commit_rqs(struct blk_mq_hw_ctx * hctx)515 static void nvme_commit_rqs(struct blk_mq_hw_ctx *hctx)
516 {
517 	struct nvme_queue *nvmeq = hctx->driver_data;
518 
519 	spin_lock(&nvmeq->sq_lock);
520 	if (nvmeq->sq_tail != nvmeq->last_sq_tail)
521 		nvme_write_sq_db(nvmeq, true);
522 	spin_unlock(&nvmeq->sq_lock);
523 }
524 
nvme_pci_iod_list(struct request * req)525 static void **nvme_pci_iod_list(struct request *req)
526 {
527 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
528 	return (void **)(iod->sg + blk_rq_nr_phys_segments(req));
529 }
530 
nvme_pci_use_sgls(struct nvme_dev * dev,struct request * req)531 static inline bool nvme_pci_use_sgls(struct nvme_dev *dev, struct request *req)
532 {
533 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
534 	int nseg = blk_rq_nr_phys_segments(req);
535 	unsigned int avg_seg_size;
536 
537 	avg_seg_size = DIV_ROUND_UP(blk_rq_payload_bytes(req), nseg);
538 
539 	if (!(dev->ctrl.sgls & ((1 << 0) | (1 << 1))))
540 		return false;
541 	if (!iod->nvmeq->qid)
542 		return false;
543 	if (!sgl_threshold || avg_seg_size < sgl_threshold)
544 		return false;
545 	return true;
546 }
547 
nvme_free_prps(struct nvme_dev * dev,struct request * req)548 static void nvme_free_prps(struct nvme_dev *dev, struct request *req)
549 {
550 	const int last_prp = NVME_CTRL_PAGE_SIZE / sizeof(__le64) - 1;
551 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
552 	dma_addr_t dma_addr = iod->first_dma;
553 	int i;
554 
555 	for (i = 0; i < iod->npages; i++) {
556 		__le64 *prp_list = nvme_pci_iod_list(req)[i];
557 		dma_addr_t next_dma_addr = le64_to_cpu(prp_list[last_prp]);
558 
559 		dma_pool_free(dev->prp_page_pool, prp_list, dma_addr);
560 		dma_addr = next_dma_addr;
561 	}
562 
563 }
564 
nvme_free_sgls(struct nvme_dev * dev,struct request * req)565 static void nvme_free_sgls(struct nvme_dev *dev, struct request *req)
566 {
567 	const int last_sg = SGES_PER_PAGE - 1;
568 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
569 	dma_addr_t dma_addr = iod->first_dma;
570 	int i;
571 
572 	for (i = 0; i < iod->npages; i++) {
573 		struct nvme_sgl_desc *sg_list = nvme_pci_iod_list(req)[i];
574 		dma_addr_t next_dma_addr = le64_to_cpu((sg_list[last_sg]).addr);
575 
576 		dma_pool_free(dev->prp_page_pool, sg_list, dma_addr);
577 		dma_addr = next_dma_addr;
578 	}
579 
580 }
581 
nvme_unmap_sg(struct nvme_dev * dev,struct request * req)582 static void nvme_unmap_sg(struct nvme_dev *dev, struct request *req)
583 {
584 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
585 
586 	if (is_pci_p2pdma_page(sg_page(iod->sg)))
587 		pci_p2pdma_unmap_sg(dev->dev, iod->sg, iod->nents,
588 				    rq_dma_dir(req));
589 	else
590 		dma_unmap_sg(dev->dev, iod->sg, iod->nents, rq_dma_dir(req));
591 }
592 
nvme_unmap_data(struct nvme_dev * dev,struct request * req)593 static void nvme_unmap_data(struct nvme_dev *dev, struct request *req)
594 {
595 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
596 
597 	if (iod->dma_len) {
598 		dma_unmap_page(dev->dev, iod->first_dma, iod->dma_len,
599 			       rq_dma_dir(req));
600 		return;
601 	}
602 
603 	WARN_ON_ONCE(!iod->nents);
604 
605 	nvme_unmap_sg(dev, req);
606 	if (iod->npages == 0)
607 		dma_pool_free(dev->prp_small_pool, nvme_pci_iod_list(req)[0],
608 			      iod->first_dma);
609 	else if (iod->use_sgl)
610 		nvme_free_sgls(dev, req);
611 	else
612 		nvme_free_prps(dev, req);
613 	mempool_free(iod->sg, dev->iod_mempool);
614 }
615 
nvme_print_sgl(struct scatterlist * sgl,int nents)616 static void nvme_print_sgl(struct scatterlist *sgl, int nents)
617 {
618 	int i;
619 	struct scatterlist *sg;
620 
621 	for_each_sg(sgl, sg, nents, i) {
622 		dma_addr_t phys = sg_phys(sg);
623 		pr_warn("sg[%d] phys_addr:%pad offset:%d length:%d "
624 			"dma_address:%pad dma_length:%d\n",
625 			i, &phys, sg->offset, sg->length, &sg_dma_address(sg),
626 			sg_dma_len(sg));
627 	}
628 }
629 
nvme_pci_setup_prps(struct nvme_dev * dev,struct request * req,struct nvme_rw_command * cmnd)630 static blk_status_t nvme_pci_setup_prps(struct nvme_dev *dev,
631 		struct request *req, struct nvme_rw_command *cmnd)
632 {
633 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
634 	struct dma_pool *pool;
635 	int length = blk_rq_payload_bytes(req);
636 	struct scatterlist *sg = iod->sg;
637 	int dma_len = sg_dma_len(sg);
638 	u64 dma_addr = sg_dma_address(sg);
639 	int offset = dma_addr & (NVME_CTRL_PAGE_SIZE - 1);
640 	__le64 *prp_list;
641 	void **list = nvme_pci_iod_list(req);
642 	dma_addr_t prp_dma;
643 	int nprps, i;
644 
645 	length -= (NVME_CTRL_PAGE_SIZE - offset);
646 	if (length <= 0) {
647 		iod->first_dma = 0;
648 		goto done;
649 	}
650 
651 	dma_len -= (NVME_CTRL_PAGE_SIZE - offset);
652 	if (dma_len) {
653 		dma_addr += (NVME_CTRL_PAGE_SIZE - offset);
654 	} else {
655 		sg = sg_next(sg);
656 		dma_addr = sg_dma_address(sg);
657 		dma_len = sg_dma_len(sg);
658 	}
659 
660 	if (length <= NVME_CTRL_PAGE_SIZE) {
661 		iod->first_dma = dma_addr;
662 		goto done;
663 	}
664 
665 	nprps = DIV_ROUND_UP(length, NVME_CTRL_PAGE_SIZE);
666 	if (nprps <= (256 / 8)) {
667 		pool = dev->prp_small_pool;
668 		iod->npages = 0;
669 	} else {
670 		pool = dev->prp_page_pool;
671 		iod->npages = 1;
672 	}
673 
674 	prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
675 	if (!prp_list) {
676 		iod->first_dma = dma_addr;
677 		iod->npages = -1;
678 		return BLK_STS_RESOURCE;
679 	}
680 	list[0] = prp_list;
681 	iod->first_dma = prp_dma;
682 	i = 0;
683 	for (;;) {
684 		if (i == NVME_CTRL_PAGE_SIZE >> 3) {
685 			__le64 *old_prp_list = prp_list;
686 			prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
687 			if (!prp_list)
688 				goto free_prps;
689 			list[iod->npages++] = prp_list;
690 			prp_list[0] = old_prp_list[i - 1];
691 			old_prp_list[i - 1] = cpu_to_le64(prp_dma);
692 			i = 1;
693 		}
694 		prp_list[i++] = cpu_to_le64(dma_addr);
695 		dma_len -= NVME_CTRL_PAGE_SIZE;
696 		dma_addr += NVME_CTRL_PAGE_SIZE;
697 		length -= NVME_CTRL_PAGE_SIZE;
698 		if (length <= 0)
699 			break;
700 		if (dma_len > 0)
701 			continue;
702 		if (unlikely(dma_len < 0))
703 			goto bad_sgl;
704 		sg = sg_next(sg);
705 		dma_addr = sg_dma_address(sg);
706 		dma_len = sg_dma_len(sg);
707 	}
708 done:
709 	cmnd->dptr.prp1 = cpu_to_le64(sg_dma_address(iod->sg));
710 	cmnd->dptr.prp2 = cpu_to_le64(iod->first_dma);
711 	return BLK_STS_OK;
712 free_prps:
713 	nvme_free_prps(dev, req);
714 	return BLK_STS_RESOURCE;
715 bad_sgl:
716 	WARN(DO_ONCE(nvme_print_sgl, iod->sg, iod->nents),
717 			"Invalid SGL for payload:%d nents:%d\n",
718 			blk_rq_payload_bytes(req), iod->nents);
719 	return BLK_STS_IOERR;
720 }
721 
nvme_pci_sgl_set_data(struct nvme_sgl_desc * sge,struct scatterlist * sg)722 static void nvme_pci_sgl_set_data(struct nvme_sgl_desc *sge,
723 		struct scatterlist *sg)
724 {
725 	sge->addr = cpu_to_le64(sg_dma_address(sg));
726 	sge->length = cpu_to_le32(sg_dma_len(sg));
727 	sge->type = NVME_SGL_FMT_DATA_DESC << 4;
728 }
729 
nvme_pci_sgl_set_seg(struct nvme_sgl_desc * sge,dma_addr_t dma_addr,int entries)730 static void nvme_pci_sgl_set_seg(struct nvme_sgl_desc *sge,
731 		dma_addr_t dma_addr, int entries)
732 {
733 	sge->addr = cpu_to_le64(dma_addr);
734 	if (entries < SGES_PER_PAGE) {
735 		sge->length = cpu_to_le32(entries * sizeof(*sge));
736 		sge->type = NVME_SGL_FMT_LAST_SEG_DESC << 4;
737 	} else {
738 		sge->length = cpu_to_le32(NVME_CTRL_PAGE_SIZE);
739 		sge->type = NVME_SGL_FMT_SEG_DESC << 4;
740 	}
741 }
742 
nvme_pci_setup_sgls(struct nvme_dev * dev,struct request * req,struct nvme_rw_command * cmd,int entries)743 static blk_status_t nvme_pci_setup_sgls(struct nvme_dev *dev,
744 		struct request *req, struct nvme_rw_command *cmd, int entries)
745 {
746 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
747 	struct dma_pool *pool;
748 	struct nvme_sgl_desc *sg_list;
749 	struct scatterlist *sg = iod->sg;
750 	dma_addr_t sgl_dma;
751 	int i = 0;
752 
753 	/* setting the transfer type as SGL */
754 	cmd->flags = NVME_CMD_SGL_METABUF;
755 
756 	if (entries == 1) {
757 		nvme_pci_sgl_set_data(&cmd->dptr.sgl, sg);
758 		return BLK_STS_OK;
759 	}
760 
761 	if (entries <= (256 / sizeof(struct nvme_sgl_desc))) {
762 		pool = dev->prp_small_pool;
763 		iod->npages = 0;
764 	} else {
765 		pool = dev->prp_page_pool;
766 		iod->npages = 1;
767 	}
768 
769 	sg_list = dma_pool_alloc(pool, GFP_ATOMIC, &sgl_dma);
770 	if (!sg_list) {
771 		iod->npages = -1;
772 		return BLK_STS_RESOURCE;
773 	}
774 
775 	nvme_pci_iod_list(req)[0] = sg_list;
776 	iod->first_dma = sgl_dma;
777 
778 	nvme_pci_sgl_set_seg(&cmd->dptr.sgl, sgl_dma, entries);
779 
780 	do {
781 		if (i == SGES_PER_PAGE) {
782 			struct nvme_sgl_desc *old_sg_desc = sg_list;
783 			struct nvme_sgl_desc *link = &old_sg_desc[i - 1];
784 
785 			sg_list = dma_pool_alloc(pool, GFP_ATOMIC, &sgl_dma);
786 			if (!sg_list)
787 				goto free_sgls;
788 
789 			i = 0;
790 			nvme_pci_iod_list(req)[iod->npages++] = sg_list;
791 			sg_list[i++] = *link;
792 			nvme_pci_sgl_set_seg(link, sgl_dma, entries);
793 		}
794 
795 		nvme_pci_sgl_set_data(&sg_list[i++], sg);
796 		sg = sg_next(sg);
797 	} while (--entries > 0);
798 
799 	return BLK_STS_OK;
800 free_sgls:
801 	nvme_free_sgls(dev, req);
802 	return BLK_STS_RESOURCE;
803 }
804 
nvme_setup_prp_simple(struct nvme_dev * dev,struct request * req,struct nvme_rw_command * cmnd,struct bio_vec * bv)805 static blk_status_t nvme_setup_prp_simple(struct nvme_dev *dev,
806 		struct request *req, struct nvme_rw_command *cmnd,
807 		struct bio_vec *bv)
808 {
809 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
810 	unsigned int offset = bv->bv_offset & (NVME_CTRL_PAGE_SIZE - 1);
811 	unsigned int first_prp_len = NVME_CTRL_PAGE_SIZE - offset;
812 
813 	iod->first_dma = dma_map_bvec(dev->dev, bv, rq_dma_dir(req), 0);
814 	if (dma_mapping_error(dev->dev, iod->first_dma))
815 		return BLK_STS_RESOURCE;
816 	iod->dma_len = bv->bv_len;
817 
818 	cmnd->dptr.prp1 = cpu_to_le64(iod->first_dma);
819 	if (bv->bv_len > first_prp_len)
820 		cmnd->dptr.prp2 = cpu_to_le64(iod->first_dma + first_prp_len);
821 	else
822 		cmnd->dptr.prp2 = 0;
823 	return BLK_STS_OK;
824 }
825 
nvme_setup_sgl_simple(struct nvme_dev * dev,struct request * req,struct nvme_rw_command * cmnd,struct bio_vec * bv)826 static blk_status_t nvme_setup_sgl_simple(struct nvme_dev *dev,
827 		struct request *req, struct nvme_rw_command *cmnd,
828 		struct bio_vec *bv)
829 {
830 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
831 
832 	iod->first_dma = dma_map_bvec(dev->dev, bv, rq_dma_dir(req), 0);
833 	if (dma_mapping_error(dev->dev, iod->first_dma))
834 		return BLK_STS_RESOURCE;
835 	iod->dma_len = bv->bv_len;
836 
837 	cmnd->flags = NVME_CMD_SGL_METABUF;
838 	cmnd->dptr.sgl.addr = cpu_to_le64(iod->first_dma);
839 	cmnd->dptr.sgl.length = cpu_to_le32(iod->dma_len);
840 	cmnd->dptr.sgl.type = NVME_SGL_FMT_DATA_DESC << 4;
841 	return BLK_STS_OK;
842 }
843 
nvme_map_data(struct nvme_dev * dev,struct request * req,struct nvme_command * cmnd)844 static blk_status_t nvme_map_data(struct nvme_dev *dev, struct request *req,
845 		struct nvme_command *cmnd)
846 {
847 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
848 	blk_status_t ret = BLK_STS_RESOURCE;
849 	int nr_mapped;
850 
851 	if (blk_rq_nr_phys_segments(req) == 1) {
852 		struct bio_vec bv = req_bvec(req);
853 
854 		if (!is_pci_p2pdma_page(bv.bv_page)) {
855 			if (bv.bv_offset + bv.bv_len <= NVME_CTRL_PAGE_SIZE * 2)
856 				return nvme_setup_prp_simple(dev, req,
857 							     &cmnd->rw, &bv);
858 
859 			if (iod->nvmeq->qid && sgl_threshold &&
860 			    dev->ctrl.sgls & ((1 << 0) | (1 << 1)))
861 				return nvme_setup_sgl_simple(dev, req,
862 							     &cmnd->rw, &bv);
863 		}
864 	}
865 
866 	iod->dma_len = 0;
867 	iod->sg = mempool_alloc(dev->iod_mempool, GFP_ATOMIC);
868 	if (!iod->sg)
869 		return BLK_STS_RESOURCE;
870 	sg_init_table(iod->sg, blk_rq_nr_phys_segments(req));
871 	iod->nents = blk_rq_map_sg(req->q, req, iod->sg);
872 	if (!iod->nents)
873 		goto out_free_sg;
874 
875 	if (is_pci_p2pdma_page(sg_page(iod->sg)))
876 		nr_mapped = pci_p2pdma_map_sg_attrs(dev->dev, iod->sg,
877 				iod->nents, rq_dma_dir(req), DMA_ATTR_NO_WARN);
878 	else
879 		nr_mapped = dma_map_sg_attrs(dev->dev, iod->sg, iod->nents,
880 					     rq_dma_dir(req), DMA_ATTR_NO_WARN);
881 	if (!nr_mapped)
882 		goto out_free_sg;
883 
884 	iod->use_sgl = nvme_pci_use_sgls(dev, req);
885 	if (iod->use_sgl)
886 		ret = nvme_pci_setup_sgls(dev, req, &cmnd->rw, nr_mapped);
887 	else
888 		ret = nvme_pci_setup_prps(dev, req, &cmnd->rw);
889 	if (ret != BLK_STS_OK)
890 		goto out_unmap_sg;
891 	return BLK_STS_OK;
892 
893 out_unmap_sg:
894 	nvme_unmap_sg(dev, req);
895 out_free_sg:
896 	mempool_free(iod->sg, dev->iod_mempool);
897 	return ret;
898 }
899 
nvme_map_metadata(struct nvme_dev * dev,struct request * req,struct nvme_command * cmnd)900 static blk_status_t nvme_map_metadata(struct nvme_dev *dev, struct request *req,
901 		struct nvme_command *cmnd)
902 {
903 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
904 
905 	iod->meta_dma = dma_map_bvec(dev->dev, rq_integrity_vec(req),
906 			rq_dma_dir(req), 0);
907 	if (dma_mapping_error(dev->dev, iod->meta_dma))
908 		return BLK_STS_IOERR;
909 	cmnd->rw.metadata = cpu_to_le64(iod->meta_dma);
910 	return BLK_STS_OK;
911 }
912 
913 /*
914  * NOTE: ns is NULL when called on the admin queue.
915  */
nvme_queue_rq(struct blk_mq_hw_ctx * hctx,const struct blk_mq_queue_data * bd)916 static blk_status_t nvme_queue_rq(struct blk_mq_hw_ctx *hctx,
917 			 const struct blk_mq_queue_data *bd)
918 {
919 	struct nvme_ns *ns = hctx->queue->queuedata;
920 	struct nvme_queue *nvmeq = hctx->driver_data;
921 	struct nvme_dev *dev = nvmeq->dev;
922 	struct request *req = bd->rq;
923 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
924 	struct nvme_command *cmnd = &iod->cmd;
925 	blk_status_t ret;
926 
927 	iod->aborted = 0;
928 	iod->npages = -1;
929 	iod->nents = 0;
930 
931 	/*
932 	 * We should not need to do this, but we're still using this to
933 	 * ensure we can drain requests on a dying queue.
934 	 */
935 	if (unlikely(!test_bit(NVMEQ_ENABLED, &nvmeq->flags)))
936 		return BLK_STS_IOERR;
937 
938 	ret = nvme_setup_cmd(ns, req, cmnd);
939 	if (ret)
940 		return ret;
941 
942 	if (blk_rq_nr_phys_segments(req)) {
943 		ret = nvme_map_data(dev, req, cmnd);
944 		if (ret)
945 			goto out_free_cmd;
946 	}
947 
948 	if (blk_integrity_rq(req)) {
949 		ret = nvme_map_metadata(dev, req, cmnd);
950 		if (ret)
951 			goto out_unmap_data;
952 	}
953 
954 	blk_mq_start_request(req);
955 	nvme_submit_cmd(nvmeq, cmnd, bd->last);
956 	return BLK_STS_OK;
957 out_unmap_data:
958 	nvme_unmap_data(dev, req);
959 out_free_cmd:
960 	nvme_cleanup_cmd(req);
961 	return ret;
962 }
963 
nvme_pci_complete_rq(struct request * req)964 static void nvme_pci_complete_rq(struct request *req)
965 {
966 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
967 	struct nvme_dev *dev = iod->nvmeq->dev;
968 
969 	if (blk_integrity_rq(req))
970 		dma_unmap_page(dev->dev, iod->meta_dma,
971 			       rq_integrity_vec(req)->bv_len, rq_data_dir(req));
972 	if (blk_rq_nr_phys_segments(req))
973 		nvme_unmap_data(dev, req);
974 	nvme_complete_rq(req);
975 }
976 
977 /* We read the CQE phase first to check if the rest of the entry is valid */
nvme_cqe_pending(struct nvme_queue * nvmeq)978 static inline bool nvme_cqe_pending(struct nvme_queue *nvmeq)
979 {
980 	struct nvme_completion *hcqe = &nvmeq->cqes[nvmeq->cq_head];
981 
982 	return (le16_to_cpu(READ_ONCE(hcqe->status)) & 1) == nvmeq->cq_phase;
983 }
984 
nvme_ring_cq_doorbell(struct nvme_queue * nvmeq)985 static inline void nvme_ring_cq_doorbell(struct nvme_queue *nvmeq)
986 {
987 	u16 head = nvmeq->cq_head;
988 
989 	if (nvme_dbbuf_update_and_check_event(head, nvmeq->dbbuf_cq_db,
990 					      nvmeq->dbbuf_cq_ei))
991 		writel(head, nvmeq->q_db + nvmeq->dev->db_stride);
992 }
993 
nvme_queue_tagset(struct nvme_queue * nvmeq)994 static inline struct blk_mq_tags *nvme_queue_tagset(struct nvme_queue *nvmeq)
995 {
996 	if (!nvmeq->qid)
997 		return nvmeq->dev->admin_tagset.tags[0];
998 	return nvmeq->dev->tagset.tags[nvmeq->qid - 1];
999 }
1000 
nvme_handle_cqe(struct nvme_queue * nvmeq,u16 idx)1001 static inline void nvme_handle_cqe(struct nvme_queue *nvmeq, u16 idx)
1002 {
1003 	struct nvme_completion *cqe = &nvmeq->cqes[idx];
1004 	__u16 command_id = READ_ONCE(cqe->command_id);
1005 	struct request *req;
1006 
1007 	/*
1008 	 * AEN requests are special as they don't time out and can
1009 	 * survive any kind of queue freeze and often don't respond to
1010 	 * aborts.  We don't even bother to allocate a struct request
1011 	 * for them but rather special case them here.
1012 	 */
1013 	if (unlikely(nvme_is_aen_req(nvmeq->qid, command_id))) {
1014 		nvme_complete_async_event(&nvmeq->dev->ctrl,
1015 				cqe->status, &cqe->result);
1016 		return;
1017 	}
1018 
1019 	req = nvme_find_rq(nvme_queue_tagset(nvmeq), command_id);
1020 	if (unlikely(!req)) {
1021 		dev_warn(nvmeq->dev->ctrl.device,
1022 			"invalid id %d completed on queue %d\n",
1023 			command_id, le16_to_cpu(cqe->sq_id));
1024 		return;
1025 	}
1026 
1027 	trace_nvme_sq(req, cqe->sq_head, nvmeq->sq_tail);
1028 	if (!nvme_try_complete_req(req, cqe->status, cqe->result))
1029 		nvme_pci_complete_rq(req);
1030 }
1031 
nvme_update_cq_head(struct nvme_queue * nvmeq)1032 static inline void nvme_update_cq_head(struct nvme_queue *nvmeq)
1033 {
1034 	u32 tmp = nvmeq->cq_head + 1;
1035 
1036 	if (tmp == nvmeq->q_depth) {
1037 		nvmeq->cq_head = 0;
1038 		nvmeq->cq_phase ^= 1;
1039 	} else {
1040 		nvmeq->cq_head = tmp;
1041 	}
1042 }
1043 
nvme_process_cq(struct nvme_queue * nvmeq)1044 static inline int nvme_process_cq(struct nvme_queue *nvmeq)
1045 {
1046 	int found = 0;
1047 
1048 	while (nvme_cqe_pending(nvmeq)) {
1049 		found++;
1050 		/*
1051 		 * load-load control dependency between phase and the rest of
1052 		 * the cqe requires a full read memory barrier
1053 		 */
1054 		dma_rmb();
1055 		nvme_handle_cqe(nvmeq, nvmeq->cq_head);
1056 		nvme_update_cq_head(nvmeq);
1057 	}
1058 
1059 	if (found)
1060 		nvme_ring_cq_doorbell(nvmeq);
1061 	return found;
1062 }
1063 
nvme_irq(int irq,void * data)1064 static irqreturn_t nvme_irq(int irq, void *data)
1065 {
1066 	struct nvme_queue *nvmeq = data;
1067 	irqreturn_t ret = IRQ_NONE;
1068 
1069 	/*
1070 	 * The rmb/wmb pair ensures we see all updates from a previous run of
1071 	 * the irq handler, even if that was on another CPU.
1072 	 */
1073 	rmb();
1074 	if (nvme_process_cq(nvmeq))
1075 		ret = IRQ_HANDLED;
1076 	wmb();
1077 
1078 	return ret;
1079 }
1080 
nvme_irq_check(int irq,void * data)1081 static irqreturn_t nvme_irq_check(int irq, void *data)
1082 {
1083 	struct nvme_queue *nvmeq = data;
1084 
1085 	if (nvme_cqe_pending(nvmeq))
1086 		return IRQ_WAKE_THREAD;
1087 	return IRQ_NONE;
1088 }
1089 
1090 /*
1091  * Poll for completions for any interrupt driven queue
1092  * Can be called from any context.
1093  */
nvme_poll_irqdisable(struct nvme_queue * nvmeq)1094 static void nvme_poll_irqdisable(struct nvme_queue *nvmeq)
1095 {
1096 	struct pci_dev *pdev = to_pci_dev(nvmeq->dev->dev);
1097 
1098 	WARN_ON_ONCE(test_bit(NVMEQ_POLLED, &nvmeq->flags));
1099 
1100 	disable_irq(pci_irq_vector(pdev, nvmeq->cq_vector));
1101 	nvme_process_cq(nvmeq);
1102 	enable_irq(pci_irq_vector(pdev, nvmeq->cq_vector));
1103 }
1104 
nvme_poll(struct blk_mq_hw_ctx * hctx)1105 static int nvme_poll(struct blk_mq_hw_ctx *hctx)
1106 {
1107 	struct nvme_queue *nvmeq = hctx->driver_data;
1108 	bool found;
1109 
1110 	if (!nvme_cqe_pending(nvmeq))
1111 		return 0;
1112 
1113 	spin_lock(&nvmeq->cq_poll_lock);
1114 	found = nvme_process_cq(nvmeq);
1115 	spin_unlock(&nvmeq->cq_poll_lock);
1116 
1117 	return found;
1118 }
1119 
nvme_pci_submit_async_event(struct nvme_ctrl * ctrl)1120 static void nvme_pci_submit_async_event(struct nvme_ctrl *ctrl)
1121 {
1122 	struct nvme_dev *dev = to_nvme_dev(ctrl);
1123 	struct nvme_queue *nvmeq = &dev->queues[0];
1124 	struct nvme_command c;
1125 
1126 	memset(&c, 0, sizeof(c));
1127 	c.common.opcode = nvme_admin_async_event;
1128 	c.common.command_id = NVME_AQ_BLK_MQ_DEPTH;
1129 	nvme_submit_cmd(nvmeq, &c, true);
1130 }
1131 
adapter_delete_queue(struct nvme_dev * dev,u8 opcode,u16 id)1132 static int adapter_delete_queue(struct nvme_dev *dev, u8 opcode, u16 id)
1133 {
1134 	struct nvme_command c;
1135 
1136 	memset(&c, 0, sizeof(c));
1137 	c.delete_queue.opcode = opcode;
1138 	c.delete_queue.qid = cpu_to_le16(id);
1139 
1140 	return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1141 }
1142 
adapter_alloc_cq(struct nvme_dev * dev,u16 qid,struct nvme_queue * nvmeq,s16 vector)1143 static int adapter_alloc_cq(struct nvme_dev *dev, u16 qid,
1144 		struct nvme_queue *nvmeq, s16 vector)
1145 {
1146 	struct nvme_command c;
1147 	int flags = NVME_QUEUE_PHYS_CONTIG;
1148 
1149 	if (!test_bit(NVMEQ_POLLED, &nvmeq->flags))
1150 		flags |= NVME_CQ_IRQ_ENABLED;
1151 
1152 	/*
1153 	 * Note: we (ab)use the fact that the prp fields survive if no data
1154 	 * is attached to the request.
1155 	 */
1156 	memset(&c, 0, sizeof(c));
1157 	c.create_cq.opcode = nvme_admin_create_cq;
1158 	c.create_cq.prp1 = cpu_to_le64(nvmeq->cq_dma_addr);
1159 	c.create_cq.cqid = cpu_to_le16(qid);
1160 	c.create_cq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
1161 	c.create_cq.cq_flags = cpu_to_le16(flags);
1162 	c.create_cq.irq_vector = cpu_to_le16(vector);
1163 
1164 	return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1165 }
1166 
adapter_alloc_sq(struct nvme_dev * dev,u16 qid,struct nvme_queue * nvmeq)1167 static int adapter_alloc_sq(struct nvme_dev *dev, u16 qid,
1168 						struct nvme_queue *nvmeq)
1169 {
1170 	struct nvme_ctrl *ctrl = &dev->ctrl;
1171 	struct nvme_command c;
1172 	int flags = NVME_QUEUE_PHYS_CONTIG;
1173 
1174 	/*
1175 	 * Some drives have a bug that auto-enables WRRU if MEDIUM isn't
1176 	 * set. Since URGENT priority is zeroes, it makes all queues
1177 	 * URGENT.
1178 	 */
1179 	if (ctrl->quirks & NVME_QUIRK_MEDIUM_PRIO_SQ)
1180 		flags |= NVME_SQ_PRIO_MEDIUM;
1181 
1182 	/*
1183 	 * Note: we (ab)use the fact that the prp fields survive if no data
1184 	 * is attached to the request.
1185 	 */
1186 	memset(&c, 0, sizeof(c));
1187 	c.create_sq.opcode = nvme_admin_create_sq;
1188 	c.create_sq.prp1 = cpu_to_le64(nvmeq->sq_dma_addr);
1189 	c.create_sq.sqid = cpu_to_le16(qid);
1190 	c.create_sq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
1191 	c.create_sq.sq_flags = cpu_to_le16(flags);
1192 	c.create_sq.cqid = cpu_to_le16(qid);
1193 
1194 	return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1195 }
1196 
adapter_delete_cq(struct nvme_dev * dev,u16 cqid)1197 static int adapter_delete_cq(struct nvme_dev *dev, u16 cqid)
1198 {
1199 	return adapter_delete_queue(dev, nvme_admin_delete_cq, cqid);
1200 }
1201 
adapter_delete_sq(struct nvme_dev * dev,u16 sqid)1202 static int adapter_delete_sq(struct nvme_dev *dev, u16 sqid)
1203 {
1204 	return adapter_delete_queue(dev, nvme_admin_delete_sq, sqid);
1205 }
1206 
abort_endio(struct request * req,blk_status_t error)1207 static void abort_endio(struct request *req, blk_status_t error)
1208 {
1209 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
1210 	struct nvme_queue *nvmeq = iod->nvmeq;
1211 
1212 	dev_warn(nvmeq->dev->ctrl.device,
1213 		 "Abort status: 0x%x", nvme_req(req)->status);
1214 	atomic_inc(&nvmeq->dev->ctrl.abort_limit);
1215 	blk_mq_free_request(req);
1216 }
1217 
nvme_should_reset(struct nvme_dev * dev,u32 csts)1218 static bool nvme_should_reset(struct nvme_dev *dev, u32 csts)
1219 {
1220 	/* If true, indicates loss of adapter communication, possibly by a
1221 	 * NVMe Subsystem reset.
1222 	 */
1223 	bool nssro = dev->subsystem && (csts & NVME_CSTS_NSSRO);
1224 
1225 	/* If there is a reset/reinit ongoing, we shouldn't reset again. */
1226 	switch (dev->ctrl.state) {
1227 	case NVME_CTRL_RESETTING:
1228 	case NVME_CTRL_CONNECTING:
1229 		return false;
1230 	default:
1231 		break;
1232 	}
1233 
1234 	/* We shouldn't reset unless the controller is on fatal error state
1235 	 * _or_ if we lost the communication with it.
1236 	 */
1237 	if (!(csts & NVME_CSTS_CFS) && !nssro)
1238 		return false;
1239 
1240 	return true;
1241 }
1242 
nvme_warn_reset(struct nvme_dev * dev,u32 csts)1243 static void nvme_warn_reset(struct nvme_dev *dev, u32 csts)
1244 {
1245 	/* Read a config register to help see what died. */
1246 	u16 pci_status;
1247 	int result;
1248 
1249 	result = pci_read_config_word(to_pci_dev(dev->dev), PCI_STATUS,
1250 				      &pci_status);
1251 	if (result == PCIBIOS_SUCCESSFUL)
1252 		dev_warn(dev->ctrl.device,
1253 			 "controller is down; will reset: CSTS=0x%x, PCI_STATUS=0x%hx\n",
1254 			 csts, pci_status);
1255 	else
1256 		dev_warn(dev->ctrl.device,
1257 			 "controller is down; will reset: CSTS=0x%x, PCI_STATUS read failed (%d)\n",
1258 			 csts, result);
1259 }
1260 
nvme_timeout(struct request * req,bool reserved)1261 static enum blk_eh_timer_return nvme_timeout(struct request *req, bool reserved)
1262 {
1263 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
1264 	struct nvme_queue *nvmeq = iod->nvmeq;
1265 	struct nvme_dev *dev = nvmeq->dev;
1266 	struct request *abort_req;
1267 	struct nvme_command cmd;
1268 	u32 csts = readl(dev->bar + NVME_REG_CSTS);
1269 
1270 	/* If PCI error recovery process is happening, we cannot reset or
1271 	 * the recovery mechanism will surely fail.
1272 	 */
1273 	mb();
1274 	if (pci_channel_offline(to_pci_dev(dev->dev)))
1275 		return BLK_EH_RESET_TIMER;
1276 
1277 	/*
1278 	 * Reset immediately if the controller is failed
1279 	 */
1280 	if (nvme_should_reset(dev, csts)) {
1281 		nvme_warn_reset(dev, csts);
1282 		nvme_dev_disable(dev, false);
1283 		nvme_reset_ctrl(&dev->ctrl);
1284 		return BLK_EH_DONE;
1285 	}
1286 
1287 	/*
1288 	 * Did we miss an interrupt?
1289 	 */
1290 	if (test_bit(NVMEQ_POLLED, &nvmeq->flags))
1291 		nvme_poll(req->mq_hctx);
1292 	else
1293 		nvme_poll_irqdisable(nvmeq);
1294 
1295 	if (blk_mq_request_completed(req)) {
1296 		dev_warn(dev->ctrl.device,
1297 			 "I/O %d QID %d timeout, completion polled\n",
1298 			 req->tag, nvmeq->qid);
1299 		return BLK_EH_DONE;
1300 	}
1301 
1302 	/*
1303 	 * Shutdown immediately if controller times out while starting. The
1304 	 * reset work will see the pci device disabled when it gets the forced
1305 	 * cancellation error. All outstanding requests are completed on
1306 	 * shutdown, so we return BLK_EH_DONE.
1307 	 */
1308 	switch (dev->ctrl.state) {
1309 	case NVME_CTRL_CONNECTING:
1310 		nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING);
1311 		fallthrough;
1312 	case NVME_CTRL_DELETING:
1313 		dev_warn_ratelimited(dev->ctrl.device,
1314 			 "I/O %d QID %d timeout, disable controller\n",
1315 			 req->tag, nvmeq->qid);
1316 		nvme_req(req)->flags |= NVME_REQ_CANCELLED;
1317 		nvme_dev_disable(dev, true);
1318 		return BLK_EH_DONE;
1319 	case NVME_CTRL_RESETTING:
1320 		return BLK_EH_RESET_TIMER;
1321 	default:
1322 		break;
1323 	}
1324 
1325 	/*
1326 	 * Shutdown the controller immediately and schedule a reset if the
1327 	 * command was already aborted once before and still hasn't been
1328 	 * returned to the driver, or if this is the admin queue.
1329 	 */
1330 	if (!nvmeq->qid || iod->aborted) {
1331 		dev_warn(dev->ctrl.device,
1332 			 "I/O %d QID %d timeout, reset controller\n",
1333 			 req->tag, nvmeq->qid);
1334 		nvme_req(req)->flags |= NVME_REQ_CANCELLED;
1335 		nvme_dev_disable(dev, false);
1336 		nvme_reset_ctrl(&dev->ctrl);
1337 
1338 		return BLK_EH_DONE;
1339 	}
1340 
1341 	if (atomic_dec_return(&dev->ctrl.abort_limit) < 0) {
1342 		atomic_inc(&dev->ctrl.abort_limit);
1343 		return BLK_EH_RESET_TIMER;
1344 	}
1345 	iod->aborted = 1;
1346 
1347 	memset(&cmd, 0, sizeof(cmd));
1348 	cmd.abort.opcode = nvme_admin_abort_cmd;
1349 	cmd.abort.cid = nvme_cid(req);
1350 	cmd.abort.sqid = cpu_to_le16(nvmeq->qid);
1351 
1352 	dev_warn(nvmeq->dev->ctrl.device,
1353 		"I/O %d QID %d timeout, aborting\n",
1354 		 req->tag, nvmeq->qid);
1355 
1356 	abort_req = nvme_alloc_request(dev->ctrl.admin_q, &cmd,
1357 			BLK_MQ_REQ_NOWAIT);
1358 	if (IS_ERR(abort_req)) {
1359 		atomic_inc(&dev->ctrl.abort_limit);
1360 		return BLK_EH_RESET_TIMER;
1361 	}
1362 
1363 	abort_req->end_io_data = NULL;
1364 	blk_execute_rq_nowait(abort_req->q, NULL, abort_req, 0, abort_endio);
1365 
1366 	/*
1367 	 * The aborted req will be completed on receiving the abort req.
1368 	 * We enable the timer again. If hit twice, it'll cause a device reset,
1369 	 * as the device then is in a faulty state.
1370 	 */
1371 	return BLK_EH_RESET_TIMER;
1372 }
1373 
nvme_free_queue(struct nvme_queue * nvmeq)1374 static void nvme_free_queue(struct nvme_queue *nvmeq)
1375 {
1376 	dma_free_coherent(nvmeq->dev->dev, CQ_SIZE(nvmeq),
1377 				(void *)nvmeq->cqes, nvmeq->cq_dma_addr);
1378 	if (!nvmeq->sq_cmds)
1379 		return;
1380 
1381 	if (test_and_clear_bit(NVMEQ_SQ_CMB, &nvmeq->flags)) {
1382 		pci_free_p2pmem(to_pci_dev(nvmeq->dev->dev),
1383 				nvmeq->sq_cmds, SQ_SIZE(nvmeq));
1384 	} else {
1385 		dma_free_coherent(nvmeq->dev->dev, SQ_SIZE(nvmeq),
1386 				nvmeq->sq_cmds, nvmeq->sq_dma_addr);
1387 	}
1388 }
1389 
nvme_free_queues(struct nvme_dev * dev,int lowest)1390 static void nvme_free_queues(struct nvme_dev *dev, int lowest)
1391 {
1392 	int i;
1393 
1394 	for (i = dev->ctrl.queue_count - 1; i >= lowest; i--) {
1395 		dev->ctrl.queue_count--;
1396 		nvme_free_queue(&dev->queues[i]);
1397 	}
1398 }
1399 
1400 /**
1401  * nvme_suspend_queue - put queue into suspended state
1402  * @nvmeq: queue to suspend
1403  */
nvme_suspend_queue(struct nvme_queue * nvmeq)1404 static int nvme_suspend_queue(struct nvme_queue *nvmeq)
1405 {
1406 	if (!test_and_clear_bit(NVMEQ_ENABLED, &nvmeq->flags))
1407 		return 1;
1408 
1409 	/* ensure that nvme_queue_rq() sees NVMEQ_ENABLED cleared */
1410 	mb();
1411 
1412 	nvmeq->dev->online_queues--;
1413 	if (!nvmeq->qid && nvmeq->dev->ctrl.admin_q)
1414 		nvme_stop_admin_queue(&nvmeq->dev->ctrl);
1415 	if (!test_and_clear_bit(NVMEQ_POLLED, &nvmeq->flags))
1416 		pci_free_irq(to_pci_dev(nvmeq->dev->dev), nvmeq->cq_vector, nvmeq);
1417 	return 0;
1418 }
1419 
nvme_suspend_io_queues(struct nvme_dev * dev)1420 static void nvme_suspend_io_queues(struct nvme_dev *dev)
1421 {
1422 	int i;
1423 
1424 	for (i = dev->ctrl.queue_count - 1; i > 0; i--)
1425 		nvme_suspend_queue(&dev->queues[i]);
1426 }
1427 
nvme_disable_admin_queue(struct nvme_dev * dev,bool shutdown)1428 static void nvme_disable_admin_queue(struct nvme_dev *dev, bool shutdown)
1429 {
1430 	struct nvme_queue *nvmeq = &dev->queues[0];
1431 
1432 	if (shutdown)
1433 		nvme_shutdown_ctrl(&dev->ctrl);
1434 	else
1435 		nvme_disable_ctrl(&dev->ctrl);
1436 
1437 	nvme_poll_irqdisable(nvmeq);
1438 }
1439 
1440 /*
1441  * Called only on a device that has been disabled and after all other threads
1442  * that can check this device's completion queues have synced, except
1443  * nvme_poll(). This is the last chance for the driver to see a natural
1444  * completion before nvme_cancel_request() terminates all incomplete requests.
1445  */
nvme_reap_pending_cqes(struct nvme_dev * dev)1446 static void nvme_reap_pending_cqes(struct nvme_dev *dev)
1447 {
1448 	int i;
1449 
1450 	for (i = dev->ctrl.queue_count - 1; i > 0; i--) {
1451 		spin_lock(&dev->queues[i].cq_poll_lock);
1452 		nvme_process_cq(&dev->queues[i]);
1453 		spin_unlock(&dev->queues[i].cq_poll_lock);
1454 	}
1455 }
1456 
nvme_cmb_qdepth(struct nvme_dev * dev,int nr_io_queues,int entry_size)1457 static int nvme_cmb_qdepth(struct nvme_dev *dev, int nr_io_queues,
1458 				int entry_size)
1459 {
1460 	int q_depth = dev->q_depth;
1461 	unsigned q_size_aligned = roundup(q_depth * entry_size,
1462 					  NVME_CTRL_PAGE_SIZE);
1463 
1464 	if (q_size_aligned * nr_io_queues > dev->cmb_size) {
1465 		u64 mem_per_q = div_u64(dev->cmb_size, nr_io_queues);
1466 
1467 		mem_per_q = round_down(mem_per_q, NVME_CTRL_PAGE_SIZE);
1468 		q_depth = div_u64(mem_per_q, entry_size);
1469 
1470 		/*
1471 		 * Ensure the reduced q_depth is above some threshold where it
1472 		 * would be better to map queues in system memory with the
1473 		 * original depth
1474 		 */
1475 		if (q_depth < 64)
1476 			return -ENOMEM;
1477 	}
1478 
1479 	return q_depth;
1480 }
1481 
nvme_alloc_sq_cmds(struct nvme_dev * dev,struct nvme_queue * nvmeq,int qid)1482 static int nvme_alloc_sq_cmds(struct nvme_dev *dev, struct nvme_queue *nvmeq,
1483 				int qid)
1484 {
1485 	struct pci_dev *pdev = to_pci_dev(dev->dev);
1486 
1487 	if (qid && dev->cmb_use_sqes && (dev->cmbsz & NVME_CMBSZ_SQS)) {
1488 		nvmeq->sq_cmds = pci_alloc_p2pmem(pdev, SQ_SIZE(nvmeq));
1489 		if (nvmeq->sq_cmds) {
1490 			nvmeq->sq_dma_addr = pci_p2pmem_virt_to_bus(pdev,
1491 							nvmeq->sq_cmds);
1492 			if (nvmeq->sq_dma_addr) {
1493 				set_bit(NVMEQ_SQ_CMB, &nvmeq->flags);
1494 				return 0;
1495 			}
1496 
1497 			pci_free_p2pmem(pdev, nvmeq->sq_cmds, SQ_SIZE(nvmeq));
1498 		}
1499 	}
1500 
1501 	nvmeq->sq_cmds = dma_alloc_coherent(dev->dev, SQ_SIZE(nvmeq),
1502 				&nvmeq->sq_dma_addr, GFP_KERNEL);
1503 	if (!nvmeq->sq_cmds)
1504 		return -ENOMEM;
1505 	return 0;
1506 }
1507 
nvme_alloc_queue(struct nvme_dev * dev,int qid,int depth)1508 static int nvme_alloc_queue(struct nvme_dev *dev, int qid, int depth)
1509 {
1510 	struct nvme_queue *nvmeq = &dev->queues[qid];
1511 
1512 	if (dev->ctrl.queue_count > qid)
1513 		return 0;
1514 
1515 	nvmeq->sqes = qid ? dev->io_sqes : NVME_ADM_SQES;
1516 	nvmeq->q_depth = depth;
1517 	nvmeq->cqes = dma_alloc_coherent(dev->dev, CQ_SIZE(nvmeq),
1518 					 &nvmeq->cq_dma_addr, GFP_KERNEL);
1519 	if (!nvmeq->cqes)
1520 		goto free_nvmeq;
1521 
1522 	if (nvme_alloc_sq_cmds(dev, nvmeq, qid))
1523 		goto free_cqdma;
1524 
1525 	nvmeq->dev = dev;
1526 	spin_lock_init(&nvmeq->sq_lock);
1527 	spin_lock_init(&nvmeq->cq_poll_lock);
1528 	nvmeq->cq_head = 0;
1529 	nvmeq->cq_phase = 1;
1530 	nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
1531 	nvmeq->qid = qid;
1532 	dev->ctrl.queue_count++;
1533 
1534 	return 0;
1535 
1536  free_cqdma:
1537 	dma_free_coherent(dev->dev, CQ_SIZE(nvmeq), (void *)nvmeq->cqes,
1538 			  nvmeq->cq_dma_addr);
1539  free_nvmeq:
1540 	return -ENOMEM;
1541 }
1542 
queue_request_irq(struct nvme_queue * nvmeq)1543 static int queue_request_irq(struct nvme_queue *nvmeq)
1544 {
1545 	struct pci_dev *pdev = to_pci_dev(nvmeq->dev->dev);
1546 	int nr = nvmeq->dev->ctrl.instance;
1547 
1548 	if (use_threaded_interrupts) {
1549 		return pci_request_irq(pdev, nvmeq->cq_vector, nvme_irq_check,
1550 				nvme_irq, nvmeq, "nvme%dq%d", nr, nvmeq->qid);
1551 	} else {
1552 		return pci_request_irq(pdev, nvmeq->cq_vector, nvme_irq,
1553 				NULL, nvmeq, "nvme%dq%d", nr, nvmeq->qid);
1554 	}
1555 }
1556 
nvme_init_queue(struct nvme_queue * nvmeq,u16 qid)1557 static void nvme_init_queue(struct nvme_queue *nvmeq, u16 qid)
1558 {
1559 	struct nvme_dev *dev = nvmeq->dev;
1560 
1561 	nvmeq->sq_tail = 0;
1562 	nvmeq->last_sq_tail = 0;
1563 	nvmeq->cq_head = 0;
1564 	nvmeq->cq_phase = 1;
1565 	nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
1566 	memset((void *)nvmeq->cqes, 0, CQ_SIZE(nvmeq));
1567 	nvme_dbbuf_init(dev, nvmeq, qid);
1568 	dev->online_queues++;
1569 	wmb(); /* ensure the first interrupt sees the initialization */
1570 }
1571 
nvme_create_queue(struct nvme_queue * nvmeq,int qid,bool polled)1572 static int nvme_create_queue(struct nvme_queue *nvmeq, int qid, bool polled)
1573 {
1574 	struct nvme_dev *dev = nvmeq->dev;
1575 	int result;
1576 	u16 vector = 0;
1577 
1578 	clear_bit(NVMEQ_DELETE_ERROR, &nvmeq->flags);
1579 
1580 	/*
1581 	 * A queue's vector matches the queue identifier unless the controller
1582 	 * has only one vector available.
1583 	 */
1584 	if (!polled)
1585 		vector = dev->num_vecs == 1 ? 0 : qid;
1586 	else
1587 		set_bit(NVMEQ_POLLED, &nvmeq->flags);
1588 
1589 	result = adapter_alloc_cq(dev, qid, nvmeq, vector);
1590 	if (result)
1591 		return result;
1592 
1593 	result = adapter_alloc_sq(dev, qid, nvmeq);
1594 	if (result < 0)
1595 		return result;
1596 	if (result)
1597 		goto release_cq;
1598 
1599 	nvmeq->cq_vector = vector;
1600 	nvme_init_queue(nvmeq, qid);
1601 
1602 	if (!polled) {
1603 		result = queue_request_irq(nvmeq);
1604 		if (result < 0)
1605 			goto release_sq;
1606 	}
1607 
1608 	set_bit(NVMEQ_ENABLED, &nvmeq->flags);
1609 	return result;
1610 
1611 release_sq:
1612 	dev->online_queues--;
1613 	adapter_delete_sq(dev, qid);
1614 release_cq:
1615 	adapter_delete_cq(dev, qid);
1616 	return result;
1617 }
1618 
1619 static const struct blk_mq_ops nvme_mq_admin_ops = {
1620 	.queue_rq	= nvme_queue_rq,
1621 	.complete	= nvme_pci_complete_rq,
1622 	.init_hctx	= nvme_admin_init_hctx,
1623 	.init_request	= nvme_init_request,
1624 	.timeout	= nvme_timeout,
1625 };
1626 
1627 static const struct blk_mq_ops nvme_mq_ops = {
1628 	.queue_rq	= nvme_queue_rq,
1629 	.complete	= nvme_pci_complete_rq,
1630 	.commit_rqs	= nvme_commit_rqs,
1631 	.init_hctx	= nvme_init_hctx,
1632 	.init_request	= nvme_init_request,
1633 	.map_queues	= nvme_pci_map_queues,
1634 	.timeout	= nvme_timeout,
1635 	.poll		= nvme_poll,
1636 };
1637 
nvme_dev_remove_admin(struct nvme_dev * dev)1638 static void nvme_dev_remove_admin(struct nvme_dev *dev)
1639 {
1640 	if (dev->ctrl.admin_q && !blk_queue_dying(dev->ctrl.admin_q)) {
1641 		/*
1642 		 * If the controller was reset during removal, it's possible
1643 		 * user requests may be waiting on a stopped queue. Start the
1644 		 * queue to flush these to completion.
1645 		 */
1646 		nvme_start_admin_queue(&dev->ctrl);
1647 		blk_cleanup_queue(dev->ctrl.admin_q);
1648 		blk_mq_free_tag_set(&dev->admin_tagset);
1649 	}
1650 }
1651 
nvme_alloc_admin_tags(struct nvme_dev * dev)1652 static int nvme_alloc_admin_tags(struct nvme_dev *dev)
1653 {
1654 	if (!dev->ctrl.admin_q) {
1655 		dev->admin_tagset.ops = &nvme_mq_admin_ops;
1656 		dev->admin_tagset.nr_hw_queues = 1;
1657 
1658 		dev->admin_tagset.queue_depth = NVME_AQ_MQ_TAG_DEPTH;
1659 		dev->admin_tagset.timeout = ADMIN_TIMEOUT;
1660 		dev->admin_tagset.numa_node = dev->ctrl.numa_node;
1661 		dev->admin_tagset.cmd_size = sizeof(struct nvme_iod);
1662 		dev->admin_tagset.flags = BLK_MQ_F_NO_SCHED;
1663 		dev->admin_tagset.driver_data = dev;
1664 
1665 		if (blk_mq_alloc_tag_set(&dev->admin_tagset))
1666 			return -ENOMEM;
1667 		dev->ctrl.admin_tagset = &dev->admin_tagset;
1668 
1669 		dev->ctrl.admin_q = blk_mq_init_queue(&dev->admin_tagset);
1670 		if (IS_ERR(dev->ctrl.admin_q)) {
1671 			blk_mq_free_tag_set(&dev->admin_tagset);
1672 			dev->ctrl.admin_q = NULL;
1673 			return -ENOMEM;
1674 		}
1675 		if (!blk_get_queue(dev->ctrl.admin_q)) {
1676 			nvme_dev_remove_admin(dev);
1677 			dev->ctrl.admin_q = NULL;
1678 			return -ENODEV;
1679 		}
1680 	} else
1681 		nvme_start_admin_queue(&dev->ctrl);
1682 
1683 	return 0;
1684 }
1685 
db_bar_size(struct nvme_dev * dev,unsigned nr_io_queues)1686 static unsigned long db_bar_size(struct nvme_dev *dev, unsigned nr_io_queues)
1687 {
1688 	return NVME_REG_DBS + ((nr_io_queues + 1) * 8 * dev->db_stride);
1689 }
1690 
nvme_remap_bar(struct nvme_dev * dev,unsigned long size)1691 static int nvme_remap_bar(struct nvme_dev *dev, unsigned long size)
1692 {
1693 	struct pci_dev *pdev = to_pci_dev(dev->dev);
1694 
1695 	if (size <= dev->bar_mapped_size)
1696 		return 0;
1697 	if (size > pci_resource_len(pdev, 0))
1698 		return -ENOMEM;
1699 	if (dev->bar)
1700 		iounmap(dev->bar);
1701 	dev->bar = ioremap(pci_resource_start(pdev, 0), size);
1702 	if (!dev->bar) {
1703 		dev->bar_mapped_size = 0;
1704 		return -ENOMEM;
1705 	}
1706 	dev->bar_mapped_size = size;
1707 	dev->dbs = dev->bar + NVME_REG_DBS;
1708 
1709 	return 0;
1710 }
1711 
nvme_pci_configure_admin_queue(struct nvme_dev * dev)1712 static int nvme_pci_configure_admin_queue(struct nvme_dev *dev)
1713 {
1714 	int result;
1715 	u32 aqa;
1716 	struct nvme_queue *nvmeq;
1717 
1718 	result = nvme_remap_bar(dev, db_bar_size(dev, 0));
1719 	if (result < 0)
1720 		return result;
1721 
1722 	dev->subsystem = readl(dev->bar + NVME_REG_VS) >= NVME_VS(1, 1, 0) ?
1723 				NVME_CAP_NSSRC(dev->ctrl.cap) : 0;
1724 
1725 	if (dev->subsystem &&
1726 	    (readl(dev->bar + NVME_REG_CSTS) & NVME_CSTS_NSSRO))
1727 		writel(NVME_CSTS_NSSRO, dev->bar + NVME_REG_CSTS);
1728 
1729 	result = nvme_disable_ctrl(&dev->ctrl);
1730 	if (result < 0)
1731 		return result;
1732 
1733 	result = nvme_alloc_queue(dev, 0, NVME_AQ_DEPTH);
1734 	if (result)
1735 		return result;
1736 
1737 	dev->ctrl.numa_node = dev_to_node(dev->dev);
1738 
1739 	nvmeq = &dev->queues[0];
1740 	aqa = nvmeq->q_depth - 1;
1741 	aqa |= aqa << 16;
1742 
1743 	writel(aqa, dev->bar + NVME_REG_AQA);
1744 	lo_hi_writeq(nvmeq->sq_dma_addr, dev->bar + NVME_REG_ASQ);
1745 	lo_hi_writeq(nvmeq->cq_dma_addr, dev->bar + NVME_REG_ACQ);
1746 
1747 	result = nvme_enable_ctrl(&dev->ctrl);
1748 	if (result)
1749 		return result;
1750 
1751 	nvmeq->cq_vector = 0;
1752 	nvme_init_queue(nvmeq, 0);
1753 	result = queue_request_irq(nvmeq);
1754 	if (result) {
1755 		dev->online_queues--;
1756 		return result;
1757 	}
1758 
1759 	set_bit(NVMEQ_ENABLED, &nvmeq->flags);
1760 	return result;
1761 }
1762 
nvme_create_io_queues(struct nvme_dev * dev)1763 static int nvme_create_io_queues(struct nvme_dev *dev)
1764 {
1765 	unsigned i, max, rw_queues;
1766 	int ret = 0;
1767 
1768 	for (i = dev->ctrl.queue_count; i <= dev->max_qid; i++) {
1769 		if (nvme_alloc_queue(dev, i, dev->q_depth)) {
1770 			ret = -ENOMEM;
1771 			break;
1772 		}
1773 	}
1774 
1775 	max = min(dev->max_qid, dev->ctrl.queue_count - 1);
1776 	if (max != 1 && dev->io_queues[HCTX_TYPE_POLL]) {
1777 		rw_queues = dev->io_queues[HCTX_TYPE_DEFAULT] +
1778 				dev->io_queues[HCTX_TYPE_READ];
1779 	} else {
1780 		rw_queues = max;
1781 	}
1782 
1783 	for (i = dev->online_queues; i <= max; i++) {
1784 		bool polled = i > rw_queues;
1785 
1786 		ret = nvme_create_queue(&dev->queues[i], i, polled);
1787 		if (ret)
1788 			break;
1789 	}
1790 
1791 	/*
1792 	 * Ignore failing Create SQ/CQ commands, we can continue with less
1793 	 * than the desired amount of queues, and even a controller without
1794 	 * I/O queues can still be used to issue admin commands.  This might
1795 	 * be useful to upgrade a buggy firmware for example.
1796 	 */
1797 	return ret >= 0 ? 0 : ret;
1798 }
1799 
nvme_cmb_show(struct device * dev,struct device_attribute * attr,char * buf)1800 static ssize_t nvme_cmb_show(struct device *dev,
1801 			     struct device_attribute *attr,
1802 			     char *buf)
1803 {
1804 	struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev));
1805 
1806 	return scnprintf(buf, PAGE_SIZE, "cmbloc : x%08x\ncmbsz  : x%08x\n",
1807 		       ndev->cmbloc, ndev->cmbsz);
1808 }
1809 static DEVICE_ATTR(cmb, S_IRUGO, nvme_cmb_show, NULL);
1810 
nvme_cmb_size_unit(struct nvme_dev * dev)1811 static u64 nvme_cmb_size_unit(struct nvme_dev *dev)
1812 {
1813 	u8 szu = (dev->cmbsz >> NVME_CMBSZ_SZU_SHIFT) & NVME_CMBSZ_SZU_MASK;
1814 
1815 	return 1ULL << (12 + 4 * szu);
1816 }
1817 
nvme_cmb_size(struct nvme_dev * dev)1818 static u32 nvme_cmb_size(struct nvme_dev *dev)
1819 {
1820 	return (dev->cmbsz >> NVME_CMBSZ_SZ_SHIFT) & NVME_CMBSZ_SZ_MASK;
1821 }
1822 
nvme_map_cmb(struct nvme_dev * dev)1823 static void nvme_map_cmb(struct nvme_dev *dev)
1824 {
1825 	u64 size, offset;
1826 	resource_size_t bar_size;
1827 	struct pci_dev *pdev = to_pci_dev(dev->dev);
1828 	int bar;
1829 
1830 	if (dev->cmb_size)
1831 		return;
1832 
1833 	if (NVME_CAP_CMBS(dev->ctrl.cap))
1834 		writel(NVME_CMBMSC_CRE, dev->bar + NVME_REG_CMBMSC);
1835 
1836 	dev->cmbsz = readl(dev->bar + NVME_REG_CMBSZ);
1837 	if (!dev->cmbsz)
1838 		return;
1839 	dev->cmbloc = readl(dev->bar + NVME_REG_CMBLOC);
1840 
1841 	size = nvme_cmb_size_unit(dev) * nvme_cmb_size(dev);
1842 	offset = nvme_cmb_size_unit(dev) * NVME_CMB_OFST(dev->cmbloc);
1843 	bar = NVME_CMB_BIR(dev->cmbloc);
1844 	bar_size = pci_resource_len(pdev, bar);
1845 
1846 	if (offset > bar_size)
1847 		return;
1848 
1849 	/*
1850 	 * Tell the controller about the host side address mapping the CMB,
1851 	 * and enable CMB decoding for the NVMe 1.4+ scheme:
1852 	 */
1853 	if (NVME_CAP_CMBS(dev->ctrl.cap)) {
1854 		hi_lo_writeq(NVME_CMBMSC_CRE | NVME_CMBMSC_CMSE |
1855 			     (pci_bus_address(pdev, bar) + offset),
1856 			     dev->bar + NVME_REG_CMBMSC);
1857 	}
1858 
1859 	/*
1860 	 * Controllers may support a CMB size larger than their BAR,
1861 	 * for example, due to being behind a bridge. Reduce the CMB to
1862 	 * the reported size of the BAR
1863 	 */
1864 	if (size > bar_size - offset)
1865 		size = bar_size - offset;
1866 
1867 	if (pci_p2pdma_add_resource(pdev, bar, size, offset)) {
1868 		dev_warn(dev->ctrl.device,
1869 			 "failed to register the CMB\n");
1870 		return;
1871 	}
1872 
1873 	dev->cmb_size = size;
1874 	dev->cmb_use_sqes = use_cmb_sqes && (dev->cmbsz & NVME_CMBSZ_SQS);
1875 
1876 	if ((dev->cmbsz & (NVME_CMBSZ_WDS | NVME_CMBSZ_RDS)) ==
1877 			(NVME_CMBSZ_WDS | NVME_CMBSZ_RDS))
1878 		pci_p2pmem_publish(pdev, true);
1879 
1880 	if (sysfs_add_file_to_group(&dev->ctrl.device->kobj,
1881 				    &dev_attr_cmb.attr, NULL))
1882 		dev_warn(dev->ctrl.device,
1883 			 "failed to add sysfs attribute for CMB\n");
1884 }
1885 
nvme_release_cmb(struct nvme_dev * dev)1886 static inline void nvme_release_cmb(struct nvme_dev *dev)
1887 {
1888 	if (dev->cmb_size) {
1889 		sysfs_remove_file_from_group(&dev->ctrl.device->kobj,
1890 					     &dev_attr_cmb.attr, NULL);
1891 		dev->cmb_size = 0;
1892 	}
1893 }
1894 
nvme_set_host_mem(struct nvme_dev * dev,u32 bits)1895 static int nvme_set_host_mem(struct nvme_dev *dev, u32 bits)
1896 {
1897 	u32 host_mem_size = dev->host_mem_size >> NVME_CTRL_PAGE_SHIFT;
1898 	u64 dma_addr = dev->host_mem_descs_dma;
1899 	struct nvme_command c;
1900 	int ret;
1901 
1902 	memset(&c, 0, sizeof(c));
1903 	c.features.opcode	= nvme_admin_set_features;
1904 	c.features.fid		= cpu_to_le32(NVME_FEAT_HOST_MEM_BUF);
1905 	c.features.dword11	= cpu_to_le32(bits);
1906 	c.features.dword12	= cpu_to_le32(host_mem_size);
1907 	c.features.dword13	= cpu_to_le32(lower_32_bits(dma_addr));
1908 	c.features.dword14	= cpu_to_le32(upper_32_bits(dma_addr));
1909 	c.features.dword15	= cpu_to_le32(dev->nr_host_mem_descs);
1910 
1911 	ret = nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1912 	if (ret) {
1913 		dev_warn(dev->ctrl.device,
1914 			 "failed to set host mem (err %d, flags %#x).\n",
1915 			 ret, bits);
1916 	}
1917 	return ret;
1918 }
1919 
nvme_free_host_mem(struct nvme_dev * dev)1920 static void nvme_free_host_mem(struct nvme_dev *dev)
1921 {
1922 	int i;
1923 
1924 	for (i = 0; i < dev->nr_host_mem_descs; i++) {
1925 		struct nvme_host_mem_buf_desc *desc = &dev->host_mem_descs[i];
1926 		size_t size = le32_to_cpu(desc->size) * NVME_CTRL_PAGE_SIZE;
1927 
1928 		dma_free_attrs(dev->dev, size, dev->host_mem_desc_bufs[i],
1929 			       le64_to_cpu(desc->addr),
1930 			       DMA_ATTR_NO_KERNEL_MAPPING | DMA_ATTR_NO_WARN);
1931 	}
1932 
1933 	kfree(dev->host_mem_desc_bufs);
1934 	dev->host_mem_desc_bufs = NULL;
1935 	dma_free_coherent(dev->dev,
1936 			dev->nr_host_mem_descs * sizeof(*dev->host_mem_descs),
1937 			dev->host_mem_descs, dev->host_mem_descs_dma);
1938 	dev->host_mem_descs = NULL;
1939 	dev->nr_host_mem_descs = 0;
1940 }
1941 
__nvme_alloc_host_mem(struct nvme_dev * dev,u64 preferred,u32 chunk_size)1942 static int __nvme_alloc_host_mem(struct nvme_dev *dev, u64 preferred,
1943 		u32 chunk_size)
1944 {
1945 	struct nvme_host_mem_buf_desc *descs;
1946 	u32 max_entries, len;
1947 	dma_addr_t descs_dma;
1948 	int i = 0;
1949 	void **bufs;
1950 	u64 size, tmp;
1951 
1952 	tmp = (preferred + chunk_size - 1);
1953 	do_div(tmp, chunk_size);
1954 	max_entries = tmp;
1955 
1956 	if (dev->ctrl.hmmaxd && dev->ctrl.hmmaxd < max_entries)
1957 		max_entries = dev->ctrl.hmmaxd;
1958 
1959 	descs = dma_alloc_coherent(dev->dev, max_entries * sizeof(*descs),
1960 				   &descs_dma, GFP_KERNEL);
1961 	if (!descs)
1962 		goto out;
1963 
1964 	bufs = kcalloc(max_entries, sizeof(*bufs), GFP_KERNEL);
1965 	if (!bufs)
1966 		goto out_free_descs;
1967 
1968 	for (size = 0; size < preferred && i < max_entries; size += len) {
1969 		dma_addr_t dma_addr;
1970 
1971 		len = min_t(u64, chunk_size, preferred - size);
1972 		bufs[i] = dma_alloc_attrs(dev->dev, len, &dma_addr, GFP_KERNEL,
1973 				DMA_ATTR_NO_KERNEL_MAPPING | DMA_ATTR_NO_WARN);
1974 		if (!bufs[i])
1975 			break;
1976 
1977 		descs[i].addr = cpu_to_le64(dma_addr);
1978 		descs[i].size = cpu_to_le32(len / NVME_CTRL_PAGE_SIZE);
1979 		i++;
1980 	}
1981 
1982 	if (!size)
1983 		goto out_free_bufs;
1984 
1985 	dev->nr_host_mem_descs = i;
1986 	dev->host_mem_size = size;
1987 	dev->host_mem_descs = descs;
1988 	dev->host_mem_descs_dma = descs_dma;
1989 	dev->host_mem_desc_bufs = bufs;
1990 	return 0;
1991 
1992 out_free_bufs:
1993 	while (--i >= 0) {
1994 		size_t size = le32_to_cpu(descs[i].size) * NVME_CTRL_PAGE_SIZE;
1995 
1996 		dma_free_attrs(dev->dev, size, bufs[i],
1997 			       le64_to_cpu(descs[i].addr),
1998 			       DMA_ATTR_NO_KERNEL_MAPPING | DMA_ATTR_NO_WARN);
1999 	}
2000 
2001 	kfree(bufs);
2002 out_free_descs:
2003 	dma_free_coherent(dev->dev, max_entries * sizeof(*descs), descs,
2004 			descs_dma);
2005 out:
2006 	dev->host_mem_descs = NULL;
2007 	return -ENOMEM;
2008 }
2009 
nvme_alloc_host_mem(struct nvme_dev * dev,u64 min,u64 preferred)2010 static int nvme_alloc_host_mem(struct nvme_dev *dev, u64 min, u64 preferred)
2011 {
2012 	u64 min_chunk = min_t(u64, preferred, PAGE_SIZE * MAX_ORDER_NR_PAGES);
2013 	u64 hmminds = max_t(u32, dev->ctrl.hmminds * 4096, PAGE_SIZE * 2);
2014 	u64 chunk_size;
2015 
2016 	/* start big and work our way down */
2017 	for (chunk_size = min_chunk; chunk_size >= hmminds; chunk_size /= 2) {
2018 		if (!__nvme_alloc_host_mem(dev, preferred, chunk_size)) {
2019 			if (!min || dev->host_mem_size >= min)
2020 				return 0;
2021 			nvme_free_host_mem(dev);
2022 		}
2023 	}
2024 
2025 	return -ENOMEM;
2026 }
2027 
nvme_setup_host_mem(struct nvme_dev * dev)2028 static int nvme_setup_host_mem(struct nvme_dev *dev)
2029 {
2030 	u64 max = (u64)max_host_mem_size_mb * SZ_1M;
2031 	u64 preferred = (u64)dev->ctrl.hmpre * 4096;
2032 	u64 min = (u64)dev->ctrl.hmmin * 4096;
2033 	u32 enable_bits = NVME_HOST_MEM_ENABLE;
2034 	int ret;
2035 
2036 	preferred = min(preferred, max);
2037 	if (min > max) {
2038 		dev_warn(dev->ctrl.device,
2039 			"min host memory (%lld MiB) above limit (%d MiB).\n",
2040 			min >> ilog2(SZ_1M), max_host_mem_size_mb);
2041 		nvme_free_host_mem(dev);
2042 		return 0;
2043 	}
2044 
2045 	/*
2046 	 * If we already have a buffer allocated check if we can reuse it.
2047 	 */
2048 	if (dev->host_mem_descs) {
2049 		if (dev->host_mem_size >= min)
2050 			enable_bits |= NVME_HOST_MEM_RETURN;
2051 		else
2052 			nvme_free_host_mem(dev);
2053 	}
2054 
2055 	if (!dev->host_mem_descs) {
2056 		if (nvme_alloc_host_mem(dev, min, preferred)) {
2057 			dev_warn(dev->ctrl.device,
2058 				"failed to allocate host memory buffer.\n");
2059 			return 0; /* controller must work without HMB */
2060 		}
2061 
2062 		dev_info(dev->ctrl.device,
2063 			"allocated %lld MiB host memory buffer.\n",
2064 			dev->host_mem_size >> ilog2(SZ_1M));
2065 	}
2066 
2067 	ret = nvme_set_host_mem(dev, enable_bits);
2068 	if (ret)
2069 		nvme_free_host_mem(dev);
2070 	return ret;
2071 }
2072 
2073 /*
2074  * nirqs is the number of interrupts available for write and read
2075  * queues. The core already reserved an interrupt for the admin queue.
2076  */
nvme_calc_irq_sets(struct irq_affinity * affd,unsigned int nrirqs)2077 static void nvme_calc_irq_sets(struct irq_affinity *affd, unsigned int nrirqs)
2078 {
2079 	struct nvme_dev *dev = affd->priv;
2080 	unsigned int nr_read_queues, nr_write_queues = dev->nr_write_queues;
2081 
2082 	/*
2083 	 * If there is no interrupt available for queues, ensure that
2084 	 * the default queue is set to 1. The affinity set size is
2085 	 * also set to one, but the irq core ignores it for this case.
2086 	 *
2087 	 * If only one interrupt is available or 'write_queue' == 0, combine
2088 	 * write and read queues.
2089 	 *
2090 	 * If 'write_queues' > 0, ensure it leaves room for at least one read
2091 	 * queue.
2092 	 */
2093 	if (!nrirqs) {
2094 		nrirqs = 1;
2095 		nr_read_queues = 0;
2096 	} else if (nrirqs == 1 || !nr_write_queues) {
2097 		nr_read_queues = 0;
2098 	} else if (nr_write_queues >= nrirqs) {
2099 		nr_read_queues = 1;
2100 	} else {
2101 		nr_read_queues = nrirqs - nr_write_queues;
2102 	}
2103 
2104 	dev->io_queues[HCTX_TYPE_DEFAULT] = nrirqs - nr_read_queues;
2105 	affd->set_size[HCTX_TYPE_DEFAULT] = nrirqs - nr_read_queues;
2106 	dev->io_queues[HCTX_TYPE_READ] = nr_read_queues;
2107 	affd->set_size[HCTX_TYPE_READ] = nr_read_queues;
2108 	affd->nr_sets = nr_read_queues ? 2 : 1;
2109 }
2110 
nvme_setup_irqs(struct nvme_dev * dev,unsigned int nr_io_queues)2111 static int nvme_setup_irqs(struct nvme_dev *dev, unsigned int nr_io_queues)
2112 {
2113 	struct pci_dev *pdev = to_pci_dev(dev->dev);
2114 	struct irq_affinity affd = {
2115 		.pre_vectors	= 1,
2116 		.calc_sets	= nvme_calc_irq_sets,
2117 		.priv		= dev,
2118 	};
2119 	unsigned int irq_queues, poll_queues;
2120 
2121 	/*
2122 	 * Poll queues don't need interrupts, but we need at least one I/O queue
2123 	 * left over for non-polled I/O.
2124 	 */
2125 	poll_queues = min(dev->nr_poll_queues, nr_io_queues - 1);
2126 	dev->io_queues[HCTX_TYPE_POLL] = poll_queues;
2127 
2128 	/*
2129 	 * Initialize for the single interrupt case, will be updated in
2130 	 * nvme_calc_irq_sets().
2131 	 */
2132 	dev->io_queues[HCTX_TYPE_DEFAULT] = 1;
2133 	dev->io_queues[HCTX_TYPE_READ] = 0;
2134 
2135 	/*
2136 	 * We need interrupts for the admin queue and each non-polled I/O queue,
2137 	 * but some Apple controllers require all queues to use the first
2138 	 * vector.
2139 	 */
2140 	irq_queues = 1;
2141 	if (!(dev->ctrl.quirks & NVME_QUIRK_SINGLE_VECTOR))
2142 		irq_queues += (nr_io_queues - poll_queues);
2143 	return pci_alloc_irq_vectors_affinity(pdev, 1, irq_queues,
2144 			      PCI_IRQ_ALL_TYPES | PCI_IRQ_AFFINITY, &affd);
2145 }
2146 
nvme_disable_io_queues(struct nvme_dev * dev)2147 static void nvme_disable_io_queues(struct nvme_dev *dev)
2148 {
2149 	if (__nvme_disable_io_queues(dev, nvme_admin_delete_sq))
2150 		__nvme_disable_io_queues(dev, nvme_admin_delete_cq);
2151 }
2152 
nvme_max_io_queues(struct nvme_dev * dev)2153 static unsigned int nvme_max_io_queues(struct nvme_dev *dev)
2154 {
2155 	return num_possible_cpus() + dev->nr_write_queues + dev->nr_poll_queues;
2156 }
2157 
nvme_setup_io_queues(struct nvme_dev * dev)2158 static int nvme_setup_io_queues(struct nvme_dev *dev)
2159 {
2160 	struct nvme_queue *adminq = &dev->queues[0];
2161 	struct pci_dev *pdev = to_pci_dev(dev->dev);
2162 	unsigned int nr_io_queues;
2163 	unsigned long size;
2164 	int result;
2165 
2166 	/*
2167 	 * Sample the module parameters once at reset time so that we have
2168 	 * stable values to work with.
2169 	 */
2170 	dev->nr_write_queues = write_queues;
2171 	dev->nr_poll_queues = poll_queues;
2172 
2173 	/*
2174 	 * If tags are shared with admin queue (Apple bug), then
2175 	 * make sure we only use one IO queue.
2176 	 */
2177 	if (dev->ctrl.quirks & NVME_QUIRK_SHARED_TAGS)
2178 		nr_io_queues = 1;
2179 	else
2180 		nr_io_queues = min(nvme_max_io_queues(dev),
2181 				   dev->nr_allocated_queues - 1);
2182 
2183 	result = nvme_set_queue_count(&dev->ctrl, &nr_io_queues);
2184 	if (result < 0)
2185 		return result;
2186 
2187 	if (nr_io_queues == 0)
2188 		return 0;
2189 
2190 	clear_bit(NVMEQ_ENABLED, &adminq->flags);
2191 
2192 	if (dev->cmb_use_sqes) {
2193 		result = nvme_cmb_qdepth(dev, nr_io_queues,
2194 				sizeof(struct nvme_command));
2195 		if (result > 0)
2196 			dev->q_depth = result;
2197 		else
2198 			dev->cmb_use_sqes = false;
2199 	}
2200 
2201 	do {
2202 		size = db_bar_size(dev, nr_io_queues);
2203 		result = nvme_remap_bar(dev, size);
2204 		if (!result)
2205 			break;
2206 		if (!--nr_io_queues)
2207 			return -ENOMEM;
2208 	} while (1);
2209 	adminq->q_db = dev->dbs;
2210 
2211  retry:
2212 	/* Deregister the admin queue's interrupt */
2213 	pci_free_irq(pdev, 0, adminq);
2214 
2215 	/*
2216 	 * If we enable msix early due to not intx, disable it again before
2217 	 * setting up the full range we need.
2218 	 */
2219 	pci_free_irq_vectors(pdev);
2220 
2221 	result = nvme_setup_irqs(dev, nr_io_queues);
2222 	if (result <= 0)
2223 		return -EIO;
2224 
2225 	dev->num_vecs = result;
2226 	result = max(result - 1, 1);
2227 	dev->max_qid = result + dev->io_queues[HCTX_TYPE_POLL];
2228 
2229 	/*
2230 	 * Should investigate if there's a performance win from allocating
2231 	 * more queues than interrupt vectors; it might allow the submission
2232 	 * path to scale better, even if the receive path is limited by the
2233 	 * number of interrupts.
2234 	 */
2235 	result = queue_request_irq(adminq);
2236 	if (result)
2237 		return result;
2238 	set_bit(NVMEQ_ENABLED, &adminq->flags);
2239 
2240 	result = nvme_create_io_queues(dev);
2241 	if (result || dev->online_queues < 2)
2242 		return result;
2243 
2244 	if (dev->online_queues - 1 < dev->max_qid) {
2245 		nr_io_queues = dev->online_queues - 1;
2246 		nvme_disable_io_queues(dev);
2247 		nvme_suspend_io_queues(dev);
2248 		goto retry;
2249 	}
2250 	dev_info(dev->ctrl.device, "%d/%d/%d default/read/poll queues\n",
2251 					dev->io_queues[HCTX_TYPE_DEFAULT],
2252 					dev->io_queues[HCTX_TYPE_READ],
2253 					dev->io_queues[HCTX_TYPE_POLL]);
2254 	return 0;
2255 }
2256 
nvme_del_queue_end(struct request * req,blk_status_t error)2257 static void nvme_del_queue_end(struct request *req, blk_status_t error)
2258 {
2259 	struct nvme_queue *nvmeq = req->end_io_data;
2260 
2261 	blk_mq_free_request(req);
2262 	complete(&nvmeq->delete_done);
2263 }
2264 
nvme_del_cq_end(struct request * req,blk_status_t error)2265 static void nvme_del_cq_end(struct request *req, blk_status_t error)
2266 {
2267 	struct nvme_queue *nvmeq = req->end_io_data;
2268 
2269 	if (error)
2270 		set_bit(NVMEQ_DELETE_ERROR, &nvmeq->flags);
2271 
2272 	nvme_del_queue_end(req, error);
2273 }
2274 
nvme_delete_queue(struct nvme_queue * nvmeq,u8 opcode)2275 static int nvme_delete_queue(struct nvme_queue *nvmeq, u8 opcode)
2276 {
2277 	struct request_queue *q = nvmeq->dev->ctrl.admin_q;
2278 	struct request *req;
2279 	struct nvme_command cmd;
2280 
2281 	memset(&cmd, 0, sizeof(cmd));
2282 	cmd.delete_queue.opcode = opcode;
2283 	cmd.delete_queue.qid = cpu_to_le16(nvmeq->qid);
2284 
2285 	req = nvme_alloc_request(q, &cmd, BLK_MQ_REQ_NOWAIT);
2286 	if (IS_ERR(req))
2287 		return PTR_ERR(req);
2288 
2289 	req->end_io_data = nvmeq;
2290 
2291 	init_completion(&nvmeq->delete_done);
2292 	blk_execute_rq_nowait(q, NULL, req, false,
2293 			opcode == nvme_admin_delete_cq ?
2294 				nvme_del_cq_end : nvme_del_queue_end);
2295 	return 0;
2296 }
2297 
__nvme_disable_io_queues(struct nvme_dev * dev,u8 opcode)2298 static bool __nvme_disable_io_queues(struct nvme_dev *dev, u8 opcode)
2299 {
2300 	int nr_queues = dev->online_queues - 1, sent = 0;
2301 	unsigned long timeout;
2302 
2303  retry:
2304 	timeout = ADMIN_TIMEOUT;
2305 	while (nr_queues > 0) {
2306 		if (nvme_delete_queue(&dev->queues[nr_queues], opcode))
2307 			break;
2308 		nr_queues--;
2309 		sent++;
2310 	}
2311 	while (sent) {
2312 		struct nvme_queue *nvmeq = &dev->queues[nr_queues + sent];
2313 
2314 		timeout = wait_for_completion_io_timeout(&nvmeq->delete_done,
2315 				timeout);
2316 		if (timeout == 0)
2317 			return false;
2318 
2319 		sent--;
2320 		if (nr_queues)
2321 			goto retry;
2322 	}
2323 	return true;
2324 }
2325 
nvme_dev_add(struct nvme_dev * dev)2326 static void nvme_dev_add(struct nvme_dev *dev)
2327 {
2328 	int ret;
2329 
2330 	if (!dev->ctrl.tagset) {
2331 		dev->tagset.ops = &nvme_mq_ops;
2332 		dev->tagset.nr_hw_queues = dev->online_queues - 1;
2333 		dev->tagset.nr_maps = 2; /* default + read */
2334 		if (dev->io_queues[HCTX_TYPE_POLL])
2335 			dev->tagset.nr_maps++;
2336 		dev->tagset.timeout = NVME_IO_TIMEOUT;
2337 		dev->tagset.numa_node = dev->ctrl.numa_node;
2338 		dev->tagset.queue_depth = min_t(unsigned int, dev->q_depth,
2339 						BLK_MQ_MAX_DEPTH) - 1;
2340 		dev->tagset.cmd_size = sizeof(struct nvme_iod);
2341 		dev->tagset.flags = BLK_MQ_F_SHOULD_MERGE;
2342 		dev->tagset.driver_data = dev;
2343 
2344 		/*
2345 		 * Some Apple controllers requires tags to be unique
2346 		 * across admin and IO queue, so reserve the first 32
2347 		 * tags of the IO queue.
2348 		 */
2349 		if (dev->ctrl.quirks & NVME_QUIRK_SHARED_TAGS)
2350 			dev->tagset.reserved_tags = NVME_AQ_DEPTH;
2351 
2352 		ret = blk_mq_alloc_tag_set(&dev->tagset);
2353 		if (ret) {
2354 			dev_warn(dev->ctrl.device,
2355 				"IO queues tagset allocation failed %d\n", ret);
2356 			return;
2357 		}
2358 		dev->ctrl.tagset = &dev->tagset;
2359 	} else {
2360 		blk_mq_update_nr_hw_queues(&dev->tagset, dev->online_queues - 1);
2361 
2362 		/* Free previously allocated queues that are no longer usable */
2363 		nvme_free_queues(dev, dev->online_queues);
2364 	}
2365 
2366 	nvme_dbbuf_set(dev);
2367 }
2368 
nvme_pci_enable(struct nvme_dev * dev)2369 static int nvme_pci_enable(struct nvme_dev *dev)
2370 {
2371 	int result = -ENOMEM;
2372 	struct pci_dev *pdev = to_pci_dev(dev->dev);
2373 
2374 	if (pci_enable_device_mem(pdev))
2375 		return result;
2376 
2377 	pci_set_master(pdev);
2378 
2379 	if (dma_set_mask_and_coherent(dev->dev, DMA_BIT_MASK(64)))
2380 		goto disable;
2381 
2382 	if (readl(dev->bar + NVME_REG_CSTS) == -1) {
2383 		result = -ENODEV;
2384 		goto disable;
2385 	}
2386 
2387 	/*
2388 	 * Some devices and/or platforms don't advertise or work with INTx
2389 	 * interrupts. Pre-enable a single MSIX or MSI vec for setup. We'll
2390 	 * adjust this later.
2391 	 */
2392 	result = pci_alloc_irq_vectors(pdev, 1, 1, PCI_IRQ_ALL_TYPES);
2393 	if (result < 0)
2394 		return result;
2395 
2396 	dev->ctrl.cap = lo_hi_readq(dev->bar + NVME_REG_CAP);
2397 
2398 	dev->q_depth = min_t(u32, NVME_CAP_MQES(dev->ctrl.cap) + 1,
2399 				io_queue_depth);
2400 	dev->ctrl.sqsize = dev->q_depth - 1; /* 0's based queue depth */
2401 	dev->db_stride = 1 << NVME_CAP_STRIDE(dev->ctrl.cap);
2402 	dev->dbs = dev->bar + 4096;
2403 
2404 	/*
2405 	 * Some Apple controllers require a non-standard SQE size.
2406 	 * Interestingly they also seem to ignore the CC:IOSQES register
2407 	 * so we don't bother updating it here.
2408 	 */
2409 	if (dev->ctrl.quirks & NVME_QUIRK_128_BYTES_SQES)
2410 		dev->io_sqes = 7;
2411 	else
2412 		dev->io_sqes = NVME_NVM_IOSQES;
2413 
2414 	/*
2415 	 * Temporary fix for the Apple controller found in the MacBook8,1 and
2416 	 * some MacBook7,1 to avoid controller resets and data loss.
2417 	 */
2418 	if (pdev->vendor == PCI_VENDOR_ID_APPLE && pdev->device == 0x2001) {
2419 		dev->q_depth = 2;
2420 		dev_warn(dev->ctrl.device, "detected Apple NVMe controller, "
2421 			"set queue depth=%u to work around controller resets\n",
2422 			dev->q_depth);
2423 	} else if (pdev->vendor == PCI_VENDOR_ID_SAMSUNG &&
2424 		   (pdev->device == 0xa821 || pdev->device == 0xa822) &&
2425 		   NVME_CAP_MQES(dev->ctrl.cap) == 0) {
2426 		dev->q_depth = 64;
2427 		dev_err(dev->ctrl.device, "detected PM1725 NVMe controller, "
2428                         "set queue depth=%u\n", dev->q_depth);
2429 	}
2430 
2431 	/*
2432 	 * Controllers with the shared tags quirk need the IO queue to be
2433 	 * big enough so that we get 32 tags for the admin queue
2434 	 */
2435 	if ((dev->ctrl.quirks & NVME_QUIRK_SHARED_TAGS) &&
2436 	    (dev->q_depth < (NVME_AQ_DEPTH + 2))) {
2437 		dev->q_depth = NVME_AQ_DEPTH + 2;
2438 		dev_warn(dev->ctrl.device, "IO queue depth clamped to %d\n",
2439 			 dev->q_depth);
2440 	}
2441 
2442 
2443 	nvme_map_cmb(dev);
2444 
2445 	pci_enable_pcie_error_reporting(pdev);
2446 	pci_save_state(pdev);
2447 	return 0;
2448 
2449  disable:
2450 	pci_disable_device(pdev);
2451 	return result;
2452 }
2453 
nvme_dev_unmap(struct nvme_dev * dev)2454 static void nvme_dev_unmap(struct nvme_dev *dev)
2455 {
2456 	if (dev->bar)
2457 		iounmap(dev->bar);
2458 	pci_release_mem_regions(to_pci_dev(dev->dev));
2459 }
2460 
nvme_pci_disable(struct nvme_dev * dev)2461 static void nvme_pci_disable(struct nvme_dev *dev)
2462 {
2463 	struct pci_dev *pdev = to_pci_dev(dev->dev);
2464 
2465 	pci_free_irq_vectors(pdev);
2466 
2467 	if (pci_is_enabled(pdev)) {
2468 		pci_disable_pcie_error_reporting(pdev);
2469 		pci_disable_device(pdev);
2470 	}
2471 }
2472 
nvme_dev_disable(struct nvme_dev * dev,bool shutdown)2473 static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown)
2474 {
2475 	bool dead = true, freeze = false;
2476 	struct pci_dev *pdev = to_pci_dev(dev->dev);
2477 
2478 	mutex_lock(&dev->shutdown_lock);
2479 	if (pci_is_enabled(pdev)) {
2480 		u32 csts = readl(dev->bar + NVME_REG_CSTS);
2481 
2482 		if (dev->ctrl.state == NVME_CTRL_LIVE ||
2483 		    dev->ctrl.state == NVME_CTRL_RESETTING) {
2484 			freeze = true;
2485 			nvme_start_freeze(&dev->ctrl);
2486 		}
2487 		dead = !!((csts & NVME_CSTS_CFS) || !(csts & NVME_CSTS_RDY) ||
2488 			pdev->error_state  != pci_channel_io_normal);
2489 	}
2490 
2491 	/*
2492 	 * Give the controller a chance to complete all entered requests if
2493 	 * doing a safe shutdown.
2494 	 */
2495 	if (!dead && shutdown && freeze)
2496 		nvme_wait_freeze_timeout(&dev->ctrl, NVME_IO_TIMEOUT);
2497 
2498 	nvme_stop_queues(&dev->ctrl);
2499 
2500 	if (!dead && dev->ctrl.queue_count > 0) {
2501 		nvme_disable_io_queues(dev);
2502 		nvme_disable_admin_queue(dev, shutdown);
2503 	}
2504 	nvme_suspend_io_queues(dev);
2505 	nvme_suspend_queue(&dev->queues[0]);
2506 	nvme_pci_disable(dev);
2507 	nvme_reap_pending_cqes(dev);
2508 
2509 	blk_mq_tagset_busy_iter(&dev->tagset, nvme_cancel_request, &dev->ctrl);
2510 	blk_mq_tagset_busy_iter(&dev->admin_tagset, nvme_cancel_request, &dev->ctrl);
2511 	blk_mq_tagset_wait_completed_request(&dev->tagset);
2512 	blk_mq_tagset_wait_completed_request(&dev->admin_tagset);
2513 
2514 	/*
2515 	 * The driver will not be starting up queues again if shutting down so
2516 	 * must flush all entered requests to their failed completion to avoid
2517 	 * deadlocking blk-mq hot-cpu notifier.
2518 	 */
2519 	if (shutdown) {
2520 		nvme_start_queues(&dev->ctrl);
2521 		if (dev->ctrl.admin_q && !blk_queue_dying(dev->ctrl.admin_q))
2522 			nvme_start_admin_queue(&dev->ctrl);
2523 	}
2524 	mutex_unlock(&dev->shutdown_lock);
2525 }
2526 
nvme_disable_prepare_reset(struct nvme_dev * dev,bool shutdown)2527 static int nvme_disable_prepare_reset(struct nvme_dev *dev, bool shutdown)
2528 {
2529 	if (!nvme_wait_reset(&dev->ctrl))
2530 		return -EBUSY;
2531 	nvme_dev_disable(dev, shutdown);
2532 	return 0;
2533 }
2534 
nvme_setup_prp_pools(struct nvme_dev * dev)2535 static int nvme_setup_prp_pools(struct nvme_dev *dev)
2536 {
2537 	dev->prp_page_pool = dma_pool_create("prp list page", dev->dev,
2538 						NVME_CTRL_PAGE_SIZE,
2539 						NVME_CTRL_PAGE_SIZE, 0);
2540 	if (!dev->prp_page_pool)
2541 		return -ENOMEM;
2542 
2543 	/* Optimisation for I/Os between 4k and 128k */
2544 	dev->prp_small_pool = dma_pool_create("prp list 256", dev->dev,
2545 						256, 256, 0);
2546 	if (!dev->prp_small_pool) {
2547 		dma_pool_destroy(dev->prp_page_pool);
2548 		return -ENOMEM;
2549 	}
2550 	return 0;
2551 }
2552 
nvme_release_prp_pools(struct nvme_dev * dev)2553 static void nvme_release_prp_pools(struct nvme_dev *dev)
2554 {
2555 	dma_pool_destroy(dev->prp_page_pool);
2556 	dma_pool_destroy(dev->prp_small_pool);
2557 }
2558 
nvme_free_tagset(struct nvme_dev * dev)2559 static void nvme_free_tagset(struct nvme_dev *dev)
2560 {
2561 	if (dev->tagset.tags)
2562 		blk_mq_free_tag_set(&dev->tagset);
2563 	dev->ctrl.tagset = NULL;
2564 }
2565 
nvme_pci_free_ctrl(struct nvme_ctrl * ctrl)2566 static void nvme_pci_free_ctrl(struct nvme_ctrl *ctrl)
2567 {
2568 	struct nvme_dev *dev = to_nvme_dev(ctrl);
2569 
2570 	nvme_dbbuf_dma_free(dev);
2571 	nvme_free_tagset(dev);
2572 	if (dev->ctrl.admin_q)
2573 		blk_put_queue(dev->ctrl.admin_q);
2574 	free_opal_dev(dev->ctrl.opal_dev);
2575 	mempool_destroy(dev->iod_mempool);
2576 	put_device(dev->dev);
2577 	kfree(dev->queues);
2578 	kfree(dev);
2579 }
2580 
nvme_remove_dead_ctrl(struct nvme_dev * dev)2581 static void nvme_remove_dead_ctrl(struct nvme_dev *dev)
2582 {
2583 	/*
2584 	 * Set state to deleting now to avoid blocking nvme_wait_reset(), which
2585 	 * may be holding this pci_dev's device lock.
2586 	 */
2587 	nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING);
2588 	nvme_get_ctrl(&dev->ctrl);
2589 	nvme_dev_disable(dev, false);
2590 	nvme_kill_queues(&dev->ctrl);
2591 	if (!queue_work(nvme_wq, &dev->remove_work))
2592 		nvme_put_ctrl(&dev->ctrl);
2593 }
2594 
nvme_reset_work(struct work_struct * work)2595 static void nvme_reset_work(struct work_struct *work)
2596 {
2597 	struct nvme_dev *dev =
2598 		container_of(work, struct nvme_dev, ctrl.reset_work);
2599 	bool was_suspend = !!(dev->ctrl.ctrl_config & NVME_CC_SHN_NORMAL);
2600 	int result;
2601 
2602 	if (dev->ctrl.state != NVME_CTRL_RESETTING) {
2603 		dev_warn(dev->ctrl.device, "ctrl state %d is not RESETTING\n",
2604 			 dev->ctrl.state);
2605 		result = -ENODEV;
2606 		goto out;
2607 	}
2608 
2609 	/*
2610 	 * If we're called to reset a live controller first shut it down before
2611 	 * moving on.
2612 	 */
2613 	if (dev->ctrl.ctrl_config & NVME_CC_ENABLE)
2614 		nvme_dev_disable(dev, false);
2615 	nvme_sync_queues(&dev->ctrl);
2616 
2617 	mutex_lock(&dev->shutdown_lock);
2618 	result = nvme_pci_enable(dev);
2619 	if (result)
2620 		goto out_unlock;
2621 
2622 	result = nvme_pci_configure_admin_queue(dev);
2623 	if (result)
2624 		goto out_unlock;
2625 
2626 	result = nvme_alloc_admin_tags(dev);
2627 	if (result)
2628 		goto out_unlock;
2629 
2630 	dma_set_min_align_mask(dev->dev, NVME_CTRL_PAGE_SIZE - 1);
2631 
2632 	/*
2633 	 * Limit the max command size to prevent iod->sg allocations going
2634 	 * over a single page.
2635 	 */
2636 	dev->ctrl.max_hw_sectors = min_t(u32,
2637 		NVME_MAX_KB_SZ << 1, dma_max_mapping_size(dev->dev) >> 9);
2638 	dev->ctrl.max_segments = NVME_MAX_SEGS;
2639 
2640 	/*
2641 	 * Don't limit the IOMMU merged segment size.
2642 	 */
2643 	dma_set_max_seg_size(dev->dev, 0xffffffff);
2644 
2645 	mutex_unlock(&dev->shutdown_lock);
2646 
2647 	/*
2648 	 * Introduce CONNECTING state from nvme-fc/rdma transports to mark the
2649 	 * initializing procedure here.
2650 	 */
2651 	if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_CONNECTING)) {
2652 		dev_warn(dev->ctrl.device,
2653 			"failed to mark controller CONNECTING\n");
2654 		result = -EBUSY;
2655 		goto out;
2656 	}
2657 
2658 	/*
2659 	 * We do not support an SGL for metadata (yet), so we are limited to a
2660 	 * single integrity segment for the separate metadata pointer.
2661 	 */
2662 	dev->ctrl.max_integrity_segments = 1;
2663 
2664 	result = nvme_init_identify(&dev->ctrl);
2665 	if (result)
2666 		goto out;
2667 
2668 	if (dev->ctrl.oacs & NVME_CTRL_OACS_SEC_SUPP) {
2669 		if (!dev->ctrl.opal_dev)
2670 			dev->ctrl.opal_dev =
2671 				init_opal_dev(&dev->ctrl, &nvme_sec_submit);
2672 		else if (was_suspend)
2673 			opal_unlock_from_suspend(dev->ctrl.opal_dev);
2674 	} else {
2675 		free_opal_dev(dev->ctrl.opal_dev);
2676 		dev->ctrl.opal_dev = NULL;
2677 	}
2678 
2679 	if (dev->ctrl.oacs & NVME_CTRL_OACS_DBBUF_SUPP) {
2680 		result = nvme_dbbuf_dma_alloc(dev);
2681 		if (result)
2682 			dev_warn(dev->dev,
2683 				 "unable to allocate dma for dbbuf\n");
2684 	}
2685 
2686 	if (dev->ctrl.hmpre) {
2687 		result = nvme_setup_host_mem(dev);
2688 		if (result < 0)
2689 			goto out;
2690 	}
2691 
2692 	result = nvme_setup_io_queues(dev);
2693 	if (result)
2694 		goto out;
2695 
2696 	/*
2697 	 * Keep the controller around but remove all namespaces if we don't have
2698 	 * any working I/O queue.
2699 	 */
2700 	if (dev->online_queues < 2) {
2701 		dev_warn(dev->ctrl.device, "IO queues not created\n");
2702 		nvme_kill_queues(&dev->ctrl);
2703 		nvme_remove_namespaces(&dev->ctrl);
2704 		nvme_free_tagset(dev);
2705 	} else {
2706 		nvme_start_queues(&dev->ctrl);
2707 		nvme_wait_freeze(&dev->ctrl);
2708 		nvme_dev_add(dev);
2709 		nvme_unfreeze(&dev->ctrl);
2710 	}
2711 
2712 	/*
2713 	 * If only admin queue live, keep it to do further investigation or
2714 	 * recovery.
2715 	 */
2716 	if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_LIVE)) {
2717 		dev_warn(dev->ctrl.device,
2718 			"failed to mark controller live state\n");
2719 		result = -ENODEV;
2720 		goto out;
2721 	}
2722 
2723 	nvme_start_ctrl(&dev->ctrl);
2724 	return;
2725 
2726  out_unlock:
2727 	mutex_unlock(&dev->shutdown_lock);
2728  out:
2729 	if (result)
2730 		dev_warn(dev->ctrl.device,
2731 			 "Removing after probe failure status: %d\n", result);
2732 	nvme_remove_dead_ctrl(dev);
2733 }
2734 
nvme_remove_dead_ctrl_work(struct work_struct * work)2735 static void nvme_remove_dead_ctrl_work(struct work_struct *work)
2736 {
2737 	struct nvme_dev *dev = container_of(work, struct nvme_dev, remove_work);
2738 	struct pci_dev *pdev = to_pci_dev(dev->dev);
2739 
2740 	if (pci_get_drvdata(pdev))
2741 		device_release_driver(&pdev->dev);
2742 	nvme_put_ctrl(&dev->ctrl);
2743 }
2744 
nvme_pci_reg_read32(struct nvme_ctrl * ctrl,u32 off,u32 * val)2745 static int nvme_pci_reg_read32(struct nvme_ctrl *ctrl, u32 off, u32 *val)
2746 {
2747 	*val = readl(to_nvme_dev(ctrl)->bar + off);
2748 	return 0;
2749 }
2750 
nvme_pci_reg_write32(struct nvme_ctrl * ctrl,u32 off,u32 val)2751 static int nvme_pci_reg_write32(struct nvme_ctrl *ctrl, u32 off, u32 val)
2752 {
2753 	writel(val, to_nvme_dev(ctrl)->bar + off);
2754 	return 0;
2755 }
2756 
nvme_pci_reg_read64(struct nvme_ctrl * ctrl,u32 off,u64 * val)2757 static int nvme_pci_reg_read64(struct nvme_ctrl *ctrl, u32 off, u64 *val)
2758 {
2759 	*val = lo_hi_readq(to_nvme_dev(ctrl)->bar + off);
2760 	return 0;
2761 }
2762 
nvme_pci_get_address(struct nvme_ctrl * ctrl,char * buf,int size)2763 static int nvme_pci_get_address(struct nvme_ctrl *ctrl, char *buf, int size)
2764 {
2765 	struct pci_dev *pdev = to_pci_dev(to_nvme_dev(ctrl)->dev);
2766 
2767 	return snprintf(buf, size, "%s\n", dev_name(&pdev->dev));
2768 }
2769 
2770 static const struct nvme_ctrl_ops nvme_pci_ctrl_ops = {
2771 	.name			= "pcie",
2772 	.module			= THIS_MODULE,
2773 	.flags			= NVME_F_METADATA_SUPPORTED |
2774 				  NVME_F_PCI_P2PDMA,
2775 	.reg_read32		= nvme_pci_reg_read32,
2776 	.reg_write32		= nvme_pci_reg_write32,
2777 	.reg_read64		= nvme_pci_reg_read64,
2778 	.free_ctrl		= nvme_pci_free_ctrl,
2779 	.submit_async_event	= nvme_pci_submit_async_event,
2780 	.get_address		= nvme_pci_get_address,
2781 };
2782 
nvme_dev_map(struct nvme_dev * dev)2783 static int nvme_dev_map(struct nvme_dev *dev)
2784 {
2785 	struct pci_dev *pdev = to_pci_dev(dev->dev);
2786 
2787 	if (pci_request_mem_regions(pdev, "nvme"))
2788 		return -ENODEV;
2789 
2790 	if (nvme_remap_bar(dev, NVME_REG_DBS + 4096))
2791 		goto release;
2792 
2793 	return 0;
2794   release:
2795 	pci_release_mem_regions(pdev);
2796 	return -ENODEV;
2797 }
2798 
check_vendor_combination_bug(struct pci_dev * pdev)2799 static unsigned long check_vendor_combination_bug(struct pci_dev *pdev)
2800 {
2801 	if (pdev->vendor == 0x144d && pdev->device == 0xa802) {
2802 		/*
2803 		 * Several Samsung devices seem to drop off the PCIe bus
2804 		 * randomly when APST is on and uses the deepest sleep state.
2805 		 * This has been observed on a Samsung "SM951 NVMe SAMSUNG
2806 		 * 256GB", a "PM951 NVMe SAMSUNG 512GB", and a "Samsung SSD
2807 		 * 950 PRO 256GB", but it seems to be restricted to two Dell
2808 		 * laptops.
2809 		 */
2810 		if (dmi_match(DMI_SYS_VENDOR, "Dell Inc.") &&
2811 		    (dmi_match(DMI_PRODUCT_NAME, "XPS 15 9550") ||
2812 		     dmi_match(DMI_PRODUCT_NAME, "Precision 5510")))
2813 			return NVME_QUIRK_NO_DEEPEST_PS;
2814 	} else if (pdev->vendor == 0x144d && pdev->device == 0xa804) {
2815 		/*
2816 		 * Samsung SSD 960 EVO drops off the PCIe bus after system
2817 		 * suspend on a Ryzen board, ASUS PRIME B350M-A, as well as
2818 		 * within few minutes after bootup on a Coffee Lake board -
2819 		 * ASUS PRIME Z370-A
2820 		 */
2821 		if (dmi_match(DMI_BOARD_VENDOR, "ASUSTeK COMPUTER INC.") &&
2822 		    (dmi_match(DMI_BOARD_NAME, "PRIME B350M-A") ||
2823 		     dmi_match(DMI_BOARD_NAME, "PRIME Z370-A")))
2824 			return NVME_QUIRK_NO_APST;
2825 	} else if ((pdev->vendor == 0x144d && (pdev->device == 0xa801 ||
2826 		    pdev->device == 0xa808 || pdev->device == 0xa809)) ||
2827 		   (pdev->vendor == 0x1e0f && pdev->device == 0x0001)) {
2828 		/*
2829 		 * Forcing to use host managed nvme power settings for
2830 		 * lowest idle power with quick resume latency on
2831 		 * Samsung and Toshiba SSDs based on suspend behavior
2832 		 * on Coffee Lake board for LENOVO C640
2833 		 */
2834 		if ((dmi_match(DMI_BOARD_VENDOR, "LENOVO")) &&
2835 		     dmi_match(DMI_BOARD_NAME, "LNVNB161216"))
2836 			return NVME_QUIRK_SIMPLE_SUSPEND;
2837 	}
2838 
2839 	return 0;
2840 }
2841 
2842 #ifdef CONFIG_ACPI
nvme_acpi_storage_d3(struct pci_dev * dev)2843 static bool nvme_acpi_storage_d3(struct pci_dev *dev)
2844 {
2845 	struct acpi_device *adev = ACPI_COMPANION(&dev->dev);
2846 	u8 val;
2847 
2848 	/*
2849 	 * Look for _DSD property specifying that the storage device on the port
2850 	 * must use D3 to support deep platform power savings during
2851 	 * suspend-to-idle.
2852 	 */
2853 
2854 	if (!adev)
2855 		return false;
2856 	if (fwnode_property_read_u8(acpi_fwnode_handle(adev), "StorageD3Enable",
2857 			&val))
2858 		return false;
2859 	return val == 1;
2860 }
2861 #else
nvme_acpi_storage_d3(struct pci_dev * dev)2862 static inline bool nvme_acpi_storage_d3(struct pci_dev *dev)
2863 {
2864 	return false;
2865 }
2866 #endif /* CONFIG_ACPI */
2867 
nvme_async_probe(void * data,async_cookie_t cookie)2868 static void nvme_async_probe(void *data, async_cookie_t cookie)
2869 {
2870 	struct nvme_dev *dev = data;
2871 
2872 	flush_work(&dev->ctrl.reset_work);
2873 	flush_work(&dev->ctrl.scan_work);
2874 	nvme_put_ctrl(&dev->ctrl);
2875 }
2876 
nvme_probe(struct pci_dev * pdev,const struct pci_device_id * id)2877 static int nvme_probe(struct pci_dev *pdev, const struct pci_device_id *id)
2878 {
2879 	int node, result = -ENOMEM;
2880 	struct nvme_dev *dev;
2881 	unsigned long quirks = id->driver_data;
2882 	size_t alloc_size;
2883 
2884 	node = dev_to_node(&pdev->dev);
2885 	if (node == NUMA_NO_NODE)
2886 		set_dev_node(&pdev->dev, first_memory_node);
2887 
2888 	dev = kzalloc_node(sizeof(*dev), GFP_KERNEL, node);
2889 	if (!dev)
2890 		return -ENOMEM;
2891 
2892 	dev->nr_write_queues = write_queues;
2893 	dev->nr_poll_queues = poll_queues;
2894 	dev->nr_allocated_queues = nvme_max_io_queues(dev) + 1;
2895 	dev->queues = kcalloc_node(dev->nr_allocated_queues,
2896 			sizeof(struct nvme_queue), GFP_KERNEL, node);
2897 	if (!dev->queues)
2898 		goto free;
2899 
2900 	dev->dev = get_device(&pdev->dev);
2901 	pci_set_drvdata(pdev, dev);
2902 
2903 	result = nvme_dev_map(dev);
2904 	if (result)
2905 		goto put_pci;
2906 
2907 	INIT_WORK(&dev->ctrl.reset_work, nvme_reset_work);
2908 	INIT_WORK(&dev->remove_work, nvme_remove_dead_ctrl_work);
2909 	mutex_init(&dev->shutdown_lock);
2910 
2911 	result = nvme_setup_prp_pools(dev);
2912 	if (result)
2913 		goto unmap;
2914 
2915 	quirks |= check_vendor_combination_bug(pdev);
2916 
2917 	if (!noacpi && nvme_acpi_storage_d3(pdev)) {
2918 		/*
2919 		 * Some systems use a bios work around to ask for D3 on
2920 		 * platforms that support kernel managed suspend.
2921 		 */
2922 		dev_info(&pdev->dev,
2923 			 "platform quirk: setting simple suspend\n");
2924 		quirks |= NVME_QUIRK_SIMPLE_SUSPEND;
2925 	}
2926 
2927 	/*
2928 	 * Double check that our mempool alloc size will cover the biggest
2929 	 * command we support.
2930 	 */
2931 	alloc_size = nvme_pci_iod_alloc_size();
2932 	WARN_ON_ONCE(alloc_size > PAGE_SIZE);
2933 
2934 	dev->iod_mempool = mempool_create_node(1, mempool_kmalloc,
2935 						mempool_kfree,
2936 						(void *) alloc_size,
2937 						GFP_KERNEL, node);
2938 	if (!dev->iod_mempool) {
2939 		result = -ENOMEM;
2940 		goto release_pools;
2941 	}
2942 
2943 	result = nvme_init_ctrl(&dev->ctrl, &pdev->dev, &nvme_pci_ctrl_ops,
2944 			quirks);
2945 	if (result)
2946 		goto release_mempool;
2947 
2948 	dev_info(dev->ctrl.device, "pci function %s\n", dev_name(&pdev->dev));
2949 
2950 	nvme_reset_ctrl(&dev->ctrl);
2951 	async_schedule(nvme_async_probe, dev);
2952 
2953 	return 0;
2954 
2955  release_mempool:
2956 	mempool_destroy(dev->iod_mempool);
2957  release_pools:
2958 	nvme_release_prp_pools(dev);
2959  unmap:
2960 	nvme_dev_unmap(dev);
2961  put_pci:
2962 	put_device(dev->dev);
2963  free:
2964 	kfree(dev->queues);
2965 	kfree(dev);
2966 	return result;
2967 }
2968 
nvme_reset_prepare(struct pci_dev * pdev)2969 static void nvme_reset_prepare(struct pci_dev *pdev)
2970 {
2971 	struct nvme_dev *dev = pci_get_drvdata(pdev);
2972 
2973 	/*
2974 	 * We don't need to check the return value from waiting for the reset
2975 	 * state as pci_dev device lock is held, making it impossible to race
2976 	 * with ->remove().
2977 	 */
2978 	nvme_disable_prepare_reset(dev, false);
2979 	nvme_sync_queues(&dev->ctrl);
2980 }
2981 
nvme_reset_done(struct pci_dev * pdev)2982 static void nvme_reset_done(struct pci_dev *pdev)
2983 {
2984 	struct nvme_dev *dev = pci_get_drvdata(pdev);
2985 
2986 	if (!nvme_try_sched_reset(&dev->ctrl))
2987 		flush_work(&dev->ctrl.reset_work);
2988 }
2989 
nvme_shutdown(struct pci_dev * pdev)2990 static void nvme_shutdown(struct pci_dev *pdev)
2991 {
2992 	struct nvme_dev *dev = pci_get_drvdata(pdev);
2993 
2994 	nvme_disable_prepare_reset(dev, true);
2995 }
2996 
2997 /*
2998  * The driver's remove may be called on a device in a partially initialized
2999  * state. This function must not have any dependencies on the device state in
3000  * order to proceed.
3001  */
nvme_remove(struct pci_dev * pdev)3002 static void nvme_remove(struct pci_dev *pdev)
3003 {
3004 	struct nvme_dev *dev = pci_get_drvdata(pdev);
3005 
3006 	nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING);
3007 	pci_set_drvdata(pdev, NULL);
3008 
3009 	if (!pci_device_is_present(pdev)) {
3010 		nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DEAD);
3011 		nvme_dev_disable(dev, true);
3012 	}
3013 
3014 	flush_work(&dev->ctrl.reset_work);
3015 	nvme_stop_ctrl(&dev->ctrl);
3016 	nvme_remove_namespaces(&dev->ctrl);
3017 	nvme_dev_disable(dev, true);
3018 	nvme_release_cmb(dev);
3019 	nvme_free_host_mem(dev);
3020 	nvme_dev_remove_admin(dev);
3021 	nvme_free_queues(dev, 0);
3022 	nvme_release_prp_pools(dev);
3023 	nvme_dev_unmap(dev);
3024 	nvme_uninit_ctrl(&dev->ctrl);
3025 }
3026 
3027 #ifdef CONFIG_PM_SLEEP
nvme_get_power_state(struct nvme_ctrl * ctrl,u32 * ps)3028 static int nvme_get_power_state(struct nvme_ctrl *ctrl, u32 *ps)
3029 {
3030 	return nvme_get_features(ctrl, NVME_FEAT_POWER_MGMT, 0, NULL, 0, ps);
3031 }
3032 
nvme_set_power_state(struct nvme_ctrl * ctrl,u32 ps)3033 static int nvme_set_power_state(struct nvme_ctrl *ctrl, u32 ps)
3034 {
3035 	return nvme_set_features(ctrl, NVME_FEAT_POWER_MGMT, ps, NULL, 0, NULL);
3036 }
3037 
nvme_resume(struct device * dev)3038 static int nvme_resume(struct device *dev)
3039 {
3040 	struct nvme_dev *ndev = pci_get_drvdata(to_pci_dev(dev));
3041 	struct nvme_ctrl *ctrl = &ndev->ctrl;
3042 
3043 	if (ndev->last_ps == U32_MAX ||
3044 	    nvme_set_power_state(ctrl, ndev->last_ps) != 0)
3045 		return nvme_try_sched_reset(&ndev->ctrl);
3046 	return 0;
3047 }
3048 
nvme_suspend(struct device * dev)3049 static int nvme_suspend(struct device *dev)
3050 {
3051 	struct pci_dev *pdev = to_pci_dev(dev);
3052 	struct nvme_dev *ndev = pci_get_drvdata(pdev);
3053 	struct nvme_ctrl *ctrl = &ndev->ctrl;
3054 	int ret = -EBUSY;
3055 
3056 	ndev->last_ps = U32_MAX;
3057 
3058 	/*
3059 	 * The platform does not remove power for a kernel managed suspend so
3060 	 * use host managed nvme power settings for lowest idle power if
3061 	 * possible. This should have quicker resume latency than a full device
3062 	 * shutdown.  But if the firmware is involved after the suspend or the
3063 	 * device does not support any non-default power states, shut down the
3064 	 * device fully.
3065 	 *
3066 	 * If ASPM is not enabled for the device, shut down the device and allow
3067 	 * the PCI bus layer to put it into D3 in order to take the PCIe link
3068 	 * down, so as to allow the platform to achieve its minimum low-power
3069 	 * state (which may not be possible if the link is up).
3070 	 *
3071 	 * If a host memory buffer is enabled, shut down the device as the NVMe
3072 	 * specification allows the device to access the host memory buffer in
3073 	 * host DRAM from all power states, but hosts will fail access to DRAM
3074 	 * during S3.
3075 	 */
3076 	if (pm_suspend_via_firmware() || !ctrl->npss ||
3077 	    !pcie_aspm_enabled(pdev) ||
3078 	    ndev->nr_host_mem_descs ||
3079 	    (ndev->ctrl.quirks & NVME_QUIRK_SIMPLE_SUSPEND))
3080 		return nvme_disable_prepare_reset(ndev, true);
3081 
3082 	nvme_start_freeze(ctrl);
3083 	nvme_wait_freeze(ctrl);
3084 	nvme_sync_queues(ctrl);
3085 
3086 	if (ctrl->state != NVME_CTRL_LIVE)
3087 		goto unfreeze;
3088 
3089 	ret = nvme_get_power_state(ctrl, &ndev->last_ps);
3090 	if (ret < 0)
3091 		goto unfreeze;
3092 
3093 	/*
3094 	 * A saved state prevents pci pm from generically controlling the
3095 	 * device's power. If we're using protocol specific settings, we don't
3096 	 * want pci interfering.
3097 	 */
3098 	pci_save_state(pdev);
3099 
3100 	ret = nvme_set_power_state(ctrl, ctrl->npss);
3101 	if (ret < 0)
3102 		goto unfreeze;
3103 
3104 	if (ret) {
3105 		/* discard the saved state */
3106 		pci_load_saved_state(pdev, NULL);
3107 
3108 		/*
3109 		 * Clearing npss forces a controller reset on resume. The
3110 		 * correct value will be rediscovered then.
3111 		 */
3112 		ret = nvme_disable_prepare_reset(ndev, true);
3113 		ctrl->npss = 0;
3114 	}
3115 unfreeze:
3116 	nvme_unfreeze(ctrl);
3117 	return ret;
3118 }
3119 
nvme_simple_suspend(struct device * dev)3120 static int nvme_simple_suspend(struct device *dev)
3121 {
3122 	struct nvme_dev *ndev = pci_get_drvdata(to_pci_dev(dev));
3123 
3124 	return nvme_disable_prepare_reset(ndev, true);
3125 }
3126 
nvme_simple_resume(struct device * dev)3127 static int nvme_simple_resume(struct device *dev)
3128 {
3129 	struct pci_dev *pdev = to_pci_dev(dev);
3130 	struct nvme_dev *ndev = pci_get_drvdata(pdev);
3131 
3132 	return nvme_try_sched_reset(&ndev->ctrl);
3133 }
3134 
3135 static const struct dev_pm_ops nvme_dev_pm_ops = {
3136 	.suspend	= nvme_suspend,
3137 	.resume		= nvme_resume,
3138 	.freeze		= nvme_simple_suspend,
3139 	.thaw		= nvme_simple_resume,
3140 	.poweroff	= nvme_simple_suspend,
3141 	.restore	= nvme_simple_resume,
3142 };
3143 #endif /* CONFIG_PM_SLEEP */
3144 
nvme_error_detected(struct pci_dev * pdev,pci_channel_state_t state)3145 static pci_ers_result_t nvme_error_detected(struct pci_dev *pdev,
3146 						pci_channel_state_t state)
3147 {
3148 	struct nvme_dev *dev = pci_get_drvdata(pdev);
3149 
3150 	/*
3151 	 * A frozen channel requires a reset. When detected, this method will
3152 	 * shutdown the controller to quiesce. The controller will be restarted
3153 	 * after the slot reset through driver's slot_reset callback.
3154 	 */
3155 	switch (state) {
3156 	case pci_channel_io_normal:
3157 		return PCI_ERS_RESULT_CAN_RECOVER;
3158 	case pci_channel_io_frozen:
3159 		dev_warn(dev->ctrl.device,
3160 			"frozen state error detected, reset controller\n");
3161 		nvme_dev_disable(dev, false);
3162 		return PCI_ERS_RESULT_NEED_RESET;
3163 	case pci_channel_io_perm_failure:
3164 		dev_warn(dev->ctrl.device,
3165 			"failure state error detected, request disconnect\n");
3166 		return PCI_ERS_RESULT_DISCONNECT;
3167 	}
3168 	return PCI_ERS_RESULT_NEED_RESET;
3169 }
3170 
nvme_slot_reset(struct pci_dev * pdev)3171 static pci_ers_result_t nvme_slot_reset(struct pci_dev *pdev)
3172 {
3173 	struct nvme_dev *dev = pci_get_drvdata(pdev);
3174 
3175 	dev_info(dev->ctrl.device, "restart after slot reset\n");
3176 	pci_restore_state(pdev);
3177 	nvme_reset_ctrl(&dev->ctrl);
3178 	return PCI_ERS_RESULT_RECOVERED;
3179 }
3180 
nvme_error_resume(struct pci_dev * pdev)3181 static void nvme_error_resume(struct pci_dev *pdev)
3182 {
3183 	struct nvme_dev *dev = pci_get_drvdata(pdev);
3184 
3185 	flush_work(&dev->ctrl.reset_work);
3186 }
3187 
3188 static const struct pci_error_handlers nvme_err_handler = {
3189 	.error_detected	= nvme_error_detected,
3190 	.slot_reset	= nvme_slot_reset,
3191 	.resume		= nvme_error_resume,
3192 	.reset_prepare	= nvme_reset_prepare,
3193 	.reset_done	= nvme_reset_done,
3194 };
3195 
3196 static const struct pci_device_id nvme_id_table[] = {
3197 	{ PCI_VDEVICE(INTEL, 0x0953),	/* Intel 750/P3500/P3600/P3700 */
3198 		.driver_data = NVME_QUIRK_STRIPE_SIZE |
3199 				NVME_QUIRK_DEALLOCATE_ZEROES, },
3200 	{ PCI_VDEVICE(INTEL, 0x0a53),	/* Intel P3520 */
3201 		.driver_data = NVME_QUIRK_STRIPE_SIZE |
3202 				NVME_QUIRK_DEALLOCATE_ZEROES, },
3203 	{ PCI_VDEVICE(INTEL, 0x0a54),	/* Intel P4500/P4600 */
3204 		.driver_data = NVME_QUIRK_STRIPE_SIZE |
3205 				NVME_QUIRK_DEALLOCATE_ZEROES |
3206 				NVME_QUIRK_IGNORE_DEV_SUBNQN, },
3207 	{ PCI_VDEVICE(INTEL, 0x0a55),	/* Dell Express Flash P4600 */
3208 		.driver_data = NVME_QUIRK_STRIPE_SIZE |
3209 				NVME_QUIRK_DEALLOCATE_ZEROES, },
3210 	{ PCI_VDEVICE(INTEL, 0xf1a5),	/* Intel 600P/P3100 */
3211 		.driver_data = NVME_QUIRK_NO_DEEPEST_PS |
3212 				NVME_QUIRK_MEDIUM_PRIO_SQ |
3213 				NVME_QUIRK_NO_TEMP_THRESH_CHANGE |
3214 				NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3215 	{ PCI_VDEVICE(INTEL, 0xf1a6),	/* Intel 760p/Pro 7600p */
3216 		.driver_data = NVME_QUIRK_IGNORE_DEV_SUBNQN, },
3217 	{ PCI_VDEVICE(INTEL, 0x5845),	/* Qemu emulated controller */
3218 		.driver_data = NVME_QUIRK_IDENTIFY_CNS |
3219 				NVME_QUIRK_DISABLE_WRITE_ZEROES |
3220 				NVME_QUIRK_BOGUS_NID, },
3221 	{ PCI_VDEVICE(REDHAT, 0x0010),	/* Qemu emulated controller */
3222 		.driver_data = NVME_QUIRK_BOGUS_NID, },
3223 	{ PCI_DEVICE(0x126f, 0x2263),	/* Silicon Motion unidentified */
3224 		.driver_data = NVME_QUIRK_NO_NS_DESC_LIST, },
3225 	{ PCI_DEVICE(0x1bb1, 0x0100),   /* Seagate Nytro Flash Storage */
3226 		.driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY |
3227 				NVME_QUIRK_NO_NS_DESC_LIST, },
3228 	{ PCI_DEVICE(0x1c58, 0x0003),	/* HGST adapter */
3229 		.driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
3230 	{ PCI_DEVICE(0x1c58, 0x0023),	/* WDC SN200 adapter */
3231 		.driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
3232 	{ PCI_DEVICE(0x1c5f, 0x0540),	/* Memblaze Pblaze4 adapter */
3233 		.driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
3234 	{ PCI_DEVICE(0x144d, 0xa821),   /* Samsung PM1725 */
3235 		.driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
3236 	{ PCI_DEVICE(0x144d, 0xa822),   /* Samsung PM1725a */
3237 		.driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY |
3238 				NVME_QUIRK_DISABLE_WRITE_ZEROES|
3239 				NVME_QUIRK_IGNORE_DEV_SUBNQN, },
3240 	{ PCI_DEVICE(0x1987, 0x5016),	/* Phison E16 */
3241 		.driver_data = NVME_QUIRK_IGNORE_DEV_SUBNQN |
3242 				NVME_QUIRK_BOGUS_NID, },
3243 	{ PCI_DEVICE(0x1b4b, 0x1092),	/* Lexar 256 GB SSD */
3244 		.driver_data = NVME_QUIRK_NO_NS_DESC_LIST |
3245 				NVME_QUIRK_IGNORE_DEV_SUBNQN, },
3246 	{ PCI_DEVICE(0x1d1d, 0x1f1f),	/* LighNVM qemu device */
3247 		.driver_data = NVME_QUIRK_LIGHTNVM, },
3248 	{ PCI_DEVICE(0x1d1d, 0x2807),	/* CNEX WL */
3249 		.driver_data = NVME_QUIRK_LIGHTNVM, },
3250 	{ PCI_DEVICE(0x1d1d, 0x2601),	/* CNEX Granby */
3251 		.driver_data = NVME_QUIRK_LIGHTNVM, },
3252 	{ PCI_DEVICE(0x10ec, 0x5762),   /* ADATA SX6000LNP */
3253 		.driver_data = NVME_QUIRK_IGNORE_DEV_SUBNQN |
3254 				NVME_QUIRK_BOGUS_NID, },
3255 	{ PCI_DEVICE(0x1cc1, 0x8201),   /* ADATA SX8200PNP 512GB */
3256 		.driver_data = NVME_QUIRK_NO_DEEPEST_PS |
3257 				NVME_QUIRK_IGNORE_DEV_SUBNQN, },
3258 	 { PCI_DEVICE(0x1344, 0x5407), /* Micron Technology Inc NVMe SSD */
3259 		.driver_data = NVME_QUIRK_IGNORE_DEV_SUBNQN },
3260 	 { PCI_DEVICE(0x1344, 0x6001),   /* Micron Nitro NVMe */
3261 		 .driver_data = NVME_QUIRK_BOGUS_NID, },
3262 	{ PCI_DEVICE(0x1c5c, 0x1504),   /* SK Hynix PC400 */
3263 		.driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3264 	{ PCI_DEVICE(0x15b7, 0x2001),   /*  Sandisk Skyhawk */
3265 		.driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3266 	{ PCI_DEVICE(0x2646, 0x2262),   /* KINGSTON SKC2000 NVMe SSD */
3267 		.driver_data = NVME_QUIRK_NO_DEEPEST_PS, },
3268 	{ PCI_DEVICE(0x2646, 0x2263),   /* KINGSTON A2000 NVMe SSD  */
3269 		.driver_data = NVME_QUIRK_NO_DEEPEST_PS, },
3270 	{ PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2001),
3271 		.driver_data = NVME_QUIRK_SINGLE_VECTOR },
3272 	{ PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2003) },
3273 	{ PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2005),
3274 		.driver_data = NVME_QUIRK_SINGLE_VECTOR |
3275 				NVME_QUIRK_128_BYTES_SQES |
3276 				NVME_QUIRK_SHARED_TAGS |
3277 				NVME_QUIRK_SKIP_CID_GEN },
3278 	{ PCI_DEVICE_CLASS(PCI_CLASS_STORAGE_EXPRESS, 0xffffff) },
3279 	{ 0, }
3280 };
3281 MODULE_DEVICE_TABLE(pci, nvme_id_table);
3282 
3283 static struct pci_driver nvme_driver = {
3284 	.name		= "nvme",
3285 	.id_table	= nvme_id_table,
3286 	.probe		= nvme_probe,
3287 	.remove		= nvme_remove,
3288 	.shutdown	= nvme_shutdown,
3289 #ifdef CONFIG_PM_SLEEP
3290 	.driver		= {
3291 		.pm	= &nvme_dev_pm_ops,
3292 	},
3293 #endif
3294 	.sriov_configure = pci_sriov_configure_simple,
3295 	.err_handler	= &nvme_err_handler,
3296 };
3297 
nvme_init(void)3298 static int __init nvme_init(void)
3299 {
3300 	BUILD_BUG_ON(sizeof(struct nvme_create_cq) != 64);
3301 	BUILD_BUG_ON(sizeof(struct nvme_create_sq) != 64);
3302 	BUILD_BUG_ON(sizeof(struct nvme_delete_queue) != 64);
3303 	BUILD_BUG_ON(IRQ_AFFINITY_MAX_SETS < 2);
3304 
3305 	return pci_register_driver(&nvme_driver);
3306 }
3307 
nvme_exit(void)3308 static void __exit nvme_exit(void)
3309 {
3310 	pci_unregister_driver(&nvme_driver);
3311 	flush_workqueue(nvme_wq);
3312 }
3313 
3314 MODULE_AUTHOR("Matthew Wilcox <willy@linux.intel.com>");
3315 MODULE_LICENSE("GPL");
3316 MODULE_VERSION("1.0");
3317 module_init(nvme_init);
3318 module_exit(nvme_exit);
3319