1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * NVM Express device driver
4 * Copyright (c) 2011-2014, Intel Corporation.
5 */
6
7 #include <linux/acpi.h>
8 #include <linux/aer.h>
9 #include <linux/async.h>
10 #include <linux/blkdev.h>
11 #include <linux/blk-mq.h>
12 #include <linux/blk-mq-pci.h>
13 #include <linux/dmi.h>
14 #include <linux/init.h>
15 #include <linux/interrupt.h>
16 #include <linux/io.h>
17 #include <linux/mm.h>
18 #include <linux/module.h>
19 #include <linux/mutex.h>
20 #include <linux/once.h>
21 #include <linux/pci.h>
22 #include <linux/suspend.h>
23 #include <linux/t10-pi.h>
24 #include <linux/types.h>
25 #include <linux/io-64-nonatomic-lo-hi.h>
26 #include <linux/io-64-nonatomic-hi-lo.h>
27 #include <linux/sed-opal.h>
28 #include <linux/pci-p2pdma.h>
29
30 #include "trace.h"
31 #include "nvme.h"
32
33 #define SQ_SIZE(q) ((q)->q_depth << (q)->sqes)
34 #define CQ_SIZE(q) ((q)->q_depth * sizeof(struct nvme_completion))
35
36 #define SGES_PER_PAGE (NVME_CTRL_PAGE_SIZE / sizeof(struct nvme_sgl_desc))
37
38 /*
39 * These can be higher, but we need to ensure that any command doesn't
40 * require an sg allocation that needs more than a page of data.
41 */
42 #define NVME_MAX_KB_SZ 4096
43 #define NVME_MAX_SEGS 127
44
45 static int use_threaded_interrupts;
46 module_param(use_threaded_interrupts, int, 0);
47
48 static bool use_cmb_sqes = true;
49 module_param(use_cmb_sqes, bool, 0444);
50 MODULE_PARM_DESC(use_cmb_sqes, "use controller's memory buffer for I/O SQes");
51
52 static unsigned int max_host_mem_size_mb = 128;
53 module_param(max_host_mem_size_mb, uint, 0444);
54 MODULE_PARM_DESC(max_host_mem_size_mb,
55 "Maximum Host Memory Buffer (HMB) size per controller (in MiB)");
56
57 static unsigned int sgl_threshold = SZ_32K;
58 module_param(sgl_threshold, uint, 0644);
59 MODULE_PARM_DESC(sgl_threshold,
60 "Use SGLs when average request segment size is larger or equal to "
61 "this size. Use 0 to disable SGLs.");
62
63 static int io_queue_depth_set(const char *val, const struct kernel_param *kp);
64 static const struct kernel_param_ops io_queue_depth_ops = {
65 .set = io_queue_depth_set,
66 .get = param_get_uint,
67 };
68
69 static unsigned int io_queue_depth = 1024;
70 module_param_cb(io_queue_depth, &io_queue_depth_ops, &io_queue_depth, 0644);
71 MODULE_PARM_DESC(io_queue_depth, "set io queue depth, should >= 2");
72
io_queue_count_set(const char * val,const struct kernel_param * kp)73 static int io_queue_count_set(const char *val, const struct kernel_param *kp)
74 {
75 unsigned int n;
76 int ret;
77
78 ret = kstrtouint(val, 10, &n);
79 if (ret != 0 || n > num_possible_cpus())
80 return -EINVAL;
81 return param_set_uint(val, kp);
82 }
83
84 static const struct kernel_param_ops io_queue_count_ops = {
85 .set = io_queue_count_set,
86 .get = param_get_uint,
87 };
88
89 static unsigned int write_queues;
90 module_param_cb(write_queues, &io_queue_count_ops, &write_queues, 0644);
91 MODULE_PARM_DESC(write_queues,
92 "Number of queues to use for writes. If not set, reads and writes "
93 "will share a queue set.");
94
95 static unsigned int poll_queues;
96 module_param_cb(poll_queues, &io_queue_count_ops, &poll_queues, 0644);
97 MODULE_PARM_DESC(poll_queues, "Number of queues to use for polled IO.");
98
99 static bool noacpi;
100 module_param(noacpi, bool, 0444);
101 MODULE_PARM_DESC(noacpi, "disable acpi bios quirks");
102
103 struct nvme_dev;
104 struct nvme_queue;
105
106 static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown);
107 static bool __nvme_disable_io_queues(struct nvme_dev *dev, u8 opcode);
108
109 /*
110 * Represents an NVM Express device. Each nvme_dev is a PCI function.
111 */
112 struct nvme_dev {
113 struct nvme_queue *queues;
114 struct blk_mq_tag_set tagset;
115 struct blk_mq_tag_set admin_tagset;
116 u32 __iomem *dbs;
117 struct device *dev;
118 struct dma_pool *prp_page_pool;
119 struct dma_pool *prp_small_pool;
120 unsigned online_queues;
121 unsigned max_qid;
122 unsigned io_queues[HCTX_MAX_TYPES];
123 unsigned int num_vecs;
124 u32 q_depth;
125 int io_sqes;
126 u32 db_stride;
127 void __iomem *bar;
128 unsigned long bar_mapped_size;
129 struct work_struct remove_work;
130 struct mutex shutdown_lock;
131 bool subsystem;
132 u64 cmb_size;
133 bool cmb_use_sqes;
134 u32 cmbsz;
135 u32 cmbloc;
136 struct nvme_ctrl ctrl;
137 u32 last_ps;
138
139 mempool_t *iod_mempool;
140
141 /* shadow doorbell buffer support: */
142 __le32 *dbbuf_dbs;
143 dma_addr_t dbbuf_dbs_dma_addr;
144 __le32 *dbbuf_eis;
145 dma_addr_t dbbuf_eis_dma_addr;
146
147 /* host memory buffer support: */
148 u64 host_mem_size;
149 u32 nr_host_mem_descs;
150 dma_addr_t host_mem_descs_dma;
151 struct nvme_host_mem_buf_desc *host_mem_descs;
152 void **host_mem_desc_bufs;
153 unsigned int nr_allocated_queues;
154 unsigned int nr_write_queues;
155 unsigned int nr_poll_queues;
156 };
157
io_queue_depth_set(const char * val,const struct kernel_param * kp)158 static int io_queue_depth_set(const char *val, const struct kernel_param *kp)
159 {
160 int ret;
161 u32 n;
162
163 ret = kstrtou32(val, 10, &n);
164 if (ret != 0 || n < 2)
165 return -EINVAL;
166
167 return param_set_uint(val, kp);
168 }
169
sq_idx(unsigned int qid,u32 stride)170 static inline unsigned int sq_idx(unsigned int qid, u32 stride)
171 {
172 return qid * 2 * stride;
173 }
174
cq_idx(unsigned int qid,u32 stride)175 static inline unsigned int cq_idx(unsigned int qid, u32 stride)
176 {
177 return (qid * 2 + 1) * stride;
178 }
179
to_nvme_dev(struct nvme_ctrl * ctrl)180 static inline struct nvme_dev *to_nvme_dev(struct nvme_ctrl *ctrl)
181 {
182 return container_of(ctrl, struct nvme_dev, ctrl);
183 }
184
185 /*
186 * An NVM Express queue. Each device has at least two (one for admin
187 * commands and one for I/O commands).
188 */
189 struct nvme_queue {
190 struct nvme_dev *dev;
191 spinlock_t sq_lock;
192 void *sq_cmds;
193 /* only used for poll queues: */
194 spinlock_t cq_poll_lock ____cacheline_aligned_in_smp;
195 struct nvme_completion *cqes;
196 dma_addr_t sq_dma_addr;
197 dma_addr_t cq_dma_addr;
198 u32 __iomem *q_db;
199 u32 q_depth;
200 u16 cq_vector;
201 u16 sq_tail;
202 u16 last_sq_tail;
203 u16 cq_head;
204 u16 qid;
205 u8 cq_phase;
206 u8 sqes;
207 unsigned long flags;
208 #define NVMEQ_ENABLED 0
209 #define NVMEQ_SQ_CMB 1
210 #define NVMEQ_DELETE_ERROR 2
211 #define NVMEQ_POLLED 3
212 __le32 *dbbuf_sq_db;
213 __le32 *dbbuf_cq_db;
214 __le32 *dbbuf_sq_ei;
215 __le32 *dbbuf_cq_ei;
216 struct completion delete_done;
217 };
218
219 /*
220 * The nvme_iod describes the data in an I/O.
221 *
222 * The sg pointer contains the list of PRP/SGL chunk allocations in addition
223 * to the actual struct scatterlist.
224 */
225 struct nvme_iod {
226 struct nvme_request req;
227 struct nvme_command cmd;
228 struct nvme_queue *nvmeq;
229 bool use_sgl;
230 int aborted;
231 int npages; /* In the PRP list. 0 means small pool in use */
232 int nents; /* Used in scatterlist */
233 dma_addr_t first_dma;
234 unsigned int dma_len; /* length of single DMA segment mapping */
235 dma_addr_t meta_dma;
236 struct scatterlist *sg;
237 };
238
nvme_dbbuf_size(struct nvme_dev * dev)239 static inline unsigned int nvme_dbbuf_size(struct nvme_dev *dev)
240 {
241 return dev->nr_allocated_queues * 8 * dev->db_stride;
242 }
243
nvme_dbbuf_dma_alloc(struct nvme_dev * dev)244 static int nvme_dbbuf_dma_alloc(struct nvme_dev *dev)
245 {
246 unsigned int mem_size = nvme_dbbuf_size(dev);
247
248 if (dev->dbbuf_dbs)
249 return 0;
250
251 dev->dbbuf_dbs = dma_alloc_coherent(dev->dev, mem_size,
252 &dev->dbbuf_dbs_dma_addr,
253 GFP_KERNEL);
254 if (!dev->dbbuf_dbs)
255 return -ENOMEM;
256 dev->dbbuf_eis = dma_alloc_coherent(dev->dev, mem_size,
257 &dev->dbbuf_eis_dma_addr,
258 GFP_KERNEL);
259 if (!dev->dbbuf_eis) {
260 dma_free_coherent(dev->dev, mem_size,
261 dev->dbbuf_dbs, dev->dbbuf_dbs_dma_addr);
262 dev->dbbuf_dbs = NULL;
263 return -ENOMEM;
264 }
265
266 return 0;
267 }
268
nvme_dbbuf_dma_free(struct nvme_dev * dev)269 static void nvme_dbbuf_dma_free(struct nvme_dev *dev)
270 {
271 unsigned int mem_size = nvme_dbbuf_size(dev);
272
273 if (dev->dbbuf_dbs) {
274 dma_free_coherent(dev->dev, mem_size,
275 dev->dbbuf_dbs, dev->dbbuf_dbs_dma_addr);
276 dev->dbbuf_dbs = NULL;
277 }
278 if (dev->dbbuf_eis) {
279 dma_free_coherent(dev->dev, mem_size,
280 dev->dbbuf_eis, dev->dbbuf_eis_dma_addr);
281 dev->dbbuf_eis = NULL;
282 }
283 }
284
nvme_dbbuf_init(struct nvme_dev * dev,struct nvme_queue * nvmeq,int qid)285 static void nvme_dbbuf_init(struct nvme_dev *dev,
286 struct nvme_queue *nvmeq, int qid)
287 {
288 if (!dev->dbbuf_dbs || !qid)
289 return;
290
291 nvmeq->dbbuf_sq_db = &dev->dbbuf_dbs[sq_idx(qid, dev->db_stride)];
292 nvmeq->dbbuf_cq_db = &dev->dbbuf_dbs[cq_idx(qid, dev->db_stride)];
293 nvmeq->dbbuf_sq_ei = &dev->dbbuf_eis[sq_idx(qid, dev->db_stride)];
294 nvmeq->dbbuf_cq_ei = &dev->dbbuf_eis[cq_idx(qid, dev->db_stride)];
295 }
296
nvme_dbbuf_free(struct nvme_queue * nvmeq)297 static void nvme_dbbuf_free(struct nvme_queue *nvmeq)
298 {
299 if (!nvmeq->qid)
300 return;
301
302 nvmeq->dbbuf_sq_db = NULL;
303 nvmeq->dbbuf_cq_db = NULL;
304 nvmeq->dbbuf_sq_ei = NULL;
305 nvmeq->dbbuf_cq_ei = NULL;
306 }
307
nvme_dbbuf_set(struct nvme_dev * dev)308 static void nvme_dbbuf_set(struct nvme_dev *dev)
309 {
310 struct nvme_command c;
311 unsigned int i;
312
313 if (!dev->dbbuf_dbs)
314 return;
315
316 memset(&c, 0, sizeof(c));
317 c.dbbuf.opcode = nvme_admin_dbbuf;
318 c.dbbuf.prp1 = cpu_to_le64(dev->dbbuf_dbs_dma_addr);
319 c.dbbuf.prp2 = cpu_to_le64(dev->dbbuf_eis_dma_addr);
320
321 if (nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0)) {
322 dev_warn(dev->ctrl.device, "unable to set dbbuf\n");
323 /* Free memory and continue on */
324 nvme_dbbuf_dma_free(dev);
325
326 for (i = 1; i <= dev->online_queues; i++)
327 nvme_dbbuf_free(&dev->queues[i]);
328 }
329 }
330
nvme_dbbuf_need_event(u16 event_idx,u16 new_idx,u16 old)331 static inline int nvme_dbbuf_need_event(u16 event_idx, u16 new_idx, u16 old)
332 {
333 return (u16)(new_idx - event_idx - 1) < (u16)(new_idx - old);
334 }
335
336 /* Update dbbuf and return true if an MMIO is required */
nvme_dbbuf_update_and_check_event(u16 value,__le32 * dbbuf_db,volatile __le32 * dbbuf_ei)337 static bool nvme_dbbuf_update_and_check_event(u16 value, __le32 *dbbuf_db,
338 volatile __le32 *dbbuf_ei)
339 {
340 if (dbbuf_db) {
341 u16 old_value, event_idx;
342
343 /*
344 * Ensure that the queue is written before updating
345 * the doorbell in memory
346 */
347 wmb();
348
349 old_value = le32_to_cpu(*dbbuf_db);
350 *dbbuf_db = cpu_to_le32(value);
351
352 /*
353 * Ensure that the doorbell is updated before reading the event
354 * index from memory. The controller needs to provide similar
355 * ordering to ensure the envent index is updated before reading
356 * the doorbell.
357 */
358 mb();
359
360 event_idx = le32_to_cpu(*dbbuf_ei);
361 if (!nvme_dbbuf_need_event(event_idx, value, old_value))
362 return false;
363 }
364
365 return true;
366 }
367
368 /*
369 * Will slightly overestimate the number of pages needed. This is OK
370 * as it only leads to a small amount of wasted memory for the lifetime of
371 * the I/O.
372 */
nvme_pci_npages_prp(void)373 static int nvme_pci_npages_prp(void)
374 {
375 unsigned max_bytes = (NVME_MAX_KB_SZ * 1024) + NVME_CTRL_PAGE_SIZE;
376 unsigned nprps = DIV_ROUND_UP(max_bytes, NVME_CTRL_PAGE_SIZE);
377 return DIV_ROUND_UP(8 * nprps, NVME_CTRL_PAGE_SIZE - 8);
378 }
379
380 /*
381 * Calculates the number of pages needed for the SGL segments. For example a 4k
382 * page can accommodate 256 SGL descriptors.
383 */
nvme_pci_npages_sgl(void)384 static int nvme_pci_npages_sgl(void)
385 {
386 return DIV_ROUND_UP(NVME_MAX_SEGS * sizeof(struct nvme_sgl_desc),
387 NVME_CTRL_PAGE_SIZE);
388 }
389
nvme_pci_iod_alloc_size(void)390 static size_t nvme_pci_iod_alloc_size(void)
391 {
392 size_t npages = max(nvme_pci_npages_prp(), nvme_pci_npages_sgl());
393
394 return sizeof(__le64 *) * npages +
395 sizeof(struct scatterlist) * NVME_MAX_SEGS;
396 }
397
nvme_admin_init_hctx(struct blk_mq_hw_ctx * hctx,void * data,unsigned int hctx_idx)398 static int nvme_admin_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
399 unsigned int hctx_idx)
400 {
401 struct nvme_dev *dev = data;
402 struct nvme_queue *nvmeq = &dev->queues[0];
403
404 WARN_ON(hctx_idx != 0);
405 WARN_ON(dev->admin_tagset.tags[0] != hctx->tags);
406
407 hctx->driver_data = nvmeq;
408 return 0;
409 }
410
nvme_init_hctx(struct blk_mq_hw_ctx * hctx,void * data,unsigned int hctx_idx)411 static int nvme_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
412 unsigned int hctx_idx)
413 {
414 struct nvme_dev *dev = data;
415 struct nvme_queue *nvmeq = &dev->queues[hctx_idx + 1];
416
417 WARN_ON(dev->tagset.tags[hctx_idx] != hctx->tags);
418 hctx->driver_data = nvmeq;
419 return 0;
420 }
421
nvme_init_request(struct blk_mq_tag_set * set,struct request * req,unsigned int hctx_idx,unsigned int numa_node)422 static int nvme_init_request(struct blk_mq_tag_set *set, struct request *req,
423 unsigned int hctx_idx, unsigned int numa_node)
424 {
425 struct nvme_dev *dev = set->driver_data;
426 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
427 int queue_idx = (set == &dev->tagset) ? hctx_idx + 1 : 0;
428 struct nvme_queue *nvmeq = &dev->queues[queue_idx];
429
430 BUG_ON(!nvmeq);
431 iod->nvmeq = nvmeq;
432
433 nvme_req(req)->ctrl = &dev->ctrl;
434 return 0;
435 }
436
queue_irq_offset(struct nvme_dev * dev)437 static int queue_irq_offset(struct nvme_dev *dev)
438 {
439 /* if we have more than 1 vec, admin queue offsets us by 1 */
440 if (dev->num_vecs > 1)
441 return 1;
442
443 return 0;
444 }
445
nvme_pci_map_queues(struct blk_mq_tag_set * set)446 static int nvme_pci_map_queues(struct blk_mq_tag_set *set)
447 {
448 struct nvme_dev *dev = set->driver_data;
449 int i, qoff, offset;
450
451 offset = queue_irq_offset(dev);
452 for (i = 0, qoff = 0; i < set->nr_maps; i++) {
453 struct blk_mq_queue_map *map = &set->map[i];
454
455 map->nr_queues = dev->io_queues[i];
456 if (!map->nr_queues) {
457 BUG_ON(i == HCTX_TYPE_DEFAULT);
458 continue;
459 }
460
461 /*
462 * The poll queue(s) doesn't have an IRQ (and hence IRQ
463 * affinity), so use the regular blk-mq cpu mapping
464 */
465 map->queue_offset = qoff;
466 if (i != HCTX_TYPE_POLL && offset)
467 blk_mq_pci_map_queues(map, to_pci_dev(dev->dev), offset);
468 else
469 blk_mq_map_queues(map);
470 qoff += map->nr_queues;
471 offset += map->nr_queues;
472 }
473
474 return 0;
475 }
476
477 /*
478 * Write sq tail if we are asked to, or if the next command would wrap.
479 */
nvme_write_sq_db(struct nvme_queue * nvmeq,bool write_sq)480 static inline void nvme_write_sq_db(struct nvme_queue *nvmeq, bool write_sq)
481 {
482 if (!write_sq) {
483 u16 next_tail = nvmeq->sq_tail + 1;
484
485 if (next_tail == nvmeq->q_depth)
486 next_tail = 0;
487 if (next_tail != nvmeq->last_sq_tail)
488 return;
489 }
490
491 if (nvme_dbbuf_update_and_check_event(nvmeq->sq_tail,
492 nvmeq->dbbuf_sq_db, nvmeq->dbbuf_sq_ei))
493 writel(nvmeq->sq_tail, nvmeq->q_db);
494 nvmeq->last_sq_tail = nvmeq->sq_tail;
495 }
496
497 /**
498 * nvme_submit_cmd() - Copy a command into a queue and ring the doorbell
499 * @nvmeq: The queue to use
500 * @cmd: The command to send
501 * @write_sq: whether to write to the SQ doorbell
502 */
nvme_submit_cmd(struct nvme_queue * nvmeq,struct nvme_command * cmd,bool write_sq)503 static void nvme_submit_cmd(struct nvme_queue *nvmeq, struct nvme_command *cmd,
504 bool write_sq)
505 {
506 spin_lock(&nvmeq->sq_lock);
507 memcpy(nvmeq->sq_cmds + (nvmeq->sq_tail << nvmeq->sqes),
508 cmd, sizeof(*cmd));
509 if (++nvmeq->sq_tail == nvmeq->q_depth)
510 nvmeq->sq_tail = 0;
511 nvme_write_sq_db(nvmeq, write_sq);
512 spin_unlock(&nvmeq->sq_lock);
513 }
514
nvme_commit_rqs(struct blk_mq_hw_ctx * hctx)515 static void nvme_commit_rqs(struct blk_mq_hw_ctx *hctx)
516 {
517 struct nvme_queue *nvmeq = hctx->driver_data;
518
519 spin_lock(&nvmeq->sq_lock);
520 if (nvmeq->sq_tail != nvmeq->last_sq_tail)
521 nvme_write_sq_db(nvmeq, true);
522 spin_unlock(&nvmeq->sq_lock);
523 }
524
nvme_pci_iod_list(struct request * req)525 static void **nvme_pci_iod_list(struct request *req)
526 {
527 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
528 return (void **)(iod->sg + blk_rq_nr_phys_segments(req));
529 }
530
nvme_pci_use_sgls(struct nvme_dev * dev,struct request * req)531 static inline bool nvme_pci_use_sgls(struct nvme_dev *dev, struct request *req)
532 {
533 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
534 int nseg = blk_rq_nr_phys_segments(req);
535 unsigned int avg_seg_size;
536
537 avg_seg_size = DIV_ROUND_UP(blk_rq_payload_bytes(req), nseg);
538
539 if (!(dev->ctrl.sgls & ((1 << 0) | (1 << 1))))
540 return false;
541 if (!iod->nvmeq->qid)
542 return false;
543 if (!sgl_threshold || avg_seg_size < sgl_threshold)
544 return false;
545 return true;
546 }
547
nvme_free_prps(struct nvme_dev * dev,struct request * req)548 static void nvme_free_prps(struct nvme_dev *dev, struct request *req)
549 {
550 const int last_prp = NVME_CTRL_PAGE_SIZE / sizeof(__le64) - 1;
551 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
552 dma_addr_t dma_addr = iod->first_dma;
553 int i;
554
555 for (i = 0; i < iod->npages; i++) {
556 __le64 *prp_list = nvme_pci_iod_list(req)[i];
557 dma_addr_t next_dma_addr = le64_to_cpu(prp_list[last_prp]);
558
559 dma_pool_free(dev->prp_page_pool, prp_list, dma_addr);
560 dma_addr = next_dma_addr;
561 }
562
563 }
564
nvme_free_sgls(struct nvme_dev * dev,struct request * req)565 static void nvme_free_sgls(struct nvme_dev *dev, struct request *req)
566 {
567 const int last_sg = SGES_PER_PAGE - 1;
568 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
569 dma_addr_t dma_addr = iod->first_dma;
570 int i;
571
572 for (i = 0; i < iod->npages; i++) {
573 struct nvme_sgl_desc *sg_list = nvme_pci_iod_list(req)[i];
574 dma_addr_t next_dma_addr = le64_to_cpu((sg_list[last_sg]).addr);
575
576 dma_pool_free(dev->prp_page_pool, sg_list, dma_addr);
577 dma_addr = next_dma_addr;
578 }
579
580 }
581
nvme_unmap_sg(struct nvme_dev * dev,struct request * req)582 static void nvme_unmap_sg(struct nvme_dev *dev, struct request *req)
583 {
584 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
585
586 if (is_pci_p2pdma_page(sg_page(iod->sg)))
587 pci_p2pdma_unmap_sg(dev->dev, iod->sg, iod->nents,
588 rq_dma_dir(req));
589 else
590 dma_unmap_sg(dev->dev, iod->sg, iod->nents, rq_dma_dir(req));
591 }
592
nvme_unmap_data(struct nvme_dev * dev,struct request * req)593 static void nvme_unmap_data(struct nvme_dev *dev, struct request *req)
594 {
595 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
596
597 if (iod->dma_len) {
598 dma_unmap_page(dev->dev, iod->first_dma, iod->dma_len,
599 rq_dma_dir(req));
600 return;
601 }
602
603 WARN_ON_ONCE(!iod->nents);
604
605 nvme_unmap_sg(dev, req);
606 if (iod->npages == 0)
607 dma_pool_free(dev->prp_small_pool, nvme_pci_iod_list(req)[0],
608 iod->first_dma);
609 else if (iod->use_sgl)
610 nvme_free_sgls(dev, req);
611 else
612 nvme_free_prps(dev, req);
613 mempool_free(iod->sg, dev->iod_mempool);
614 }
615
nvme_print_sgl(struct scatterlist * sgl,int nents)616 static void nvme_print_sgl(struct scatterlist *sgl, int nents)
617 {
618 int i;
619 struct scatterlist *sg;
620
621 for_each_sg(sgl, sg, nents, i) {
622 dma_addr_t phys = sg_phys(sg);
623 pr_warn("sg[%d] phys_addr:%pad offset:%d length:%d "
624 "dma_address:%pad dma_length:%d\n",
625 i, &phys, sg->offset, sg->length, &sg_dma_address(sg),
626 sg_dma_len(sg));
627 }
628 }
629
nvme_pci_setup_prps(struct nvme_dev * dev,struct request * req,struct nvme_rw_command * cmnd)630 static blk_status_t nvme_pci_setup_prps(struct nvme_dev *dev,
631 struct request *req, struct nvme_rw_command *cmnd)
632 {
633 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
634 struct dma_pool *pool;
635 int length = blk_rq_payload_bytes(req);
636 struct scatterlist *sg = iod->sg;
637 int dma_len = sg_dma_len(sg);
638 u64 dma_addr = sg_dma_address(sg);
639 int offset = dma_addr & (NVME_CTRL_PAGE_SIZE - 1);
640 __le64 *prp_list;
641 void **list = nvme_pci_iod_list(req);
642 dma_addr_t prp_dma;
643 int nprps, i;
644
645 length -= (NVME_CTRL_PAGE_SIZE - offset);
646 if (length <= 0) {
647 iod->first_dma = 0;
648 goto done;
649 }
650
651 dma_len -= (NVME_CTRL_PAGE_SIZE - offset);
652 if (dma_len) {
653 dma_addr += (NVME_CTRL_PAGE_SIZE - offset);
654 } else {
655 sg = sg_next(sg);
656 dma_addr = sg_dma_address(sg);
657 dma_len = sg_dma_len(sg);
658 }
659
660 if (length <= NVME_CTRL_PAGE_SIZE) {
661 iod->first_dma = dma_addr;
662 goto done;
663 }
664
665 nprps = DIV_ROUND_UP(length, NVME_CTRL_PAGE_SIZE);
666 if (nprps <= (256 / 8)) {
667 pool = dev->prp_small_pool;
668 iod->npages = 0;
669 } else {
670 pool = dev->prp_page_pool;
671 iod->npages = 1;
672 }
673
674 prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
675 if (!prp_list) {
676 iod->first_dma = dma_addr;
677 iod->npages = -1;
678 return BLK_STS_RESOURCE;
679 }
680 list[0] = prp_list;
681 iod->first_dma = prp_dma;
682 i = 0;
683 for (;;) {
684 if (i == NVME_CTRL_PAGE_SIZE >> 3) {
685 __le64 *old_prp_list = prp_list;
686 prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
687 if (!prp_list)
688 goto free_prps;
689 list[iod->npages++] = prp_list;
690 prp_list[0] = old_prp_list[i - 1];
691 old_prp_list[i - 1] = cpu_to_le64(prp_dma);
692 i = 1;
693 }
694 prp_list[i++] = cpu_to_le64(dma_addr);
695 dma_len -= NVME_CTRL_PAGE_SIZE;
696 dma_addr += NVME_CTRL_PAGE_SIZE;
697 length -= NVME_CTRL_PAGE_SIZE;
698 if (length <= 0)
699 break;
700 if (dma_len > 0)
701 continue;
702 if (unlikely(dma_len < 0))
703 goto bad_sgl;
704 sg = sg_next(sg);
705 dma_addr = sg_dma_address(sg);
706 dma_len = sg_dma_len(sg);
707 }
708 done:
709 cmnd->dptr.prp1 = cpu_to_le64(sg_dma_address(iod->sg));
710 cmnd->dptr.prp2 = cpu_to_le64(iod->first_dma);
711 return BLK_STS_OK;
712 free_prps:
713 nvme_free_prps(dev, req);
714 return BLK_STS_RESOURCE;
715 bad_sgl:
716 WARN(DO_ONCE(nvme_print_sgl, iod->sg, iod->nents),
717 "Invalid SGL for payload:%d nents:%d\n",
718 blk_rq_payload_bytes(req), iod->nents);
719 return BLK_STS_IOERR;
720 }
721
nvme_pci_sgl_set_data(struct nvme_sgl_desc * sge,struct scatterlist * sg)722 static void nvme_pci_sgl_set_data(struct nvme_sgl_desc *sge,
723 struct scatterlist *sg)
724 {
725 sge->addr = cpu_to_le64(sg_dma_address(sg));
726 sge->length = cpu_to_le32(sg_dma_len(sg));
727 sge->type = NVME_SGL_FMT_DATA_DESC << 4;
728 }
729
nvme_pci_sgl_set_seg(struct nvme_sgl_desc * sge,dma_addr_t dma_addr,int entries)730 static void nvme_pci_sgl_set_seg(struct nvme_sgl_desc *sge,
731 dma_addr_t dma_addr, int entries)
732 {
733 sge->addr = cpu_to_le64(dma_addr);
734 if (entries < SGES_PER_PAGE) {
735 sge->length = cpu_to_le32(entries * sizeof(*sge));
736 sge->type = NVME_SGL_FMT_LAST_SEG_DESC << 4;
737 } else {
738 sge->length = cpu_to_le32(NVME_CTRL_PAGE_SIZE);
739 sge->type = NVME_SGL_FMT_SEG_DESC << 4;
740 }
741 }
742
nvme_pci_setup_sgls(struct nvme_dev * dev,struct request * req,struct nvme_rw_command * cmd,int entries)743 static blk_status_t nvme_pci_setup_sgls(struct nvme_dev *dev,
744 struct request *req, struct nvme_rw_command *cmd, int entries)
745 {
746 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
747 struct dma_pool *pool;
748 struct nvme_sgl_desc *sg_list;
749 struct scatterlist *sg = iod->sg;
750 dma_addr_t sgl_dma;
751 int i = 0;
752
753 /* setting the transfer type as SGL */
754 cmd->flags = NVME_CMD_SGL_METABUF;
755
756 if (entries == 1) {
757 nvme_pci_sgl_set_data(&cmd->dptr.sgl, sg);
758 return BLK_STS_OK;
759 }
760
761 if (entries <= (256 / sizeof(struct nvme_sgl_desc))) {
762 pool = dev->prp_small_pool;
763 iod->npages = 0;
764 } else {
765 pool = dev->prp_page_pool;
766 iod->npages = 1;
767 }
768
769 sg_list = dma_pool_alloc(pool, GFP_ATOMIC, &sgl_dma);
770 if (!sg_list) {
771 iod->npages = -1;
772 return BLK_STS_RESOURCE;
773 }
774
775 nvme_pci_iod_list(req)[0] = sg_list;
776 iod->first_dma = sgl_dma;
777
778 nvme_pci_sgl_set_seg(&cmd->dptr.sgl, sgl_dma, entries);
779
780 do {
781 if (i == SGES_PER_PAGE) {
782 struct nvme_sgl_desc *old_sg_desc = sg_list;
783 struct nvme_sgl_desc *link = &old_sg_desc[i - 1];
784
785 sg_list = dma_pool_alloc(pool, GFP_ATOMIC, &sgl_dma);
786 if (!sg_list)
787 goto free_sgls;
788
789 i = 0;
790 nvme_pci_iod_list(req)[iod->npages++] = sg_list;
791 sg_list[i++] = *link;
792 nvme_pci_sgl_set_seg(link, sgl_dma, entries);
793 }
794
795 nvme_pci_sgl_set_data(&sg_list[i++], sg);
796 sg = sg_next(sg);
797 } while (--entries > 0);
798
799 return BLK_STS_OK;
800 free_sgls:
801 nvme_free_sgls(dev, req);
802 return BLK_STS_RESOURCE;
803 }
804
nvme_setup_prp_simple(struct nvme_dev * dev,struct request * req,struct nvme_rw_command * cmnd,struct bio_vec * bv)805 static blk_status_t nvme_setup_prp_simple(struct nvme_dev *dev,
806 struct request *req, struct nvme_rw_command *cmnd,
807 struct bio_vec *bv)
808 {
809 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
810 unsigned int offset = bv->bv_offset & (NVME_CTRL_PAGE_SIZE - 1);
811 unsigned int first_prp_len = NVME_CTRL_PAGE_SIZE - offset;
812
813 iod->first_dma = dma_map_bvec(dev->dev, bv, rq_dma_dir(req), 0);
814 if (dma_mapping_error(dev->dev, iod->first_dma))
815 return BLK_STS_RESOURCE;
816 iod->dma_len = bv->bv_len;
817
818 cmnd->dptr.prp1 = cpu_to_le64(iod->first_dma);
819 if (bv->bv_len > first_prp_len)
820 cmnd->dptr.prp2 = cpu_to_le64(iod->first_dma + first_prp_len);
821 else
822 cmnd->dptr.prp2 = 0;
823 return BLK_STS_OK;
824 }
825
nvme_setup_sgl_simple(struct nvme_dev * dev,struct request * req,struct nvme_rw_command * cmnd,struct bio_vec * bv)826 static blk_status_t nvme_setup_sgl_simple(struct nvme_dev *dev,
827 struct request *req, struct nvme_rw_command *cmnd,
828 struct bio_vec *bv)
829 {
830 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
831
832 iod->first_dma = dma_map_bvec(dev->dev, bv, rq_dma_dir(req), 0);
833 if (dma_mapping_error(dev->dev, iod->first_dma))
834 return BLK_STS_RESOURCE;
835 iod->dma_len = bv->bv_len;
836
837 cmnd->flags = NVME_CMD_SGL_METABUF;
838 cmnd->dptr.sgl.addr = cpu_to_le64(iod->first_dma);
839 cmnd->dptr.sgl.length = cpu_to_le32(iod->dma_len);
840 cmnd->dptr.sgl.type = NVME_SGL_FMT_DATA_DESC << 4;
841 return BLK_STS_OK;
842 }
843
nvme_map_data(struct nvme_dev * dev,struct request * req,struct nvme_command * cmnd)844 static blk_status_t nvme_map_data(struct nvme_dev *dev, struct request *req,
845 struct nvme_command *cmnd)
846 {
847 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
848 blk_status_t ret = BLK_STS_RESOURCE;
849 int nr_mapped;
850
851 if (blk_rq_nr_phys_segments(req) == 1) {
852 struct bio_vec bv = req_bvec(req);
853
854 if (!is_pci_p2pdma_page(bv.bv_page)) {
855 if (bv.bv_offset + bv.bv_len <= NVME_CTRL_PAGE_SIZE * 2)
856 return nvme_setup_prp_simple(dev, req,
857 &cmnd->rw, &bv);
858
859 if (iod->nvmeq->qid && sgl_threshold &&
860 dev->ctrl.sgls & ((1 << 0) | (1 << 1)))
861 return nvme_setup_sgl_simple(dev, req,
862 &cmnd->rw, &bv);
863 }
864 }
865
866 iod->dma_len = 0;
867 iod->sg = mempool_alloc(dev->iod_mempool, GFP_ATOMIC);
868 if (!iod->sg)
869 return BLK_STS_RESOURCE;
870 sg_init_table(iod->sg, blk_rq_nr_phys_segments(req));
871 iod->nents = blk_rq_map_sg(req->q, req, iod->sg);
872 if (!iod->nents)
873 goto out_free_sg;
874
875 if (is_pci_p2pdma_page(sg_page(iod->sg)))
876 nr_mapped = pci_p2pdma_map_sg_attrs(dev->dev, iod->sg,
877 iod->nents, rq_dma_dir(req), DMA_ATTR_NO_WARN);
878 else
879 nr_mapped = dma_map_sg_attrs(dev->dev, iod->sg, iod->nents,
880 rq_dma_dir(req), DMA_ATTR_NO_WARN);
881 if (!nr_mapped)
882 goto out_free_sg;
883
884 iod->use_sgl = nvme_pci_use_sgls(dev, req);
885 if (iod->use_sgl)
886 ret = nvme_pci_setup_sgls(dev, req, &cmnd->rw, nr_mapped);
887 else
888 ret = nvme_pci_setup_prps(dev, req, &cmnd->rw);
889 if (ret != BLK_STS_OK)
890 goto out_unmap_sg;
891 return BLK_STS_OK;
892
893 out_unmap_sg:
894 nvme_unmap_sg(dev, req);
895 out_free_sg:
896 mempool_free(iod->sg, dev->iod_mempool);
897 return ret;
898 }
899
nvme_map_metadata(struct nvme_dev * dev,struct request * req,struct nvme_command * cmnd)900 static blk_status_t nvme_map_metadata(struct nvme_dev *dev, struct request *req,
901 struct nvme_command *cmnd)
902 {
903 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
904
905 iod->meta_dma = dma_map_bvec(dev->dev, rq_integrity_vec(req),
906 rq_dma_dir(req), 0);
907 if (dma_mapping_error(dev->dev, iod->meta_dma))
908 return BLK_STS_IOERR;
909 cmnd->rw.metadata = cpu_to_le64(iod->meta_dma);
910 return BLK_STS_OK;
911 }
912
913 /*
914 * NOTE: ns is NULL when called on the admin queue.
915 */
nvme_queue_rq(struct blk_mq_hw_ctx * hctx,const struct blk_mq_queue_data * bd)916 static blk_status_t nvme_queue_rq(struct blk_mq_hw_ctx *hctx,
917 const struct blk_mq_queue_data *bd)
918 {
919 struct nvme_ns *ns = hctx->queue->queuedata;
920 struct nvme_queue *nvmeq = hctx->driver_data;
921 struct nvme_dev *dev = nvmeq->dev;
922 struct request *req = bd->rq;
923 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
924 struct nvme_command *cmnd = &iod->cmd;
925 blk_status_t ret;
926
927 iod->aborted = 0;
928 iod->npages = -1;
929 iod->nents = 0;
930
931 /*
932 * We should not need to do this, but we're still using this to
933 * ensure we can drain requests on a dying queue.
934 */
935 if (unlikely(!test_bit(NVMEQ_ENABLED, &nvmeq->flags)))
936 return BLK_STS_IOERR;
937
938 ret = nvme_setup_cmd(ns, req, cmnd);
939 if (ret)
940 return ret;
941
942 if (blk_rq_nr_phys_segments(req)) {
943 ret = nvme_map_data(dev, req, cmnd);
944 if (ret)
945 goto out_free_cmd;
946 }
947
948 if (blk_integrity_rq(req)) {
949 ret = nvme_map_metadata(dev, req, cmnd);
950 if (ret)
951 goto out_unmap_data;
952 }
953
954 blk_mq_start_request(req);
955 nvme_submit_cmd(nvmeq, cmnd, bd->last);
956 return BLK_STS_OK;
957 out_unmap_data:
958 nvme_unmap_data(dev, req);
959 out_free_cmd:
960 nvme_cleanup_cmd(req);
961 return ret;
962 }
963
nvme_pci_complete_rq(struct request * req)964 static void nvme_pci_complete_rq(struct request *req)
965 {
966 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
967 struct nvme_dev *dev = iod->nvmeq->dev;
968
969 if (blk_integrity_rq(req))
970 dma_unmap_page(dev->dev, iod->meta_dma,
971 rq_integrity_vec(req)->bv_len, rq_data_dir(req));
972 if (blk_rq_nr_phys_segments(req))
973 nvme_unmap_data(dev, req);
974 nvme_complete_rq(req);
975 }
976
977 /* We read the CQE phase first to check if the rest of the entry is valid */
nvme_cqe_pending(struct nvme_queue * nvmeq)978 static inline bool nvme_cqe_pending(struct nvme_queue *nvmeq)
979 {
980 struct nvme_completion *hcqe = &nvmeq->cqes[nvmeq->cq_head];
981
982 return (le16_to_cpu(READ_ONCE(hcqe->status)) & 1) == nvmeq->cq_phase;
983 }
984
nvme_ring_cq_doorbell(struct nvme_queue * nvmeq)985 static inline void nvme_ring_cq_doorbell(struct nvme_queue *nvmeq)
986 {
987 u16 head = nvmeq->cq_head;
988
989 if (nvme_dbbuf_update_and_check_event(head, nvmeq->dbbuf_cq_db,
990 nvmeq->dbbuf_cq_ei))
991 writel(head, nvmeq->q_db + nvmeq->dev->db_stride);
992 }
993
nvme_queue_tagset(struct nvme_queue * nvmeq)994 static inline struct blk_mq_tags *nvme_queue_tagset(struct nvme_queue *nvmeq)
995 {
996 if (!nvmeq->qid)
997 return nvmeq->dev->admin_tagset.tags[0];
998 return nvmeq->dev->tagset.tags[nvmeq->qid - 1];
999 }
1000
nvme_handle_cqe(struct nvme_queue * nvmeq,u16 idx)1001 static inline void nvme_handle_cqe(struct nvme_queue *nvmeq, u16 idx)
1002 {
1003 struct nvme_completion *cqe = &nvmeq->cqes[idx];
1004 __u16 command_id = READ_ONCE(cqe->command_id);
1005 struct request *req;
1006
1007 /*
1008 * AEN requests are special as they don't time out and can
1009 * survive any kind of queue freeze and often don't respond to
1010 * aborts. We don't even bother to allocate a struct request
1011 * for them but rather special case them here.
1012 */
1013 if (unlikely(nvme_is_aen_req(nvmeq->qid, command_id))) {
1014 nvme_complete_async_event(&nvmeq->dev->ctrl,
1015 cqe->status, &cqe->result);
1016 return;
1017 }
1018
1019 req = nvme_find_rq(nvme_queue_tagset(nvmeq), command_id);
1020 if (unlikely(!req)) {
1021 dev_warn(nvmeq->dev->ctrl.device,
1022 "invalid id %d completed on queue %d\n",
1023 command_id, le16_to_cpu(cqe->sq_id));
1024 return;
1025 }
1026
1027 trace_nvme_sq(req, cqe->sq_head, nvmeq->sq_tail);
1028 if (!nvme_try_complete_req(req, cqe->status, cqe->result))
1029 nvme_pci_complete_rq(req);
1030 }
1031
nvme_update_cq_head(struct nvme_queue * nvmeq)1032 static inline void nvme_update_cq_head(struct nvme_queue *nvmeq)
1033 {
1034 u32 tmp = nvmeq->cq_head + 1;
1035
1036 if (tmp == nvmeq->q_depth) {
1037 nvmeq->cq_head = 0;
1038 nvmeq->cq_phase ^= 1;
1039 } else {
1040 nvmeq->cq_head = tmp;
1041 }
1042 }
1043
nvme_process_cq(struct nvme_queue * nvmeq)1044 static inline int nvme_process_cq(struct nvme_queue *nvmeq)
1045 {
1046 int found = 0;
1047
1048 while (nvme_cqe_pending(nvmeq)) {
1049 found++;
1050 /*
1051 * load-load control dependency between phase and the rest of
1052 * the cqe requires a full read memory barrier
1053 */
1054 dma_rmb();
1055 nvme_handle_cqe(nvmeq, nvmeq->cq_head);
1056 nvme_update_cq_head(nvmeq);
1057 }
1058
1059 if (found)
1060 nvme_ring_cq_doorbell(nvmeq);
1061 return found;
1062 }
1063
nvme_irq(int irq,void * data)1064 static irqreturn_t nvme_irq(int irq, void *data)
1065 {
1066 struct nvme_queue *nvmeq = data;
1067 irqreturn_t ret = IRQ_NONE;
1068
1069 /*
1070 * The rmb/wmb pair ensures we see all updates from a previous run of
1071 * the irq handler, even if that was on another CPU.
1072 */
1073 rmb();
1074 if (nvme_process_cq(nvmeq))
1075 ret = IRQ_HANDLED;
1076 wmb();
1077
1078 return ret;
1079 }
1080
nvme_irq_check(int irq,void * data)1081 static irqreturn_t nvme_irq_check(int irq, void *data)
1082 {
1083 struct nvme_queue *nvmeq = data;
1084
1085 if (nvme_cqe_pending(nvmeq))
1086 return IRQ_WAKE_THREAD;
1087 return IRQ_NONE;
1088 }
1089
1090 /*
1091 * Poll for completions for any interrupt driven queue
1092 * Can be called from any context.
1093 */
nvme_poll_irqdisable(struct nvme_queue * nvmeq)1094 static void nvme_poll_irqdisable(struct nvme_queue *nvmeq)
1095 {
1096 struct pci_dev *pdev = to_pci_dev(nvmeq->dev->dev);
1097
1098 WARN_ON_ONCE(test_bit(NVMEQ_POLLED, &nvmeq->flags));
1099
1100 disable_irq(pci_irq_vector(pdev, nvmeq->cq_vector));
1101 nvme_process_cq(nvmeq);
1102 enable_irq(pci_irq_vector(pdev, nvmeq->cq_vector));
1103 }
1104
nvme_poll(struct blk_mq_hw_ctx * hctx)1105 static int nvme_poll(struct blk_mq_hw_ctx *hctx)
1106 {
1107 struct nvme_queue *nvmeq = hctx->driver_data;
1108 bool found;
1109
1110 if (!nvme_cqe_pending(nvmeq))
1111 return 0;
1112
1113 spin_lock(&nvmeq->cq_poll_lock);
1114 found = nvme_process_cq(nvmeq);
1115 spin_unlock(&nvmeq->cq_poll_lock);
1116
1117 return found;
1118 }
1119
nvme_pci_submit_async_event(struct nvme_ctrl * ctrl)1120 static void nvme_pci_submit_async_event(struct nvme_ctrl *ctrl)
1121 {
1122 struct nvme_dev *dev = to_nvme_dev(ctrl);
1123 struct nvme_queue *nvmeq = &dev->queues[0];
1124 struct nvme_command c;
1125
1126 memset(&c, 0, sizeof(c));
1127 c.common.opcode = nvme_admin_async_event;
1128 c.common.command_id = NVME_AQ_BLK_MQ_DEPTH;
1129 nvme_submit_cmd(nvmeq, &c, true);
1130 }
1131
adapter_delete_queue(struct nvme_dev * dev,u8 opcode,u16 id)1132 static int adapter_delete_queue(struct nvme_dev *dev, u8 opcode, u16 id)
1133 {
1134 struct nvme_command c;
1135
1136 memset(&c, 0, sizeof(c));
1137 c.delete_queue.opcode = opcode;
1138 c.delete_queue.qid = cpu_to_le16(id);
1139
1140 return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1141 }
1142
adapter_alloc_cq(struct nvme_dev * dev,u16 qid,struct nvme_queue * nvmeq,s16 vector)1143 static int adapter_alloc_cq(struct nvme_dev *dev, u16 qid,
1144 struct nvme_queue *nvmeq, s16 vector)
1145 {
1146 struct nvme_command c;
1147 int flags = NVME_QUEUE_PHYS_CONTIG;
1148
1149 if (!test_bit(NVMEQ_POLLED, &nvmeq->flags))
1150 flags |= NVME_CQ_IRQ_ENABLED;
1151
1152 /*
1153 * Note: we (ab)use the fact that the prp fields survive if no data
1154 * is attached to the request.
1155 */
1156 memset(&c, 0, sizeof(c));
1157 c.create_cq.opcode = nvme_admin_create_cq;
1158 c.create_cq.prp1 = cpu_to_le64(nvmeq->cq_dma_addr);
1159 c.create_cq.cqid = cpu_to_le16(qid);
1160 c.create_cq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
1161 c.create_cq.cq_flags = cpu_to_le16(flags);
1162 c.create_cq.irq_vector = cpu_to_le16(vector);
1163
1164 return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1165 }
1166
adapter_alloc_sq(struct nvme_dev * dev,u16 qid,struct nvme_queue * nvmeq)1167 static int adapter_alloc_sq(struct nvme_dev *dev, u16 qid,
1168 struct nvme_queue *nvmeq)
1169 {
1170 struct nvme_ctrl *ctrl = &dev->ctrl;
1171 struct nvme_command c;
1172 int flags = NVME_QUEUE_PHYS_CONTIG;
1173
1174 /*
1175 * Some drives have a bug that auto-enables WRRU if MEDIUM isn't
1176 * set. Since URGENT priority is zeroes, it makes all queues
1177 * URGENT.
1178 */
1179 if (ctrl->quirks & NVME_QUIRK_MEDIUM_PRIO_SQ)
1180 flags |= NVME_SQ_PRIO_MEDIUM;
1181
1182 /*
1183 * Note: we (ab)use the fact that the prp fields survive if no data
1184 * is attached to the request.
1185 */
1186 memset(&c, 0, sizeof(c));
1187 c.create_sq.opcode = nvme_admin_create_sq;
1188 c.create_sq.prp1 = cpu_to_le64(nvmeq->sq_dma_addr);
1189 c.create_sq.sqid = cpu_to_le16(qid);
1190 c.create_sq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
1191 c.create_sq.sq_flags = cpu_to_le16(flags);
1192 c.create_sq.cqid = cpu_to_le16(qid);
1193
1194 return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1195 }
1196
adapter_delete_cq(struct nvme_dev * dev,u16 cqid)1197 static int adapter_delete_cq(struct nvme_dev *dev, u16 cqid)
1198 {
1199 return adapter_delete_queue(dev, nvme_admin_delete_cq, cqid);
1200 }
1201
adapter_delete_sq(struct nvme_dev * dev,u16 sqid)1202 static int adapter_delete_sq(struct nvme_dev *dev, u16 sqid)
1203 {
1204 return adapter_delete_queue(dev, nvme_admin_delete_sq, sqid);
1205 }
1206
abort_endio(struct request * req,blk_status_t error)1207 static void abort_endio(struct request *req, blk_status_t error)
1208 {
1209 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
1210 struct nvme_queue *nvmeq = iod->nvmeq;
1211
1212 dev_warn(nvmeq->dev->ctrl.device,
1213 "Abort status: 0x%x", nvme_req(req)->status);
1214 atomic_inc(&nvmeq->dev->ctrl.abort_limit);
1215 blk_mq_free_request(req);
1216 }
1217
nvme_should_reset(struct nvme_dev * dev,u32 csts)1218 static bool nvme_should_reset(struct nvme_dev *dev, u32 csts)
1219 {
1220 /* If true, indicates loss of adapter communication, possibly by a
1221 * NVMe Subsystem reset.
1222 */
1223 bool nssro = dev->subsystem && (csts & NVME_CSTS_NSSRO);
1224
1225 /* If there is a reset/reinit ongoing, we shouldn't reset again. */
1226 switch (dev->ctrl.state) {
1227 case NVME_CTRL_RESETTING:
1228 case NVME_CTRL_CONNECTING:
1229 return false;
1230 default:
1231 break;
1232 }
1233
1234 /* We shouldn't reset unless the controller is on fatal error state
1235 * _or_ if we lost the communication with it.
1236 */
1237 if (!(csts & NVME_CSTS_CFS) && !nssro)
1238 return false;
1239
1240 return true;
1241 }
1242
nvme_warn_reset(struct nvme_dev * dev,u32 csts)1243 static void nvme_warn_reset(struct nvme_dev *dev, u32 csts)
1244 {
1245 /* Read a config register to help see what died. */
1246 u16 pci_status;
1247 int result;
1248
1249 result = pci_read_config_word(to_pci_dev(dev->dev), PCI_STATUS,
1250 &pci_status);
1251 if (result == PCIBIOS_SUCCESSFUL)
1252 dev_warn(dev->ctrl.device,
1253 "controller is down; will reset: CSTS=0x%x, PCI_STATUS=0x%hx\n",
1254 csts, pci_status);
1255 else
1256 dev_warn(dev->ctrl.device,
1257 "controller is down; will reset: CSTS=0x%x, PCI_STATUS read failed (%d)\n",
1258 csts, result);
1259 }
1260
nvme_timeout(struct request * req,bool reserved)1261 static enum blk_eh_timer_return nvme_timeout(struct request *req, bool reserved)
1262 {
1263 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
1264 struct nvme_queue *nvmeq = iod->nvmeq;
1265 struct nvme_dev *dev = nvmeq->dev;
1266 struct request *abort_req;
1267 struct nvme_command cmd;
1268 u32 csts = readl(dev->bar + NVME_REG_CSTS);
1269
1270 /* If PCI error recovery process is happening, we cannot reset or
1271 * the recovery mechanism will surely fail.
1272 */
1273 mb();
1274 if (pci_channel_offline(to_pci_dev(dev->dev)))
1275 return BLK_EH_RESET_TIMER;
1276
1277 /*
1278 * Reset immediately if the controller is failed
1279 */
1280 if (nvme_should_reset(dev, csts)) {
1281 nvme_warn_reset(dev, csts);
1282 nvme_dev_disable(dev, false);
1283 nvme_reset_ctrl(&dev->ctrl);
1284 return BLK_EH_DONE;
1285 }
1286
1287 /*
1288 * Did we miss an interrupt?
1289 */
1290 if (test_bit(NVMEQ_POLLED, &nvmeq->flags))
1291 nvme_poll(req->mq_hctx);
1292 else
1293 nvme_poll_irqdisable(nvmeq);
1294
1295 if (blk_mq_request_completed(req)) {
1296 dev_warn(dev->ctrl.device,
1297 "I/O %d QID %d timeout, completion polled\n",
1298 req->tag, nvmeq->qid);
1299 return BLK_EH_DONE;
1300 }
1301
1302 /*
1303 * Shutdown immediately if controller times out while starting. The
1304 * reset work will see the pci device disabled when it gets the forced
1305 * cancellation error. All outstanding requests are completed on
1306 * shutdown, so we return BLK_EH_DONE.
1307 */
1308 switch (dev->ctrl.state) {
1309 case NVME_CTRL_CONNECTING:
1310 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING);
1311 fallthrough;
1312 case NVME_CTRL_DELETING:
1313 dev_warn_ratelimited(dev->ctrl.device,
1314 "I/O %d QID %d timeout, disable controller\n",
1315 req->tag, nvmeq->qid);
1316 nvme_req(req)->flags |= NVME_REQ_CANCELLED;
1317 nvme_dev_disable(dev, true);
1318 return BLK_EH_DONE;
1319 case NVME_CTRL_RESETTING:
1320 return BLK_EH_RESET_TIMER;
1321 default:
1322 break;
1323 }
1324
1325 /*
1326 * Shutdown the controller immediately and schedule a reset if the
1327 * command was already aborted once before and still hasn't been
1328 * returned to the driver, or if this is the admin queue.
1329 */
1330 if (!nvmeq->qid || iod->aborted) {
1331 dev_warn(dev->ctrl.device,
1332 "I/O %d QID %d timeout, reset controller\n",
1333 req->tag, nvmeq->qid);
1334 nvme_req(req)->flags |= NVME_REQ_CANCELLED;
1335 nvme_dev_disable(dev, false);
1336 nvme_reset_ctrl(&dev->ctrl);
1337
1338 return BLK_EH_DONE;
1339 }
1340
1341 if (atomic_dec_return(&dev->ctrl.abort_limit) < 0) {
1342 atomic_inc(&dev->ctrl.abort_limit);
1343 return BLK_EH_RESET_TIMER;
1344 }
1345 iod->aborted = 1;
1346
1347 memset(&cmd, 0, sizeof(cmd));
1348 cmd.abort.opcode = nvme_admin_abort_cmd;
1349 cmd.abort.cid = nvme_cid(req);
1350 cmd.abort.sqid = cpu_to_le16(nvmeq->qid);
1351
1352 dev_warn(nvmeq->dev->ctrl.device,
1353 "I/O %d QID %d timeout, aborting\n",
1354 req->tag, nvmeq->qid);
1355
1356 abort_req = nvme_alloc_request(dev->ctrl.admin_q, &cmd,
1357 BLK_MQ_REQ_NOWAIT);
1358 if (IS_ERR(abort_req)) {
1359 atomic_inc(&dev->ctrl.abort_limit);
1360 return BLK_EH_RESET_TIMER;
1361 }
1362
1363 abort_req->end_io_data = NULL;
1364 blk_execute_rq_nowait(abort_req->q, NULL, abort_req, 0, abort_endio);
1365
1366 /*
1367 * The aborted req will be completed on receiving the abort req.
1368 * We enable the timer again. If hit twice, it'll cause a device reset,
1369 * as the device then is in a faulty state.
1370 */
1371 return BLK_EH_RESET_TIMER;
1372 }
1373
nvme_free_queue(struct nvme_queue * nvmeq)1374 static void nvme_free_queue(struct nvme_queue *nvmeq)
1375 {
1376 dma_free_coherent(nvmeq->dev->dev, CQ_SIZE(nvmeq),
1377 (void *)nvmeq->cqes, nvmeq->cq_dma_addr);
1378 if (!nvmeq->sq_cmds)
1379 return;
1380
1381 if (test_and_clear_bit(NVMEQ_SQ_CMB, &nvmeq->flags)) {
1382 pci_free_p2pmem(to_pci_dev(nvmeq->dev->dev),
1383 nvmeq->sq_cmds, SQ_SIZE(nvmeq));
1384 } else {
1385 dma_free_coherent(nvmeq->dev->dev, SQ_SIZE(nvmeq),
1386 nvmeq->sq_cmds, nvmeq->sq_dma_addr);
1387 }
1388 }
1389
nvme_free_queues(struct nvme_dev * dev,int lowest)1390 static void nvme_free_queues(struct nvme_dev *dev, int lowest)
1391 {
1392 int i;
1393
1394 for (i = dev->ctrl.queue_count - 1; i >= lowest; i--) {
1395 dev->ctrl.queue_count--;
1396 nvme_free_queue(&dev->queues[i]);
1397 }
1398 }
1399
1400 /**
1401 * nvme_suspend_queue - put queue into suspended state
1402 * @nvmeq: queue to suspend
1403 */
nvme_suspend_queue(struct nvme_queue * nvmeq)1404 static int nvme_suspend_queue(struct nvme_queue *nvmeq)
1405 {
1406 if (!test_and_clear_bit(NVMEQ_ENABLED, &nvmeq->flags))
1407 return 1;
1408
1409 /* ensure that nvme_queue_rq() sees NVMEQ_ENABLED cleared */
1410 mb();
1411
1412 nvmeq->dev->online_queues--;
1413 if (!nvmeq->qid && nvmeq->dev->ctrl.admin_q)
1414 nvme_stop_admin_queue(&nvmeq->dev->ctrl);
1415 if (!test_and_clear_bit(NVMEQ_POLLED, &nvmeq->flags))
1416 pci_free_irq(to_pci_dev(nvmeq->dev->dev), nvmeq->cq_vector, nvmeq);
1417 return 0;
1418 }
1419
nvme_suspend_io_queues(struct nvme_dev * dev)1420 static void nvme_suspend_io_queues(struct nvme_dev *dev)
1421 {
1422 int i;
1423
1424 for (i = dev->ctrl.queue_count - 1; i > 0; i--)
1425 nvme_suspend_queue(&dev->queues[i]);
1426 }
1427
nvme_disable_admin_queue(struct nvme_dev * dev,bool shutdown)1428 static void nvme_disable_admin_queue(struct nvme_dev *dev, bool shutdown)
1429 {
1430 struct nvme_queue *nvmeq = &dev->queues[0];
1431
1432 if (shutdown)
1433 nvme_shutdown_ctrl(&dev->ctrl);
1434 else
1435 nvme_disable_ctrl(&dev->ctrl);
1436
1437 nvme_poll_irqdisable(nvmeq);
1438 }
1439
1440 /*
1441 * Called only on a device that has been disabled and after all other threads
1442 * that can check this device's completion queues have synced, except
1443 * nvme_poll(). This is the last chance for the driver to see a natural
1444 * completion before nvme_cancel_request() terminates all incomplete requests.
1445 */
nvme_reap_pending_cqes(struct nvme_dev * dev)1446 static void nvme_reap_pending_cqes(struct nvme_dev *dev)
1447 {
1448 int i;
1449
1450 for (i = dev->ctrl.queue_count - 1; i > 0; i--) {
1451 spin_lock(&dev->queues[i].cq_poll_lock);
1452 nvme_process_cq(&dev->queues[i]);
1453 spin_unlock(&dev->queues[i].cq_poll_lock);
1454 }
1455 }
1456
nvme_cmb_qdepth(struct nvme_dev * dev,int nr_io_queues,int entry_size)1457 static int nvme_cmb_qdepth(struct nvme_dev *dev, int nr_io_queues,
1458 int entry_size)
1459 {
1460 int q_depth = dev->q_depth;
1461 unsigned q_size_aligned = roundup(q_depth * entry_size,
1462 NVME_CTRL_PAGE_SIZE);
1463
1464 if (q_size_aligned * nr_io_queues > dev->cmb_size) {
1465 u64 mem_per_q = div_u64(dev->cmb_size, nr_io_queues);
1466
1467 mem_per_q = round_down(mem_per_q, NVME_CTRL_PAGE_SIZE);
1468 q_depth = div_u64(mem_per_q, entry_size);
1469
1470 /*
1471 * Ensure the reduced q_depth is above some threshold where it
1472 * would be better to map queues in system memory with the
1473 * original depth
1474 */
1475 if (q_depth < 64)
1476 return -ENOMEM;
1477 }
1478
1479 return q_depth;
1480 }
1481
nvme_alloc_sq_cmds(struct nvme_dev * dev,struct nvme_queue * nvmeq,int qid)1482 static int nvme_alloc_sq_cmds(struct nvme_dev *dev, struct nvme_queue *nvmeq,
1483 int qid)
1484 {
1485 struct pci_dev *pdev = to_pci_dev(dev->dev);
1486
1487 if (qid && dev->cmb_use_sqes && (dev->cmbsz & NVME_CMBSZ_SQS)) {
1488 nvmeq->sq_cmds = pci_alloc_p2pmem(pdev, SQ_SIZE(nvmeq));
1489 if (nvmeq->sq_cmds) {
1490 nvmeq->sq_dma_addr = pci_p2pmem_virt_to_bus(pdev,
1491 nvmeq->sq_cmds);
1492 if (nvmeq->sq_dma_addr) {
1493 set_bit(NVMEQ_SQ_CMB, &nvmeq->flags);
1494 return 0;
1495 }
1496
1497 pci_free_p2pmem(pdev, nvmeq->sq_cmds, SQ_SIZE(nvmeq));
1498 }
1499 }
1500
1501 nvmeq->sq_cmds = dma_alloc_coherent(dev->dev, SQ_SIZE(nvmeq),
1502 &nvmeq->sq_dma_addr, GFP_KERNEL);
1503 if (!nvmeq->sq_cmds)
1504 return -ENOMEM;
1505 return 0;
1506 }
1507
nvme_alloc_queue(struct nvme_dev * dev,int qid,int depth)1508 static int nvme_alloc_queue(struct nvme_dev *dev, int qid, int depth)
1509 {
1510 struct nvme_queue *nvmeq = &dev->queues[qid];
1511
1512 if (dev->ctrl.queue_count > qid)
1513 return 0;
1514
1515 nvmeq->sqes = qid ? dev->io_sqes : NVME_ADM_SQES;
1516 nvmeq->q_depth = depth;
1517 nvmeq->cqes = dma_alloc_coherent(dev->dev, CQ_SIZE(nvmeq),
1518 &nvmeq->cq_dma_addr, GFP_KERNEL);
1519 if (!nvmeq->cqes)
1520 goto free_nvmeq;
1521
1522 if (nvme_alloc_sq_cmds(dev, nvmeq, qid))
1523 goto free_cqdma;
1524
1525 nvmeq->dev = dev;
1526 spin_lock_init(&nvmeq->sq_lock);
1527 spin_lock_init(&nvmeq->cq_poll_lock);
1528 nvmeq->cq_head = 0;
1529 nvmeq->cq_phase = 1;
1530 nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
1531 nvmeq->qid = qid;
1532 dev->ctrl.queue_count++;
1533
1534 return 0;
1535
1536 free_cqdma:
1537 dma_free_coherent(dev->dev, CQ_SIZE(nvmeq), (void *)nvmeq->cqes,
1538 nvmeq->cq_dma_addr);
1539 free_nvmeq:
1540 return -ENOMEM;
1541 }
1542
queue_request_irq(struct nvme_queue * nvmeq)1543 static int queue_request_irq(struct nvme_queue *nvmeq)
1544 {
1545 struct pci_dev *pdev = to_pci_dev(nvmeq->dev->dev);
1546 int nr = nvmeq->dev->ctrl.instance;
1547
1548 if (use_threaded_interrupts) {
1549 return pci_request_irq(pdev, nvmeq->cq_vector, nvme_irq_check,
1550 nvme_irq, nvmeq, "nvme%dq%d", nr, nvmeq->qid);
1551 } else {
1552 return pci_request_irq(pdev, nvmeq->cq_vector, nvme_irq,
1553 NULL, nvmeq, "nvme%dq%d", nr, nvmeq->qid);
1554 }
1555 }
1556
nvme_init_queue(struct nvme_queue * nvmeq,u16 qid)1557 static void nvme_init_queue(struct nvme_queue *nvmeq, u16 qid)
1558 {
1559 struct nvme_dev *dev = nvmeq->dev;
1560
1561 nvmeq->sq_tail = 0;
1562 nvmeq->last_sq_tail = 0;
1563 nvmeq->cq_head = 0;
1564 nvmeq->cq_phase = 1;
1565 nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
1566 memset((void *)nvmeq->cqes, 0, CQ_SIZE(nvmeq));
1567 nvme_dbbuf_init(dev, nvmeq, qid);
1568 dev->online_queues++;
1569 wmb(); /* ensure the first interrupt sees the initialization */
1570 }
1571
nvme_create_queue(struct nvme_queue * nvmeq,int qid,bool polled)1572 static int nvme_create_queue(struct nvme_queue *nvmeq, int qid, bool polled)
1573 {
1574 struct nvme_dev *dev = nvmeq->dev;
1575 int result;
1576 u16 vector = 0;
1577
1578 clear_bit(NVMEQ_DELETE_ERROR, &nvmeq->flags);
1579
1580 /*
1581 * A queue's vector matches the queue identifier unless the controller
1582 * has only one vector available.
1583 */
1584 if (!polled)
1585 vector = dev->num_vecs == 1 ? 0 : qid;
1586 else
1587 set_bit(NVMEQ_POLLED, &nvmeq->flags);
1588
1589 result = adapter_alloc_cq(dev, qid, nvmeq, vector);
1590 if (result)
1591 return result;
1592
1593 result = adapter_alloc_sq(dev, qid, nvmeq);
1594 if (result < 0)
1595 return result;
1596 if (result)
1597 goto release_cq;
1598
1599 nvmeq->cq_vector = vector;
1600 nvme_init_queue(nvmeq, qid);
1601
1602 if (!polled) {
1603 result = queue_request_irq(nvmeq);
1604 if (result < 0)
1605 goto release_sq;
1606 }
1607
1608 set_bit(NVMEQ_ENABLED, &nvmeq->flags);
1609 return result;
1610
1611 release_sq:
1612 dev->online_queues--;
1613 adapter_delete_sq(dev, qid);
1614 release_cq:
1615 adapter_delete_cq(dev, qid);
1616 return result;
1617 }
1618
1619 static const struct blk_mq_ops nvme_mq_admin_ops = {
1620 .queue_rq = nvme_queue_rq,
1621 .complete = nvme_pci_complete_rq,
1622 .init_hctx = nvme_admin_init_hctx,
1623 .init_request = nvme_init_request,
1624 .timeout = nvme_timeout,
1625 };
1626
1627 static const struct blk_mq_ops nvme_mq_ops = {
1628 .queue_rq = nvme_queue_rq,
1629 .complete = nvme_pci_complete_rq,
1630 .commit_rqs = nvme_commit_rqs,
1631 .init_hctx = nvme_init_hctx,
1632 .init_request = nvme_init_request,
1633 .map_queues = nvme_pci_map_queues,
1634 .timeout = nvme_timeout,
1635 .poll = nvme_poll,
1636 };
1637
nvme_dev_remove_admin(struct nvme_dev * dev)1638 static void nvme_dev_remove_admin(struct nvme_dev *dev)
1639 {
1640 if (dev->ctrl.admin_q && !blk_queue_dying(dev->ctrl.admin_q)) {
1641 /*
1642 * If the controller was reset during removal, it's possible
1643 * user requests may be waiting on a stopped queue. Start the
1644 * queue to flush these to completion.
1645 */
1646 nvme_start_admin_queue(&dev->ctrl);
1647 blk_cleanup_queue(dev->ctrl.admin_q);
1648 blk_mq_free_tag_set(&dev->admin_tagset);
1649 }
1650 }
1651
nvme_alloc_admin_tags(struct nvme_dev * dev)1652 static int nvme_alloc_admin_tags(struct nvme_dev *dev)
1653 {
1654 if (!dev->ctrl.admin_q) {
1655 dev->admin_tagset.ops = &nvme_mq_admin_ops;
1656 dev->admin_tagset.nr_hw_queues = 1;
1657
1658 dev->admin_tagset.queue_depth = NVME_AQ_MQ_TAG_DEPTH;
1659 dev->admin_tagset.timeout = ADMIN_TIMEOUT;
1660 dev->admin_tagset.numa_node = dev->ctrl.numa_node;
1661 dev->admin_tagset.cmd_size = sizeof(struct nvme_iod);
1662 dev->admin_tagset.flags = BLK_MQ_F_NO_SCHED;
1663 dev->admin_tagset.driver_data = dev;
1664
1665 if (blk_mq_alloc_tag_set(&dev->admin_tagset))
1666 return -ENOMEM;
1667 dev->ctrl.admin_tagset = &dev->admin_tagset;
1668
1669 dev->ctrl.admin_q = blk_mq_init_queue(&dev->admin_tagset);
1670 if (IS_ERR(dev->ctrl.admin_q)) {
1671 blk_mq_free_tag_set(&dev->admin_tagset);
1672 dev->ctrl.admin_q = NULL;
1673 return -ENOMEM;
1674 }
1675 if (!blk_get_queue(dev->ctrl.admin_q)) {
1676 nvme_dev_remove_admin(dev);
1677 dev->ctrl.admin_q = NULL;
1678 return -ENODEV;
1679 }
1680 } else
1681 nvme_start_admin_queue(&dev->ctrl);
1682
1683 return 0;
1684 }
1685
db_bar_size(struct nvme_dev * dev,unsigned nr_io_queues)1686 static unsigned long db_bar_size(struct nvme_dev *dev, unsigned nr_io_queues)
1687 {
1688 return NVME_REG_DBS + ((nr_io_queues + 1) * 8 * dev->db_stride);
1689 }
1690
nvme_remap_bar(struct nvme_dev * dev,unsigned long size)1691 static int nvme_remap_bar(struct nvme_dev *dev, unsigned long size)
1692 {
1693 struct pci_dev *pdev = to_pci_dev(dev->dev);
1694
1695 if (size <= dev->bar_mapped_size)
1696 return 0;
1697 if (size > pci_resource_len(pdev, 0))
1698 return -ENOMEM;
1699 if (dev->bar)
1700 iounmap(dev->bar);
1701 dev->bar = ioremap(pci_resource_start(pdev, 0), size);
1702 if (!dev->bar) {
1703 dev->bar_mapped_size = 0;
1704 return -ENOMEM;
1705 }
1706 dev->bar_mapped_size = size;
1707 dev->dbs = dev->bar + NVME_REG_DBS;
1708
1709 return 0;
1710 }
1711
nvme_pci_configure_admin_queue(struct nvme_dev * dev)1712 static int nvme_pci_configure_admin_queue(struct nvme_dev *dev)
1713 {
1714 int result;
1715 u32 aqa;
1716 struct nvme_queue *nvmeq;
1717
1718 result = nvme_remap_bar(dev, db_bar_size(dev, 0));
1719 if (result < 0)
1720 return result;
1721
1722 dev->subsystem = readl(dev->bar + NVME_REG_VS) >= NVME_VS(1, 1, 0) ?
1723 NVME_CAP_NSSRC(dev->ctrl.cap) : 0;
1724
1725 if (dev->subsystem &&
1726 (readl(dev->bar + NVME_REG_CSTS) & NVME_CSTS_NSSRO))
1727 writel(NVME_CSTS_NSSRO, dev->bar + NVME_REG_CSTS);
1728
1729 result = nvme_disable_ctrl(&dev->ctrl);
1730 if (result < 0)
1731 return result;
1732
1733 result = nvme_alloc_queue(dev, 0, NVME_AQ_DEPTH);
1734 if (result)
1735 return result;
1736
1737 dev->ctrl.numa_node = dev_to_node(dev->dev);
1738
1739 nvmeq = &dev->queues[0];
1740 aqa = nvmeq->q_depth - 1;
1741 aqa |= aqa << 16;
1742
1743 writel(aqa, dev->bar + NVME_REG_AQA);
1744 lo_hi_writeq(nvmeq->sq_dma_addr, dev->bar + NVME_REG_ASQ);
1745 lo_hi_writeq(nvmeq->cq_dma_addr, dev->bar + NVME_REG_ACQ);
1746
1747 result = nvme_enable_ctrl(&dev->ctrl);
1748 if (result)
1749 return result;
1750
1751 nvmeq->cq_vector = 0;
1752 nvme_init_queue(nvmeq, 0);
1753 result = queue_request_irq(nvmeq);
1754 if (result) {
1755 dev->online_queues--;
1756 return result;
1757 }
1758
1759 set_bit(NVMEQ_ENABLED, &nvmeq->flags);
1760 return result;
1761 }
1762
nvme_create_io_queues(struct nvme_dev * dev)1763 static int nvme_create_io_queues(struct nvme_dev *dev)
1764 {
1765 unsigned i, max, rw_queues;
1766 int ret = 0;
1767
1768 for (i = dev->ctrl.queue_count; i <= dev->max_qid; i++) {
1769 if (nvme_alloc_queue(dev, i, dev->q_depth)) {
1770 ret = -ENOMEM;
1771 break;
1772 }
1773 }
1774
1775 max = min(dev->max_qid, dev->ctrl.queue_count - 1);
1776 if (max != 1 && dev->io_queues[HCTX_TYPE_POLL]) {
1777 rw_queues = dev->io_queues[HCTX_TYPE_DEFAULT] +
1778 dev->io_queues[HCTX_TYPE_READ];
1779 } else {
1780 rw_queues = max;
1781 }
1782
1783 for (i = dev->online_queues; i <= max; i++) {
1784 bool polled = i > rw_queues;
1785
1786 ret = nvme_create_queue(&dev->queues[i], i, polled);
1787 if (ret)
1788 break;
1789 }
1790
1791 /*
1792 * Ignore failing Create SQ/CQ commands, we can continue with less
1793 * than the desired amount of queues, and even a controller without
1794 * I/O queues can still be used to issue admin commands. This might
1795 * be useful to upgrade a buggy firmware for example.
1796 */
1797 return ret >= 0 ? 0 : ret;
1798 }
1799
nvme_cmb_show(struct device * dev,struct device_attribute * attr,char * buf)1800 static ssize_t nvme_cmb_show(struct device *dev,
1801 struct device_attribute *attr,
1802 char *buf)
1803 {
1804 struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev));
1805
1806 return scnprintf(buf, PAGE_SIZE, "cmbloc : x%08x\ncmbsz : x%08x\n",
1807 ndev->cmbloc, ndev->cmbsz);
1808 }
1809 static DEVICE_ATTR(cmb, S_IRUGO, nvme_cmb_show, NULL);
1810
nvme_cmb_size_unit(struct nvme_dev * dev)1811 static u64 nvme_cmb_size_unit(struct nvme_dev *dev)
1812 {
1813 u8 szu = (dev->cmbsz >> NVME_CMBSZ_SZU_SHIFT) & NVME_CMBSZ_SZU_MASK;
1814
1815 return 1ULL << (12 + 4 * szu);
1816 }
1817
nvme_cmb_size(struct nvme_dev * dev)1818 static u32 nvme_cmb_size(struct nvme_dev *dev)
1819 {
1820 return (dev->cmbsz >> NVME_CMBSZ_SZ_SHIFT) & NVME_CMBSZ_SZ_MASK;
1821 }
1822
nvme_map_cmb(struct nvme_dev * dev)1823 static void nvme_map_cmb(struct nvme_dev *dev)
1824 {
1825 u64 size, offset;
1826 resource_size_t bar_size;
1827 struct pci_dev *pdev = to_pci_dev(dev->dev);
1828 int bar;
1829
1830 if (dev->cmb_size)
1831 return;
1832
1833 if (NVME_CAP_CMBS(dev->ctrl.cap))
1834 writel(NVME_CMBMSC_CRE, dev->bar + NVME_REG_CMBMSC);
1835
1836 dev->cmbsz = readl(dev->bar + NVME_REG_CMBSZ);
1837 if (!dev->cmbsz)
1838 return;
1839 dev->cmbloc = readl(dev->bar + NVME_REG_CMBLOC);
1840
1841 size = nvme_cmb_size_unit(dev) * nvme_cmb_size(dev);
1842 offset = nvme_cmb_size_unit(dev) * NVME_CMB_OFST(dev->cmbloc);
1843 bar = NVME_CMB_BIR(dev->cmbloc);
1844 bar_size = pci_resource_len(pdev, bar);
1845
1846 if (offset > bar_size)
1847 return;
1848
1849 /*
1850 * Tell the controller about the host side address mapping the CMB,
1851 * and enable CMB decoding for the NVMe 1.4+ scheme:
1852 */
1853 if (NVME_CAP_CMBS(dev->ctrl.cap)) {
1854 hi_lo_writeq(NVME_CMBMSC_CRE | NVME_CMBMSC_CMSE |
1855 (pci_bus_address(pdev, bar) + offset),
1856 dev->bar + NVME_REG_CMBMSC);
1857 }
1858
1859 /*
1860 * Controllers may support a CMB size larger than their BAR,
1861 * for example, due to being behind a bridge. Reduce the CMB to
1862 * the reported size of the BAR
1863 */
1864 if (size > bar_size - offset)
1865 size = bar_size - offset;
1866
1867 if (pci_p2pdma_add_resource(pdev, bar, size, offset)) {
1868 dev_warn(dev->ctrl.device,
1869 "failed to register the CMB\n");
1870 return;
1871 }
1872
1873 dev->cmb_size = size;
1874 dev->cmb_use_sqes = use_cmb_sqes && (dev->cmbsz & NVME_CMBSZ_SQS);
1875
1876 if ((dev->cmbsz & (NVME_CMBSZ_WDS | NVME_CMBSZ_RDS)) ==
1877 (NVME_CMBSZ_WDS | NVME_CMBSZ_RDS))
1878 pci_p2pmem_publish(pdev, true);
1879
1880 if (sysfs_add_file_to_group(&dev->ctrl.device->kobj,
1881 &dev_attr_cmb.attr, NULL))
1882 dev_warn(dev->ctrl.device,
1883 "failed to add sysfs attribute for CMB\n");
1884 }
1885
nvme_release_cmb(struct nvme_dev * dev)1886 static inline void nvme_release_cmb(struct nvme_dev *dev)
1887 {
1888 if (dev->cmb_size) {
1889 sysfs_remove_file_from_group(&dev->ctrl.device->kobj,
1890 &dev_attr_cmb.attr, NULL);
1891 dev->cmb_size = 0;
1892 }
1893 }
1894
nvme_set_host_mem(struct nvme_dev * dev,u32 bits)1895 static int nvme_set_host_mem(struct nvme_dev *dev, u32 bits)
1896 {
1897 u32 host_mem_size = dev->host_mem_size >> NVME_CTRL_PAGE_SHIFT;
1898 u64 dma_addr = dev->host_mem_descs_dma;
1899 struct nvme_command c;
1900 int ret;
1901
1902 memset(&c, 0, sizeof(c));
1903 c.features.opcode = nvme_admin_set_features;
1904 c.features.fid = cpu_to_le32(NVME_FEAT_HOST_MEM_BUF);
1905 c.features.dword11 = cpu_to_le32(bits);
1906 c.features.dword12 = cpu_to_le32(host_mem_size);
1907 c.features.dword13 = cpu_to_le32(lower_32_bits(dma_addr));
1908 c.features.dword14 = cpu_to_le32(upper_32_bits(dma_addr));
1909 c.features.dword15 = cpu_to_le32(dev->nr_host_mem_descs);
1910
1911 ret = nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1912 if (ret) {
1913 dev_warn(dev->ctrl.device,
1914 "failed to set host mem (err %d, flags %#x).\n",
1915 ret, bits);
1916 }
1917 return ret;
1918 }
1919
nvme_free_host_mem(struct nvme_dev * dev)1920 static void nvme_free_host_mem(struct nvme_dev *dev)
1921 {
1922 int i;
1923
1924 for (i = 0; i < dev->nr_host_mem_descs; i++) {
1925 struct nvme_host_mem_buf_desc *desc = &dev->host_mem_descs[i];
1926 size_t size = le32_to_cpu(desc->size) * NVME_CTRL_PAGE_SIZE;
1927
1928 dma_free_attrs(dev->dev, size, dev->host_mem_desc_bufs[i],
1929 le64_to_cpu(desc->addr),
1930 DMA_ATTR_NO_KERNEL_MAPPING | DMA_ATTR_NO_WARN);
1931 }
1932
1933 kfree(dev->host_mem_desc_bufs);
1934 dev->host_mem_desc_bufs = NULL;
1935 dma_free_coherent(dev->dev,
1936 dev->nr_host_mem_descs * sizeof(*dev->host_mem_descs),
1937 dev->host_mem_descs, dev->host_mem_descs_dma);
1938 dev->host_mem_descs = NULL;
1939 dev->nr_host_mem_descs = 0;
1940 }
1941
__nvme_alloc_host_mem(struct nvme_dev * dev,u64 preferred,u32 chunk_size)1942 static int __nvme_alloc_host_mem(struct nvme_dev *dev, u64 preferred,
1943 u32 chunk_size)
1944 {
1945 struct nvme_host_mem_buf_desc *descs;
1946 u32 max_entries, len;
1947 dma_addr_t descs_dma;
1948 int i = 0;
1949 void **bufs;
1950 u64 size, tmp;
1951
1952 tmp = (preferred + chunk_size - 1);
1953 do_div(tmp, chunk_size);
1954 max_entries = tmp;
1955
1956 if (dev->ctrl.hmmaxd && dev->ctrl.hmmaxd < max_entries)
1957 max_entries = dev->ctrl.hmmaxd;
1958
1959 descs = dma_alloc_coherent(dev->dev, max_entries * sizeof(*descs),
1960 &descs_dma, GFP_KERNEL);
1961 if (!descs)
1962 goto out;
1963
1964 bufs = kcalloc(max_entries, sizeof(*bufs), GFP_KERNEL);
1965 if (!bufs)
1966 goto out_free_descs;
1967
1968 for (size = 0; size < preferred && i < max_entries; size += len) {
1969 dma_addr_t dma_addr;
1970
1971 len = min_t(u64, chunk_size, preferred - size);
1972 bufs[i] = dma_alloc_attrs(dev->dev, len, &dma_addr, GFP_KERNEL,
1973 DMA_ATTR_NO_KERNEL_MAPPING | DMA_ATTR_NO_WARN);
1974 if (!bufs[i])
1975 break;
1976
1977 descs[i].addr = cpu_to_le64(dma_addr);
1978 descs[i].size = cpu_to_le32(len / NVME_CTRL_PAGE_SIZE);
1979 i++;
1980 }
1981
1982 if (!size)
1983 goto out_free_bufs;
1984
1985 dev->nr_host_mem_descs = i;
1986 dev->host_mem_size = size;
1987 dev->host_mem_descs = descs;
1988 dev->host_mem_descs_dma = descs_dma;
1989 dev->host_mem_desc_bufs = bufs;
1990 return 0;
1991
1992 out_free_bufs:
1993 while (--i >= 0) {
1994 size_t size = le32_to_cpu(descs[i].size) * NVME_CTRL_PAGE_SIZE;
1995
1996 dma_free_attrs(dev->dev, size, bufs[i],
1997 le64_to_cpu(descs[i].addr),
1998 DMA_ATTR_NO_KERNEL_MAPPING | DMA_ATTR_NO_WARN);
1999 }
2000
2001 kfree(bufs);
2002 out_free_descs:
2003 dma_free_coherent(dev->dev, max_entries * sizeof(*descs), descs,
2004 descs_dma);
2005 out:
2006 dev->host_mem_descs = NULL;
2007 return -ENOMEM;
2008 }
2009
nvme_alloc_host_mem(struct nvme_dev * dev,u64 min,u64 preferred)2010 static int nvme_alloc_host_mem(struct nvme_dev *dev, u64 min, u64 preferred)
2011 {
2012 u64 min_chunk = min_t(u64, preferred, PAGE_SIZE * MAX_ORDER_NR_PAGES);
2013 u64 hmminds = max_t(u32, dev->ctrl.hmminds * 4096, PAGE_SIZE * 2);
2014 u64 chunk_size;
2015
2016 /* start big and work our way down */
2017 for (chunk_size = min_chunk; chunk_size >= hmminds; chunk_size /= 2) {
2018 if (!__nvme_alloc_host_mem(dev, preferred, chunk_size)) {
2019 if (!min || dev->host_mem_size >= min)
2020 return 0;
2021 nvme_free_host_mem(dev);
2022 }
2023 }
2024
2025 return -ENOMEM;
2026 }
2027
nvme_setup_host_mem(struct nvme_dev * dev)2028 static int nvme_setup_host_mem(struct nvme_dev *dev)
2029 {
2030 u64 max = (u64)max_host_mem_size_mb * SZ_1M;
2031 u64 preferred = (u64)dev->ctrl.hmpre * 4096;
2032 u64 min = (u64)dev->ctrl.hmmin * 4096;
2033 u32 enable_bits = NVME_HOST_MEM_ENABLE;
2034 int ret;
2035
2036 preferred = min(preferred, max);
2037 if (min > max) {
2038 dev_warn(dev->ctrl.device,
2039 "min host memory (%lld MiB) above limit (%d MiB).\n",
2040 min >> ilog2(SZ_1M), max_host_mem_size_mb);
2041 nvme_free_host_mem(dev);
2042 return 0;
2043 }
2044
2045 /*
2046 * If we already have a buffer allocated check if we can reuse it.
2047 */
2048 if (dev->host_mem_descs) {
2049 if (dev->host_mem_size >= min)
2050 enable_bits |= NVME_HOST_MEM_RETURN;
2051 else
2052 nvme_free_host_mem(dev);
2053 }
2054
2055 if (!dev->host_mem_descs) {
2056 if (nvme_alloc_host_mem(dev, min, preferred)) {
2057 dev_warn(dev->ctrl.device,
2058 "failed to allocate host memory buffer.\n");
2059 return 0; /* controller must work without HMB */
2060 }
2061
2062 dev_info(dev->ctrl.device,
2063 "allocated %lld MiB host memory buffer.\n",
2064 dev->host_mem_size >> ilog2(SZ_1M));
2065 }
2066
2067 ret = nvme_set_host_mem(dev, enable_bits);
2068 if (ret)
2069 nvme_free_host_mem(dev);
2070 return ret;
2071 }
2072
2073 /*
2074 * nirqs is the number of interrupts available for write and read
2075 * queues. The core already reserved an interrupt for the admin queue.
2076 */
nvme_calc_irq_sets(struct irq_affinity * affd,unsigned int nrirqs)2077 static void nvme_calc_irq_sets(struct irq_affinity *affd, unsigned int nrirqs)
2078 {
2079 struct nvme_dev *dev = affd->priv;
2080 unsigned int nr_read_queues, nr_write_queues = dev->nr_write_queues;
2081
2082 /*
2083 * If there is no interrupt available for queues, ensure that
2084 * the default queue is set to 1. The affinity set size is
2085 * also set to one, but the irq core ignores it for this case.
2086 *
2087 * If only one interrupt is available or 'write_queue' == 0, combine
2088 * write and read queues.
2089 *
2090 * If 'write_queues' > 0, ensure it leaves room for at least one read
2091 * queue.
2092 */
2093 if (!nrirqs) {
2094 nrirqs = 1;
2095 nr_read_queues = 0;
2096 } else if (nrirqs == 1 || !nr_write_queues) {
2097 nr_read_queues = 0;
2098 } else if (nr_write_queues >= nrirqs) {
2099 nr_read_queues = 1;
2100 } else {
2101 nr_read_queues = nrirqs - nr_write_queues;
2102 }
2103
2104 dev->io_queues[HCTX_TYPE_DEFAULT] = nrirqs - nr_read_queues;
2105 affd->set_size[HCTX_TYPE_DEFAULT] = nrirqs - nr_read_queues;
2106 dev->io_queues[HCTX_TYPE_READ] = nr_read_queues;
2107 affd->set_size[HCTX_TYPE_READ] = nr_read_queues;
2108 affd->nr_sets = nr_read_queues ? 2 : 1;
2109 }
2110
nvme_setup_irqs(struct nvme_dev * dev,unsigned int nr_io_queues)2111 static int nvme_setup_irqs(struct nvme_dev *dev, unsigned int nr_io_queues)
2112 {
2113 struct pci_dev *pdev = to_pci_dev(dev->dev);
2114 struct irq_affinity affd = {
2115 .pre_vectors = 1,
2116 .calc_sets = nvme_calc_irq_sets,
2117 .priv = dev,
2118 };
2119 unsigned int irq_queues, poll_queues;
2120
2121 /*
2122 * Poll queues don't need interrupts, but we need at least one I/O queue
2123 * left over for non-polled I/O.
2124 */
2125 poll_queues = min(dev->nr_poll_queues, nr_io_queues - 1);
2126 dev->io_queues[HCTX_TYPE_POLL] = poll_queues;
2127
2128 /*
2129 * Initialize for the single interrupt case, will be updated in
2130 * nvme_calc_irq_sets().
2131 */
2132 dev->io_queues[HCTX_TYPE_DEFAULT] = 1;
2133 dev->io_queues[HCTX_TYPE_READ] = 0;
2134
2135 /*
2136 * We need interrupts for the admin queue and each non-polled I/O queue,
2137 * but some Apple controllers require all queues to use the first
2138 * vector.
2139 */
2140 irq_queues = 1;
2141 if (!(dev->ctrl.quirks & NVME_QUIRK_SINGLE_VECTOR))
2142 irq_queues += (nr_io_queues - poll_queues);
2143 return pci_alloc_irq_vectors_affinity(pdev, 1, irq_queues,
2144 PCI_IRQ_ALL_TYPES | PCI_IRQ_AFFINITY, &affd);
2145 }
2146
nvme_disable_io_queues(struct nvme_dev * dev)2147 static void nvme_disable_io_queues(struct nvme_dev *dev)
2148 {
2149 if (__nvme_disable_io_queues(dev, nvme_admin_delete_sq))
2150 __nvme_disable_io_queues(dev, nvme_admin_delete_cq);
2151 }
2152
nvme_max_io_queues(struct nvme_dev * dev)2153 static unsigned int nvme_max_io_queues(struct nvme_dev *dev)
2154 {
2155 return num_possible_cpus() + dev->nr_write_queues + dev->nr_poll_queues;
2156 }
2157
nvme_setup_io_queues(struct nvme_dev * dev)2158 static int nvme_setup_io_queues(struct nvme_dev *dev)
2159 {
2160 struct nvme_queue *adminq = &dev->queues[0];
2161 struct pci_dev *pdev = to_pci_dev(dev->dev);
2162 unsigned int nr_io_queues;
2163 unsigned long size;
2164 int result;
2165
2166 /*
2167 * Sample the module parameters once at reset time so that we have
2168 * stable values to work with.
2169 */
2170 dev->nr_write_queues = write_queues;
2171 dev->nr_poll_queues = poll_queues;
2172
2173 /*
2174 * If tags are shared with admin queue (Apple bug), then
2175 * make sure we only use one IO queue.
2176 */
2177 if (dev->ctrl.quirks & NVME_QUIRK_SHARED_TAGS)
2178 nr_io_queues = 1;
2179 else
2180 nr_io_queues = min(nvme_max_io_queues(dev),
2181 dev->nr_allocated_queues - 1);
2182
2183 result = nvme_set_queue_count(&dev->ctrl, &nr_io_queues);
2184 if (result < 0)
2185 return result;
2186
2187 if (nr_io_queues == 0)
2188 return 0;
2189
2190 clear_bit(NVMEQ_ENABLED, &adminq->flags);
2191
2192 if (dev->cmb_use_sqes) {
2193 result = nvme_cmb_qdepth(dev, nr_io_queues,
2194 sizeof(struct nvme_command));
2195 if (result > 0)
2196 dev->q_depth = result;
2197 else
2198 dev->cmb_use_sqes = false;
2199 }
2200
2201 do {
2202 size = db_bar_size(dev, nr_io_queues);
2203 result = nvme_remap_bar(dev, size);
2204 if (!result)
2205 break;
2206 if (!--nr_io_queues)
2207 return -ENOMEM;
2208 } while (1);
2209 adminq->q_db = dev->dbs;
2210
2211 retry:
2212 /* Deregister the admin queue's interrupt */
2213 pci_free_irq(pdev, 0, adminq);
2214
2215 /*
2216 * If we enable msix early due to not intx, disable it again before
2217 * setting up the full range we need.
2218 */
2219 pci_free_irq_vectors(pdev);
2220
2221 result = nvme_setup_irqs(dev, nr_io_queues);
2222 if (result <= 0)
2223 return -EIO;
2224
2225 dev->num_vecs = result;
2226 result = max(result - 1, 1);
2227 dev->max_qid = result + dev->io_queues[HCTX_TYPE_POLL];
2228
2229 /*
2230 * Should investigate if there's a performance win from allocating
2231 * more queues than interrupt vectors; it might allow the submission
2232 * path to scale better, even if the receive path is limited by the
2233 * number of interrupts.
2234 */
2235 result = queue_request_irq(adminq);
2236 if (result)
2237 return result;
2238 set_bit(NVMEQ_ENABLED, &adminq->flags);
2239
2240 result = nvme_create_io_queues(dev);
2241 if (result || dev->online_queues < 2)
2242 return result;
2243
2244 if (dev->online_queues - 1 < dev->max_qid) {
2245 nr_io_queues = dev->online_queues - 1;
2246 nvme_disable_io_queues(dev);
2247 nvme_suspend_io_queues(dev);
2248 goto retry;
2249 }
2250 dev_info(dev->ctrl.device, "%d/%d/%d default/read/poll queues\n",
2251 dev->io_queues[HCTX_TYPE_DEFAULT],
2252 dev->io_queues[HCTX_TYPE_READ],
2253 dev->io_queues[HCTX_TYPE_POLL]);
2254 return 0;
2255 }
2256
nvme_del_queue_end(struct request * req,blk_status_t error)2257 static void nvme_del_queue_end(struct request *req, blk_status_t error)
2258 {
2259 struct nvme_queue *nvmeq = req->end_io_data;
2260
2261 blk_mq_free_request(req);
2262 complete(&nvmeq->delete_done);
2263 }
2264
nvme_del_cq_end(struct request * req,blk_status_t error)2265 static void nvme_del_cq_end(struct request *req, blk_status_t error)
2266 {
2267 struct nvme_queue *nvmeq = req->end_io_data;
2268
2269 if (error)
2270 set_bit(NVMEQ_DELETE_ERROR, &nvmeq->flags);
2271
2272 nvme_del_queue_end(req, error);
2273 }
2274
nvme_delete_queue(struct nvme_queue * nvmeq,u8 opcode)2275 static int nvme_delete_queue(struct nvme_queue *nvmeq, u8 opcode)
2276 {
2277 struct request_queue *q = nvmeq->dev->ctrl.admin_q;
2278 struct request *req;
2279 struct nvme_command cmd;
2280
2281 memset(&cmd, 0, sizeof(cmd));
2282 cmd.delete_queue.opcode = opcode;
2283 cmd.delete_queue.qid = cpu_to_le16(nvmeq->qid);
2284
2285 req = nvme_alloc_request(q, &cmd, BLK_MQ_REQ_NOWAIT);
2286 if (IS_ERR(req))
2287 return PTR_ERR(req);
2288
2289 req->end_io_data = nvmeq;
2290
2291 init_completion(&nvmeq->delete_done);
2292 blk_execute_rq_nowait(q, NULL, req, false,
2293 opcode == nvme_admin_delete_cq ?
2294 nvme_del_cq_end : nvme_del_queue_end);
2295 return 0;
2296 }
2297
__nvme_disable_io_queues(struct nvme_dev * dev,u8 opcode)2298 static bool __nvme_disable_io_queues(struct nvme_dev *dev, u8 opcode)
2299 {
2300 int nr_queues = dev->online_queues - 1, sent = 0;
2301 unsigned long timeout;
2302
2303 retry:
2304 timeout = ADMIN_TIMEOUT;
2305 while (nr_queues > 0) {
2306 if (nvme_delete_queue(&dev->queues[nr_queues], opcode))
2307 break;
2308 nr_queues--;
2309 sent++;
2310 }
2311 while (sent) {
2312 struct nvme_queue *nvmeq = &dev->queues[nr_queues + sent];
2313
2314 timeout = wait_for_completion_io_timeout(&nvmeq->delete_done,
2315 timeout);
2316 if (timeout == 0)
2317 return false;
2318
2319 sent--;
2320 if (nr_queues)
2321 goto retry;
2322 }
2323 return true;
2324 }
2325
nvme_dev_add(struct nvme_dev * dev)2326 static void nvme_dev_add(struct nvme_dev *dev)
2327 {
2328 int ret;
2329
2330 if (!dev->ctrl.tagset) {
2331 dev->tagset.ops = &nvme_mq_ops;
2332 dev->tagset.nr_hw_queues = dev->online_queues - 1;
2333 dev->tagset.nr_maps = 2; /* default + read */
2334 if (dev->io_queues[HCTX_TYPE_POLL])
2335 dev->tagset.nr_maps++;
2336 dev->tagset.timeout = NVME_IO_TIMEOUT;
2337 dev->tagset.numa_node = dev->ctrl.numa_node;
2338 dev->tagset.queue_depth = min_t(unsigned int, dev->q_depth,
2339 BLK_MQ_MAX_DEPTH) - 1;
2340 dev->tagset.cmd_size = sizeof(struct nvme_iod);
2341 dev->tagset.flags = BLK_MQ_F_SHOULD_MERGE;
2342 dev->tagset.driver_data = dev;
2343
2344 /*
2345 * Some Apple controllers requires tags to be unique
2346 * across admin and IO queue, so reserve the first 32
2347 * tags of the IO queue.
2348 */
2349 if (dev->ctrl.quirks & NVME_QUIRK_SHARED_TAGS)
2350 dev->tagset.reserved_tags = NVME_AQ_DEPTH;
2351
2352 ret = blk_mq_alloc_tag_set(&dev->tagset);
2353 if (ret) {
2354 dev_warn(dev->ctrl.device,
2355 "IO queues tagset allocation failed %d\n", ret);
2356 return;
2357 }
2358 dev->ctrl.tagset = &dev->tagset;
2359 } else {
2360 blk_mq_update_nr_hw_queues(&dev->tagset, dev->online_queues - 1);
2361
2362 /* Free previously allocated queues that are no longer usable */
2363 nvme_free_queues(dev, dev->online_queues);
2364 }
2365
2366 nvme_dbbuf_set(dev);
2367 }
2368
nvme_pci_enable(struct nvme_dev * dev)2369 static int nvme_pci_enable(struct nvme_dev *dev)
2370 {
2371 int result = -ENOMEM;
2372 struct pci_dev *pdev = to_pci_dev(dev->dev);
2373
2374 if (pci_enable_device_mem(pdev))
2375 return result;
2376
2377 pci_set_master(pdev);
2378
2379 if (dma_set_mask_and_coherent(dev->dev, DMA_BIT_MASK(64)))
2380 goto disable;
2381
2382 if (readl(dev->bar + NVME_REG_CSTS) == -1) {
2383 result = -ENODEV;
2384 goto disable;
2385 }
2386
2387 /*
2388 * Some devices and/or platforms don't advertise or work with INTx
2389 * interrupts. Pre-enable a single MSIX or MSI vec for setup. We'll
2390 * adjust this later.
2391 */
2392 result = pci_alloc_irq_vectors(pdev, 1, 1, PCI_IRQ_ALL_TYPES);
2393 if (result < 0)
2394 return result;
2395
2396 dev->ctrl.cap = lo_hi_readq(dev->bar + NVME_REG_CAP);
2397
2398 dev->q_depth = min_t(u32, NVME_CAP_MQES(dev->ctrl.cap) + 1,
2399 io_queue_depth);
2400 dev->ctrl.sqsize = dev->q_depth - 1; /* 0's based queue depth */
2401 dev->db_stride = 1 << NVME_CAP_STRIDE(dev->ctrl.cap);
2402 dev->dbs = dev->bar + 4096;
2403
2404 /*
2405 * Some Apple controllers require a non-standard SQE size.
2406 * Interestingly they also seem to ignore the CC:IOSQES register
2407 * so we don't bother updating it here.
2408 */
2409 if (dev->ctrl.quirks & NVME_QUIRK_128_BYTES_SQES)
2410 dev->io_sqes = 7;
2411 else
2412 dev->io_sqes = NVME_NVM_IOSQES;
2413
2414 /*
2415 * Temporary fix for the Apple controller found in the MacBook8,1 and
2416 * some MacBook7,1 to avoid controller resets and data loss.
2417 */
2418 if (pdev->vendor == PCI_VENDOR_ID_APPLE && pdev->device == 0x2001) {
2419 dev->q_depth = 2;
2420 dev_warn(dev->ctrl.device, "detected Apple NVMe controller, "
2421 "set queue depth=%u to work around controller resets\n",
2422 dev->q_depth);
2423 } else if (pdev->vendor == PCI_VENDOR_ID_SAMSUNG &&
2424 (pdev->device == 0xa821 || pdev->device == 0xa822) &&
2425 NVME_CAP_MQES(dev->ctrl.cap) == 0) {
2426 dev->q_depth = 64;
2427 dev_err(dev->ctrl.device, "detected PM1725 NVMe controller, "
2428 "set queue depth=%u\n", dev->q_depth);
2429 }
2430
2431 /*
2432 * Controllers with the shared tags quirk need the IO queue to be
2433 * big enough so that we get 32 tags for the admin queue
2434 */
2435 if ((dev->ctrl.quirks & NVME_QUIRK_SHARED_TAGS) &&
2436 (dev->q_depth < (NVME_AQ_DEPTH + 2))) {
2437 dev->q_depth = NVME_AQ_DEPTH + 2;
2438 dev_warn(dev->ctrl.device, "IO queue depth clamped to %d\n",
2439 dev->q_depth);
2440 }
2441
2442
2443 nvme_map_cmb(dev);
2444
2445 pci_enable_pcie_error_reporting(pdev);
2446 pci_save_state(pdev);
2447 return 0;
2448
2449 disable:
2450 pci_disable_device(pdev);
2451 return result;
2452 }
2453
nvme_dev_unmap(struct nvme_dev * dev)2454 static void nvme_dev_unmap(struct nvme_dev *dev)
2455 {
2456 if (dev->bar)
2457 iounmap(dev->bar);
2458 pci_release_mem_regions(to_pci_dev(dev->dev));
2459 }
2460
nvme_pci_disable(struct nvme_dev * dev)2461 static void nvme_pci_disable(struct nvme_dev *dev)
2462 {
2463 struct pci_dev *pdev = to_pci_dev(dev->dev);
2464
2465 pci_free_irq_vectors(pdev);
2466
2467 if (pci_is_enabled(pdev)) {
2468 pci_disable_pcie_error_reporting(pdev);
2469 pci_disable_device(pdev);
2470 }
2471 }
2472
nvme_dev_disable(struct nvme_dev * dev,bool shutdown)2473 static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown)
2474 {
2475 bool dead = true, freeze = false;
2476 struct pci_dev *pdev = to_pci_dev(dev->dev);
2477
2478 mutex_lock(&dev->shutdown_lock);
2479 if (pci_is_enabled(pdev)) {
2480 u32 csts = readl(dev->bar + NVME_REG_CSTS);
2481
2482 if (dev->ctrl.state == NVME_CTRL_LIVE ||
2483 dev->ctrl.state == NVME_CTRL_RESETTING) {
2484 freeze = true;
2485 nvme_start_freeze(&dev->ctrl);
2486 }
2487 dead = !!((csts & NVME_CSTS_CFS) || !(csts & NVME_CSTS_RDY) ||
2488 pdev->error_state != pci_channel_io_normal);
2489 }
2490
2491 /*
2492 * Give the controller a chance to complete all entered requests if
2493 * doing a safe shutdown.
2494 */
2495 if (!dead && shutdown && freeze)
2496 nvme_wait_freeze_timeout(&dev->ctrl, NVME_IO_TIMEOUT);
2497
2498 nvme_stop_queues(&dev->ctrl);
2499
2500 if (!dead && dev->ctrl.queue_count > 0) {
2501 nvme_disable_io_queues(dev);
2502 nvme_disable_admin_queue(dev, shutdown);
2503 }
2504 nvme_suspend_io_queues(dev);
2505 nvme_suspend_queue(&dev->queues[0]);
2506 nvme_pci_disable(dev);
2507 nvme_reap_pending_cqes(dev);
2508
2509 blk_mq_tagset_busy_iter(&dev->tagset, nvme_cancel_request, &dev->ctrl);
2510 blk_mq_tagset_busy_iter(&dev->admin_tagset, nvme_cancel_request, &dev->ctrl);
2511 blk_mq_tagset_wait_completed_request(&dev->tagset);
2512 blk_mq_tagset_wait_completed_request(&dev->admin_tagset);
2513
2514 /*
2515 * The driver will not be starting up queues again if shutting down so
2516 * must flush all entered requests to their failed completion to avoid
2517 * deadlocking blk-mq hot-cpu notifier.
2518 */
2519 if (shutdown) {
2520 nvme_start_queues(&dev->ctrl);
2521 if (dev->ctrl.admin_q && !blk_queue_dying(dev->ctrl.admin_q))
2522 nvme_start_admin_queue(&dev->ctrl);
2523 }
2524 mutex_unlock(&dev->shutdown_lock);
2525 }
2526
nvme_disable_prepare_reset(struct nvme_dev * dev,bool shutdown)2527 static int nvme_disable_prepare_reset(struct nvme_dev *dev, bool shutdown)
2528 {
2529 if (!nvme_wait_reset(&dev->ctrl))
2530 return -EBUSY;
2531 nvme_dev_disable(dev, shutdown);
2532 return 0;
2533 }
2534
nvme_setup_prp_pools(struct nvme_dev * dev)2535 static int nvme_setup_prp_pools(struct nvme_dev *dev)
2536 {
2537 dev->prp_page_pool = dma_pool_create("prp list page", dev->dev,
2538 NVME_CTRL_PAGE_SIZE,
2539 NVME_CTRL_PAGE_SIZE, 0);
2540 if (!dev->prp_page_pool)
2541 return -ENOMEM;
2542
2543 /* Optimisation for I/Os between 4k and 128k */
2544 dev->prp_small_pool = dma_pool_create("prp list 256", dev->dev,
2545 256, 256, 0);
2546 if (!dev->prp_small_pool) {
2547 dma_pool_destroy(dev->prp_page_pool);
2548 return -ENOMEM;
2549 }
2550 return 0;
2551 }
2552
nvme_release_prp_pools(struct nvme_dev * dev)2553 static void nvme_release_prp_pools(struct nvme_dev *dev)
2554 {
2555 dma_pool_destroy(dev->prp_page_pool);
2556 dma_pool_destroy(dev->prp_small_pool);
2557 }
2558
nvme_free_tagset(struct nvme_dev * dev)2559 static void nvme_free_tagset(struct nvme_dev *dev)
2560 {
2561 if (dev->tagset.tags)
2562 blk_mq_free_tag_set(&dev->tagset);
2563 dev->ctrl.tagset = NULL;
2564 }
2565
nvme_pci_free_ctrl(struct nvme_ctrl * ctrl)2566 static void nvme_pci_free_ctrl(struct nvme_ctrl *ctrl)
2567 {
2568 struct nvme_dev *dev = to_nvme_dev(ctrl);
2569
2570 nvme_dbbuf_dma_free(dev);
2571 nvme_free_tagset(dev);
2572 if (dev->ctrl.admin_q)
2573 blk_put_queue(dev->ctrl.admin_q);
2574 free_opal_dev(dev->ctrl.opal_dev);
2575 mempool_destroy(dev->iod_mempool);
2576 put_device(dev->dev);
2577 kfree(dev->queues);
2578 kfree(dev);
2579 }
2580
nvme_remove_dead_ctrl(struct nvme_dev * dev)2581 static void nvme_remove_dead_ctrl(struct nvme_dev *dev)
2582 {
2583 /*
2584 * Set state to deleting now to avoid blocking nvme_wait_reset(), which
2585 * may be holding this pci_dev's device lock.
2586 */
2587 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING);
2588 nvme_get_ctrl(&dev->ctrl);
2589 nvme_dev_disable(dev, false);
2590 nvme_kill_queues(&dev->ctrl);
2591 if (!queue_work(nvme_wq, &dev->remove_work))
2592 nvme_put_ctrl(&dev->ctrl);
2593 }
2594
nvme_reset_work(struct work_struct * work)2595 static void nvme_reset_work(struct work_struct *work)
2596 {
2597 struct nvme_dev *dev =
2598 container_of(work, struct nvme_dev, ctrl.reset_work);
2599 bool was_suspend = !!(dev->ctrl.ctrl_config & NVME_CC_SHN_NORMAL);
2600 int result;
2601
2602 if (dev->ctrl.state != NVME_CTRL_RESETTING) {
2603 dev_warn(dev->ctrl.device, "ctrl state %d is not RESETTING\n",
2604 dev->ctrl.state);
2605 result = -ENODEV;
2606 goto out;
2607 }
2608
2609 /*
2610 * If we're called to reset a live controller first shut it down before
2611 * moving on.
2612 */
2613 if (dev->ctrl.ctrl_config & NVME_CC_ENABLE)
2614 nvme_dev_disable(dev, false);
2615 nvme_sync_queues(&dev->ctrl);
2616
2617 mutex_lock(&dev->shutdown_lock);
2618 result = nvme_pci_enable(dev);
2619 if (result)
2620 goto out_unlock;
2621
2622 result = nvme_pci_configure_admin_queue(dev);
2623 if (result)
2624 goto out_unlock;
2625
2626 result = nvme_alloc_admin_tags(dev);
2627 if (result)
2628 goto out_unlock;
2629
2630 dma_set_min_align_mask(dev->dev, NVME_CTRL_PAGE_SIZE - 1);
2631
2632 /*
2633 * Limit the max command size to prevent iod->sg allocations going
2634 * over a single page.
2635 */
2636 dev->ctrl.max_hw_sectors = min_t(u32,
2637 NVME_MAX_KB_SZ << 1, dma_max_mapping_size(dev->dev) >> 9);
2638 dev->ctrl.max_segments = NVME_MAX_SEGS;
2639
2640 /*
2641 * Don't limit the IOMMU merged segment size.
2642 */
2643 dma_set_max_seg_size(dev->dev, 0xffffffff);
2644
2645 mutex_unlock(&dev->shutdown_lock);
2646
2647 /*
2648 * Introduce CONNECTING state from nvme-fc/rdma transports to mark the
2649 * initializing procedure here.
2650 */
2651 if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_CONNECTING)) {
2652 dev_warn(dev->ctrl.device,
2653 "failed to mark controller CONNECTING\n");
2654 result = -EBUSY;
2655 goto out;
2656 }
2657
2658 /*
2659 * We do not support an SGL for metadata (yet), so we are limited to a
2660 * single integrity segment for the separate metadata pointer.
2661 */
2662 dev->ctrl.max_integrity_segments = 1;
2663
2664 result = nvme_init_identify(&dev->ctrl);
2665 if (result)
2666 goto out;
2667
2668 if (dev->ctrl.oacs & NVME_CTRL_OACS_SEC_SUPP) {
2669 if (!dev->ctrl.opal_dev)
2670 dev->ctrl.opal_dev =
2671 init_opal_dev(&dev->ctrl, &nvme_sec_submit);
2672 else if (was_suspend)
2673 opal_unlock_from_suspend(dev->ctrl.opal_dev);
2674 } else {
2675 free_opal_dev(dev->ctrl.opal_dev);
2676 dev->ctrl.opal_dev = NULL;
2677 }
2678
2679 if (dev->ctrl.oacs & NVME_CTRL_OACS_DBBUF_SUPP) {
2680 result = nvme_dbbuf_dma_alloc(dev);
2681 if (result)
2682 dev_warn(dev->dev,
2683 "unable to allocate dma for dbbuf\n");
2684 }
2685
2686 if (dev->ctrl.hmpre) {
2687 result = nvme_setup_host_mem(dev);
2688 if (result < 0)
2689 goto out;
2690 }
2691
2692 result = nvme_setup_io_queues(dev);
2693 if (result)
2694 goto out;
2695
2696 /*
2697 * Keep the controller around but remove all namespaces if we don't have
2698 * any working I/O queue.
2699 */
2700 if (dev->online_queues < 2) {
2701 dev_warn(dev->ctrl.device, "IO queues not created\n");
2702 nvme_kill_queues(&dev->ctrl);
2703 nvme_remove_namespaces(&dev->ctrl);
2704 nvme_free_tagset(dev);
2705 } else {
2706 nvme_start_queues(&dev->ctrl);
2707 nvme_wait_freeze(&dev->ctrl);
2708 nvme_dev_add(dev);
2709 nvme_unfreeze(&dev->ctrl);
2710 }
2711
2712 /*
2713 * If only admin queue live, keep it to do further investigation or
2714 * recovery.
2715 */
2716 if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_LIVE)) {
2717 dev_warn(dev->ctrl.device,
2718 "failed to mark controller live state\n");
2719 result = -ENODEV;
2720 goto out;
2721 }
2722
2723 nvme_start_ctrl(&dev->ctrl);
2724 return;
2725
2726 out_unlock:
2727 mutex_unlock(&dev->shutdown_lock);
2728 out:
2729 if (result)
2730 dev_warn(dev->ctrl.device,
2731 "Removing after probe failure status: %d\n", result);
2732 nvme_remove_dead_ctrl(dev);
2733 }
2734
nvme_remove_dead_ctrl_work(struct work_struct * work)2735 static void nvme_remove_dead_ctrl_work(struct work_struct *work)
2736 {
2737 struct nvme_dev *dev = container_of(work, struct nvme_dev, remove_work);
2738 struct pci_dev *pdev = to_pci_dev(dev->dev);
2739
2740 if (pci_get_drvdata(pdev))
2741 device_release_driver(&pdev->dev);
2742 nvme_put_ctrl(&dev->ctrl);
2743 }
2744
nvme_pci_reg_read32(struct nvme_ctrl * ctrl,u32 off,u32 * val)2745 static int nvme_pci_reg_read32(struct nvme_ctrl *ctrl, u32 off, u32 *val)
2746 {
2747 *val = readl(to_nvme_dev(ctrl)->bar + off);
2748 return 0;
2749 }
2750
nvme_pci_reg_write32(struct nvme_ctrl * ctrl,u32 off,u32 val)2751 static int nvme_pci_reg_write32(struct nvme_ctrl *ctrl, u32 off, u32 val)
2752 {
2753 writel(val, to_nvme_dev(ctrl)->bar + off);
2754 return 0;
2755 }
2756
nvme_pci_reg_read64(struct nvme_ctrl * ctrl,u32 off,u64 * val)2757 static int nvme_pci_reg_read64(struct nvme_ctrl *ctrl, u32 off, u64 *val)
2758 {
2759 *val = lo_hi_readq(to_nvme_dev(ctrl)->bar + off);
2760 return 0;
2761 }
2762
nvme_pci_get_address(struct nvme_ctrl * ctrl,char * buf,int size)2763 static int nvme_pci_get_address(struct nvme_ctrl *ctrl, char *buf, int size)
2764 {
2765 struct pci_dev *pdev = to_pci_dev(to_nvme_dev(ctrl)->dev);
2766
2767 return snprintf(buf, size, "%s\n", dev_name(&pdev->dev));
2768 }
2769
2770 static const struct nvme_ctrl_ops nvme_pci_ctrl_ops = {
2771 .name = "pcie",
2772 .module = THIS_MODULE,
2773 .flags = NVME_F_METADATA_SUPPORTED |
2774 NVME_F_PCI_P2PDMA,
2775 .reg_read32 = nvme_pci_reg_read32,
2776 .reg_write32 = nvme_pci_reg_write32,
2777 .reg_read64 = nvme_pci_reg_read64,
2778 .free_ctrl = nvme_pci_free_ctrl,
2779 .submit_async_event = nvme_pci_submit_async_event,
2780 .get_address = nvme_pci_get_address,
2781 };
2782
nvme_dev_map(struct nvme_dev * dev)2783 static int nvme_dev_map(struct nvme_dev *dev)
2784 {
2785 struct pci_dev *pdev = to_pci_dev(dev->dev);
2786
2787 if (pci_request_mem_regions(pdev, "nvme"))
2788 return -ENODEV;
2789
2790 if (nvme_remap_bar(dev, NVME_REG_DBS + 4096))
2791 goto release;
2792
2793 return 0;
2794 release:
2795 pci_release_mem_regions(pdev);
2796 return -ENODEV;
2797 }
2798
check_vendor_combination_bug(struct pci_dev * pdev)2799 static unsigned long check_vendor_combination_bug(struct pci_dev *pdev)
2800 {
2801 if (pdev->vendor == 0x144d && pdev->device == 0xa802) {
2802 /*
2803 * Several Samsung devices seem to drop off the PCIe bus
2804 * randomly when APST is on and uses the deepest sleep state.
2805 * This has been observed on a Samsung "SM951 NVMe SAMSUNG
2806 * 256GB", a "PM951 NVMe SAMSUNG 512GB", and a "Samsung SSD
2807 * 950 PRO 256GB", but it seems to be restricted to two Dell
2808 * laptops.
2809 */
2810 if (dmi_match(DMI_SYS_VENDOR, "Dell Inc.") &&
2811 (dmi_match(DMI_PRODUCT_NAME, "XPS 15 9550") ||
2812 dmi_match(DMI_PRODUCT_NAME, "Precision 5510")))
2813 return NVME_QUIRK_NO_DEEPEST_PS;
2814 } else if (pdev->vendor == 0x144d && pdev->device == 0xa804) {
2815 /*
2816 * Samsung SSD 960 EVO drops off the PCIe bus after system
2817 * suspend on a Ryzen board, ASUS PRIME B350M-A, as well as
2818 * within few minutes after bootup on a Coffee Lake board -
2819 * ASUS PRIME Z370-A
2820 */
2821 if (dmi_match(DMI_BOARD_VENDOR, "ASUSTeK COMPUTER INC.") &&
2822 (dmi_match(DMI_BOARD_NAME, "PRIME B350M-A") ||
2823 dmi_match(DMI_BOARD_NAME, "PRIME Z370-A")))
2824 return NVME_QUIRK_NO_APST;
2825 } else if ((pdev->vendor == 0x144d && (pdev->device == 0xa801 ||
2826 pdev->device == 0xa808 || pdev->device == 0xa809)) ||
2827 (pdev->vendor == 0x1e0f && pdev->device == 0x0001)) {
2828 /*
2829 * Forcing to use host managed nvme power settings for
2830 * lowest idle power with quick resume latency on
2831 * Samsung and Toshiba SSDs based on suspend behavior
2832 * on Coffee Lake board for LENOVO C640
2833 */
2834 if ((dmi_match(DMI_BOARD_VENDOR, "LENOVO")) &&
2835 dmi_match(DMI_BOARD_NAME, "LNVNB161216"))
2836 return NVME_QUIRK_SIMPLE_SUSPEND;
2837 }
2838
2839 return 0;
2840 }
2841
2842 #ifdef CONFIG_ACPI
nvme_acpi_storage_d3(struct pci_dev * dev)2843 static bool nvme_acpi_storage_d3(struct pci_dev *dev)
2844 {
2845 struct acpi_device *adev = ACPI_COMPANION(&dev->dev);
2846 u8 val;
2847
2848 /*
2849 * Look for _DSD property specifying that the storage device on the port
2850 * must use D3 to support deep platform power savings during
2851 * suspend-to-idle.
2852 */
2853
2854 if (!adev)
2855 return false;
2856 if (fwnode_property_read_u8(acpi_fwnode_handle(adev), "StorageD3Enable",
2857 &val))
2858 return false;
2859 return val == 1;
2860 }
2861 #else
nvme_acpi_storage_d3(struct pci_dev * dev)2862 static inline bool nvme_acpi_storage_d3(struct pci_dev *dev)
2863 {
2864 return false;
2865 }
2866 #endif /* CONFIG_ACPI */
2867
nvme_async_probe(void * data,async_cookie_t cookie)2868 static void nvme_async_probe(void *data, async_cookie_t cookie)
2869 {
2870 struct nvme_dev *dev = data;
2871
2872 flush_work(&dev->ctrl.reset_work);
2873 flush_work(&dev->ctrl.scan_work);
2874 nvme_put_ctrl(&dev->ctrl);
2875 }
2876
nvme_probe(struct pci_dev * pdev,const struct pci_device_id * id)2877 static int nvme_probe(struct pci_dev *pdev, const struct pci_device_id *id)
2878 {
2879 int node, result = -ENOMEM;
2880 struct nvme_dev *dev;
2881 unsigned long quirks = id->driver_data;
2882 size_t alloc_size;
2883
2884 node = dev_to_node(&pdev->dev);
2885 if (node == NUMA_NO_NODE)
2886 set_dev_node(&pdev->dev, first_memory_node);
2887
2888 dev = kzalloc_node(sizeof(*dev), GFP_KERNEL, node);
2889 if (!dev)
2890 return -ENOMEM;
2891
2892 dev->nr_write_queues = write_queues;
2893 dev->nr_poll_queues = poll_queues;
2894 dev->nr_allocated_queues = nvme_max_io_queues(dev) + 1;
2895 dev->queues = kcalloc_node(dev->nr_allocated_queues,
2896 sizeof(struct nvme_queue), GFP_KERNEL, node);
2897 if (!dev->queues)
2898 goto free;
2899
2900 dev->dev = get_device(&pdev->dev);
2901 pci_set_drvdata(pdev, dev);
2902
2903 result = nvme_dev_map(dev);
2904 if (result)
2905 goto put_pci;
2906
2907 INIT_WORK(&dev->ctrl.reset_work, nvme_reset_work);
2908 INIT_WORK(&dev->remove_work, nvme_remove_dead_ctrl_work);
2909 mutex_init(&dev->shutdown_lock);
2910
2911 result = nvme_setup_prp_pools(dev);
2912 if (result)
2913 goto unmap;
2914
2915 quirks |= check_vendor_combination_bug(pdev);
2916
2917 if (!noacpi && nvme_acpi_storage_d3(pdev)) {
2918 /*
2919 * Some systems use a bios work around to ask for D3 on
2920 * platforms that support kernel managed suspend.
2921 */
2922 dev_info(&pdev->dev,
2923 "platform quirk: setting simple suspend\n");
2924 quirks |= NVME_QUIRK_SIMPLE_SUSPEND;
2925 }
2926
2927 /*
2928 * Double check that our mempool alloc size will cover the biggest
2929 * command we support.
2930 */
2931 alloc_size = nvme_pci_iod_alloc_size();
2932 WARN_ON_ONCE(alloc_size > PAGE_SIZE);
2933
2934 dev->iod_mempool = mempool_create_node(1, mempool_kmalloc,
2935 mempool_kfree,
2936 (void *) alloc_size,
2937 GFP_KERNEL, node);
2938 if (!dev->iod_mempool) {
2939 result = -ENOMEM;
2940 goto release_pools;
2941 }
2942
2943 result = nvme_init_ctrl(&dev->ctrl, &pdev->dev, &nvme_pci_ctrl_ops,
2944 quirks);
2945 if (result)
2946 goto release_mempool;
2947
2948 dev_info(dev->ctrl.device, "pci function %s\n", dev_name(&pdev->dev));
2949
2950 nvme_reset_ctrl(&dev->ctrl);
2951 async_schedule(nvme_async_probe, dev);
2952
2953 return 0;
2954
2955 release_mempool:
2956 mempool_destroy(dev->iod_mempool);
2957 release_pools:
2958 nvme_release_prp_pools(dev);
2959 unmap:
2960 nvme_dev_unmap(dev);
2961 put_pci:
2962 put_device(dev->dev);
2963 free:
2964 kfree(dev->queues);
2965 kfree(dev);
2966 return result;
2967 }
2968
nvme_reset_prepare(struct pci_dev * pdev)2969 static void nvme_reset_prepare(struct pci_dev *pdev)
2970 {
2971 struct nvme_dev *dev = pci_get_drvdata(pdev);
2972
2973 /*
2974 * We don't need to check the return value from waiting for the reset
2975 * state as pci_dev device lock is held, making it impossible to race
2976 * with ->remove().
2977 */
2978 nvme_disable_prepare_reset(dev, false);
2979 nvme_sync_queues(&dev->ctrl);
2980 }
2981
nvme_reset_done(struct pci_dev * pdev)2982 static void nvme_reset_done(struct pci_dev *pdev)
2983 {
2984 struct nvme_dev *dev = pci_get_drvdata(pdev);
2985
2986 if (!nvme_try_sched_reset(&dev->ctrl))
2987 flush_work(&dev->ctrl.reset_work);
2988 }
2989
nvme_shutdown(struct pci_dev * pdev)2990 static void nvme_shutdown(struct pci_dev *pdev)
2991 {
2992 struct nvme_dev *dev = pci_get_drvdata(pdev);
2993
2994 nvme_disable_prepare_reset(dev, true);
2995 }
2996
2997 /*
2998 * The driver's remove may be called on a device in a partially initialized
2999 * state. This function must not have any dependencies on the device state in
3000 * order to proceed.
3001 */
nvme_remove(struct pci_dev * pdev)3002 static void nvme_remove(struct pci_dev *pdev)
3003 {
3004 struct nvme_dev *dev = pci_get_drvdata(pdev);
3005
3006 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING);
3007 pci_set_drvdata(pdev, NULL);
3008
3009 if (!pci_device_is_present(pdev)) {
3010 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DEAD);
3011 nvme_dev_disable(dev, true);
3012 }
3013
3014 flush_work(&dev->ctrl.reset_work);
3015 nvme_stop_ctrl(&dev->ctrl);
3016 nvme_remove_namespaces(&dev->ctrl);
3017 nvme_dev_disable(dev, true);
3018 nvme_release_cmb(dev);
3019 nvme_free_host_mem(dev);
3020 nvme_dev_remove_admin(dev);
3021 nvme_free_queues(dev, 0);
3022 nvme_release_prp_pools(dev);
3023 nvme_dev_unmap(dev);
3024 nvme_uninit_ctrl(&dev->ctrl);
3025 }
3026
3027 #ifdef CONFIG_PM_SLEEP
nvme_get_power_state(struct nvme_ctrl * ctrl,u32 * ps)3028 static int nvme_get_power_state(struct nvme_ctrl *ctrl, u32 *ps)
3029 {
3030 return nvme_get_features(ctrl, NVME_FEAT_POWER_MGMT, 0, NULL, 0, ps);
3031 }
3032
nvme_set_power_state(struct nvme_ctrl * ctrl,u32 ps)3033 static int nvme_set_power_state(struct nvme_ctrl *ctrl, u32 ps)
3034 {
3035 return nvme_set_features(ctrl, NVME_FEAT_POWER_MGMT, ps, NULL, 0, NULL);
3036 }
3037
nvme_resume(struct device * dev)3038 static int nvme_resume(struct device *dev)
3039 {
3040 struct nvme_dev *ndev = pci_get_drvdata(to_pci_dev(dev));
3041 struct nvme_ctrl *ctrl = &ndev->ctrl;
3042
3043 if (ndev->last_ps == U32_MAX ||
3044 nvme_set_power_state(ctrl, ndev->last_ps) != 0)
3045 return nvme_try_sched_reset(&ndev->ctrl);
3046 return 0;
3047 }
3048
nvme_suspend(struct device * dev)3049 static int nvme_suspend(struct device *dev)
3050 {
3051 struct pci_dev *pdev = to_pci_dev(dev);
3052 struct nvme_dev *ndev = pci_get_drvdata(pdev);
3053 struct nvme_ctrl *ctrl = &ndev->ctrl;
3054 int ret = -EBUSY;
3055
3056 ndev->last_ps = U32_MAX;
3057
3058 /*
3059 * The platform does not remove power for a kernel managed suspend so
3060 * use host managed nvme power settings for lowest idle power if
3061 * possible. This should have quicker resume latency than a full device
3062 * shutdown. But if the firmware is involved after the suspend or the
3063 * device does not support any non-default power states, shut down the
3064 * device fully.
3065 *
3066 * If ASPM is not enabled for the device, shut down the device and allow
3067 * the PCI bus layer to put it into D3 in order to take the PCIe link
3068 * down, so as to allow the platform to achieve its minimum low-power
3069 * state (which may not be possible if the link is up).
3070 *
3071 * If a host memory buffer is enabled, shut down the device as the NVMe
3072 * specification allows the device to access the host memory buffer in
3073 * host DRAM from all power states, but hosts will fail access to DRAM
3074 * during S3.
3075 */
3076 if (pm_suspend_via_firmware() || !ctrl->npss ||
3077 !pcie_aspm_enabled(pdev) ||
3078 ndev->nr_host_mem_descs ||
3079 (ndev->ctrl.quirks & NVME_QUIRK_SIMPLE_SUSPEND))
3080 return nvme_disable_prepare_reset(ndev, true);
3081
3082 nvme_start_freeze(ctrl);
3083 nvme_wait_freeze(ctrl);
3084 nvme_sync_queues(ctrl);
3085
3086 if (ctrl->state != NVME_CTRL_LIVE)
3087 goto unfreeze;
3088
3089 ret = nvme_get_power_state(ctrl, &ndev->last_ps);
3090 if (ret < 0)
3091 goto unfreeze;
3092
3093 /*
3094 * A saved state prevents pci pm from generically controlling the
3095 * device's power. If we're using protocol specific settings, we don't
3096 * want pci interfering.
3097 */
3098 pci_save_state(pdev);
3099
3100 ret = nvme_set_power_state(ctrl, ctrl->npss);
3101 if (ret < 0)
3102 goto unfreeze;
3103
3104 if (ret) {
3105 /* discard the saved state */
3106 pci_load_saved_state(pdev, NULL);
3107
3108 /*
3109 * Clearing npss forces a controller reset on resume. The
3110 * correct value will be rediscovered then.
3111 */
3112 ret = nvme_disable_prepare_reset(ndev, true);
3113 ctrl->npss = 0;
3114 }
3115 unfreeze:
3116 nvme_unfreeze(ctrl);
3117 return ret;
3118 }
3119
nvme_simple_suspend(struct device * dev)3120 static int nvme_simple_suspend(struct device *dev)
3121 {
3122 struct nvme_dev *ndev = pci_get_drvdata(to_pci_dev(dev));
3123
3124 return nvme_disable_prepare_reset(ndev, true);
3125 }
3126
nvme_simple_resume(struct device * dev)3127 static int nvme_simple_resume(struct device *dev)
3128 {
3129 struct pci_dev *pdev = to_pci_dev(dev);
3130 struct nvme_dev *ndev = pci_get_drvdata(pdev);
3131
3132 return nvme_try_sched_reset(&ndev->ctrl);
3133 }
3134
3135 static const struct dev_pm_ops nvme_dev_pm_ops = {
3136 .suspend = nvme_suspend,
3137 .resume = nvme_resume,
3138 .freeze = nvme_simple_suspend,
3139 .thaw = nvme_simple_resume,
3140 .poweroff = nvme_simple_suspend,
3141 .restore = nvme_simple_resume,
3142 };
3143 #endif /* CONFIG_PM_SLEEP */
3144
nvme_error_detected(struct pci_dev * pdev,pci_channel_state_t state)3145 static pci_ers_result_t nvme_error_detected(struct pci_dev *pdev,
3146 pci_channel_state_t state)
3147 {
3148 struct nvme_dev *dev = pci_get_drvdata(pdev);
3149
3150 /*
3151 * A frozen channel requires a reset. When detected, this method will
3152 * shutdown the controller to quiesce. The controller will be restarted
3153 * after the slot reset through driver's slot_reset callback.
3154 */
3155 switch (state) {
3156 case pci_channel_io_normal:
3157 return PCI_ERS_RESULT_CAN_RECOVER;
3158 case pci_channel_io_frozen:
3159 dev_warn(dev->ctrl.device,
3160 "frozen state error detected, reset controller\n");
3161 nvme_dev_disable(dev, false);
3162 return PCI_ERS_RESULT_NEED_RESET;
3163 case pci_channel_io_perm_failure:
3164 dev_warn(dev->ctrl.device,
3165 "failure state error detected, request disconnect\n");
3166 return PCI_ERS_RESULT_DISCONNECT;
3167 }
3168 return PCI_ERS_RESULT_NEED_RESET;
3169 }
3170
nvme_slot_reset(struct pci_dev * pdev)3171 static pci_ers_result_t nvme_slot_reset(struct pci_dev *pdev)
3172 {
3173 struct nvme_dev *dev = pci_get_drvdata(pdev);
3174
3175 dev_info(dev->ctrl.device, "restart after slot reset\n");
3176 pci_restore_state(pdev);
3177 nvme_reset_ctrl(&dev->ctrl);
3178 return PCI_ERS_RESULT_RECOVERED;
3179 }
3180
nvme_error_resume(struct pci_dev * pdev)3181 static void nvme_error_resume(struct pci_dev *pdev)
3182 {
3183 struct nvme_dev *dev = pci_get_drvdata(pdev);
3184
3185 flush_work(&dev->ctrl.reset_work);
3186 }
3187
3188 static const struct pci_error_handlers nvme_err_handler = {
3189 .error_detected = nvme_error_detected,
3190 .slot_reset = nvme_slot_reset,
3191 .resume = nvme_error_resume,
3192 .reset_prepare = nvme_reset_prepare,
3193 .reset_done = nvme_reset_done,
3194 };
3195
3196 static const struct pci_device_id nvme_id_table[] = {
3197 { PCI_VDEVICE(INTEL, 0x0953), /* Intel 750/P3500/P3600/P3700 */
3198 .driver_data = NVME_QUIRK_STRIPE_SIZE |
3199 NVME_QUIRK_DEALLOCATE_ZEROES, },
3200 { PCI_VDEVICE(INTEL, 0x0a53), /* Intel P3520 */
3201 .driver_data = NVME_QUIRK_STRIPE_SIZE |
3202 NVME_QUIRK_DEALLOCATE_ZEROES, },
3203 { PCI_VDEVICE(INTEL, 0x0a54), /* Intel P4500/P4600 */
3204 .driver_data = NVME_QUIRK_STRIPE_SIZE |
3205 NVME_QUIRK_DEALLOCATE_ZEROES |
3206 NVME_QUIRK_IGNORE_DEV_SUBNQN, },
3207 { PCI_VDEVICE(INTEL, 0x0a55), /* Dell Express Flash P4600 */
3208 .driver_data = NVME_QUIRK_STRIPE_SIZE |
3209 NVME_QUIRK_DEALLOCATE_ZEROES, },
3210 { PCI_VDEVICE(INTEL, 0xf1a5), /* Intel 600P/P3100 */
3211 .driver_data = NVME_QUIRK_NO_DEEPEST_PS |
3212 NVME_QUIRK_MEDIUM_PRIO_SQ |
3213 NVME_QUIRK_NO_TEMP_THRESH_CHANGE |
3214 NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3215 { PCI_VDEVICE(INTEL, 0xf1a6), /* Intel 760p/Pro 7600p */
3216 .driver_data = NVME_QUIRK_IGNORE_DEV_SUBNQN, },
3217 { PCI_VDEVICE(INTEL, 0x5845), /* Qemu emulated controller */
3218 .driver_data = NVME_QUIRK_IDENTIFY_CNS |
3219 NVME_QUIRK_DISABLE_WRITE_ZEROES |
3220 NVME_QUIRK_BOGUS_NID, },
3221 { PCI_VDEVICE(REDHAT, 0x0010), /* Qemu emulated controller */
3222 .driver_data = NVME_QUIRK_BOGUS_NID, },
3223 { PCI_DEVICE(0x126f, 0x2263), /* Silicon Motion unidentified */
3224 .driver_data = NVME_QUIRK_NO_NS_DESC_LIST, },
3225 { PCI_DEVICE(0x1bb1, 0x0100), /* Seagate Nytro Flash Storage */
3226 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY |
3227 NVME_QUIRK_NO_NS_DESC_LIST, },
3228 { PCI_DEVICE(0x1c58, 0x0003), /* HGST adapter */
3229 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
3230 { PCI_DEVICE(0x1c58, 0x0023), /* WDC SN200 adapter */
3231 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
3232 { PCI_DEVICE(0x1c5f, 0x0540), /* Memblaze Pblaze4 adapter */
3233 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
3234 { PCI_DEVICE(0x144d, 0xa821), /* Samsung PM1725 */
3235 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
3236 { PCI_DEVICE(0x144d, 0xa822), /* Samsung PM1725a */
3237 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY |
3238 NVME_QUIRK_DISABLE_WRITE_ZEROES|
3239 NVME_QUIRK_IGNORE_DEV_SUBNQN, },
3240 { PCI_DEVICE(0x1987, 0x5016), /* Phison E16 */
3241 .driver_data = NVME_QUIRK_IGNORE_DEV_SUBNQN |
3242 NVME_QUIRK_BOGUS_NID, },
3243 { PCI_DEVICE(0x1b4b, 0x1092), /* Lexar 256 GB SSD */
3244 .driver_data = NVME_QUIRK_NO_NS_DESC_LIST |
3245 NVME_QUIRK_IGNORE_DEV_SUBNQN, },
3246 { PCI_DEVICE(0x1d1d, 0x1f1f), /* LighNVM qemu device */
3247 .driver_data = NVME_QUIRK_LIGHTNVM, },
3248 { PCI_DEVICE(0x1d1d, 0x2807), /* CNEX WL */
3249 .driver_data = NVME_QUIRK_LIGHTNVM, },
3250 { PCI_DEVICE(0x1d1d, 0x2601), /* CNEX Granby */
3251 .driver_data = NVME_QUIRK_LIGHTNVM, },
3252 { PCI_DEVICE(0x10ec, 0x5762), /* ADATA SX6000LNP */
3253 .driver_data = NVME_QUIRK_IGNORE_DEV_SUBNQN |
3254 NVME_QUIRK_BOGUS_NID, },
3255 { PCI_DEVICE(0x1cc1, 0x8201), /* ADATA SX8200PNP 512GB */
3256 .driver_data = NVME_QUIRK_NO_DEEPEST_PS |
3257 NVME_QUIRK_IGNORE_DEV_SUBNQN, },
3258 { PCI_DEVICE(0x1344, 0x5407), /* Micron Technology Inc NVMe SSD */
3259 .driver_data = NVME_QUIRK_IGNORE_DEV_SUBNQN },
3260 { PCI_DEVICE(0x1344, 0x6001), /* Micron Nitro NVMe */
3261 .driver_data = NVME_QUIRK_BOGUS_NID, },
3262 { PCI_DEVICE(0x1c5c, 0x1504), /* SK Hynix PC400 */
3263 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3264 { PCI_DEVICE(0x15b7, 0x2001), /* Sandisk Skyhawk */
3265 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3266 { PCI_DEVICE(0x2646, 0x2262), /* KINGSTON SKC2000 NVMe SSD */
3267 .driver_data = NVME_QUIRK_NO_DEEPEST_PS, },
3268 { PCI_DEVICE(0x2646, 0x2263), /* KINGSTON A2000 NVMe SSD */
3269 .driver_data = NVME_QUIRK_NO_DEEPEST_PS, },
3270 { PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2001),
3271 .driver_data = NVME_QUIRK_SINGLE_VECTOR },
3272 { PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2003) },
3273 { PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2005),
3274 .driver_data = NVME_QUIRK_SINGLE_VECTOR |
3275 NVME_QUIRK_128_BYTES_SQES |
3276 NVME_QUIRK_SHARED_TAGS |
3277 NVME_QUIRK_SKIP_CID_GEN },
3278 { PCI_DEVICE_CLASS(PCI_CLASS_STORAGE_EXPRESS, 0xffffff) },
3279 { 0, }
3280 };
3281 MODULE_DEVICE_TABLE(pci, nvme_id_table);
3282
3283 static struct pci_driver nvme_driver = {
3284 .name = "nvme",
3285 .id_table = nvme_id_table,
3286 .probe = nvme_probe,
3287 .remove = nvme_remove,
3288 .shutdown = nvme_shutdown,
3289 #ifdef CONFIG_PM_SLEEP
3290 .driver = {
3291 .pm = &nvme_dev_pm_ops,
3292 },
3293 #endif
3294 .sriov_configure = pci_sriov_configure_simple,
3295 .err_handler = &nvme_err_handler,
3296 };
3297
nvme_init(void)3298 static int __init nvme_init(void)
3299 {
3300 BUILD_BUG_ON(sizeof(struct nvme_create_cq) != 64);
3301 BUILD_BUG_ON(sizeof(struct nvme_create_sq) != 64);
3302 BUILD_BUG_ON(sizeof(struct nvme_delete_queue) != 64);
3303 BUILD_BUG_ON(IRQ_AFFINITY_MAX_SETS < 2);
3304
3305 return pci_register_driver(&nvme_driver);
3306 }
3307
nvme_exit(void)3308 static void __exit nvme_exit(void)
3309 {
3310 pci_unregister_driver(&nvme_driver);
3311 flush_workqueue(nvme_wq);
3312 }
3313
3314 MODULE_AUTHOR("Matthew Wilcox <willy@linux.intel.com>");
3315 MODULE_LICENSE("GPL");
3316 MODULE_VERSION("1.0");
3317 module_init(nvme_init);
3318 module_exit(nvme_exit);
3319