• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3  * fs/f2fs/f2fs.h
4  *
5  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6  *             http://www.samsung.com/
7  */
8 #ifndef _LINUX_F2FS_H
9 #define _LINUX_F2FS_H
10 
11 #include <linux/uio.h>
12 #include <linux/types.h>
13 #include <linux/page-flags.h>
14 #include <linux/buffer_head.h>
15 #include <linux/slab.h>
16 #include <linux/crc32.h>
17 #include <linux/magic.h>
18 #include <linux/kobject.h>
19 #include <linux/sched.h>
20 #include <linux/cred.h>
21 #include <linux/vmalloc.h>
22 #include <linux/bio.h>
23 #include <linux/blkdev.h>
24 #include <linux/quotaops.h>
25 #include <linux/part_stat.h>
26 #include <crypto/hash.h>
27 
28 #include <linux/fscrypt.h>
29 #include <linux/fsverity.h>
30 
31 #ifdef CONFIG_F2FS_CHECK_FS
32 #define f2fs_bug_on(sbi, condition)	BUG_ON(condition)
33 #else
34 #define f2fs_bug_on(sbi, condition)					\
35 	do {								\
36 		if (unlikely(condition)) {				\
37 			WARN_ON(1);					\
38 			set_sbi_flag(sbi, SBI_NEED_FSCK);		\
39 		}							\
40 	} while (0)
41 #endif
42 
43 enum {
44 	FAULT_KMALLOC,
45 	FAULT_KVMALLOC,
46 	FAULT_PAGE_ALLOC,
47 	FAULT_PAGE_GET,
48 	FAULT_ALLOC_BIO,
49 	FAULT_ALLOC_NID,
50 	FAULT_ORPHAN,
51 	FAULT_BLOCK,
52 	FAULT_DIR_DEPTH,
53 	FAULT_EVICT_INODE,
54 	FAULT_TRUNCATE,
55 	FAULT_READ_IO,
56 	FAULT_CHECKPOINT,
57 	FAULT_DISCARD,
58 	FAULT_WRITE_IO,
59 	FAULT_MAX,
60 };
61 
62 #ifdef CONFIG_F2FS_FAULT_INJECTION
63 #define F2FS_ALL_FAULT_TYPE		((1 << FAULT_MAX) - 1)
64 
65 struct f2fs_fault_info {
66 	atomic_t inject_ops;
67 	unsigned int inject_rate;
68 	unsigned int inject_type;
69 };
70 
71 extern const char *f2fs_fault_name[FAULT_MAX];
72 #define IS_FAULT_SET(fi, type) ((fi)->inject_type & (1 << (type)))
73 #endif
74 
75 /*
76  * For mount options
77  */
78 #define F2FS_MOUNT_DISABLE_ROLL_FORWARD	0x00000002
79 #define F2FS_MOUNT_DISCARD		0x00000004
80 #define F2FS_MOUNT_NOHEAP		0x00000008
81 #define F2FS_MOUNT_XATTR_USER		0x00000010
82 #define F2FS_MOUNT_POSIX_ACL		0x00000020
83 #define F2FS_MOUNT_DISABLE_EXT_IDENTIFY	0x00000040
84 #define F2FS_MOUNT_INLINE_XATTR		0x00000080
85 #define F2FS_MOUNT_INLINE_DATA		0x00000100
86 #define F2FS_MOUNT_INLINE_DENTRY	0x00000200
87 #define F2FS_MOUNT_FLUSH_MERGE		0x00000400
88 #define F2FS_MOUNT_NOBARRIER		0x00000800
89 #define F2FS_MOUNT_FASTBOOT		0x00001000
90 #define F2FS_MOUNT_EXTENT_CACHE		0x00002000
91 #define F2FS_MOUNT_DATA_FLUSH		0x00008000
92 #define F2FS_MOUNT_FAULT_INJECTION	0x00010000
93 #define F2FS_MOUNT_USRQUOTA		0x00080000
94 #define F2FS_MOUNT_GRPQUOTA		0x00100000
95 #define F2FS_MOUNT_PRJQUOTA		0x00200000
96 #define F2FS_MOUNT_QUOTA		0x00400000
97 #define F2FS_MOUNT_INLINE_XATTR_SIZE	0x00800000
98 #define F2FS_MOUNT_RESERVE_ROOT		0x01000000
99 #define F2FS_MOUNT_DISABLE_CHECKPOINT	0x02000000
100 #define F2FS_MOUNT_NORECOVERY		0x04000000
101 #define F2FS_MOUNT_ATGC			0x08000000
102 #define	F2FS_MOUNT_GC_MERGE		0x20000000
103 
104 #define F2FS_OPTION(sbi)	((sbi)->mount_opt)
105 #define clear_opt(sbi, option)	(F2FS_OPTION(sbi).opt &= ~F2FS_MOUNT_##option)
106 #define set_opt(sbi, option)	(F2FS_OPTION(sbi).opt |= F2FS_MOUNT_##option)
107 #define test_opt(sbi, option)	(F2FS_OPTION(sbi).opt & F2FS_MOUNT_##option)
108 
109 #define ver_after(a, b)	(typecheck(unsigned long long, a) &&		\
110 		typecheck(unsigned long long, b) &&			\
111 		((long long)((a) - (b)) > 0))
112 
113 typedef u32 block_t;	/*
114 			 * should not change u32, since it is the on-disk block
115 			 * address format, __le32.
116 			 */
117 typedef u32 nid_t;
118 
119 #define COMPRESS_EXT_NUM		16
120 
121 struct f2fs_mount_info {
122 	unsigned int opt;
123 	int write_io_size_bits;		/* Write IO size bits */
124 	block_t root_reserved_blocks;	/* root reserved blocks */
125 	kuid_t s_resuid;		/* reserved blocks for uid */
126 	kgid_t s_resgid;		/* reserved blocks for gid */
127 	int active_logs;		/* # of active logs */
128 	int inline_xattr_size;		/* inline xattr size */
129 #ifdef CONFIG_F2FS_FAULT_INJECTION
130 	struct f2fs_fault_info fault_info;	/* For fault injection */
131 #endif
132 #ifdef CONFIG_QUOTA
133 	/* Names of quota files with journalled quota */
134 	char *s_qf_names[MAXQUOTAS];
135 	int s_jquota_fmt;			/* Format of quota to use */
136 #endif
137 	/* For which write hints are passed down to block layer */
138 	int whint_mode;
139 	int alloc_mode;			/* segment allocation policy */
140 	int fsync_mode;			/* fsync policy */
141 	int fs_mode;			/* fs mode: LFS or ADAPTIVE */
142 	int bggc_mode;			/* bggc mode: off, on or sync */
143 	struct fscrypt_dummy_policy dummy_enc_policy; /* test dummy encryption */
144 	block_t unusable_cap_perc;	/* percentage for cap */
145 	block_t unusable_cap;		/* Amount of space allowed to be
146 					 * unusable when disabling checkpoint
147 					 */
148 
149 	/* For compression */
150 	unsigned char compress_algorithm;	/* algorithm type */
151 	unsigned compress_log_size;		/* cluster log size */
152 	unsigned char compress_ext_cnt;		/* extension count */
153 	unsigned char extensions[COMPRESS_EXT_NUM][F2FS_EXTENSION_LEN];	/* extensions */
154 };
155 
156 #define F2FS_FEATURE_ENCRYPT		0x0001
157 #define F2FS_FEATURE_BLKZONED		0x0002
158 #define F2FS_FEATURE_ATOMIC_WRITE	0x0004
159 #define F2FS_FEATURE_EXTRA_ATTR		0x0008
160 #define F2FS_FEATURE_PRJQUOTA		0x0010
161 #define F2FS_FEATURE_INODE_CHKSUM	0x0020
162 #define F2FS_FEATURE_FLEXIBLE_INLINE_XATTR	0x0040
163 #define F2FS_FEATURE_QUOTA_INO		0x0080
164 #define F2FS_FEATURE_INODE_CRTIME	0x0100
165 #define F2FS_FEATURE_LOST_FOUND		0x0200
166 #define F2FS_FEATURE_VERITY		0x0400
167 #define F2FS_FEATURE_SB_CHKSUM		0x0800
168 #define F2FS_FEATURE_CASEFOLD		0x1000
169 #define F2FS_FEATURE_COMPRESSION	0x2000
170 
171 #define __F2FS_HAS_FEATURE(raw_super, mask)				\
172 	((raw_super->feature & cpu_to_le32(mask)) != 0)
173 #define F2FS_HAS_FEATURE(sbi, mask)	__F2FS_HAS_FEATURE(sbi->raw_super, mask)
174 #define F2FS_SET_FEATURE(sbi, mask)					\
175 	(sbi->raw_super->feature |= cpu_to_le32(mask))
176 #define F2FS_CLEAR_FEATURE(sbi, mask)					\
177 	(sbi->raw_super->feature &= ~cpu_to_le32(mask))
178 
179 /*
180  * Default values for user and/or group using reserved blocks
181  */
182 #define	F2FS_DEF_RESUID		0
183 #define	F2FS_DEF_RESGID		0
184 
185 /*
186  * For checkpoint manager
187  */
188 enum {
189 	NAT_BITMAP,
190 	SIT_BITMAP
191 };
192 
193 #define	CP_UMOUNT	0x00000001
194 #define	CP_FASTBOOT	0x00000002
195 #define	CP_SYNC		0x00000004
196 #define	CP_RECOVERY	0x00000008
197 #define	CP_DISCARD	0x00000010
198 #define CP_TRIMMED	0x00000020
199 #define CP_PAUSE	0x00000040
200 #define CP_RESIZE 	0x00000080
201 
202 #define MAX_DISCARD_BLOCKS(sbi)		BLKS_PER_SEC(sbi)
203 #define DEF_MAX_DISCARD_REQUEST		8	/* issue 8 discards per round */
204 #define DEF_MIN_DISCARD_ISSUE_TIME	50	/* 50 ms, if exists */
205 #define DEF_MID_DISCARD_ISSUE_TIME	500	/* 500 ms, if device busy */
206 #define DEF_MAX_DISCARD_ISSUE_TIME	60000	/* 60 s, if no candidates */
207 #define DEF_DISCARD_URGENT_UTIL		80	/* do more discard over 80% */
208 #define DEF_CP_INTERVAL			60	/* 60 secs */
209 #define DEF_IDLE_INTERVAL		5	/* 5 secs */
210 #define DEF_DISABLE_INTERVAL		5	/* 5 secs */
211 #define DEF_DISABLE_QUICK_INTERVAL	1	/* 1 secs */
212 #define DEF_UMOUNT_DISCARD_TIMEOUT	5	/* 5 secs */
213 
214 struct cp_control {
215 	int reason;
216 	__u64 trim_start;
217 	__u64 trim_end;
218 	__u64 trim_minlen;
219 };
220 
221 /*
222  * indicate meta/data type
223  */
224 enum {
225 	META_CP,
226 	META_NAT,
227 	META_SIT,
228 	META_SSA,
229 	META_MAX,
230 	META_POR,
231 	DATA_GENERIC,		/* check range only */
232 	DATA_GENERIC_ENHANCE,	/* strong check on range and segment bitmap */
233 	DATA_GENERIC_ENHANCE_READ,	/*
234 					 * strong check on range and segment
235 					 * bitmap but no warning due to race
236 					 * condition of read on truncated area
237 					 * by extent_cache
238 					 */
239 	DATA_GENERIC_ENHANCE_UPDATE,	/*
240 					 * strong check on range and segment
241 					 * bitmap for update case
242 					 */
243 	META_GENERIC,
244 };
245 
246 /* for the list of ino */
247 enum {
248 	ORPHAN_INO,		/* for orphan ino list */
249 	APPEND_INO,		/* for append ino list */
250 	UPDATE_INO,		/* for update ino list */
251 	TRANS_DIR_INO,		/* for trasactions dir ino list */
252 	FLUSH_INO,		/* for multiple device flushing */
253 	MAX_INO_ENTRY,		/* max. list */
254 };
255 
256 struct ino_entry {
257 	struct list_head list;		/* list head */
258 	nid_t ino;			/* inode number */
259 	unsigned int dirty_device;	/* dirty device bitmap */
260 };
261 
262 /* for the list of inodes to be GCed */
263 struct inode_entry {
264 	struct list_head list;	/* list head */
265 	struct inode *inode;	/* vfs inode pointer */
266 };
267 
268 struct fsync_node_entry {
269 	struct list_head list;	/* list head */
270 	struct page *page;	/* warm node page pointer */
271 	unsigned int seq_id;	/* sequence id */
272 };
273 
274 /* for the bitmap indicate blocks to be discarded */
275 struct discard_entry {
276 	struct list_head list;	/* list head */
277 	block_t start_blkaddr;	/* start blockaddr of current segment */
278 	unsigned char discard_map[SIT_VBLOCK_MAP_SIZE];	/* segment discard bitmap */
279 };
280 
281 /* default discard granularity of inner discard thread, unit: block count */
282 #define DEFAULT_DISCARD_GRANULARITY		16
283 #define DISCARD_GRAN_BL		16
284 #define DISCARD_GRAN_BG		512
285 #define DISCARD_GRAN_FORCE	1
286 
287 /* max discard pend list number */
288 #define MAX_PLIST_NUM		512
289 #define plist_idx(blk_num)	((blk_num) >= MAX_PLIST_NUM ?		\
290 					(MAX_PLIST_NUM - 1) : ((blk_num) - 1))
291 #define FS_FREE_SPACE_PERCENT		20
292 #define DEVICE_FREE_SPACE_PERCENT	10
293 #define HUNDRED_PERCENT			100
294 
295 enum {
296 	D_PREP,			/* initial */
297 	D_PARTIAL,		/* partially submitted */
298 	D_SUBMIT,		/* all submitted */
299 	D_DONE,			/* finished */
300 };
301 
302 struct discard_info {
303 	block_t lstart;			/* logical start address */
304 	block_t len;			/* length */
305 	block_t start;			/* actual start address in dev */
306 };
307 
308 struct discard_cmd {
309 	struct rb_node rb_node;		/* rb node located in rb-tree */
310 	union {
311 		struct {
312 			block_t lstart;	/* logical start address */
313 			block_t len;	/* length */
314 			block_t start;	/* actual start address in dev */
315 		};
316 		struct discard_info di;	/* discard info */
317 
318 	};
319 	struct list_head list;		/* command list */
320 	struct completion wait;		/* compleation */
321 	struct block_device *bdev;	/* bdev */
322 	unsigned short ref;		/* reference count */
323 	unsigned char state;		/* state */
324 	unsigned char queued;		/* queued discard */
325 	int error;			/* bio error */
326 	spinlock_t lock;		/* for state/bio_ref updating */
327 	unsigned short bio_ref;		/* bio reference count */
328 };
329 
330 enum {
331 	DPOLICY_BG,
332 	DPOLICY_BALANCE,
333 	DPOLICY_FORCE,
334 	DPOLICY_FSTRIM,
335 	DPOLICY_UMOUNT,
336 	MAX_DPOLICY,
337 };
338 
339 enum {
340 	SUB_POLICY_BIG,
341 	SUB_POLICY_MID,
342 	SUB_POLICY_SMALL,
343 	NR_SUB_POLICY,
344 };
345 
346 struct discard_sub_policy {
347 	unsigned int max_requests;
348 	int interval;
349 };
350 
351 struct discard_policy {
352 	int type;			/* type of discard */
353 	unsigned int min_interval;	/* used for candidates exist */
354 	unsigned int mid_interval;	/* used for device busy */
355 	unsigned int max_interval;	/* used for candidates not exist */
356 	unsigned int io_aware_gran;	/* minimum granularity discard not be aware of I/O */
357 	bool io_aware;			/* issue discard in idle time */
358 	bool sync;			/* submit discard with REQ_SYNC flag */
359 	bool ordered;			/* issue discard by lba order */
360 	bool timeout;			/* discard timeout for put_super */
361 	unsigned int granularity;	/* discard granularity */
362 	struct discard_sub_policy sub_policy[NR_SUB_POLICY];
363 };
364 
365 struct discard_cmd_control {
366 	struct task_struct *f2fs_issue_discard;	/* discard thread */
367 	struct list_head entry_list;		/* 4KB discard entry list */
368 	struct list_head pend_list[MAX_PLIST_NUM];/* store pending entries */
369 	struct list_head wait_list;		/* store on-flushing entries */
370 	struct list_head fstrim_list;		/* in-flight discard from fstrim */
371 	wait_queue_head_t discard_wait_queue;	/* waiting queue for wake-up */
372 	unsigned int discard_wake;		/* to wake up discard thread */
373 	struct mutex cmd_lock;
374 	unsigned int nr_discards;		/* # of discards in the list */
375 	unsigned int max_discards;		/* max. discards to be issued */
376 	unsigned int discard_granularity;	/* discard granularity */
377 	unsigned int undiscard_blks;		/* # of undiscard blocks */
378 	unsigned int next_pos;			/* next discard position */
379 	atomic_t issued_discard;		/* # of issued discard */
380 	atomic_t queued_discard;		/* # of queued discard */
381 	atomic_t discard_cmd_cnt;		/* # of cached cmd count */
382 	struct rb_root_cached root;		/* root of discard rb-tree */
383 	bool rbtree_check;			/* config for consistence check */
384 	int discard_type;                       /* discard type */
385 };
386 
387 /* for the list of fsync inodes, used only during recovery */
388 struct fsync_inode_entry {
389 	struct list_head list;	/* list head */
390 	struct inode *inode;	/* vfs inode pointer */
391 	block_t blkaddr;	/* block address locating the last fsync */
392 	block_t last_dentry;	/* block address locating the last dentry */
393 };
394 
395 #define nats_in_cursum(jnl)		(le16_to_cpu((jnl)->n_nats))
396 #define sits_in_cursum(jnl)		(le16_to_cpu((jnl)->n_sits))
397 
398 #define nat_in_journal(jnl, i)		((jnl)->nat_j.entries[i].ne)
399 #define nid_in_journal(jnl, i)		((jnl)->nat_j.entries[i].nid)
400 #define sit_in_journal(jnl, i)		((jnl)->sit_j.entries[i].se)
401 #define segno_in_journal(jnl, i)	((jnl)->sit_j.entries[i].segno)
402 
403 #define MAX_NAT_JENTRIES(jnl)	(NAT_JOURNAL_ENTRIES - nats_in_cursum(jnl))
404 #define MAX_SIT_JENTRIES(jnl)	(SIT_JOURNAL_ENTRIES - sits_in_cursum(jnl))
405 
update_nats_in_cursum(struct f2fs_journal * journal,int i)406 static inline int update_nats_in_cursum(struct f2fs_journal *journal, int i)
407 {
408 	int before = nats_in_cursum(journal);
409 
410 	journal->n_nats = cpu_to_le16(before + i);
411 	return before;
412 }
413 
update_sits_in_cursum(struct f2fs_journal * journal,int i)414 static inline int update_sits_in_cursum(struct f2fs_journal *journal, int i)
415 {
416 	int before = sits_in_cursum(journal);
417 
418 	journal->n_sits = cpu_to_le16(before + i);
419 	return before;
420 }
421 
__has_cursum_space(struct f2fs_journal * journal,int size,int type)422 static inline bool __has_cursum_space(struct f2fs_journal *journal,
423 							int size, int type)
424 {
425 	if (type == NAT_JOURNAL)
426 		return size <= MAX_NAT_JENTRIES(journal);
427 	return size <= MAX_SIT_JENTRIES(journal);
428 }
429 
430 /* for inline stuff */
431 #define DEF_INLINE_RESERVED_SIZE	1
432 static inline int get_extra_isize(struct inode *inode);
433 static inline int get_inline_xattr_addrs(struct inode *inode);
434 #define MAX_INLINE_DATA(inode)	(sizeof(__le32) *			\
435 				(CUR_ADDRS_PER_INODE(inode) -		\
436 				get_inline_xattr_addrs(inode) -	\
437 				DEF_INLINE_RESERVED_SIZE))
438 
439 /* for inline dir */
440 #define NR_INLINE_DENTRY(inode)	(MAX_INLINE_DATA(inode) * BITS_PER_BYTE / \
441 				((SIZE_OF_DIR_ENTRY + F2FS_SLOT_LEN) * \
442 				BITS_PER_BYTE + 1))
443 #define INLINE_DENTRY_BITMAP_SIZE(inode) \
444 	DIV_ROUND_UP(NR_INLINE_DENTRY(inode), BITS_PER_BYTE)
445 #define INLINE_RESERVED_SIZE(inode)	(MAX_INLINE_DATA(inode) - \
446 				((SIZE_OF_DIR_ENTRY + F2FS_SLOT_LEN) * \
447 				NR_INLINE_DENTRY(inode) + \
448 				INLINE_DENTRY_BITMAP_SIZE(inode)))
449 
450 /*
451  * For INODE and NODE manager
452  */
453 /* for directory operations */
454 
455 struct f2fs_filename {
456 	/*
457 	 * The filename the user specified.  This is NULL for some
458 	 * filesystem-internal operations, e.g. converting an inline directory
459 	 * to a non-inline one, or roll-forward recovering an encrypted dentry.
460 	 */
461 	const struct qstr *usr_fname;
462 
463 	/*
464 	 * The on-disk filename.  For encrypted directories, this is encrypted.
465 	 * This may be NULL for lookups in an encrypted dir without the key.
466 	 */
467 	struct fscrypt_str disk_name;
468 
469 	/* The dirhash of this filename */
470 	f2fs_hash_t hash;
471 
472 #ifdef CONFIG_FS_ENCRYPTION
473 	/*
474 	 * For lookups in encrypted directories: either the buffer backing
475 	 * disk_name, or a buffer that holds the decoded no-key name.
476 	 */
477 	struct fscrypt_str crypto_buf;
478 #endif
479 #ifdef CONFIG_UNICODE
480 	/*
481 	 * For casefolded directories: the casefolded name, but it's left NULL
482 	 * if the original name is not valid Unicode or if the filesystem is
483 	 * doing an internal operation where usr_fname is also NULL.  In these
484 	 * cases we fall back to treating the name as an opaque byte sequence.
485 	 */
486 	struct fscrypt_str cf_name;
487 #endif
488 };
489 
490 struct f2fs_dentry_ptr {
491 	struct inode *inode;
492 	void *bitmap;
493 	struct f2fs_dir_entry *dentry;
494 	__u8 (*filename)[F2FS_SLOT_LEN];
495 	int max;
496 	int nr_bitmap;
497 };
498 
make_dentry_ptr_block(struct inode * inode,struct f2fs_dentry_ptr * d,struct f2fs_dentry_block * t)499 static inline void make_dentry_ptr_block(struct inode *inode,
500 		struct f2fs_dentry_ptr *d, struct f2fs_dentry_block *t)
501 {
502 	d->inode = inode;
503 	d->max = NR_DENTRY_IN_BLOCK;
504 	d->nr_bitmap = SIZE_OF_DENTRY_BITMAP;
505 	d->bitmap = t->dentry_bitmap;
506 	d->dentry = t->dentry;
507 	d->filename = t->filename;
508 }
509 
make_dentry_ptr_inline(struct inode * inode,struct f2fs_dentry_ptr * d,void * t)510 static inline void make_dentry_ptr_inline(struct inode *inode,
511 					struct f2fs_dentry_ptr *d, void *t)
512 {
513 	int entry_cnt = NR_INLINE_DENTRY(inode);
514 	int bitmap_size = INLINE_DENTRY_BITMAP_SIZE(inode);
515 	int reserved_size = INLINE_RESERVED_SIZE(inode);
516 
517 	d->inode = inode;
518 	d->max = entry_cnt;
519 	d->nr_bitmap = bitmap_size;
520 	d->bitmap = t;
521 	d->dentry = t + bitmap_size + reserved_size;
522 	d->filename = t + bitmap_size + reserved_size +
523 					SIZE_OF_DIR_ENTRY * entry_cnt;
524 }
525 
526 /*
527  * XATTR_NODE_OFFSET stores xattrs to one node block per file keeping -1
528  * as its node offset to distinguish from index node blocks.
529  * But some bits are used to mark the node block.
530  */
531 #define XATTR_NODE_OFFSET	((((unsigned int)-1) << OFFSET_BIT_SHIFT) \
532 				>> OFFSET_BIT_SHIFT)
533 enum {
534 	ALLOC_NODE,			/* allocate a new node page if needed */
535 	LOOKUP_NODE,			/* look up a node without readahead */
536 	LOOKUP_NODE_RA,			/*
537 					 * look up a node with readahead called
538 					 * by get_data_block.
539 					 */
540 };
541 
542 #define DEFAULT_RETRY_IO_COUNT	8	/* maximum retry read IO count */
543 
544 /* congestion wait timeout value, default: 20ms */
545 #define	DEFAULT_IO_TIMEOUT	(msecs_to_jiffies(20))
546 
547 /* maximum retry quota flush count */
548 #define DEFAULT_RETRY_QUOTA_FLUSH_COUNT		8
549 
550 #define F2FS_LINK_MAX	0xffffffff	/* maximum link count per file */
551 
552 #define MAX_DIR_RA_PAGES	4	/* maximum ra pages of dir */
553 
554 /* for in-memory extent cache entry */
555 #define F2FS_MIN_EXTENT_LEN	64	/* minimum extent length */
556 
557 /* number of extent info in extent cache we try to shrink */
558 #define EXTENT_CACHE_SHRINK_NUMBER	128
559 
560 struct rb_entry {
561 	struct rb_node rb_node;		/* rb node located in rb-tree */
562 	union {
563 		struct {
564 			unsigned int ofs;	/* start offset of the entry */
565 			unsigned int len;	/* length of the entry */
566 		};
567 		unsigned long long key;		/* 64-bits key */
568 	} __packed;
569 };
570 
571 struct extent_info {
572 	unsigned int fofs;		/* start offset in a file */
573 	unsigned int len;		/* length of the extent */
574 	u32 blk;			/* start block address of the extent */
575 };
576 
577 struct extent_node {
578 	struct rb_node rb_node;		/* rb node located in rb-tree */
579 	struct extent_info ei;		/* extent info */
580 	struct list_head list;		/* node in global extent list of sbi */
581 	struct extent_tree *et;		/* extent tree pointer */
582 };
583 
584 struct extent_tree {
585 	nid_t ino;			/* inode number */
586 	struct rb_root_cached root;	/* root of extent info rb-tree */
587 	struct extent_node *cached_en;	/* recently accessed extent node */
588 	struct extent_info largest;	/* largested extent info */
589 	struct list_head list;		/* to be used by sbi->zombie_list */
590 	rwlock_t lock;			/* protect extent info rb-tree */
591 	atomic_t node_cnt;		/* # of extent node in rb-tree*/
592 	bool largest_updated;		/* largest extent updated */
593 };
594 
595 /*
596  * This structure is taken from ext4_map_blocks.
597  *
598  * Note that, however, f2fs uses NEW and MAPPED flags for f2fs_map_blocks().
599  */
600 #define F2FS_MAP_NEW		(1 << BH_New)
601 #define F2FS_MAP_MAPPED		(1 << BH_Mapped)
602 #define F2FS_MAP_UNWRITTEN	(1 << BH_Unwritten)
603 #define F2FS_MAP_FLAGS		(F2FS_MAP_NEW | F2FS_MAP_MAPPED |\
604 				F2FS_MAP_UNWRITTEN)
605 
606 struct f2fs_map_blocks {
607 	block_t m_pblk;
608 	block_t m_lblk;
609 	unsigned int m_len;
610 	unsigned int m_flags;
611 	pgoff_t *m_next_pgofs;		/* point next possible non-hole pgofs */
612 	pgoff_t *m_next_extent;		/* point to next possible extent */
613 	int m_seg_type;
614 	bool m_may_create;		/* indicate it is from write path */
615 };
616 
617 /* for flag in get_data_block */
618 enum {
619 	F2FS_GET_BLOCK_DEFAULT,
620 	F2FS_GET_BLOCK_FIEMAP,
621 	F2FS_GET_BLOCK_BMAP,
622 	F2FS_GET_BLOCK_DIO,
623 	F2FS_GET_BLOCK_PRE_DIO,
624 	F2FS_GET_BLOCK_PRE_AIO,
625 	F2FS_GET_BLOCK_PRECACHE,
626 };
627 
628 /*
629  * i_advise uses FADVISE_XXX_BIT. We can add additional hints later.
630  */
631 #define FADVISE_COLD_BIT	0x01
632 #define FADVISE_LOST_PINO_BIT	0x02
633 #define FADVISE_ENCRYPT_BIT	0x04
634 #define FADVISE_ENC_NAME_BIT	0x08
635 #define FADVISE_KEEP_SIZE_BIT	0x10
636 #define FADVISE_HOT_BIT		0x20
637 #define FADVISE_VERITY_BIT	0x40
638 
639 #define FADVISE_MODIFIABLE_BITS	(FADVISE_COLD_BIT | FADVISE_HOT_BIT)
640 
641 #define file_is_cold(inode)	is_file(inode, FADVISE_COLD_BIT)
642 #define file_wrong_pino(inode)	is_file(inode, FADVISE_LOST_PINO_BIT)
643 #define file_set_cold(inode)	set_file(inode, FADVISE_COLD_BIT)
644 #define file_lost_pino(inode)	set_file(inode, FADVISE_LOST_PINO_BIT)
645 #define file_clear_cold(inode)	clear_file(inode, FADVISE_COLD_BIT)
646 #define file_got_pino(inode)	clear_file(inode, FADVISE_LOST_PINO_BIT)
647 #define file_is_encrypt(inode)	is_file(inode, FADVISE_ENCRYPT_BIT)
648 #define file_set_encrypt(inode)	set_file(inode, FADVISE_ENCRYPT_BIT)
649 #define file_clear_encrypt(inode) clear_file(inode, FADVISE_ENCRYPT_BIT)
650 #define file_enc_name(inode)	is_file(inode, FADVISE_ENC_NAME_BIT)
651 #define file_set_enc_name(inode) set_file(inode, FADVISE_ENC_NAME_BIT)
652 #define file_keep_isize(inode)	is_file(inode, FADVISE_KEEP_SIZE_BIT)
653 #define file_set_keep_isize(inode) set_file(inode, FADVISE_KEEP_SIZE_BIT)
654 #define file_is_hot(inode)	is_file(inode, FADVISE_HOT_BIT)
655 #define file_set_hot(inode)	set_file(inode, FADVISE_HOT_BIT)
656 #define file_clear_hot(inode)	clear_file(inode, FADVISE_HOT_BIT)
657 #define file_is_verity(inode)	is_file(inode, FADVISE_VERITY_BIT)
658 #define file_set_verity(inode)	set_file(inode, FADVISE_VERITY_BIT)
659 
660 #define DEF_DIR_LEVEL		0
661 
662 enum {
663 	GC_FAILURE_PIN,
664 	GC_FAILURE_ATOMIC,
665 	MAX_GC_FAILURE
666 };
667 
668 /* used for f2fs_inode_info->flags */
669 enum {
670 	FI_NEW_INODE,		/* indicate newly allocated inode */
671 	FI_DIRTY_INODE,		/* indicate inode is dirty or not */
672 	FI_AUTO_RECOVER,	/* indicate inode is recoverable */
673 	FI_DIRTY_DIR,		/* indicate directory has dirty pages */
674 	FI_INC_LINK,		/* need to increment i_nlink */
675 	FI_ACL_MODE,		/* indicate acl mode */
676 	FI_NO_ALLOC,		/* should not allocate any blocks */
677 	FI_FREE_NID,		/* free allocated nide */
678 	FI_NO_EXTENT,		/* not to use the extent cache */
679 	FI_INLINE_XATTR,	/* used for inline xattr */
680 	FI_INLINE_DATA,		/* used for inline data*/
681 	FI_INLINE_DENTRY,	/* used for inline dentry */
682 	FI_APPEND_WRITE,	/* inode has appended data */
683 	FI_UPDATE_WRITE,	/* inode has in-place-update data */
684 	FI_NEED_IPU,		/* used for ipu per file */
685 	FI_ATOMIC_FILE,		/* indicate atomic file */
686 	FI_ATOMIC_COMMIT,	/* indicate the state of atomical committing */
687 	FI_VOLATILE_FILE,	/* indicate volatile file */
688 	FI_FIRST_BLOCK_WRITTEN,	/* indicate #0 data block was written */
689 	FI_DROP_CACHE,		/* drop dirty page cache */
690 	FI_DATA_EXIST,		/* indicate data exists */
691 	FI_INLINE_DOTS,		/* indicate inline dot dentries */
692 	FI_DO_DEFRAG,		/* indicate defragment is running */
693 	FI_DIRTY_FILE,		/* indicate regular/symlink has dirty pages */
694 	FI_NO_PREALLOC,		/* indicate skipped preallocated blocks */
695 	FI_HOT_DATA,		/* indicate file is hot */
696 	FI_EXTRA_ATTR,		/* indicate file has extra attribute */
697 	FI_PROJ_INHERIT,	/* indicate file inherits projectid */
698 	FI_PIN_FILE,		/* indicate file should not be gced */
699 	FI_ATOMIC_REVOKE_REQUEST, /* request to drop atomic data */
700 	FI_VERITY_IN_PROGRESS,	/* building fs-verity Merkle tree */
701 	FI_COMPRESSED_FILE,	/* indicate file's data can be compressed */
702 	FI_MMAP_FILE,		/* indicate file was mmapped */
703 	FI_MAX,			/* max flag, never be used */
704 };
705 
706 struct f2fs_inode_info {
707 	struct inode vfs_inode;		/* serve a vfs inode */
708 	unsigned long i_flags;		/* keep an inode flags for ioctl */
709 	unsigned char i_advise;		/* use to give file attribute hints */
710 	unsigned char i_dir_level;	/* use for dentry level for large dir */
711 	unsigned int i_current_depth;	/* only for directory depth */
712 	/* for gc failure statistic */
713 	unsigned int i_gc_failures[MAX_GC_FAILURE];
714 	unsigned int i_pino;		/* parent inode number */
715 	umode_t i_acl_mode;		/* keep file acl mode temporarily */
716 
717 	/* Use below internally in f2fs*/
718 	unsigned long flags[BITS_TO_LONGS(FI_MAX)];	/* use to pass per-file flags */
719 	struct rw_semaphore i_sem;	/* protect fi info */
720 	atomic_t dirty_pages;		/* # of dirty pages */
721 	f2fs_hash_t chash;		/* hash value of given file name */
722 	unsigned int clevel;		/* maximum level of given file name */
723 	struct task_struct *task;	/* lookup and create consistency */
724 	struct task_struct *cp_task;	/* separate cp/wb IO stats*/
725 	struct task_struct *wb_task;	/* indicate inode is in context of writeback */
726 	nid_t i_xattr_nid;		/* node id that contains xattrs */
727 	loff_t	last_disk_size;		/* lastly written file size */
728 	spinlock_t i_size_lock;		/* protect last_disk_size */
729 
730 #ifdef CONFIG_QUOTA
731 	struct dquot *i_dquot[MAXQUOTAS];
732 
733 	/* quota space reservation, managed internally by quota code */
734 	qsize_t i_reserved_quota;
735 #endif
736 	struct list_head dirty_list;	/* dirty list for dirs and files */
737 	struct list_head gdirty_list;	/* linked in global dirty list */
738 	struct list_head inmem_ilist;	/* list for inmem inodes */
739 	struct list_head inmem_pages;	/* inmemory pages managed by f2fs */
740 	struct task_struct *inmem_task;	/* store inmemory task */
741 	struct mutex inmem_lock;	/* lock for inmemory pages */
742 	pgoff_t ra_offset;		/* ongoing readahead offset */
743 	struct extent_tree *extent_tree;	/* cached extent_tree entry */
744 
745 	/* avoid racing between foreground op and gc */
746 	struct rw_semaphore i_gc_rwsem[2];
747 	struct rw_semaphore i_mmap_sem;
748 	struct rw_semaphore i_xattr_sem; /* avoid racing between reading and changing EAs */
749 
750 	int i_extra_isize;		/* size of extra space located in i_addr */
751 	kprojid_t i_projid;		/* id for project quota */
752 	int i_inline_xattr_size;	/* inline xattr size */
753 	struct timespec64 i_crtime;	/* inode creation time */
754 	struct timespec64 i_disk_time[4];/* inode disk times */
755 
756 	/* for file compress */
757 	atomic_t i_compr_blocks;		/* # of compressed blocks */
758 	unsigned char i_compress_algorithm;	/* algorithm type */
759 	unsigned char i_log_cluster_size;	/* log of cluster size */
760 	unsigned int i_cluster_size;		/* cluster size */
761 };
762 
get_extent_info(struct extent_info * ext,struct f2fs_extent * i_ext)763 static inline void get_extent_info(struct extent_info *ext,
764 					struct f2fs_extent *i_ext)
765 {
766 	ext->fofs = le32_to_cpu(i_ext->fofs);
767 	ext->blk = le32_to_cpu(i_ext->blk);
768 	ext->len = le32_to_cpu(i_ext->len);
769 }
770 
set_raw_extent(struct extent_info * ext,struct f2fs_extent * i_ext)771 static inline void set_raw_extent(struct extent_info *ext,
772 					struct f2fs_extent *i_ext)
773 {
774 	i_ext->fofs = cpu_to_le32(ext->fofs);
775 	i_ext->blk = cpu_to_le32(ext->blk);
776 	i_ext->len = cpu_to_le32(ext->len);
777 }
778 
set_extent_info(struct extent_info * ei,unsigned int fofs,u32 blk,unsigned int len)779 static inline void set_extent_info(struct extent_info *ei, unsigned int fofs,
780 						u32 blk, unsigned int len)
781 {
782 	ei->fofs = fofs;
783 	ei->blk = blk;
784 	ei->len = len;
785 }
786 
__is_discard_mergeable(struct discard_info * back,struct discard_info * front,unsigned int max_len)787 static inline bool __is_discard_mergeable(struct discard_info *back,
788 			struct discard_info *front, unsigned int max_len)
789 {
790 	return (back->lstart + back->len == front->lstart) &&
791 		(back->len + front->len <= max_len);
792 }
793 
__is_discard_back_mergeable(struct discard_info * cur,struct discard_info * back,unsigned int max_len)794 static inline bool __is_discard_back_mergeable(struct discard_info *cur,
795 			struct discard_info *back, unsigned int max_len)
796 {
797 	return __is_discard_mergeable(back, cur, max_len);
798 }
799 
__is_discard_front_mergeable(struct discard_info * cur,struct discard_info * front,unsigned int max_len)800 static inline bool __is_discard_front_mergeable(struct discard_info *cur,
801 			struct discard_info *front, unsigned int max_len)
802 {
803 	return __is_discard_mergeable(cur, front, max_len);
804 }
805 
__is_extent_mergeable(struct extent_info * back,struct extent_info * front)806 static inline bool __is_extent_mergeable(struct extent_info *back,
807 						struct extent_info *front)
808 {
809 	return (back->fofs + back->len == front->fofs &&
810 			back->blk + back->len == front->blk);
811 }
812 
__is_back_mergeable(struct extent_info * cur,struct extent_info * back)813 static inline bool __is_back_mergeable(struct extent_info *cur,
814 						struct extent_info *back)
815 {
816 	return __is_extent_mergeable(back, cur);
817 }
818 
__is_front_mergeable(struct extent_info * cur,struct extent_info * front)819 static inline bool __is_front_mergeable(struct extent_info *cur,
820 						struct extent_info *front)
821 {
822 	return __is_extent_mergeable(cur, front);
823 }
824 
825 extern void f2fs_mark_inode_dirty_sync(struct inode *inode, bool sync);
__try_update_largest_extent(struct extent_tree * et,struct extent_node * en)826 static inline void __try_update_largest_extent(struct extent_tree *et,
827 						struct extent_node *en)
828 {
829 	if (en->ei.len > et->largest.len) {
830 		et->largest = en->ei;
831 		et->largest_updated = true;
832 	}
833 }
834 
835 /*
836  * For free nid management
837  */
838 enum nid_state {
839 	FREE_NID,		/* newly added to free nid list */
840 	PREALLOC_NID,		/* it is preallocated */
841 	MAX_NID_STATE,
842 };
843 
844 enum nat_state {
845 	TOTAL_NAT,
846 	DIRTY_NAT,
847 	RECLAIMABLE_NAT,
848 	MAX_NAT_STATE,
849 };
850 
851 struct f2fs_nm_info {
852 	block_t nat_blkaddr;		/* base disk address of NAT */
853 	nid_t max_nid;			/* maximum possible node ids */
854 	nid_t available_nids;		/* # of available node ids */
855 	nid_t next_scan_nid;		/* the next nid to be scanned */
856 	unsigned int ram_thresh;	/* control the memory footprint */
857 	unsigned int ra_nid_pages;	/* # of nid pages to be readaheaded */
858 	unsigned int dirty_nats_ratio;	/* control dirty nats ratio threshold */
859 
860 	/* NAT cache management */
861 	struct radix_tree_root nat_root;/* root of the nat entry cache */
862 	struct radix_tree_root nat_set_root;/* root of the nat set cache */
863 	struct rw_semaphore nat_tree_lock;	/* protect nat_tree_lock */
864 	struct list_head nat_entries;	/* cached nat entry list (clean) */
865 	spinlock_t nat_list_lock;	/* protect clean nat entry list */
866 	unsigned int nat_cnt[MAX_NAT_STATE]; /* the # of cached nat entries */
867 	unsigned int nat_blocks;	/* # of nat blocks */
868 
869 	/* free node ids management */
870 	struct radix_tree_root free_nid_root;/* root of the free_nid cache */
871 	struct list_head free_nid_list;		/* list for free nids excluding preallocated nids */
872 	unsigned int nid_cnt[MAX_NID_STATE];	/* the number of free node id */
873 	spinlock_t nid_list_lock;	/* protect nid lists ops */
874 	struct mutex build_lock;	/* lock for build free nids */
875 	unsigned char **free_nid_bitmap;
876 	unsigned char *nat_block_bitmap;
877 	unsigned short *free_nid_count;	/* free nid count of NAT block */
878 
879 	/* for checkpoint */
880 	char *nat_bitmap;		/* NAT bitmap pointer */
881 
882 	unsigned int nat_bits_blocks;	/* # of nat bits blocks */
883 	unsigned char *nat_bits;	/* NAT bits blocks */
884 	unsigned char *full_nat_bits;	/* full NAT pages */
885 	unsigned char *empty_nat_bits;	/* empty NAT pages */
886 #ifdef CONFIG_F2FS_CHECK_FS
887 	char *nat_bitmap_mir;		/* NAT bitmap mirror */
888 #endif
889 	int bitmap_size;		/* bitmap size */
890 };
891 
892 /*
893  * this structure is used as one of function parameters.
894  * all the information are dedicated to a given direct node block determined
895  * by the data offset in a file.
896  */
897 struct dnode_of_data {
898 	struct inode *inode;		/* vfs inode pointer */
899 	struct page *inode_page;	/* its inode page, NULL is possible */
900 	struct page *node_page;		/* cached direct node page */
901 	nid_t nid;			/* node id of the direct node block */
902 	unsigned int ofs_in_node;	/* data offset in the node page */
903 	bool inode_page_locked;		/* inode page is locked or not */
904 	bool node_changed;		/* is node block changed */
905 	char cur_level;			/* level of hole node page */
906 	char max_level;			/* level of current page located */
907 	block_t	data_blkaddr;		/* block address of the node block */
908 };
909 
set_new_dnode(struct dnode_of_data * dn,struct inode * inode,struct page * ipage,struct page * npage,nid_t nid)910 static inline void set_new_dnode(struct dnode_of_data *dn, struct inode *inode,
911 		struct page *ipage, struct page *npage, nid_t nid)
912 {
913 	memset(dn, 0, sizeof(*dn));
914 	dn->inode = inode;
915 	dn->inode_page = ipage;
916 	dn->node_page = npage;
917 	dn->nid = nid;
918 }
919 
920 /*
921  * For SIT manager
922  *
923  * By default, there are 6 active log areas across the whole main area.
924  * When considering hot and cold data separation to reduce cleaning overhead,
925  * we split 3 for data logs and 3 for node logs as hot, warm, and cold types,
926  * respectively.
927  * In the current design, you should not change the numbers intentionally.
928  * Instead, as a mount option such as active_logs=x, you can use 2, 4, and 6
929  * logs individually according to the underlying devices. (default: 6)
930  * Just in case, on-disk layout covers maximum 16 logs that consist of 8 for
931  * data and 8 for node logs.
932  */
933 #define	NR_CURSEG_DATA_TYPE	(3)
934 #define NR_CURSEG_NODE_TYPE	(3)
935 #define NR_CURSEG_INMEM_TYPE	(2)
936 #define NR_CURSEG_PERSIST_TYPE	(NR_CURSEG_DATA_TYPE + NR_CURSEG_NODE_TYPE)
937 #define NR_CURSEG_TYPE		(NR_CURSEG_INMEM_TYPE + NR_CURSEG_PERSIST_TYPE)
938 
939 enum {
940 	CURSEG_HOT_DATA	= 0,	/* directory entry blocks */
941 	CURSEG_WARM_DATA,	/* data blocks */
942 	CURSEG_COLD_DATA,	/* multimedia or GCed data blocks */
943 	CURSEG_HOT_NODE,	/* direct node blocks of directory files */
944 	CURSEG_WARM_NODE,	/* direct node blocks of normal files */
945 	CURSEG_COLD_NODE,	/* indirect node blocks */
946 	NR_PERSISTENT_LOG,	/* number of persistent log */
947 	CURSEG_COLD_DATA_PINNED = NR_PERSISTENT_LOG,
948 				/* pinned file that needs consecutive block address */
949 	CURSEG_ALL_DATA_ATGC,	/* SSR alloctor in hot/warm/cold data area */
950 	NO_CHECK_TYPE,		/* number of persistent & inmem log */
951 };
952 
953 struct flush_cmd {
954 	struct completion wait;
955 	struct llist_node llnode;
956 	nid_t ino;
957 	int ret;
958 };
959 
960 struct flush_cmd_control {
961 	struct task_struct *f2fs_issue_flush;	/* flush thread */
962 	wait_queue_head_t flush_wait_queue;	/* waiting queue for wake-up */
963 	atomic_t issued_flush;			/* # of issued flushes */
964 	atomic_t queued_flush;			/* # of queued flushes */
965 	struct llist_head issue_list;		/* list for command issue */
966 	struct llist_node *dispatch_list;	/* list for command dispatch */
967 };
968 
969 struct f2fs_sm_info {
970 	struct sit_info *sit_info;		/* whole segment information */
971 	struct free_segmap_info *free_info;	/* free segment information */
972 	struct dirty_seglist_info *dirty_info;	/* dirty segment information */
973 	struct curseg_info *curseg_array;	/* active segment information */
974 
975 	struct rw_semaphore curseg_lock;	/* for preventing curseg change */
976 
977 	block_t seg0_blkaddr;		/* block address of 0'th segment */
978 	block_t main_blkaddr;		/* start block address of main area */
979 	block_t ssa_blkaddr;		/* start block address of SSA area */
980 
981 	unsigned int segment_count;	/* total # of segments */
982 	unsigned int main_segments;	/* # of segments in main area */
983 	unsigned int reserved_segments;	/* # of reserved segments */
984 	unsigned int additional_reserved_segments;/* reserved segs for IO align feature */
985 	unsigned int ovp_segments;	/* # of overprovision segments */
986 
987 	/* a threshold to reclaim prefree segments */
988 	unsigned int rec_prefree_segments;
989 
990 	/* for batched trimming */
991 	unsigned int trim_sections;		/* # of sections to trim */
992 
993 	struct list_head sit_entry_set;	/* sit entry set list */
994 
995 	unsigned int ipu_policy;	/* in-place-update policy */
996 	unsigned int min_ipu_util;	/* in-place-update threshold */
997 	unsigned int min_fsync_blocks;	/* threshold for fsync */
998 	unsigned int min_seq_blocks;	/* threshold for sequential blocks */
999 	unsigned int min_hot_blocks;	/* threshold for hot block allocation */
1000 	unsigned int min_ssr_sections;	/* threshold to trigger SSR allocation */
1001 
1002 	/* for flush command control */
1003 	struct flush_cmd_control *fcc_info;
1004 
1005 	/* for discard command control */
1006 	struct discard_cmd_control *dcc_info;
1007 };
1008 
1009 /*
1010  * For superblock
1011  */
1012 /*
1013  * COUNT_TYPE for monitoring
1014  *
1015  * f2fs monitors the number of several block types such as on-writeback,
1016  * dirty dentry blocks, dirty node blocks, and dirty meta blocks.
1017  */
1018 #define WB_DATA_TYPE(p)	(__is_cp_guaranteed(p) ? F2FS_WB_CP_DATA : F2FS_WB_DATA)
1019 enum count_type {
1020 	F2FS_DIRTY_DENTS,
1021 	F2FS_DIRTY_DATA,
1022 	F2FS_DIRTY_QDATA,
1023 	F2FS_DIRTY_NODES,
1024 	F2FS_DIRTY_META,
1025 	F2FS_INMEM_PAGES,
1026 	F2FS_DIRTY_IMETA,
1027 	F2FS_WB_CP_DATA,
1028 	F2FS_WB_DATA,
1029 	F2FS_RD_DATA,
1030 	F2FS_RD_NODE,
1031 	F2FS_RD_META,
1032 	F2FS_DIO_WRITE,
1033 	F2FS_DIO_READ,
1034 	NR_COUNT_TYPE,
1035 };
1036 
1037 /*
1038  * The below are the page types of bios used in submit_bio().
1039  * The available types are:
1040  * DATA			User data pages. It operates as async mode.
1041  * NODE			Node pages. It operates as async mode.
1042  * META			FS metadata pages such as SIT, NAT, CP.
1043  * NR_PAGE_TYPE		The number of page types.
1044  * META_FLUSH		Make sure the previous pages are written
1045  *			with waiting the bio's completion
1046  * ...			Only can be used with META.
1047  */
1048 #define PAGE_TYPE_OF_BIO(type)	((type) > META ? META : (type))
1049 enum page_type {
1050 	DATA = 0,
1051 	NODE = 1,	/* should not change this */
1052 	META,
1053 	NR_PAGE_TYPE,
1054 	META_FLUSH,
1055 	INMEM,		/* the below types are used by tracepoints only. */
1056 	INMEM_DROP,
1057 	INMEM_INVALIDATE,
1058 	INMEM_REVOKE,
1059 	IPU,
1060 	OPU,
1061 };
1062 
1063 enum temp_type {
1064 	HOT = 0,	/* must be zero for meta bio */
1065 	WARM,
1066 	COLD,
1067 	NR_TEMP_TYPE,
1068 };
1069 
1070 enum need_lock_type {
1071 	LOCK_REQ = 0,
1072 	LOCK_DONE,
1073 	LOCK_RETRY,
1074 };
1075 
1076 enum cp_reason_type {
1077 	CP_NO_NEEDED,
1078 	CP_NON_REGULAR,
1079 	CP_COMPRESSED,
1080 	CP_HARDLINK,
1081 	CP_SB_NEED_CP,
1082 	CP_WRONG_PINO,
1083 	CP_NO_SPC_ROLL,
1084 	CP_NODE_NEED_CP,
1085 	CP_FASTBOOT_MODE,
1086 	CP_SPEC_LOG_NUM,
1087 	CP_RECOVER_DIR,
1088 };
1089 
1090 enum iostat_type {
1091 	/* WRITE IO */
1092 	APP_DIRECT_IO,			/* app direct write IOs */
1093 	APP_BUFFERED_IO,		/* app buffered write IOs */
1094 	APP_WRITE_IO,			/* app write IOs */
1095 	APP_MAPPED_IO,			/* app mapped IOs */
1096 	FS_DATA_IO,			/* data IOs from kworker/fsync/reclaimer */
1097 	FS_NODE_IO,			/* node IOs from kworker/fsync/reclaimer */
1098 	FS_META_IO,			/* meta IOs from kworker/reclaimer */
1099 	FS_GC_DATA_IO,			/* data IOs from forground gc */
1100 	FS_GC_NODE_IO,			/* node IOs from forground gc */
1101 	FS_CP_DATA_IO,			/* data IOs from checkpoint */
1102 	FS_CP_NODE_IO,			/* node IOs from checkpoint */
1103 	FS_CP_META_IO,			/* meta IOs from checkpoint */
1104 
1105 	/* READ IO */
1106 	APP_DIRECT_READ_IO,		/* app direct read IOs */
1107 	APP_BUFFERED_READ_IO,		/* app buffered read IOs */
1108 	APP_READ_IO,			/* app read IOs */
1109 	APP_MAPPED_READ_IO,		/* app mapped read IOs */
1110 	FS_DATA_READ_IO,		/* data read IOs */
1111 	FS_GDATA_READ_IO,		/* data read IOs from background gc */
1112 	FS_CDATA_READ_IO,		/* compressed data read IOs */
1113 	FS_NODE_READ_IO,		/* node read IOs */
1114 	FS_META_READ_IO,		/* meta read IOs */
1115 
1116 	/* other */
1117 	FS_DISCARD,			/* discard */
1118 	NR_IO_TYPE,
1119 };
1120 
1121 struct f2fs_io_info {
1122 	struct f2fs_sb_info *sbi;	/* f2fs_sb_info pointer */
1123 	nid_t ino;		/* inode number */
1124 	enum page_type type;	/* contains DATA/NODE/META/META_FLUSH */
1125 	enum temp_type temp;	/* contains HOT/WARM/COLD */
1126 	int op;			/* contains REQ_OP_ */
1127 	int op_flags;		/* req_flag_bits */
1128 	block_t new_blkaddr;	/* new block address to be written */
1129 	block_t old_blkaddr;	/* old block address before Cow */
1130 	struct page *page;	/* page to be written */
1131 	struct page *encrypted_page;	/* encrypted page */
1132 	struct page *compressed_page;	/* compressed page */
1133 	struct list_head list;		/* serialize IOs */
1134 	bool submitted;		/* indicate IO submission */
1135 	int need_lock;		/* indicate we need to lock cp_rwsem */
1136 	bool in_list;		/* indicate fio is in io_list */
1137 	bool is_por;		/* indicate IO is from recovery or not */
1138 	bool retry;		/* need to reallocate block address */
1139 	int compr_blocks;	/* # of compressed block addresses */
1140 	bool encrypted;		/* indicate file is encrypted */
1141 	enum iostat_type io_type;	/* io type */
1142 	struct writeback_control *io_wbc; /* writeback control */
1143 	struct bio **bio;		/* bio for ipu */
1144 	sector_t *last_block;		/* last block number in bio */
1145 	unsigned char version;		/* version of the node */
1146 };
1147 
1148 struct bio_entry {
1149 	struct bio *bio;
1150 	struct list_head list;
1151 };
1152 
1153 #define is_read_io(rw) ((rw) == READ)
1154 struct f2fs_bio_info {
1155 	struct f2fs_sb_info *sbi;	/* f2fs superblock */
1156 	struct bio *bio;		/* bios to merge */
1157 	sector_t last_block_in_bio;	/* last block number */
1158 	struct f2fs_io_info fio;	/* store buffered io info. */
1159 	struct rw_semaphore io_rwsem;	/* blocking op for bio */
1160 	spinlock_t io_lock;		/* serialize DATA/NODE IOs */
1161 	struct list_head io_list;	/* track fios */
1162 	struct list_head bio_list;	/* bio entry list head */
1163 	struct rw_semaphore bio_list_lock;	/* lock to protect bio entry list */
1164 };
1165 
1166 #define FDEV(i)				(sbi->devs[i])
1167 #define RDEV(i)				(raw_super->devs[i])
1168 struct f2fs_dev_info {
1169 	struct block_device *bdev;
1170 	char path[MAX_PATH_LEN];
1171 	unsigned int total_segments;
1172 	block_t start_blk;
1173 	block_t end_blk;
1174 #ifdef CONFIG_BLK_DEV_ZONED
1175 	unsigned int nr_blkz;		/* Total number of zones */
1176 	unsigned long *blkz_seq;	/* Bitmap indicating sequential zones */
1177 	block_t *zone_capacity_blocks;  /* Array of zone capacity in blks */
1178 #endif
1179 };
1180 
1181 enum inode_type {
1182 	DIR_INODE,			/* for dirty dir inode */
1183 	FILE_INODE,			/* for dirty regular/symlink inode */
1184 	DIRTY_META,			/* for all dirtied inode metadata */
1185 	ATOMIC_FILE,			/* for all atomic files */
1186 	NR_INODE_TYPE,
1187 };
1188 
1189 /* for inner inode cache management */
1190 struct inode_management {
1191 	struct radix_tree_root ino_root;	/* ino entry array */
1192 	spinlock_t ino_lock;			/* for ino entry lock */
1193 	struct list_head ino_list;		/* inode list head */
1194 	unsigned long ino_num;			/* number of entries */
1195 };
1196 
1197 /* for GC_AT */
1198 struct atgc_management {
1199 	bool atgc_enabled;			/* ATGC is enabled or not */
1200 	struct rb_root_cached root;		/* root of victim rb-tree */
1201 	struct list_head victim_list;		/* linked with all victim entries */
1202 	unsigned int victim_count;		/* victim count in rb-tree */
1203 	unsigned int candidate_ratio;		/* candidate ratio */
1204 	unsigned int max_candidate_count;	/* max candidate count */
1205 	unsigned int age_weight;		/* age weight, vblock_weight = 100 - age_weight */
1206 	unsigned long long age_threshold;	/* age threshold */
1207 };
1208 
1209 /* For s_flag in struct f2fs_sb_info */
1210 enum {
1211 	SBI_IS_DIRTY,				/* dirty flag for checkpoint */
1212 	SBI_IS_CLOSE,				/* specify unmounting */
1213 	SBI_NEED_FSCK,				/* need fsck.f2fs to fix */
1214 	SBI_POR_DOING,				/* recovery is doing or not */
1215 	SBI_NEED_SB_WRITE,			/* need to recover superblock */
1216 	SBI_NEED_CP,				/* need to checkpoint */
1217 	SBI_IS_SHUTDOWN,			/* shutdown by ioctl */
1218 	SBI_IS_RECOVERED,			/* recovered orphan/data */
1219 	SBI_CP_DISABLED,			/* CP was disabled last mount */
1220 	SBI_CP_DISABLED_QUICK,			/* CP was disabled quickly */
1221 	SBI_QUOTA_NEED_FLUSH,			/* need to flush quota info in CP */
1222 	SBI_QUOTA_SKIP_FLUSH,			/* skip flushing quota in current CP */
1223 	SBI_QUOTA_NEED_REPAIR,			/* quota file may be corrupted */
1224 	SBI_IS_RESIZEFS,			/* resizefs is in process */
1225 };
1226 
1227 enum {
1228 	CP_TIME,
1229 	REQ_TIME,
1230 	DISCARD_TIME,
1231 	GC_TIME,
1232 	DISABLE_TIME,
1233 	UMOUNT_DISCARD_TIMEOUT,
1234 	MAX_TIME,
1235 };
1236 
1237 enum {
1238 	GC_NORMAL,
1239 	GC_IDLE_CB,
1240 	GC_IDLE_GREEDY,
1241 	GC_IDLE_AT,
1242 	GC_URGENT_HIGH,
1243 	GC_URGENT_LOW,
1244 };
1245 
1246 enum {
1247 	BGGC_MODE_ON,		/* background gc is on */
1248 	BGGC_MODE_OFF,		/* background gc is off */
1249 	BGGC_MODE_SYNC,		/*
1250 				 * background gc is on, migrating blocks
1251 				 * like foreground gc
1252 				 */
1253 };
1254 
1255 enum {
1256 	FS_MODE_ADAPTIVE,	/* use both lfs/ssr allocation */
1257 	FS_MODE_LFS,		/* use lfs allocation only */
1258 };
1259 
1260 enum {
1261 	WHINT_MODE_OFF,		/* not pass down write hints */
1262 	WHINT_MODE_USER,	/* try to pass down hints given by users */
1263 	WHINT_MODE_FS,		/* pass down hints with F2FS policy */
1264 };
1265 
1266 enum {
1267 	ALLOC_MODE_DEFAULT,	/* stay default */
1268 	ALLOC_MODE_REUSE,	/* reuse segments as much as possible */
1269 };
1270 
1271 enum fsync_mode {
1272 	FSYNC_MODE_POSIX,	/* fsync follows posix semantics */
1273 	FSYNC_MODE_STRICT,	/* fsync behaves in line with ext4 */
1274 	FSYNC_MODE_NOBARRIER,	/* fsync behaves nobarrier based on posix */
1275 };
1276 
1277 /*
1278  * this value is set in page as a private data which indicate that
1279  * the page is atomically written, and it is in inmem_pages list.
1280  */
1281 #define ATOMIC_WRITTEN_PAGE		((unsigned long)-1)
1282 #define DUMMY_WRITTEN_PAGE		((unsigned long)-2)
1283 
1284 #define IS_ATOMIC_WRITTEN_PAGE(page)			\
1285 		(page_private(page) == ATOMIC_WRITTEN_PAGE)
1286 #define IS_DUMMY_WRITTEN_PAGE(page)			\
1287 		(page_private(page) == DUMMY_WRITTEN_PAGE)
1288 
1289 #ifdef CONFIG_F2FS_IO_TRACE
1290 #define IS_IO_TRACED_PAGE(page)			\
1291 		(page_private(page) > 0 &&		\
1292 		 page_private(page) < (unsigned long)PID_MAX_LIMIT)
1293 #else
1294 #define IS_IO_TRACED_PAGE(page) (0)
1295 #endif
1296 
1297 /* For compression */
1298 enum compress_algorithm_type {
1299 	COMPRESS_LZO,
1300 	COMPRESS_LZ4,
1301 	COMPRESS_ZSTD,
1302 	COMPRESS_LZORLE,
1303 	COMPRESS_MAX,
1304 };
1305 
1306 #define COMPRESS_DATA_RESERVED_SIZE		5
1307 struct compress_data {
1308 	__le32 clen;			/* compressed data size */
1309 	__le32 reserved[COMPRESS_DATA_RESERVED_SIZE];	/* reserved */
1310 	u8 cdata[];			/* compressed data */
1311 };
1312 
1313 #define COMPRESS_HEADER_SIZE	(sizeof(struct compress_data))
1314 
1315 #define F2FS_COMPRESSED_PAGE_MAGIC	0xF5F2C000
1316 
1317 /* compress context */
1318 struct compress_ctx {
1319 	struct inode *inode;		/* inode the context belong to */
1320 	pgoff_t cluster_idx;		/* cluster index number */
1321 	unsigned int cluster_size;	/* page count in cluster */
1322 	unsigned int log_cluster_size;	/* log of cluster size */
1323 	struct page **rpages;		/* pages store raw data in cluster */
1324 	unsigned int nr_rpages;		/* total page number in rpages */
1325 	struct page **cpages;		/* pages store compressed data in cluster */
1326 	unsigned int nr_cpages;		/* total page number in cpages */
1327 	void *rbuf;			/* virtual mapped address on rpages */
1328 	struct compress_data *cbuf;	/* virtual mapped address on cpages */
1329 	size_t rlen;			/* valid data length in rbuf */
1330 	size_t clen;			/* valid data length in cbuf */
1331 	void *private;			/* payload buffer for specified compression algorithm */
1332 	void *private2;			/* extra payload buffer */
1333 };
1334 
1335 /* compress context for write IO path */
1336 struct compress_io_ctx {
1337 	u32 magic;			/* magic number to indicate page is compressed */
1338 	struct inode *inode;		/* inode the context belong to */
1339 	struct page **rpages;		/* pages store raw data in cluster */
1340 	unsigned int nr_rpages;		/* total page number in rpages */
1341 	atomic_t pending_pages;		/* in-flight compressed page count */
1342 };
1343 
1344 /* decompress io context for read IO path */
1345 struct decompress_io_ctx {
1346 	u32 magic;			/* magic number to indicate page is compressed */
1347 	struct inode *inode;		/* inode the context belong to */
1348 	pgoff_t cluster_idx;		/* cluster index number */
1349 	unsigned int cluster_size;	/* page count in cluster */
1350 	unsigned int log_cluster_size;	/* log of cluster size */
1351 	struct page **rpages;		/* pages store raw data in cluster */
1352 	unsigned int nr_rpages;		/* total page number in rpages */
1353 	struct page **cpages;		/* pages store compressed data in cluster */
1354 	unsigned int nr_cpages;		/* total page number in cpages */
1355 	struct page **tpages;		/* temp pages to pad holes in cluster */
1356 	void *rbuf;			/* virtual mapped address on rpages */
1357 	struct compress_data *cbuf;	/* virtual mapped address on cpages */
1358 	size_t rlen;			/* valid data length in rbuf */
1359 	size_t clen;			/* valid data length in cbuf */
1360 	atomic_t pending_pages;		/* in-flight compressed page count */
1361 	atomic_t verity_pages;		/* in-flight page count for verity */
1362 	bool failed;			/* indicate IO error during decompression */
1363 	void *private;			/* payload buffer for specified decompression algorithm */
1364 	void *private2;			/* extra payload buffer */
1365 };
1366 
1367 #define NULL_CLUSTER			((unsigned int)(~0))
1368 #define MIN_COMPRESS_LOG_SIZE		2
1369 #define MAX_COMPRESS_LOG_SIZE		8
1370 #define MAX_COMPRESS_WINDOW_SIZE(log_size)	((PAGE_SIZE) << (log_size))
1371 
1372 #ifdef CONFIG_F2FS_GRADING_SSR
1373 struct f2fs_hot_cold_params {
1374 	unsigned int enable;
1375 	unsigned int hot_data_lower_limit;
1376 	unsigned int hot_data_waterline;
1377 	unsigned int warm_data_lower_limit;
1378 	unsigned int warm_data_waterline;
1379 	unsigned int hot_node_lower_limit;
1380 	unsigned int hot_node_waterline;
1381 	unsigned int warm_node_lower_limit;
1382 	unsigned int warm_node_waterline;
1383 };
1384 #endif
1385 
1386 struct f2fs_sb_info {
1387 	struct super_block *sb;			/* pointer to VFS super block */
1388 	struct proc_dir_entry *s_proc;		/* proc entry */
1389 	struct f2fs_super_block *raw_super;	/* raw super block pointer */
1390 	struct rw_semaphore sb_lock;		/* lock for raw super block */
1391 	int valid_super_block;			/* valid super block no */
1392 	unsigned long s_flag;				/* flags for sbi */
1393 	struct mutex writepages;		/* mutex for writepages() */
1394 
1395 #ifdef CONFIG_BLK_DEV_ZONED
1396 	unsigned int blocks_per_blkz;		/* F2FS blocks per zone */
1397 	unsigned int log_blocks_per_blkz;	/* log2 F2FS blocks per zone */
1398 #endif
1399 
1400 	/* for node-related operations */
1401 	struct f2fs_nm_info *nm_info;		/* node manager */
1402 	struct inode *node_inode;		/* cache node blocks */
1403 
1404 	/* for segment-related operations */
1405 	struct f2fs_sm_info *sm_info;		/* segment manager */
1406 
1407 	/* for bio operations */
1408 	struct f2fs_bio_info *write_io[NR_PAGE_TYPE];	/* for write bios */
1409 	/* keep migration IO order for LFS mode */
1410 	struct rw_semaphore io_order_lock;
1411 	mempool_t *write_io_dummy;		/* Dummy pages */
1412 
1413 	/* for checkpoint */
1414 	struct f2fs_checkpoint *ckpt;		/* raw checkpoint pointer */
1415 	int cur_cp_pack;			/* remain current cp pack */
1416 	spinlock_t cp_lock;			/* for flag in ckpt */
1417 	struct inode *meta_inode;		/* cache meta blocks */
1418 	struct mutex cp_mutex;			/* checkpoint procedure lock */
1419 	struct rw_semaphore cp_rwsem;		/* blocking FS operations */
1420 	struct rw_semaphore node_write;		/* locking node writes */
1421 	struct rw_semaphore node_change;	/* locking node change */
1422 	wait_queue_head_t cp_wait;
1423 	unsigned long last_time[MAX_TIME];	/* to store time in jiffies */
1424 	long interval_time[MAX_TIME];		/* to store thresholds */
1425 
1426 	struct inode_management im[MAX_INO_ENTRY];	/* manage inode cache */
1427 
1428 	spinlock_t fsync_node_lock;		/* for node entry lock */
1429 	struct list_head fsync_node_list;	/* node list head */
1430 	unsigned int fsync_seg_id;		/* sequence id */
1431 	unsigned int fsync_node_num;		/* number of node entries */
1432 
1433 	/* for orphan inode, use 0'th array */
1434 	unsigned int max_orphans;		/* max orphan inodes */
1435 
1436 	/* for inode management */
1437 	struct list_head inode_list[NR_INODE_TYPE];	/* dirty inode list */
1438 	spinlock_t inode_lock[NR_INODE_TYPE];	/* for dirty inode list lock */
1439 	struct mutex flush_lock;		/* for flush exclusion */
1440 
1441 	/* for extent tree cache */
1442 	struct radix_tree_root extent_tree_root;/* cache extent cache entries */
1443 	struct mutex extent_tree_lock;	/* locking extent radix tree */
1444 	struct list_head extent_list;		/* lru list for shrinker */
1445 	spinlock_t extent_lock;			/* locking extent lru list */
1446 	atomic_t total_ext_tree;		/* extent tree count */
1447 	struct list_head zombie_list;		/* extent zombie tree list */
1448 	atomic_t total_zombie_tree;		/* extent zombie tree count */
1449 	atomic_t total_ext_node;		/* extent info count */
1450 
1451 	/* basic filesystem units */
1452 	unsigned int log_sectors_per_block;	/* log2 sectors per block */
1453 	unsigned int log_blocksize;		/* log2 block size */
1454 	unsigned int blocksize;			/* block size */
1455 	unsigned int root_ino_num;		/* root inode number*/
1456 	unsigned int node_ino_num;		/* node inode number*/
1457 	unsigned int meta_ino_num;		/* meta inode number*/
1458 	unsigned int log_blocks_per_seg;	/* log2 blocks per segment */
1459 	unsigned int blocks_per_seg;		/* blocks per segment */
1460 	unsigned int segs_per_sec;		/* segments per section */
1461 	unsigned int secs_per_zone;		/* sections per zone */
1462 	unsigned int total_sections;		/* total section count */
1463 	unsigned int total_node_count;		/* total node block count */
1464 	unsigned int total_valid_node_count;	/* valid node block count */
1465 	loff_t max_file_blocks;			/* max block index of file */
1466 	int dir_level;				/* directory level */
1467 	int readdir_ra;				/* readahead inode in readdir */
1468 
1469 	block_t user_block_count;		/* # of user blocks */
1470 	block_t total_valid_block_count;	/* # of valid blocks */
1471 	block_t discard_blks;			/* discard command candidats */
1472 	block_t last_valid_block_count;		/* for recovery */
1473 	block_t reserved_blocks;		/* configurable reserved blocks */
1474 	block_t current_reserved_blocks;	/* current reserved blocks */
1475 
1476 	/* Additional tracking for no checkpoint mode */
1477 	block_t unusable_block_count;		/* # of blocks saved by last cp */
1478 
1479 	unsigned int nquota_files;		/* # of quota sysfile */
1480 	struct rw_semaphore quota_sem;		/* blocking cp for flags */
1481 
1482 	/* # of pages, see count_type */
1483 	atomic_t nr_pages[NR_COUNT_TYPE];
1484 	/* # of allocated blocks */
1485 	struct percpu_counter alloc_valid_block_count;
1486 
1487 	/* writeback control */
1488 	atomic_t wb_sync_req[META];	/* count # of WB_SYNC threads */
1489 
1490 	/* valid inode count */
1491 	struct percpu_counter total_valid_inode_count;
1492 
1493 	struct f2fs_mount_info mount_opt;	/* mount options */
1494 
1495 	/* for cleaning operations */
1496 	struct rw_semaphore gc_lock;		/*
1497 						 * semaphore for GC, avoid
1498 						 * race between GC and GC or CP
1499 						 */
1500 	struct f2fs_gc_kthread	*gc_thread;	/* GC thread */
1501 	struct atgc_management am;		/* atgc management */
1502 	unsigned int cur_victim_sec;		/* current victim section num */
1503 	unsigned int gc_mode;			/* current GC state */
1504 	unsigned int next_victim_seg[2];	/* next segment in victim section */
1505 
1506 	/* for skip statistic */
1507 	unsigned int atomic_files;		/* # of opened atomic file */
1508 	unsigned long long skipped_atomic_files[2];	/* FG_GC and BG_GC */
1509 	unsigned long long skipped_gc_rwsem;		/* FG_GC only */
1510 
1511 	/* threshold for gc trials on pinned files */
1512 	u64 gc_pin_file_threshold;
1513 	struct rw_semaphore pin_sem;
1514 
1515 	/* maximum # of trials to find a victim segment for SSR and GC */
1516 	unsigned int max_victim_search;
1517 	/* migration granularity of garbage collection, unit: segment */
1518 	unsigned int migration_granularity;
1519 
1520 	/*
1521 	 * for stat information.
1522 	 * one is for the LFS mode, and the other is for the SSR mode.
1523 	 */
1524 #ifdef CONFIG_F2FS_STAT_FS
1525 	struct f2fs_stat_info *stat_info;	/* FS status information */
1526 	atomic_t meta_count[META_MAX];		/* # of meta blocks */
1527 	unsigned int segment_count[2];		/* # of allocated segments */
1528 	unsigned int block_count[2];		/* # of allocated blocks */
1529 	atomic_t inplace_count;		/* # of inplace update */
1530 	atomic64_t total_hit_ext;		/* # of lookup extent cache */
1531 	atomic64_t read_hit_rbtree;		/* # of hit rbtree extent node */
1532 	atomic64_t read_hit_largest;		/* # of hit largest extent node */
1533 	atomic64_t read_hit_cached;		/* # of hit cached extent node */
1534 	atomic_t inline_xattr;			/* # of inline_xattr inodes */
1535 	atomic_t inline_inode;			/* # of inline_data inodes */
1536 	atomic_t inline_dir;			/* # of inline_dentry inodes */
1537 	atomic_t compr_inode;			/* # of compressed inodes */
1538 	atomic64_t compr_blocks;		/* # of compressed blocks */
1539 	atomic_t vw_cnt;			/* # of volatile writes */
1540 	atomic_t max_aw_cnt;			/* max # of atomic writes */
1541 	atomic_t max_vw_cnt;			/* max # of volatile writes */
1542 	unsigned int io_skip_bggc;		/* skip background gc for in-flight IO */
1543 	unsigned int other_skip_bggc;		/* skip background gc for other reasons */
1544 	unsigned int ndirty_inode[NR_INODE_TYPE];	/* # of dirty inodes */
1545 #endif
1546 	spinlock_t stat_lock;			/* lock for stat operations */
1547 
1548 	/* For app/fs IO statistics */
1549 	spinlock_t iostat_lock;
1550 	unsigned long long rw_iostat[NR_IO_TYPE];
1551 	unsigned long long prev_rw_iostat[NR_IO_TYPE];
1552 	bool iostat_enable;
1553 	unsigned long iostat_next_period;
1554 	unsigned int iostat_period_ms;
1555 
1556 	/* to attach REQ_META|REQ_FUA flags */
1557 	unsigned int data_io_flag;
1558 	unsigned int node_io_flag;
1559 
1560 	/* For sysfs suppport */
1561 	struct kobject s_kobj;
1562 	struct completion s_kobj_unregister;
1563 
1564 	/* For shrinker support */
1565 	struct list_head s_list;
1566 	int s_ndevs;				/* number of devices */
1567 	struct f2fs_dev_info *devs;		/* for device list */
1568 	unsigned int dirty_device;		/* for checkpoint data flush */
1569 	spinlock_t dev_lock;			/* protect dirty_device */
1570 	struct mutex umount_mutex;
1571 	unsigned int shrinker_run_no;
1572 
1573 	/* For write statistics */
1574 	u64 sectors_written_start;
1575 	u64 kbytes_written;
1576 
1577 	/* Reference to checksum algorithm driver via cryptoapi */
1578 	struct crypto_shash *s_chksum_driver;
1579 
1580 	/* Precomputed FS UUID checksum for seeding other checksums */
1581 	__u32 s_chksum_seed;
1582 
1583 	struct workqueue_struct *post_read_wq;	/* post read workqueue */
1584 
1585 	struct kmem_cache *inline_xattr_slab;	/* inline xattr entry */
1586 	unsigned int inline_xattr_slab_size;	/* default inline xattr slab size */
1587 
1588 #ifdef CONFIG_F2FS_FS_COMPRESSION
1589 	struct kmem_cache *page_array_slab;	/* page array entry */
1590 	unsigned int page_array_slab_size;	/* default page array slab size */
1591 #endif
1592 
1593 #ifdef CONFIG_F2FS_GRADING_SSR
1594 	struct f2fs_hot_cold_params hot_cold_params;
1595 #endif
1596 };
1597 
1598 struct f2fs_private_dio {
1599 	struct inode *inode;
1600 	void *orig_private;
1601 	bio_end_io_t *orig_end_io;
1602 	bool write;
1603 };
1604 
1605 #ifdef CONFIG_F2FS_FAULT_INJECTION
1606 #define f2fs_show_injection_info(sbi, type)					\
1607 	printk_ratelimited("%sF2FS-fs (%s) : inject %s in %s of %pS\n",	\
1608 		KERN_INFO, sbi->sb->s_id,				\
1609 		f2fs_fault_name[type],					\
1610 		__func__, __builtin_return_address(0))
time_to_inject(struct f2fs_sb_info * sbi,int type)1611 static inline bool time_to_inject(struct f2fs_sb_info *sbi, int type)
1612 {
1613 	struct f2fs_fault_info *ffi = &F2FS_OPTION(sbi).fault_info;
1614 
1615 	if (!ffi->inject_rate)
1616 		return false;
1617 
1618 	if (!IS_FAULT_SET(ffi, type))
1619 		return false;
1620 
1621 	atomic_inc(&ffi->inject_ops);
1622 	if (atomic_read(&ffi->inject_ops) >= ffi->inject_rate) {
1623 		atomic_set(&ffi->inject_ops, 0);
1624 		return true;
1625 	}
1626 	return false;
1627 }
1628 #else
1629 #define f2fs_show_injection_info(sbi, type) do { } while (0)
time_to_inject(struct f2fs_sb_info * sbi,int type)1630 static inline bool time_to_inject(struct f2fs_sb_info *sbi, int type)
1631 {
1632 	return false;
1633 }
1634 #endif
1635 
1636 /*
1637  * Test if the mounted volume is a multi-device volume.
1638  *   - For a single regular disk volume, sbi->s_ndevs is 0.
1639  *   - For a single zoned disk volume, sbi->s_ndevs is 1.
1640  *   - For a multi-device volume, sbi->s_ndevs is always 2 or more.
1641  */
f2fs_is_multi_device(struct f2fs_sb_info * sbi)1642 static inline bool f2fs_is_multi_device(struct f2fs_sb_info *sbi)
1643 {
1644 	return sbi->s_ndevs > 1;
1645 }
1646 
1647 /* For write statistics. Suppose sector size is 512 bytes,
1648  * and the return value is in kbytes. s is of struct f2fs_sb_info.
1649  */
1650 #define BD_PART_WRITTEN(s)						 \
1651 (((u64)part_stat_read((s)->sb->s_bdev->bd_part, sectors[STAT_WRITE]) -   \
1652 		(s)->sectors_written_start) >> 1)
1653 
f2fs_update_time(struct f2fs_sb_info * sbi,int type)1654 static inline void f2fs_update_time(struct f2fs_sb_info *sbi, int type)
1655 {
1656 	unsigned long now = jiffies;
1657 
1658 	sbi->last_time[type] = now;
1659 
1660 	/* DISCARD_TIME and GC_TIME are based on REQ_TIME */
1661 	if (type == REQ_TIME) {
1662 		sbi->last_time[DISCARD_TIME] = now;
1663 		sbi->last_time[GC_TIME] = now;
1664 	}
1665 }
1666 
f2fs_time_over(struct f2fs_sb_info * sbi,int type)1667 static inline bool f2fs_time_over(struct f2fs_sb_info *sbi, int type)
1668 {
1669 	unsigned long interval = sbi->interval_time[type] * HZ;
1670 
1671 	return time_after(jiffies, sbi->last_time[type] + interval);
1672 }
1673 
f2fs_time_to_wait(struct f2fs_sb_info * sbi,int type)1674 static inline unsigned int f2fs_time_to_wait(struct f2fs_sb_info *sbi,
1675 						int type)
1676 {
1677 	unsigned long interval = sbi->interval_time[type] * HZ;
1678 	unsigned int wait_ms = 0;
1679 	long delta;
1680 
1681 	delta = (sbi->last_time[type] + interval) - jiffies;
1682 	if (delta > 0)
1683 		wait_ms = jiffies_to_msecs(delta);
1684 
1685 	return wait_ms;
1686 }
1687 
1688 /*
1689  * Inline functions
1690  */
__f2fs_crc32(struct f2fs_sb_info * sbi,u32 crc,const void * address,unsigned int length)1691 static inline u32 __f2fs_crc32(struct f2fs_sb_info *sbi, u32 crc,
1692 			      const void *address, unsigned int length)
1693 {
1694 	struct {
1695 		struct shash_desc shash;
1696 		char ctx[4];
1697 	} desc;
1698 	int err;
1699 
1700 	BUG_ON(crypto_shash_descsize(sbi->s_chksum_driver) != sizeof(desc.ctx));
1701 
1702 	desc.shash.tfm = sbi->s_chksum_driver;
1703 	*(u32 *)desc.ctx = crc;
1704 
1705 	err = crypto_shash_update(&desc.shash, address, length);
1706 	BUG_ON(err);
1707 
1708 	return *(u32 *)desc.ctx;
1709 }
1710 
f2fs_crc32(struct f2fs_sb_info * sbi,const void * address,unsigned int length)1711 static inline u32 f2fs_crc32(struct f2fs_sb_info *sbi, const void *address,
1712 			   unsigned int length)
1713 {
1714 	return __f2fs_crc32(sbi, F2FS_SUPER_MAGIC, address, length);
1715 }
1716 
f2fs_crc_valid(struct f2fs_sb_info * sbi,__u32 blk_crc,void * buf,size_t buf_size)1717 static inline bool f2fs_crc_valid(struct f2fs_sb_info *sbi, __u32 blk_crc,
1718 				  void *buf, size_t buf_size)
1719 {
1720 	return f2fs_crc32(sbi, buf, buf_size) == blk_crc;
1721 }
1722 
f2fs_chksum(struct f2fs_sb_info * sbi,u32 crc,const void * address,unsigned int length)1723 static inline u32 f2fs_chksum(struct f2fs_sb_info *sbi, u32 crc,
1724 			      const void *address, unsigned int length)
1725 {
1726 	return __f2fs_crc32(sbi, crc, address, length);
1727 }
1728 
F2FS_I(struct inode * inode)1729 static inline struct f2fs_inode_info *F2FS_I(struct inode *inode)
1730 {
1731 	return container_of(inode, struct f2fs_inode_info, vfs_inode);
1732 }
1733 
F2FS_SB(struct super_block * sb)1734 static inline struct f2fs_sb_info *F2FS_SB(struct super_block *sb)
1735 {
1736 	return sb->s_fs_info;
1737 }
1738 
F2FS_I_SB(struct inode * inode)1739 static inline struct f2fs_sb_info *F2FS_I_SB(struct inode *inode)
1740 {
1741 	return F2FS_SB(inode->i_sb);
1742 }
1743 
F2FS_M_SB(struct address_space * mapping)1744 static inline struct f2fs_sb_info *F2FS_M_SB(struct address_space *mapping)
1745 {
1746 	return F2FS_I_SB(mapping->host);
1747 }
1748 
F2FS_P_SB(struct page * page)1749 static inline struct f2fs_sb_info *F2FS_P_SB(struct page *page)
1750 {
1751 	return F2FS_M_SB(page_file_mapping(page));
1752 }
1753 
F2FS_RAW_SUPER(struct f2fs_sb_info * sbi)1754 static inline struct f2fs_super_block *F2FS_RAW_SUPER(struct f2fs_sb_info *sbi)
1755 {
1756 	return (struct f2fs_super_block *)(sbi->raw_super);
1757 }
1758 
F2FS_CKPT(struct f2fs_sb_info * sbi)1759 static inline struct f2fs_checkpoint *F2FS_CKPT(struct f2fs_sb_info *sbi)
1760 {
1761 	return (struct f2fs_checkpoint *)(sbi->ckpt);
1762 }
1763 
F2FS_NODE(struct page * page)1764 static inline struct f2fs_node *F2FS_NODE(struct page *page)
1765 {
1766 	return (struct f2fs_node *)page_address(page);
1767 }
1768 
F2FS_INODE(struct page * page)1769 static inline struct f2fs_inode *F2FS_INODE(struct page *page)
1770 {
1771 	return &((struct f2fs_node *)page_address(page))->i;
1772 }
1773 
NM_I(struct f2fs_sb_info * sbi)1774 static inline struct f2fs_nm_info *NM_I(struct f2fs_sb_info *sbi)
1775 {
1776 	return (struct f2fs_nm_info *)(sbi->nm_info);
1777 }
1778 
SM_I(struct f2fs_sb_info * sbi)1779 static inline struct f2fs_sm_info *SM_I(struct f2fs_sb_info *sbi)
1780 {
1781 	return (struct f2fs_sm_info *)(sbi->sm_info);
1782 }
1783 
SIT_I(struct f2fs_sb_info * sbi)1784 static inline struct sit_info *SIT_I(struct f2fs_sb_info *sbi)
1785 {
1786 	return (struct sit_info *)(SM_I(sbi)->sit_info);
1787 }
1788 
FREE_I(struct f2fs_sb_info * sbi)1789 static inline struct free_segmap_info *FREE_I(struct f2fs_sb_info *sbi)
1790 {
1791 	return (struct free_segmap_info *)(SM_I(sbi)->free_info);
1792 }
1793 
DIRTY_I(struct f2fs_sb_info * sbi)1794 static inline struct dirty_seglist_info *DIRTY_I(struct f2fs_sb_info *sbi)
1795 {
1796 	return (struct dirty_seglist_info *)(SM_I(sbi)->dirty_info);
1797 }
1798 
META_MAPPING(struct f2fs_sb_info * sbi)1799 static inline struct address_space *META_MAPPING(struct f2fs_sb_info *sbi)
1800 {
1801 	return sbi->meta_inode->i_mapping;
1802 }
1803 
NODE_MAPPING(struct f2fs_sb_info * sbi)1804 static inline struct address_space *NODE_MAPPING(struct f2fs_sb_info *sbi)
1805 {
1806 	return sbi->node_inode->i_mapping;
1807 }
1808 
is_sbi_flag_set(struct f2fs_sb_info * sbi,unsigned int type)1809 static inline bool is_sbi_flag_set(struct f2fs_sb_info *sbi, unsigned int type)
1810 {
1811 	return test_bit(type, &sbi->s_flag);
1812 }
1813 
set_sbi_flag(struct f2fs_sb_info * sbi,unsigned int type)1814 static inline void set_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type)
1815 {
1816 	set_bit(type, &sbi->s_flag);
1817 }
1818 
clear_sbi_flag(struct f2fs_sb_info * sbi,unsigned int type)1819 static inline void clear_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type)
1820 {
1821 	clear_bit(type, &sbi->s_flag);
1822 }
1823 
cur_cp_version(struct f2fs_checkpoint * cp)1824 static inline unsigned long long cur_cp_version(struct f2fs_checkpoint *cp)
1825 {
1826 	return le64_to_cpu(cp->checkpoint_ver);
1827 }
1828 
f2fs_qf_ino(struct super_block * sb,int type)1829 static inline unsigned long f2fs_qf_ino(struct super_block *sb, int type)
1830 {
1831 	if (type < F2FS_MAX_QUOTAS)
1832 		return le32_to_cpu(F2FS_SB(sb)->raw_super->qf_ino[type]);
1833 	return 0;
1834 }
1835 
cur_cp_crc(struct f2fs_checkpoint * cp)1836 static inline __u64 cur_cp_crc(struct f2fs_checkpoint *cp)
1837 {
1838 	size_t crc_offset = le32_to_cpu(cp->checksum_offset);
1839 	return le32_to_cpu(*((__le32 *)((unsigned char *)cp + crc_offset)));
1840 }
1841 
__is_set_ckpt_flags(struct f2fs_checkpoint * cp,unsigned int f)1842 static inline bool __is_set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
1843 {
1844 	unsigned int ckpt_flags = le32_to_cpu(cp->ckpt_flags);
1845 
1846 	return ckpt_flags & f;
1847 }
1848 
is_set_ckpt_flags(struct f2fs_sb_info * sbi,unsigned int f)1849 static inline bool is_set_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f)
1850 {
1851 	return __is_set_ckpt_flags(F2FS_CKPT(sbi), f);
1852 }
1853 
__set_ckpt_flags(struct f2fs_checkpoint * cp,unsigned int f)1854 static inline void __set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
1855 {
1856 	unsigned int ckpt_flags;
1857 
1858 	ckpt_flags = le32_to_cpu(cp->ckpt_flags);
1859 	ckpt_flags |= f;
1860 	cp->ckpt_flags = cpu_to_le32(ckpt_flags);
1861 }
1862 
set_ckpt_flags(struct f2fs_sb_info * sbi,unsigned int f)1863 static inline void set_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f)
1864 {
1865 	unsigned long flags;
1866 
1867 	spin_lock_irqsave(&sbi->cp_lock, flags);
1868 	__set_ckpt_flags(F2FS_CKPT(sbi), f);
1869 	spin_unlock_irqrestore(&sbi->cp_lock, flags);
1870 }
1871 
__clear_ckpt_flags(struct f2fs_checkpoint * cp,unsigned int f)1872 static inline void __clear_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
1873 {
1874 	unsigned int ckpt_flags;
1875 
1876 	ckpt_flags = le32_to_cpu(cp->ckpt_flags);
1877 	ckpt_flags &= (~f);
1878 	cp->ckpt_flags = cpu_to_le32(ckpt_flags);
1879 }
1880 
clear_ckpt_flags(struct f2fs_sb_info * sbi,unsigned int f)1881 static inline void clear_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f)
1882 {
1883 	unsigned long flags;
1884 
1885 	spin_lock_irqsave(&sbi->cp_lock, flags);
1886 	__clear_ckpt_flags(F2FS_CKPT(sbi), f);
1887 	spin_unlock_irqrestore(&sbi->cp_lock, flags);
1888 }
1889 
disable_nat_bits(struct f2fs_sb_info * sbi,bool lock)1890 static inline void disable_nat_bits(struct f2fs_sb_info *sbi, bool lock)
1891 {
1892 	unsigned long flags;
1893 	unsigned char *nat_bits;
1894 
1895 	/*
1896 	 * In order to re-enable nat_bits we need to call fsck.f2fs by
1897 	 * set_sbi_flag(sbi, SBI_NEED_FSCK). But it may give huge cost,
1898 	 * so let's rely on regular fsck or unclean shutdown.
1899 	 */
1900 
1901 	if (lock)
1902 		spin_lock_irqsave(&sbi->cp_lock, flags);
1903 	__clear_ckpt_flags(F2FS_CKPT(sbi), CP_NAT_BITS_FLAG);
1904 	nat_bits = NM_I(sbi)->nat_bits;
1905 	NM_I(sbi)->nat_bits = NULL;
1906 	if (lock)
1907 		spin_unlock_irqrestore(&sbi->cp_lock, flags);
1908 
1909 	kvfree(nat_bits);
1910 }
1911 
enabled_nat_bits(struct f2fs_sb_info * sbi,struct cp_control * cpc)1912 static inline bool enabled_nat_bits(struct f2fs_sb_info *sbi,
1913 					struct cp_control *cpc)
1914 {
1915 	bool set = is_set_ckpt_flags(sbi, CP_NAT_BITS_FLAG);
1916 
1917 	return (cpc) ? (cpc->reason & CP_UMOUNT) && set : set;
1918 }
1919 
f2fs_lock_op(struct f2fs_sb_info * sbi)1920 static inline void f2fs_lock_op(struct f2fs_sb_info *sbi)
1921 {
1922 	down_read(&sbi->cp_rwsem);
1923 }
1924 
f2fs_trylock_op(struct f2fs_sb_info * sbi)1925 static inline int f2fs_trylock_op(struct f2fs_sb_info *sbi)
1926 {
1927 	return down_read_trylock(&sbi->cp_rwsem);
1928 }
1929 
f2fs_unlock_op(struct f2fs_sb_info * sbi)1930 static inline void f2fs_unlock_op(struct f2fs_sb_info *sbi)
1931 {
1932 	up_read(&sbi->cp_rwsem);
1933 }
1934 
f2fs_lock_all(struct f2fs_sb_info * sbi)1935 static inline void f2fs_lock_all(struct f2fs_sb_info *sbi)
1936 {
1937 	down_write(&sbi->cp_rwsem);
1938 }
1939 
f2fs_unlock_all(struct f2fs_sb_info * sbi)1940 static inline void f2fs_unlock_all(struct f2fs_sb_info *sbi)
1941 {
1942 	up_write(&sbi->cp_rwsem);
1943 }
1944 
__get_cp_reason(struct f2fs_sb_info * sbi)1945 static inline int __get_cp_reason(struct f2fs_sb_info *sbi)
1946 {
1947 	int reason = CP_SYNC;
1948 
1949 	if (test_opt(sbi, FASTBOOT))
1950 		reason = CP_FASTBOOT;
1951 	if (is_sbi_flag_set(sbi, SBI_IS_CLOSE))
1952 		reason = CP_UMOUNT;
1953 	return reason;
1954 }
1955 
__remain_node_summaries(int reason)1956 static inline bool __remain_node_summaries(int reason)
1957 {
1958 	return (reason & (CP_UMOUNT | CP_FASTBOOT));
1959 }
1960 
__exist_node_summaries(struct f2fs_sb_info * sbi)1961 static inline bool __exist_node_summaries(struct f2fs_sb_info *sbi)
1962 {
1963 	return (is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG) ||
1964 			is_set_ckpt_flags(sbi, CP_FASTBOOT_FLAG));
1965 }
1966 
1967 /*
1968  * Check whether the inode has blocks or not
1969  */
F2FS_HAS_BLOCKS(struct inode * inode)1970 static inline int F2FS_HAS_BLOCKS(struct inode *inode)
1971 {
1972 	block_t xattr_block = F2FS_I(inode)->i_xattr_nid ? 1 : 0;
1973 
1974 	return (inode->i_blocks >> F2FS_LOG_SECTORS_PER_BLOCK) > xattr_block;
1975 }
1976 
f2fs_has_xattr_block(unsigned int ofs)1977 static inline bool f2fs_has_xattr_block(unsigned int ofs)
1978 {
1979 	return ofs == XATTR_NODE_OFFSET;
1980 }
1981 
__allow_reserved_blocks(struct f2fs_sb_info * sbi,struct inode * inode,bool cap)1982 static inline bool __allow_reserved_blocks(struct f2fs_sb_info *sbi,
1983 					struct inode *inode, bool cap)
1984 {
1985 	if (!inode)
1986 		return true;
1987 	if (!test_opt(sbi, RESERVE_ROOT))
1988 		return false;
1989 	if (IS_NOQUOTA(inode))
1990 		return true;
1991 	if (uid_eq(F2FS_OPTION(sbi).s_resuid, current_fsuid()))
1992 		return true;
1993 	if (!gid_eq(F2FS_OPTION(sbi).s_resgid, GLOBAL_ROOT_GID) &&
1994 					in_group_p(F2FS_OPTION(sbi).s_resgid))
1995 		return true;
1996 	if (cap && capable(CAP_SYS_RESOURCE))
1997 		return true;
1998 	return false;
1999 }
2000 
2001 static inline void f2fs_i_blocks_write(struct inode *, block_t, bool, bool);
inc_valid_block_count(struct f2fs_sb_info * sbi,struct inode * inode,blkcnt_t * count)2002 static inline int inc_valid_block_count(struct f2fs_sb_info *sbi,
2003 				 struct inode *inode, blkcnt_t *count)
2004 {
2005 	blkcnt_t diff = 0, release = 0;
2006 	block_t avail_user_block_count;
2007 	int ret;
2008 
2009 	ret = dquot_reserve_block(inode, *count);
2010 	if (ret)
2011 		return ret;
2012 
2013 	if (time_to_inject(sbi, FAULT_BLOCK)) {
2014 		f2fs_show_injection_info(sbi, FAULT_BLOCK);
2015 		release = *count;
2016 		goto release_quota;
2017 	}
2018 
2019 	/*
2020 	 * let's increase this in prior to actual block count change in order
2021 	 * for f2fs_sync_file to avoid data races when deciding checkpoint.
2022 	 */
2023 	percpu_counter_add(&sbi->alloc_valid_block_count, (*count));
2024 
2025 	spin_lock(&sbi->stat_lock);
2026 	sbi->total_valid_block_count += (block_t)(*count);
2027 	avail_user_block_count = sbi->user_block_count -
2028 					sbi->current_reserved_blocks;
2029 
2030 	if (!__allow_reserved_blocks(sbi, inode, true))
2031 		avail_user_block_count -= F2FS_OPTION(sbi).root_reserved_blocks;
2032 
2033 	if (F2FS_IO_ALIGNED(sbi))
2034 		avail_user_block_count -= sbi->blocks_per_seg *
2035 				SM_I(sbi)->additional_reserved_segments;
2036 
2037 	if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) {
2038 		if (avail_user_block_count > sbi->unusable_block_count)
2039 			avail_user_block_count -= sbi->unusable_block_count;
2040 		else
2041 			avail_user_block_count = 0;
2042 	}
2043 	if (unlikely(sbi->total_valid_block_count > avail_user_block_count)) {
2044 		diff = sbi->total_valid_block_count - avail_user_block_count;
2045 		if (diff > *count)
2046 			diff = *count;
2047 		*count -= diff;
2048 		release = diff;
2049 		sbi->total_valid_block_count -= diff;
2050 		if (!*count) {
2051 			spin_unlock(&sbi->stat_lock);
2052 			goto enospc;
2053 		}
2054 	}
2055 	spin_unlock(&sbi->stat_lock);
2056 
2057 	if (unlikely(release)) {
2058 		percpu_counter_sub(&sbi->alloc_valid_block_count, release);
2059 		dquot_release_reservation_block(inode, release);
2060 	}
2061 	f2fs_i_blocks_write(inode, *count, true, true);
2062 	return 0;
2063 
2064 enospc:
2065 	percpu_counter_sub(&sbi->alloc_valid_block_count, release);
2066 release_quota:
2067 	dquot_release_reservation_block(inode, release);
2068 	return -ENOSPC;
2069 }
2070 
2071 __printf(2, 3)
2072 void f2fs_printk(struct f2fs_sb_info *sbi, const char *fmt, ...);
2073 
2074 #define f2fs_err(sbi, fmt, ...)						\
2075 	f2fs_printk(sbi, KERN_ERR fmt, ##__VA_ARGS__)
2076 #define f2fs_warn(sbi, fmt, ...)					\
2077 	f2fs_printk(sbi, KERN_WARNING fmt, ##__VA_ARGS__)
2078 #define f2fs_notice(sbi, fmt, ...)					\
2079 	f2fs_printk(sbi, KERN_NOTICE fmt, ##__VA_ARGS__)
2080 #define f2fs_info(sbi, fmt, ...)					\
2081 	f2fs_printk(sbi, KERN_INFO fmt, ##__VA_ARGS__)
2082 #define f2fs_debug(sbi, fmt, ...)					\
2083 	f2fs_printk(sbi, KERN_DEBUG fmt, ##__VA_ARGS__)
2084 
dec_valid_block_count(struct f2fs_sb_info * sbi,struct inode * inode,block_t count)2085 static inline void dec_valid_block_count(struct f2fs_sb_info *sbi,
2086 						struct inode *inode,
2087 						block_t count)
2088 {
2089 	blkcnt_t sectors = count << F2FS_LOG_SECTORS_PER_BLOCK;
2090 
2091 	spin_lock(&sbi->stat_lock);
2092 	f2fs_bug_on(sbi, sbi->total_valid_block_count < (block_t) count);
2093 	sbi->total_valid_block_count -= (block_t)count;
2094 	if (sbi->reserved_blocks &&
2095 		sbi->current_reserved_blocks < sbi->reserved_blocks)
2096 		sbi->current_reserved_blocks = min(sbi->reserved_blocks,
2097 					sbi->current_reserved_blocks + count);
2098 	spin_unlock(&sbi->stat_lock);
2099 	if (unlikely(inode->i_blocks < sectors)) {
2100 		f2fs_warn(sbi, "Inconsistent i_blocks, ino:%lu, iblocks:%llu, sectors:%llu",
2101 			  inode->i_ino,
2102 			  (unsigned long long)inode->i_blocks,
2103 			  (unsigned long long)sectors);
2104 		set_sbi_flag(sbi, SBI_NEED_FSCK);
2105 		return;
2106 	}
2107 	f2fs_i_blocks_write(inode, count, false, true);
2108 }
2109 
inc_page_count(struct f2fs_sb_info * sbi,int count_type)2110 static inline void inc_page_count(struct f2fs_sb_info *sbi, int count_type)
2111 {
2112 	atomic_inc(&sbi->nr_pages[count_type]);
2113 
2114 	if (count_type == F2FS_DIRTY_DENTS ||
2115 			count_type == F2FS_DIRTY_NODES ||
2116 			count_type == F2FS_DIRTY_META ||
2117 			count_type == F2FS_DIRTY_QDATA ||
2118 			count_type == F2FS_DIRTY_IMETA)
2119 		set_sbi_flag(sbi, SBI_IS_DIRTY);
2120 }
2121 
inode_inc_dirty_pages(struct inode * inode)2122 static inline void inode_inc_dirty_pages(struct inode *inode)
2123 {
2124 	atomic_inc(&F2FS_I(inode)->dirty_pages);
2125 	inc_page_count(F2FS_I_SB(inode), S_ISDIR(inode->i_mode) ?
2126 				F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA);
2127 	if (IS_NOQUOTA(inode))
2128 		inc_page_count(F2FS_I_SB(inode), F2FS_DIRTY_QDATA);
2129 }
2130 
dec_page_count(struct f2fs_sb_info * sbi,int count_type)2131 static inline void dec_page_count(struct f2fs_sb_info *sbi, int count_type)
2132 {
2133 	atomic_dec(&sbi->nr_pages[count_type]);
2134 }
2135 
inode_dec_dirty_pages(struct inode * inode)2136 static inline void inode_dec_dirty_pages(struct inode *inode)
2137 {
2138 	if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) &&
2139 			!S_ISLNK(inode->i_mode))
2140 		return;
2141 
2142 	atomic_dec(&F2FS_I(inode)->dirty_pages);
2143 	dec_page_count(F2FS_I_SB(inode), S_ISDIR(inode->i_mode) ?
2144 				F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA);
2145 	if (IS_NOQUOTA(inode))
2146 		dec_page_count(F2FS_I_SB(inode), F2FS_DIRTY_QDATA);
2147 }
2148 
get_pages(struct f2fs_sb_info * sbi,int count_type)2149 static inline s64 get_pages(struct f2fs_sb_info *sbi, int count_type)
2150 {
2151 	return atomic_read(&sbi->nr_pages[count_type]);
2152 }
2153 
get_dirty_pages(struct inode * inode)2154 static inline int get_dirty_pages(struct inode *inode)
2155 {
2156 	return atomic_read(&F2FS_I(inode)->dirty_pages);
2157 }
2158 
get_blocktype_secs(struct f2fs_sb_info * sbi,int block_type)2159 static inline int get_blocktype_secs(struct f2fs_sb_info *sbi, int block_type)
2160 {
2161 	unsigned int pages_per_sec = sbi->segs_per_sec * sbi->blocks_per_seg;
2162 	unsigned int segs = (get_pages(sbi, block_type) + pages_per_sec - 1) >>
2163 						sbi->log_blocks_per_seg;
2164 
2165 	return segs / sbi->segs_per_sec;
2166 }
2167 
valid_user_blocks(struct f2fs_sb_info * sbi)2168 static inline block_t valid_user_blocks(struct f2fs_sb_info *sbi)
2169 {
2170 	return sbi->total_valid_block_count;
2171 }
2172 
discard_blocks(struct f2fs_sb_info * sbi)2173 static inline block_t discard_blocks(struct f2fs_sb_info *sbi)
2174 {
2175 	return sbi->discard_blks;
2176 }
2177 
__bitmap_size(struct f2fs_sb_info * sbi,int flag)2178 static inline unsigned long __bitmap_size(struct f2fs_sb_info *sbi, int flag)
2179 {
2180 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
2181 
2182 	/* return NAT or SIT bitmap */
2183 	if (flag == NAT_BITMAP)
2184 		return le32_to_cpu(ckpt->nat_ver_bitmap_bytesize);
2185 	else if (flag == SIT_BITMAP)
2186 		return le32_to_cpu(ckpt->sit_ver_bitmap_bytesize);
2187 
2188 	return 0;
2189 }
2190 
__cp_payload(struct f2fs_sb_info * sbi)2191 static inline block_t __cp_payload(struct f2fs_sb_info *sbi)
2192 {
2193 	return le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_payload);
2194 }
2195 
__bitmap_ptr(struct f2fs_sb_info * sbi,int flag)2196 static inline void *__bitmap_ptr(struct f2fs_sb_info *sbi, int flag)
2197 {
2198 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
2199 	int offset;
2200 
2201 	if (is_set_ckpt_flags(sbi, CP_LARGE_NAT_BITMAP_FLAG)) {
2202 		offset = (flag == SIT_BITMAP) ?
2203 			le32_to_cpu(ckpt->nat_ver_bitmap_bytesize) : 0;
2204 		/*
2205 		 * if large_nat_bitmap feature is enabled, leave checksum
2206 		 * protection for all nat/sit bitmaps.
2207 		 */
2208 		return &ckpt->sit_nat_version_bitmap + offset + sizeof(__le32);
2209 	}
2210 
2211 	if (__cp_payload(sbi) > 0) {
2212 		if (flag == NAT_BITMAP)
2213 			return &ckpt->sit_nat_version_bitmap;
2214 		else
2215 			return (unsigned char *)ckpt + F2FS_BLKSIZE;
2216 	} else {
2217 		offset = (flag == NAT_BITMAP) ?
2218 			le32_to_cpu(ckpt->sit_ver_bitmap_bytesize) : 0;
2219 		return &ckpt->sit_nat_version_bitmap + offset;
2220 	}
2221 }
2222 
__start_cp_addr(struct f2fs_sb_info * sbi)2223 static inline block_t __start_cp_addr(struct f2fs_sb_info *sbi)
2224 {
2225 	block_t start_addr = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_blkaddr);
2226 
2227 	if (sbi->cur_cp_pack == 2)
2228 		start_addr += sbi->blocks_per_seg;
2229 	return start_addr;
2230 }
2231 
__start_cp_next_addr(struct f2fs_sb_info * sbi)2232 static inline block_t __start_cp_next_addr(struct f2fs_sb_info *sbi)
2233 {
2234 	block_t start_addr = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_blkaddr);
2235 
2236 	if (sbi->cur_cp_pack == 1)
2237 		start_addr += sbi->blocks_per_seg;
2238 	return start_addr;
2239 }
2240 
__set_cp_next_pack(struct f2fs_sb_info * sbi)2241 static inline void __set_cp_next_pack(struct f2fs_sb_info *sbi)
2242 {
2243 	sbi->cur_cp_pack = (sbi->cur_cp_pack == 1) ? 2 : 1;
2244 }
2245 
__start_sum_addr(struct f2fs_sb_info * sbi)2246 static inline block_t __start_sum_addr(struct f2fs_sb_info *sbi)
2247 {
2248 	return le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_start_sum);
2249 }
2250 
inc_valid_node_count(struct f2fs_sb_info * sbi,struct inode * inode,bool is_inode)2251 static inline int inc_valid_node_count(struct f2fs_sb_info *sbi,
2252 					struct inode *inode, bool is_inode)
2253 {
2254 	block_t	valid_block_count;
2255 	unsigned int valid_node_count, user_block_count;
2256 	int err;
2257 
2258 	if (is_inode) {
2259 		if (inode) {
2260 			err = dquot_alloc_inode(inode);
2261 			if (err)
2262 				return err;
2263 		}
2264 	} else {
2265 		err = dquot_reserve_block(inode, 1);
2266 		if (err)
2267 			return err;
2268 	}
2269 
2270 	if (time_to_inject(sbi, FAULT_BLOCK)) {
2271 		f2fs_show_injection_info(sbi, FAULT_BLOCK);
2272 		goto enospc;
2273 	}
2274 
2275 	spin_lock(&sbi->stat_lock);
2276 
2277 	valid_block_count = sbi->total_valid_block_count +
2278 					sbi->current_reserved_blocks + 1;
2279 
2280 	if (!__allow_reserved_blocks(sbi, inode, false))
2281 		valid_block_count += F2FS_OPTION(sbi).root_reserved_blocks;
2282 
2283 	if (F2FS_IO_ALIGNED(sbi))
2284 		valid_block_count += sbi->blocks_per_seg *
2285 				SM_I(sbi)->additional_reserved_segments;
2286 
2287 	user_block_count = sbi->user_block_count;
2288 	if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
2289 		user_block_count -= sbi->unusable_block_count;
2290 
2291 	if (unlikely(valid_block_count > user_block_count)) {
2292 		spin_unlock(&sbi->stat_lock);
2293 		goto enospc;
2294 	}
2295 
2296 	valid_node_count = sbi->total_valid_node_count + 1;
2297 	if (unlikely(valid_node_count > sbi->total_node_count)) {
2298 		spin_unlock(&sbi->stat_lock);
2299 		goto enospc;
2300 	}
2301 
2302 	sbi->total_valid_node_count++;
2303 	sbi->total_valid_block_count++;
2304 	spin_unlock(&sbi->stat_lock);
2305 
2306 	if (inode) {
2307 		if (is_inode)
2308 			f2fs_mark_inode_dirty_sync(inode, true);
2309 		else
2310 			f2fs_i_blocks_write(inode, 1, true, true);
2311 	}
2312 
2313 	percpu_counter_inc(&sbi->alloc_valid_block_count);
2314 	return 0;
2315 
2316 enospc:
2317 	if (is_inode) {
2318 		if (inode)
2319 			dquot_free_inode(inode);
2320 	} else {
2321 		dquot_release_reservation_block(inode, 1);
2322 	}
2323 	return -ENOSPC;
2324 }
2325 
dec_valid_node_count(struct f2fs_sb_info * sbi,struct inode * inode,bool is_inode)2326 static inline void dec_valid_node_count(struct f2fs_sb_info *sbi,
2327 					struct inode *inode, bool is_inode)
2328 {
2329 	spin_lock(&sbi->stat_lock);
2330 
2331 	if (unlikely(!sbi->total_valid_block_count ||
2332 			!sbi->total_valid_node_count)) {
2333 		f2fs_warn(sbi, "dec_valid_node_count: inconsistent block counts, total_valid_block:%u, total_valid_node:%u",
2334 			  sbi->total_valid_block_count,
2335 			  sbi->total_valid_node_count);
2336 		set_sbi_flag(sbi, SBI_NEED_FSCK);
2337 	} else {
2338 		sbi->total_valid_block_count--;
2339 		sbi->total_valid_node_count--;
2340 	}
2341 
2342 	if (sbi->reserved_blocks &&
2343 		sbi->current_reserved_blocks < sbi->reserved_blocks)
2344 		sbi->current_reserved_blocks++;
2345 
2346 	spin_unlock(&sbi->stat_lock);
2347 
2348 	if (is_inode) {
2349 		dquot_free_inode(inode);
2350 	} else {
2351 		if (unlikely(inode->i_blocks == 0)) {
2352 			f2fs_warn(sbi, "dec_valid_node_count: inconsistent i_blocks, ino:%lu, iblocks:%llu",
2353 				  inode->i_ino,
2354 				  (unsigned long long)inode->i_blocks);
2355 			set_sbi_flag(sbi, SBI_NEED_FSCK);
2356 			return;
2357 		}
2358 		f2fs_i_blocks_write(inode, 1, false, true);
2359 	}
2360 }
2361 
valid_node_count(struct f2fs_sb_info * sbi)2362 static inline unsigned int valid_node_count(struct f2fs_sb_info *sbi)
2363 {
2364 	return sbi->total_valid_node_count;
2365 }
2366 
inc_valid_inode_count(struct f2fs_sb_info * sbi)2367 static inline void inc_valid_inode_count(struct f2fs_sb_info *sbi)
2368 {
2369 	percpu_counter_inc(&sbi->total_valid_inode_count);
2370 }
2371 
dec_valid_inode_count(struct f2fs_sb_info * sbi)2372 static inline void dec_valid_inode_count(struct f2fs_sb_info *sbi)
2373 {
2374 	percpu_counter_dec(&sbi->total_valid_inode_count);
2375 }
2376 
valid_inode_count(struct f2fs_sb_info * sbi)2377 static inline s64 valid_inode_count(struct f2fs_sb_info *sbi)
2378 {
2379 	return percpu_counter_sum_positive(&sbi->total_valid_inode_count);
2380 }
2381 
f2fs_grab_cache_page(struct address_space * mapping,pgoff_t index,bool for_write)2382 static inline struct page *f2fs_grab_cache_page(struct address_space *mapping,
2383 						pgoff_t index, bool for_write)
2384 {
2385 	struct page *page;
2386 
2387 	if (IS_ENABLED(CONFIG_F2FS_FAULT_INJECTION)) {
2388 		if (!for_write)
2389 			page = find_get_page_flags(mapping, index,
2390 							FGP_LOCK | FGP_ACCESSED);
2391 		else
2392 			page = find_lock_page(mapping, index);
2393 		if (page)
2394 			return page;
2395 
2396 		if (time_to_inject(F2FS_M_SB(mapping), FAULT_PAGE_ALLOC)) {
2397 			f2fs_show_injection_info(F2FS_M_SB(mapping),
2398 							FAULT_PAGE_ALLOC);
2399 			return NULL;
2400 		}
2401 	}
2402 
2403 	if (!for_write)
2404 		return grab_cache_page(mapping, index);
2405 	return grab_cache_page_write_begin(mapping, index, AOP_FLAG_NOFS);
2406 }
2407 
f2fs_pagecache_get_page(struct address_space * mapping,pgoff_t index,int fgp_flags,gfp_t gfp_mask)2408 static inline struct page *f2fs_pagecache_get_page(
2409 				struct address_space *mapping, pgoff_t index,
2410 				int fgp_flags, gfp_t gfp_mask)
2411 {
2412 	if (time_to_inject(F2FS_M_SB(mapping), FAULT_PAGE_GET)) {
2413 		f2fs_show_injection_info(F2FS_M_SB(mapping), FAULT_PAGE_GET);
2414 		return NULL;
2415 	}
2416 
2417 	return pagecache_get_page(mapping, index, fgp_flags, gfp_mask);
2418 }
2419 
f2fs_copy_page(struct page * src,struct page * dst)2420 static inline void f2fs_copy_page(struct page *src, struct page *dst)
2421 {
2422 	char *src_kaddr = kmap(src);
2423 	char *dst_kaddr = kmap(dst);
2424 
2425 	memcpy(dst_kaddr, src_kaddr, PAGE_SIZE);
2426 	kunmap(dst);
2427 	kunmap(src);
2428 }
2429 
f2fs_put_page(struct page * page,int unlock)2430 static inline void f2fs_put_page(struct page *page, int unlock)
2431 {
2432 	if (!page)
2433 		return;
2434 
2435 	if (unlock) {
2436 		f2fs_bug_on(F2FS_P_SB(page), !PageLocked(page));
2437 		unlock_page(page);
2438 	}
2439 	put_page(page);
2440 }
2441 
f2fs_put_dnode(struct dnode_of_data * dn)2442 static inline void f2fs_put_dnode(struct dnode_of_data *dn)
2443 {
2444 	if (dn->node_page)
2445 		f2fs_put_page(dn->node_page, 1);
2446 	if (dn->inode_page && dn->node_page != dn->inode_page)
2447 		f2fs_put_page(dn->inode_page, 0);
2448 	dn->node_page = NULL;
2449 	dn->inode_page = NULL;
2450 }
2451 
f2fs_kmem_cache_create(const char * name,size_t size)2452 static inline struct kmem_cache *f2fs_kmem_cache_create(const char *name,
2453 					size_t size)
2454 {
2455 	return kmem_cache_create(name, size, 0, SLAB_RECLAIM_ACCOUNT, NULL);
2456 }
2457 
f2fs_kmem_cache_alloc(struct kmem_cache * cachep,gfp_t flags)2458 static inline void *f2fs_kmem_cache_alloc(struct kmem_cache *cachep,
2459 						gfp_t flags)
2460 {
2461 	void *entry;
2462 
2463 	entry = kmem_cache_alloc(cachep, flags);
2464 	if (!entry)
2465 		entry = kmem_cache_alloc(cachep, flags | __GFP_NOFAIL);
2466 	return entry;
2467 }
2468 
is_inflight_io(struct f2fs_sb_info * sbi,int type)2469 static inline bool is_inflight_io(struct f2fs_sb_info *sbi, int type)
2470 {
2471 	if (get_pages(sbi, F2FS_RD_DATA) || get_pages(sbi, F2FS_RD_NODE) ||
2472 		get_pages(sbi, F2FS_RD_META) || get_pages(sbi, F2FS_WB_DATA) ||
2473 		get_pages(sbi, F2FS_WB_CP_DATA) ||
2474 		get_pages(sbi, F2FS_DIO_READ) ||
2475 		get_pages(sbi, F2FS_DIO_WRITE))
2476 		return true;
2477 
2478 	if (type != DISCARD_TIME && SM_I(sbi) && SM_I(sbi)->dcc_info &&
2479 			atomic_read(&SM_I(sbi)->dcc_info->queued_discard))
2480 		return true;
2481 
2482 	if (SM_I(sbi) && SM_I(sbi)->fcc_info &&
2483 			atomic_read(&SM_I(sbi)->fcc_info->queued_flush))
2484 		return true;
2485 	return false;
2486 }
2487 
is_idle(struct f2fs_sb_info * sbi,int type)2488 static inline bool is_idle(struct f2fs_sb_info *sbi, int type)
2489 {
2490 	if (sbi->gc_mode == GC_URGENT_HIGH)
2491 		return true;
2492 
2493 	if (is_inflight_io(sbi, type))
2494 		return false;
2495 
2496 	if (sbi->gc_mode == GC_URGENT_LOW &&
2497 			(type == DISCARD_TIME || type == GC_TIME))
2498 		return true;
2499 
2500 	return f2fs_time_over(sbi, type);
2501 }
2502 
f2fs_radix_tree_insert(struct radix_tree_root * root,unsigned long index,void * item)2503 static inline void f2fs_radix_tree_insert(struct radix_tree_root *root,
2504 				unsigned long index, void *item)
2505 {
2506 	while (radix_tree_insert(root, index, item))
2507 		cond_resched();
2508 }
2509 
2510 #define RAW_IS_INODE(p)	((p)->footer.nid == (p)->footer.ino)
2511 
IS_INODE(struct page * page)2512 static inline bool IS_INODE(struct page *page)
2513 {
2514 	struct f2fs_node *p = F2FS_NODE(page);
2515 
2516 	return RAW_IS_INODE(p);
2517 }
2518 
offset_in_addr(struct f2fs_inode * i)2519 static inline int offset_in_addr(struct f2fs_inode *i)
2520 {
2521 	return (i->i_inline & F2FS_EXTRA_ATTR) ?
2522 			(le16_to_cpu(i->i_extra_isize) / sizeof(__le32)) : 0;
2523 }
2524 
blkaddr_in_node(struct f2fs_node * node)2525 static inline __le32 *blkaddr_in_node(struct f2fs_node *node)
2526 {
2527 	return RAW_IS_INODE(node) ? node->i.i_addr : node->dn.addr;
2528 }
2529 
2530 static inline int f2fs_has_extra_attr(struct inode *inode);
data_blkaddr(struct inode * inode,struct page * node_page,unsigned int offset)2531 static inline block_t data_blkaddr(struct inode *inode,
2532 			struct page *node_page, unsigned int offset)
2533 {
2534 	struct f2fs_node *raw_node;
2535 	__le32 *addr_array;
2536 	int base = 0;
2537 	bool is_inode = IS_INODE(node_page);
2538 
2539 	raw_node = F2FS_NODE(node_page);
2540 
2541 	if (is_inode) {
2542 		if (!inode)
2543 			/* from GC path only */
2544 			base = offset_in_addr(&raw_node->i);
2545 		else if (f2fs_has_extra_attr(inode))
2546 			base = get_extra_isize(inode);
2547 	}
2548 
2549 	addr_array = blkaddr_in_node(raw_node);
2550 	return le32_to_cpu(addr_array[base + offset]);
2551 }
2552 
f2fs_data_blkaddr(struct dnode_of_data * dn)2553 static inline block_t f2fs_data_blkaddr(struct dnode_of_data *dn)
2554 {
2555 	return data_blkaddr(dn->inode, dn->node_page, dn->ofs_in_node);
2556 }
2557 
f2fs_test_bit(unsigned int nr,char * addr)2558 static inline int f2fs_test_bit(unsigned int nr, char *addr)
2559 {
2560 	int mask;
2561 
2562 	addr += (nr >> 3);
2563 	mask = 1 << (7 - (nr & 0x07));
2564 	return mask & *addr;
2565 }
2566 
f2fs_set_bit(unsigned int nr,char * addr)2567 static inline void f2fs_set_bit(unsigned int nr, char *addr)
2568 {
2569 	int mask;
2570 
2571 	addr += (nr >> 3);
2572 	mask = 1 << (7 - (nr & 0x07));
2573 	*addr |= mask;
2574 }
2575 
f2fs_clear_bit(unsigned int nr,char * addr)2576 static inline void f2fs_clear_bit(unsigned int nr, char *addr)
2577 {
2578 	int mask;
2579 
2580 	addr += (nr >> 3);
2581 	mask = 1 << (7 - (nr & 0x07));
2582 	*addr &= ~mask;
2583 }
2584 
f2fs_test_and_set_bit(unsigned int nr,char * addr)2585 static inline int f2fs_test_and_set_bit(unsigned int nr, char *addr)
2586 {
2587 	int mask;
2588 	int ret;
2589 
2590 	addr += (nr >> 3);
2591 	mask = 1 << (7 - (nr & 0x07));
2592 	ret = mask & *addr;
2593 	*addr |= mask;
2594 	return ret;
2595 }
2596 
f2fs_test_and_clear_bit(unsigned int nr,char * addr)2597 static inline int f2fs_test_and_clear_bit(unsigned int nr, char *addr)
2598 {
2599 	int mask;
2600 	int ret;
2601 
2602 	addr += (nr >> 3);
2603 	mask = 1 << (7 - (nr & 0x07));
2604 	ret = mask & *addr;
2605 	*addr &= ~mask;
2606 	return ret;
2607 }
2608 
f2fs_change_bit(unsigned int nr,char * addr)2609 static inline void f2fs_change_bit(unsigned int nr, char *addr)
2610 {
2611 	int mask;
2612 
2613 	addr += (nr >> 3);
2614 	mask = 1 << (7 - (nr & 0x07));
2615 	*addr ^= mask;
2616 }
2617 
2618 /*
2619  * On-disk inode flags (f2fs_inode::i_flags)
2620  */
2621 #define F2FS_COMPR_FL			0x00000004 /* Compress file */
2622 #define F2FS_SYNC_FL			0x00000008 /* Synchronous updates */
2623 #define F2FS_IMMUTABLE_FL		0x00000010 /* Immutable file */
2624 #define F2FS_APPEND_FL			0x00000020 /* writes to file may only append */
2625 #define F2FS_NODUMP_FL			0x00000040 /* do not dump file */
2626 #define F2FS_NOATIME_FL			0x00000080 /* do not update atime */
2627 #define F2FS_NOCOMP_FL			0x00000400 /* Don't compress */
2628 #define F2FS_INDEX_FL			0x00001000 /* hash-indexed directory */
2629 #define F2FS_DIRSYNC_FL			0x00010000 /* dirsync behaviour (directories only) */
2630 #define F2FS_PROJINHERIT_FL		0x20000000 /* Create with parents projid */
2631 #define F2FS_CASEFOLD_FL		0x40000000 /* Casefolded file */
2632 
2633 /* Flags that should be inherited by new inodes from their parent. */
2634 #define F2FS_FL_INHERITED (F2FS_SYNC_FL | F2FS_NODUMP_FL | F2FS_NOATIME_FL | \
2635 			   F2FS_DIRSYNC_FL | F2FS_PROJINHERIT_FL | \
2636 			   F2FS_CASEFOLD_FL | F2FS_COMPR_FL | F2FS_NOCOMP_FL)
2637 
2638 /* Flags that are appropriate for regular files (all but dir-specific ones). */
2639 #define F2FS_REG_FLMASK		(~(F2FS_DIRSYNC_FL | F2FS_PROJINHERIT_FL | \
2640 				F2FS_CASEFOLD_FL))
2641 
2642 /* Flags that are appropriate for non-directories/regular files. */
2643 #define F2FS_OTHER_FLMASK	(F2FS_NODUMP_FL | F2FS_NOATIME_FL)
2644 
f2fs_mask_flags(umode_t mode,__u32 flags)2645 static inline __u32 f2fs_mask_flags(umode_t mode, __u32 flags)
2646 {
2647 	if (S_ISDIR(mode))
2648 		return flags;
2649 	else if (S_ISREG(mode))
2650 		return flags & F2FS_REG_FLMASK;
2651 	else
2652 		return flags & F2FS_OTHER_FLMASK;
2653 }
2654 
__mark_inode_dirty_flag(struct inode * inode,int flag,bool set)2655 static inline void __mark_inode_dirty_flag(struct inode *inode,
2656 						int flag, bool set)
2657 {
2658 	switch (flag) {
2659 	case FI_INLINE_XATTR:
2660 	case FI_INLINE_DATA:
2661 	case FI_INLINE_DENTRY:
2662 	case FI_NEW_INODE:
2663 		if (set)
2664 			return;
2665 		fallthrough;
2666 	case FI_DATA_EXIST:
2667 	case FI_INLINE_DOTS:
2668 	case FI_PIN_FILE:
2669 		f2fs_mark_inode_dirty_sync(inode, true);
2670 	}
2671 }
2672 
set_inode_flag(struct inode * inode,int flag)2673 static inline void set_inode_flag(struct inode *inode, int flag)
2674 {
2675 	set_bit(flag, F2FS_I(inode)->flags);
2676 	__mark_inode_dirty_flag(inode, flag, true);
2677 }
2678 
is_inode_flag_set(struct inode * inode,int flag)2679 static inline int is_inode_flag_set(struct inode *inode, int flag)
2680 {
2681 	return test_bit(flag, F2FS_I(inode)->flags);
2682 }
2683 
clear_inode_flag(struct inode * inode,int flag)2684 static inline void clear_inode_flag(struct inode *inode, int flag)
2685 {
2686 	clear_bit(flag, F2FS_I(inode)->flags);
2687 	__mark_inode_dirty_flag(inode, flag, false);
2688 }
2689 
f2fs_verity_in_progress(struct inode * inode)2690 static inline bool f2fs_verity_in_progress(struct inode *inode)
2691 {
2692 	return IS_ENABLED(CONFIG_FS_VERITY) &&
2693 	       is_inode_flag_set(inode, FI_VERITY_IN_PROGRESS);
2694 }
2695 
set_acl_inode(struct inode * inode,umode_t mode)2696 static inline void set_acl_inode(struct inode *inode, umode_t mode)
2697 {
2698 	F2FS_I(inode)->i_acl_mode = mode;
2699 	set_inode_flag(inode, FI_ACL_MODE);
2700 	f2fs_mark_inode_dirty_sync(inode, false);
2701 }
2702 
f2fs_i_links_write(struct inode * inode,bool inc)2703 static inline void f2fs_i_links_write(struct inode *inode, bool inc)
2704 {
2705 	if (inc)
2706 		inc_nlink(inode);
2707 	else
2708 		drop_nlink(inode);
2709 	f2fs_mark_inode_dirty_sync(inode, true);
2710 }
2711 
f2fs_i_blocks_write(struct inode * inode,block_t diff,bool add,bool claim)2712 static inline void f2fs_i_blocks_write(struct inode *inode,
2713 					block_t diff, bool add, bool claim)
2714 {
2715 	bool clean = !is_inode_flag_set(inode, FI_DIRTY_INODE);
2716 	bool recover = is_inode_flag_set(inode, FI_AUTO_RECOVER);
2717 
2718 	/* add = 1, claim = 1 should be dquot_reserve_block in pair */
2719 	if (add) {
2720 		if (claim)
2721 			dquot_claim_block(inode, diff);
2722 		else
2723 			dquot_alloc_block_nofail(inode, diff);
2724 	} else {
2725 		dquot_free_block(inode, diff);
2726 	}
2727 
2728 	f2fs_mark_inode_dirty_sync(inode, true);
2729 	if (clean || recover)
2730 		set_inode_flag(inode, FI_AUTO_RECOVER);
2731 }
2732 
f2fs_i_size_write(struct inode * inode,loff_t i_size)2733 static inline void f2fs_i_size_write(struct inode *inode, loff_t i_size)
2734 {
2735 	bool clean = !is_inode_flag_set(inode, FI_DIRTY_INODE);
2736 	bool recover = is_inode_flag_set(inode, FI_AUTO_RECOVER);
2737 
2738 	if (i_size_read(inode) == i_size)
2739 		return;
2740 
2741 	i_size_write(inode, i_size);
2742 	f2fs_mark_inode_dirty_sync(inode, true);
2743 	if (clean || recover)
2744 		set_inode_flag(inode, FI_AUTO_RECOVER);
2745 }
2746 
f2fs_i_depth_write(struct inode * inode,unsigned int depth)2747 static inline void f2fs_i_depth_write(struct inode *inode, unsigned int depth)
2748 {
2749 	F2FS_I(inode)->i_current_depth = depth;
2750 	f2fs_mark_inode_dirty_sync(inode, true);
2751 }
2752 
f2fs_i_gc_failures_write(struct inode * inode,unsigned int count)2753 static inline void f2fs_i_gc_failures_write(struct inode *inode,
2754 					unsigned int count)
2755 {
2756 	F2FS_I(inode)->i_gc_failures[GC_FAILURE_PIN] = count;
2757 	f2fs_mark_inode_dirty_sync(inode, true);
2758 }
2759 
f2fs_i_xnid_write(struct inode * inode,nid_t xnid)2760 static inline void f2fs_i_xnid_write(struct inode *inode, nid_t xnid)
2761 {
2762 	F2FS_I(inode)->i_xattr_nid = xnid;
2763 	f2fs_mark_inode_dirty_sync(inode, true);
2764 }
2765 
f2fs_i_pino_write(struct inode * inode,nid_t pino)2766 static inline void f2fs_i_pino_write(struct inode *inode, nid_t pino)
2767 {
2768 	F2FS_I(inode)->i_pino = pino;
2769 	f2fs_mark_inode_dirty_sync(inode, true);
2770 }
2771 
get_inline_info(struct inode * inode,struct f2fs_inode * ri)2772 static inline void get_inline_info(struct inode *inode, struct f2fs_inode *ri)
2773 {
2774 	struct f2fs_inode_info *fi = F2FS_I(inode);
2775 
2776 	if (ri->i_inline & F2FS_INLINE_XATTR)
2777 		set_bit(FI_INLINE_XATTR, fi->flags);
2778 	if (ri->i_inline & F2FS_INLINE_DATA)
2779 		set_bit(FI_INLINE_DATA, fi->flags);
2780 	if (ri->i_inline & F2FS_INLINE_DENTRY)
2781 		set_bit(FI_INLINE_DENTRY, fi->flags);
2782 	if (ri->i_inline & F2FS_DATA_EXIST)
2783 		set_bit(FI_DATA_EXIST, fi->flags);
2784 	if (ri->i_inline & F2FS_INLINE_DOTS)
2785 		set_bit(FI_INLINE_DOTS, fi->flags);
2786 	if (ri->i_inline & F2FS_EXTRA_ATTR)
2787 		set_bit(FI_EXTRA_ATTR, fi->flags);
2788 	if (ri->i_inline & F2FS_PIN_FILE)
2789 		set_bit(FI_PIN_FILE, fi->flags);
2790 }
2791 
set_raw_inline(struct inode * inode,struct f2fs_inode * ri)2792 static inline void set_raw_inline(struct inode *inode, struct f2fs_inode *ri)
2793 {
2794 	ri->i_inline = 0;
2795 
2796 	if (is_inode_flag_set(inode, FI_INLINE_XATTR))
2797 		ri->i_inline |= F2FS_INLINE_XATTR;
2798 	if (is_inode_flag_set(inode, FI_INLINE_DATA))
2799 		ri->i_inline |= F2FS_INLINE_DATA;
2800 	if (is_inode_flag_set(inode, FI_INLINE_DENTRY))
2801 		ri->i_inline |= F2FS_INLINE_DENTRY;
2802 	if (is_inode_flag_set(inode, FI_DATA_EXIST))
2803 		ri->i_inline |= F2FS_DATA_EXIST;
2804 	if (is_inode_flag_set(inode, FI_INLINE_DOTS))
2805 		ri->i_inline |= F2FS_INLINE_DOTS;
2806 	if (is_inode_flag_set(inode, FI_EXTRA_ATTR))
2807 		ri->i_inline |= F2FS_EXTRA_ATTR;
2808 	if (is_inode_flag_set(inode, FI_PIN_FILE))
2809 		ri->i_inline |= F2FS_PIN_FILE;
2810 }
2811 
f2fs_has_extra_attr(struct inode * inode)2812 static inline int f2fs_has_extra_attr(struct inode *inode)
2813 {
2814 	return is_inode_flag_set(inode, FI_EXTRA_ATTR);
2815 }
2816 
f2fs_has_inline_xattr(struct inode * inode)2817 static inline int f2fs_has_inline_xattr(struct inode *inode)
2818 {
2819 	return is_inode_flag_set(inode, FI_INLINE_XATTR);
2820 }
2821 
f2fs_compressed_file(struct inode * inode)2822 static inline int f2fs_compressed_file(struct inode *inode)
2823 {
2824 	return S_ISREG(inode->i_mode) &&
2825 		is_inode_flag_set(inode, FI_COMPRESSED_FILE);
2826 }
2827 
addrs_per_inode(struct inode * inode)2828 static inline unsigned int addrs_per_inode(struct inode *inode)
2829 {
2830 	unsigned int addrs = CUR_ADDRS_PER_INODE(inode) -
2831 				get_inline_xattr_addrs(inode);
2832 
2833 	if (!f2fs_compressed_file(inode))
2834 		return addrs;
2835 	return ALIGN_DOWN(addrs, F2FS_I(inode)->i_cluster_size);
2836 }
2837 
addrs_per_block(struct inode * inode)2838 static inline unsigned int addrs_per_block(struct inode *inode)
2839 {
2840 	if (!f2fs_compressed_file(inode))
2841 		return DEF_ADDRS_PER_BLOCK;
2842 	return ALIGN_DOWN(DEF_ADDRS_PER_BLOCK, F2FS_I(inode)->i_cluster_size);
2843 }
2844 
inline_xattr_addr(struct inode * inode,struct page * page)2845 static inline void *inline_xattr_addr(struct inode *inode, struct page *page)
2846 {
2847 	struct f2fs_inode *ri = F2FS_INODE(page);
2848 
2849 	return (void *)&(ri->i_addr[DEF_ADDRS_PER_INODE -
2850 					get_inline_xattr_addrs(inode)]);
2851 }
2852 
inline_xattr_size(struct inode * inode)2853 static inline int inline_xattr_size(struct inode *inode)
2854 {
2855 	if (f2fs_has_inline_xattr(inode))
2856 		return get_inline_xattr_addrs(inode) * sizeof(__le32);
2857 	return 0;
2858 }
2859 
f2fs_has_inline_data(struct inode * inode)2860 static inline int f2fs_has_inline_data(struct inode *inode)
2861 {
2862 	return is_inode_flag_set(inode, FI_INLINE_DATA);
2863 }
2864 
f2fs_exist_data(struct inode * inode)2865 static inline int f2fs_exist_data(struct inode *inode)
2866 {
2867 	return is_inode_flag_set(inode, FI_DATA_EXIST);
2868 }
2869 
f2fs_has_inline_dots(struct inode * inode)2870 static inline int f2fs_has_inline_dots(struct inode *inode)
2871 {
2872 	return is_inode_flag_set(inode, FI_INLINE_DOTS);
2873 }
2874 
f2fs_is_mmap_file(struct inode * inode)2875 static inline int f2fs_is_mmap_file(struct inode *inode)
2876 {
2877 	return is_inode_flag_set(inode, FI_MMAP_FILE);
2878 }
2879 
f2fs_is_pinned_file(struct inode * inode)2880 static inline bool f2fs_is_pinned_file(struct inode *inode)
2881 {
2882 	return is_inode_flag_set(inode, FI_PIN_FILE);
2883 }
2884 
f2fs_is_atomic_file(struct inode * inode)2885 static inline bool f2fs_is_atomic_file(struct inode *inode)
2886 {
2887 	return is_inode_flag_set(inode, FI_ATOMIC_FILE);
2888 }
2889 
f2fs_is_commit_atomic_write(struct inode * inode)2890 static inline bool f2fs_is_commit_atomic_write(struct inode *inode)
2891 {
2892 	return is_inode_flag_set(inode, FI_ATOMIC_COMMIT);
2893 }
2894 
f2fs_is_volatile_file(struct inode * inode)2895 static inline bool f2fs_is_volatile_file(struct inode *inode)
2896 {
2897 	return is_inode_flag_set(inode, FI_VOLATILE_FILE);
2898 }
2899 
f2fs_is_first_block_written(struct inode * inode)2900 static inline bool f2fs_is_first_block_written(struct inode *inode)
2901 {
2902 	return is_inode_flag_set(inode, FI_FIRST_BLOCK_WRITTEN);
2903 }
2904 
f2fs_is_drop_cache(struct inode * inode)2905 static inline bool f2fs_is_drop_cache(struct inode *inode)
2906 {
2907 	return is_inode_flag_set(inode, FI_DROP_CACHE);
2908 }
2909 
inline_data_addr(struct inode * inode,struct page * page)2910 static inline void *inline_data_addr(struct inode *inode, struct page *page)
2911 {
2912 	struct f2fs_inode *ri = F2FS_INODE(page);
2913 	int extra_size = get_extra_isize(inode);
2914 
2915 	return (void *)&(ri->i_addr[extra_size + DEF_INLINE_RESERVED_SIZE]);
2916 }
2917 
f2fs_has_inline_dentry(struct inode * inode)2918 static inline int f2fs_has_inline_dentry(struct inode *inode)
2919 {
2920 	return is_inode_flag_set(inode, FI_INLINE_DENTRY);
2921 }
2922 
is_file(struct inode * inode,int type)2923 static inline int is_file(struct inode *inode, int type)
2924 {
2925 	return F2FS_I(inode)->i_advise & type;
2926 }
2927 
set_file(struct inode * inode,int type)2928 static inline void set_file(struct inode *inode, int type)
2929 {
2930 	F2FS_I(inode)->i_advise |= type;
2931 	f2fs_mark_inode_dirty_sync(inode, true);
2932 }
2933 
clear_file(struct inode * inode,int type)2934 static inline void clear_file(struct inode *inode, int type)
2935 {
2936 	F2FS_I(inode)->i_advise &= ~type;
2937 	f2fs_mark_inode_dirty_sync(inode, true);
2938 }
2939 
f2fs_is_time_consistent(struct inode * inode)2940 static inline bool f2fs_is_time_consistent(struct inode *inode)
2941 {
2942 	if (!timespec64_equal(F2FS_I(inode)->i_disk_time, &inode->i_atime))
2943 		return false;
2944 	if (!timespec64_equal(F2FS_I(inode)->i_disk_time + 1, &inode->i_ctime))
2945 		return false;
2946 	if (!timespec64_equal(F2FS_I(inode)->i_disk_time + 2, &inode->i_mtime))
2947 		return false;
2948 	if (!timespec64_equal(F2FS_I(inode)->i_disk_time + 3,
2949 						&F2FS_I(inode)->i_crtime))
2950 		return false;
2951 	return true;
2952 }
2953 
f2fs_skip_inode_update(struct inode * inode,int dsync)2954 static inline bool f2fs_skip_inode_update(struct inode *inode, int dsync)
2955 {
2956 	bool ret;
2957 
2958 	if (dsync) {
2959 		struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2960 
2961 		spin_lock(&sbi->inode_lock[DIRTY_META]);
2962 		ret = list_empty(&F2FS_I(inode)->gdirty_list);
2963 		spin_unlock(&sbi->inode_lock[DIRTY_META]);
2964 		return ret;
2965 	}
2966 	if (!is_inode_flag_set(inode, FI_AUTO_RECOVER) ||
2967 			file_keep_isize(inode) ||
2968 			i_size_read(inode) & ~PAGE_MASK)
2969 		return false;
2970 
2971 	if (!f2fs_is_time_consistent(inode))
2972 		return false;
2973 
2974 	spin_lock(&F2FS_I(inode)->i_size_lock);
2975 	ret = F2FS_I(inode)->last_disk_size == i_size_read(inode);
2976 	spin_unlock(&F2FS_I(inode)->i_size_lock);
2977 
2978 	return ret;
2979 }
2980 
f2fs_readonly(struct super_block * sb)2981 static inline bool f2fs_readonly(struct super_block *sb)
2982 {
2983 	return sb_rdonly(sb);
2984 }
2985 
f2fs_cp_error(struct f2fs_sb_info * sbi)2986 static inline bool f2fs_cp_error(struct f2fs_sb_info *sbi)
2987 {
2988 	return is_set_ckpt_flags(sbi, CP_ERROR_FLAG);
2989 }
2990 
is_dot_dotdot(const u8 * name,size_t len)2991 static inline bool is_dot_dotdot(const u8 *name, size_t len)
2992 {
2993 	if (len == 1 && name[0] == '.')
2994 		return true;
2995 
2996 	if (len == 2 && name[0] == '.' && name[1] == '.')
2997 		return true;
2998 
2999 	return false;
3000 }
3001 
f2fs_may_extent_tree(struct inode * inode)3002 static inline bool f2fs_may_extent_tree(struct inode *inode)
3003 {
3004 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3005 
3006 	if (!test_opt(sbi, EXTENT_CACHE) ||
3007 			is_inode_flag_set(inode, FI_NO_EXTENT) ||
3008 			is_inode_flag_set(inode, FI_COMPRESSED_FILE))
3009 		return false;
3010 
3011 	/*
3012 	 * for recovered files during mount do not create extents
3013 	 * if shrinker is not registered.
3014 	 */
3015 	if (list_empty(&sbi->s_list))
3016 		return false;
3017 
3018 	return S_ISREG(inode->i_mode);
3019 }
3020 
f2fs_kmalloc(struct f2fs_sb_info * sbi,size_t size,gfp_t flags)3021 static inline void *f2fs_kmalloc(struct f2fs_sb_info *sbi,
3022 					size_t size, gfp_t flags)
3023 {
3024 	if (time_to_inject(sbi, FAULT_KMALLOC)) {
3025 		f2fs_show_injection_info(sbi, FAULT_KMALLOC);
3026 		return NULL;
3027 	}
3028 
3029 	return kmalloc(size, flags);
3030 }
3031 
f2fs_kzalloc(struct f2fs_sb_info * sbi,size_t size,gfp_t flags)3032 static inline void *f2fs_kzalloc(struct f2fs_sb_info *sbi,
3033 					size_t size, gfp_t flags)
3034 {
3035 	return f2fs_kmalloc(sbi, size, flags | __GFP_ZERO);
3036 }
3037 
f2fs_kvmalloc(struct f2fs_sb_info * sbi,size_t size,gfp_t flags)3038 static inline void *f2fs_kvmalloc(struct f2fs_sb_info *sbi,
3039 					size_t size, gfp_t flags)
3040 {
3041 	if (time_to_inject(sbi, FAULT_KVMALLOC)) {
3042 		f2fs_show_injection_info(sbi, FAULT_KVMALLOC);
3043 		return NULL;
3044 	}
3045 
3046 	return kvmalloc(size, flags);
3047 }
3048 
f2fs_kvzalloc(struct f2fs_sb_info * sbi,size_t size,gfp_t flags)3049 static inline void *f2fs_kvzalloc(struct f2fs_sb_info *sbi,
3050 					size_t size, gfp_t flags)
3051 {
3052 	return f2fs_kvmalloc(sbi, size, flags | __GFP_ZERO);
3053 }
3054 
get_extra_isize(struct inode * inode)3055 static inline int get_extra_isize(struct inode *inode)
3056 {
3057 	return F2FS_I(inode)->i_extra_isize / sizeof(__le32);
3058 }
3059 
get_inline_xattr_addrs(struct inode * inode)3060 static inline int get_inline_xattr_addrs(struct inode *inode)
3061 {
3062 	return F2FS_I(inode)->i_inline_xattr_size;
3063 }
3064 
3065 #define f2fs_get_inode_mode(i) \
3066 	((is_inode_flag_set(i, FI_ACL_MODE)) ? \
3067 	 (F2FS_I(i)->i_acl_mode) : ((i)->i_mode))
3068 
3069 #define F2FS_TOTAL_EXTRA_ATTR_SIZE			\
3070 	(offsetof(struct f2fs_inode, i_extra_end) -	\
3071 	offsetof(struct f2fs_inode, i_extra_isize))	\
3072 
3073 #define F2FS_OLD_ATTRIBUTE_SIZE	(offsetof(struct f2fs_inode, i_addr))
3074 #define F2FS_FITS_IN_INODE(f2fs_inode, extra_isize, field)		\
3075 		((offsetof(typeof(*(f2fs_inode)), field) +	\
3076 		sizeof((f2fs_inode)->field))			\
3077 		<= (F2FS_OLD_ATTRIBUTE_SIZE + (extra_isize)))	\
3078 
3079 #define DEFAULT_IOSTAT_PERIOD_MS	3000
3080 #define MIN_IOSTAT_PERIOD_MS		100
3081 /* maximum period of iostat tracing is 1 day */
3082 #define MAX_IOSTAT_PERIOD_MS		8640000
3083 
f2fs_reset_iostat(struct f2fs_sb_info * sbi)3084 static inline void f2fs_reset_iostat(struct f2fs_sb_info *sbi)
3085 {
3086 	int i;
3087 
3088 	spin_lock(&sbi->iostat_lock);
3089 	for (i = 0; i < NR_IO_TYPE; i++) {
3090 		sbi->rw_iostat[i] = 0;
3091 		sbi->prev_rw_iostat[i] = 0;
3092 	}
3093 	spin_unlock(&sbi->iostat_lock);
3094 }
3095 
3096 extern void f2fs_record_iostat(struct f2fs_sb_info *sbi);
3097 
f2fs_update_iostat(struct f2fs_sb_info * sbi,enum iostat_type type,unsigned long long io_bytes)3098 static inline void f2fs_update_iostat(struct f2fs_sb_info *sbi,
3099 			enum iostat_type type, unsigned long long io_bytes)
3100 {
3101 	if (!sbi->iostat_enable)
3102 		return;
3103 	spin_lock(&sbi->iostat_lock);
3104 	sbi->rw_iostat[type] += io_bytes;
3105 
3106 	if (type == APP_WRITE_IO || type == APP_DIRECT_IO)
3107 		sbi->rw_iostat[APP_BUFFERED_IO] =
3108 			sbi->rw_iostat[APP_WRITE_IO] -
3109 			sbi->rw_iostat[APP_DIRECT_IO];
3110 
3111 	if (type == APP_READ_IO || type == APP_DIRECT_READ_IO)
3112 		sbi->rw_iostat[APP_BUFFERED_READ_IO] =
3113 			sbi->rw_iostat[APP_READ_IO] -
3114 			sbi->rw_iostat[APP_DIRECT_READ_IO];
3115 	spin_unlock(&sbi->iostat_lock);
3116 
3117 	f2fs_record_iostat(sbi);
3118 }
3119 
fs_free_space_threshold(struct f2fs_sb_info * sbi)3120 static inline block_t fs_free_space_threshold(struct f2fs_sb_info *sbi)
3121 {
3122 	return (block_t)(SM_I(sbi)->main_segments * sbi->blocks_per_seg *
3123 		FS_FREE_SPACE_PERCENT) / HUNDRED_PERCENT;
3124 }
3125 
device_free_space_threshold(struct f2fs_sb_info * sbi)3126 static inline block_t device_free_space_threshold(struct f2fs_sb_info *sbi)
3127 {
3128 	return (block_t)(SM_I(sbi)->main_segments * sbi->blocks_per_seg *
3129 		DEVICE_FREE_SPACE_PERCENT) / HUNDRED_PERCENT;
3130 }
3131 
3132 #define __is_large_section(sbi)		((sbi)->segs_per_sec > 1)
3133 
3134 #define __is_meta_io(fio) (PAGE_TYPE_OF_BIO((fio)->type) == META)
3135 
3136 bool f2fs_is_valid_blkaddr(struct f2fs_sb_info *sbi,
3137 					block_t blkaddr, int type);
verify_blkaddr(struct f2fs_sb_info * sbi,block_t blkaddr,int type)3138 static inline void verify_blkaddr(struct f2fs_sb_info *sbi,
3139 					block_t blkaddr, int type)
3140 {
3141 	if (!f2fs_is_valid_blkaddr(sbi, blkaddr, type)) {
3142 		f2fs_err(sbi, "invalid blkaddr: %u, type: %d, run fsck to fix.",
3143 			 blkaddr, type);
3144 		f2fs_bug_on(sbi, 1);
3145 	}
3146 }
3147 
__is_valid_data_blkaddr(block_t blkaddr)3148 static inline bool __is_valid_data_blkaddr(block_t blkaddr)
3149 {
3150 	if (blkaddr == NEW_ADDR || blkaddr == NULL_ADDR ||
3151 			blkaddr == COMPRESS_ADDR)
3152 		return false;
3153 	return true;
3154 }
3155 
f2fs_set_page_private(struct page * page,unsigned long data)3156 static inline void f2fs_set_page_private(struct page *page,
3157 						unsigned long data)
3158 {
3159 	if (PagePrivate(page))
3160 		return;
3161 
3162 	attach_page_private(page, (void *)data);
3163 }
3164 
f2fs_clear_page_private(struct page * page)3165 static inline void f2fs_clear_page_private(struct page *page)
3166 {
3167 	detach_page_private(page);
3168 }
3169 
3170 /*
3171  * file.c
3172  */
3173 int f2fs_sync_file(struct file *file, loff_t start, loff_t end, int datasync);
3174 void f2fs_truncate_data_blocks(struct dnode_of_data *dn);
3175 int f2fs_do_truncate_blocks(struct inode *inode, u64 from, bool lock);
3176 int f2fs_truncate_blocks(struct inode *inode, u64 from, bool lock);
3177 int f2fs_truncate(struct inode *inode);
3178 int f2fs_getattr(const struct path *path, struct kstat *stat,
3179 			u32 request_mask, unsigned int flags);
3180 int f2fs_setattr(struct dentry *dentry, struct iattr *attr);
3181 int f2fs_truncate_hole(struct inode *inode, pgoff_t pg_start, pgoff_t pg_end);
3182 void f2fs_truncate_data_blocks_range(struct dnode_of_data *dn, int count);
3183 int f2fs_precache_extents(struct inode *inode);
3184 long f2fs_ioctl(struct file *filp, unsigned int cmd, unsigned long arg);
3185 long f2fs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
3186 int f2fs_transfer_project_quota(struct inode *inode, kprojid_t kprojid);
3187 int f2fs_pin_file_control(struct inode *inode, bool inc);
3188 
3189 /*
3190  * inode.c
3191  */
3192 void f2fs_set_inode_flags(struct inode *inode);
3193 bool f2fs_inode_chksum_verify(struct f2fs_sb_info *sbi, struct page *page);
3194 void f2fs_inode_chksum_set(struct f2fs_sb_info *sbi, struct page *page);
3195 struct inode *f2fs_iget(struct super_block *sb, unsigned long ino);
3196 struct inode *f2fs_iget_retry(struct super_block *sb, unsigned long ino);
3197 int f2fs_try_to_free_nats(struct f2fs_sb_info *sbi, int nr_shrink);
3198 void f2fs_update_inode(struct inode *inode, struct page *node_page);
3199 void f2fs_update_inode_page(struct inode *inode);
3200 int f2fs_write_inode(struct inode *inode, struct writeback_control *wbc);
3201 void f2fs_evict_inode(struct inode *inode);
3202 void f2fs_handle_failed_inode(struct inode *inode);
3203 
3204 /*
3205  * namei.c
3206  */
3207 int f2fs_update_extension_list(struct f2fs_sb_info *sbi, const char *name,
3208 							bool hot, bool set);
3209 struct dentry *f2fs_get_parent(struct dentry *child);
3210 
3211 /*
3212  * dir.c
3213  */
3214 unsigned char f2fs_get_de_type(struct f2fs_dir_entry *de);
3215 int f2fs_init_casefolded_name(const struct inode *dir,
3216 			      struct f2fs_filename *fname);
3217 int f2fs_setup_filename(struct inode *dir, const struct qstr *iname,
3218 			int lookup, struct f2fs_filename *fname);
3219 int f2fs_prepare_lookup(struct inode *dir, struct dentry *dentry,
3220 			struct f2fs_filename *fname);
3221 void f2fs_free_filename(struct f2fs_filename *fname);
3222 struct f2fs_dir_entry *f2fs_find_target_dentry(const struct f2fs_dentry_ptr *d,
3223 			const struct f2fs_filename *fname, int *max_slots);
3224 int f2fs_fill_dentries(struct dir_context *ctx, struct f2fs_dentry_ptr *d,
3225 			unsigned int start_pos, struct fscrypt_str *fstr);
3226 void f2fs_do_make_empty_dir(struct inode *inode, struct inode *parent,
3227 			struct f2fs_dentry_ptr *d);
3228 struct page *f2fs_init_inode_metadata(struct inode *inode, struct inode *dir,
3229 			const struct f2fs_filename *fname, struct page *dpage);
3230 void f2fs_update_parent_metadata(struct inode *dir, struct inode *inode,
3231 			unsigned int current_depth);
3232 int f2fs_room_for_filename(const void *bitmap, int slots, int max_slots);
3233 void f2fs_drop_nlink(struct inode *dir, struct inode *inode);
3234 struct f2fs_dir_entry *__f2fs_find_entry(struct inode *dir,
3235 					 const struct f2fs_filename *fname,
3236 					 struct page **res_page);
3237 struct f2fs_dir_entry *f2fs_find_entry(struct inode *dir,
3238 			const struct qstr *child, struct page **res_page);
3239 struct f2fs_dir_entry *f2fs_parent_dir(struct inode *dir, struct page **p);
3240 ino_t f2fs_inode_by_name(struct inode *dir, const struct qstr *qstr,
3241 			struct page **page);
3242 void f2fs_set_link(struct inode *dir, struct f2fs_dir_entry *de,
3243 			struct page *page, struct inode *inode);
3244 bool f2fs_has_enough_room(struct inode *dir, struct page *ipage,
3245 			  const struct f2fs_filename *fname);
3246 void f2fs_update_dentry(nid_t ino, umode_t mode, struct f2fs_dentry_ptr *d,
3247 			const struct fscrypt_str *name, f2fs_hash_t name_hash,
3248 			unsigned int bit_pos);
3249 int f2fs_add_regular_entry(struct inode *dir, const struct f2fs_filename *fname,
3250 			struct inode *inode, nid_t ino, umode_t mode);
3251 int f2fs_add_dentry(struct inode *dir, const struct f2fs_filename *fname,
3252 			struct inode *inode, nid_t ino, umode_t mode);
3253 int f2fs_do_add_link(struct inode *dir, const struct qstr *name,
3254 			struct inode *inode, nid_t ino, umode_t mode);
3255 void f2fs_delete_entry(struct f2fs_dir_entry *dentry, struct page *page,
3256 			struct inode *dir, struct inode *inode);
3257 int f2fs_do_tmpfile(struct inode *inode, struct inode *dir);
3258 bool f2fs_empty_dir(struct inode *dir);
3259 
f2fs_add_link(struct dentry * dentry,struct inode * inode)3260 static inline int f2fs_add_link(struct dentry *dentry, struct inode *inode)
3261 {
3262 	if (fscrypt_is_nokey_name(dentry))
3263 		return -ENOKEY;
3264 	return f2fs_do_add_link(d_inode(dentry->d_parent), &dentry->d_name,
3265 				inode, inode->i_ino, inode->i_mode);
3266 }
3267 
3268 /*
3269  * super.c
3270  */
3271 int f2fs_inode_dirtied(struct inode *inode, bool sync);
3272 void f2fs_inode_synced(struct inode *inode);
3273 int f2fs_enable_quota_files(struct f2fs_sb_info *sbi, bool rdonly);
3274 int f2fs_quota_sync(struct super_block *sb, int type);
3275 void f2fs_quota_off_umount(struct super_block *sb);
3276 int f2fs_commit_super(struct f2fs_sb_info *sbi, bool recover);
3277 int f2fs_sync_fs(struct super_block *sb, int sync);
3278 int f2fs_sanity_check_ckpt(struct f2fs_sb_info *sbi);
3279 
3280 /*
3281  * hash.c
3282  */
3283 void f2fs_hash_filename(const struct inode *dir, struct f2fs_filename *fname);
3284 
3285 /*
3286  * node.c
3287  */
3288 struct dnode_of_data;
3289 struct node_info;
3290 
3291 int f2fs_check_nid_range(struct f2fs_sb_info *sbi, nid_t nid);
3292 bool f2fs_available_free_memory(struct f2fs_sb_info *sbi, int type);
3293 bool f2fs_in_warm_node_list(struct f2fs_sb_info *sbi, struct page *page);
3294 void f2fs_init_fsync_node_info(struct f2fs_sb_info *sbi);
3295 void f2fs_del_fsync_node_entry(struct f2fs_sb_info *sbi, struct page *page);
3296 void f2fs_reset_fsync_node_info(struct f2fs_sb_info *sbi);
3297 int f2fs_need_dentry_mark(struct f2fs_sb_info *sbi, nid_t nid);
3298 bool f2fs_is_checkpointed_node(struct f2fs_sb_info *sbi, nid_t nid);
3299 bool f2fs_need_inode_block_update(struct f2fs_sb_info *sbi, nid_t ino);
3300 int f2fs_get_node_info(struct f2fs_sb_info *sbi, nid_t nid,
3301 						struct node_info *ni);
3302 pgoff_t f2fs_get_next_page_offset(struct dnode_of_data *dn, pgoff_t pgofs);
3303 int f2fs_get_dnode_of_data(struct dnode_of_data *dn, pgoff_t index, int mode);
3304 int f2fs_truncate_inode_blocks(struct inode *inode, pgoff_t from);
3305 int f2fs_truncate_xattr_node(struct inode *inode);
3306 int f2fs_wait_on_node_pages_writeback(struct f2fs_sb_info *sbi,
3307 					unsigned int seq_id);
3308 int f2fs_remove_inode_page(struct inode *inode);
3309 struct page *f2fs_new_inode_page(struct inode *inode);
3310 struct page *f2fs_new_node_page(struct dnode_of_data *dn, unsigned int ofs);
3311 void f2fs_ra_node_page(struct f2fs_sb_info *sbi, nid_t nid);
3312 struct page *f2fs_get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid);
3313 struct page *f2fs_get_node_page_ra(struct page *parent, int start);
3314 int f2fs_move_node_page(struct page *node_page, int gc_type);
3315 void f2fs_flush_inline_data(struct f2fs_sb_info *sbi);
3316 int f2fs_fsync_node_pages(struct f2fs_sb_info *sbi, struct inode *inode,
3317 			struct writeback_control *wbc, bool atomic,
3318 			unsigned int *seq_id);
3319 int f2fs_sync_node_pages(struct f2fs_sb_info *sbi,
3320 			struct writeback_control *wbc,
3321 			bool do_balance, enum iostat_type io_type);
3322 int f2fs_build_free_nids(struct f2fs_sb_info *sbi, bool sync, bool mount);
3323 bool f2fs_alloc_nid(struct f2fs_sb_info *sbi, nid_t *nid);
3324 void f2fs_alloc_nid_done(struct f2fs_sb_info *sbi, nid_t nid);
3325 void f2fs_alloc_nid_failed(struct f2fs_sb_info *sbi, nid_t nid);
3326 int f2fs_try_to_free_nids(struct f2fs_sb_info *sbi, int nr_shrink);
3327 int f2fs_recover_inline_xattr(struct inode *inode, struct page *page);
3328 int f2fs_recover_xattr_data(struct inode *inode, struct page *page);
3329 int f2fs_recover_inode_page(struct f2fs_sb_info *sbi, struct page *page);
3330 int f2fs_restore_node_summary(struct f2fs_sb_info *sbi,
3331 			unsigned int segno, struct f2fs_summary_block *sum);
3332 int f2fs_flush_nat_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc);
3333 int f2fs_build_node_manager(struct f2fs_sb_info *sbi);
3334 void f2fs_destroy_node_manager(struct f2fs_sb_info *sbi);
3335 int __init f2fs_create_node_manager_caches(void);
3336 void f2fs_destroy_node_manager_caches(void);
3337 
3338 /*
3339  * segment.c
3340  */
3341 unsigned long find_rev_next_bit(const unsigned long *addr,
3342 		unsigned long size, unsigned long offset);
3343 unsigned long find_rev_next_zero_bit(const unsigned long *addr,
3344 		unsigned long size, unsigned long offset);
3345 bool f2fs_need_SSR(struct f2fs_sb_info *sbi);
3346 void f2fs_register_inmem_page(struct inode *inode, struct page *page);
3347 void f2fs_drop_inmem_pages_all(struct f2fs_sb_info *sbi, bool gc_failure);
3348 void f2fs_drop_inmem_pages(struct inode *inode);
3349 void f2fs_drop_inmem_page(struct inode *inode, struct page *page);
3350 int f2fs_commit_inmem_pages(struct inode *inode);
3351 void f2fs_balance_fs(struct f2fs_sb_info *sbi, bool need);
3352 void f2fs_balance_fs_bg(struct f2fs_sb_info *sbi, bool from_bg);
3353 int f2fs_issue_flush(struct f2fs_sb_info *sbi, nid_t ino);
3354 int f2fs_create_flush_cmd_control(struct f2fs_sb_info *sbi);
3355 int f2fs_flush_device_cache(struct f2fs_sb_info *sbi);
3356 void f2fs_destroy_flush_cmd_control(struct f2fs_sb_info *sbi, bool free);
3357 void f2fs_invalidate_blocks(struct f2fs_sb_info *sbi, block_t addr);
3358 bool f2fs_is_checkpointed_data(struct f2fs_sb_info *sbi, block_t blkaddr);
3359 void f2fs_drop_discard_cmd(struct f2fs_sb_info *sbi);
3360 void f2fs_stop_discard_thread(struct f2fs_sb_info *sbi);
3361 bool f2fs_issue_discard_timeout(struct f2fs_sb_info *sbi);
3362 void f2fs_clear_prefree_segments(struct f2fs_sb_info *sbi,
3363 					struct cp_control *cpc);
3364 void f2fs_dirty_to_prefree(struct f2fs_sb_info *sbi);
3365 block_t f2fs_get_unusable_blocks(struct f2fs_sb_info *sbi);
3366 int f2fs_disable_cp_again(struct f2fs_sb_info *sbi, block_t unusable);
3367 void f2fs_release_discard_addrs(struct f2fs_sb_info *sbi);
3368 int f2fs_npages_for_summary_flush(struct f2fs_sb_info *sbi, bool for_ra);
3369 bool f2fs_segment_has_free_slot(struct f2fs_sb_info *sbi, int segno);
3370 void f2fs_init_inmem_curseg(struct f2fs_sb_info *sbi);
3371 void f2fs_save_inmem_curseg(struct f2fs_sb_info *sbi);
3372 void f2fs_restore_inmem_curseg(struct f2fs_sb_info *sbi);
3373 void f2fs_get_new_segment(struct f2fs_sb_info *sbi,
3374 			unsigned int *newseg, bool new_sec, int dir);
3375 void f2fs_allocate_segment_for_resize(struct f2fs_sb_info *sbi, int type,
3376 					unsigned int start, unsigned int end);
3377 void f2fs_allocate_new_section(struct f2fs_sb_info *sbi, int type);
3378 void f2fs_allocate_new_segments(struct f2fs_sb_info *sbi);
3379 int f2fs_trim_fs(struct f2fs_sb_info *sbi, struct fstrim_range *range);
3380 bool f2fs_exist_trim_candidates(struct f2fs_sb_info *sbi,
3381 					struct cp_control *cpc);
3382 struct page *f2fs_get_sum_page(struct f2fs_sb_info *sbi, unsigned int segno);
3383 void f2fs_update_meta_page(struct f2fs_sb_info *sbi, void *src,
3384 					block_t blk_addr);
3385 void f2fs_do_write_meta_page(struct f2fs_sb_info *sbi, struct page *page,
3386 						enum iostat_type io_type);
3387 void f2fs_do_write_node_page(unsigned int nid, struct f2fs_io_info *fio);
3388 void f2fs_outplace_write_data(struct dnode_of_data *dn,
3389 			struct f2fs_io_info *fio);
3390 int f2fs_inplace_write_data(struct f2fs_io_info *fio);
3391 void f2fs_do_replace_block(struct f2fs_sb_info *sbi, struct f2fs_summary *sum,
3392 			block_t old_blkaddr, block_t new_blkaddr,
3393 			bool recover_curseg, bool recover_newaddr,
3394 			bool from_gc);
3395 void f2fs_replace_block(struct f2fs_sb_info *sbi, struct dnode_of_data *dn,
3396 			block_t old_addr, block_t new_addr,
3397 			unsigned char version, bool recover_curseg,
3398 			bool recover_newaddr);
3399 void f2fs_allocate_data_block(struct f2fs_sb_info *sbi, struct page *page,
3400 			block_t old_blkaddr, block_t *new_blkaddr,
3401 			struct f2fs_summary *sum, int type,
3402 			struct f2fs_io_info *fio, int contig_level);
3403 void f2fs_wait_on_page_writeback(struct page *page,
3404 			enum page_type type, bool ordered, bool locked);
3405 void f2fs_wait_on_block_writeback(struct inode *inode, block_t blkaddr);
3406 void f2fs_wait_on_block_writeback_range(struct inode *inode, block_t blkaddr,
3407 								block_t len);
3408 void f2fs_write_data_summaries(struct f2fs_sb_info *sbi, block_t start_blk);
3409 void f2fs_write_node_summaries(struct f2fs_sb_info *sbi, block_t start_blk);
3410 int f2fs_lookup_journal_in_cursum(struct f2fs_journal *journal, int type,
3411 			unsigned int val, int alloc);
3412 void f2fs_flush_sit_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc);
3413 int f2fs_fix_curseg_write_pointer(struct f2fs_sb_info *sbi);
3414 int f2fs_check_write_pointer(struct f2fs_sb_info *sbi);
3415 int f2fs_build_segment_manager(struct f2fs_sb_info *sbi);
3416 void f2fs_destroy_segment_manager(struct f2fs_sb_info *sbi);
3417 int __init f2fs_create_segment_manager_caches(void);
3418 void f2fs_destroy_segment_manager_caches(void);
3419 int f2fs_rw_hint_to_seg_type(enum rw_hint hint);
3420 enum rw_hint f2fs_io_type_to_rw_hint(struct f2fs_sb_info *sbi,
3421 			enum page_type type, enum temp_type temp);
3422 unsigned int f2fs_usable_segs_in_sec(struct f2fs_sb_info *sbi,
3423 			unsigned int segno);
3424 unsigned int f2fs_usable_blks_in_seg(struct f2fs_sb_info *sbi,
3425 			unsigned int segno);
3426 
3427 /*
3428  * checkpoint.c
3429  */
3430 void f2fs_stop_checkpoint(struct f2fs_sb_info *sbi, bool end_io);
3431 struct page *f2fs_grab_meta_page(struct f2fs_sb_info *sbi, pgoff_t index);
3432 struct page *f2fs_get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index);
3433 struct page *f2fs_get_meta_page_retry(struct f2fs_sb_info *sbi, pgoff_t index);
3434 struct page *f2fs_get_tmp_page(struct f2fs_sb_info *sbi, pgoff_t index);
3435 bool f2fs_is_valid_blkaddr(struct f2fs_sb_info *sbi,
3436 					block_t blkaddr, int type);
3437 int f2fs_ra_meta_pages(struct f2fs_sb_info *sbi, block_t start, int nrpages,
3438 			int type, bool sync);
3439 void f2fs_ra_meta_pages_cond(struct f2fs_sb_info *sbi, pgoff_t index);
3440 long f2fs_sync_meta_pages(struct f2fs_sb_info *sbi, enum page_type type,
3441 			long nr_to_write, enum iostat_type io_type);
3442 void f2fs_add_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type);
3443 void f2fs_remove_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type);
3444 void f2fs_release_ino_entry(struct f2fs_sb_info *sbi, bool all);
3445 bool f2fs_exist_written_data(struct f2fs_sb_info *sbi, nid_t ino, int mode);
3446 void f2fs_set_dirty_device(struct f2fs_sb_info *sbi, nid_t ino,
3447 					unsigned int devidx, int type);
3448 bool f2fs_is_dirty_device(struct f2fs_sb_info *sbi, nid_t ino,
3449 					unsigned int devidx, int type);
3450 int f2fs_sync_inode_meta(struct f2fs_sb_info *sbi);
3451 int f2fs_acquire_orphan_inode(struct f2fs_sb_info *sbi);
3452 void f2fs_release_orphan_inode(struct f2fs_sb_info *sbi);
3453 void f2fs_add_orphan_inode(struct inode *inode);
3454 void f2fs_remove_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino);
3455 int f2fs_recover_orphan_inodes(struct f2fs_sb_info *sbi);
3456 int f2fs_get_valid_checkpoint(struct f2fs_sb_info *sbi);
3457 void f2fs_update_dirty_page(struct inode *inode, struct page *page);
3458 void f2fs_remove_dirty_inode(struct inode *inode);
3459 int f2fs_sync_dirty_inodes(struct f2fs_sb_info *sbi, enum inode_type type,
3460 								bool from_cp);
3461 void f2fs_wait_on_all_pages(struct f2fs_sb_info *sbi, int type);
3462 int f2fs_write_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc);
3463 void f2fs_init_ino_entry_info(struct f2fs_sb_info *sbi);
3464 int __init f2fs_create_checkpoint_caches(void);
3465 void f2fs_destroy_checkpoint_caches(void);
3466 
3467 /*
3468  * data.c
3469  */
3470 int __init f2fs_init_bioset(void);
3471 void f2fs_destroy_bioset(void);
3472 struct bio *f2fs_bio_alloc(struct f2fs_sb_info *sbi, int npages, bool noio);
3473 int f2fs_init_bio_entry_cache(void);
3474 void f2fs_destroy_bio_entry_cache(void);
3475 void f2fs_submit_bio(struct f2fs_sb_info *sbi,
3476 				struct bio *bio, enum page_type type);
3477 void f2fs_submit_merged_write(struct f2fs_sb_info *sbi, enum page_type type);
3478 void f2fs_submit_merged_write_cond(struct f2fs_sb_info *sbi,
3479 				struct inode *inode, struct page *page,
3480 				nid_t ino, enum page_type type);
3481 void f2fs_submit_merged_ipu_write(struct f2fs_sb_info *sbi,
3482 					struct bio **bio, struct page *page);
3483 void f2fs_flush_merged_writes(struct f2fs_sb_info *sbi);
3484 int f2fs_submit_page_bio(struct f2fs_io_info *fio);
3485 int f2fs_merge_page_bio(struct f2fs_io_info *fio);
3486 void f2fs_submit_page_write(struct f2fs_io_info *fio);
3487 struct block_device *f2fs_target_device(struct f2fs_sb_info *sbi,
3488 			block_t blk_addr, struct bio *bio);
3489 int f2fs_target_device_index(struct f2fs_sb_info *sbi, block_t blkaddr);
3490 void f2fs_set_data_blkaddr(struct dnode_of_data *dn);
3491 void f2fs_update_data_blkaddr(struct dnode_of_data *dn, block_t blkaddr);
3492 int f2fs_reserve_new_blocks(struct dnode_of_data *dn, blkcnt_t count);
3493 int f2fs_reserve_new_block(struct dnode_of_data *dn);
3494 int f2fs_get_block(struct dnode_of_data *dn, pgoff_t index);
3495 int f2fs_preallocate_blocks(struct kiocb *iocb, struct iov_iter *from);
3496 int f2fs_reserve_block(struct dnode_of_data *dn, pgoff_t index);
3497 struct page *f2fs_get_read_data_page(struct inode *inode, pgoff_t index,
3498 			int op_flags, bool for_write);
3499 struct page *f2fs_find_data_page(struct inode *inode, pgoff_t index);
3500 struct page *f2fs_get_lock_data_page(struct inode *inode, pgoff_t index,
3501 			bool for_write);
3502 struct page *f2fs_get_new_data_page(struct inode *inode,
3503 			struct page *ipage, pgoff_t index, bool new_i_size);
3504 int f2fs_do_write_data_page(struct f2fs_io_info *fio);
3505 void f2fs_do_map_lock(struct f2fs_sb_info *sbi, int flag, bool lock);
3506 int f2fs_map_blocks(struct inode *inode, struct f2fs_map_blocks *map,
3507 			int create, int flag);
3508 int f2fs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
3509 			u64 start, u64 len);
3510 int f2fs_encrypt_one_page(struct f2fs_io_info *fio);
3511 bool f2fs_should_update_inplace(struct inode *inode, struct f2fs_io_info *fio);
3512 bool f2fs_should_update_outplace(struct inode *inode, struct f2fs_io_info *fio);
3513 int f2fs_write_single_data_page(struct page *page, int *submitted,
3514 				struct bio **bio, sector_t *last_block,
3515 				struct writeback_control *wbc,
3516 				enum iostat_type io_type,
3517 				int compr_blocks, bool allow_balance);
3518 void f2fs_invalidate_page(struct page *page, unsigned int offset,
3519 			unsigned int length);
3520 int f2fs_release_page(struct page *page, gfp_t wait);
3521 #ifdef CONFIG_MIGRATION
3522 int f2fs_migrate_page(struct address_space *mapping, struct page *newpage,
3523 			struct page *page, enum migrate_mode mode);
3524 #endif
3525 bool f2fs_overwrite_io(struct inode *inode, loff_t pos, size_t len);
3526 void f2fs_clear_page_cache_dirty_tag(struct page *page);
3527 int f2fs_init_post_read_processing(void);
3528 void f2fs_destroy_post_read_processing(void);
3529 int f2fs_init_post_read_wq(struct f2fs_sb_info *sbi);
3530 void f2fs_destroy_post_read_wq(struct f2fs_sb_info *sbi);
3531 
3532 /*
3533  * gc.c
3534  */
3535 int f2fs_start_gc_thread(struct f2fs_sb_info *sbi);
3536 void f2fs_stop_gc_thread(struct f2fs_sb_info *sbi);
3537 block_t f2fs_start_bidx_of_node(unsigned int node_ofs, struct inode *inode);
3538 int f2fs_gc(struct f2fs_sb_info *sbi, bool sync, bool background, bool force,
3539 			unsigned int segno);
3540 void f2fs_build_gc_manager(struct f2fs_sb_info *sbi);
3541 int f2fs_resize_fs(struct file *filp, __u64 block_count);
3542 int __init f2fs_create_garbage_collection_cache(void);
3543 void f2fs_destroy_garbage_collection_cache(void);
3544 
3545 /*
3546  * recovery.c
3547  */
3548 int f2fs_recover_fsync_data(struct f2fs_sb_info *sbi, bool check_only);
3549 bool f2fs_space_for_roll_forward(struct f2fs_sb_info *sbi);
3550 int __init f2fs_create_recovery_cache(void);
3551 void f2fs_destroy_recovery_cache(void);
3552 
3553 /*
3554  * debug.c
3555  */
3556 #ifdef CONFIG_F2FS_STAT_FS
3557 struct f2fs_stat_info {
3558 	struct list_head stat_list;
3559 	struct f2fs_sb_info *sbi;
3560 	int all_area_segs, sit_area_segs, nat_area_segs, ssa_area_segs;
3561 	int main_area_segs, main_area_sections, main_area_zones;
3562 	unsigned long long hit_largest, hit_cached, hit_rbtree;
3563 	unsigned long long hit_total, total_ext;
3564 	int ext_tree, zombie_tree, ext_node;
3565 	int ndirty_node, ndirty_dent, ndirty_meta, ndirty_imeta;
3566 	int ndirty_data, ndirty_qdata;
3567 	int inmem_pages;
3568 	unsigned int ndirty_dirs, ndirty_files, nquota_files, ndirty_all;
3569 	int nats, dirty_nats, sits, dirty_sits;
3570 	int free_nids, avail_nids, alloc_nids;
3571 	int total_count, utilization;
3572 	int bg_gc, nr_wb_cp_data, nr_wb_data;
3573 	int nr_rd_data, nr_rd_node, nr_rd_meta;
3574 	int nr_dio_read, nr_dio_write;
3575 	unsigned int io_skip_bggc, other_skip_bggc;
3576 	int nr_flushing, nr_flushed, flush_list_empty;
3577 	int nr_discarding, nr_discarded;
3578 	int nr_discard_cmd;
3579 	unsigned int undiscard_blks;
3580 	int inline_xattr, inline_inode, inline_dir, append, update, orphans;
3581 	int compr_inode;
3582 	unsigned long long compr_blocks;
3583 	int aw_cnt, max_aw_cnt, vw_cnt, max_vw_cnt;
3584 	unsigned int valid_count, valid_node_count, valid_inode_count, discard_blks;
3585 	unsigned int bimodal, avg_vblocks;
3586 	int util_free, util_valid, util_invalid;
3587 	int rsvd_segs, overp_segs;
3588 	int dirty_count, node_pages, meta_pages;
3589 	int prefree_count, call_count, cp_count, bg_cp_count;
3590 	int tot_segs, node_segs, data_segs, free_segs, free_secs;
3591 	int bg_node_segs, bg_data_segs;
3592 	int tot_blks, data_blks, node_blks;
3593 	int bg_data_blks, bg_node_blks;
3594 	unsigned long long skipped_atomic_files[2];
3595 	int curseg[NR_CURSEG_TYPE];
3596 	int cursec[NR_CURSEG_TYPE];
3597 	int curzone[NR_CURSEG_TYPE];
3598 	unsigned int dirty_seg[NR_CURSEG_TYPE];
3599 	unsigned int full_seg[NR_CURSEG_TYPE];
3600 	unsigned int valid_blks[NR_CURSEG_TYPE];
3601 
3602 	unsigned int meta_count[META_MAX];
3603 	unsigned int segment_count[2];
3604 	unsigned int block_count[2];
3605 	unsigned int inplace_count;
3606 	unsigned long long base_mem, cache_mem, page_mem;
3607 };
3608 
F2FS_STAT(struct f2fs_sb_info * sbi)3609 static inline struct f2fs_stat_info *F2FS_STAT(struct f2fs_sb_info *sbi)
3610 {
3611 	return (struct f2fs_stat_info *)sbi->stat_info;
3612 }
3613 
3614 #define stat_inc_cp_count(si)		((si)->cp_count++)
3615 #define stat_inc_bg_cp_count(si)	((si)->bg_cp_count++)
3616 #define stat_inc_call_count(si)		((si)->call_count++)
3617 #define stat_inc_bggc_count(si)		((si)->bg_gc++)
3618 #define stat_io_skip_bggc_count(sbi)	((sbi)->io_skip_bggc++)
3619 #define stat_other_skip_bggc_count(sbi)	((sbi)->other_skip_bggc++)
3620 #define stat_inc_dirty_inode(sbi, type)	((sbi)->ndirty_inode[type]++)
3621 #define stat_dec_dirty_inode(sbi, type)	((sbi)->ndirty_inode[type]--)
3622 #define stat_inc_total_hit(sbi)		(atomic64_inc(&(sbi)->total_hit_ext))
3623 #define stat_inc_rbtree_node_hit(sbi)	(atomic64_inc(&(sbi)->read_hit_rbtree))
3624 #define stat_inc_largest_node_hit(sbi)	(atomic64_inc(&(sbi)->read_hit_largest))
3625 #define stat_inc_cached_node_hit(sbi)	(atomic64_inc(&(sbi)->read_hit_cached))
3626 #define stat_inc_inline_xattr(inode)					\
3627 	do {								\
3628 		if (f2fs_has_inline_xattr(inode))			\
3629 			(atomic_inc(&F2FS_I_SB(inode)->inline_xattr));	\
3630 	} while (0)
3631 #define stat_dec_inline_xattr(inode)					\
3632 	do {								\
3633 		if (f2fs_has_inline_xattr(inode))			\
3634 			(atomic_dec(&F2FS_I_SB(inode)->inline_xattr));	\
3635 	} while (0)
3636 #define stat_inc_inline_inode(inode)					\
3637 	do {								\
3638 		if (f2fs_has_inline_data(inode))			\
3639 			(atomic_inc(&F2FS_I_SB(inode)->inline_inode));	\
3640 	} while (0)
3641 #define stat_dec_inline_inode(inode)					\
3642 	do {								\
3643 		if (f2fs_has_inline_data(inode))			\
3644 			(atomic_dec(&F2FS_I_SB(inode)->inline_inode));	\
3645 	} while (0)
3646 #define stat_inc_inline_dir(inode)					\
3647 	do {								\
3648 		if (f2fs_has_inline_dentry(inode))			\
3649 			(atomic_inc(&F2FS_I_SB(inode)->inline_dir));	\
3650 	} while (0)
3651 #define stat_dec_inline_dir(inode)					\
3652 	do {								\
3653 		if (f2fs_has_inline_dentry(inode))			\
3654 			(atomic_dec(&F2FS_I_SB(inode)->inline_dir));	\
3655 	} while (0)
3656 #define stat_inc_compr_inode(inode)					\
3657 	do {								\
3658 		if (f2fs_compressed_file(inode))			\
3659 			(atomic_inc(&F2FS_I_SB(inode)->compr_inode));	\
3660 	} while (0)
3661 #define stat_dec_compr_inode(inode)					\
3662 	do {								\
3663 		if (f2fs_compressed_file(inode))			\
3664 			(atomic_dec(&F2FS_I_SB(inode)->compr_inode));	\
3665 	} while (0)
3666 #define stat_add_compr_blocks(inode, blocks)				\
3667 		(atomic64_add(blocks, &F2FS_I_SB(inode)->compr_blocks))
3668 #define stat_sub_compr_blocks(inode, blocks)				\
3669 		(atomic64_sub(blocks, &F2FS_I_SB(inode)->compr_blocks))
3670 #define stat_inc_meta_count(sbi, blkaddr)				\
3671 	do {								\
3672 		if (blkaddr < SIT_I(sbi)->sit_base_addr)		\
3673 			atomic_inc(&(sbi)->meta_count[META_CP]);	\
3674 		else if (blkaddr < NM_I(sbi)->nat_blkaddr)		\
3675 			atomic_inc(&(sbi)->meta_count[META_SIT]);	\
3676 		else if (blkaddr < SM_I(sbi)->ssa_blkaddr)		\
3677 			atomic_inc(&(sbi)->meta_count[META_NAT]);	\
3678 		else if (blkaddr < SM_I(sbi)->main_blkaddr)		\
3679 			atomic_inc(&(sbi)->meta_count[META_SSA]);	\
3680 	} while (0)
3681 #define stat_inc_seg_type(sbi, curseg)					\
3682 		((sbi)->segment_count[(curseg)->alloc_type]++)
3683 #define stat_inc_block_count(sbi, curseg)				\
3684 		((sbi)->block_count[(curseg)->alloc_type]++)
3685 #define stat_inc_inplace_blocks(sbi)					\
3686 		(atomic_inc(&(sbi)->inplace_count))
3687 #define stat_update_max_atomic_write(inode)				\
3688 	do {								\
3689 		int cur = F2FS_I_SB(inode)->atomic_files;	\
3690 		int max = atomic_read(&F2FS_I_SB(inode)->max_aw_cnt);	\
3691 		if (cur > max)						\
3692 			atomic_set(&F2FS_I_SB(inode)->max_aw_cnt, cur);	\
3693 	} while (0)
3694 #define stat_inc_volatile_write(inode)					\
3695 		(atomic_inc(&F2FS_I_SB(inode)->vw_cnt))
3696 #define stat_dec_volatile_write(inode)					\
3697 		(atomic_dec(&F2FS_I_SB(inode)->vw_cnt))
3698 #define stat_update_max_volatile_write(inode)				\
3699 	do {								\
3700 		int cur = atomic_read(&F2FS_I_SB(inode)->vw_cnt);	\
3701 		int max = atomic_read(&F2FS_I_SB(inode)->max_vw_cnt);	\
3702 		if (cur > max)						\
3703 			atomic_set(&F2FS_I_SB(inode)->max_vw_cnt, cur);	\
3704 	} while (0)
3705 #define stat_inc_seg_count(sbi, type, gc_type)				\
3706 	do {								\
3707 		struct f2fs_stat_info *si = F2FS_STAT(sbi);		\
3708 		si->tot_segs++;						\
3709 		if ((type) == SUM_TYPE_DATA) {				\
3710 			si->data_segs++;				\
3711 			si->bg_data_segs += (gc_type == BG_GC) ? 1 : 0;	\
3712 		} else {						\
3713 			si->node_segs++;				\
3714 			si->bg_node_segs += (gc_type == BG_GC) ? 1 : 0;	\
3715 		}							\
3716 	} while (0)
3717 
3718 #define stat_inc_tot_blk_count(si, blks)				\
3719 	((si)->tot_blks += (blks))
3720 
3721 #define stat_inc_data_blk_count(sbi, blks, gc_type)			\
3722 	do {								\
3723 		struct f2fs_stat_info *si = F2FS_STAT(sbi);		\
3724 		stat_inc_tot_blk_count(si, blks);			\
3725 		si->data_blks += (blks);				\
3726 		si->bg_data_blks += ((gc_type) == BG_GC) ? (blks) : 0;	\
3727 	} while (0)
3728 
3729 #define stat_inc_node_blk_count(sbi, blks, gc_type)			\
3730 	do {								\
3731 		struct f2fs_stat_info *si = F2FS_STAT(sbi);		\
3732 		stat_inc_tot_blk_count(si, blks);			\
3733 		si->node_blks += (blks);				\
3734 		si->bg_node_blks += ((gc_type) == BG_GC) ? (blks) : 0;	\
3735 	} while (0)
3736 
3737 int f2fs_build_stats(struct f2fs_sb_info *sbi);
3738 void f2fs_destroy_stats(struct f2fs_sb_info *sbi);
3739 void __init f2fs_create_root_stats(void);
3740 void f2fs_destroy_root_stats(void);
3741 void f2fs_update_sit_info(struct f2fs_sb_info *sbi);
3742 #else
3743 #define stat_inc_cp_count(si)				do { } while (0)
3744 #define stat_inc_bg_cp_count(si)			do { } while (0)
3745 #define stat_inc_call_count(si)				do { } while (0)
3746 #define stat_inc_bggc_count(si)				do { } while (0)
3747 #define stat_io_skip_bggc_count(sbi)			do { } while (0)
3748 #define stat_other_skip_bggc_count(sbi)			do { } while (0)
3749 #define stat_inc_dirty_inode(sbi, type)			do { } while (0)
3750 #define stat_dec_dirty_inode(sbi, type)			do { } while (0)
3751 #define stat_inc_total_hit(sbi)				do { } while (0)
3752 #define stat_inc_rbtree_node_hit(sbi)			do { } while (0)
3753 #define stat_inc_largest_node_hit(sbi)			do { } while (0)
3754 #define stat_inc_cached_node_hit(sbi)			do { } while (0)
3755 #define stat_inc_inline_xattr(inode)			do { } while (0)
3756 #define stat_dec_inline_xattr(inode)			do { } while (0)
3757 #define stat_inc_inline_inode(inode)			do { } while (0)
3758 #define stat_dec_inline_inode(inode)			do { } while (0)
3759 #define stat_inc_inline_dir(inode)			do { } while (0)
3760 #define stat_dec_inline_dir(inode)			do { } while (0)
3761 #define stat_inc_compr_inode(inode)			do { } while (0)
3762 #define stat_dec_compr_inode(inode)			do { } while (0)
3763 #define stat_add_compr_blocks(inode, blocks)		do { } while (0)
3764 #define stat_sub_compr_blocks(inode, blocks)		do { } while (0)
3765 #define stat_inc_atomic_write(inode)			do { } while (0)
3766 #define stat_dec_atomic_write(inode)			do { } while (0)
3767 #define stat_update_max_atomic_write(inode)		do { } while (0)
3768 #define stat_inc_volatile_write(inode)			do { } while (0)
3769 #define stat_dec_volatile_write(inode)			do { } while (0)
3770 #define stat_update_max_volatile_write(inode)		do { } while (0)
3771 #define stat_inc_meta_count(sbi, blkaddr)		do { } while (0)
3772 #define stat_inc_seg_type(sbi, curseg)			do { } while (0)
3773 #define stat_inc_block_count(sbi, curseg)		do { } while (0)
3774 #define stat_inc_inplace_blocks(sbi)			do { } while (0)
3775 #define stat_inc_seg_count(sbi, type, gc_type)		do { } while (0)
3776 #define stat_inc_tot_blk_count(si, blks)		do { } while (0)
3777 #define stat_inc_data_blk_count(sbi, blks, gc_type)	do { } while (0)
3778 #define stat_inc_node_blk_count(sbi, blks, gc_type)	do { } while (0)
3779 
f2fs_build_stats(struct f2fs_sb_info * sbi)3780 static inline int f2fs_build_stats(struct f2fs_sb_info *sbi) { return 0; }
f2fs_destroy_stats(struct f2fs_sb_info * sbi)3781 static inline void f2fs_destroy_stats(struct f2fs_sb_info *sbi) { }
f2fs_create_root_stats(void)3782 static inline void __init f2fs_create_root_stats(void) { }
f2fs_destroy_root_stats(void)3783 static inline void f2fs_destroy_root_stats(void) { }
f2fs_update_sit_info(struct f2fs_sb_info * sbi)3784 static inline void f2fs_update_sit_info(struct f2fs_sb_info *sbi) {}
3785 #endif
3786 
3787 extern const struct file_operations f2fs_dir_operations;
3788 #ifdef CONFIG_UNICODE
3789 extern const struct dentry_operations f2fs_dentry_ops;
3790 #endif
3791 extern const struct file_operations f2fs_file_operations;
3792 extern const struct inode_operations f2fs_file_inode_operations;
3793 extern const struct address_space_operations f2fs_dblock_aops;
3794 extern const struct address_space_operations f2fs_node_aops;
3795 extern const struct address_space_operations f2fs_meta_aops;
3796 extern const struct inode_operations f2fs_dir_inode_operations;
3797 extern const struct inode_operations f2fs_symlink_inode_operations;
3798 extern const struct inode_operations f2fs_encrypted_symlink_inode_operations;
3799 extern const struct inode_operations f2fs_special_inode_operations;
3800 extern struct kmem_cache *f2fs_inode_entry_slab;
3801 
3802 /*
3803  * inline.c
3804  */
3805 bool f2fs_may_inline_data(struct inode *inode);
3806 bool f2fs_sanity_check_inline_data(struct inode *inode);
3807 bool f2fs_may_inline_dentry(struct inode *inode);
3808 void f2fs_do_read_inline_data(struct page *page, struct page *ipage);
3809 void f2fs_truncate_inline_inode(struct inode *inode,
3810 						struct page *ipage, u64 from);
3811 int f2fs_read_inline_data(struct inode *inode, struct page *page);
3812 int f2fs_convert_inline_page(struct dnode_of_data *dn, struct page *page);
3813 int f2fs_convert_inline_inode(struct inode *inode);
3814 int f2fs_try_convert_inline_dir(struct inode *dir, struct dentry *dentry);
3815 int f2fs_write_inline_data(struct inode *inode, struct page *page);
3816 int f2fs_recover_inline_data(struct inode *inode, struct page *npage);
3817 struct f2fs_dir_entry *f2fs_find_in_inline_dir(struct inode *dir,
3818 					const struct f2fs_filename *fname,
3819 					struct page **res_page);
3820 int f2fs_make_empty_inline_dir(struct inode *inode, struct inode *parent,
3821 			struct page *ipage);
3822 int f2fs_add_inline_entry(struct inode *dir, const struct f2fs_filename *fname,
3823 			struct inode *inode, nid_t ino, umode_t mode);
3824 void f2fs_delete_inline_entry(struct f2fs_dir_entry *dentry,
3825 				struct page *page, struct inode *dir,
3826 				struct inode *inode);
3827 bool f2fs_empty_inline_dir(struct inode *dir);
3828 int f2fs_read_inline_dir(struct file *file, struct dir_context *ctx,
3829 			struct fscrypt_str *fstr);
3830 int f2fs_inline_data_fiemap(struct inode *inode,
3831 			struct fiemap_extent_info *fieinfo,
3832 			__u64 start, __u64 len);
3833 
3834 /*
3835  * shrinker.c
3836  */
3837 unsigned long f2fs_shrink_count(struct shrinker *shrink,
3838 			struct shrink_control *sc);
3839 unsigned long f2fs_shrink_scan(struct shrinker *shrink,
3840 			struct shrink_control *sc);
3841 void f2fs_join_shrinker(struct f2fs_sb_info *sbi);
3842 void f2fs_leave_shrinker(struct f2fs_sb_info *sbi);
3843 
3844 /*
3845  * extent_cache.c
3846  */
3847 struct rb_entry *f2fs_lookup_rb_tree(struct rb_root_cached *root,
3848 				struct rb_entry *cached_re, unsigned int ofs);
3849 struct rb_node **f2fs_lookup_rb_tree_ext(struct f2fs_sb_info *sbi,
3850 				struct rb_root_cached *root,
3851 				struct rb_node **parent,
3852 				unsigned long long key, bool *left_most);
3853 struct rb_node **f2fs_lookup_rb_tree_for_insert(struct f2fs_sb_info *sbi,
3854 				struct rb_root_cached *root,
3855 				struct rb_node **parent,
3856 				unsigned int ofs, bool *leftmost);
3857 struct rb_entry *f2fs_lookup_rb_tree_ret(struct rb_root_cached *root,
3858 		struct rb_entry *cached_re, unsigned int ofs,
3859 		struct rb_entry **prev_entry, struct rb_entry **next_entry,
3860 		struct rb_node ***insert_p, struct rb_node **insert_parent,
3861 		bool force, bool *leftmost);
3862 bool f2fs_check_rb_tree_consistence(struct f2fs_sb_info *sbi,
3863 				struct rb_root_cached *root, bool check_key);
3864 unsigned int f2fs_shrink_extent_tree(struct f2fs_sb_info *sbi, int nr_shrink);
3865 void f2fs_init_extent_tree(struct inode *inode, struct page *ipage);
3866 void f2fs_drop_extent_tree(struct inode *inode);
3867 unsigned int f2fs_destroy_extent_node(struct inode *inode);
3868 void f2fs_destroy_extent_tree(struct inode *inode);
3869 bool f2fs_lookup_extent_cache(struct inode *inode, pgoff_t pgofs,
3870 			struct extent_info *ei);
3871 void f2fs_update_extent_cache(struct dnode_of_data *dn);
3872 void f2fs_update_extent_cache_range(struct dnode_of_data *dn,
3873 			pgoff_t fofs, block_t blkaddr, unsigned int len);
3874 void f2fs_init_extent_cache_info(struct f2fs_sb_info *sbi);
3875 int __init f2fs_create_extent_cache(void);
3876 void f2fs_destroy_extent_cache(void);
3877 
3878 /*
3879  * sysfs.c
3880  */
3881 int __init f2fs_init_sysfs(void);
3882 void f2fs_exit_sysfs(void);
3883 int f2fs_register_sysfs(struct f2fs_sb_info *sbi);
3884 void f2fs_unregister_sysfs(struct f2fs_sb_info *sbi);
3885 
3886 /* verity.c */
3887 extern const struct fsverity_operations f2fs_verityops;
3888 
3889 /*
3890  * crypto support
3891  */
f2fs_encrypted_file(struct inode * inode)3892 static inline bool f2fs_encrypted_file(struct inode *inode)
3893 {
3894 	return IS_ENCRYPTED(inode) && S_ISREG(inode->i_mode);
3895 }
3896 
f2fs_set_encrypted_inode(struct inode * inode)3897 static inline void f2fs_set_encrypted_inode(struct inode *inode)
3898 {
3899 #ifdef CONFIG_FS_ENCRYPTION
3900 	file_set_encrypt(inode);
3901 	f2fs_set_inode_flags(inode);
3902 #endif
3903 }
3904 
3905 /*
3906  * Returns true if the reads of the inode's data need to undergo some
3907  * postprocessing step, like decryption or authenticity verification.
3908  */
f2fs_post_read_required(struct inode * inode)3909 static inline bool f2fs_post_read_required(struct inode *inode)
3910 {
3911 	return f2fs_encrypted_file(inode) || fsverity_active(inode) ||
3912 		f2fs_compressed_file(inode);
3913 }
3914 
3915 /*
3916  * compress.c
3917  */
3918 #ifdef CONFIG_F2FS_FS_COMPRESSION
3919 bool f2fs_is_compressed_page(struct page *page);
3920 struct page *f2fs_compress_control_page(struct page *page);
3921 int f2fs_prepare_compress_overwrite(struct inode *inode,
3922 			struct page **pagep, pgoff_t index, void **fsdata);
3923 bool f2fs_compress_write_end(struct inode *inode, void *fsdata,
3924 					pgoff_t index, unsigned copied);
3925 int f2fs_truncate_partial_cluster(struct inode *inode, u64 from, bool lock);
3926 void f2fs_compress_write_end_io(struct bio *bio, struct page *page);
3927 bool f2fs_is_compress_backend_ready(struct inode *inode);
3928 int f2fs_init_compress_mempool(void);
3929 void f2fs_destroy_compress_mempool(void);
3930 void f2fs_decompress_pages(struct bio *bio, struct page *page, bool verity);
3931 bool f2fs_cluster_is_empty(struct compress_ctx *cc);
3932 bool f2fs_cluster_can_merge_page(struct compress_ctx *cc, pgoff_t index);
3933 void f2fs_compress_ctx_add_page(struct compress_ctx *cc, struct page *page);
3934 int f2fs_write_multi_pages(struct compress_ctx *cc,
3935 						int *submitted,
3936 						struct writeback_control *wbc,
3937 						enum iostat_type io_type);
3938 int f2fs_is_compressed_cluster(struct inode *inode, pgoff_t index);
3939 int f2fs_read_multi_pages(struct compress_ctx *cc, struct bio **bio_ret,
3940 				unsigned nr_pages, sector_t *last_block_in_bio,
3941 				bool is_readahead, bool for_write);
3942 struct decompress_io_ctx *f2fs_alloc_dic(struct compress_ctx *cc);
3943 void f2fs_free_dic(struct decompress_io_ctx *dic);
3944 void f2fs_decompress_end_io(struct page **rpages,
3945 			unsigned int cluster_size, bool err, bool verity);
3946 int f2fs_init_compress_ctx(struct compress_ctx *cc);
3947 void f2fs_destroy_compress_ctx(struct compress_ctx *cc, bool reuse);
3948 void f2fs_init_compress_info(struct f2fs_sb_info *sbi);
3949 int f2fs_init_page_array_cache(struct f2fs_sb_info *sbi);
3950 void f2fs_destroy_page_array_cache(struct f2fs_sb_info *sbi);
3951 int __init f2fs_init_compress_cache(void);
3952 void f2fs_destroy_compress_cache(void);
3953 #else
f2fs_is_compressed_page(struct page * page)3954 static inline bool f2fs_is_compressed_page(struct page *page) { return false; }
f2fs_is_compress_backend_ready(struct inode * inode)3955 static inline bool f2fs_is_compress_backend_ready(struct inode *inode)
3956 {
3957 	if (!f2fs_compressed_file(inode))
3958 		return true;
3959 	/* not support compression */
3960 	return false;
3961 }
f2fs_compress_control_page(struct page * page)3962 static inline struct page *f2fs_compress_control_page(struct page *page)
3963 {
3964 	WARN_ON_ONCE(1);
3965 	return ERR_PTR(-EINVAL);
3966 }
f2fs_init_compress_mempool(void)3967 static inline int f2fs_init_compress_mempool(void) { return 0; }
f2fs_destroy_compress_mempool(void)3968 static inline void f2fs_destroy_compress_mempool(void) { }
f2fs_init_page_array_cache(struct f2fs_sb_info * sbi)3969 static inline int f2fs_init_page_array_cache(struct f2fs_sb_info *sbi) { return 0; }
f2fs_destroy_page_array_cache(struct f2fs_sb_info * sbi)3970 static inline void f2fs_destroy_page_array_cache(struct f2fs_sb_info *sbi) { }
f2fs_init_compress_cache(void)3971 static inline int __init f2fs_init_compress_cache(void) { return 0; }
f2fs_destroy_compress_cache(void)3972 static inline void f2fs_destroy_compress_cache(void) { }
3973 #endif
3974 
set_compress_context(struct inode * inode)3975 static inline void set_compress_context(struct inode *inode)
3976 {
3977 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3978 
3979 	F2FS_I(inode)->i_compress_algorithm =
3980 			F2FS_OPTION(sbi).compress_algorithm;
3981 	F2FS_I(inode)->i_log_cluster_size =
3982 			F2FS_OPTION(sbi).compress_log_size;
3983 	F2FS_I(inode)->i_cluster_size =
3984 			1 << F2FS_I(inode)->i_log_cluster_size;
3985 	F2FS_I(inode)->i_flags |= F2FS_COMPR_FL;
3986 	set_inode_flag(inode, FI_COMPRESSED_FILE);
3987 	stat_inc_compr_inode(inode);
3988 	f2fs_mark_inode_dirty_sync(inode, true);
3989 }
3990 
f2fs_disable_compressed_file(struct inode * inode)3991 static inline bool f2fs_disable_compressed_file(struct inode *inode)
3992 {
3993 	struct f2fs_inode_info *fi = F2FS_I(inode);
3994 
3995 	if (!f2fs_compressed_file(inode))
3996 		return true;
3997 	if (S_ISREG(inode->i_mode) && F2FS_HAS_BLOCKS(inode))
3998 		return false;
3999 
4000 	fi->i_flags &= ~F2FS_COMPR_FL;
4001 	stat_dec_compr_inode(inode);
4002 	clear_inode_flag(inode, FI_COMPRESSED_FILE);
4003 	f2fs_mark_inode_dirty_sync(inode, true);
4004 	return true;
4005 }
4006 
4007 #define F2FS_FEATURE_FUNCS(name, flagname) \
4008 static inline int f2fs_sb_has_##name(struct f2fs_sb_info *sbi) \
4009 { \
4010 	return F2FS_HAS_FEATURE(sbi, F2FS_FEATURE_##flagname); \
4011 }
4012 
4013 F2FS_FEATURE_FUNCS(encrypt, ENCRYPT);
4014 F2FS_FEATURE_FUNCS(blkzoned, BLKZONED);
4015 F2FS_FEATURE_FUNCS(extra_attr, EXTRA_ATTR);
4016 F2FS_FEATURE_FUNCS(project_quota, PRJQUOTA);
4017 F2FS_FEATURE_FUNCS(inode_chksum, INODE_CHKSUM);
4018 F2FS_FEATURE_FUNCS(flexible_inline_xattr, FLEXIBLE_INLINE_XATTR);
4019 F2FS_FEATURE_FUNCS(quota_ino, QUOTA_INO);
4020 F2FS_FEATURE_FUNCS(inode_crtime, INODE_CRTIME);
4021 F2FS_FEATURE_FUNCS(lost_found, LOST_FOUND);
4022 F2FS_FEATURE_FUNCS(verity, VERITY);
4023 F2FS_FEATURE_FUNCS(sb_chksum, SB_CHKSUM);
4024 F2FS_FEATURE_FUNCS(casefold, CASEFOLD);
4025 F2FS_FEATURE_FUNCS(compression, COMPRESSION);
4026 
4027 #ifdef CONFIG_BLK_DEV_ZONED
f2fs_blkz_is_seq(struct f2fs_sb_info * sbi,int devi,block_t blkaddr)4028 static inline bool f2fs_blkz_is_seq(struct f2fs_sb_info *sbi, int devi,
4029 				    block_t blkaddr)
4030 {
4031 	unsigned int zno = blkaddr >> sbi->log_blocks_per_blkz;
4032 
4033 	return test_bit(zno, FDEV(devi).blkz_seq);
4034 }
4035 #endif
4036 
f2fs_hw_should_discard(struct f2fs_sb_info * sbi)4037 static inline bool f2fs_hw_should_discard(struct f2fs_sb_info *sbi)
4038 {
4039 	return f2fs_sb_has_blkzoned(sbi);
4040 }
4041 
f2fs_bdev_support_discard(struct block_device * bdev)4042 static inline bool f2fs_bdev_support_discard(struct block_device *bdev)
4043 {
4044 	return blk_queue_discard(bdev_get_queue(bdev)) ||
4045 	       bdev_is_zoned(bdev);
4046 }
4047 
f2fs_hw_support_discard(struct f2fs_sb_info * sbi)4048 static inline bool f2fs_hw_support_discard(struct f2fs_sb_info *sbi)
4049 {
4050 	int i;
4051 
4052 	if (!f2fs_is_multi_device(sbi))
4053 		return f2fs_bdev_support_discard(sbi->sb->s_bdev);
4054 
4055 	for (i = 0; i < sbi->s_ndevs; i++)
4056 		if (f2fs_bdev_support_discard(FDEV(i).bdev))
4057 			return true;
4058 	return false;
4059 }
4060 
f2fs_realtime_discard_enable(struct f2fs_sb_info * sbi)4061 static inline bool f2fs_realtime_discard_enable(struct f2fs_sb_info *sbi)
4062 {
4063 	return (test_opt(sbi, DISCARD) && f2fs_hw_support_discard(sbi)) ||
4064 					f2fs_hw_should_discard(sbi);
4065 }
4066 
f2fs_hw_is_readonly(struct f2fs_sb_info * sbi)4067 static inline bool f2fs_hw_is_readonly(struct f2fs_sb_info *sbi)
4068 {
4069 	int i;
4070 
4071 	if (!f2fs_is_multi_device(sbi))
4072 		return bdev_read_only(sbi->sb->s_bdev);
4073 
4074 	for (i = 0; i < sbi->s_ndevs; i++)
4075 		if (bdev_read_only(FDEV(i).bdev))
4076 			return true;
4077 	return false;
4078 }
4079 
f2fs_lfs_mode(struct f2fs_sb_info * sbi)4080 static inline bool f2fs_lfs_mode(struct f2fs_sb_info *sbi)
4081 {
4082 	return F2FS_OPTION(sbi).fs_mode == FS_MODE_LFS;
4083 }
4084 
f2fs_may_compress(struct inode * inode)4085 static inline bool f2fs_may_compress(struct inode *inode)
4086 {
4087 	if (IS_SWAPFILE(inode) || f2fs_is_pinned_file(inode) ||
4088 				f2fs_is_atomic_file(inode) ||
4089 				f2fs_is_volatile_file(inode))
4090 		return false;
4091 	return S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode);
4092 }
4093 
f2fs_i_compr_blocks_update(struct inode * inode,u64 blocks,bool add)4094 static inline void f2fs_i_compr_blocks_update(struct inode *inode,
4095 						u64 blocks, bool add)
4096 {
4097 	int diff = F2FS_I(inode)->i_cluster_size - blocks;
4098 	struct f2fs_inode_info *fi = F2FS_I(inode);
4099 
4100 	/* don't update i_compr_blocks if saved blocks were released */
4101 	if (!add && !atomic_read(&fi->i_compr_blocks))
4102 		return;
4103 
4104 	if (add) {
4105 		atomic_add(diff, &fi->i_compr_blocks);
4106 		stat_add_compr_blocks(inode, diff);
4107 	} else {
4108 		atomic_sub(diff, &fi->i_compr_blocks);
4109 		stat_sub_compr_blocks(inode, diff);
4110 	}
4111 	f2fs_mark_inode_dirty_sync(inode, true);
4112 }
4113 
block_unaligned_IO(struct inode * inode,struct kiocb * iocb,struct iov_iter * iter)4114 static inline int block_unaligned_IO(struct inode *inode,
4115 				struct kiocb *iocb, struct iov_iter *iter)
4116 {
4117 	unsigned int i_blkbits = READ_ONCE(inode->i_blkbits);
4118 	unsigned int blocksize_mask = (1 << i_blkbits) - 1;
4119 	loff_t offset = iocb->ki_pos;
4120 	unsigned long align = offset | iov_iter_alignment(iter);
4121 
4122 	return align & blocksize_mask;
4123 }
4124 
allow_outplace_dio(struct inode * inode,struct kiocb * iocb,struct iov_iter * iter)4125 static inline int allow_outplace_dio(struct inode *inode,
4126 				struct kiocb *iocb, struct iov_iter *iter)
4127 {
4128 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
4129 	int rw = iov_iter_rw(iter);
4130 
4131 	return (f2fs_lfs_mode(sbi) && (rw == WRITE) &&
4132 				!block_unaligned_IO(inode, iocb, iter));
4133 }
4134 
f2fs_force_buffered_io(struct inode * inode,struct kiocb * iocb,struct iov_iter * iter)4135 static inline bool f2fs_force_buffered_io(struct inode *inode,
4136 				struct kiocb *iocb, struct iov_iter *iter)
4137 {
4138 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
4139 	int rw = iov_iter_rw(iter);
4140 
4141 	if (f2fs_post_read_required(inode))
4142 		return true;
4143 	if (f2fs_is_multi_device(sbi))
4144 		return true;
4145 	/*
4146 	 * for blkzoned device, fallback direct IO to buffered IO, so
4147 	 * all IOs can be serialized by log-structured write.
4148 	 */
4149 	if (f2fs_sb_has_blkzoned(sbi))
4150 		return true;
4151 	if (f2fs_lfs_mode(sbi) && (rw == WRITE)) {
4152 		if (block_unaligned_IO(inode, iocb, iter))
4153 			return true;
4154 		if (F2FS_IO_ALIGNED(sbi))
4155 			return true;
4156 	}
4157 	if (is_sbi_flag_set(F2FS_I_SB(inode), SBI_CP_DISABLED) &&
4158 					!IS_SWAPFILE(inode))
4159 		return true;
4160 
4161 	return false;
4162 }
4163 
4164 #ifdef CONFIG_F2FS_FAULT_INJECTION
4165 extern void f2fs_build_fault_attr(struct f2fs_sb_info *sbi, unsigned int rate,
4166 							unsigned int type);
4167 #else
4168 #define f2fs_build_fault_attr(sbi, rate, type)		do { } while (0)
4169 #endif
4170 
is_journalled_quota(struct f2fs_sb_info * sbi)4171 static inline bool is_journalled_quota(struct f2fs_sb_info *sbi)
4172 {
4173 #ifdef CONFIG_QUOTA
4174 	if (f2fs_sb_has_quota_ino(sbi))
4175 		return true;
4176 	if (F2FS_OPTION(sbi).s_qf_names[USRQUOTA] ||
4177 		F2FS_OPTION(sbi).s_qf_names[GRPQUOTA] ||
4178 		F2FS_OPTION(sbi).s_qf_names[PRJQUOTA])
4179 		return true;
4180 #endif
4181 	return false;
4182 }
4183 
4184 #define EFSBADCRC	EBADMSG		/* Bad CRC detected */
4185 #define EFSCORRUPTED	EUCLEAN		/* Filesystem is corrupted */
4186 
4187 #endif /* _LINUX_F2FS_H */
4188