1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (c) 2016 Avago Technologies. All rights reserved.
4 */
5 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
6 #include <linux/module.h>
7 #include <linux/parser.h>
8 #include <uapi/scsi/fc/fc_fs.h>
9 #include <uapi/scsi/fc/fc_els.h>
10 #include <linux/delay.h>
11 #include <linux/overflow.h>
12
13 #include "nvme.h"
14 #include "fabrics.h"
15 #include <linux/nvme-fc-driver.h>
16 #include <linux/nvme-fc.h>
17 #include "fc.h"
18 #include <scsi/scsi_transport_fc.h>
19
20 /* *************************** Data Structures/Defines ****************** */
21
22
23 enum nvme_fc_queue_flags {
24 NVME_FC_Q_CONNECTED = 0,
25 NVME_FC_Q_LIVE,
26 };
27
28 #define NVME_FC_DEFAULT_DEV_LOSS_TMO 60 /* seconds */
29 #define NVME_FC_DEFAULT_RECONNECT_TMO 2 /* delay between reconnects
30 * when connected and a
31 * connection failure.
32 */
33
34 struct nvme_fc_queue {
35 struct nvme_fc_ctrl *ctrl;
36 struct device *dev;
37 struct blk_mq_hw_ctx *hctx;
38 void *lldd_handle;
39 size_t cmnd_capsule_len;
40 u32 qnum;
41 u32 rqcnt;
42 u32 seqno;
43
44 u64 connection_id;
45 atomic_t csn;
46
47 unsigned long flags;
48 } __aligned(sizeof(u64)); /* alignment for other things alloc'd with */
49
50 enum nvme_fcop_flags {
51 FCOP_FLAGS_TERMIO = (1 << 0),
52 FCOP_FLAGS_AEN = (1 << 1),
53 };
54
55 struct nvmefc_ls_req_op {
56 struct nvmefc_ls_req ls_req;
57
58 struct nvme_fc_rport *rport;
59 struct nvme_fc_queue *queue;
60 struct request *rq;
61 u32 flags;
62
63 int ls_error;
64 struct completion ls_done;
65 struct list_head lsreq_list; /* rport->ls_req_list */
66 bool req_queued;
67 };
68
69 struct nvmefc_ls_rcv_op {
70 struct nvme_fc_rport *rport;
71 struct nvmefc_ls_rsp *lsrsp;
72 union nvmefc_ls_requests *rqstbuf;
73 union nvmefc_ls_responses *rspbuf;
74 u16 rqstdatalen;
75 bool handled;
76 dma_addr_t rspdma;
77 struct list_head lsrcv_list; /* rport->ls_rcv_list */
78 } __aligned(sizeof(u64)); /* alignment for other things alloc'd with */
79
80 enum nvme_fcpop_state {
81 FCPOP_STATE_UNINIT = 0,
82 FCPOP_STATE_IDLE = 1,
83 FCPOP_STATE_ACTIVE = 2,
84 FCPOP_STATE_ABORTED = 3,
85 FCPOP_STATE_COMPLETE = 4,
86 };
87
88 struct nvme_fc_fcp_op {
89 struct nvme_request nreq; /*
90 * nvme/host/core.c
91 * requires this to be
92 * the 1st element in the
93 * private structure
94 * associated with the
95 * request.
96 */
97 struct nvmefc_fcp_req fcp_req;
98
99 struct nvme_fc_ctrl *ctrl;
100 struct nvme_fc_queue *queue;
101 struct request *rq;
102
103 atomic_t state;
104 u32 flags;
105 u32 rqno;
106 u32 nents;
107
108 struct nvme_fc_cmd_iu cmd_iu;
109 struct nvme_fc_ersp_iu rsp_iu;
110 };
111
112 struct nvme_fcp_op_w_sgl {
113 struct nvme_fc_fcp_op op;
114 struct scatterlist sgl[NVME_INLINE_SG_CNT];
115 uint8_t priv[];
116 };
117
118 struct nvme_fc_lport {
119 struct nvme_fc_local_port localport;
120
121 struct ida endp_cnt;
122 struct list_head port_list; /* nvme_fc_port_list */
123 struct list_head endp_list;
124 struct device *dev; /* physical device for dma */
125 struct nvme_fc_port_template *ops;
126 struct kref ref;
127 atomic_t act_rport_cnt;
128 } __aligned(sizeof(u64)); /* alignment for other things alloc'd with */
129
130 struct nvme_fc_rport {
131 struct nvme_fc_remote_port remoteport;
132
133 struct list_head endp_list; /* for lport->endp_list */
134 struct list_head ctrl_list;
135 struct list_head ls_req_list;
136 struct list_head ls_rcv_list;
137 struct list_head disc_list;
138 struct device *dev; /* physical device for dma */
139 struct nvme_fc_lport *lport;
140 spinlock_t lock;
141 struct kref ref;
142 atomic_t act_ctrl_cnt;
143 unsigned long dev_loss_end;
144 struct work_struct lsrcv_work;
145 } __aligned(sizeof(u64)); /* alignment for other things alloc'd with */
146
147 /* fc_ctrl flags values - specified as bit positions */
148 #define ASSOC_ACTIVE 0
149 #define ASSOC_FAILED 1
150 #define FCCTRL_TERMIO 2
151
152 struct nvme_fc_ctrl {
153 spinlock_t lock;
154 struct nvme_fc_queue *queues;
155 struct device *dev;
156 struct nvme_fc_lport *lport;
157 struct nvme_fc_rport *rport;
158 u32 cnum;
159
160 bool ioq_live;
161 u64 association_id;
162 struct nvmefc_ls_rcv_op *rcv_disconn;
163
164 struct list_head ctrl_list; /* rport->ctrl_list */
165
166 struct blk_mq_tag_set admin_tag_set;
167 struct blk_mq_tag_set tag_set;
168
169 struct work_struct ioerr_work;
170 struct delayed_work connect_work;
171
172 struct kref ref;
173 unsigned long flags;
174 u32 iocnt;
175 wait_queue_head_t ioabort_wait;
176
177 struct nvme_fc_fcp_op aen_ops[NVME_NR_AEN_COMMANDS];
178
179 struct nvme_ctrl ctrl;
180 };
181
182 static inline struct nvme_fc_ctrl *
to_fc_ctrl(struct nvme_ctrl * ctrl)183 to_fc_ctrl(struct nvme_ctrl *ctrl)
184 {
185 return container_of(ctrl, struct nvme_fc_ctrl, ctrl);
186 }
187
188 static inline struct nvme_fc_lport *
localport_to_lport(struct nvme_fc_local_port * portptr)189 localport_to_lport(struct nvme_fc_local_port *portptr)
190 {
191 return container_of(portptr, struct nvme_fc_lport, localport);
192 }
193
194 static inline struct nvme_fc_rport *
remoteport_to_rport(struct nvme_fc_remote_port * portptr)195 remoteport_to_rport(struct nvme_fc_remote_port *portptr)
196 {
197 return container_of(portptr, struct nvme_fc_rport, remoteport);
198 }
199
200 static inline struct nvmefc_ls_req_op *
ls_req_to_lsop(struct nvmefc_ls_req * lsreq)201 ls_req_to_lsop(struct nvmefc_ls_req *lsreq)
202 {
203 return container_of(lsreq, struct nvmefc_ls_req_op, ls_req);
204 }
205
206 static inline struct nvme_fc_fcp_op *
fcp_req_to_fcp_op(struct nvmefc_fcp_req * fcpreq)207 fcp_req_to_fcp_op(struct nvmefc_fcp_req *fcpreq)
208 {
209 return container_of(fcpreq, struct nvme_fc_fcp_op, fcp_req);
210 }
211
212
213
214 /* *************************** Globals **************************** */
215
216
217 static DEFINE_SPINLOCK(nvme_fc_lock);
218
219 static LIST_HEAD(nvme_fc_lport_list);
220 static DEFINE_IDA(nvme_fc_local_port_cnt);
221 static DEFINE_IDA(nvme_fc_ctrl_cnt);
222
223 static struct workqueue_struct *nvme_fc_wq;
224
225 static bool nvme_fc_waiting_to_unload;
226 static DECLARE_COMPLETION(nvme_fc_unload_proceed);
227
228 /*
229 * These items are short-term. They will eventually be moved into
230 * a generic FC class. See comments in module init.
231 */
232 static struct device *fc_udev_device;
233
234 static void nvme_fc_complete_rq(struct request *rq);
235
236 /* *********************** FC-NVME Port Management ************************ */
237
238 static void __nvme_fc_delete_hw_queue(struct nvme_fc_ctrl *,
239 struct nvme_fc_queue *, unsigned int);
240
241 static void nvme_fc_handle_ls_rqst_work(struct work_struct *work);
242
243
244 static void
nvme_fc_free_lport(struct kref * ref)245 nvme_fc_free_lport(struct kref *ref)
246 {
247 struct nvme_fc_lport *lport =
248 container_of(ref, struct nvme_fc_lport, ref);
249 unsigned long flags;
250
251 WARN_ON(lport->localport.port_state != FC_OBJSTATE_DELETED);
252 WARN_ON(!list_empty(&lport->endp_list));
253
254 /* remove from transport list */
255 spin_lock_irqsave(&nvme_fc_lock, flags);
256 list_del(&lport->port_list);
257 if (nvme_fc_waiting_to_unload && list_empty(&nvme_fc_lport_list))
258 complete(&nvme_fc_unload_proceed);
259 spin_unlock_irqrestore(&nvme_fc_lock, flags);
260
261 ida_simple_remove(&nvme_fc_local_port_cnt, lport->localport.port_num);
262 ida_destroy(&lport->endp_cnt);
263
264 put_device(lport->dev);
265
266 kfree(lport);
267 }
268
269 static void
nvme_fc_lport_put(struct nvme_fc_lport * lport)270 nvme_fc_lport_put(struct nvme_fc_lport *lport)
271 {
272 kref_put(&lport->ref, nvme_fc_free_lport);
273 }
274
275 static int
nvme_fc_lport_get(struct nvme_fc_lport * lport)276 nvme_fc_lport_get(struct nvme_fc_lport *lport)
277 {
278 return kref_get_unless_zero(&lport->ref);
279 }
280
281
282 static struct nvme_fc_lport *
nvme_fc_attach_to_unreg_lport(struct nvme_fc_port_info * pinfo,struct nvme_fc_port_template * ops,struct device * dev)283 nvme_fc_attach_to_unreg_lport(struct nvme_fc_port_info *pinfo,
284 struct nvme_fc_port_template *ops,
285 struct device *dev)
286 {
287 struct nvme_fc_lport *lport;
288 unsigned long flags;
289
290 spin_lock_irqsave(&nvme_fc_lock, flags);
291
292 list_for_each_entry(lport, &nvme_fc_lport_list, port_list) {
293 if (lport->localport.node_name != pinfo->node_name ||
294 lport->localport.port_name != pinfo->port_name)
295 continue;
296
297 if (lport->dev != dev) {
298 lport = ERR_PTR(-EXDEV);
299 goto out_done;
300 }
301
302 if (lport->localport.port_state != FC_OBJSTATE_DELETED) {
303 lport = ERR_PTR(-EEXIST);
304 goto out_done;
305 }
306
307 if (!nvme_fc_lport_get(lport)) {
308 /*
309 * fails if ref cnt already 0. If so,
310 * act as if lport already deleted
311 */
312 lport = NULL;
313 goto out_done;
314 }
315
316 /* resume the lport */
317
318 lport->ops = ops;
319 lport->localport.port_role = pinfo->port_role;
320 lport->localport.port_id = pinfo->port_id;
321 lport->localport.port_state = FC_OBJSTATE_ONLINE;
322
323 spin_unlock_irqrestore(&nvme_fc_lock, flags);
324
325 return lport;
326 }
327
328 lport = NULL;
329
330 out_done:
331 spin_unlock_irqrestore(&nvme_fc_lock, flags);
332
333 return lport;
334 }
335
336 /**
337 * nvme_fc_register_localport - transport entry point called by an
338 * LLDD to register the existence of a NVME
339 * host FC port.
340 * @pinfo: pointer to information about the port to be registered
341 * @template: LLDD entrypoints and operational parameters for the port
342 * @dev: physical hardware device node port corresponds to. Will be
343 * used for DMA mappings
344 * @portptr: pointer to a local port pointer. Upon success, the routine
345 * will allocate a nvme_fc_local_port structure and place its
346 * address in the local port pointer. Upon failure, local port
347 * pointer will be set to 0.
348 *
349 * Returns:
350 * a completion status. Must be 0 upon success; a negative errno
351 * (ex: -ENXIO) upon failure.
352 */
353 int
nvme_fc_register_localport(struct nvme_fc_port_info * pinfo,struct nvme_fc_port_template * template,struct device * dev,struct nvme_fc_local_port ** portptr)354 nvme_fc_register_localport(struct nvme_fc_port_info *pinfo,
355 struct nvme_fc_port_template *template,
356 struct device *dev,
357 struct nvme_fc_local_port **portptr)
358 {
359 struct nvme_fc_lport *newrec;
360 unsigned long flags;
361 int ret, idx;
362
363 if (!template->localport_delete || !template->remoteport_delete ||
364 !template->ls_req || !template->fcp_io ||
365 !template->ls_abort || !template->fcp_abort ||
366 !template->max_hw_queues || !template->max_sgl_segments ||
367 !template->max_dif_sgl_segments || !template->dma_boundary) {
368 ret = -EINVAL;
369 goto out_reghost_failed;
370 }
371
372 /*
373 * look to see if there is already a localport that had been
374 * deregistered and in the process of waiting for all the
375 * references to fully be removed. If the references haven't
376 * expired, we can simply re-enable the localport. Remoteports
377 * and controller reconnections should resume naturally.
378 */
379 newrec = nvme_fc_attach_to_unreg_lport(pinfo, template, dev);
380
381 /* found an lport, but something about its state is bad */
382 if (IS_ERR(newrec)) {
383 ret = PTR_ERR(newrec);
384 goto out_reghost_failed;
385
386 /* found existing lport, which was resumed */
387 } else if (newrec) {
388 *portptr = &newrec->localport;
389 return 0;
390 }
391
392 /* nothing found - allocate a new localport struct */
393
394 newrec = kmalloc((sizeof(*newrec) + template->local_priv_sz),
395 GFP_KERNEL);
396 if (!newrec) {
397 ret = -ENOMEM;
398 goto out_reghost_failed;
399 }
400
401 idx = ida_simple_get(&nvme_fc_local_port_cnt, 0, 0, GFP_KERNEL);
402 if (idx < 0) {
403 ret = -ENOSPC;
404 goto out_fail_kfree;
405 }
406
407 if (!get_device(dev) && dev) {
408 ret = -ENODEV;
409 goto out_ida_put;
410 }
411
412 INIT_LIST_HEAD(&newrec->port_list);
413 INIT_LIST_HEAD(&newrec->endp_list);
414 kref_init(&newrec->ref);
415 atomic_set(&newrec->act_rport_cnt, 0);
416 newrec->ops = template;
417 newrec->dev = dev;
418 ida_init(&newrec->endp_cnt);
419 if (template->local_priv_sz)
420 newrec->localport.private = &newrec[1];
421 else
422 newrec->localport.private = NULL;
423 newrec->localport.node_name = pinfo->node_name;
424 newrec->localport.port_name = pinfo->port_name;
425 newrec->localport.port_role = pinfo->port_role;
426 newrec->localport.port_id = pinfo->port_id;
427 newrec->localport.port_state = FC_OBJSTATE_ONLINE;
428 newrec->localport.port_num = idx;
429
430 spin_lock_irqsave(&nvme_fc_lock, flags);
431 list_add_tail(&newrec->port_list, &nvme_fc_lport_list);
432 spin_unlock_irqrestore(&nvme_fc_lock, flags);
433
434 if (dev)
435 dma_set_seg_boundary(dev, template->dma_boundary);
436
437 *portptr = &newrec->localport;
438 return 0;
439
440 out_ida_put:
441 ida_simple_remove(&nvme_fc_local_port_cnt, idx);
442 out_fail_kfree:
443 kfree(newrec);
444 out_reghost_failed:
445 *portptr = NULL;
446
447 return ret;
448 }
449 EXPORT_SYMBOL_GPL(nvme_fc_register_localport);
450
451 /**
452 * nvme_fc_unregister_localport - transport entry point called by an
453 * LLDD to deregister/remove a previously
454 * registered a NVME host FC port.
455 * @portptr: pointer to the (registered) local port that is to be deregistered.
456 *
457 * Returns:
458 * a completion status. Must be 0 upon success; a negative errno
459 * (ex: -ENXIO) upon failure.
460 */
461 int
nvme_fc_unregister_localport(struct nvme_fc_local_port * portptr)462 nvme_fc_unregister_localport(struct nvme_fc_local_port *portptr)
463 {
464 struct nvme_fc_lport *lport = localport_to_lport(portptr);
465 unsigned long flags;
466
467 if (!portptr)
468 return -EINVAL;
469
470 spin_lock_irqsave(&nvme_fc_lock, flags);
471
472 if (portptr->port_state != FC_OBJSTATE_ONLINE) {
473 spin_unlock_irqrestore(&nvme_fc_lock, flags);
474 return -EINVAL;
475 }
476 portptr->port_state = FC_OBJSTATE_DELETED;
477
478 spin_unlock_irqrestore(&nvme_fc_lock, flags);
479
480 if (atomic_read(&lport->act_rport_cnt) == 0)
481 lport->ops->localport_delete(&lport->localport);
482
483 nvme_fc_lport_put(lport);
484
485 return 0;
486 }
487 EXPORT_SYMBOL_GPL(nvme_fc_unregister_localport);
488
489 /*
490 * TRADDR strings, per FC-NVME are fixed format:
491 * "nn-0x<16hexdigits>:pn-0x<16hexdigits>" - 43 characters
492 * udev event will only differ by prefix of what field is
493 * being specified:
494 * "NVMEFC_HOST_TRADDR=" or "NVMEFC_TRADDR=" - 19 max characters
495 * 19 + 43 + null_fudge = 64 characters
496 */
497 #define FCNVME_TRADDR_LENGTH 64
498
499 static void
nvme_fc_signal_discovery_scan(struct nvme_fc_lport * lport,struct nvme_fc_rport * rport)500 nvme_fc_signal_discovery_scan(struct nvme_fc_lport *lport,
501 struct nvme_fc_rport *rport)
502 {
503 char hostaddr[FCNVME_TRADDR_LENGTH]; /* NVMEFC_HOST_TRADDR=...*/
504 char tgtaddr[FCNVME_TRADDR_LENGTH]; /* NVMEFC_TRADDR=...*/
505 char *envp[4] = { "FC_EVENT=nvmediscovery", hostaddr, tgtaddr, NULL };
506
507 if (!(rport->remoteport.port_role & FC_PORT_ROLE_NVME_DISCOVERY))
508 return;
509
510 snprintf(hostaddr, sizeof(hostaddr),
511 "NVMEFC_HOST_TRADDR=nn-0x%016llx:pn-0x%016llx",
512 lport->localport.node_name, lport->localport.port_name);
513 snprintf(tgtaddr, sizeof(tgtaddr),
514 "NVMEFC_TRADDR=nn-0x%016llx:pn-0x%016llx",
515 rport->remoteport.node_name, rport->remoteport.port_name);
516 kobject_uevent_env(&fc_udev_device->kobj, KOBJ_CHANGE, envp);
517 }
518
519 static void
nvme_fc_free_rport(struct kref * ref)520 nvme_fc_free_rport(struct kref *ref)
521 {
522 struct nvme_fc_rport *rport =
523 container_of(ref, struct nvme_fc_rport, ref);
524 struct nvme_fc_lport *lport =
525 localport_to_lport(rport->remoteport.localport);
526 unsigned long flags;
527
528 WARN_ON(rport->remoteport.port_state != FC_OBJSTATE_DELETED);
529 WARN_ON(!list_empty(&rport->ctrl_list));
530
531 /* remove from lport list */
532 spin_lock_irqsave(&nvme_fc_lock, flags);
533 list_del(&rport->endp_list);
534 spin_unlock_irqrestore(&nvme_fc_lock, flags);
535
536 WARN_ON(!list_empty(&rport->disc_list));
537 ida_simple_remove(&lport->endp_cnt, rport->remoteport.port_num);
538
539 kfree(rport);
540
541 nvme_fc_lport_put(lport);
542 }
543
544 static void
nvme_fc_rport_put(struct nvme_fc_rport * rport)545 nvme_fc_rport_put(struct nvme_fc_rport *rport)
546 {
547 kref_put(&rport->ref, nvme_fc_free_rport);
548 }
549
550 static int
nvme_fc_rport_get(struct nvme_fc_rport * rport)551 nvme_fc_rport_get(struct nvme_fc_rport *rport)
552 {
553 return kref_get_unless_zero(&rport->ref);
554 }
555
556 static void
nvme_fc_resume_controller(struct nvme_fc_ctrl * ctrl)557 nvme_fc_resume_controller(struct nvme_fc_ctrl *ctrl)
558 {
559 switch (ctrl->ctrl.state) {
560 case NVME_CTRL_NEW:
561 case NVME_CTRL_CONNECTING:
562 /*
563 * As all reconnects were suppressed, schedule a
564 * connect.
565 */
566 dev_info(ctrl->ctrl.device,
567 "NVME-FC{%d}: connectivity re-established. "
568 "Attempting reconnect\n", ctrl->cnum);
569
570 queue_delayed_work(nvme_wq, &ctrl->connect_work, 0);
571 break;
572
573 case NVME_CTRL_RESETTING:
574 /*
575 * Controller is already in the process of terminating the
576 * association. No need to do anything further. The reconnect
577 * step will naturally occur after the reset completes.
578 */
579 break;
580
581 default:
582 /* no action to take - let it delete */
583 break;
584 }
585 }
586
587 static struct nvme_fc_rport *
nvme_fc_attach_to_suspended_rport(struct nvme_fc_lport * lport,struct nvme_fc_port_info * pinfo)588 nvme_fc_attach_to_suspended_rport(struct nvme_fc_lport *lport,
589 struct nvme_fc_port_info *pinfo)
590 {
591 struct nvme_fc_rport *rport;
592 struct nvme_fc_ctrl *ctrl;
593 unsigned long flags;
594
595 spin_lock_irqsave(&nvme_fc_lock, flags);
596
597 list_for_each_entry(rport, &lport->endp_list, endp_list) {
598 if (rport->remoteport.node_name != pinfo->node_name ||
599 rport->remoteport.port_name != pinfo->port_name)
600 continue;
601
602 if (!nvme_fc_rport_get(rport)) {
603 rport = ERR_PTR(-ENOLCK);
604 goto out_done;
605 }
606
607 spin_unlock_irqrestore(&nvme_fc_lock, flags);
608
609 spin_lock_irqsave(&rport->lock, flags);
610
611 /* has it been unregistered */
612 if (rport->remoteport.port_state != FC_OBJSTATE_DELETED) {
613 /* means lldd called us twice */
614 spin_unlock_irqrestore(&rport->lock, flags);
615 nvme_fc_rport_put(rport);
616 return ERR_PTR(-ESTALE);
617 }
618
619 rport->remoteport.port_role = pinfo->port_role;
620 rport->remoteport.port_id = pinfo->port_id;
621 rport->remoteport.port_state = FC_OBJSTATE_ONLINE;
622 rport->dev_loss_end = 0;
623
624 /*
625 * kick off a reconnect attempt on all associations to the
626 * remote port. A successful reconnects will resume i/o.
627 */
628 list_for_each_entry(ctrl, &rport->ctrl_list, ctrl_list)
629 nvme_fc_resume_controller(ctrl);
630
631 spin_unlock_irqrestore(&rport->lock, flags);
632
633 return rport;
634 }
635
636 rport = NULL;
637
638 out_done:
639 spin_unlock_irqrestore(&nvme_fc_lock, flags);
640
641 return rport;
642 }
643
644 static inline void
__nvme_fc_set_dev_loss_tmo(struct nvme_fc_rport * rport,struct nvme_fc_port_info * pinfo)645 __nvme_fc_set_dev_loss_tmo(struct nvme_fc_rport *rport,
646 struct nvme_fc_port_info *pinfo)
647 {
648 if (pinfo->dev_loss_tmo)
649 rport->remoteport.dev_loss_tmo = pinfo->dev_loss_tmo;
650 else
651 rport->remoteport.dev_loss_tmo = NVME_FC_DEFAULT_DEV_LOSS_TMO;
652 }
653
654 /**
655 * nvme_fc_register_remoteport - transport entry point called by an
656 * LLDD to register the existence of a NVME
657 * subsystem FC port on its fabric.
658 * @localport: pointer to the (registered) local port that the remote
659 * subsystem port is connected to.
660 * @pinfo: pointer to information about the port to be registered
661 * @portptr: pointer to a remote port pointer. Upon success, the routine
662 * will allocate a nvme_fc_remote_port structure and place its
663 * address in the remote port pointer. Upon failure, remote port
664 * pointer will be set to 0.
665 *
666 * Returns:
667 * a completion status. Must be 0 upon success; a negative errno
668 * (ex: -ENXIO) upon failure.
669 */
670 int
nvme_fc_register_remoteport(struct nvme_fc_local_port * localport,struct nvme_fc_port_info * pinfo,struct nvme_fc_remote_port ** portptr)671 nvme_fc_register_remoteport(struct nvme_fc_local_port *localport,
672 struct nvme_fc_port_info *pinfo,
673 struct nvme_fc_remote_port **portptr)
674 {
675 struct nvme_fc_lport *lport = localport_to_lport(localport);
676 struct nvme_fc_rport *newrec;
677 unsigned long flags;
678 int ret, idx;
679
680 if (!nvme_fc_lport_get(lport)) {
681 ret = -ESHUTDOWN;
682 goto out_reghost_failed;
683 }
684
685 /*
686 * look to see if there is already a remoteport that is waiting
687 * for a reconnect (within dev_loss_tmo) with the same WWN's.
688 * If so, transition to it and reconnect.
689 */
690 newrec = nvme_fc_attach_to_suspended_rport(lport, pinfo);
691
692 /* found an rport, but something about its state is bad */
693 if (IS_ERR(newrec)) {
694 ret = PTR_ERR(newrec);
695 goto out_lport_put;
696
697 /* found existing rport, which was resumed */
698 } else if (newrec) {
699 nvme_fc_lport_put(lport);
700 __nvme_fc_set_dev_loss_tmo(newrec, pinfo);
701 nvme_fc_signal_discovery_scan(lport, newrec);
702 *portptr = &newrec->remoteport;
703 return 0;
704 }
705
706 /* nothing found - allocate a new remoteport struct */
707
708 newrec = kmalloc((sizeof(*newrec) + lport->ops->remote_priv_sz),
709 GFP_KERNEL);
710 if (!newrec) {
711 ret = -ENOMEM;
712 goto out_lport_put;
713 }
714
715 idx = ida_simple_get(&lport->endp_cnt, 0, 0, GFP_KERNEL);
716 if (idx < 0) {
717 ret = -ENOSPC;
718 goto out_kfree_rport;
719 }
720
721 INIT_LIST_HEAD(&newrec->endp_list);
722 INIT_LIST_HEAD(&newrec->ctrl_list);
723 INIT_LIST_HEAD(&newrec->ls_req_list);
724 INIT_LIST_HEAD(&newrec->disc_list);
725 kref_init(&newrec->ref);
726 atomic_set(&newrec->act_ctrl_cnt, 0);
727 spin_lock_init(&newrec->lock);
728 newrec->remoteport.localport = &lport->localport;
729 INIT_LIST_HEAD(&newrec->ls_rcv_list);
730 newrec->dev = lport->dev;
731 newrec->lport = lport;
732 if (lport->ops->remote_priv_sz)
733 newrec->remoteport.private = &newrec[1];
734 else
735 newrec->remoteport.private = NULL;
736 newrec->remoteport.port_role = pinfo->port_role;
737 newrec->remoteport.node_name = pinfo->node_name;
738 newrec->remoteport.port_name = pinfo->port_name;
739 newrec->remoteport.port_id = pinfo->port_id;
740 newrec->remoteport.port_state = FC_OBJSTATE_ONLINE;
741 newrec->remoteport.port_num = idx;
742 __nvme_fc_set_dev_loss_tmo(newrec, pinfo);
743 INIT_WORK(&newrec->lsrcv_work, nvme_fc_handle_ls_rqst_work);
744
745 spin_lock_irqsave(&nvme_fc_lock, flags);
746 list_add_tail(&newrec->endp_list, &lport->endp_list);
747 spin_unlock_irqrestore(&nvme_fc_lock, flags);
748
749 nvme_fc_signal_discovery_scan(lport, newrec);
750
751 *portptr = &newrec->remoteport;
752 return 0;
753
754 out_kfree_rport:
755 kfree(newrec);
756 out_lport_put:
757 nvme_fc_lport_put(lport);
758 out_reghost_failed:
759 *portptr = NULL;
760 return ret;
761 }
762 EXPORT_SYMBOL_GPL(nvme_fc_register_remoteport);
763
764 static int
nvme_fc_abort_lsops(struct nvme_fc_rport * rport)765 nvme_fc_abort_lsops(struct nvme_fc_rport *rport)
766 {
767 struct nvmefc_ls_req_op *lsop;
768 unsigned long flags;
769
770 restart:
771 spin_lock_irqsave(&rport->lock, flags);
772
773 list_for_each_entry(lsop, &rport->ls_req_list, lsreq_list) {
774 if (!(lsop->flags & FCOP_FLAGS_TERMIO)) {
775 lsop->flags |= FCOP_FLAGS_TERMIO;
776 spin_unlock_irqrestore(&rport->lock, flags);
777 rport->lport->ops->ls_abort(&rport->lport->localport,
778 &rport->remoteport,
779 &lsop->ls_req);
780 goto restart;
781 }
782 }
783 spin_unlock_irqrestore(&rport->lock, flags);
784
785 return 0;
786 }
787
788 static void
nvme_fc_ctrl_connectivity_loss(struct nvme_fc_ctrl * ctrl)789 nvme_fc_ctrl_connectivity_loss(struct nvme_fc_ctrl *ctrl)
790 {
791 dev_info(ctrl->ctrl.device,
792 "NVME-FC{%d}: controller connectivity lost. Awaiting "
793 "Reconnect", ctrl->cnum);
794
795 switch (ctrl->ctrl.state) {
796 case NVME_CTRL_NEW:
797 case NVME_CTRL_LIVE:
798 /*
799 * Schedule a controller reset. The reset will terminate the
800 * association and schedule the reconnect timer. Reconnects
801 * will be attempted until either the ctlr_loss_tmo
802 * (max_retries * connect_delay) expires or the remoteport's
803 * dev_loss_tmo expires.
804 */
805 if (nvme_reset_ctrl(&ctrl->ctrl)) {
806 dev_warn(ctrl->ctrl.device,
807 "NVME-FC{%d}: Couldn't schedule reset.\n",
808 ctrl->cnum);
809 nvme_delete_ctrl(&ctrl->ctrl);
810 }
811 break;
812
813 case NVME_CTRL_CONNECTING:
814 /*
815 * The association has already been terminated and the
816 * controller is attempting reconnects. No need to do anything
817 * futher. Reconnects will be attempted until either the
818 * ctlr_loss_tmo (max_retries * connect_delay) expires or the
819 * remoteport's dev_loss_tmo expires.
820 */
821 break;
822
823 case NVME_CTRL_RESETTING:
824 /*
825 * Controller is already in the process of terminating the
826 * association. No need to do anything further. The reconnect
827 * step will kick in naturally after the association is
828 * terminated.
829 */
830 break;
831
832 case NVME_CTRL_DELETING:
833 case NVME_CTRL_DELETING_NOIO:
834 default:
835 /* no action to take - let it delete */
836 break;
837 }
838 }
839
840 /**
841 * nvme_fc_unregister_remoteport - transport entry point called by an
842 * LLDD to deregister/remove a previously
843 * registered a NVME subsystem FC port.
844 * @portptr: pointer to the (registered) remote port that is to be
845 * deregistered.
846 *
847 * Returns:
848 * a completion status. Must be 0 upon success; a negative errno
849 * (ex: -ENXIO) upon failure.
850 */
851 int
nvme_fc_unregister_remoteport(struct nvme_fc_remote_port * portptr)852 nvme_fc_unregister_remoteport(struct nvme_fc_remote_port *portptr)
853 {
854 struct nvme_fc_rport *rport = remoteport_to_rport(portptr);
855 struct nvme_fc_ctrl *ctrl;
856 unsigned long flags;
857
858 if (!portptr)
859 return -EINVAL;
860
861 spin_lock_irqsave(&rport->lock, flags);
862
863 if (portptr->port_state != FC_OBJSTATE_ONLINE) {
864 spin_unlock_irqrestore(&rport->lock, flags);
865 return -EINVAL;
866 }
867 portptr->port_state = FC_OBJSTATE_DELETED;
868
869 rport->dev_loss_end = jiffies + (portptr->dev_loss_tmo * HZ);
870
871 list_for_each_entry(ctrl, &rport->ctrl_list, ctrl_list) {
872 /* if dev_loss_tmo==0, dev loss is immediate */
873 if (!portptr->dev_loss_tmo) {
874 dev_warn(ctrl->ctrl.device,
875 "NVME-FC{%d}: controller connectivity lost.\n",
876 ctrl->cnum);
877 nvme_delete_ctrl(&ctrl->ctrl);
878 } else
879 nvme_fc_ctrl_connectivity_loss(ctrl);
880 }
881
882 spin_unlock_irqrestore(&rport->lock, flags);
883
884 nvme_fc_abort_lsops(rport);
885
886 if (atomic_read(&rport->act_ctrl_cnt) == 0)
887 rport->lport->ops->remoteport_delete(portptr);
888
889 /*
890 * release the reference, which will allow, if all controllers
891 * go away, which should only occur after dev_loss_tmo occurs,
892 * for the rport to be torn down.
893 */
894 nvme_fc_rport_put(rport);
895
896 return 0;
897 }
898 EXPORT_SYMBOL_GPL(nvme_fc_unregister_remoteport);
899
900 /**
901 * nvme_fc_rescan_remoteport - transport entry point called by an
902 * LLDD to request a nvme device rescan.
903 * @remoteport: pointer to the (registered) remote port that is to be
904 * rescanned.
905 *
906 * Returns: N/A
907 */
908 void
nvme_fc_rescan_remoteport(struct nvme_fc_remote_port * remoteport)909 nvme_fc_rescan_remoteport(struct nvme_fc_remote_port *remoteport)
910 {
911 struct nvme_fc_rport *rport = remoteport_to_rport(remoteport);
912
913 nvme_fc_signal_discovery_scan(rport->lport, rport);
914 }
915 EXPORT_SYMBOL_GPL(nvme_fc_rescan_remoteport);
916
917 int
nvme_fc_set_remoteport_devloss(struct nvme_fc_remote_port * portptr,u32 dev_loss_tmo)918 nvme_fc_set_remoteport_devloss(struct nvme_fc_remote_port *portptr,
919 u32 dev_loss_tmo)
920 {
921 struct nvme_fc_rport *rport = remoteport_to_rport(portptr);
922 unsigned long flags;
923
924 spin_lock_irqsave(&rport->lock, flags);
925
926 if (portptr->port_state != FC_OBJSTATE_ONLINE) {
927 spin_unlock_irqrestore(&rport->lock, flags);
928 return -EINVAL;
929 }
930
931 /* a dev_loss_tmo of 0 (immediate) is allowed to be set */
932 rport->remoteport.dev_loss_tmo = dev_loss_tmo;
933
934 spin_unlock_irqrestore(&rport->lock, flags);
935
936 return 0;
937 }
938 EXPORT_SYMBOL_GPL(nvme_fc_set_remoteport_devloss);
939
940
941 /* *********************** FC-NVME DMA Handling **************************** */
942
943 /*
944 * The fcloop device passes in a NULL device pointer. Real LLD's will
945 * pass in a valid device pointer. If NULL is passed to the dma mapping
946 * routines, depending on the platform, it may or may not succeed, and
947 * may crash.
948 *
949 * As such:
950 * Wrapper all the dma routines and check the dev pointer.
951 *
952 * If simple mappings (return just a dma address, we'll noop them,
953 * returning a dma address of 0.
954 *
955 * On more complex mappings (dma_map_sg), a pseudo routine fills
956 * in the scatter list, setting all dma addresses to 0.
957 */
958
959 static inline dma_addr_t
fc_dma_map_single(struct device * dev,void * ptr,size_t size,enum dma_data_direction dir)960 fc_dma_map_single(struct device *dev, void *ptr, size_t size,
961 enum dma_data_direction dir)
962 {
963 return dev ? dma_map_single(dev, ptr, size, dir) : (dma_addr_t)0L;
964 }
965
966 static inline int
fc_dma_mapping_error(struct device * dev,dma_addr_t dma_addr)967 fc_dma_mapping_error(struct device *dev, dma_addr_t dma_addr)
968 {
969 return dev ? dma_mapping_error(dev, dma_addr) : 0;
970 }
971
972 static inline void
fc_dma_unmap_single(struct device * dev,dma_addr_t addr,size_t size,enum dma_data_direction dir)973 fc_dma_unmap_single(struct device *dev, dma_addr_t addr, size_t size,
974 enum dma_data_direction dir)
975 {
976 if (dev)
977 dma_unmap_single(dev, addr, size, dir);
978 }
979
980 static inline void
fc_dma_sync_single_for_cpu(struct device * dev,dma_addr_t addr,size_t size,enum dma_data_direction dir)981 fc_dma_sync_single_for_cpu(struct device *dev, dma_addr_t addr, size_t size,
982 enum dma_data_direction dir)
983 {
984 if (dev)
985 dma_sync_single_for_cpu(dev, addr, size, dir);
986 }
987
988 static inline void
fc_dma_sync_single_for_device(struct device * dev,dma_addr_t addr,size_t size,enum dma_data_direction dir)989 fc_dma_sync_single_for_device(struct device *dev, dma_addr_t addr, size_t size,
990 enum dma_data_direction dir)
991 {
992 if (dev)
993 dma_sync_single_for_device(dev, addr, size, dir);
994 }
995
996 /* pseudo dma_map_sg call */
997 static int
fc_map_sg(struct scatterlist * sg,int nents)998 fc_map_sg(struct scatterlist *sg, int nents)
999 {
1000 struct scatterlist *s;
1001 int i;
1002
1003 WARN_ON(nents == 0 || sg[0].length == 0);
1004
1005 for_each_sg(sg, s, nents, i) {
1006 s->dma_address = 0L;
1007 #ifdef CONFIG_NEED_SG_DMA_LENGTH
1008 s->dma_length = s->length;
1009 #endif
1010 }
1011 return nents;
1012 }
1013
1014 static inline int
fc_dma_map_sg(struct device * dev,struct scatterlist * sg,int nents,enum dma_data_direction dir)1015 fc_dma_map_sg(struct device *dev, struct scatterlist *sg, int nents,
1016 enum dma_data_direction dir)
1017 {
1018 return dev ? dma_map_sg(dev, sg, nents, dir) : fc_map_sg(sg, nents);
1019 }
1020
1021 static inline void
fc_dma_unmap_sg(struct device * dev,struct scatterlist * sg,int nents,enum dma_data_direction dir)1022 fc_dma_unmap_sg(struct device *dev, struct scatterlist *sg, int nents,
1023 enum dma_data_direction dir)
1024 {
1025 if (dev)
1026 dma_unmap_sg(dev, sg, nents, dir);
1027 }
1028
1029 /* *********************** FC-NVME LS Handling **************************** */
1030
1031 static void nvme_fc_ctrl_put(struct nvme_fc_ctrl *);
1032 static int nvme_fc_ctrl_get(struct nvme_fc_ctrl *);
1033
1034 static void nvme_fc_error_recovery(struct nvme_fc_ctrl *ctrl, char *errmsg);
1035
1036 static void
__nvme_fc_finish_ls_req(struct nvmefc_ls_req_op * lsop)1037 __nvme_fc_finish_ls_req(struct nvmefc_ls_req_op *lsop)
1038 {
1039 struct nvme_fc_rport *rport = lsop->rport;
1040 struct nvmefc_ls_req *lsreq = &lsop->ls_req;
1041 unsigned long flags;
1042
1043 spin_lock_irqsave(&rport->lock, flags);
1044
1045 if (!lsop->req_queued) {
1046 spin_unlock_irqrestore(&rport->lock, flags);
1047 return;
1048 }
1049
1050 list_del(&lsop->lsreq_list);
1051
1052 lsop->req_queued = false;
1053
1054 spin_unlock_irqrestore(&rport->lock, flags);
1055
1056 fc_dma_unmap_single(rport->dev, lsreq->rqstdma,
1057 (lsreq->rqstlen + lsreq->rsplen),
1058 DMA_BIDIRECTIONAL);
1059
1060 nvme_fc_rport_put(rport);
1061 }
1062
1063 static int
__nvme_fc_send_ls_req(struct nvme_fc_rport * rport,struct nvmefc_ls_req_op * lsop,void (* done)(struct nvmefc_ls_req * req,int status))1064 __nvme_fc_send_ls_req(struct nvme_fc_rport *rport,
1065 struct nvmefc_ls_req_op *lsop,
1066 void (*done)(struct nvmefc_ls_req *req, int status))
1067 {
1068 struct nvmefc_ls_req *lsreq = &lsop->ls_req;
1069 unsigned long flags;
1070 int ret = 0;
1071
1072 if (rport->remoteport.port_state != FC_OBJSTATE_ONLINE)
1073 return -ECONNREFUSED;
1074
1075 if (!nvme_fc_rport_get(rport))
1076 return -ESHUTDOWN;
1077
1078 lsreq->done = done;
1079 lsop->rport = rport;
1080 lsop->req_queued = false;
1081 INIT_LIST_HEAD(&lsop->lsreq_list);
1082 init_completion(&lsop->ls_done);
1083
1084 lsreq->rqstdma = fc_dma_map_single(rport->dev, lsreq->rqstaddr,
1085 lsreq->rqstlen + lsreq->rsplen,
1086 DMA_BIDIRECTIONAL);
1087 if (fc_dma_mapping_error(rport->dev, lsreq->rqstdma)) {
1088 ret = -EFAULT;
1089 goto out_putrport;
1090 }
1091 lsreq->rspdma = lsreq->rqstdma + lsreq->rqstlen;
1092
1093 spin_lock_irqsave(&rport->lock, flags);
1094
1095 list_add_tail(&lsop->lsreq_list, &rport->ls_req_list);
1096
1097 lsop->req_queued = true;
1098
1099 spin_unlock_irqrestore(&rport->lock, flags);
1100
1101 ret = rport->lport->ops->ls_req(&rport->lport->localport,
1102 &rport->remoteport, lsreq);
1103 if (ret)
1104 goto out_unlink;
1105
1106 return 0;
1107
1108 out_unlink:
1109 lsop->ls_error = ret;
1110 spin_lock_irqsave(&rport->lock, flags);
1111 lsop->req_queued = false;
1112 list_del(&lsop->lsreq_list);
1113 spin_unlock_irqrestore(&rport->lock, flags);
1114 fc_dma_unmap_single(rport->dev, lsreq->rqstdma,
1115 (lsreq->rqstlen + lsreq->rsplen),
1116 DMA_BIDIRECTIONAL);
1117 out_putrport:
1118 nvme_fc_rport_put(rport);
1119
1120 return ret;
1121 }
1122
1123 static void
nvme_fc_send_ls_req_done(struct nvmefc_ls_req * lsreq,int status)1124 nvme_fc_send_ls_req_done(struct nvmefc_ls_req *lsreq, int status)
1125 {
1126 struct nvmefc_ls_req_op *lsop = ls_req_to_lsop(lsreq);
1127
1128 lsop->ls_error = status;
1129 complete(&lsop->ls_done);
1130 }
1131
1132 static int
nvme_fc_send_ls_req(struct nvme_fc_rport * rport,struct nvmefc_ls_req_op * lsop)1133 nvme_fc_send_ls_req(struct nvme_fc_rport *rport, struct nvmefc_ls_req_op *lsop)
1134 {
1135 struct nvmefc_ls_req *lsreq = &lsop->ls_req;
1136 struct fcnvme_ls_rjt *rjt = lsreq->rspaddr;
1137 int ret;
1138
1139 ret = __nvme_fc_send_ls_req(rport, lsop, nvme_fc_send_ls_req_done);
1140
1141 if (!ret) {
1142 /*
1143 * No timeout/not interruptible as we need the struct
1144 * to exist until the lldd calls us back. Thus mandate
1145 * wait until driver calls back. lldd responsible for
1146 * the timeout action
1147 */
1148 wait_for_completion(&lsop->ls_done);
1149
1150 __nvme_fc_finish_ls_req(lsop);
1151
1152 ret = lsop->ls_error;
1153 }
1154
1155 if (ret)
1156 return ret;
1157
1158 /* ACC or RJT payload ? */
1159 if (rjt->w0.ls_cmd == FCNVME_LS_RJT)
1160 return -ENXIO;
1161
1162 return 0;
1163 }
1164
1165 static int
nvme_fc_send_ls_req_async(struct nvme_fc_rport * rport,struct nvmefc_ls_req_op * lsop,void (* done)(struct nvmefc_ls_req * req,int status))1166 nvme_fc_send_ls_req_async(struct nvme_fc_rport *rport,
1167 struct nvmefc_ls_req_op *lsop,
1168 void (*done)(struct nvmefc_ls_req *req, int status))
1169 {
1170 /* don't wait for completion */
1171
1172 return __nvme_fc_send_ls_req(rport, lsop, done);
1173 }
1174
1175 static int
nvme_fc_connect_admin_queue(struct nvme_fc_ctrl * ctrl,struct nvme_fc_queue * queue,u16 qsize,u16 ersp_ratio)1176 nvme_fc_connect_admin_queue(struct nvme_fc_ctrl *ctrl,
1177 struct nvme_fc_queue *queue, u16 qsize, u16 ersp_ratio)
1178 {
1179 struct nvmefc_ls_req_op *lsop;
1180 struct nvmefc_ls_req *lsreq;
1181 struct fcnvme_ls_cr_assoc_rqst *assoc_rqst;
1182 struct fcnvme_ls_cr_assoc_acc *assoc_acc;
1183 unsigned long flags;
1184 int ret, fcret = 0;
1185
1186 lsop = kzalloc((sizeof(*lsop) +
1187 sizeof(*assoc_rqst) + sizeof(*assoc_acc) +
1188 ctrl->lport->ops->lsrqst_priv_sz), GFP_KERNEL);
1189 if (!lsop) {
1190 dev_info(ctrl->ctrl.device,
1191 "NVME-FC{%d}: send Create Association failed: ENOMEM\n",
1192 ctrl->cnum);
1193 ret = -ENOMEM;
1194 goto out_no_memory;
1195 }
1196
1197 assoc_rqst = (struct fcnvme_ls_cr_assoc_rqst *)&lsop[1];
1198 assoc_acc = (struct fcnvme_ls_cr_assoc_acc *)&assoc_rqst[1];
1199 lsreq = &lsop->ls_req;
1200 if (ctrl->lport->ops->lsrqst_priv_sz)
1201 lsreq->private = &assoc_acc[1];
1202 else
1203 lsreq->private = NULL;
1204
1205 assoc_rqst->w0.ls_cmd = FCNVME_LS_CREATE_ASSOCIATION;
1206 assoc_rqst->desc_list_len =
1207 cpu_to_be32(sizeof(struct fcnvme_lsdesc_cr_assoc_cmd));
1208
1209 assoc_rqst->assoc_cmd.desc_tag =
1210 cpu_to_be32(FCNVME_LSDESC_CREATE_ASSOC_CMD);
1211 assoc_rqst->assoc_cmd.desc_len =
1212 fcnvme_lsdesc_len(
1213 sizeof(struct fcnvme_lsdesc_cr_assoc_cmd));
1214
1215 assoc_rqst->assoc_cmd.ersp_ratio = cpu_to_be16(ersp_ratio);
1216 assoc_rqst->assoc_cmd.sqsize = cpu_to_be16(qsize - 1);
1217 /* Linux supports only Dynamic controllers */
1218 assoc_rqst->assoc_cmd.cntlid = cpu_to_be16(0xffff);
1219 uuid_copy(&assoc_rqst->assoc_cmd.hostid, &ctrl->ctrl.opts->host->id);
1220 strncpy(assoc_rqst->assoc_cmd.hostnqn, ctrl->ctrl.opts->host->nqn,
1221 min(FCNVME_ASSOC_HOSTNQN_LEN, NVMF_NQN_SIZE));
1222 strncpy(assoc_rqst->assoc_cmd.subnqn, ctrl->ctrl.opts->subsysnqn,
1223 min(FCNVME_ASSOC_SUBNQN_LEN, NVMF_NQN_SIZE));
1224
1225 lsop->queue = queue;
1226 lsreq->rqstaddr = assoc_rqst;
1227 lsreq->rqstlen = sizeof(*assoc_rqst);
1228 lsreq->rspaddr = assoc_acc;
1229 lsreq->rsplen = sizeof(*assoc_acc);
1230 lsreq->timeout = NVME_FC_LS_TIMEOUT_SEC;
1231
1232 ret = nvme_fc_send_ls_req(ctrl->rport, lsop);
1233 if (ret)
1234 goto out_free_buffer;
1235
1236 /* process connect LS completion */
1237
1238 /* validate the ACC response */
1239 if (assoc_acc->hdr.w0.ls_cmd != FCNVME_LS_ACC)
1240 fcret = VERR_LSACC;
1241 else if (assoc_acc->hdr.desc_list_len !=
1242 fcnvme_lsdesc_len(
1243 sizeof(struct fcnvme_ls_cr_assoc_acc)))
1244 fcret = VERR_CR_ASSOC_ACC_LEN;
1245 else if (assoc_acc->hdr.rqst.desc_tag !=
1246 cpu_to_be32(FCNVME_LSDESC_RQST))
1247 fcret = VERR_LSDESC_RQST;
1248 else if (assoc_acc->hdr.rqst.desc_len !=
1249 fcnvme_lsdesc_len(sizeof(struct fcnvme_lsdesc_rqst)))
1250 fcret = VERR_LSDESC_RQST_LEN;
1251 else if (assoc_acc->hdr.rqst.w0.ls_cmd != FCNVME_LS_CREATE_ASSOCIATION)
1252 fcret = VERR_CR_ASSOC;
1253 else if (assoc_acc->associd.desc_tag !=
1254 cpu_to_be32(FCNVME_LSDESC_ASSOC_ID))
1255 fcret = VERR_ASSOC_ID;
1256 else if (assoc_acc->associd.desc_len !=
1257 fcnvme_lsdesc_len(
1258 sizeof(struct fcnvme_lsdesc_assoc_id)))
1259 fcret = VERR_ASSOC_ID_LEN;
1260 else if (assoc_acc->connectid.desc_tag !=
1261 cpu_to_be32(FCNVME_LSDESC_CONN_ID))
1262 fcret = VERR_CONN_ID;
1263 else if (assoc_acc->connectid.desc_len !=
1264 fcnvme_lsdesc_len(sizeof(struct fcnvme_lsdesc_conn_id)))
1265 fcret = VERR_CONN_ID_LEN;
1266
1267 if (fcret) {
1268 ret = -EBADF;
1269 dev_err(ctrl->dev,
1270 "q %d Create Association LS failed: %s\n",
1271 queue->qnum, validation_errors[fcret]);
1272 } else {
1273 spin_lock_irqsave(&ctrl->lock, flags);
1274 ctrl->association_id =
1275 be64_to_cpu(assoc_acc->associd.association_id);
1276 queue->connection_id =
1277 be64_to_cpu(assoc_acc->connectid.connection_id);
1278 set_bit(NVME_FC_Q_CONNECTED, &queue->flags);
1279 spin_unlock_irqrestore(&ctrl->lock, flags);
1280 }
1281
1282 out_free_buffer:
1283 kfree(lsop);
1284 out_no_memory:
1285 if (ret)
1286 dev_err(ctrl->dev,
1287 "queue %d connect admin queue failed (%d).\n",
1288 queue->qnum, ret);
1289 return ret;
1290 }
1291
1292 static int
nvme_fc_connect_queue(struct nvme_fc_ctrl * ctrl,struct nvme_fc_queue * queue,u16 qsize,u16 ersp_ratio)1293 nvme_fc_connect_queue(struct nvme_fc_ctrl *ctrl, struct nvme_fc_queue *queue,
1294 u16 qsize, u16 ersp_ratio)
1295 {
1296 struct nvmefc_ls_req_op *lsop;
1297 struct nvmefc_ls_req *lsreq;
1298 struct fcnvme_ls_cr_conn_rqst *conn_rqst;
1299 struct fcnvme_ls_cr_conn_acc *conn_acc;
1300 int ret, fcret = 0;
1301
1302 lsop = kzalloc((sizeof(*lsop) +
1303 sizeof(*conn_rqst) + sizeof(*conn_acc) +
1304 ctrl->lport->ops->lsrqst_priv_sz), GFP_KERNEL);
1305 if (!lsop) {
1306 dev_info(ctrl->ctrl.device,
1307 "NVME-FC{%d}: send Create Connection failed: ENOMEM\n",
1308 ctrl->cnum);
1309 ret = -ENOMEM;
1310 goto out_no_memory;
1311 }
1312
1313 conn_rqst = (struct fcnvme_ls_cr_conn_rqst *)&lsop[1];
1314 conn_acc = (struct fcnvme_ls_cr_conn_acc *)&conn_rqst[1];
1315 lsreq = &lsop->ls_req;
1316 if (ctrl->lport->ops->lsrqst_priv_sz)
1317 lsreq->private = (void *)&conn_acc[1];
1318 else
1319 lsreq->private = NULL;
1320
1321 conn_rqst->w0.ls_cmd = FCNVME_LS_CREATE_CONNECTION;
1322 conn_rqst->desc_list_len = cpu_to_be32(
1323 sizeof(struct fcnvme_lsdesc_assoc_id) +
1324 sizeof(struct fcnvme_lsdesc_cr_conn_cmd));
1325
1326 conn_rqst->associd.desc_tag = cpu_to_be32(FCNVME_LSDESC_ASSOC_ID);
1327 conn_rqst->associd.desc_len =
1328 fcnvme_lsdesc_len(
1329 sizeof(struct fcnvme_lsdesc_assoc_id));
1330 conn_rqst->associd.association_id = cpu_to_be64(ctrl->association_id);
1331 conn_rqst->connect_cmd.desc_tag =
1332 cpu_to_be32(FCNVME_LSDESC_CREATE_CONN_CMD);
1333 conn_rqst->connect_cmd.desc_len =
1334 fcnvme_lsdesc_len(
1335 sizeof(struct fcnvme_lsdesc_cr_conn_cmd));
1336 conn_rqst->connect_cmd.ersp_ratio = cpu_to_be16(ersp_ratio);
1337 conn_rqst->connect_cmd.qid = cpu_to_be16(queue->qnum);
1338 conn_rqst->connect_cmd.sqsize = cpu_to_be16(qsize - 1);
1339
1340 lsop->queue = queue;
1341 lsreq->rqstaddr = conn_rqst;
1342 lsreq->rqstlen = sizeof(*conn_rqst);
1343 lsreq->rspaddr = conn_acc;
1344 lsreq->rsplen = sizeof(*conn_acc);
1345 lsreq->timeout = NVME_FC_LS_TIMEOUT_SEC;
1346
1347 ret = nvme_fc_send_ls_req(ctrl->rport, lsop);
1348 if (ret)
1349 goto out_free_buffer;
1350
1351 /* process connect LS completion */
1352
1353 /* validate the ACC response */
1354 if (conn_acc->hdr.w0.ls_cmd != FCNVME_LS_ACC)
1355 fcret = VERR_LSACC;
1356 else if (conn_acc->hdr.desc_list_len !=
1357 fcnvme_lsdesc_len(sizeof(struct fcnvme_ls_cr_conn_acc)))
1358 fcret = VERR_CR_CONN_ACC_LEN;
1359 else if (conn_acc->hdr.rqst.desc_tag != cpu_to_be32(FCNVME_LSDESC_RQST))
1360 fcret = VERR_LSDESC_RQST;
1361 else if (conn_acc->hdr.rqst.desc_len !=
1362 fcnvme_lsdesc_len(sizeof(struct fcnvme_lsdesc_rqst)))
1363 fcret = VERR_LSDESC_RQST_LEN;
1364 else if (conn_acc->hdr.rqst.w0.ls_cmd != FCNVME_LS_CREATE_CONNECTION)
1365 fcret = VERR_CR_CONN;
1366 else if (conn_acc->connectid.desc_tag !=
1367 cpu_to_be32(FCNVME_LSDESC_CONN_ID))
1368 fcret = VERR_CONN_ID;
1369 else if (conn_acc->connectid.desc_len !=
1370 fcnvme_lsdesc_len(sizeof(struct fcnvme_lsdesc_conn_id)))
1371 fcret = VERR_CONN_ID_LEN;
1372
1373 if (fcret) {
1374 ret = -EBADF;
1375 dev_err(ctrl->dev,
1376 "q %d Create I/O Connection LS failed: %s\n",
1377 queue->qnum, validation_errors[fcret]);
1378 } else {
1379 queue->connection_id =
1380 be64_to_cpu(conn_acc->connectid.connection_id);
1381 set_bit(NVME_FC_Q_CONNECTED, &queue->flags);
1382 }
1383
1384 out_free_buffer:
1385 kfree(lsop);
1386 out_no_memory:
1387 if (ret)
1388 dev_err(ctrl->dev,
1389 "queue %d connect I/O queue failed (%d).\n",
1390 queue->qnum, ret);
1391 return ret;
1392 }
1393
1394 static void
nvme_fc_disconnect_assoc_done(struct nvmefc_ls_req * lsreq,int status)1395 nvme_fc_disconnect_assoc_done(struct nvmefc_ls_req *lsreq, int status)
1396 {
1397 struct nvmefc_ls_req_op *lsop = ls_req_to_lsop(lsreq);
1398
1399 __nvme_fc_finish_ls_req(lsop);
1400
1401 /* fc-nvme initiator doesn't care about success or failure of cmd */
1402
1403 kfree(lsop);
1404 }
1405
1406 /*
1407 * This routine sends a FC-NVME LS to disconnect (aka terminate)
1408 * the FC-NVME Association. Terminating the association also
1409 * terminates the FC-NVME connections (per queue, both admin and io
1410 * queues) that are part of the association. E.g. things are torn
1411 * down, and the related FC-NVME Association ID and Connection IDs
1412 * become invalid.
1413 *
1414 * The behavior of the fc-nvme initiator is such that it's
1415 * understanding of the association and connections will implicitly
1416 * be torn down. The action is implicit as it may be due to a loss of
1417 * connectivity with the fc-nvme target, so you may never get a
1418 * response even if you tried. As such, the action of this routine
1419 * is to asynchronously send the LS, ignore any results of the LS, and
1420 * continue on with terminating the association. If the fc-nvme target
1421 * is present and receives the LS, it too can tear down.
1422 */
1423 static void
nvme_fc_xmt_disconnect_assoc(struct nvme_fc_ctrl * ctrl)1424 nvme_fc_xmt_disconnect_assoc(struct nvme_fc_ctrl *ctrl)
1425 {
1426 struct fcnvme_ls_disconnect_assoc_rqst *discon_rqst;
1427 struct fcnvme_ls_disconnect_assoc_acc *discon_acc;
1428 struct nvmefc_ls_req_op *lsop;
1429 struct nvmefc_ls_req *lsreq;
1430 int ret;
1431
1432 lsop = kzalloc((sizeof(*lsop) +
1433 sizeof(*discon_rqst) + sizeof(*discon_acc) +
1434 ctrl->lport->ops->lsrqst_priv_sz), GFP_KERNEL);
1435 if (!lsop) {
1436 dev_info(ctrl->ctrl.device,
1437 "NVME-FC{%d}: send Disconnect Association "
1438 "failed: ENOMEM\n",
1439 ctrl->cnum);
1440 return;
1441 }
1442
1443 discon_rqst = (struct fcnvme_ls_disconnect_assoc_rqst *)&lsop[1];
1444 discon_acc = (struct fcnvme_ls_disconnect_assoc_acc *)&discon_rqst[1];
1445 lsreq = &lsop->ls_req;
1446 if (ctrl->lport->ops->lsrqst_priv_sz)
1447 lsreq->private = (void *)&discon_acc[1];
1448 else
1449 lsreq->private = NULL;
1450
1451 nvmefc_fmt_lsreq_discon_assoc(lsreq, discon_rqst, discon_acc,
1452 ctrl->association_id);
1453
1454 ret = nvme_fc_send_ls_req_async(ctrl->rport, lsop,
1455 nvme_fc_disconnect_assoc_done);
1456 if (ret)
1457 kfree(lsop);
1458 }
1459
1460 static void
nvme_fc_xmt_ls_rsp_done(struct nvmefc_ls_rsp * lsrsp)1461 nvme_fc_xmt_ls_rsp_done(struct nvmefc_ls_rsp *lsrsp)
1462 {
1463 struct nvmefc_ls_rcv_op *lsop = lsrsp->nvme_fc_private;
1464 struct nvme_fc_rport *rport = lsop->rport;
1465 struct nvme_fc_lport *lport = rport->lport;
1466 unsigned long flags;
1467
1468 spin_lock_irqsave(&rport->lock, flags);
1469 list_del(&lsop->lsrcv_list);
1470 spin_unlock_irqrestore(&rport->lock, flags);
1471
1472 fc_dma_sync_single_for_cpu(lport->dev, lsop->rspdma,
1473 sizeof(*lsop->rspbuf), DMA_TO_DEVICE);
1474 fc_dma_unmap_single(lport->dev, lsop->rspdma,
1475 sizeof(*lsop->rspbuf), DMA_TO_DEVICE);
1476
1477 kfree(lsop);
1478
1479 nvme_fc_rport_put(rport);
1480 }
1481
1482 static void
nvme_fc_xmt_ls_rsp(struct nvmefc_ls_rcv_op * lsop)1483 nvme_fc_xmt_ls_rsp(struct nvmefc_ls_rcv_op *lsop)
1484 {
1485 struct nvme_fc_rport *rport = lsop->rport;
1486 struct nvme_fc_lport *lport = rport->lport;
1487 struct fcnvme_ls_rqst_w0 *w0 = &lsop->rqstbuf->w0;
1488 int ret;
1489
1490 fc_dma_sync_single_for_device(lport->dev, lsop->rspdma,
1491 sizeof(*lsop->rspbuf), DMA_TO_DEVICE);
1492
1493 ret = lport->ops->xmt_ls_rsp(&lport->localport, &rport->remoteport,
1494 lsop->lsrsp);
1495 if (ret) {
1496 dev_warn(lport->dev,
1497 "LLDD rejected LS RSP xmt: LS %d status %d\n",
1498 w0->ls_cmd, ret);
1499 nvme_fc_xmt_ls_rsp_done(lsop->lsrsp);
1500 return;
1501 }
1502 }
1503
1504 static struct nvme_fc_ctrl *
nvme_fc_match_disconn_ls(struct nvme_fc_rport * rport,struct nvmefc_ls_rcv_op * lsop)1505 nvme_fc_match_disconn_ls(struct nvme_fc_rport *rport,
1506 struct nvmefc_ls_rcv_op *lsop)
1507 {
1508 struct fcnvme_ls_disconnect_assoc_rqst *rqst =
1509 &lsop->rqstbuf->rq_dis_assoc;
1510 struct nvme_fc_ctrl *ctrl, *ret = NULL;
1511 struct nvmefc_ls_rcv_op *oldls = NULL;
1512 u64 association_id = be64_to_cpu(rqst->associd.association_id);
1513 unsigned long flags;
1514
1515 spin_lock_irqsave(&rport->lock, flags);
1516
1517 list_for_each_entry(ctrl, &rport->ctrl_list, ctrl_list) {
1518 if (!nvme_fc_ctrl_get(ctrl))
1519 continue;
1520 spin_lock(&ctrl->lock);
1521 if (association_id == ctrl->association_id) {
1522 oldls = ctrl->rcv_disconn;
1523 ctrl->rcv_disconn = lsop;
1524 ret = ctrl;
1525 }
1526 spin_unlock(&ctrl->lock);
1527 if (ret)
1528 /* leave the ctrl get reference */
1529 break;
1530 nvme_fc_ctrl_put(ctrl);
1531 }
1532
1533 spin_unlock_irqrestore(&rport->lock, flags);
1534
1535 /* transmit a response for anything that was pending */
1536 if (oldls) {
1537 dev_info(rport->lport->dev,
1538 "NVME-FC{%d}: Multiple Disconnect Association "
1539 "LS's received\n", ctrl->cnum);
1540 /* overwrite good response with bogus failure */
1541 oldls->lsrsp->rsplen = nvme_fc_format_rjt(oldls->rspbuf,
1542 sizeof(*oldls->rspbuf),
1543 rqst->w0.ls_cmd,
1544 FCNVME_RJT_RC_UNAB,
1545 FCNVME_RJT_EXP_NONE, 0);
1546 nvme_fc_xmt_ls_rsp(oldls);
1547 }
1548
1549 return ret;
1550 }
1551
1552 /*
1553 * returns true to mean LS handled and ls_rsp can be sent
1554 * returns false to defer ls_rsp xmt (will be done as part of
1555 * association termination)
1556 */
1557 static bool
nvme_fc_ls_disconnect_assoc(struct nvmefc_ls_rcv_op * lsop)1558 nvme_fc_ls_disconnect_assoc(struct nvmefc_ls_rcv_op *lsop)
1559 {
1560 struct nvme_fc_rport *rport = lsop->rport;
1561 struct fcnvme_ls_disconnect_assoc_rqst *rqst =
1562 &lsop->rqstbuf->rq_dis_assoc;
1563 struct fcnvme_ls_disconnect_assoc_acc *acc =
1564 &lsop->rspbuf->rsp_dis_assoc;
1565 struct nvme_fc_ctrl *ctrl = NULL;
1566 int ret = 0;
1567
1568 memset(acc, 0, sizeof(*acc));
1569
1570 ret = nvmefc_vldt_lsreq_discon_assoc(lsop->rqstdatalen, rqst);
1571 if (!ret) {
1572 /* match an active association */
1573 ctrl = nvme_fc_match_disconn_ls(rport, lsop);
1574 if (!ctrl)
1575 ret = VERR_NO_ASSOC;
1576 }
1577
1578 if (ret) {
1579 dev_info(rport->lport->dev,
1580 "Disconnect LS failed: %s\n",
1581 validation_errors[ret]);
1582 lsop->lsrsp->rsplen = nvme_fc_format_rjt(acc,
1583 sizeof(*acc), rqst->w0.ls_cmd,
1584 (ret == VERR_NO_ASSOC) ?
1585 FCNVME_RJT_RC_INV_ASSOC :
1586 FCNVME_RJT_RC_LOGIC,
1587 FCNVME_RJT_EXP_NONE, 0);
1588 return true;
1589 }
1590
1591 /* format an ACCept response */
1592
1593 lsop->lsrsp->rsplen = sizeof(*acc);
1594
1595 nvme_fc_format_rsp_hdr(acc, FCNVME_LS_ACC,
1596 fcnvme_lsdesc_len(
1597 sizeof(struct fcnvme_ls_disconnect_assoc_acc)),
1598 FCNVME_LS_DISCONNECT_ASSOC);
1599
1600 /*
1601 * the transmit of the response will occur after the exchanges
1602 * for the association have been ABTS'd by
1603 * nvme_fc_delete_association().
1604 */
1605
1606 /* fail the association */
1607 nvme_fc_error_recovery(ctrl, "Disconnect Association LS received");
1608
1609 /* release the reference taken by nvme_fc_match_disconn_ls() */
1610 nvme_fc_ctrl_put(ctrl);
1611
1612 return false;
1613 }
1614
1615 /*
1616 * Actual Processing routine for received FC-NVME LS Requests from the LLD
1617 * returns true if a response should be sent afterward, false if rsp will
1618 * be sent asynchronously.
1619 */
1620 static bool
nvme_fc_handle_ls_rqst(struct nvmefc_ls_rcv_op * lsop)1621 nvme_fc_handle_ls_rqst(struct nvmefc_ls_rcv_op *lsop)
1622 {
1623 struct fcnvme_ls_rqst_w0 *w0 = &lsop->rqstbuf->w0;
1624 bool ret = true;
1625
1626 lsop->lsrsp->nvme_fc_private = lsop;
1627 lsop->lsrsp->rspbuf = lsop->rspbuf;
1628 lsop->lsrsp->rspdma = lsop->rspdma;
1629 lsop->lsrsp->done = nvme_fc_xmt_ls_rsp_done;
1630 /* Be preventative. handlers will later set to valid length */
1631 lsop->lsrsp->rsplen = 0;
1632
1633 /*
1634 * handlers:
1635 * parse request input, execute the request, and format the
1636 * LS response
1637 */
1638 switch (w0->ls_cmd) {
1639 case FCNVME_LS_DISCONNECT_ASSOC:
1640 ret = nvme_fc_ls_disconnect_assoc(lsop);
1641 break;
1642 case FCNVME_LS_DISCONNECT_CONN:
1643 lsop->lsrsp->rsplen = nvme_fc_format_rjt(lsop->rspbuf,
1644 sizeof(*lsop->rspbuf), w0->ls_cmd,
1645 FCNVME_RJT_RC_UNSUP, FCNVME_RJT_EXP_NONE, 0);
1646 break;
1647 case FCNVME_LS_CREATE_ASSOCIATION:
1648 case FCNVME_LS_CREATE_CONNECTION:
1649 lsop->lsrsp->rsplen = nvme_fc_format_rjt(lsop->rspbuf,
1650 sizeof(*lsop->rspbuf), w0->ls_cmd,
1651 FCNVME_RJT_RC_LOGIC, FCNVME_RJT_EXP_NONE, 0);
1652 break;
1653 default:
1654 lsop->lsrsp->rsplen = nvme_fc_format_rjt(lsop->rspbuf,
1655 sizeof(*lsop->rspbuf), w0->ls_cmd,
1656 FCNVME_RJT_RC_INVAL, FCNVME_RJT_EXP_NONE, 0);
1657 break;
1658 }
1659
1660 return(ret);
1661 }
1662
1663 static void
nvme_fc_handle_ls_rqst_work(struct work_struct * work)1664 nvme_fc_handle_ls_rqst_work(struct work_struct *work)
1665 {
1666 struct nvme_fc_rport *rport =
1667 container_of(work, struct nvme_fc_rport, lsrcv_work);
1668 struct fcnvme_ls_rqst_w0 *w0;
1669 struct nvmefc_ls_rcv_op *lsop;
1670 unsigned long flags;
1671 bool sendrsp;
1672
1673 restart:
1674 sendrsp = true;
1675 spin_lock_irqsave(&rport->lock, flags);
1676 list_for_each_entry(lsop, &rport->ls_rcv_list, lsrcv_list) {
1677 if (lsop->handled)
1678 continue;
1679
1680 lsop->handled = true;
1681 if (rport->remoteport.port_state == FC_OBJSTATE_ONLINE) {
1682 spin_unlock_irqrestore(&rport->lock, flags);
1683 sendrsp = nvme_fc_handle_ls_rqst(lsop);
1684 } else {
1685 spin_unlock_irqrestore(&rport->lock, flags);
1686 w0 = &lsop->rqstbuf->w0;
1687 lsop->lsrsp->rsplen = nvme_fc_format_rjt(
1688 lsop->rspbuf,
1689 sizeof(*lsop->rspbuf),
1690 w0->ls_cmd,
1691 FCNVME_RJT_RC_UNAB,
1692 FCNVME_RJT_EXP_NONE, 0);
1693 }
1694 if (sendrsp)
1695 nvme_fc_xmt_ls_rsp(lsop);
1696 goto restart;
1697 }
1698 spin_unlock_irqrestore(&rport->lock, flags);
1699 }
1700
1701 /**
1702 * nvme_fc_rcv_ls_req - transport entry point called by an LLDD
1703 * upon the reception of a NVME LS request.
1704 *
1705 * The nvme-fc layer will copy payload to an internal structure for
1706 * processing. As such, upon completion of the routine, the LLDD may
1707 * immediately free/reuse the LS request buffer passed in the call.
1708 *
1709 * If this routine returns error, the LLDD should abort the exchange.
1710 *
1711 * @remoteport: pointer to the (registered) remote port that the LS
1712 * was received from. The remoteport is associated with
1713 * a specific localport.
1714 * @lsrsp: pointer to a nvmefc_ls_rsp response structure to be
1715 * used to reference the exchange corresponding to the LS
1716 * when issuing an ls response.
1717 * @lsreqbuf: pointer to the buffer containing the LS Request
1718 * @lsreqbuf_len: length, in bytes, of the received LS request
1719 */
1720 int
nvme_fc_rcv_ls_req(struct nvme_fc_remote_port * portptr,struct nvmefc_ls_rsp * lsrsp,void * lsreqbuf,u32 lsreqbuf_len)1721 nvme_fc_rcv_ls_req(struct nvme_fc_remote_port *portptr,
1722 struct nvmefc_ls_rsp *lsrsp,
1723 void *lsreqbuf, u32 lsreqbuf_len)
1724 {
1725 struct nvme_fc_rport *rport = remoteport_to_rport(portptr);
1726 struct nvme_fc_lport *lport = rport->lport;
1727 struct fcnvme_ls_rqst_w0 *w0 = (struct fcnvme_ls_rqst_w0 *)lsreqbuf;
1728 struct nvmefc_ls_rcv_op *lsop;
1729 unsigned long flags;
1730 int ret;
1731
1732 nvme_fc_rport_get(rport);
1733
1734 /* validate there's a routine to transmit a response */
1735 if (!lport->ops->xmt_ls_rsp) {
1736 dev_info(lport->dev,
1737 "RCV %s LS failed: no LLDD xmt_ls_rsp\n",
1738 (w0->ls_cmd <= NVME_FC_LAST_LS_CMD_VALUE) ?
1739 nvmefc_ls_names[w0->ls_cmd] : "");
1740 ret = -EINVAL;
1741 goto out_put;
1742 }
1743
1744 if (lsreqbuf_len > sizeof(union nvmefc_ls_requests)) {
1745 dev_info(lport->dev,
1746 "RCV %s LS failed: payload too large\n",
1747 (w0->ls_cmd <= NVME_FC_LAST_LS_CMD_VALUE) ?
1748 nvmefc_ls_names[w0->ls_cmd] : "");
1749 ret = -E2BIG;
1750 goto out_put;
1751 }
1752
1753 lsop = kzalloc(sizeof(*lsop) +
1754 sizeof(union nvmefc_ls_requests) +
1755 sizeof(union nvmefc_ls_responses),
1756 GFP_KERNEL);
1757 if (!lsop) {
1758 dev_info(lport->dev,
1759 "RCV %s LS failed: No memory\n",
1760 (w0->ls_cmd <= NVME_FC_LAST_LS_CMD_VALUE) ?
1761 nvmefc_ls_names[w0->ls_cmd] : "");
1762 ret = -ENOMEM;
1763 goto out_put;
1764 }
1765 lsop->rqstbuf = (union nvmefc_ls_requests *)&lsop[1];
1766 lsop->rspbuf = (union nvmefc_ls_responses *)&lsop->rqstbuf[1];
1767
1768 lsop->rspdma = fc_dma_map_single(lport->dev, lsop->rspbuf,
1769 sizeof(*lsop->rspbuf),
1770 DMA_TO_DEVICE);
1771 if (fc_dma_mapping_error(lport->dev, lsop->rspdma)) {
1772 dev_info(lport->dev,
1773 "RCV %s LS failed: DMA mapping failure\n",
1774 (w0->ls_cmd <= NVME_FC_LAST_LS_CMD_VALUE) ?
1775 nvmefc_ls_names[w0->ls_cmd] : "");
1776 ret = -EFAULT;
1777 goto out_free;
1778 }
1779
1780 lsop->rport = rport;
1781 lsop->lsrsp = lsrsp;
1782
1783 memcpy(lsop->rqstbuf, lsreqbuf, lsreqbuf_len);
1784 lsop->rqstdatalen = lsreqbuf_len;
1785
1786 spin_lock_irqsave(&rport->lock, flags);
1787 if (rport->remoteport.port_state != FC_OBJSTATE_ONLINE) {
1788 spin_unlock_irqrestore(&rport->lock, flags);
1789 ret = -ENOTCONN;
1790 goto out_unmap;
1791 }
1792 list_add_tail(&lsop->lsrcv_list, &rport->ls_rcv_list);
1793 spin_unlock_irqrestore(&rport->lock, flags);
1794
1795 schedule_work(&rport->lsrcv_work);
1796
1797 return 0;
1798
1799 out_unmap:
1800 fc_dma_unmap_single(lport->dev, lsop->rspdma,
1801 sizeof(*lsop->rspbuf), DMA_TO_DEVICE);
1802 out_free:
1803 kfree(lsop);
1804 out_put:
1805 nvme_fc_rport_put(rport);
1806 return ret;
1807 }
1808 EXPORT_SYMBOL_GPL(nvme_fc_rcv_ls_req);
1809
1810
1811 /* *********************** NVME Ctrl Routines **************************** */
1812
1813 static void
__nvme_fc_exit_request(struct nvme_fc_ctrl * ctrl,struct nvme_fc_fcp_op * op)1814 __nvme_fc_exit_request(struct nvme_fc_ctrl *ctrl,
1815 struct nvme_fc_fcp_op *op)
1816 {
1817 fc_dma_unmap_single(ctrl->lport->dev, op->fcp_req.rspdma,
1818 sizeof(op->rsp_iu), DMA_FROM_DEVICE);
1819 fc_dma_unmap_single(ctrl->lport->dev, op->fcp_req.cmddma,
1820 sizeof(op->cmd_iu), DMA_TO_DEVICE);
1821
1822 atomic_set(&op->state, FCPOP_STATE_UNINIT);
1823 }
1824
1825 static void
nvme_fc_exit_request(struct blk_mq_tag_set * set,struct request * rq,unsigned int hctx_idx)1826 nvme_fc_exit_request(struct blk_mq_tag_set *set, struct request *rq,
1827 unsigned int hctx_idx)
1828 {
1829 struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(rq);
1830
1831 return __nvme_fc_exit_request(set->driver_data, op);
1832 }
1833
1834 static int
__nvme_fc_abort_op(struct nvme_fc_ctrl * ctrl,struct nvme_fc_fcp_op * op)1835 __nvme_fc_abort_op(struct nvme_fc_ctrl *ctrl, struct nvme_fc_fcp_op *op)
1836 {
1837 unsigned long flags;
1838 int opstate;
1839
1840 spin_lock_irqsave(&ctrl->lock, flags);
1841 opstate = atomic_xchg(&op->state, FCPOP_STATE_ABORTED);
1842 if (opstate != FCPOP_STATE_ACTIVE)
1843 atomic_set(&op->state, opstate);
1844 else if (test_bit(FCCTRL_TERMIO, &ctrl->flags)) {
1845 op->flags |= FCOP_FLAGS_TERMIO;
1846 ctrl->iocnt++;
1847 }
1848 spin_unlock_irqrestore(&ctrl->lock, flags);
1849
1850 if (opstate != FCPOP_STATE_ACTIVE)
1851 return -ECANCELED;
1852
1853 ctrl->lport->ops->fcp_abort(&ctrl->lport->localport,
1854 &ctrl->rport->remoteport,
1855 op->queue->lldd_handle,
1856 &op->fcp_req);
1857
1858 return 0;
1859 }
1860
1861 static void
nvme_fc_abort_aen_ops(struct nvme_fc_ctrl * ctrl)1862 nvme_fc_abort_aen_ops(struct nvme_fc_ctrl *ctrl)
1863 {
1864 struct nvme_fc_fcp_op *aen_op = ctrl->aen_ops;
1865 int i;
1866
1867 /* ensure we've initialized the ops once */
1868 if (!(aen_op->flags & FCOP_FLAGS_AEN))
1869 return;
1870
1871 for (i = 0; i < NVME_NR_AEN_COMMANDS; i++, aen_op++)
1872 __nvme_fc_abort_op(ctrl, aen_op);
1873 }
1874
1875 static inline void
__nvme_fc_fcpop_chk_teardowns(struct nvme_fc_ctrl * ctrl,struct nvme_fc_fcp_op * op,int opstate)1876 __nvme_fc_fcpop_chk_teardowns(struct nvme_fc_ctrl *ctrl,
1877 struct nvme_fc_fcp_op *op, int opstate)
1878 {
1879 unsigned long flags;
1880
1881 if (opstate == FCPOP_STATE_ABORTED) {
1882 spin_lock_irqsave(&ctrl->lock, flags);
1883 if (test_bit(FCCTRL_TERMIO, &ctrl->flags) &&
1884 op->flags & FCOP_FLAGS_TERMIO) {
1885 if (!--ctrl->iocnt)
1886 wake_up(&ctrl->ioabort_wait);
1887 }
1888 spin_unlock_irqrestore(&ctrl->lock, flags);
1889 }
1890 }
1891
1892 static void
nvme_fc_ctrl_ioerr_work(struct work_struct * work)1893 nvme_fc_ctrl_ioerr_work(struct work_struct *work)
1894 {
1895 struct nvme_fc_ctrl *ctrl =
1896 container_of(work, struct nvme_fc_ctrl, ioerr_work);
1897
1898 nvme_fc_error_recovery(ctrl, "transport detected io error");
1899 }
1900
1901 static void
nvme_fc_fcpio_done(struct nvmefc_fcp_req * req)1902 nvme_fc_fcpio_done(struct nvmefc_fcp_req *req)
1903 {
1904 struct nvme_fc_fcp_op *op = fcp_req_to_fcp_op(req);
1905 struct request *rq = op->rq;
1906 struct nvmefc_fcp_req *freq = &op->fcp_req;
1907 struct nvme_fc_ctrl *ctrl = op->ctrl;
1908 struct nvme_fc_queue *queue = op->queue;
1909 struct nvme_completion *cqe = &op->rsp_iu.cqe;
1910 struct nvme_command *sqe = &op->cmd_iu.sqe;
1911 __le16 status = cpu_to_le16(NVME_SC_SUCCESS << 1);
1912 union nvme_result result;
1913 bool terminate_assoc = true;
1914 int opstate;
1915
1916 /*
1917 * WARNING:
1918 * The current linux implementation of a nvme controller
1919 * allocates a single tag set for all io queues and sizes
1920 * the io queues to fully hold all possible tags. Thus, the
1921 * implementation does not reference or care about the sqhd
1922 * value as it never needs to use the sqhd/sqtail pointers
1923 * for submission pacing.
1924 *
1925 * This affects the FC-NVME implementation in two ways:
1926 * 1) As the value doesn't matter, we don't need to waste
1927 * cycles extracting it from ERSPs and stamping it in the
1928 * cases where the transport fabricates CQEs on successful
1929 * completions.
1930 * 2) The FC-NVME implementation requires that delivery of
1931 * ERSP completions are to go back to the nvme layer in order
1932 * relative to the rsn, such that the sqhd value will always
1933 * be "in order" for the nvme layer. As the nvme layer in
1934 * linux doesn't care about sqhd, there's no need to return
1935 * them in order.
1936 *
1937 * Additionally:
1938 * As the core nvme layer in linux currently does not look at
1939 * every field in the cqe - in cases where the FC transport must
1940 * fabricate a CQE, the following fields will not be set as they
1941 * are not referenced:
1942 * cqe.sqid, cqe.sqhd, cqe.command_id
1943 *
1944 * Failure or error of an individual i/o, in a transport
1945 * detected fashion unrelated to the nvme completion status,
1946 * potentially cause the initiator and target sides to get out
1947 * of sync on SQ head/tail (aka outstanding io count allowed).
1948 * Per FC-NVME spec, failure of an individual command requires
1949 * the connection to be terminated, which in turn requires the
1950 * association to be terminated.
1951 */
1952
1953 opstate = atomic_xchg(&op->state, FCPOP_STATE_COMPLETE);
1954
1955 fc_dma_sync_single_for_cpu(ctrl->lport->dev, op->fcp_req.rspdma,
1956 sizeof(op->rsp_iu), DMA_FROM_DEVICE);
1957
1958 if (opstate == FCPOP_STATE_ABORTED)
1959 status = cpu_to_le16(NVME_SC_HOST_ABORTED_CMD << 1);
1960 else if (freq->status) {
1961 status = cpu_to_le16(NVME_SC_HOST_PATH_ERROR << 1);
1962 dev_info(ctrl->ctrl.device,
1963 "NVME-FC{%d}: io failed due to lldd error %d\n",
1964 ctrl->cnum, freq->status);
1965 }
1966
1967 /*
1968 * For the linux implementation, if we have an unsuccesful
1969 * status, they blk-mq layer can typically be called with the
1970 * non-zero status and the content of the cqe isn't important.
1971 */
1972 if (status)
1973 goto done;
1974
1975 /*
1976 * command completed successfully relative to the wire
1977 * protocol. However, validate anything received and
1978 * extract the status and result from the cqe (create it
1979 * where necessary).
1980 */
1981
1982 switch (freq->rcv_rsplen) {
1983
1984 case 0:
1985 case NVME_FC_SIZEOF_ZEROS_RSP:
1986 /*
1987 * No response payload or 12 bytes of payload (which
1988 * should all be zeros) are considered successful and
1989 * no payload in the CQE by the transport.
1990 */
1991 if (freq->transferred_length !=
1992 be32_to_cpu(op->cmd_iu.data_len)) {
1993 status = cpu_to_le16(NVME_SC_HOST_PATH_ERROR << 1);
1994 dev_info(ctrl->ctrl.device,
1995 "NVME-FC{%d}: io failed due to bad transfer "
1996 "length: %d vs expected %d\n",
1997 ctrl->cnum, freq->transferred_length,
1998 be32_to_cpu(op->cmd_iu.data_len));
1999 goto done;
2000 }
2001 result.u64 = 0;
2002 break;
2003
2004 case sizeof(struct nvme_fc_ersp_iu):
2005 /*
2006 * The ERSP IU contains a full completion with CQE.
2007 * Validate ERSP IU and look at cqe.
2008 */
2009 if (unlikely(be16_to_cpu(op->rsp_iu.iu_len) !=
2010 (freq->rcv_rsplen / 4) ||
2011 be32_to_cpu(op->rsp_iu.xfrd_len) !=
2012 freq->transferred_length ||
2013 op->rsp_iu.ersp_result ||
2014 sqe->common.command_id != cqe->command_id)) {
2015 status = cpu_to_le16(NVME_SC_HOST_PATH_ERROR << 1);
2016 dev_info(ctrl->ctrl.device,
2017 "NVME-FC{%d}: io failed due to bad NVMe_ERSP: "
2018 "iu len %d, xfr len %d vs %d, status code "
2019 "%d, cmdid %d vs %d\n",
2020 ctrl->cnum, be16_to_cpu(op->rsp_iu.iu_len),
2021 be32_to_cpu(op->rsp_iu.xfrd_len),
2022 freq->transferred_length,
2023 op->rsp_iu.ersp_result,
2024 sqe->common.command_id,
2025 cqe->command_id);
2026 goto done;
2027 }
2028 result = cqe->result;
2029 status = cqe->status;
2030 break;
2031
2032 default:
2033 status = cpu_to_le16(NVME_SC_HOST_PATH_ERROR << 1);
2034 dev_info(ctrl->ctrl.device,
2035 "NVME-FC{%d}: io failed due to odd NVMe_xRSP iu "
2036 "len %d\n",
2037 ctrl->cnum, freq->rcv_rsplen);
2038 goto done;
2039 }
2040
2041 terminate_assoc = false;
2042
2043 done:
2044 if (op->flags & FCOP_FLAGS_AEN) {
2045 nvme_complete_async_event(&queue->ctrl->ctrl, status, &result);
2046 __nvme_fc_fcpop_chk_teardowns(ctrl, op, opstate);
2047 atomic_set(&op->state, FCPOP_STATE_IDLE);
2048 op->flags = FCOP_FLAGS_AEN; /* clear other flags */
2049 nvme_fc_ctrl_put(ctrl);
2050 goto check_error;
2051 }
2052
2053 __nvme_fc_fcpop_chk_teardowns(ctrl, op, opstate);
2054 if (!nvme_try_complete_req(rq, status, result))
2055 nvme_fc_complete_rq(rq);
2056
2057 check_error:
2058 if (terminate_assoc && ctrl->ctrl.state != NVME_CTRL_RESETTING)
2059 queue_work(nvme_reset_wq, &ctrl->ioerr_work);
2060 }
2061
2062 static int
__nvme_fc_init_request(struct nvme_fc_ctrl * ctrl,struct nvme_fc_queue * queue,struct nvme_fc_fcp_op * op,struct request * rq,u32 rqno)2063 __nvme_fc_init_request(struct nvme_fc_ctrl *ctrl,
2064 struct nvme_fc_queue *queue, struct nvme_fc_fcp_op *op,
2065 struct request *rq, u32 rqno)
2066 {
2067 struct nvme_fcp_op_w_sgl *op_w_sgl =
2068 container_of(op, typeof(*op_w_sgl), op);
2069 struct nvme_fc_cmd_iu *cmdiu = &op->cmd_iu;
2070 int ret = 0;
2071
2072 memset(op, 0, sizeof(*op));
2073 op->fcp_req.cmdaddr = &op->cmd_iu;
2074 op->fcp_req.cmdlen = sizeof(op->cmd_iu);
2075 op->fcp_req.rspaddr = &op->rsp_iu;
2076 op->fcp_req.rsplen = sizeof(op->rsp_iu);
2077 op->fcp_req.done = nvme_fc_fcpio_done;
2078 op->ctrl = ctrl;
2079 op->queue = queue;
2080 op->rq = rq;
2081 op->rqno = rqno;
2082
2083 cmdiu->format_id = NVME_CMD_FORMAT_ID;
2084 cmdiu->fc_id = NVME_CMD_FC_ID;
2085 cmdiu->iu_len = cpu_to_be16(sizeof(*cmdiu) / sizeof(u32));
2086 if (queue->qnum)
2087 cmdiu->rsv_cat = fccmnd_set_cat_css(0,
2088 (NVME_CC_CSS_NVM >> NVME_CC_CSS_SHIFT));
2089 else
2090 cmdiu->rsv_cat = fccmnd_set_cat_admin(0);
2091
2092 op->fcp_req.cmddma = fc_dma_map_single(ctrl->lport->dev,
2093 &op->cmd_iu, sizeof(op->cmd_iu), DMA_TO_DEVICE);
2094 if (fc_dma_mapping_error(ctrl->lport->dev, op->fcp_req.cmddma)) {
2095 dev_err(ctrl->dev,
2096 "FCP Op failed - cmdiu dma mapping failed.\n");
2097 ret = -EFAULT;
2098 goto out_on_error;
2099 }
2100
2101 op->fcp_req.rspdma = fc_dma_map_single(ctrl->lport->dev,
2102 &op->rsp_iu, sizeof(op->rsp_iu),
2103 DMA_FROM_DEVICE);
2104 if (fc_dma_mapping_error(ctrl->lport->dev, op->fcp_req.rspdma)) {
2105 dev_err(ctrl->dev,
2106 "FCP Op failed - rspiu dma mapping failed.\n");
2107 ret = -EFAULT;
2108 }
2109
2110 atomic_set(&op->state, FCPOP_STATE_IDLE);
2111 out_on_error:
2112 return ret;
2113 }
2114
2115 static int
nvme_fc_init_request(struct blk_mq_tag_set * set,struct request * rq,unsigned int hctx_idx,unsigned int numa_node)2116 nvme_fc_init_request(struct blk_mq_tag_set *set, struct request *rq,
2117 unsigned int hctx_idx, unsigned int numa_node)
2118 {
2119 struct nvme_fc_ctrl *ctrl = set->driver_data;
2120 struct nvme_fcp_op_w_sgl *op = blk_mq_rq_to_pdu(rq);
2121 int queue_idx = (set == &ctrl->tag_set) ? hctx_idx + 1 : 0;
2122 struct nvme_fc_queue *queue = &ctrl->queues[queue_idx];
2123 int res;
2124
2125 res = __nvme_fc_init_request(ctrl, queue, &op->op, rq, queue->rqcnt++);
2126 if (res)
2127 return res;
2128 op->op.fcp_req.first_sgl = op->sgl;
2129 op->op.fcp_req.private = &op->priv[0];
2130 nvme_req(rq)->ctrl = &ctrl->ctrl;
2131 return res;
2132 }
2133
2134 static int
nvme_fc_init_aen_ops(struct nvme_fc_ctrl * ctrl)2135 nvme_fc_init_aen_ops(struct nvme_fc_ctrl *ctrl)
2136 {
2137 struct nvme_fc_fcp_op *aen_op;
2138 struct nvme_fc_cmd_iu *cmdiu;
2139 struct nvme_command *sqe;
2140 void *private = NULL;
2141 int i, ret;
2142
2143 aen_op = ctrl->aen_ops;
2144 for (i = 0; i < NVME_NR_AEN_COMMANDS; i++, aen_op++) {
2145 if (ctrl->lport->ops->fcprqst_priv_sz) {
2146 private = kzalloc(ctrl->lport->ops->fcprqst_priv_sz,
2147 GFP_KERNEL);
2148 if (!private)
2149 return -ENOMEM;
2150 }
2151
2152 cmdiu = &aen_op->cmd_iu;
2153 sqe = &cmdiu->sqe;
2154 ret = __nvme_fc_init_request(ctrl, &ctrl->queues[0],
2155 aen_op, (struct request *)NULL,
2156 (NVME_AQ_BLK_MQ_DEPTH + i));
2157 if (ret) {
2158 kfree(private);
2159 return ret;
2160 }
2161
2162 aen_op->flags = FCOP_FLAGS_AEN;
2163 aen_op->fcp_req.private = private;
2164
2165 memset(sqe, 0, sizeof(*sqe));
2166 sqe->common.opcode = nvme_admin_async_event;
2167 /* Note: core layer may overwrite the sqe.command_id value */
2168 sqe->common.command_id = NVME_AQ_BLK_MQ_DEPTH + i;
2169 }
2170 return 0;
2171 }
2172
2173 static void
nvme_fc_term_aen_ops(struct nvme_fc_ctrl * ctrl)2174 nvme_fc_term_aen_ops(struct nvme_fc_ctrl *ctrl)
2175 {
2176 struct nvme_fc_fcp_op *aen_op;
2177 int i;
2178
2179 cancel_work_sync(&ctrl->ctrl.async_event_work);
2180 aen_op = ctrl->aen_ops;
2181 for (i = 0; i < NVME_NR_AEN_COMMANDS; i++, aen_op++) {
2182 __nvme_fc_exit_request(ctrl, aen_op);
2183
2184 kfree(aen_op->fcp_req.private);
2185 aen_op->fcp_req.private = NULL;
2186 }
2187 }
2188
2189 static inline void
__nvme_fc_init_hctx(struct blk_mq_hw_ctx * hctx,struct nvme_fc_ctrl * ctrl,unsigned int qidx)2190 __nvme_fc_init_hctx(struct blk_mq_hw_ctx *hctx, struct nvme_fc_ctrl *ctrl,
2191 unsigned int qidx)
2192 {
2193 struct nvme_fc_queue *queue = &ctrl->queues[qidx];
2194
2195 hctx->driver_data = queue;
2196 queue->hctx = hctx;
2197 }
2198
2199 static int
nvme_fc_init_hctx(struct blk_mq_hw_ctx * hctx,void * data,unsigned int hctx_idx)2200 nvme_fc_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
2201 unsigned int hctx_idx)
2202 {
2203 struct nvme_fc_ctrl *ctrl = data;
2204
2205 __nvme_fc_init_hctx(hctx, ctrl, hctx_idx + 1);
2206
2207 return 0;
2208 }
2209
2210 static int
nvme_fc_init_admin_hctx(struct blk_mq_hw_ctx * hctx,void * data,unsigned int hctx_idx)2211 nvme_fc_init_admin_hctx(struct blk_mq_hw_ctx *hctx, void *data,
2212 unsigned int hctx_idx)
2213 {
2214 struct nvme_fc_ctrl *ctrl = data;
2215
2216 __nvme_fc_init_hctx(hctx, ctrl, hctx_idx);
2217
2218 return 0;
2219 }
2220
2221 static void
nvme_fc_init_queue(struct nvme_fc_ctrl * ctrl,int idx)2222 nvme_fc_init_queue(struct nvme_fc_ctrl *ctrl, int idx)
2223 {
2224 struct nvme_fc_queue *queue;
2225
2226 queue = &ctrl->queues[idx];
2227 memset(queue, 0, sizeof(*queue));
2228 queue->ctrl = ctrl;
2229 queue->qnum = idx;
2230 atomic_set(&queue->csn, 0);
2231 queue->dev = ctrl->dev;
2232
2233 if (idx > 0)
2234 queue->cmnd_capsule_len = ctrl->ctrl.ioccsz * 16;
2235 else
2236 queue->cmnd_capsule_len = sizeof(struct nvme_command);
2237
2238 /*
2239 * Considered whether we should allocate buffers for all SQEs
2240 * and CQEs and dma map them - mapping their respective entries
2241 * into the request structures (kernel vm addr and dma address)
2242 * thus the driver could use the buffers/mappings directly.
2243 * It only makes sense if the LLDD would use them for its
2244 * messaging api. It's very unlikely most adapter api's would use
2245 * a native NVME sqe/cqe. More reasonable if FC-NVME IU payload
2246 * structures were used instead.
2247 */
2248 }
2249
2250 /*
2251 * This routine terminates a queue at the transport level.
2252 * The transport has already ensured that all outstanding ios on
2253 * the queue have been terminated.
2254 * The transport will send a Disconnect LS request to terminate
2255 * the queue's connection. Termination of the admin queue will also
2256 * terminate the association at the target.
2257 */
2258 static void
nvme_fc_free_queue(struct nvme_fc_queue * queue)2259 nvme_fc_free_queue(struct nvme_fc_queue *queue)
2260 {
2261 if (!test_and_clear_bit(NVME_FC_Q_CONNECTED, &queue->flags))
2262 return;
2263
2264 clear_bit(NVME_FC_Q_LIVE, &queue->flags);
2265 /*
2266 * Current implementation never disconnects a single queue.
2267 * It always terminates a whole association. So there is never
2268 * a disconnect(queue) LS sent to the target.
2269 */
2270
2271 queue->connection_id = 0;
2272 atomic_set(&queue->csn, 0);
2273 }
2274
2275 static void
__nvme_fc_delete_hw_queue(struct nvme_fc_ctrl * ctrl,struct nvme_fc_queue * queue,unsigned int qidx)2276 __nvme_fc_delete_hw_queue(struct nvme_fc_ctrl *ctrl,
2277 struct nvme_fc_queue *queue, unsigned int qidx)
2278 {
2279 if (ctrl->lport->ops->delete_queue)
2280 ctrl->lport->ops->delete_queue(&ctrl->lport->localport, qidx,
2281 queue->lldd_handle);
2282 queue->lldd_handle = NULL;
2283 }
2284
2285 static void
nvme_fc_free_io_queues(struct nvme_fc_ctrl * ctrl)2286 nvme_fc_free_io_queues(struct nvme_fc_ctrl *ctrl)
2287 {
2288 int i;
2289
2290 for (i = 1; i < ctrl->ctrl.queue_count; i++)
2291 nvme_fc_free_queue(&ctrl->queues[i]);
2292 }
2293
2294 static int
__nvme_fc_create_hw_queue(struct nvme_fc_ctrl * ctrl,struct nvme_fc_queue * queue,unsigned int qidx,u16 qsize)2295 __nvme_fc_create_hw_queue(struct nvme_fc_ctrl *ctrl,
2296 struct nvme_fc_queue *queue, unsigned int qidx, u16 qsize)
2297 {
2298 int ret = 0;
2299
2300 queue->lldd_handle = NULL;
2301 if (ctrl->lport->ops->create_queue)
2302 ret = ctrl->lport->ops->create_queue(&ctrl->lport->localport,
2303 qidx, qsize, &queue->lldd_handle);
2304
2305 return ret;
2306 }
2307
2308 static void
nvme_fc_delete_hw_io_queues(struct nvme_fc_ctrl * ctrl)2309 nvme_fc_delete_hw_io_queues(struct nvme_fc_ctrl *ctrl)
2310 {
2311 struct nvme_fc_queue *queue = &ctrl->queues[ctrl->ctrl.queue_count - 1];
2312 int i;
2313
2314 for (i = ctrl->ctrl.queue_count - 1; i >= 1; i--, queue--)
2315 __nvme_fc_delete_hw_queue(ctrl, queue, i);
2316 }
2317
2318 static int
nvme_fc_create_hw_io_queues(struct nvme_fc_ctrl * ctrl,u16 qsize)2319 nvme_fc_create_hw_io_queues(struct nvme_fc_ctrl *ctrl, u16 qsize)
2320 {
2321 struct nvme_fc_queue *queue = &ctrl->queues[1];
2322 int i, ret;
2323
2324 for (i = 1; i < ctrl->ctrl.queue_count; i++, queue++) {
2325 ret = __nvme_fc_create_hw_queue(ctrl, queue, i, qsize);
2326 if (ret)
2327 goto delete_queues;
2328 }
2329
2330 return 0;
2331
2332 delete_queues:
2333 for (; i > 0; i--)
2334 __nvme_fc_delete_hw_queue(ctrl, &ctrl->queues[i], i);
2335 return ret;
2336 }
2337
2338 static int
nvme_fc_connect_io_queues(struct nvme_fc_ctrl * ctrl,u16 qsize)2339 nvme_fc_connect_io_queues(struct nvme_fc_ctrl *ctrl, u16 qsize)
2340 {
2341 int i, ret = 0;
2342
2343 for (i = 1; i < ctrl->ctrl.queue_count; i++) {
2344 ret = nvme_fc_connect_queue(ctrl, &ctrl->queues[i], qsize,
2345 (qsize / 5));
2346 if (ret)
2347 break;
2348 ret = nvmf_connect_io_queue(&ctrl->ctrl, i, false);
2349 if (ret)
2350 break;
2351
2352 set_bit(NVME_FC_Q_LIVE, &ctrl->queues[i].flags);
2353 }
2354
2355 return ret;
2356 }
2357
2358 static void
nvme_fc_init_io_queues(struct nvme_fc_ctrl * ctrl)2359 nvme_fc_init_io_queues(struct nvme_fc_ctrl *ctrl)
2360 {
2361 int i;
2362
2363 for (i = 1; i < ctrl->ctrl.queue_count; i++)
2364 nvme_fc_init_queue(ctrl, i);
2365 }
2366
2367 static void
nvme_fc_ctrl_free(struct kref * ref)2368 nvme_fc_ctrl_free(struct kref *ref)
2369 {
2370 struct nvme_fc_ctrl *ctrl =
2371 container_of(ref, struct nvme_fc_ctrl, ref);
2372 unsigned long flags;
2373
2374 if (ctrl->ctrl.tagset) {
2375 blk_cleanup_queue(ctrl->ctrl.connect_q);
2376 blk_mq_free_tag_set(&ctrl->tag_set);
2377 }
2378
2379 /* remove from rport list */
2380 spin_lock_irqsave(&ctrl->rport->lock, flags);
2381 list_del(&ctrl->ctrl_list);
2382 spin_unlock_irqrestore(&ctrl->rport->lock, flags);
2383
2384 nvme_start_admin_queue(&ctrl->ctrl);
2385 blk_cleanup_queue(ctrl->ctrl.admin_q);
2386 blk_cleanup_queue(ctrl->ctrl.fabrics_q);
2387 blk_mq_free_tag_set(&ctrl->admin_tag_set);
2388
2389 kfree(ctrl->queues);
2390
2391 put_device(ctrl->dev);
2392 nvme_fc_rport_put(ctrl->rport);
2393
2394 ida_simple_remove(&nvme_fc_ctrl_cnt, ctrl->cnum);
2395 if (ctrl->ctrl.opts)
2396 nvmf_free_options(ctrl->ctrl.opts);
2397 kfree(ctrl);
2398 }
2399
2400 static void
nvme_fc_ctrl_put(struct nvme_fc_ctrl * ctrl)2401 nvme_fc_ctrl_put(struct nvme_fc_ctrl *ctrl)
2402 {
2403 kref_put(&ctrl->ref, nvme_fc_ctrl_free);
2404 }
2405
2406 static int
nvme_fc_ctrl_get(struct nvme_fc_ctrl * ctrl)2407 nvme_fc_ctrl_get(struct nvme_fc_ctrl *ctrl)
2408 {
2409 return kref_get_unless_zero(&ctrl->ref);
2410 }
2411
2412 /*
2413 * All accesses from nvme core layer done - can now free the
2414 * controller. Called after last nvme_put_ctrl() call
2415 */
2416 static void
nvme_fc_nvme_ctrl_freed(struct nvme_ctrl * nctrl)2417 nvme_fc_nvme_ctrl_freed(struct nvme_ctrl *nctrl)
2418 {
2419 struct nvme_fc_ctrl *ctrl = to_fc_ctrl(nctrl);
2420
2421 WARN_ON(nctrl != &ctrl->ctrl);
2422
2423 nvme_fc_ctrl_put(ctrl);
2424 }
2425
2426 /*
2427 * This routine is used by the transport when it needs to find active
2428 * io on a queue that is to be terminated. The transport uses
2429 * blk_mq_tagset_busy_itr() to find the busy requests, which then invoke
2430 * this routine to kill them on a 1 by 1 basis.
2431 *
2432 * As FC allocates FC exchange for each io, the transport must contact
2433 * the LLDD to terminate the exchange, thus releasing the FC exchange.
2434 * After terminating the exchange the LLDD will call the transport's
2435 * normal io done path for the request, but it will have an aborted
2436 * status. The done path will return the io request back to the block
2437 * layer with an error status.
2438 */
2439 static bool
nvme_fc_terminate_exchange(struct request * req,void * data,bool reserved)2440 nvme_fc_terminate_exchange(struct request *req, void *data, bool reserved)
2441 {
2442 struct nvme_ctrl *nctrl = data;
2443 struct nvme_fc_ctrl *ctrl = to_fc_ctrl(nctrl);
2444 struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(req);
2445
2446 op->nreq.flags |= NVME_REQ_CANCELLED;
2447 __nvme_fc_abort_op(ctrl, op);
2448 return true;
2449 }
2450
2451 /*
2452 * This routine runs through all outstanding commands on the association
2453 * and aborts them. This routine is typically be called by the
2454 * delete_association routine. It is also called due to an error during
2455 * reconnect. In that scenario, it is most likely a command that initializes
2456 * the controller, including fabric Connect commands on io queues, that
2457 * may have timed out or failed thus the io must be killed for the connect
2458 * thread to see the error.
2459 */
2460 static void
__nvme_fc_abort_outstanding_ios(struct nvme_fc_ctrl * ctrl,bool start_queues)2461 __nvme_fc_abort_outstanding_ios(struct nvme_fc_ctrl *ctrl, bool start_queues)
2462 {
2463 int q;
2464
2465 /*
2466 * if aborting io, the queues are no longer good, mark them
2467 * all as not live.
2468 */
2469 if (ctrl->ctrl.queue_count > 1) {
2470 for (q = 1; q < ctrl->ctrl.queue_count; q++)
2471 clear_bit(NVME_FC_Q_LIVE, &ctrl->queues[q].flags);
2472 }
2473 clear_bit(NVME_FC_Q_LIVE, &ctrl->queues[0].flags);
2474
2475 /*
2476 * If io queues are present, stop them and terminate all outstanding
2477 * ios on them. As FC allocates FC exchange for each io, the
2478 * transport must contact the LLDD to terminate the exchange,
2479 * thus releasing the FC exchange. We use blk_mq_tagset_busy_itr()
2480 * to tell us what io's are busy and invoke a transport routine
2481 * to kill them with the LLDD. After terminating the exchange
2482 * the LLDD will call the transport's normal io done path, but it
2483 * will have an aborted status. The done path will return the
2484 * io requests back to the block layer as part of normal completions
2485 * (but with error status).
2486 */
2487 if (ctrl->ctrl.queue_count > 1) {
2488 nvme_stop_queues(&ctrl->ctrl);
2489 nvme_sync_io_queues(&ctrl->ctrl);
2490 blk_mq_tagset_busy_iter(&ctrl->tag_set,
2491 nvme_fc_terminate_exchange, &ctrl->ctrl);
2492 blk_mq_tagset_wait_completed_request(&ctrl->tag_set);
2493 if (start_queues)
2494 nvme_start_queues(&ctrl->ctrl);
2495 }
2496
2497 /*
2498 * Other transports, which don't have link-level contexts bound
2499 * to sqe's, would try to gracefully shutdown the controller by
2500 * writing the registers for shutdown and polling (call
2501 * nvme_shutdown_ctrl()). Given a bunch of i/o was potentially
2502 * just aborted and we will wait on those contexts, and given
2503 * there was no indication of how live the controlelr is on the
2504 * link, don't send more io to create more contexts for the
2505 * shutdown. Let the controller fail via keepalive failure if
2506 * its still present.
2507 */
2508
2509 /*
2510 * clean up the admin queue. Same thing as above.
2511 */
2512 nvme_stop_admin_queue(&ctrl->ctrl);
2513 blk_sync_queue(ctrl->ctrl.admin_q);
2514 blk_mq_tagset_busy_iter(&ctrl->admin_tag_set,
2515 nvme_fc_terminate_exchange, &ctrl->ctrl);
2516 blk_mq_tagset_wait_completed_request(&ctrl->admin_tag_set);
2517 }
2518
2519 static void
nvme_fc_error_recovery(struct nvme_fc_ctrl * ctrl,char * errmsg)2520 nvme_fc_error_recovery(struct nvme_fc_ctrl *ctrl, char *errmsg)
2521 {
2522 /*
2523 * if an error (io timeout, etc) while (re)connecting, the remote
2524 * port requested terminating of the association (disconnect_ls)
2525 * or an error (timeout or abort) occurred on an io while creating
2526 * the controller. Abort any ios on the association and let the
2527 * create_association error path resolve things.
2528 */
2529 if (ctrl->ctrl.state == NVME_CTRL_CONNECTING) {
2530 __nvme_fc_abort_outstanding_ios(ctrl, true);
2531 set_bit(ASSOC_FAILED, &ctrl->flags);
2532 return;
2533 }
2534
2535 /* Otherwise, only proceed if in LIVE state - e.g. on first error */
2536 if (ctrl->ctrl.state != NVME_CTRL_LIVE)
2537 return;
2538
2539 dev_warn(ctrl->ctrl.device,
2540 "NVME-FC{%d}: transport association event: %s\n",
2541 ctrl->cnum, errmsg);
2542 dev_warn(ctrl->ctrl.device,
2543 "NVME-FC{%d}: resetting controller\n", ctrl->cnum);
2544
2545 nvme_reset_ctrl(&ctrl->ctrl);
2546 }
2547
2548 static enum blk_eh_timer_return
nvme_fc_timeout(struct request * rq,bool reserved)2549 nvme_fc_timeout(struct request *rq, bool reserved)
2550 {
2551 struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(rq);
2552 struct nvme_fc_ctrl *ctrl = op->ctrl;
2553 struct nvme_fc_cmd_iu *cmdiu = &op->cmd_iu;
2554 struct nvme_command *sqe = &cmdiu->sqe;
2555
2556 /*
2557 * Attempt to abort the offending command. Command completion
2558 * will detect the aborted io and will fail the connection.
2559 */
2560 dev_info(ctrl->ctrl.device,
2561 "NVME-FC{%d.%d}: io timeout: opcode %d fctype %d w10/11: "
2562 "x%08x/x%08x\n",
2563 ctrl->cnum, op->queue->qnum, sqe->common.opcode,
2564 sqe->connect.fctype, sqe->common.cdw10, sqe->common.cdw11);
2565 if (__nvme_fc_abort_op(ctrl, op))
2566 nvme_fc_error_recovery(ctrl, "io timeout abort failed");
2567
2568 /*
2569 * the io abort has been initiated. Have the reset timer
2570 * restarted and the abort completion will complete the io
2571 * shortly. Avoids a synchronous wait while the abort finishes.
2572 */
2573 return BLK_EH_RESET_TIMER;
2574 }
2575
2576 static int
nvme_fc_map_data(struct nvme_fc_ctrl * ctrl,struct request * rq,struct nvme_fc_fcp_op * op)2577 nvme_fc_map_data(struct nvme_fc_ctrl *ctrl, struct request *rq,
2578 struct nvme_fc_fcp_op *op)
2579 {
2580 struct nvmefc_fcp_req *freq = &op->fcp_req;
2581 int ret;
2582
2583 freq->sg_cnt = 0;
2584
2585 if (!blk_rq_nr_phys_segments(rq))
2586 return 0;
2587
2588 freq->sg_table.sgl = freq->first_sgl;
2589 ret = sg_alloc_table_chained(&freq->sg_table,
2590 blk_rq_nr_phys_segments(rq), freq->sg_table.sgl,
2591 NVME_INLINE_SG_CNT);
2592 if (ret)
2593 return -ENOMEM;
2594
2595 op->nents = blk_rq_map_sg(rq->q, rq, freq->sg_table.sgl);
2596 WARN_ON(op->nents > blk_rq_nr_phys_segments(rq));
2597 freq->sg_cnt = fc_dma_map_sg(ctrl->lport->dev, freq->sg_table.sgl,
2598 op->nents, rq_dma_dir(rq));
2599 if (unlikely(freq->sg_cnt <= 0)) {
2600 sg_free_table_chained(&freq->sg_table, NVME_INLINE_SG_CNT);
2601 freq->sg_cnt = 0;
2602 return -EFAULT;
2603 }
2604
2605 /*
2606 * TODO: blk_integrity_rq(rq) for DIF
2607 */
2608 return 0;
2609 }
2610
2611 static void
nvme_fc_unmap_data(struct nvme_fc_ctrl * ctrl,struct request * rq,struct nvme_fc_fcp_op * op)2612 nvme_fc_unmap_data(struct nvme_fc_ctrl *ctrl, struct request *rq,
2613 struct nvme_fc_fcp_op *op)
2614 {
2615 struct nvmefc_fcp_req *freq = &op->fcp_req;
2616
2617 if (!freq->sg_cnt)
2618 return;
2619
2620 fc_dma_unmap_sg(ctrl->lport->dev, freq->sg_table.sgl, op->nents,
2621 rq_dma_dir(rq));
2622
2623 sg_free_table_chained(&freq->sg_table, NVME_INLINE_SG_CNT);
2624
2625 freq->sg_cnt = 0;
2626 }
2627
2628 /*
2629 * In FC, the queue is a logical thing. At transport connect, the target
2630 * creates its "queue" and returns a handle that is to be given to the
2631 * target whenever it posts something to the corresponding SQ. When an
2632 * SQE is sent on a SQ, FC effectively considers the SQE, or rather the
2633 * command contained within the SQE, an io, and assigns a FC exchange
2634 * to it. The SQE and the associated SQ handle are sent in the initial
2635 * CMD IU sents on the exchange. All transfers relative to the io occur
2636 * as part of the exchange. The CQE is the last thing for the io,
2637 * which is transferred (explicitly or implicitly) with the RSP IU
2638 * sent on the exchange. After the CQE is received, the FC exchange is
2639 * terminaed and the Exchange may be used on a different io.
2640 *
2641 * The transport to LLDD api has the transport making a request for a
2642 * new fcp io request to the LLDD. The LLDD then allocates a FC exchange
2643 * resource and transfers the command. The LLDD will then process all
2644 * steps to complete the io. Upon completion, the transport done routine
2645 * is called.
2646 *
2647 * So - while the operation is outstanding to the LLDD, there is a link
2648 * level FC exchange resource that is also outstanding. This must be
2649 * considered in all cleanup operations.
2650 */
2651 static blk_status_t
nvme_fc_start_fcp_op(struct nvme_fc_ctrl * ctrl,struct nvme_fc_queue * queue,struct nvme_fc_fcp_op * op,u32 data_len,enum nvmefc_fcp_datadir io_dir)2652 nvme_fc_start_fcp_op(struct nvme_fc_ctrl *ctrl, struct nvme_fc_queue *queue,
2653 struct nvme_fc_fcp_op *op, u32 data_len,
2654 enum nvmefc_fcp_datadir io_dir)
2655 {
2656 struct nvme_fc_cmd_iu *cmdiu = &op->cmd_iu;
2657 struct nvme_command *sqe = &cmdiu->sqe;
2658 int ret, opstate;
2659
2660 /*
2661 * before attempting to send the io, check to see if we believe
2662 * the target device is present
2663 */
2664 if (ctrl->rport->remoteport.port_state != FC_OBJSTATE_ONLINE)
2665 return BLK_STS_RESOURCE;
2666
2667 if (!nvme_fc_ctrl_get(ctrl))
2668 return BLK_STS_IOERR;
2669
2670 /* format the FC-NVME CMD IU and fcp_req */
2671 cmdiu->connection_id = cpu_to_be64(queue->connection_id);
2672 cmdiu->data_len = cpu_to_be32(data_len);
2673 switch (io_dir) {
2674 case NVMEFC_FCP_WRITE:
2675 cmdiu->flags = FCNVME_CMD_FLAGS_WRITE;
2676 break;
2677 case NVMEFC_FCP_READ:
2678 cmdiu->flags = FCNVME_CMD_FLAGS_READ;
2679 break;
2680 case NVMEFC_FCP_NODATA:
2681 cmdiu->flags = 0;
2682 break;
2683 }
2684 op->fcp_req.payload_length = data_len;
2685 op->fcp_req.io_dir = io_dir;
2686 op->fcp_req.transferred_length = 0;
2687 op->fcp_req.rcv_rsplen = 0;
2688 op->fcp_req.status = NVME_SC_SUCCESS;
2689 op->fcp_req.sqid = cpu_to_le16(queue->qnum);
2690
2691 /*
2692 * validate per fabric rules, set fields mandated by fabric spec
2693 * as well as those by FC-NVME spec.
2694 */
2695 WARN_ON_ONCE(sqe->common.metadata);
2696 sqe->common.flags |= NVME_CMD_SGL_METABUF;
2697
2698 /*
2699 * format SQE DPTR field per FC-NVME rules:
2700 * type=0x5 Transport SGL Data Block Descriptor
2701 * subtype=0xA Transport-specific value
2702 * address=0
2703 * length=length of the data series
2704 */
2705 sqe->rw.dptr.sgl.type = (NVME_TRANSPORT_SGL_DATA_DESC << 4) |
2706 NVME_SGL_FMT_TRANSPORT_A;
2707 sqe->rw.dptr.sgl.length = cpu_to_le32(data_len);
2708 sqe->rw.dptr.sgl.addr = 0;
2709
2710 if (!(op->flags & FCOP_FLAGS_AEN)) {
2711 ret = nvme_fc_map_data(ctrl, op->rq, op);
2712 if (ret < 0) {
2713 nvme_cleanup_cmd(op->rq);
2714 nvme_fc_ctrl_put(ctrl);
2715 if (ret == -ENOMEM || ret == -EAGAIN)
2716 return BLK_STS_RESOURCE;
2717 return BLK_STS_IOERR;
2718 }
2719 }
2720
2721 fc_dma_sync_single_for_device(ctrl->lport->dev, op->fcp_req.cmddma,
2722 sizeof(op->cmd_iu), DMA_TO_DEVICE);
2723
2724 atomic_set(&op->state, FCPOP_STATE_ACTIVE);
2725
2726 if (!(op->flags & FCOP_FLAGS_AEN))
2727 blk_mq_start_request(op->rq);
2728
2729 cmdiu->csn = cpu_to_be32(atomic_inc_return(&queue->csn));
2730 ret = ctrl->lport->ops->fcp_io(&ctrl->lport->localport,
2731 &ctrl->rport->remoteport,
2732 queue->lldd_handle, &op->fcp_req);
2733
2734 if (ret) {
2735 /*
2736 * If the lld fails to send the command is there an issue with
2737 * the csn value? If the command that fails is the Connect,
2738 * no - as the connection won't be live. If it is a command
2739 * post-connect, it's possible a gap in csn may be created.
2740 * Does this matter? As Linux initiators don't send fused
2741 * commands, no. The gap would exist, but as there's nothing
2742 * that depends on csn order to be delivered on the target
2743 * side, it shouldn't hurt. It would be difficult for a
2744 * target to even detect the csn gap as it has no idea when the
2745 * cmd with the csn was supposed to arrive.
2746 */
2747 opstate = atomic_xchg(&op->state, FCPOP_STATE_COMPLETE);
2748 __nvme_fc_fcpop_chk_teardowns(ctrl, op, opstate);
2749
2750 if (!(op->flags & FCOP_FLAGS_AEN)) {
2751 nvme_fc_unmap_data(ctrl, op->rq, op);
2752 nvme_cleanup_cmd(op->rq);
2753 }
2754
2755 nvme_fc_ctrl_put(ctrl);
2756
2757 if (ctrl->rport->remoteport.port_state == FC_OBJSTATE_ONLINE &&
2758 ret != -EBUSY)
2759 return BLK_STS_IOERR;
2760
2761 return BLK_STS_RESOURCE;
2762 }
2763
2764 return BLK_STS_OK;
2765 }
2766
2767 static blk_status_t
nvme_fc_queue_rq(struct blk_mq_hw_ctx * hctx,const struct blk_mq_queue_data * bd)2768 nvme_fc_queue_rq(struct blk_mq_hw_ctx *hctx,
2769 const struct blk_mq_queue_data *bd)
2770 {
2771 struct nvme_ns *ns = hctx->queue->queuedata;
2772 struct nvme_fc_queue *queue = hctx->driver_data;
2773 struct nvme_fc_ctrl *ctrl = queue->ctrl;
2774 struct request *rq = bd->rq;
2775 struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(rq);
2776 struct nvme_fc_cmd_iu *cmdiu = &op->cmd_iu;
2777 struct nvme_command *sqe = &cmdiu->sqe;
2778 enum nvmefc_fcp_datadir io_dir;
2779 bool queue_ready = test_bit(NVME_FC_Q_LIVE, &queue->flags);
2780 u32 data_len;
2781 blk_status_t ret;
2782
2783 if (ctrl->rport->remoteport.port_state != FC_OBJSTATE_ONLINE ||
2784 !nvmf_check_ready(&queue->ctrl->ctrl, rq, queue_ready))
2785 return nvmf_fail_nonready_command(&queue->ctrl->ctrl, rq);
2786
2787 ret = nvme_setup_cmd(ns, rq, sqe);
2788 if (ret)
2789 return ret;
2790
2791 /*
2792 * nvme core doesn't quite treat the rq opaquely. Commands such
2793 * as WRITE ZEROES will return a non-zero rq payload_bytes yet
2794 * there is no actual payload to be transferred.
2795 * To get it right, key data transmission on there being 1 or
2796 * more physical segments in the sg list. If there is no
2797 * physical segments, there is no payload.
2798 */
2799 if (blk_rq_nr_phys_segments(rq)) {
2800 data_len = blk_rq_payload_bytes(rq);
2801 io_dir = ((rq_data_dir(rq) == WRITE) ?
2802 NVMEFC_FCP_WRITE : NVMEFC_FCP_READ);
2803 } else {
2804 data_len = 0;
2805 io_dir = NVMEFC_FCP_NODATA;
2806 }
2807
2808
2809 return nvme_fc_start_fcp_op(ctrl, queue, op, data_len, io_dir);
2810 }
2811
2812 static void
nvme_fc_submit_async_event(struct nvme_ctrl * arg)2813 nvme_fc_submit_async_event(struct nvme_ctrl *arg)
2814 {
2815 struct nvme_fc_ctrl *ctrl = to_fc_ctrl(arg);
2816 struct nvme_fc_fcp_op *aen_op;
2817 blk_status_t ret;
2818
2819 if (test_bit(FCCTRL_TERMIO, &ctrl->flags))
2820 return;
2821
2822 aen_op = &ctrl->aen_ops[0];
2823
2824 ret = nvme_fc_start_fcp_op(ctrl, aen_op->queue, aen_op, 0,
2825 NVMEFC_FCP_NODATA);
2826 if (ret)
2827 dev_err(ctrl->ctrl.device,
2828 "failed async event work\n");
2829 }
2830
2831 static void
nvme_fc_complete_rq(struct request * rq)2832 nvme_fc_complete_rq(struct request *rq)
2833 {
2834 struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(rq);
2835 struct nvme_fc_ctrl *ctrl = op->ctrl;
2836
2837 atomic_set(&op->state, FCPOP_STATE_IDLE);
2838 op->flags &= ~FCOP_FLAGS_TERMIO;
2839
2840 nvme_fc_unmap_data(ctrl, rq, op);
2841 nvme_complete_rq(rq);
2842 nvme_fc_ctrl_put(ctrl);
2843 }
2844
2845
2846 static const struct blk_mq_ops nvme_fc_mq_ops = {
2847 .queue_rq = nvme_fc_queue_rq,
2848 .complete = nvme_fc_complete_rq,
2849 .init_request = nvme_fc_init_request,
2850 .exit_request = nvme_fc_exit_request,
2851 .init_hctx = nvme_fc_init_hctx,
2852 .timeout = nvme_fc_timeout,
2853 };
2854
2855 static int
nvme_fc_create_io_queues(struct nvme_fc_ctrl * ctrl)2856 nvme_fc_create_io_queues(struct nvme_fc_ctrl *ctrl)
2857 {
2858 struct nvmf_ctrl_options *opts = ctrl->ctrl.opts;
2859 unsigned int nr_io_queues;
2860 int ret;
2861
2862 nr_io_queues = min(min(opts->nr_io_queues, num_online_cpus()),
2863 ctrl->lport->ops->max_hw_queues);
2864 ret = nvme_set_queue_count(&ctrl->ctrl, &nr_io_queues);
2865 if (ret) {
2866 dev_info(ctrl->ctrl.device,
2867 "set_queue_count failed: %d\n", ret);
2868 return ret;
2869 }
2870
2871 ctrl->ctrl.queue_count = nr_io_queues + 1;
2872 if (!nr_io_queues)
2873 return 0;
2874
2875 nvme_fc_init_io_queues(ctrl);
2876
2877 memset(&ctrl->tag_set, 0, sizeof(ctrl->tag_set));
2878 ctrl->tag_set.ops = &nvme_fc_mq_ops;
2879 ctrl->tag_set.queue_depth = ctrl->ctrl.opts->queue_size;
2880 ctrl->tag_set.reserved_tags = 1; /* fabric connect */
2881 ctrl->tag_set.numa_node = ctrl->ctrl.numa_node;
2882 ctrl->tag_set.flags = BLK_MQ_F_SHOULD_MERGE;
2883 ctrl->tag_set.cmd_size =
2884 struct_size((struct nvme_fcp_op_w_sgl *)NULL, priv,
2885 ctrl->lport->ops->fcprqst_priv_sz);
2886 ctrl->tag_set.driver_data = ctrl;
2887 ctrl->tag_set.nr_hw_queues = ctrl->ctrl.queue_count - 1;
2888 ctrl->tag_set.timeout = NVME_IO_TIMEOUT;
2889
2890 ret = blk_mq_alloc_tag_set(&ctrl->tag_set);
2891 if (ret)
2892 return ret;
2893
2894 ctrl->ctrl.tagset = &ctrl->tag_set;
2895
2896 ctrl->ctrl.connect_q = blk_mq_init_queue(&ctrl->tag_set);
2897 if (IS_ERR(ctrl->ctrl.connect_q)) {
2898 ret = PTR_ERR(ctrl->ctrl.connect_q);
2899 goto out_free_tag_set;
2900 }
2901
2902 ret = nvme_fc_create_hw_io_queues(ctrl, ctrl->ctrl.sqsize + 1);
2903 if (ret)
2904 goto out_cleanup_blk_queue;
2905
2906 ret = nvme_fc_connect_io_queues(ctrl, ctrl->ctrl.sqsize + 1);
2907 if (ret)
2908 goto out_delete_hw_queues;
2909
2910 ctrl->ioq_live = true;
2911
2912 return 0;
2913
2914 out_delete_hw_queues:
2915 nvme_fc_delete_hw_io_queues(ctrl);
2916 out_cleanup_blk_queue:
2917 blk_cleanup_queue(ctrl->ctrl.connect_q);
2918 out_free_tag_set:
2919 blk_mq_free_tag_set(&ctrl->tag_set);
2920 nvme_fc_free_io_queues(ctrl);
2921
2922 /* force put free routine to ignore io queues */
2923 ctrl->ctrl.tagset = NULL;
2924
2925 return ret;
2926 }
2927
2928 static int
nvme_fc_recreate_io_queues(struct nvme_fc_ctrl * ctrl)2929 nvme_fc_recreate_io_queues(struct nvme_fc_ctrl *ctrl)
2930 {
2931 struct nvmf_ctrl_options *opts = ctrl->ctrl.opts;
2932 u32 prior_ioq_cnt = ctrl->ctrl.queue_count - 1;
2933 unsigned int nr_io_queues;
2934 int ret;
2935
2936 nr_io_queues = min(min(opts->nr_io_queues, num_online_cpus()),
2937 ctrl->lport->ops->max_hw_queues);
2938 ret = nvme_set_queue_count(&ctrl->ctrl, &nr_io_queues);
2939 if (ret) {
2940 dev_info(ctrl->ctrl.device,
2941 "set_queue_count failed: %d\n", ret);
2942 return ret;
2943 }
2944
2945 if (!nr_io_queues && prior_ioq_cnt) {
2946 dev_info(ctrl->ctrl.device,
2947 "Fail Reconnect: At least 1 io queue "
2948 "required (was %d)\n", prior_ioq_cnt);
2949 return -ENOSPC;
2950 }
2951
2952 ctrl->ctrl.queue_count = nr_io_queues + 1;
2953 /* check for io queues existing */
2954 if (ctrl->ctrl.queue_count == 1)
2955 return 0;
2956
2957 if (prior_ioq_cnt != nr_io_queues) {
2958 dev_info(ctrl->ctrl.device,
2959 "reconnect: revising io queue count from %d to %d\n",
2960 prior_ioq_cnt, nr_io_queues);
2961 nvme_wait_freeze(&ctrl->ctrl);
2962 blk_mq_update_nr_hw_queues(&ctrl->tag_set, nr_io_queues);
2963 nvme_unfreeze(&ctrl->ctrl);
2964 }
2965
2966 ret = nvme_fc_create_hw_io_queues(ctrl, ctrl->ctrl.sqsize + 1);
2967 if (ret)
2968 goto out_free_io_queues;
2969
2970 ret = nvme_fc_connect_io_queues(ctrl, ctrl->ctrl.sqsize + 1);
2971 if (ret)
2972 goto out_delete_hw_queues;
2973
2974 return 0;
2975
2976 out_delete_hw_queues:
2977 nvme_fc_delete_hw_io_queues(ctrl);
2978 out_free_io_queues:
2979 nvme_fc_free_io_queues(ctrl);
2980 return ret;
2981 }
2982
2983 static void
nvme_fc_rport_active_on_lport(struct nvme_fc_rport * rport)2984 nvme_fc_rport_active_on_lport(struct nvme_fc_rport *rport)
2985 {
2986 struct nvme_fc_lport *lport = rport->lport;
2987
2988 atomic_inc(&lport->act_rport_cnt);
2989 }
2990
2991 static void
nvme_fc_rport_inactive_on_lport(struct nvme_fc_rport * rport)2992 nvme_fc_rport_inactive_on_lport(struct nvme_fc_rport *rport)
2993 {
2994 struct nvme_fc_lport *lport = rport->lport;
2995 u32 cnt;
2996
2997 cnt = atomic_dec_return(&lport->act_rport_cnt);
2998 if (cnt == 0 && lport->localport.port_state == FC_OBJSTATE_DELETED)
2999 lport->ops->localport_delete(&lport->localport);
3000 }
3001
3002 static int
nvme_fc_ctlr_active_on_rport(struct nvme_fc_ctrl * ctrl)3003 nvme_fc_ctlr_active_on_rport(struct nvme_fc_ctrl *ctrl)
3004 {
3005 struct nvme_fc_rport *rport = ctrl->rport;
3006 u32 cnt;
3007
3008 if (test_and_set_bit(ASSOC_ACTIVE, &ctrl->flags))
3009 return 1;
3010
3011 cnt = atomic_inc_return(&rport->act_ctrl_cnt);
3012 if (cnt == 1)
3013 nvme_fc_rport_active_on_lport(rport);
3014
3015 return 0;
3016 }
3017
3018 static int
nvme_fc_ctlr_inactive_on_rport(struct nvme_fc_ctrl * ctrl)3019 nvme_fc_ctlr_inactive_on_rport(struct nvme_fc_ctrl *ctrl)
3020 {
3021 struct nvme_fc_rport *rport = ctrl->rport;
3022 struct nvme_fc_lport *lport = rport->lport;
3023 u32 cnt;
3024
3025 /* clearing of ctrl->flags ASSOC_ACTIVE bit is in association delete */
3026
3027 cnt = atomic_dec_return(&rport->act_ctrl_cnt);
3028 if (cnt == 0) {
3029 if (rport->remoteport.port_state == FC_OBJSTATE_DELETED)
3030 lport->ops->remoteport_delete(&rport->remoteport);
3031 nvme_fc_rport_inactive_on_lport(rport);
3032 }
3033
3034 return 0;
3035 }
3036
3037 /*
3038 * This routine restarts the controller on the host side, and
3039 * on the link side, recreates the controller association.
3040 */
3041 static int
nvme_fc_create_association(struct nvme_fc_ctrl * ctrl)3042 nvme_fc_create_association(struct nvme_fc_ctrl *ctrl)
3043 {
3044 struct nvmf_ctrl_options *opts = ctrl->ctrl.opts;
3045 struct nvmefc_ls_rcv_op *disls = NULL;
3046 unsigned long flags;
3047 int ret;
3048 bool changed;
3049
3050 ++ctrl->ctrl.nr_reconnects;
3051
3052 if (ctrl->rport->remoteport.port_state != FC_OBJSTATE_ONLINE)
3053 return -ENODEV;
3054
3055 if (nvme_fc_ctlr_active_on_rport(ctrl))
3056 return -ENOTUNIQ;
3057
3058 dev_info(ctrl->ctrl.device,
3059 "NVME-FC{%d}: create association : host wwpn 0x%016llx "
3060 " rport wwpn 0x%016llx: NQN \"%s\"\n",
3061 ctrl->cnum, ctrl->lport->localport.port_name,
3062 ctrl->rport->remoteport.port_name, ctrl->ctrl.opts->subsysnqn);
3063
3064 clear_bit(ASSOC_FAILED, &ctrl->flags);
3065
3066 /*
3067 * Create the admin queue
3068 */
3069
3070 ret = __nvme_fc_create_hw_queue(ctrl, &ctrl->queues[0], 0,
3071 NVME_AQ_DEPTH);
3072 if (ret)
3073 goto out_free_queue;
3074
3075 ret = nvme_fc_connect_admin_queue(ctrl, &ctrl->queues[0],
3076 NVME_AQ_DEPTH, (NVME_AQ_DEPTH / 4));
3077 if (ret)
3078 goto out_delete_hw_queue;
3079
3080 ret = nvmf_connect_admin_queue(&ctrl->ctrl);
3081 if (ret)
3082 goto out_disconnect_admin_queue;
3083
3084 set_bit(NVME_FC_Q_LIVE, &ctrl->queues[0].flags);
3085
3086 /*
3087 * Check controller capabilities
3088 *
3089 * todo:- add code to check if ctrl attributes changed from
3090 * prior connection values
3091 */
3092
3093 ret = nvme_enable_ctrl(&ctrl->ctrl);
3094 if (ret || test_bit(ASSOC_FAILED, &ctrl->flags))
3095 goto out_disconnect_admin_queue;
3096
3097 ctrl->ctrl.max_segments = ctrl->lport->ops->max_sgl_segments;
3098 ctrl->ctrl.max_hw_sectors = ctrl->ctrl.max_segments <<
3099 (ilog2(SZ_4K) - 9);
3100
3101 nvme_start_admin_queue(&ctrl->ctrl);
3102
3103 ret = nvme_init_identify(&ctrl->ctrl);
3104 if (ret || test_bit(ASSOC_FAILED, &ctrl->flags))
3105 goto out_disconnect_admin_queue;
3106
3107 /* sanity checks */
3108
3109 /* FC-NVME does not have other data in the capsule */
3110 if (ctrl->ctrl.icdoff) {
3111 dev_err(ctrl->ctrl.device, "icdoff %d is not supported!\n",
3112 ctrl->ctrl.icdoff);
3113 goto out_disconnect_admin_queue;
3114 }
3115
3116 /* FC-NVME supports normal SGL Data Block Descriptors */
3117
3118 if (opts->queue_size > ctrl->ctrl.maxcmd) {
3119 /* warn if maxcmd is lower than queue_size */
3120 dev_warn(ctrl->ctrl.device,
3121 "queue_size %zu > ctrl maxcmd %u, reducing "
3122 "to maxcmd\n",
3123 opts->queue_size, ctrl->ctrl.maxcmd);
3124 opts->queue_size = ctrl->ctrl.maxcmd;
3125 }
3126
3127 if (opts->queue_size > ctrl->ctrl.sqsize + 1) {
3128 /* warn if sqsize is lower than queue_size */
3129 dev_warn(ctrl->ctrl.device,
3130 "queue_size %zu > ctrl sqsize %u, reducing "
3131 "to sqsize\n",
3132 opts->queue_size, ctrl->ctrl.sqsize + 1);
3133 opts->queue_size = ctrl->ctrl.sqsize + 1;
3134 }
3135
3136 ret = nvme_fc_init_aen_ops(ctrl);
3137 if (ret)
3138 goto out_term_aen_ops;
3139
3140 /*
3141 * Create the io queues
3142 */
3143
3144 if (ctrl->ctrl.queue_count > 1) {
3145 if (!ctrl->ioq_live)
3146 ret = nvme_fc_create_io_queues(ctrl);
3147 else
3148 ret = nvme_fc_recreate_io_queues(ctrl);
3149 }
3150 if (ret || test_bit(ASSOC_FAILED, &ctrl->flags))
3151 goto out_term_aen_ops;
3152
3153 changed = nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_LIVE);
3154
3155 ctrl->ctrl.nr_reconnects = 0;
3156
3157 if (changed)
3158 nvme_start_ctrl(&ctrl->ctrl);
3159
3160 return 0; /* Success */
3161
3162 out_term_aen_ops:
3163 nvme_fc_term_aen_ops(ctrl);
3164 out_disconnect_admin_queue:
3165 /* send a Disconnect(association) LS to fc-nvme target */
3166 nvme_fc_xmt_disconnect_assoc(ctrl);
3167 spin_lock_irqsave(&ctrl->lock, flags);
3168 ctrl->association_id = 0;
3169 disls = ctrl->rcv_disconn;
3170 ctrl->rcv_disconn = NULL;
3171 spin_unlock_irqrestore(&ctrl->lock, flags);
3172 if (disls)
3173 nvme_fc_xmt_ls_rsp(disls);
3174 out_delete_hw_queue:
3175 __nvme_fc_delete_hw_queue(ctrl, &ctrl->queues[0], 0);
3176 out_free_queue:
3177 nvme_fc_free_queue(&ctrl->queues[0]);
3178 clear_bit(ASSOC_ACTIVE, &ctrl->flags);
3179 nvme_fc_ctlr_inactive_on_rport(ctrl);
3180
3181 return ret;
3182 }
3183
3184
3185 /*
3186 * This routine stops operation of the controller on the host side.
3187 * On the host os stack side: Admin and IO queues are stopped,
3188 * outstanding ios on them terminated via FC ABTS.
3189 * On the link side: the association is terminated.
3190 */
3191 static void
nvme_fc_delete_association(struct nvme_fc_ctrl * ctrl)3192 nvme_fc_delete_association(struct nvme_fc_ctrl *ctrl)
3193 {
3194 struct nvmefc_ls_rcv_op *disls = NULL;
3195 unsigned long flags;
3196
3197 if (!test_and_clear_bit(ASSOC_ACTIVE, &ctrl->flags))
3198 return;
3199
3200 spin_lock_irqsave(&ctrl->lock, flags);
3201 set_bit(FCCTRL_TERMIO, &ctrl->flags);
3202 ctrl->iocnt = 0;
3203 spin_unlock_irqrestore(&ctrl->lock, flags);
3204
3205 __nvme_fc_abort_outstanding_ios(ctrl, false);
3206
3207 /* kill the aens as they are a separate path */
3208 nvme_fc_abort_aen_ops(ctrl);
3209
3210 /* wait for all io that had to be aborted */
3211 spin_lock_irq(&ctrl->lock);
3212 wait_event_lock_irq(ctrl->ioabort_wait, ctrl->iocnt == 0, ctrl->lock);
3213 clear_bit(FCCTRL_TERMIO, &ctrl->flags);
3214 spin_unlock_irq(&ctrl->lock);
3215
3216 nvme_fc_term_aen_ops(ctrl);
3217
3218 /*
3219 * send a Disconnect(association) LS to fc-nvme target
3220 * Note: could have been sent at top of process, but
3221 * cleaner on link traffic if after the aborts complete.
3222 * Note: if association doesn't exist, association_id will be 0
3223 */
3224 if (ctrl->association_id)
3225 nvme_fc_xmt_disconnect_assoc(ctrl);
3226
3227 spin_lock_irqsave(&ctrl->lock, flags);
3228 ctrl->association_id = 0;
3229 disls = ctrl->rcv_disconn;
3230 ctrl->rcv_disconn = NULL;
3231 spin_unlock_irqrestore(&ctrl->lock, flags);
3232 if (disls)
3233 /*
3234 * if a Disconnect Request was waiting for a response, send
3235 * now that all ABTS's have been issued (and are complete).
3236 */
3237 nvme_fc_xmt_ls_rsp(disls);
3238
3239 if (ctrl->ctrl.tagset) {
3240 nvme_fc_delete_hw_io_queues(ctrl);
3241 nvme_fc_free_io_queues(ctrl);
3242 }
3243
3244 __nvme_fc_delete_hw_queue(ctrl, &ctrl->queues[0], 0);
3245 nvme_fc_free_queue(&ctrl->queues[0]);
3246
3247 /* re-enable the admin_q so anything new can fast fail */
3248 nvme_start_admin_queue(&ctrl->ctrl);
3249
3250 /* resume the io queues so that things will fast fail */
3251 nvme_start_queues(&ctrl->ctrl);
3252
3253 nvme_fc_ctlr_inactive_on_rport(ctrl);
3254 }
3255
3256 static void
nvme_fc_delete_ctrl(struct nvme_ctrl * nctrl)3257 nvme_fc_delete_ctrl(struct nvme_ctrl *nctrl)
3258 {
3259 struct nvme_fc_ctrl *ctrl = to_fc_ctrl(nctrl);
3260
3261 cancel_work_sync(&ctrl->ioerr_work);
3262 cancel_delayed_work_sync(&ctrl->connect_work);
3263 /*
3264 * kill the association on the link side. this will block
3265 * waiting for io to terminate
3266 */
3267 nvme_fc_delete_association(ctrl);
3268 }
3269
3270 static void
nvme_fc_reconnect_or_delete(struct nvme_fc_ctrl * ctrl,int status)3271 nvme_fc_reconnect_or_delete(struct nvme_fc_ctrl *ctrl, int status)
3272 {
3273 struct nvme_fc_rport *rport = ctrl->rport;
3274 struct nvme_fc_remote_port *portptr = &rport->remoteport;
3275 unsigned long recon_delay = ctrl->ctrl.opts->reconnect_delay * HZ;
3276 bool recon = true;
3277
3278 if (ctrl->ctrl.state != NVME_CTRL_CONNECTING)
3279 return;
3280
3281 if (portptr->port_state == FC_OBJSTATE_ONLINE)
3282 dev_info(ctrl->ctrl.device,
3283 "NVME-FC{%d}: reset: Reconnect attempt failed (%d)\n",
3284 ctrl->cnum, status);
3285 else if (time_after_eq(jiffies, rport->dev_loss_end))
3286 recon = false;
3287
3288 if (recon && nvmf_should_reconnect(&ctrl->ctrl)) {
3289 if (portptr->port_state == FC_OBJSTATE_ONLINE)
3290 dev_info(ctrl->ctrl.device,
3291 "NVME-FC{%d}: Reconnect attempt in %ld "
3292 "seconds\n",
3293 ctrl->cnum, recon_delay / HZ);
3294 else if (time_after(jiffies + recon_delay, rport->dev_loss_end))
3295 recon_delay = rport->dev_loss_end - jiffies;
3296
3297 queue_delayed_work(nvme_wq, &ctrl->connect_work, recon_delay);
3298 } else {
3299 if (portptr->port_state == FC_OBJSTATE_ONLINE)
3300 dev_warn(ctrl->ctrl.device,
3301 "NVME-FC{%d}: Max reconnect attempts (%d) "
3302 "reached.\n",
3303 ctrl->cnum, ctrl->ctrl.nr_reconnects);
3304 else
3305 dev_warn(ctrl->ctrl.device,
3306 "NVME-FC{%d}: dev_loss_tmo (%d) expired "
3307 "while waiting for remoteport connectivity.\n",
3308 ctrl->cnum, min_t(int, portptr->dev_loss_tmo,
3309 (ctrl->ctrl.opts->max_reconnects *
3310 ctrl->ctrl.opts->reconnect_delay)));
3311 WARN_ON(nvme_delete_ctrl(&ctrl->ctrl));
3312 }
3313 }
3314
3315 static void
nvme_fc_reset_ctrl_work(struct work_struct * work)3316 nvme_fc_reset_ctrl_work(struct work_struct *work)
3317 {
3318 struct nvme_fc_ctrl *ctrl =
3319 container_of(work, struct nvme_fc_ctrl, ctrl.reset_work);
3320
3321 nvme_stop_ctrl(&ctrl->ctrl);
3322
3323 /* will block will waiting for io to terminate */
3324 nvme_fc_delete_association(ctrl);
3325
3326 if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_CONNECTING))
3327 dev_err(ctrl->ctrl.device,
3328 "NVME-FC{%d}: error_recovery: Couldn't change state "
3329 "to CONNECTING\n", ctrl->cnum);
3330
3331 if (ctrl->rport->remoteport.port_state == FC_OBJSTATE_ONLINE) {
3332 if (!queue_delayed_work(nvme_wq, &ctrl->connect_work, 0)) {
3333 dev_err(ctrl->ctrl.device,
3334 "NVME-FC{%d}: failed to schedule connect "
3335 "after reset\n", ctrl->cnum);
3336 } else {
3337 flush_delayed_work(&ctrl->connect_work);
3338 }
3339 } else {
3340 nvme_fc_reconnect_or_delete(ctrl, -ENOTCONN);
3341 }
3342 }
3343
3344
3345 static const struct nvme_ctrl_ops nvme_fc_ctrl_ops = {
3346 .name = "fc",
3347 .module = THIS_MODULE,
3348 .flags = NVME_F_FABRICS,
3349 .reg_read32 = nvmf_reg_read32,
3350 .reg_read64 = nvmf_reg_read64,
3351 .reg_write32 = nvmf_reg_write32,
3352 .free_ctrl = nvme_fc_nvme_ctrl_freed,
3353 .submit_async_event = nvme_fc_submit_async_event,
3354 .delete_ctrl = nvme_fc_delete_ctrl,
3355 .get_address = nvmf_get_address,
3356 };
3357
3358 static void
nvme_fc_connect_ctrl_work(struct work_struct * work)3359 nvme_fc_connect_ctrl_work(struct work_struct *work)
3360 {
3361 int ret;
3362
3363 struct nvme_fc_ctrl *ctrl =
3364 container_of(to_delayed_work(work),
3365 struct nvme_fc_ctrl, connect_work);
3366
3367 ret = nvme_fc_create_association(ctrl);
3368 if (ret)
3369 nvme_fc_reconnect_or_delete(ctrl, ret);
3370 else
3371 dev_info(ctrl->ctrl.device,
3372 "NVME-FC{%d}: controller connect complete\n",
3373 ctrl->cnum);
3374 }
3375
3376
3377 static const struct blk_mq_ops nvme_fc_admin_mq_ops = {
3378 .queue_rq = nvme_fc_queue_rq,
3379 .complete = nvme_fc_complete_rq,
3380 .init_request = nvme_fc_init_request,
3381 .exit_request = nvme_fc_exit_request,
3382 .init_hctx = nvme_fc_init_admin_hctx,
3383 .timeout = nvme_fc_timeout,
3384 };
3385
3386
3387 /*
3388 * Fails a controller request if it matches an existing controller
3389 * (association) with the same tuple:
3390 * <Host NQN, Host ID, local FC port, remote FC port, SUBSYS NQN>
3391 *
3392 * The ports don't need to be compared as they are intrinsically
3393 * already matched by the port pointers supplied.
3394 */
3395 static bool
nvme_fc_existing_controller(struct nvme_fc_rport * rport,struct nvmf_ctrl_options * opts)3396 nvme_fc_existing_controller(struct nvme_fc_rport *rport,
3397 struct nvmf_ctrl_options *opts)
3398 {
3399 struct nvme_fc_ctrl *ctrl;
3400 unsigned long flags;
3401 bool found = false;
3402
3403 spin_lock_irqsave(&rport->lock, flags);
3404 list_for_each_entry(ctrl, &rport->ctrl_list, ctrl_list) {
3405 found = nvmf_ctlr_matches_baseopts(&ctrl->ctrl, opts);
3406 if (found)
3407 break;
3408 }
3409 spin_unlock_irqrestore(&rport->lock, flags);
3410
3411 return found;
3412 }
3413
3414 static struct nvme_ctrl *
nvme_fc_init_ctrl(struct device * dev,struct nvmf_ctrl_options * opts,struct nvme_fc_lport * lport,struct nvme_fc_rport * rport)3415 nvme_fc_init_ctrl(struct device *dev, struct nvmf_ctrl_options *opts,
3416 struct nvme_fc_lport *lport, struct nvme_fc_rport *rport)
3417 {
3418 struct nvme_fc_ctrl *ctrl;
3419 unsigned long flags;
3420 int ret, idx, ctrl_loss_tmo;
3421
3422 if (!(rport->remoteport.port_role &
3423 (FC_PORT_ROLE_NVME_DISCOVERY | FC_PORT_ROLE_NVME_TARGET))) {
3424 ret = -EBADR;
3425 goto out_fail;
3426 }
3427
3428 if (!opts->duplicate_connect &&
3429 nvme_fc_existing_controller(rport, opts)) {
3430 ret = -EALREADY;
3431 goto out_fail;
3432 }
3433
3434 ctrl = kzalloc(sizeof(*ctrl), GFP_KERNEL);
3435 if (!ctrl) {
3436 ret = -ENOMEM;
3437 goto out_fail;
3438 }
3439
3440 idx = ida_simple_get(&nvme_fc_ctrl_cnt, 0, 0, GFP_KERNEL);
3441 if (idx < 0) {
3442 ret = -ENOSPC;
3443 goto out_free_ctrl;
3444 }
3445
3446 /*
3447 * if ctrl_loss_tmo is being enforced and the default reconnect delay
3448 * is being used, change to a shorter reconnect delay for FC.
3449 */
3450 if (opts->max_reconnects != -1 &&
3451 opts->reconnect_delay == NVMF_DEF_RECONNECT_DELAY &&
3452 opts->reconnect_delay > NVME_FC_DEFAULT_RECONNECT_TMO) {
3453 ctrl_loss_tmo = opts->max_reconnects * opts->reconnect_delay;
3454 opts->reconnect_delay = NVME_FC_DEFAULT_RECONNECT_TMO;
3455 opts->max_reconnects = DIV_ROUND_UP(ctrl_loss_tmo,
3456 opts->reconnect_delay);
3457 }
3458
3459 ctrl->ctrl.opts = opts;
3460 ctrl->ctrl.nr_reconnects = 0;
3461 if (lport->dev)
3462 ctrl->ctrl.numa_node = dev_to_node(lport->dev);
3463 else
3464 ctrl->ctrl.numa_node = NUMA_NO_NODE;
3465 INIT_LIST_HEAD(&ctrl->ctrl_list);
3466 ctrl->lport = lport;
3467 ctrl->rport = rport;
3468 ctrl->dev = lport->dev;
3469 ctrl->cnum = idx;
3470 ctrl->ioq_live = false;
3471 init_waitqueue_head(&ctrl->ioabort_wait);
3472
3473 get_device(ctrl->dev);
3474 kref_init(&ctrl->ref);
3475
3476 INIT_WORK(&ctrl->ctrl.reset_work, nvme_fc_reset_ctrl_work);
3477 INIT_DELAYED_WORK(&ctrl->connect_work, nvme_fc_connect_ctrl_work);
3478 INIT_WORK(&ctrl->ioerr_work, nvme_fc_ctrl_ioerr_work);
3479 spin_lock_init(&ctrl->lock);
3480
3481 /* io queue count */
3482 ctrl->ctrl.queue_count = min_t(unsigned int,
3483 opts->nr_io_queues,
3484 lport->ops->max_hw_queues);
3485 ctrl->ctrl.queue_count++; /* +1 for admin queue */
3486
3487 ctrl->ctrl.sqsize = opts->queue_size - 1;
3488 ctrl->ctrl.kato = opts->kato;
3489 ctrl->ctrl.cntlid = 0xffff;
3490
3491 ret = -ENOMEM;
3492 ctrl->queues = kcalloc(ctrl->ctrl.queue_count,
3493 sizeof(struct nvme_fc_queue), GFP_KERNEL);
3494 if (!ctrl->queues)
3495 goto out_free_ida;
3496
3497 nvme_fc_init_queue(ctrl, 0);
3498
3499 memset(&ctrl->admin_tag_set, 0, sizeof(ctrl->admin_tag_set));
3500 ctrl->admin_tag_set.ops = &nvme_fc_admin_mq_ops;
3501 ctrl->admin_tag_set.queue_depth = NVME_AQ_MQ_TAG_DEPTH;
3502 ctrl->admin_tag_set.reserved_tags = 2; /* fabric connect + Keep-Alive */
3503 ctrl->admin_tag_set.numa_node = ctrl->ctrl.numa_node;
3504 ctrl->admin_tag_set.cmd_size =
3505 struct_size((struct nvme_fcp_op_w_sgl *)NULL, priv,
3506 ctrl->lport->ops->fcprqst_priv_sz);
3507 ctrl->admin_tag_set.driver_data = ctrl;
3508 ctrl->admin_tag_set.nr_hw_queues = 1;
3509 ctrl->admin_tag_set.timeout = ADMIN_TIMEOUT;
3510 ctrl->admin_tag_set.flags = BLK_MQ_F_NO_SCHED;
3511
3512 ret = blk_mq_alloc_tag_set(&ctrl->admin_tag_set);
3513 if (ret)
3514 goto out_free_queues;
3515 ctrl->ctrl.admin_tagset = &ctrl->admin_tag_set;
3516
3517 ctrl->ctrl.fabrics_q = blk_mq_init_queue(&ctrl->admin_tag_set);
3518 if (IS_ERR(ctrl->ctrl.fabrics_q)) {
3519 ret = PTR_ERR(ctrl->ctrl.fabrics_q);
3520 goto out_free_admin_tag_set;
3521 }
3522
3523 ctrl->ctrl.admin_q = blk_mq_init_queue(&ctrl->admin_tag_set);
3524 if (IS_ERR(ctrl->ctrl.admin_q)) {
3525 ret = PTR_ERR(ctrl->ctrl.admin_q);
3526 goto out_cleanup_fabrics_q;
3527 }
3528
3529 /*
3530 * Would have been nice to init io queues tag set as well.
3531 * However, we require interaction from the controller
3532 * for max io queue count before we can do so.
3533 * Defer this to the connect path.
3534 */
3535
3536 ret = nvme_init_ctrl(&ctrl->ctrl, dev, &nvme_fc_ctrl_ops, 0);
3537 if (ret)
3538 goto out_cleanup_admin_q;
3539
3540 /* at this point, teardown path changes to ref counting on nvme ctrl */
3541
3542 spin_lock_irqsave(&rport->lock, flags);
3543 list_add_tail(&ctrl->ctrl_list, &rport->ctrl_list);
3544 spin_unlock_irqrestore(&rport->lock, flags);
3545
3546 if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_RESETTING) ||
3547 !nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_CONNECTING)) {
3548 dev_err(ctrl->ctrl.device,
3549 "NVME-FC{%d}: failed to init ctrl state\n", ctrl->cnum);
3550 goto fail_ctrl;
3551 }
3552
3553 if (!queue_delayed_work(nvme_wq, &ctrl->connect_work, 0)) {
3554 dev_err(ctrl->ctrl.device,
3555 "NVME-FC{%d}: failed to schedule initial connect\n",
3556 ctrl->cnum);
3557 goto fail_ctrl;
3558 }
3559
3560 flush_delayed_work(&ctrl->connect_work);
3561
3562 dev_info(ctrl->ctrl.device,
3563 "NVME-FC{%d}: new ctrl: NQN \"%s\"\n",
3564 ctrl->cnum, ctrl->ctrl.opts->subsysnqn);
3565
3566 return &ctrl->ctrl;
3567
3568 fail_ctrl:
3569 nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_DELETING);
3570 cancel_work_sync(&ctrl->ioerr_work);
3571 cancel_work_sync(&ctrl->ctrl.reset_work);
3572 cancel_delayed_work_sync(&ctrl->connect_work);
3573
3574 ctrl->ctrl.opts = NULL;
3575
3576 /* initiate nvme ctrl ref counting teardown */
3577 nvme_uninit_ctrl(&ctrl->ctrl);
3578
3579 /* Remove core ctrl ref. */
3580 nvme_put_ctrl(&ctrl->ctrl);
3581
3582 /* as we're past the point where we transition to the ref
3583 * counting teardown path, if we return a bad pointer here,
3584 * the calling routine, thinking it's prior to the
3585 * transition, will do an rport put. Since the teardown
3586 * path also does a rport put, we do an extra get here to
3587 * so proper order/teardown happens.
3588 */
3589 nvme_fc_rport_get(rport);
3590
3591 return ERR_PTR(-EIO);
3592
3593 out_cleanup_admin_q:
3594 blk_cleanup_queue(ctrl->ctrl.admin_q);
3595 out_cleanup_fabrics_q:
3596 blk_cleanup_queue(ctrl->ctrl.fabrics_q);
3597 out_free_admin_tag_set:
3598 blk_mq_free_tag_set(&ctrl->admin_tag_set);
3599 out_free_queues:
3600 kfree(ctrl->queues);
3601 out_free_ida:
3602 put_device(ctrl->dev);
3603 ida_simple_remove(&nvme_fc_ctrl_cnt, ctrl->cnum);
3604 out_free_ctrl:
3605 kfree(ctrl);
3606 out_fail:
3607 /* exit via here doesn't follow ctlr ref points */
3608 return ERR_PTR(ret);
3609 }
3610
3611
3612 struct nvmet_fc_traddr {
3613 u64 nn;
3614 u64 pn;
3615 };
3616
3617 static int
__nvme_fc_parse_u64(substring_t * sstr,u64 * val)3618 __nvme_fc_parse_u64(substring_t *sstr, u64 *val)
3619 {
3620 u64 token64;
3621
3622 if (match_u64(sstr, &token64))
3623 return -EINVAL;
3624 *val = token64;
3625
3626 return 0;
3627 }
3628
3629 /*
3630 * This routine validates and extracts the WWN's from the TRADDR string.
3631 * As kernel parsers need the 0x to determine number base, universally
3632 * build string to parse with 0x prefix before parsing name strings.
3633 */
3634 static int
nvme_fc_parse_traddr(struct nvmet_fc_traddr * traddr,char * buf,size_t blen)3635 nvme_fc_parse_traddr(struct nvmet_fc_traddr *traddr, char *buf, size_t blen)
3636 {
3637 char name[2 + NVME_FC_TRADDR_HEXNAMELEN + 1];
3638 substring_t wwn = { name, &name[sizeof(name)-1] };
3639 int nnoffset, pnoffset;
3640
3641 /* validate if string is one of the 2 allowed formats */
3642 if (strnlen(buf, blen) == NVME_FC_TRADDR_MAXLENGTH &&
3643 !strncmp(buf, "nn-0x", NVME_FC_TRADDR_OXNNLEN) &&
3644 !strncmp(&buf[NVME_FC_TRADDR_MAX_PN_OFFSET],
3645 "pn-0x", NVME_FC_TRADDR_OXNNLEN)) {
3646 nnoffset = NVME_FC_TRADDR_OXNNLEN;
3647 pnoffset = NVME_FC_TRADDR_MAX_PN_OFFSET +
3648 NVME_FC_TRADDR_OXNNLEN;
3649 } else if ((strnlen(buf, blen) == NVME_FC_TRADDR_MINLENGTH &&
3650 !strncmp(buf, "nn-", NVME_FC_TRADDR_NNLEN) &&
3651 !strncmp(&buf[NVME_FC_TRADDR_MIN_PN_OFFSET],
3652 "pn-", NVME_FC_TRADDR_NNLEN))) {
3653 nnoffset = NVME_FC_TRADDR_NNLEN;
3654 pnoffset = NVME_FC_TRADDR_MIN_PN_OFFSET + NVME_FC_TRADDR_NNLEN;
3655 } else
3656 goto out_einval;
3657
3658 name[0] = '0';
3659 name[1] = 'x';
3660 name[2 + NVME_FC_TRADDR_HEXNAMELEN] = 0;
3661
3662 memcpy(&name[2], &buf[nnoffset], NVME_FC_TRADDR_HEXNAMELEN);
3663 if (__nvme_fc_parse_u64(&wwn, &traddr->nn))
3664 goto out_einval;
3665
3666 memcpy(&name[2], &buf[pnoffset], NVME_FC_TRADDR_HEXNAMELEN);
3667 if (__nvme_fc_parse_u64(&wwn, &traddr->pn))
3668 goto out_einval;
3669
3670 return 0;
3671
3672 out_einval:
3673 pr_warn("%s: bad traddr string\n", __func__);
3674 return -EINVAL;
3675 }
3676
3677 static struct nvme_ctrl *
nvme_fc_create_ctrl(struct device * dev,struct nvmf_ctrl_options * opts)3678 nvme_fc_create_ctrl(struct device *dev, struct nvmf_ctrl_options *opts)
3679 {
3680 struct nvme_fc_lport *lport;
3681 struct nvme_fc_rport *rport;
3682 struct nvme_ctrl *ctrl;
3683 struct nvmet_fc_traddr laddr = { 0L, 0L };
3684 struct nvmet_fc_traddr raddr = { 0L, 0L };
3685 unsigned long flags;
3686 int ret;
3687
3688 ret = nvme_fc_parse_traddr(&raddr, opts->traddr, NVMF_TRADDR_SIZE);
3689 if (ret || !raddr.nn || !raddr.pn)
3690 return ERR_PTR(-EINVAL);
3691
3692 ret = nvme_fc_parse_traddr(&laddr, opts->host_traddr, NVMF_TRADDR_SIZE);
3693 if (ret || !laddr.nn || !laddr.pn)
3694 return ERR_PTR(-EINVAL);
3695
3696 /* find the host and remote ports to connect together */
3697 spin_lock_irqsave(&nvme_fc_lock, flags);
3698 list_for_each_entry(lport, &nvme_fc_lport_list, port_list) {
3699 if (lport->localport.node_name != laddr.nn ||
3700 lport->localport.port_name != laddr.pn ||
3701 lport->localport.port_state != FC_OBJSTATE_ONLINE)
3702 continue;
3703
3704 list_for_each_entry(rport, &lport->endp_list, endp_list) {
3705 if (rport->remoteport.node_name != raddr.nn ||
3706 rport->remoteport.port_name != raddr.pn ||
3707 rport->remoteport.port_state != FC_OBJSTATE_ONLINE)
3708 continue;
3709
3710 /* if fail to get reference fall through. Will error */
3711 if (!nvme_fc_rport_get(rport))
3712 break;
3713
3714 spin_unlock_irqrestore(&nvme_fc_lock, flags);
3715
3716 ctrl = nvme_fc_init_ctrl(dev, opts, lport, rport);
3717 if (IS_ERR(ctrl))
3718 nvme_fc_rport_put(rport);
3719 return ctrl;
3720 }
3721 }
3722 spin_unlock_irqrestore(&nvme_fc_lock, flags);
3723
3724 pr_warn("%s: %s - %s combination not found\n",
3725 __func__, opts->traddr, opts->host_traddr);
3726 return ERR_PTR(-ENOENT);
3727 }
3728
3729
3730 static struct nvmf_transport_ops nvme_fc_transport = {
3731 .name = "fc",
3732 .module = THIS_MODULE,
3733 .required_opts = NVMF_OPT_TRADDR | NVMF_OPT_HOST_TRADDR,
3734 .allowed_opts = NVMF_OPT_RECONNECT_DELAY | NVMF_OPT_CTRL_LOSS_TMO,
3735 .create_ctrl = nvme_fc_create_ctrl,
3736 };
3737
3738 /* Arbitrary successive failures max. With lots of subsystems could be high */
3739 #define DISCOVERY_MAX_FAIL 20
3740
nvme_fc_nvme_discovery_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)3741 static ssize_t nvme_fc_nvme_discovery_store(struct device *dev,
3742 struct device_attribute *attr, const char *buf, size_t count)
3743 {
3744 unsigned long flags;
3745 LIST_HEAD(local_disc_list);
3746 struct nvme_fc_lport *lport;
3747 struct nvme_fc_rport *rport;
3748 int failcnt = 0;
3749
3750 spin_lock_irqsave(&nvme_fc_lock, flags);
3751 restart:
3752 list_for_each_entry(lport, &nvme_fc_lport_list, port_list) {
3753 list_for_each_entry(rport, &lport->endp_list, endp_list) {
3754 if (!nvme_fc_lport_get(lport))
3755 continue;
3756 if (!nvme_fc_rport_get(rport)) {
3757 /*
3758 * This is a temporary condition. Upon restart
3759 * this rport will be gone from the list.
3760 *
3761 * Revert the lport put and retry. Anything
3762 * added to the list already will be skipped (as
3763 * they are no longer list_empty). Loops should
3764 * resume at rports that were not yet seen.
3765 */
3766 nvme_fc_lport_put(lport);
3767
3768 if (failcnt++ < DISCOVERY_MAX_FAIL)
3769 goto restart;
3770
3771 pr_err("nvme_discovery: too many reference "
3772 "failures\n");
3773 goto process_local_list;
3774 }
3775 if (list_empty(&rport->disc_list))
3776 list_add_tail(&rport->disc_list,
3777 &local_disc_list);
3778 }
3779 }
3780
3781 process_local_list:
3782 while (!list_empty(&local_disc_list)) {
3783 rport = list_first_entry(&local_disc_list,
3784 struct nvme_fc_rport, disc_list);
3785 list_del_init(&rport->disc_list);
3786 spin_unlock_irqrestore(&nvme_fc_lock, flags);
3787
3788 lport = rport->lport;
3789 /* signal discovery. Won't hurt if it repeats */
3790 nvme_fc_signal_discovery_scan(lport, rport);
3791 nvme_fc_rport_put(rport);
3792 nvme_fc_lport_put(lport);
3793
3794 spin_lock_irqsave(&nvme_fc_lock, flags);
3795 }
3796 spin_unlock_irqrestore(&nvme_fc_lock, flags);
3797
3798 return count;
3799 }
3800 static DEVICE_ATTR(nvme_discovery, 0200, NULL, nvme_fc_nvme_discovery_store);
3801
3802 static struct attribute *nvme_fc_attrs[] = {
3803 &dev_attr_nvme_discovery.attr,
3804 NULL
3805 };
3806
3807 static struct attribute_group nvme_fc_attr_group = {
3808 .attrs = nvme_fc_attrs,
3809 };
3810
3811 static const struct attribute_group *nvme_fc_attr_groups[] = {
3812 &nvme_fc_attr_group,
3813 NULL
3814 };
3815
3816 static struct class fc_class = {
3817 .name = "fc",
3818 .dev_groups = nvme_fc_attr_groups,
3819 .owner = THIS_MODULE,
3820 };
3821
nvme_fc_init_module(void)3822 static int __init nvme_fc_init_module(void)
3823 {
3824 int ret;
3825
3826 nvme_fc_wq = alloc_workqueue("nvme_fc_wq", WQ_MEM_RECLAIM, 0);
3827 if (!nvme_fc_wq)
3828 return -ENOMEM;
3829
3830 /*
3831 * NOTE:
3832 * It is expected that in the future the kernel will combine
3833 * the FC-isms that are currently under scsi and now being
3834 * added to by NVME into a new standalone FC class. The SCSI
3835 * and NVME protocols and their devices would be under this
3836 * new FC class.
3837 *
3838 * As we need something to post FC-specific udev events to,
3839 * specifically for nvme probe events, start by creating the
3840 * new device class. When the new standalone FC class is
3841 * put in place, this code will move to a more generic
3842 * location for the class.
3843 */
3844 ret = class_register(&fc_class);
3845 if (ret) {
3846 pr_err("couldn't register class fc\n");
3847 goto out_destroy_wq;
3848 }
3849
3850 /*
3851 * Create a device for the FC-centric udev events
3852 */
3853 fc_udev_device = device_create(&fc_class, NULL, MKDEV(0, 0), NULL,
3854 "fc_udev_device");
3855 if (IS_ERR(fc_udev_device)) {
3856 pr_err("couldn't create fc_udev device!\n");
3857 ret = PTR_ERR(fc_udev_device);
3858 goto out_destroy_class;
3859 }
3860
3861 ret = nvmf_register_transport(&nvme_fc_transport);
3862 if (ret)
3863 goto out_destroy_device;
3864
3865 return 0;
3866
3867 out_destroy_device:
3868 device_destroy(&fc_class, MKDEV(0, 0));
3869 out_destroy_class:
3870 class_unregister(&fc_class);
3871 out_destroy_wq:
3872 destroy_workqueue(nvme_fc_wq);
3873
3874 return ret;
3875 }
3876
3877 static void
nvme_fc_delete_controllers(struct nvme_fc_rport * rport)3878 nvme_fc_delete_controllers(struct nvme_fc_rport *rport)
3879 {
3880 struct nvme_fc_ctrl *ctrl;
3881
3882 spin_lock(&rport->lock);
3883 list_for_each_entry(ctrl, &rport->ctrl_list, ctrl_list) {
3884 dev_warn(ctrl->ctrl.device,
3885 "NVME-FC{%d}: transport unloading: deleting ctrl\n",
3886 ctrl->cnum);
3887 nvme_delete_ctrl(&ctrl->ctrl);
3888 }
3889 spin_unlock(&rport->lock);
3890 }
3891
3892 static void
nvme_fc_cleanup_for_unload(void)3893 nvme_fc_cleanup_for_unload(void)
3894 {
3895 struct nvme_fc_lport *lport;
3896 struct nvme_fc_rport *rport;
3897
3898 list_for_each_entry(lport, &nvme_fc_lport_list, port_list) {
3899 list_for_each_entry(rport, &lport->endp_list, endp_list) {
3900 nvme_fc_delete_controllers(rport);
3901 }
3902 }
3903 }
3904
nvme_fc_exit_module(void)3905 static void __exit nvme_fc_exit_module(void)
3906 {
3907 unsigned long flags;
3908 bool need_cleanup = false;
3909
3910 spin_lock_irqsave(&nvme_fc_lock, flags);
3911 nvme_fc_waiting_to_unload = true;
3912 if (!list_empty(&nvme_fc_lport_list)) {
3913 need_cleanup = true;
3914 nvme_fc_cleanup_for_unload();
3915 }
3916 spin_unlock_irqrestore(&nvme_fc_lock, flags);
3917 if (need_cleanup) {
3918 pr_info("%s: waiting for ctlr deletes\n", __func__);
3919 wait_for_completion(&nvme_fc_unload_proceed);
3920 pr_info("%s: ctrl deletes complete\n", __func__);
3921 }
3922
3923 nvmf_unregister_transport(&nvme_fc_transport);
3924
3925 ida_destroy(&nvme_fc_local_port_cnt);
3926 ida_destroy(&nvme_fc_ctrl_cnt);
3927
3928 device_destroy(&fc_class, MKDEV(0, 0));
3929 class_unregister(&fc_class);
3930 destroy_workqueue(nvme_fc_wq);
3931 }
3932
3933 module_init(nvme_fc_init_module);
3934 module_exit(nvme_fc_exit_module);
3935
3936 MODULE_LICENSE("GPL v2");
3937