• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * NVM Express device driver
4  * Copyright (c) 2011-2014, Intel Corporation.
5  */
6 
7 #include <linux/blkdev.h>
8 #include <linux/blk-mq.h>
9 #include <linux/compat.h>
10 #include <linux/delay.h>
11 #include <linux/errno.h>
12 #include <linux/hdreg.h>
13 #include <linux/kernel.h>
14 #include <linux/module.h>
15 #include <linux/backing-dev.h>
16 #include <linux/slab.h>
17 #include <linux/types.h>
18 #include <linux/pr.h>
19 #include <linux/ptrace.h>
20 #include <linux/nvme_ioctl.h>
21 #include <linux/pm_qos.h>
22 #include <asm/unaligned.h>
23 
24 #include "nvme.h"
25 #include "fabrics.h"
26 
27 #define CREATE_TRACE_POINTS
28 #include "trace.h"
29 
30 #define NVME_MINORS		(1U << MINORBITS)
31 
32 unsigned int admin_timeout = 60;
33 module_param(admin_timeout, uint, 0644);
34 MODULE_PARM_DESC(admin_timeout, "timeout in seconds for admin commands");
35 EXPORT_SYMBOL_GPL(admin_timeout);
36 
37 unsigned int nvme_io_timeout = 30;
38 module_param_named(io_timeout, nvme_io_timeout, uint, 0644);
39 MODULE_PARM_DESC(io_timeout, "timeout in seconds for I/O");
40 EXPORT_SYMBOL_GPL(nvme_io_timeout);
41 
42 static unsigned char shutdown_timeout = 5;
43 module_param(shutdown_timeout, byte, 0644);
44 MODULE_PARM_DESC(shutdown_timeout, "timeout in seconds for controller shutdown");
45 
46 static u8 nvme_max_retries = 5;
47 module_param_named(max_retries, nvme_max_retries, byte, 0644);
48 MODULE_PARM_DESC(max_retries, "max number of retries a command may have");
49 
50 static unsigned long default_ps_max_latency_us = 100000;
51 module_param(default_ps_max_latency_us, ulong, 0644);
52 MODULE_PARM_DESC(default_ps_max_latency_us,
53 		 "max power saving latency for new devices; use PM QOS to change per device");
54 
55 static bool force_apst;
56 module_param(force_apst, bool, 0644);
57 MODULE_PARM_DESC(force_apst, "allow APST for newly enumerated devices even if quirked off");
58 
59 static bool streams;
60 module_param(streams, bool, 0644);
61 MODULE_PARM_DESC(streams, "turn on support for Streams write directives");
62 
63 /*
64  * nvme_wq - hosts nvme related works that are not reset or delete
65  * nvme_reset_wq - hosts nvme reset works
66  * nvme_delete_wq - hosts nvme delete works
67  *
68  * nvme_wq will host works such as scan, aen handling, fw activation,
69  * keep-alive, periodic reconnects etc. nvme_reset_wq
70  * runs reset works which also flush works hosted on nvme_wq for
71  * serialization purposes. nvme_delete_wq host controller deletion
72  * works which flush reset works for serialization.
73  */
74 struct workqueue_struct *nvme_wq;
75 EXPORT_SYMBOL_GPL(nvme_wq);
76 
77 struct workqueue_struct *nvme_reset_wq;
78 EXPORT_SYMBOL_GPL(nvme_reset_wq);
79 
80 struct workqueue_struct *nvme_delete_wq;
81 EXPORT_SYMBOL_GPL(nvme_delete_wq);
82 
83 static LIST_HEAD(nvme_subsystems);
84 static DEFINE_MUTEX(nvme_subsystems_lock);
85 
86 static DEFINE_IDA(nvme_instance_ida);
87 static dev_t nvme_chr_devt;
88 static struct class *nvme_class;
89 static struct class *nvme_subsys_class;
90 
91 static void nvme_put_subsystem(struct nvme_subsystem *subsys);
92 static void nvme_remove_invalid_namespaces(struct nvme_ctrl *ctrl,
93 					   unsigned nsid);
94 
nvme_update_bdev_size(struct gendisk * disk)95 static void nvme_update_bdev_size(struct gendisk *disk)
96 {
97 	struct block_device *bdev = bdget_disk(disk, 0);
98 
99 	if (bdev) {
100 		bd_set_nr_sectors(bdev, get_capacity(disk));
101 		bdput(bdev);
102 	}
103 }
104 
nvme_queue_scan(struct nvme_ctrl * ctrl)105 static void nvme_queue_scan(struct nvme_ctrl *ctrl)
106 {
107 	/*
108 	 * Only new queue scan work when admin and IO queues are both alive
109 	 */
110 	if (ctrl->state == NVME_CTRL_LIVE && ctrl->tagset)
111 		queue_work(nvme_wq, &ctrl->scan_work);
112 }
113 
114 /*
115  * Use this function to proceed with scheduling reset_work for a controller
116  * that had previously been set to the resetting state. This is intended for
117  * code paths that can't be interrupted by other reset attempts. A hot removal
118  * may prevent this from succeeding.
119  */
nvme_try_sched_reset(struct nvme_ctrl * ctrl)120 int nvme_try_sched_reset(struct nvme_ctrl *ctrl)
121 {
122 	if (ctrl->state != NVME_CTRL_RESETTING)
123 		return -EBUSY;
124 	if (!queue_work(nvme_reset_wq, &ctrl->reset_work))
125 		return -EBUSY;
126 	return 0;
127 }
128 EXPORT_SYMBOL_GPL(nvme_try_sched_reset);
129 
nvme_reset_ctrl(struct nvme_ctrl * ctrl)130 int nvme_reset_ctrl(struct nvme_ctrl *ctrl)
131 {
132 	if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING))
133 		return -EBUSY;
134 	if (!queue_work(nvme_reset_wq, &ctrl->reset_work))
135 		return -EBUSY;
136 	return 0;
137 }
138 EXPORT_SYMBOL_GPL(nvme_reset_ctrl);
139 
nvme_reset_ctrl_sync(struct nvme_ctrl * ctrl)140 int nvme_reset_ctrl_sync(struct nvme_ctrl *ctrl)
141 {
142 	int ret;
143 
144 	ret = nvme_reset_ctrl(ctrl);
145 	if (!ret) {
146 		flush_work(&ctrl->reset_work);
147 		if (ctrl->state != NVME_CTRL_LIVE)
148 			ret = -ENETRESET;
149 	}
150 
151 	return ret;
152 }
153 EXPORT_SYMBOL_GPL(nvme_reset_ctrl_sync);
154 
nvme_do_delete_ctrl(struct nvme_ctrl * ctrl)155 static void nvme_do_delete_ctrl(struct nvme_ctrl *ctrl)
156 {
157 	dev_info(ctrl->device,
158 		 "Removing ctrl: NQN \"%s\"\n", ctrl->opts->subsysnqn);
159 
160 	flush_work(&ctrl->reset_work);
161 	nvme_stop_ctrl(ctrl);
162 	nvme_remove_namespaces(ctrl);
163 	ctrl->ops->delete_ctrl(ctrl);
164 	nvme_uninit_ctrl(ctrl);
165 }
166 
nvme_delete_ctrl_work(struct work_struct * work)167 static void nvme_delete_ctrl_work(struct work_struct *work)
168 {
169 	struct nvme_ctrl *ctrl =
170 		container_of(work, struct nvme_ctrl, delete_work);
171 
172 	nvme_do_delete_ctrl(ctrl);
173 }
174 
nvme_delete_ctrl(struct nvme_ctrl * ctrl)175 int nvme_delete_ctrl(struct nvme_ctrl *ctrl)
176 {
177 	if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_DELETING))
178 		return -EBUSY;
179 	if (!queue_work(nvme_delete_wq, &ctrl->delete_work))
180 		return -EBUSY;
181 	return 0;
182 }
183 EXPORT_SYMBOL_GPL(nvme_delete_ctrl);
184 
nvme_delete_ctrl_sync(struct nvme_ctrl * ctrl)185 static void nvme_delete_ctrl_sync(struct nvme_ctrl *ctrl)
186 {
187 	/*
188 	 * Keep a reference until nvme_do_delete_ctrl() complete,
189 	 * since ->delete_ctrl can free the controller.
190 	 */
191 	nvme_get_ctrl(ctrl);
192 	if (nvme_change_ctrl_state(ctrl, NVME_CTRL_DELETING))
193 		nvme_do_delete_ctrl(ctrl);
194 	nvme_put_ctrl(ctrl);
195 }
196 
nvme_error_status(u16 status)197 static blk_status_t nvme_error_status(u16 status)
198 {
199 	switch (status & 0x7ff) {
200 	case NVME_SC_SUCCESS:
201 		return BLK_STS_OK;
202 	case NVME_SC_CAP_EXCEEDED:
203 		return BLK_STS_NOSPC;
204 	case NVME_SC_LBA_RANGE:
205 	case NVME_SC_CMD_INTERRUPTED:
206 	case NVME_SC_NS_NOT_READY:
207 		return BLK_STS_TARGET;
208 	case NVME_SC_BAD_ATTRIBUTES:
209 	case NVME_SC_ONCS_NOT_SUPPORTED:
210 	case NVME_SC_INVALID_OPCODE:
211 	case NVME_SC_INVALID_FIELD:
212 	case NVME_SC_INVALID_NS:
213 		return BLK_STS_NOTSUPP;
214 	case NVME_SC_WRITE_FAULT:
215 	case NVME_SC_READ_ERROR:
216 	case NVME_SC_UNWRITTEN_BLOCK:
217 	case NVME_SC_ACCESS_DENIED:
218 	case NVME_SC_READ_ONLY:
219 	case NVME_SC_COMPARE_FAILED:
220 		return BLK_STS_MEDIUM;
221 	case NVME_SC_GUARD_CHECK:
222 	case NVME_SC_APPTAG_CHECK:
223 	case NVME_SC_REFTAG_CHECK:
224 	case NVME_SC_INVALID_PI:
225 		return BLK_STS_PROTECTION;
226 	case NVME_SC_RESERVATION_CONFLICT:
227 		return BLK_STS_NEXUS;
228 	case NVME_SC_HOST_PATH_ERROR:
229 		return BLK_STS_TRANSPORT;
230 	case NVME_SC_ZONE_TOO_MANY_ACTIVE:
231 		return BLK_STS_ZONE_ACTIVE_RESOURCE;
232 	case NVME_SC_ZONE_TOO_MANY_OPEN:
233 		return BLK_STS_ZONE_OPEN_RESOURCE;
234 	default:
235 		return BLK_STS_IOERR;
236 	}
237 }
238 
nvme_retry_req(struct request * req)239 static void nvme_retry_req(struct request *req)
240 {
241 	struct nvme_ns *ns = req->q->queuedata;
242 	unsigned long delay = 0;
243 	u16 crd;
244 
245 	/* The mask and shift result must be <= 3 */
246 	crd = (nvme_req(req)->status & NVME_SC_CRD) >> 11;
247 	if (ns && crd)
248 		delay = ns->ctrl->crdt[crd - 1] * 100;
249 
250 	nvme_req(req)->retries++;
251 	blk_mq_requeue_request(req, false);
252 	blk_mq_delay_kick_requeue_list(req->q, delay);
253 }
254 
255 enum nvme_disposition {
256 	COMPLETE,
257 	RETRY,
258 	FAILOVER,
259 };
260 
nvme_decide_disposition(struct request * req)261 static inline enum nvme_disposition nvme_decide_disposition(struct request *req)
262 {
263 	if (likely(nvme_req(req)->status == 0))
264 		return COMPLETE;
265 
266 	if (blk_noretry_request(req) ||
267 	    (nvme_req(req)->status & NVME_SC_DNR) ||
268 	    nvme_req(req)->retries >= nvme_max_retries)
269 		return COMPLETE;
270 
271 	if (req->cmd_flags & REQ_NVME_MPATH) {
272 		if (nvme_is_path_error(nvme_req(req)->status) ||
273 		    blk_queue_dying(req->q))
274 			return FAILOVER;
275 	} else {
276 		if (blk_queue_dying(req->q))
277 			return COMPLETE;
278 	}
279 
280 	return RETRY;
281 }
282 
nvme_end_req(struct request * req)283 static inline void nvme_end_req(struct request *req)
284 {
285 	blk_status_t status = nvme_error_status(nvme_req(req)->status);
286 
287 	if (IS_ENABLED(CONFIG_BLK_DEV_ZONED) &&
288 	    req_op(req) == REQ_OP_ZONE_APPEND)
289 		req->__sector = nvme_lba_to_sect(req->q->queuedata,
290 			le64_to_cpu(nvme_req(req)->result.u64));
291 
292 	nvme_trace_bio_complete(req, status);
293 	blk_mq_end_request(req, status);
294 }
295 
nvme_complete_rq(struct request * req)296 void nvme_complete_rq(struct request *req)
297 {
298 	trace_nvme_complete_rq(req);
299 	nvme_cleanup_cmd(req);
300 
301 	if (nvme_req(req)->ctrl->kas)
302 		nvme_req(req)->ctrl->comp_seen = true;
303 
304 	switch (nvme_decide_disposition(req)) {
305 	case COMPLETE:
306 		nvme_end_req(req);
307 		return;
308 	case RETRY:
309 		nvme_retry_req(req);
310 		return;
311 	case FAILOVER:
312 		nvme_failover_req(req);
313 		return;
314 	}
315 }
316 EXPORT_SYMBOL_GPL(nvme_complete_rq);
317 
nvme_cancel_request(struct request * req,void * data,bool reserved)318 bool nvme_cancel_request(struct request *req, void *data, bool reserved)
319 {
320 	dev_dbg_ratelimited(((struct nvme_ctrl *) data)->device,
321 				"Cancelling I/O %d", req->tag);
322 
323 	/* don't abort one completed request */
324 	if (blk_mq_request_completed(req))
325 		return true;
326 
327 	nvme_req(req)->status = NVME_SC_HOST_ABORTED_CMD;
328 	nvme_req(req)->flags |= NVME_REQ_CANCELLED;
329 	blk_mq_complete_request(req);
330 	return true;
331 }
332 EXPORT_SYMBOL_GPL(nvme_cancel_request);
333 
nvme_cancel_tagset(struct nvme_ctrl * ctrl)334 void nvme_cancel_tagset(struct nvme_ctrl *ctrl)
335 {
336 	if (ctrl->tagset) {
337 		blk_mq_tagset_busy_iter(ctrl->tagset,
338 				nvme_cancel_request, ctrl);
339 		blk_mq_tagset_wait_completed_request(ctrl->tagset);
340 	}
341 }
342 EXPORT_SYMBOL_GPL(nvme_cancel_tagset);
343 
nvme_cancel_admin_tagset(struct nvme_ctrl * ctrl)344 void nvme_cancel_admin_tagset(struct nvme_ctrl *ctrl)
345 {
346 	if (ctrl->admin_tagset) {
347 		blk_mq_tagset_busy_iter(ctrl->admin_tagset,
348 				nvme_cancel_request, ctrl);
349 		blk_mq_tagset_wait_completed_request(ctrl->admin_tagset);
350 	}
351 }
352 EXPORT_SYMBOL_GPL(nvme_cancel_admin_tagset);
353 
nvme_change_ctrl_state(struct nvme_ctrl * ctrl,enum nvme_ctrl_state new_state)354 bool nvme_change_ctrl_state(struct nvme_ctrl *ctrl,
355 		enum nvme_ctrl_state new_state)
356 {
357 	enum nvme_ctrl_state old_state;
358 	unsigned long flags;
359 	bool changed = false;
360 
361 	spin_lock_irqsave(&ctrl->lock, flags);
362 
363 	old_state = ctrl->state;
364 	switch (new_state) {
365 	case NVME_CTRL_LIVE:
366 		switch (old_state) {
367 		case NVME_CTRL_NEW:
368 		case NVME_CTRL_RESETTING:
369 		case NVME_CTRL_CONNECTING:
370 			changed = true;
371 			fallthrough;
372 		default:
373 			break;
374 		}
375 		break;
376 	case NVME_CTRL_RESETTING:
377 		switch (old_state) {
378 		case NVME_CTRL_NEW:
379 		case NVME_CTRL_LIVE:
380 			changed = true;
381 			fallthrough;
382 		default:
383 			break;
384 		}
385 		break;
386 	case NVME_CTRL_CONNECTING:
387 		switch (old_state) {
388 		case NVME_CTRL_NEW:
389 		case NVME_CTRL_RESETTING:
390 			changed = true;
391 			fallthrough;
392 		default:
393 			break;
394 		}
395 		break;
396 	case NVME_CTRL_DELETING:
397 		switch (old_state) {
398 		case NVME_CTRL_LIVE:
399 		case NVME_CTRL_RESETTING:
400 		case NVME_CTRL_CONNECTING:
401 			changed = true;
402 			fallthrough;
403 		default:
404 			break;
405 		}
406 		break;
407 	case NVME_CTRL_DELETING_NOIO:
408 		switch (old_state) {
409 		case NVME_CTRL_DELETING:
410 		case NVME_CTRL_DEAD:
411 			changed = true;
412 			fallthrough;
413 		default:
414 			break;
415 		}
416 		break;
417 	case NVME_CTRL_DEAD:
418 		switch (old_state) {
419 		case NVME_CTRL_DELETING:
420 			changed = true;
421 			fallthrough;
422 		default:
423 			break;
424 		}
425 		break;
426 	default:
427 		break;
428 	}
429 
430 	if (changed) {
431 		ctrl->state = new_state;
432 		wake_up_all(&ctrl->state_wq);
433 	}
434 
435 	spin_unlock_irqrestore(&ctrl->lock, flags);
436 	if (changed && ctrl->state == NVME_CTRL_LIVE)
437 		nvme_kick_requeue_lists(ctrl);
438 	return changed;
439 }
440 EXPORT_SYMBOL_GPL(nvme_change_ctrl_state);
441 
442 /*
443  * Returns true for sink states that can't ever transition back to live.
444  */
nvme_state_terminal(struct nvme_ctrl * ctrl)445 static bool nvme_state_terminal(struct nvme_ctrl *ctrl)
446 {
447 	switch (ctrl->state) {
448 	case NVME_CTRL_NEW:
449 	case NVME_CTRL_LIVE:
450 	case NVME_CTRL_RESETTING:
451 	case NVME_CTRL_CONNECTING:
452 		return false;
453 	case NVME_CTRL_DELETING:
454 	case NVME_CTRL_DELETING_NOIO:
455 	case NVME_CTRL_DEAD:
456 		return true;
457 	default:
458 		WARN_ONCE(1, "Unhandled ctrl state:%d", ctrl->state);
459 		return true;
460 	}
461 }
462 
463 /*
464  * Waits for the controller state to be resetting, or returns false if it is
465  * not possible to ever transition to that state.
466  */
nvme_wait_reset(struct nvme_ctrl * ctrl)467 bool nvme_wait_reset(struct nvme_ctrl *ctrl)
468 {
469 	wait_event(ctrl->state_wq,
470 		   nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING) ||
471 		   nvme_state_terminal(ctrl));
472 	return ctrl->state == NVME_CTRL_RESETTING;
473 }
474 EXPORT_SYMBOL_GPL(nvme_wait_reset);
475 
nvme_free_ns_head(struct kref * ref)476 static void nvme_free_ns_head(struct kref *ref)
477 {
478 	struct nvme_ns_head *head =
479 		container_of(ref, struct nvme_ns_head, ref);
480 
481 	nvme_mpath_remove_disk(head);
482 	ida_simple_remove(&head->subsys->ns_ida, head->instance);
483 	cleanup_srcu_struct(&head->srcu);
484 	nvme_put_subsystem(head->subsys);
485 	kfree(head);
486 }
487 
nvme_put_ns_head(struct nvme_ns_head * head)488 static void nvme_put_ns_head(struct nvme_ns_head *head)
489 {
490 	kref_put(&head->ref, nvme_free_ns_head);
491 }
492 
nvme_free_ns(struct kref * kref)493 static void nvme_free_ns(struct kref *kref)
494 {
495 	struct nvme_ns *ns = container_of(kref, struct nvme_ns, kref);
496 
497 	if (ns->ndev)
498 		nvme_nvm_unregister(ns);
499 
500 	put_disk(ns->disk);
501 	nvme_put_ns_head(ns->head);
502 	nvme_put_ctrl(ns->ctrl);
503 	kfree(ns);
504 }
505 
nvme_put_ns(struct nvme_ns * ns)506 void nvme_put_ns(struct nvme_ns *ns)
507 {
508 	kref_put(&ns->kref, nvme_free_ns);
509 }
510 EXPORT_SYMBOL_NS_GPL(nvme_put_ns, NVME_TARGET_PASSTHRU);
511 
nvme_clear_nvme_request(struct request * req)512 static inline void nvme_clear_nvme_request(struct request *req)
513 {
514 	nvme_req(req)->retries = 0;
515 	nvme_req(req)->flags = 0;
516 	req->rq_flags |= RQF_DONTPREP;
517 }
518 
nvme_req_op(struct nvme_command * cmd)519 static inline unsigned int nvme_req_op(struct nvme_command *cmd)
520 {
521 	return nvme_is_write(cmd) ? REQ_OP_DRV_OUT : REQ_OP_DRV_IN;
522 }
523 
nvme_init_request(struct request * req,struct nvme_command * cmd)524 static inline void nvme_init_request(struct request *req,
525 		struct nvme_command *cmd)
526 {
527 	if (req->q->queuedata)
528 		req->timeout = NVME_IO_TIMEOUT;
529 	else /* no queuedata implies admin queue */
530 		req->timeout = ADMIN_TIMEOUT;
531 
532 	req->cmd_flags |= REQ_FAILFAST_DRIVER;
533 	nvme_clear_nvme_request(req);
534 	nvme_req(req)->cmd = cmd;
535 }
536 
nvme_alloc_request(struct request_queue * q,struct nvme_command * cmd,blk_mq_req_flags_t flags)537 struct request *nvme_alloc_request(struct request_queue *q,
538 		struct nvme_command *cmd, blk_mq_req_flags_t flags)
539 {
540 	struct request *req;
541 
542 	req = blk_mq_alloc_request(q, nvme_req_op(cmd), flags);
543 	if (!IS_ERR(req))
544 		nvme_init_request(req, cmd);
545 	return req;
546 }
547 EXPORT_SYMBOL_GPL(nvme_alloc_request);
548 
nvme_alloc_request_qid(struct request_queue * q,struct nvme_command * cmd,blk_mq_req_flags_t flags,int qid)549 struct request *nvme_alloc_request_qid(struct request_queue *q,
550 		struct nvme_command *cmd, blk_mq_req_flags_t flags, int qid)
551 {
552 	struct request *req;
553 
554 	req = blk_mq_alloc_request_hctx(q, nvme_req_op(cmd), flags,
555 			qid ? qid - 1 : 0);
556 	if (!IS_ERR(req))
557 		nvme_init_request(req, cmd);
558 	return req;
559 }
560 EXPORT_SYMBOL_GPL(nvme_alloc_request_qid);
561 
nvme_toggle_streams(struct nvme_ctrl * ctrl,bool enable)562 static int nvme_toggle_streams(struct nvme_ctrl *ctrl, bool enable)
563 {
564 	struct nvme_command c;
565 
566 	memset(&c, 0, sizeof(c));
567 
568 	c.directive.opcode = nvme_admin_directive_send;
569 	c.directive.nsid = cpu_to_le32(NVME_NSID_ALL);
570 	c.directive.doper = NVME_DIR_SND_ID_OP_ENABLE;
571 	c.directive.dtype = NVME_DIR_IDENTIFY;
572 	c.directive.tdtype = NVME_DIR_STREAMS;
573 	c.directive.endir = enable ? NVME_DIR_ENDIR : 0;
574 
575 	return nvme_submit_sync_cmd(ctrl->admin_q, &c, NULL, 0);
576 }
577 
nvme_disable_streams(struct nvme_ctrl * ctrl)578 static int nvme_disable_streams(struct nvme_ctrl *ctrl)
579 {
580 	return nvme_toggle_streams(ctrl, false);
581 }
582 
nvme_enable_streams(struct nvme_ctrl * ctrl)583 static int nvme_enable_streams(struct nvme_ctrl *ctrl)
584 {
585 	return nvme_toggle_streams(ctrl, true);
586 }
587 
nvme_get_stream_params(struct nvme_ctrl * ctrl,struct streams_directive_params * s,u32 nsid)588 static int nvme_get_stream_params(struct nvme_ctrl *ctrl,
589 				  struct streams_directive_params *s, u32 nsid)
590 {
591 	struct nvme_command c;
592 
593 	memset(&c, 0, sizeof(c));
594 	memset(s, 0, sizeof(*s));
595 
596 	c.directive.opcode = nvme_admin_directive_recv;
597 	c.directive.nsid = cpu_to_le32(nsid);
598 	c.directive.numd = cpu_to_le32(nvme_bytes_to_numd(sizeof(*s)));
599 	c.directive.doper = NVME_DIR_RCV_ST_OP_PARAM;
600 	c.directive.dtype = NVME_DIR_STREAMS;
601 
602 	return nvme_submit_sync_cmd(ctrl->admin_q, &c, s, sizeof(*s));
603 }
604 
nvme_configure_directives(struct nvme_ctrl * ctrl)605 static int nvme_configure_directives(struct nvme_ctrl *ctrl)
606 {
607 	struct streams_directive_params s;
608 	int ret;
609 
610 	if (!(ctrl->oacs & NVME_CTRL_OACS_DIRECTIVES))
611 		return 0;
612 	if (!streams)
613 		return 0;
614 
615 	ret = nvme_enable_streams(ctrl);
616 	if (ret)
617 		return ret;
618 
619 	ret = nvme_get_stream_params(ctrl, &s, NVME_NSID_ALL);
620 	if (ret)
621 		goto out_disable_stream;
622 
623 	ctrl->nssa = le16_to_cpu(s.nssa);
624 	if (ctrl->nssa < BLK_MAX_WRITE_HINTS - 1) {
625 		dev_info(ctrl->device, "too few streams (%u) available\n",
626 					ctrl->nssa);
627 		goto out_disable_stream;
628 	}
629 
630 	ctrl->nr_streams = min_t(u16, ctrl->nssa, BLK_MAX_WRITE_HINTS - 1);
631 	dev_info(ctrl->device, "Using %u streams\n", ctrl->nr_streams);
632 	return 0;
633 
634 out_disable_stream:
635 	nvme_disable_streams(ctrl);
636 	return ret;
637 }
638 
639 /*
640  * Check if 'req' has a write hint associated with it. If it does, assign
641  * a valid namespace stream to the write.
642  */
nvme_assign_write_stream(struct nvme_ctrl * ctrl,struct request * req,u16 * control,u32 * dsmgmt)643 static void nvme_assign_write_stream(struct nvme_ctrl *ctrl,
644 				     struct request *req, u16 *control,
645 				     u32 *dsmgmt)
646 {
647 	enum rw_hint streamid = req->write_hint;
648 
649 	if (streamid == WRITE_LIFE_NOT_SET || streamid == WRITE_LIFE_NONE)
650 		streamid = 0;
651 	else {
652 		streamid--;
653 		if (WARN_ON_ONCE(streamid > ctrl->nr_streams))
654 			return;
655 
656 		*control |= NVME_RW_DTYPE_STREAMS;
657 		*dsmgmt |= streamid << 16;
658 	}
659 
660 	if (streamid < ARRAY_SIZE(req->q->write_hints))
661 		req->q->write_hints[streamid] += blk_rq_bytes(req) >> 9;
662 }
663 
nvme_setup_passthrough(struct request * req,struct nvme_command * cmd)664 static inline void nvme_setup_passthrough(struct request *req,
665 		struct nvme_command *cmd)
666 {
667 	memcpy(cmd, nvme_req(req)->cmd, sizeof(*cmd));
668 	/* passthru commands should let the driver set the SGL flags */
669 	cmd->common.flags &= ~NVME_CMD_SGL_ALL;
670 }
671 
nvme_setup_flush(struct nvme_ns * ns,struct nvme_command * cmnd)672 static inline void nvme_setup_flush(struct nvme_ns *ns,
673 		struct nvme_command *cmnd)
674 {
675 	cmnd->common.opcode = nvme_cmd_flush;
676 	cmnd->common.nsid = cpu_to_le32(ns->head->ns_id);
677 }
678 
nvme_setup_discard(struct nvme_ns * ns,struct request * req,struct nvme_command * cmnd)679 static blk_status_t nvme_setup_discard(struct nvme_ns *ns, struct request *req,
680 		struct nvme_command *cmnd)
681 {
682 	unsigned short segments = blk_rq_nr_discard_segments(req), n = 0;
683 	struct nvme_dsm_range *range;
684 	struct bio *bio;
685 
686 	/*
687 	 * Some devices do not consider the DSM 'Number of Ranges' field when
688 	 * determining how much data to DMA. Always allocate memory for maximum
689 	 * number of segments to prevent device reading beyond end of buffer.
690 	 */
691 	static const size_t alloc_size = sizeof(*range) * NVME_DSM_MAX_RANGES;
692 
693 	range = kzalloc(alloc_size, GFP_ATOMIC | __GFP_NOWARN);
694 	if (!range) {
695 		/*
696 		 * If we fail allocation our range, fallback to the controller
697 		 * discard page. If that's also busy, it's safe to return
698 		 * busy, as we know we can make progress once that's freed.
699 		 */
700 		if (test_and_set_bit_lock(0, &ns->ctrl->discard_page_busy))
701 			return BLK_STS_RESOURCE;
702 
703 		range = page_address(ns->ctrl->discard_page);
704 	}
705 
706 	__rq_for_each_bio(bio, req) {
707 		u64 slba = nvme_sect_to_lba(ns, bio->bi_iter.bi_sector);
708 		u32 nlb = bio->bi_iter.bi_size >> ns->lba_shift;
709 
710 		if (n < segments) {
711 			range[n].cattr = cpu_to_le32(0);
712 			range[n].nlb = cpu_to_le32(nlb);
713 			range[n].slba = cpu_to_le64(slba);
714 		}
715 		n++;
716 	}
717 
718 	if (WARN_ON_ONCE(n != segments)) {
719 		if (virt_to_page(range) == ns->ctrl->discard_page)
720 			clear_bit_unlock(0, &ns->ctrl->discard_page_busy);
721 		else
722 			kfree(range);
723 		return BLK_STS_IOERR;
724 	}
725 
726 	cmnd->dsm.opcode = nvme_cmd_dsm;
727 	cmnd->dsm.nsid = cpu_to_le32(ns->head->ns_id);
728 	cmnd->dsm.nr = cpu_to_le32(segments - 1);
729 	cmnd->dsm.attributes = cpu_to_le32(NVME_DSMGMT_AD);
730 
731 	req->special_vec.bv_page = virt_to_page(range);
732 	req->special_vec.bv_offset = offset_in_page(range);
733 	req->special_vec.bv_len = alloc_size;
734 	req->rq_flags |= RQF_SPECIAL_PAYLOAD;
735 
736 	return BLK_STS_OK;
737 }
738 
nvme_setup_write_zeroes(struct nvme_ns * ns,struct request * req,struct nvme_command * cmnd)739 static inline blk_status_t nvme_setup_write_zeroes(struct nvme_ns *ns,
740 		struct request *req, struct nvme_command *cmnd)
741 {
742 	if (ns->ctrl->quirks & NVME_QUIRK_DEALLOCATE_ZEROES)
743 		return nvme_setup_discard(ns, req, cmnd);
744 
745 	cmnd->write_zeroes.opcode = nvme_cmd_write_zeroes;
746 	cmnd->write_zeroes.nsid = cpu_to_le32(ns->head->ns_id);
747 	cmnd->write_zeroes.slba =
748 		cpu_to_le64(nvme_sect_to_lba(ns, blk_rq_pos(req)));
749 	cmnd->write_zeroes.length =
750 		cpu_to_le16((blk_rq_bytes(req) >> ns->lba_shift) - 1);
751 	if (nvme_ns_has_pi(ns))
752 		cmnd->write_zeroes.control = cpu_to_le16(NVME_RW_PRINFO_PRACT);
753 	else
754 		cmnd->write_zeroes.control = 0;
755 	return BLK_STS_OK;
756 }
757 
nvme_setup_rw(struct nvme_ns * ns,struct request * req,struct nvme_command * cmnd,enum nvme_opcode op)758 static inline blk_status_t nvme_setup_rw(struct nvme_ns *ns,
759 		struct request *req, struct nvme_command *cmnd,
760 		enum nvme_opcode op)
761 {
762 	struct nvme_ctrl *ctrl = ns->ctrl;
763 	u16 control = 0;
764 	u32 dsmgmt = 0;
765 
766 	if (req->cmd_flags & REQ_FUA)
767 		control |= NVME_RW_FUA;
768 	if (req->cmd_flags & (REQ_FAILFAST_DEV | REQ_RAHEAD))
769 		control |= NVME_RW_LR;
770 
771 	if (req->cmd_flags & REQ_RAHEAD)
772 		dsmgmt |= NVME_RW_DSM_FREQ_PREFETCH;
773 
774 	cmnd->rw.opcode = op;
775 	cmnd->rw.nsid = cpu_to_le32(ns->head->ns_id);
776 	cmnd->rw.slba = cpu_to_le64(nvme_sect_to_lba(ns, blk_rq_pos(req)));
777 	cmnd->rw.length = cpu_to_le16((blk_rq_bytes(req) >> ns->lba_shift) - 1);
778 
779 	if (req_op(req) == REQ_OP_WRITE && ctrl->nr_streams)
780 		nvme_assign_write_stream(ctrl, req, &control, &dsmgmt);
781 
782 	if (ns->ms) {
783 		/*
784 		 * If formated with metadata, the block layer always provides a
785 		 * metadata buffer if CONFIG_BLK_DEV_INTEGRITY is enabled.  Else
786 		 * we enable the PRACT bit for protection information or set the
787 		 * namespace capacity to zero to prevent any I/O.
788 		 */
789 		if (!blk_integrity_rq(req)) {
790 			if (WARN_ON_ONCE(!nvme_ns_has_pi(ns)))
791 				return BLK_STS_NOTSUPP;
792 			control |= NVME_RW_PRINFO_PRACT;
793 		}
794 
795 		switch (ns->pi_type) {
796 		case NVME_NS_DPS_PI_TYPE3:
797 			control |= NVME_RW_PRINFO_PRCHK_GUARD;
798 			break;
799 		case NVME_NS_DPS_PI_TYPE1:
800 		case NVME_NS_DPS_PI_TYPE2:
801 			control |= NVME_RW_PRINFO_PRCHK_GUARD |
802 					NVME_RW_PRINFO_PRCHK_REF;
803 			if (op == nvme_cmd_zone_append)
804 				control |= NVME_RW_APPEND_PIREMAP;
805 			cmnd->rw.reftag = cpu_to_le32(t10_pi_ref_tag(req));
806 			break;
807 		}
808 	}
809 
810 	cmnd->rw.control = cpu_to_le16(control);
811 	cmnd->rw.dsmgmt = cpu_to_le32(dsmgmt);
812 	return 0;
813 }
814 
nvme_cleanup_cmd(struct request * req)815 void nvme_cleanup_cmd(struct request *req)
816 {
817 	if (req->rq_flags & RQF_SPECIAL_PAYLOAD) {
818 		struct nvme_ns *ns = req->rq_disk->private_data;
819 		struct page *page = req->special_vec.bv_page;
820 
821 		if (page == ns->ctrl->discard_page)
822 			clear_bit_unlock(0, &ns->ctrl->discard_page_busy);
823 		else
824 			kfree(page_address(page) + req->special_vec.bv_offset);
825 	}
826 }
827 EXPORT_SYMBOL_GPL(nvme_cleanup_cmd);
828 
nvme_setup_cmd(struct nvme_ns * ns,struct request * req,struct nvme_command * cmd)829 blk_status_t nvme_setup_cmd(struct nvme_ns *ns, struct request *req,
830 		struct nvme_command *cmd)
831 {
832 	struct nvme_ctrl *ctrl = nvme_req(req)->ctrl;
833 	blk_status_t ret = BLK_STS_OK;
834 
835 	if (!(req->rq_flags & RQF_DONTPREP))
836 		nvme_clear_nvme_request(req);
837 
838 	memset(cmd, 0, sizeof(*cmd));
839 	switch (req_op(req)) {
840 	case REQ_OP_DRV_IN:
841 	case REQ_OP_DRV_OUT:
842 		nvme_setup_passthrough(req, cmd);
843 		break;
844 	case REQ_OP_FLUSH:
845 		nvme_setup_flush(ns, cmd);
846 		break;
847 	case REQ_OP_ZONE_RESET_ALL:
848 	case REQ_OP_ZONE_RESET:
849 		ret = nvme_setup_zone_mgmt_send(ns, req, cmd, NVME_ZONE_RESET);
850 		break;
851 	case REQ_OP_ZONE_OPEN:
852 		ret = nvme_setup_zone_mgmt_send(ns, req, cmd, NVME_ZONE_OPEN);
853 		break;
854 	case REQ_OP_ZONE_CLOSE:
855 		ret = nvme_setup_zone_mgmt_send(ns, req, cmd, NVME_ZONE_CLOSE);
856 		break;
857 	case REQ_OP_ZONE_FINISH:
858 		ret = nvme_setup_zone_mgmt_send(ns, req, cmd, NVME_ZONE_FINISH);
859 		break;
860 	case REQ_OP_WRITE_ZEROES:
861 		ret = nvme_setup_write_zeroes(ns, req, cmd);
862 		break;
863 	case REQ_OP_DISCARD:
864 		ret = nvme_setup_discard(ns, req, cmd);
865 		break;
866 	case REQ_OP_READ:
867 		ret = nvme_setup_rw(ns, req, cmd, nvme_cmd_read);
868 		break;
869 	case REQ_OP_WRITE:
870 		ret = nvme_setup_rw(ns, req, cmd, nvme_cmd_write);
871 		break;
872 	case REQ_OP_ZONE_APPEND:
873 		ret = nvme_setup_rw(ns, req, cmd, nvme_cmd_zone_append);
874 		break;
875 	default:
876 		WARN_ON_ONCE(1);
877 		return BLK_STS_IOERR;
878 	}
879 
880 	if (!(ctrl->quirks & NVME_QUIRK_SKIP_CID_GEN))
881 		nvme_req(req)->genctr++;
882 	cmd->common.command_id = nvme_cid(req);
883 	trace_nvme_setup_cmd(req, cmd);
884 	return ret;
885 }
886 EXPORT_SYMBOL_GPL(nvme_setup_cmd);
887 
nvme_end_sync_rq(struct request * rq,blk_status_t error)888 static void nvme_end_sync_rq(struct request *rq, blk_status_t error)
889 {
890 	struct completion *waiting = rq->end_io_data;
891 
892 	rq->end_io_data = NULL;
893 	complete(waiting);
894 }
895 
nvme_execute_rq_polled(struct request_queue * q,struct gendisk * bd_disk,struct request * rq,int at_head)896 static void nvme_execute_rq_polled(struct request_queue *q,
897 		struct gendisk *bd_disk, struct request *rq, int at_head)
898 {
899 	DECLARE_COMPLETION_ONSTACK(wait);
900 
901 	WARN_ON_ONCE(!test_bit(QUEUE_FLAG_POLL, &q->queue_flags));
902 
903 	rq->cmd_flags |= REQ_HIPRI;
904 	rq->end_io_data = &wait;
905 	blk_execute_rq_nowait(q, bd_disk, rq, at_head, nvme_end_sync_rq);
906 
907 	while (!completion_done(&wait)) {
908 		blk_poll(q, request_to_qc_t(rq->mq_hctx, rq), true);
909 		cond_resched();
910 	}
911 }
912 
913 /*
914  * Returns 0 on success.  If the result is negative, it's a Linux error code;
915  * if the result is positive, it's an NVM Express status code
916  */
__nvme_submit_sync_cmd(struct request_queue * q,struct nvme_command * cmd,union nvme_result * result,void * buffer,unsigned bufflen,unsigned timeout,int qid,int at_head,blk_mq_req_flags_t flags,bool poll)917 int __nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd,
918 		union nvme_result *result, void *buffer, unsigned bufflen,
919 		unsigned timeout, int qid, int at_head,
920 		blk_mq_req_flags_t flags, bool poll)
921 {
922 	struct request *req;
923 	int ret;
924 
925 	if (qid == NVME_QID_ANY)
926 		req = nvme_alloc_request(q, cmd, flags);
927 	else
928 		req = nvme_alloc_request_qid(q, cmd, flags, qid);
929 	if (IS_ERR(req))
930 		return PTR_ERR(req);
931 
932 	if (timeout)
933 		req->timeout = timeout;
934 
935 	if (buffer && bufflen) {
936 		ret = blk_rq_map_kern(q, req, buffer, bufflen, GFP_KERNEL);
937 		if (ret)
938 			goto out;
939 	}
940 
941 	if (poll)
942 		nvme_execute_rq_polled(req->q, NULL, req, at_head);
943 	else
944 		blk_execute_rq(req->q, NULL, req, at_head);
945 	if (result)
946 		*result = nvme_req(req)->result;
947 	if (nvme_req(req)->flags & NVME_REQ_CANCELLED)
948 		ret = -EINTR;
949 	else
950 		ret = nvme_req(req)->status;
951  out:
952 	blk_mq_free_request(req);
953 	return ret;
954 }
955 EXPORT_SYMBOL_GPL(__nvme_submit_sync_cmd);
956 
nvme_submit_sync_cmd(struct request_queue * q,struct nvme_command * cmd,void * buffer,unsigned bufflen)957 int nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd,
958 		void *buffer, unsigned bufflen)
959 {
960 	return __nvme_submit_sync_cmd(q, cmd, NULL, buffer, bufflen, 0,
961 			NVME_QID_ANY, 0, 0, false);
962 }
963 EXPORT_SYMBOL_GPL(nvme_submit_sync_cmd);
964 
nvme_add_user_metadata(struct bio * bio,void __user * ubuf,unsigned len,u32 seed,bool write)965 static void *nvme_add_user_metadata(struct bio *bio, void __user *ubuf,
966 		unsigned len, u32 seed, bool write)
967 {
968 	struct bio_integrity_payload *bip;
969 	int ret = -ENOMEM;
970 	void *buf;
971 
972 	buf = kmalloc(len, GFP_KERNEL);
973 	if (!buf)
974 		goto out;
975 
976 	ret = -EFAULT;
977 	if (write && copy_from_user(buf, ubuf, len))
978 		goto out_free_meta;
979 
980 	bip = bio_integrity_alloc(bio, GFP_KERNEL, 1);
981 	if (IS_ERR(bip)) {
982 		ret = PTR_ERR(bip);
983 		goto out_free_meta;
984 	}
985 
986 	bip->bip_iter.bi_size = len;
987 	bip->bip_iter.bi_sector = seed;
988 	ret = bio_integrity_add_page(bio, virt_to_page(buf), len,
989 			offset_in_page(buf));
990 	if (ret == len)
991 		return buf;
992 	ret = -ENOMEM;
993 out_free_meta:
994 	kfree(buf);
995 out:
996 	return ERR_PTR(ret);
997 }
998 
nvme_known_admin_effects(u8 opcode)999 static u32 nvme_known_admin_effects(u8 opcode)
1000 {
1001 	switch (opcode) {
1002 	case nvme_admin_format_nvm:
1003 		return NVME_CMD_EFFECTS_LBCC | NVME_CMD_EFFECTS_NCC |
1004 			NVME_CMD_EFFECTS_CSE_MASK;
1005 	case nvme_admin_sanitize_nvm:
1006 		return NVME_CMD_EFFECTS_LBCC | NVME_CMD_EFFECTS_CSE_MASK;
1007 	default:
1008 		break;
1009 	}
1010 	return 0;
1011 }
1012 
nvme_command_effects(struct nvme_ctrl * ctrl,struct nvme_ns * ns,u8 opcode)1013 u32 nvme_command_effects(struct nvme_ctrl *ctrl, struct nvme_ns *ns, u8 opcode)
1014 {
1015 	u32 effects = 0;
1016 
1017 	if (ns) {
1018 		if (ns->head->effects)
1019 			effects = le32_to_cpu(ns->head->effects->iocs[opcode]);
1020 		if (effects & ~(NVME_CMD_EFFECTS_CSUPP | NVME_CMD_EFFECTS_LBCC))
1021 			dev_warn(ctrl->device,
1022 				 "IO command:%02x has unhandled effects:%08x\n",
1023 				 opcode, effects);
1024 		return 0;
1025 	}
1026 
1027 	if (ctrl->effects)
1028 		effects = le32_to_cpu(ctrl->effects->acs[opcode]);
1029 	effects |= nvme_known_admin_effects(opcode);
1030 
1031 	return effects;
1032 }
1033 EXPORT_SYMBOL_NS_GPL(nvme_command_effects, NVME_TARGET_PASSTHRU);
1034 
nvme_passthru_start(struct nvme_ctrl * ctrl,struct nvme_ns * ns,u8 opcode)1035 static u32 nvme_passthru_start(struct nvme_ctrl *ctrl, struct nvme_ns *ns,
1036 			       u8 opcode)
1037 {
1038 	u32 effects = nvme_command_effects(ctrl, ns, opcode);
1039 
1040 	/*
1041 	 * For simplicity, IO to all namespaces is quiesced even if the command
1042 	 * effects say only one namespace is affected.
1043 	 */
1044 	if (effects & NVME_CMD_EFFECTS_CSE_MASK) {
1045 		mutex_lock(&ctrl->scan_lock);
1046 		mutex_lock(&ctrl->subsys->lock);
1047 		nvme_mpath_start_freeze(ctrl->subsys);
1048 		nvme_mpath_wait_freeze(ctrl->subsys);
1049 		nvme_start_freeze(ctrl);
1050 		nvme_wait_freeze(ctrl);
1051 	}
1052 	return effects;
1053 }
1054 
nvme_passthru_end(struct nvme_ctrl * ctrl,u32 effects)1055 static void nvme_passthru_end(struct nvme_ctrl *ctrl, u32 effects)
1056 {
1057 	if (effects & NVME_CMD_EFFECTS_CSE_MASK) {
1058 		nvme_unfreeze(ctrl);
1059 		nvme_mpath_unfreeze(ctrl->subsys);
1060 		mutex_unlock(&ctrl->subsys->lock);
1061 		nvme_remove_invalid_namespaces(ctrl, NVME_NSID_ALL);
1062 		mutex_unlock(&ctrl->scan_lock);
1063 	}
1064 	if (effects & NVME_CMD_EFFECTS_CCC)
1065 		nvme_init_identify(ctrl);
1066 	if (effects & (NVME_CMD_EFFECTS_NIC | NVME_CMD_EFFECTS_NCC)) {
1067 		nvme_queue_scan(ctrl);
1068 		flush_work(&ctrl->scan_work);
1069 	}
1070 }
1071 
nvme_execute_passthru_rq(struct request * rq)1072 void nvme_execute_passthru_rq(struct request *rq)
1073 {
1074 	struct nvme_command *cmd = nvme_req(rq)->cmd;
1075 	struct nvme_ctrl *ctrl = nvme_req(rq)->ctrl;
1076 	struct nvme_ns *ns = rq->q->queuedata;
1077 	struct gendisk *disk = ns ? ns->disk : NULL;
1078 	u32 effects;
1079 
1080 	effects = nvme_passthru_start(ctrl, ns, cmd->common.opcode);
1081 	blk_execute_rq(rq->q, disk, rq, 0);
1082 	nvme_passthru_end(ctrl, effects);
1083 }
1084 EXPORT_SYMBOL_NS_GPL(nvme_execute_passthru_rq, NVME_TARGET_PASSTHRU);
1085 
nvme_submit_user_cmd(struct request_queue * q,struct nvme_command * cmd,void __user * ubuffer,unsigned bufflen,void __user * meta_buffer,unsigned meta_len,u32 meta_seed,u64 * result,unsigned timeout)1086 static int nvme_submit_user_cmd(struct request_queue *q,
1087 		struct nvme_command *cmd, void __user *ubuffer,
1088 		unsigned bufflen, void __user *meta_buffer, unsigned meta_len,
1089 		u32 meta_seed, u64 *result, unsigned timeout)
1090 {
1091 	bool write = nvme_is_write(cmd);
1092 	struct nvme_ns *ns = q->queuedata;
1093 	struct gendisk *disk = ns ? ns->disk : NULL;
1094 	struct request *req;
1095 	struct bio *bio = NULL;
1096 	void *meta = NULL;
1097 	int ret;
1098 
1099 	req = nvme_alloc_request(q, cmd, 0);
1100 	if (IS_ERR(req))
1101 		return PTR_ERR(req);
1102 
1103 	if (timeout)
1104 		req->timeout = timeout;
1105 	nvme_req(req)->flags |= NVME_REQ_USERCMD;
1106 
1107 	if (ubuffer && bufflen) {
1108 		ret = blk_rq_map_user(q, req, NULL, ubuffer, bufflen,
1109 				GFP_KERNEL);
1110 		if (ret)
1111 			goto out;
1112 		bio = req->bio;
1113 		bio->bi_disk = disk;
1114 		if (disk && meta_buffer && meta_len) {
1115 			meta = nvme_add_user_metadata(bio, meta_buffer, meta_len,
1116 					meta_seed, write);
1117 			if (IS_ERR(meta)) {
1118 				ret = PTR_ERR(meta);
1119 				goto out_unmap;
1120 			}
1121 			req->cmd_flags |= REQ_INTEGRITY;
1122 		}
1123 	}
1124 
1125 	nvme_execute_passthru_rq(req);
1126 	if (nvme_req(req)->flags & NVME_REQ_CANCELLED)
1127 		ret = -EINTR;
1128 	else
1129 		ret = nvme_req(req)->status;
1130 	if (result)
1131 		*result = le64_to_cpu(nvme_req(req)->result.u64);
1132 	if (meta && !ret && !write) {
1133 		if (copy_to_user(meta_buffer, meta, meta_len))
1134 			ret = -EFAULT;
1135 	}
1136 	kfree(meta);
1137  out_unmap:
1138 	if (bio)
1139 		blk_rq_unmap_user(bio);
1140  out:
1141 	blk_mq_free_request(req);
1142 	return ret;
1143 }
1144 
nvme_keep_alive_end_io(struct request * rq,blk_status_t status)1145 static void nvme_keep_alive_end_io(struct request *rq, blk_status_t status)
1146 {
1147 	struct nvme_ctrl *ctrl = rq->end_io_data;
1148 	unsigned long flags;
1149 	bool startka = false;
1150 
1151 	blk_mq_free_request(rq);
1152 
1153 	if (status) {
1154 		dev_err(ctrl->device,
1155 			"failed nvme_keep_alive_end_io error=%d\n",
1156 				status);
1157 		return;
1158 	}
1159 
1160 	ctrl->comp_seen = false;
1161 	spin_lock_irqsave(&ctrl->lock, flags);
1162 	if (ctrl->state == NVME_CTRL_LIVE ||
1163 	    ctrl->state == NVME_CTRL_CONNECTING)
1164 		startka = true;
1165 	spin_unlock_irqrestore(&ctrl->lock, flags);
1166 	if (startka)
1167 		queue_delayed_work(nvme_wq, &ctrl->ka_work, ctrl->kato * HZ);
1168 }
1169 
nvme_keep_alive(struct nvme_ctrl * ctrl)1170 static int nvme_keep_alive(struct nvme_ctrl *ctrl)
1171 {
1172 	struct request *rq;
1173 
1174 	rq = nvme_alloc_request(ctrl->admin_q, &ctrl->ka_cmd,
1175 			BLK_MQ_REQ_RESERVED);
1176 	if (IS_ERR(rq))
1177 		return PTR_ERR(rq);
1178 
1179 	rq->timeout = ctrl->kato * HZ;
1180 	rq->end_io_data = ctrl;
1181 
1182 	blk_execute_rq_nowait(rq->q, NULL, rq, 0, nvme_keep_alive_end_io);
1183 
1184 	return 0;
1185 }
1186 
nvme_keep_alive_work(struct work_struct * work)1187 static void nvme_keep_alive_work(struct work_struct *work)
1188 {
1189 	struct nvme_ctrl *ctrl = container_of(to_delayed_work(work),
1190 			struct nvme_ctrl, ka_work);
1191 	bool comp_seen = ctrl->comp_seen;
1192 
1193 	if ((ctrl->ctratt & NVME_CTRL_ATTR_TBKAS) && comp_seen) {
1194 		dev_dbg(ctrl->device,
1195 			"reschedule traffic based keep-alive timer\n");
1196 		ctrl->comp_seen = false;
1197 		queue_delayed_work(nvme_wq, &ctrl->ka_work, ctrl->kato * HZ);
1198 		return;
1199 	}
1200 
1201 	if (nvme_keep_alive(ctrl)) {
1202 		/* allocation failure, reset the controller */
1203 		dev_err(ctrl->device, "keep-alive failed\n");
1204 		nvme_reset_ctrl(ctrl);
1205 		return;
1206 	}
1207 }
1208 
nvme_start_keep_alive(struct nvme_ctrl * ctrl)1209 static void nvme_start_keep_alive(struct nvme_ctrl *ctrl)
1210 {
1211 	if (unlikely(ctrl->kato == 0))
1212 		return;
1213 
1214 	queue_delayed_work(nvme_wq, &ctrl->ka_work, ctrl->kato * HZ);
1215 }
1216 
nvme_stop_keep_alive(struct nvme_ctrl * ctrl)1217 void nvme_stop_keep_alive(struct nvme_ctrl *ctrl)
1218 {
1219 	if (unlikely(ctrl->kato == 0))
1220 		return;
1221 
1222 	cancel_delayed_work_sync(&ctrl->ka_work);
1223 }
1224 EXPORT_SYMBOL_GPL(nvme_stop_keep_alive);
1225 
1226 /*
1227  * In NVMe 1.0 the CNS field was just a binary controller or namespace
1228  * flag, thus sending any new CNS opcodes has a big chance of not working.
1229  * Qemu unfortunately had that bug after reporting a 1.1 version compliance
1230  * (but not for any later version).
1231  */
nvme_ctrl_limited_cns(struct nvme_ctrl * ctrl)1232 static bool nvme_ctrl_limited_cns(struct nvme_ctrl *ctrl)
1233 {
1234 	if (ctrl->quirks & NVME_QUIRK_IDENTIFY_CNS)
1235 		return ctrl->vs < NVME_VS(1, 2, 0);
1236 	return ctrl->vs < NVME_VS(1, 1, 0);
1237 }
1238 
nvme_identify_ctrl(struct nvme_ctrl * dev,struct nvme_id_ctrl ** id)1239 static int nvme_identify_ctrl(struct nvme_ctrl *dev, struct nvme_id_ctrl **id)
1240 {
1241 	struct nvme_command c = { };
1242 	int error;
1243 
1244 	/* gcc-4.4.4 (at least) has issues with initializers and anon unions */
1245 	c.identify.opcode = nvme_admin_identify;
1246 	c.identify.cns = NVME_ID_CNS_CTRL;
1247 
1248 	*id = kmalloc(sizeof(struct nvme_id_ctrl), GFP_KERNEL);
1249 	if (!*id)
1250 		return -ENOMEM;
1251 
1252 	error = nvme_submit_sync_cmd(dev->admin_q, &c, *id,
1253 			sizeof(struct nvme_id_ctrl));
1254 	if (error)
1255 		kfree(*id);
1256 	return error;
1257 }
1258 
nvme_multi_css(struct nvme_ctrl * ctrl)1259 static bool nvme_multi_css(struct nvme_ctrl *ctrl)
1260 {
1261 	return (ctrl->ctrl_config & NVME_CC_CSS_MASK) == NVME_CC_CSS_CSI;
1262 }
1263 
nvme_process_ns_desc(struct nvme_ctrl * ctrl,struct nvme_ns_ids * ids,struct nvme_ns_id_desc * cur,bool * csi_seen)1264 static int nvme_process_ns_desc(struct nvme_ctrl *ctrl, struct nvme_ns_ids *ids,
1265 		struct nvme_ns_id_desc *cur, bool *csi_seen)
1266 {
1267 	const char *warn_str = "ctrl returned bogus length:";
1268 	void *data = cur;
1269 
1270 	switch (cur->nidt) {
1271 	case NVME_NIDT_EUI64:
1272 		if (cur->nidl != NVME_NIDT_EUI64_LEN) {
1273 			dev_warn(ctrl->device, "%s %d for NVME_NIDT_EUI64\n",
1274 				 warn_str, cur->nidl);
1275 			return -1;
1276 		}
1277 		if (ctrl->quirks & NVME_QUIRK_BOGUS_NID)
1278 			return NVME_NIDT_EUI64_LEN;
1279 		memcpy(ids->eui64, data + sizeof(*cur), NVME_NIDT_EUI64_LEN);
1280 		return NVME_NIDT_EUI64_LEN;
1281 	case NVME_NIDT_NGUID:
1282 		if (cur->nidl != NVME_NIDT_NGUID_LEN) {
1283 			dev_warn(ctrl->device, "%s %d for NVME_NIDT_NGUID\n",
1284 				 warn_str, cur->nidl);
1285 			return -1;
1286 		}
1287 		if (ctrl->quirks & NVME_QUIRK_BOGUS_NID)
1288 			return NVME_NIDT_NGUID_LEN;
1289 		memcpy(ids->nguid, data + sizeof(*cur), NVME_NIDT_NGUID_LEN);
1290 		return NVME_NIDT_NGUID_LEN;
1291 	case NVME_NIDT_UUID:
1292 		if (cur->nidl != NVME_NIDT_UUID_LEN) {
1293 			dev_warn(ctrl->device, "%s %d for NVME_NIDT_UUID\n",
1294 				 warn_str, cur->nidl);
1295 			return -1;
1296 		}
1297 		if (ctrl->quirks & NVME_QUIRK_BOGUS_NID)
1298 			return NVME_NIDT_UUID_LEN;
1299 		uuid_copy(&ids->uuid, data + sizeof(*cur));
1300 		return NVME_NIDT_UUID_LEN;
1301 	case NVME_NIDT_CSI:
1302 		if (cur->nidl != NVME_NIDT_CSI_LEN) {
1303 			dev_warn(ctrl->device, "%s %d for NVME_NIDT_CSI\n",
1304 				 warn_str, cur->nidl);
1305 			return -1;
1306 		}
1307 		memcpy(&ids->csi, data + sizeof(*cur), NVME_NIDT_CSI_LEN);
1308 		*csi_seen = true;
1309 		return NVME_NIDT_CSI_LEN;
1310 	default:
1311 		/* Skip unknown types */
1312 		return cur->nidl;
1313 	}
1314 }
1315 
nvme_identify_ns_descs(struct nvme_ctrl * ctrl,unsigned nsid,struct nvme_ns_ids * ids)1316 static int nvme_identify_ns_descs(struct nvme_ctrl *ctrl, unsigned nsid,
1317 		struct nvme_ns_ids *ids)
1318 {
1319 	struct nvme_command c = { };
1320 	bool csi_seen = false;
1321 	int status, pos, len;
1322 	void *data;
1323 
1324 	if (ctrl->vs < NVME_VS(1, 3, 0) && !nvme_multi_css(ctrl))
1325 		return 0;
1326 	if (ctrl->quirks & NVME_QUIRK_NO_NS_DESC_LIST)
1327 		return 0;
1328 
1329 	c.identify.opcode = nvme_admin_identify;
1330 	c.identify.nsid = cpu_to_le32(nsid);
1331 	c.identify.cns = NVME_ID_CNS_NS_DESC_LIST;
1332 
1333 	data = kzalloc(NVME_IDENTIFY_DATA_SIZE, GFP_KERNEL);
1334 	if (!data)
1335 		return -ENOMEM;
1336 
1337 	status = nvme_submit_sync_cmd(ctrl->admin_q, &c, data,
1338 				      NVME_IDENTIFY_DATA_SIZE);
1339 	if (status) {
1340 		dev_warn(ctrl->device,
1341 			"Identify Descriptors failed (%d)\n", status);
1342 		goto free_data;
1343 	}
1344 
1345 	for (pos = 0; pos < NVME_IDENTIFY_DATA_SIZE; pos += len) {
1346 		struct nvme_ns_id_desc *cur = data + pos;
1347 
1348 		if (cur->nidl == 0)
1349 			break;
1350 
1351 		len = nvme_process_ns_desc(ctrl, ids, cur, &csi_seen);
1352 		if (len < 0)
1353 			break;
1354 
1355 		len += sizeof(*cur);
1356 	}
1357 
1358 	if (nvme_multi_css(ctrl) && !csi_seen) {
1359 		dev_warn(ctrl->device, "Command set not reported for nsid:%d\n",
1360 			 nsid);
1361 		status = -EINVAL;
1362 	}
1363 
1364 free_data:
1365 	kfree(data);
1366 	return status;
1367 }
1368 
nvme_identify_ns(struct nvme_ctrl * ctrl,unsigned nsid,struct nvme_ns_ids * ids,struct nvme_id_ns ** id)1369 static int nvme_identify_ns(struct nvme_ctrl *ctrl, unsigned nsid,
1370 			struct nvme_ns_ids *ids, struct nvme_id_ns **id)
1371 {
1372 	struct nvme_command c = { };
1373 	int error;
1374 
1375 	/* gcc-4.4.4 (at least) has issues with initializers and anon unions */
1376 	c.identify.opcode = nvme_admin_identify;
1377 	c.identify.nsid = cpu_to_le32(nsid);
1378 	c.identify.cns = NVME_ID_CNS_NS;
1379 
1380 	*id = kmalloc(sizeof(**id), GFP_KERNEL);
1381 	if (!*id)
1382 		return -ENOMEM;
1383 
1384 	error = nvme_submit_sync_cmd(ctrl->admin_q, &c, *id, sizeof(**id));
1385 	if (error) {
1386 		dev_warn(ctrl->device, "Identify namespace failed (%d)\n", error);
1387 		goto out_free_id;
1388 	}
1389 
1390 	error = NVME_SC_INVALID_NS | NVME_SC_DNR;
1391 	if ((*id)->ncap == 0) /* namespace not allocated or attached */
1392 		goto out_free_id;
1393 
1394 
1395 	if (ctrl->quirks & NVME_QUIRK_BOGUS_NID) {
1396 		dev_info(ctrl->device,
1397 			 "Ignoring bogus Namespace Identifiers\n");
1398 	} else {
1399 		if (ctrl->vs >= NVME_VS(1, 1, 0) &&
1400 		    !memchr_inv(ids->eui64, 0, sizeof(ids->eui64)))
1401 			memcpy(ids->eui64, (*id)->eui64, sizeof(ids->eui64));
1402 		if (ctrl->vs >= NVME_VS(1, 2, 0) &&
1403 		    !memchr_inv(ids->nguid, 0, sizeof(ids->nguid)))
1404 			memcpy(ids->nguid, (*id)->nguid, sizeof(ids->nguid));
1405 	}
1406 
1407 	return 0;
1408 
1409 out_free_id:
1410 	kfree(*id);
1411 	return error;
1412 }
1413 
nvme_features(struct nvme_ctrl * dev,u8 op,unsigned int fid,unsigned int dword11,void * buffer,size_t buflen,u32 * result)1414 static int nvme_features(struct nvme_ctrl *dev, u8 op, unsigned int fid,
1415 		unsigned int dword11, void *buffer, size_t buflen, u32 *result)
1416 {
1417 	union nvme_result res = { 0 };
1418 	struct nvme_command c;
1419 	int ret;
1420 
1421 	memset(&c, 0, sizeof(c));
1422 	c.features.opcode = op;
1423 	c.features.fid = cpu_to_le32(fid);
1424 	c.features.dword11 = cpu_to_le32(dword11);
1425 
1426 	ret = __nvme_submit_sync_cmd(dev->admin_q, &c, &res,
1427 			buffer, buflen, 0, NVME_QID_ANY, 0, 0, false);
1428 	if (ret >= 0 && result)
1429 		*result = le32_to_cpu(res.u32);
1430 	return ret;
1431 }
1432 
nvme_set_features(struct nvme_ctrl * dev,unsigned int fid,unsigned int dword11,void * buffer,size_t buflen,u32 * result)1433 int nvme_set_features(struct nvme_ctrl *dev, unsigned int fid,
1434 		      unsigned int dword11, void *buffer, size_t buflen,
1435 		      u32 *result)
1436 {
1437 	return nvme_features(dev, nvme_admin_set_features, fid, dword11, buffer,
1438 			     buflen, result);
1439 }
1440 EXPORT_SYMBOL_GPL(nvme_set_features);
1441 
nvme_get_features(struct nvme_ctrl * dev,unsigned int fid,unsigned int dword11,void * buffer,size_t buflen,u32 * result)1442 int nvme_get_features(struct nvme_ctrl *dev, unsigned int fid,
1443 		      unsigned int dword11, void *buffer, size_t buflen,
1444 		      u32 *result)
1445 {
1446 	return nvme_features(dev, nvme_admin_get_features, fid, dword11, buffer,
1447 			     buflen, result);
1448 }
1449 EXPORT_SYMBOL_GPL(nvme_get_features);
1450 
nvme_set_queue_count(struct nvme_ctrl * ctrl,int * count)1451 int nvme_set_queue_count(struct nvme_ctrl *ctrl, int *count)
1452 {
1453 	u32 q_count = (*count - 1) | ((*count - 1) << 16);
1454 	u32 result;
1455 	int status, nr_io_queues;
1456 
1457 	status = nvme_set_features(ctrl, NVME_FEAT_NUM_QUEUES, q_count, NULL, 0,
1458 			&result);
1459 	if (status < 0)
1460 		return status;
1461 
1462 	/*
1463 	 * Degraded controllers might return an error when setting the queue
1464 	 * count.  We still want to be able to bring them online and offer
1465 	 * access to the admin queue, as that might be only way to fix them up.
1466 	 */
1467 	if (status > 0) {
1468 		dev_err(ctrl->device, "Could not set queue count (%d)\n", status);
1469 		*count = 0;
1470 	} else {
1471 		nr_io_queues = min(result & 0xffff, result >> 16) + 1;
1472 		*count = min(*count, nr_io_queues);
1473 	}
1474 
1475 	return 0;
1476 }
1477 EXPORT_SYMBOL_GPL(nvme_set_queue_count);
1478 
1479 #define NVME_AEN_SUPPORTED \
1480 	(NVME_AEN_CFG_NS_ATTR | NVME_AEN_CFG_FW_ACT | \
1481 	 NVME_AEN_CFG_ANA_CHANGE | NVME_AEN_CFG_DISC_CHANGE)
1482 
nvme_enable_aen(struct nvme_ctrl * ctrl)1483 static void nvme_enable_aen(struct nvme_ctrl *ctrl)
1484 {
1485 	u32 result, supported_aens = ctrl->oaes & NVME_AEN_SUPPORTED;
1486 	int status;
1487 
1488 	if (!supported_aens)
1489 		return;
1490 
1491 	status = nvme_set_features(ctrl, NVME_FEAT_ASYNC_EVENT, supported_aens,
1492 			NULL, 0, &result);
1493 	if (status)
1494 		dev_warn(ctrl->device, "Failed to configure AEN (cfg %x)\n",
1495 			 supported_aens);
1496 
1497 	queue_work(nvme_wq, &ctrl->async_event_work);
1498 }
1499 
1500 /*
1501  * Convert integer values from ioctl structures to user pointers, silently
1502  * ignoring the upper bits in the compat case to match behaviour of 32-bit
1503  * kernels.
1504  */
nvme_to_user_ptr(uintptr_t ptrval)1505 static void __user *nvme_to_user_ptr(uintptr_t ptrval)
1506 {
1507 	if (in_compat_syscall())
1508 		ptrval = (compat_uptr_t)ptrval;
1509 	return (void __user *)ptrval;
1510 }
1511 
nvme_submit_io(struct nvme_ns * ns,struct nvme_user_io __user * uio)1512 static int nvme_submit_io(struct nvme_ns *ns, struct nvme_user_io __user *uio)
1513 {
1514 	struct nvme_user_io io;
1515 	struct nvme_command c;
1516 	unsigned length, meta_len;
1517 	void __user *metadata;
1518 
1519 	if (copy_from_user(&io, uio, sizeof(io)))
1520 		return -EFAULT;
1521 	if (io.flags)
1522 		return -EINVAL;
1523 
1524 	switch (io.opcode) {
1525 	case nvme_cmd_write:
1526 	case nvme_cmd_read:
1527 	case nvme_cmd_compare:
1528 		break;
1529 	default:
1530 		return -EINVAL;
1531 	}
1532 
1533 	length = (io.nblocks + 1) << ns->lba_shift;
1534 
1535 	if ((io.control & NVME_RW_PRINFO_PRACT) &&
1536 	    ns->ms == sizeof(struct t10_pi_tuple)) {
1537 		/*
1538 		 * Protection information is stripped/inserted by the
1539 		 * controller.
1540 		 */
1541 		if (nvme_to_user_ptr(io.metadata))
1542 			return -EINVAL;
1543 		meta_len = 0;
1544 		metadata = NULL;
1545 	} else {
1546 		meta_len = (io.nblocks + 1) * ns->ms;
1547 		metadata = nvme_to_user_ptr(io.metadata);
1548 	}
1549 
1550 	if (ns->features & NVME_NS_EXT_LBAS) {
1551 		length += meta_len;
1552 		meta_len = 0;
1553 	} else if (meta_len) {
1554 		if ((io.metadata & 3) || !io.metadata)
1555 			return -EINVAL;
1556 	}
1557 
1558 	memset(&c, 0, sizeof(c));
1559 	c.rw.opcode = io.opcode;
1560 	c.rw.flags = io.flags;
1561 	c.rw.nsid = cpu_to_le32(ns->head->ns_id);
1562 	c.rw.slba = cpu_to_le64(io.slba);
1563 	c.rw.length = cpu_to_le16(io.nblocks);
1564 	c.rw.control = cpu_to_le16(io.control);
1565 	c.rw.dsmgmt = cpu_to_le32(io.dsmgmt);
1566 	c.rw.reftag = cpu_to_le32(io.reftag);
1567 	c.rw.apptag = cpu_to_le16(io.apptag);
1568 	c.rw.appmask = cpu_to_le16(io.appmask);
1569 
1570 	return nvme_submit_user_cmd(ns->queue, &c,
1571 			nvme_to_user_ptr(io.addr), length,
1572 			metadata, meta_len, lower_32_bits(io.slba), NULL, 0);
1573 }
1574 
nvme_user_cmd(struct nvme_ctrl * ctrl,struct nvme_ns * ns,struct nvme_passthru_cmd __user * ucmd)1575 static int nvme_user_cmd(struct nvme_ctrl *ctrl, struct nvme_ns *ns,
1576 			struct nvme_passthru_cmd __user *ucmd)
1577 {
1578 	struct nvme_passthru_cmd cmd;
1579 	struct nvme_command c;
1580 	unsigned timeout = 0;
1581 	u64 result;
1582 	int status;
1583 
1584 	if (!capable(CAP_SYS_ADMIN))
1585 		return -EACCES;
1586 	if (copy_from_user(&cmd, ucmd, sizeof(cmd)))
1587 		return -EFAULT;
1588 	if (cmd.flags)
1589 		return -EINVAL;
1590 
1591 	memset(&c, 0, sizeof(c));
1592 	c.common.opcode = cmd.opcode;
1593 	c.common.flags = cmd.flags;
1594 	c.common.nsid = cpu_to_le32(cmd.nsid);
1595 	c.common.cdw2[0] = cpu_to_le32(cmd.cdw2);
1596 	c.common.cdw2[1] = cpu_to_le32(cmd.cdw3);
1597 	c.common.cdw10 = cpu_to_le32(cmd.cdw10);
1598 	c.common.cdw11 = cpu_to_le32(cmd.cdw11);
1599 	c.common.cdw12 = cpu_to_le32(cmd.cdw12);
1600 	c.common.cdw13 = cpu_to_le32(cmd.cdw13);
1601 	c.common.cdw14 = cpu_to_le32(cmd.cdw14);
1602 	c.common.cdw15 = cpu_to_le32(cmd.cdw15);
1603 
1604 	if (cmd.timeout_ms)
1605 		timeout = msecs_to_jiffies(cmd.timeout_ms);
1606 
1607 	status = nvme_submit_user_cmd(ns ? ns->queue : ctrl->admin_q, &c,
1608 			nvme_to_user_ptr(cmd.addr), cmd.data_len,
1609 			nvme_to_user_ptr(cmd.metadata), cmd.metadata_len,
1610 			0, &result, timeout);
1611 
1612 	if (status >= 0) {
1613 		if (put_user(result, &ucmd->result))
1614 			return -EFAULT;
1615 	}
1616 
1617 	return status;
1618 }
1619 
nvme_user_cmd64(struct nvme_ctrl * ctrl,struct nvme_ns * ns,struct nvme_passthru_cmd64 __user * ucmd)1620 static int nvme_user_cmd64(struct nvme_ctrl *ctrl, struct nvme_ns *ns,
1621 			struct nvme_passthru_cmd64 __user *ucmd)
1622 {
1623 	struct nvme_passthru_cmd64 cmd;
1624 	struct nvme_command c;
1625 	unsigned timeout = 0;
1626 	int status;
1627 
1628 	if (!capable(CAP_SYS_ADMIN))
1629 		return -EACCES;
1630 	if (copy_from_user(&cmd, ucmd, sizeof(cmd)))
1631 		return -EFAULT;
1632 	if (cmd.flags)
1633 		return -EINVAL;
1634 
1635 	memset(&c, 0, sizeof(c));
1636 	c.common.opcode = cmd.opcode;
1637 	c.common.flags = cmd.flags;
1638 	c.common.nsid = cpu_to_le32(cmd.nsid);
1639 	c.common.cdw2[0] = cpu_to_le32(cmd.cdw2);
1640 	c.common.cdw2[1] = cpu_to_le32(cmd.cdw3);
1641 	c.common.cdw10 = cpu_to_le32(cmd.cdw10);
1642 	c.common.cdw11 = cpu_to_le32(cmd.cdw11);
1643 	c.common.cdw12 = cpu_to_le32(cmd.cdw12);
1644 	c.common.cdw13 = cpu_to_le32(cmd.cdw13);
1645 	c.common.cdw14 = cpu_to_le32(cmd.cdw14);
1646 	c.common.cdw15 = cpu_to_le32(cmd.cdw15);
1647 
1648 	if (cmd.timeout_ms)
1649 		timeout = msecs_to_jiffies(cmd.timeout_ms);
1650 
1651 	status = nvme_submit_user_cmd(ns ? ns->queue : ctrl->admin_q, &c,
1652 			nvme_to_user_ptr(cmd.addr), cmd.data_len,
1653 			nvme_to_user_ptr(cmd.metadata), cmd.metadata_len,
1654 			0, &cmd.result, timeout);
1655 
1656 	if (status >= 0) {
1657 		if (put_user(cmd.result, &ucmd->result))
1658 			return -EFAULT;
1659 	}
1660 
1661 	return status;
1662 }
1663 
1664 /*
1665  * Issue ioctl requests on the first available path.  Note that unlike normal
1666  * block layer requests we will not retry failed request on another controller.
1667  */
nvme_get_ns_from_disk(struct gendisk * disk,struct nvme_ns_head ** head,int * srcu_idx)1668 struct nvme_ns *nvme_get_ns_from_disk(struct gendisk *disk,
1669 		struct nvme_ns_head **head, int *srcu_idx)
1670 {
1671 #ifdef CONFIG_NVME_MULTIPATH
1672 	if (disk->fops == &nvme_ns_head_ops) {
1673 		struct nvme_ns *ns;
1674 
1675 		*head = disk->private_data;
1676 		*srcu_idx = srcu_read_lock(&(*head)->srcu);
1677 		ns = nvme_find_path(*head);
1678 		if (!ns)
1679 			srcu_read_unlock(&(*head)->srcu, *srcu_idx);
1680 		return ns;
1681 	}
1682 #endif
1683 	*head = NULL;
1684 	*srcu_idx = -1;
1685 	return disk->private_data;
1686 }
1687 
nvme_put_ns_from_disk(struct nvme_ns_head * head,int idx)1688 void nvme_put_ns_from_disk(struct nvme_ns_head *head, int idx)
1689 {
1690 	if (head)
1691 		srcu_read_unlock(&head->srcu, idx);
1692 }
1693 
is_ctrl_ioctl(unsigned int cmd)1694 static bool is_ctrl_ioctl(unsigned int cmd)
1695 {
1696 	if (cmd == NVME_IOCTL_ADMIN_CMD || cmd == NVME_IOCTL_ADMIN64_CMD)
1697 		return true;
1698 	if (is_sed_ioctl(cmd))
1699 		return true;
1700 	return false;
1701 }
1702 
nvme_handle_ctrl_ioctl(struct nvme_ns * ns,unsigned int cmd,void __user * argp,struct nvme_ns_head * head,int srcu_idx)1703 static int nvme_handle_ctrl_ioctl(struct nvme_ns *ns, unsigned int cmd,
1704 				  void __user *argp,
1705 				  struct nvme_ns_head *head,
1706 				  int srcu_idx)
1707 {
1708 	struct nvme_ctrl *ctrl = ns->ctrl;
1709 	int ret;
1710 
1711 	nvme_get_ctrl(ns->ctrl);
1712 	nvme_put_ns_from_disk(head, srcu_idx);
1713 
1714 	switch (cmd) {
1715 	case NVME_IOCTL_ADMIN_CMD:
1716 		ret = nvme_user_cmd(ctrl, NULL, argp);
1717 		break;
1718 	case NVME_IOCTL_ADMIN64_CMD:
1719 		ret = nvme_user_cmd64(ctrl, NULL, argp);
1720 		break;
1721 	default:
1722 		ret = sed_ioctl(ctrl->opal_dev, cmd, argp);
1723 		break;
1724 	}
1725 	nvme_put_ctrl(ctrl);
1726 	return ret;
1727 }
1728 
nvme_ioctl(struct block_device * bdev,fmode_t mode,unsigned int cmd,unsigned long arg)1729 static int nvme_ioctl(struct block_device *bdev, fmode_t mode,
1730 		unsigned int cmd, unsigned long arg)
1731 {
1732 	struct nvme_ns_head *head = NULL;
1733 	void __user *argp = (void __user *)arg;
1734 	struct nvme_ns *ns;
1735 	int srcu_idx, ret;
1736 
1737 	ns = nvme_get_ns_from_disk(bdev->bd_disk, &head, &srcu_idx);
1738 	if (unlikely(!ns))
1739 		return -EWOULDBLOCK;
1740 
1741 	/*
1742 	 * Handle ioctls that apply to the controller instead of the namespace
1743 	 * seperately and drop the ns SRCU reference early.  This avoids a
1744 	 * deadlock when deleting namespaces using the passthrough interface.
1745 	 */
1746 	if (is_ctrl_ioctl(cmd))
1747 		return nvme_handle_ctrl_ioctl(ns, cmd, argp, head, srcu_idx);
1748 
1749 	switch (cmd) {
1750 	case NVME_IOCTL_ID:
1751 		force_successful_syscall_return();
1752 		ret = ns->head->ns_id;
1753 		break;
1754 	case NVME_IOCTL_IO_CMD:
1755 		ret = nvme_user_cmd(ns->ctrl, ns, argp);
1756 		break;
1757 	case NVME_IOCTL_SUBMIT_IO:
1758 		ret = nvme_submit_io(ns, argp);
1759 		break;
1760 	case NVME_IOCTL_IO64_CMD:
1761 		ret = nvme_user_cmd64(ns->ctrl, ns, argp);
1762 		break;
1763 	default:
1764 		if (ns->ndev)
1765 			ret = nvme_nvm_ioctl(ns, cmd, arg);
1766 		else
1767 			ret = -ENOTTY;
1768 	}
1769 
1770 	nvme_put_ns_from_disk(head, srcu_idx);
1771 	return ret;
1772 }
1773 
1774 #ifdef CONFIG_COMPAT
1775 struct nvme_user_io32 {
1776 	__u8	opcode;
1777 	__u8	flags;
1778 	__u16	control;
1779 	__u16	nblocks;
1780 	__u16	rsvd;
1781 	__u64	metadata;
1782 	__u64	addr;
1783 	__u64	slba;
1784 	__u32	dsmgmt;
1785 	__u32	reftag;
1786 	__u16	apptag;
1787 	__u16	appmask;
1788 } __attribute__((__packed__));
1789 
1790 #define NVME_IOCTL_SUBMIT_IO32	_IOW('N', 0x42, struct nvme_user_io32)
1791 
nvme_compat_ioctl(struct block_device * bdev,fmode_t mode,unsigned int cmd,unsigned long arg)1792 static int nvme_compat_ioctl(struct block_device *bdev, fmode_t mode,
1793 		unsigned int cmd, unsigned long arg)
1794 {
1795 	/*
1796 	 * Corresponds to the difference of NVME_IOCTL_SUBMIT_IO
1797 	 * between 32 bit programs and 64 bit kernel.
1798 	 * The cause is that the results of sizeof(struct nvme_user_io),
1799 	 * which is used to define NVME_IOCTL_SUBMIT_IO,
1800 	 * are not same between 32 bit compiler and 64 bit compiler.
1801 	 * NVME_IOCTL_SUBMIT_IO32 is for 64 bit kernel handling
1802 	 * NVME_IOCTL_SUBMIT_IO issued from 32 bit programs.
1803 	 * Other IOCTL numbers are same between 32 bit and 64 bit.
1804 	 * So there is nothing to do regarding to other IOCTL numbers.
1805 	 */
1806 	if (cmd == NVME_IOCTL_SUBMIT_IO32)
1807 		return nvme_ioctl(bdev, mode, NVME_IOCTL_SUBMIT_IO, arg);
1808 
1809 	return nvme_ioctl(bdev, mode, cmd, arg);
1810 }
1811 #else
1812 #define nvme_compat_ioctl	NULL
1813 #endif /* CONFIG_COMPAT */
1814 
nvme_open(struct block_device * bdev,fmode_t mode)1815 static int nvme_open(struct block_device *bdev, fmode_t mode)
1816 {
1817 	struct nvme_ns *ns = bdev->bd_disk->private_data;
1818 
1819 #ifdef CONFIG_NVME_MULTIPATH
1820 	/* should never be called due to GENHD_FL_HIDDEN */
1821 	if (WARN_ON_ONCE(ns->head->disk))
1822 		goto fail;
1823 #endif
1824 	if (!kref_get_unless_zero(&ns->kref))
1825 		goto fail;
1826 	if (!try_module_get(ns->ctrl->ops->module))
1827 		goto fail_put_ns;
1828 
1829 	return 0;
1830 
1831 fail_put_ns:
1832 	nvme_put_ns(ns);
1833 fail:
1834 	return -ENXIO;
1835 }
1836 
nvme_release(struct gendisk * disk,fmode_t mode)1837 static void nvme_release(struct gendisk *disk, fmode_t mode)
1838 {
1839 	struct nvme_ns *ns = disk->private_data;
1840 
1841 	module_put(ns->ctrl->ops->module);
1842 	nvme_put_ns(ns);
1843 }
1844 
nvme_getgeo(struct block_device * bdev,struct hd_geometry * geo)1845 static int nvme_getgeo(struct block_device *bdev, struct hd_geometry *geo)
1846 {
1847 	/* some standard values */
1848 	geo->heads = 1 << 6;
1849 	geo->sectors = 1 << 5;
1850 	geo->cylinders = get_capacity(bdev->bd_disk) >> 11;
1851 	return 0;
1852 }
1853 
1854 #ifdef CONFIG_BLK_DEV_INTEGRITY
nvme_init_integrity(struct gendisk * disk,u16 ms,u8 pi_type,u32 max_integrity_segments)1855 static void nvme_init_integrity(struct gendisk *disk, u16 ms, u8 pi_type,
1856 				u32 max_integrity_segments)
1857 {
1858 	struct blk_integrity integrity;
1859 
1860 	memset(&integrity, 0, sizeof(integrity));
1861 	switch (pi_type) {
1862 	case NVME_NS_DPS_PI_TYPE3:
1863 		integrity.profile = &t10_pi_type3_crc;
1864 		integrity.tag_size = sizeof(u16) + sizeof(u32);
1865 		integrity.flags |= BLK_INTEGRITY_DEVICE_CAPABLE;
1866 		break;
1867 	case NVME_NS_DPS_PI_TYPE1:
1868 	case NVME_NS_DPS_PI_TYPE2:
1869 		integrity.profile = &t10_pi_type1_crc;
1870 		integrity.tag_size = sizeof(u16);
1871 		integrity.flags |= BLK_INTEGRITY_DEVICE_CAPABLE;
1872 		break;
1873 	default:
1874 		integrity.profile = NULL;
1875 		break;
1876 	}
1877 	integrity.tuple_size = ms;
1878 	blk_integrity_register(disk, &integrity);
1879 	blk_queue_max_integrity_segments(disk->queue, max_integrity_segments);
1880 }
1881 #else
nvme_init_integrity(struct gendisk * disk,u16 ms,u8 pi_type,u32 max_integrity_segments)1882 static void nvme_init_integrity(struct gendisk *disk, u16 ms, u8 pi_type,
1883 				u32 max_integrity_segments)
1884 {
1885 }
1886 #endif /* CONFIG_BLK_DEV_INTEGRITY */
1887 
nvme_config_discard(struct gendisk * disk,struct nvme_ns * ns)1888 static void nvme_config_discard(struct gendisk *disk, struct nvme_ns *ns)
1889 {
1890 	struct nvme_ctrl *ctrl = ns->ctrl;
1891 	struct request_queue *queue = disk->queue;
1892 	u32 size = queue_logical_block_size(queue);
1893 
1894 	if (!(ctrl->oncs & NVME_CTRL_ONCS_DSM)) {
1895 		blk_queue_flag_clear(QUEUE_FLAG_DISCARD, queue);
1896 		return;
1897 	}
1898 
1899 	if (ctrl->nr_streams && ns->sws && ns->sgs)
1900 		size *= ns->sws * ns->sgs;
1901 
1902 	BUILD_BUG_ON(PAGE_SIZE / sizeof(struct nvme_dsm_range) <
1903 			NVME_DSM_MAX_RANGES);
1904 
1905 	queue->limits.discard_alignment = 0;
1906 	queue->limits.discard_granularity = size;
1907 
1908 	/* If discard is already enabled, don't reset queue limits */
1909 	if (blk_queue_flag_test_and_set(QUEUE_FLAG_DISCARD, queue))
1910 		return;
1911 
1912 	blk_queue_max_discard_sectors(queue, UINT_MAX);
1913 	blk_queue_max_discard_segments(queue, NVME_DSM_MAX_RANGES);
1914 
1915 	if (ctrl->quirks & NVME_QUIRK_DEALLOCATE_ZEROES)
1916 		blk_queue_max_write_zeroes_sectors(queue, UINT_MAX);
1917 }
1918 
1919 /*
1920  * Even though NVMe spec explicitly states that MDTS is not applicable to the
1921  * write-zeroes, we are cautious and limit the size to the controllers
1922  * max_hw_sectors value, which is based on the MDTS field and possibly other
1923  * limiting factors.
1924  */
nvme_config_write_zeroes(struct request_queue * q,struct nvme_ctrl * ctrl)1925 static void nvme_config_write_zeroes(struct request_queue *q,
1926 		struct nvme_ctrl *ctrl)
1927 {
1928 	if ((ctrl->oncs & NVME_CTRL_ONCS_WRITE_ZEROES) &&
1929 	    !(ctrl->quirks & NVME_QUIRK_DISABLE_WRITE_ZEROES))
1930 		blk_queue_max_write_zeroes_sectors(q, ctrl->max_hw_sectors);
1931 }
1932 
nvme_ns_ids_valid(struct nvme_ns_ids * ids)1933 static bool nvme_ns_ids_valid(struct nvme_ns_ids *ids)
1934 {
1935 	return !uuid_is_null(&ids->uuid) ||
1936 		memchr_inv(ids->nguid, 0, sizeof(ids->nguid)) ||
1937 		memchr_inv(ids->eui64, 0, sizeof(ids->eui64));
1938 }
1939 
nvme_ns_ids_equal(struct nvme_ns_ids * a,struct nvme_ns_ids * b)1940 static bool nvme_ns_ids_equal(struct nvme_ns_ids *a, struct nvme_ns_ids *b)
1941 {
1942 	return uuid_equal(&a->uuid, &b->uuid) &&
1943 		memcmp(&a->nguid, &b->nguid, sizeof(a->nguid)) == 0 &&
1944 		memcmp(&a->eui64, &b->eui64, sizeof(a->eui64)) == 0 &&
1945 		a->csi == b->csi;
1946 }
1947 
nvme_setup_streams_ns(struct nvme_ctrl * ctrl,struct nvme_ns * ns,u32 * phys_bs,u32 * io_opt)1948 static int nvme_setup_streams_ns(struct nvme_ctrl *ctrl, struct nvme_ns *ns,
1949 				 u32 *phys_bs, u32 *io_opt)
1950 {
1951 	struct streams_directive_params s;
1952 	int ret;
1953 
1954 	if (!ctrl->nr_streams)
1955 		return 0;
1956 
1957 	ret = nvme_get_stream_params(ctrl, &s, ns->head->ns_id);
1958 	if (ret)
1959 		return ret;
1960 
1961 	ns->sws = le32_to_cpu(s.sws);
1962 	ns->sgs = le16_to_cpu(s.sgs);
1963 
1964 	if (ns->sws) {
1965 		*phys_bs = ns->sws * (1 << ns->lba_shift);
1966 		if (ns->sgs)
1967 			*io_opt = *phys_bs * ns->sgs;
1968 	}
1969 
1970 	return 0;
1971 }
1972 
nvme_configure_metadata(struct nvme_ns * ns,struct nvme_id_ns * id)1973 static int nvme_configure_metadata(struct nvme_ns *ns, struct nvme_id_ns *id)
1974 {
1975 	struct nvme_ctrl *ctrl = ns->ctrl;
1976 
1977 	/*
1978 	 * The PI implementation requires the metadata size to be equal to the
1979 	 * t10 pi tuple size.
1980 	 */
1981 	ns->ms = le16_to_cpu(id->lbaf[id->flbas & NVME_NS_FLBAS_LBA_MASK].ms);
1982 	if (ns->ms == sizeof(struct t10_pi_tuple))
1983 		ns->pi_type = id->dps & NVME_NS_DPS_PI_MASK;
1984 	else
1985 		ns->pi_type = 0;
1986 
1987 	ns->features &= ~(NVME_NS_METADATA_SUPPORTED | NVME_NS_EXT_LBAS);
1988 	if (!ns->ms || !(ctrl->ops->flags & NVME_F_METADATA_SUPPORTED))
1989 		return 0;
1990 	if (ctrl->ops->flags & NVME_F_FABRICS) {
1991 		/*
1992 		 * The NVMe over Fabrics specification only supports metadata as
1993 		 * part of the extended data LBA.  We rely on HCA/HBA support to
1994 		 * remap the separate metadata buffer from the block layer.
1995 		 */
1996 		if (WARN_ON_ONCE(!(id->flbas & NVME_NS_FLBAS_META_EXT)))
1997 			return -EINVAL;
1998 		if (ctrl->max_integrity_segments)
1999 			ns->features |=
2000 				(NVME_NS_METADATA_SUPPORTED | NVME_NS_EXT_LBAS);
2001 	} else {
2002 		/*
2003 		 * For PCIe controllers, we can't easily remap the separate
2004 		 * metadata buffer from the block layer and thus require a
2005 		 * separate metadata buffer for block layer metadata/PI support.
2006 		 * We allow extended LBAs for the passthrough interface, though.
2007 		 */
2008 		if (id->flbas & NVME_NS_FLBAS_META_EXT)
2009 			ns->features |= NVME_NS_EXT_LBAS;
2010 		else
2011 			ns->features |= NVME_NS_METADATA_SUPPORTED;
2012 	}
2013 
2014 	return 0;
2015 }
2016 
nvme_set_queue_limits(struct nvme_ctrl * ctrl,struct request_queue * q)2017 static void nvme_set_queue_limits(struct nvme_ctrl *ctrl,
2018 		struct request_queue *q)
2019 {
2020 	bool vwc = ctrl->vwc & NVME_CTRL_VWC_PRESENT;
2021 
2022 	if (ctrl->max_hw_sectors) {
2023 		u32 max_segments =
2024 			(ctrl->max_hw_sectors / (NVME_CTRL_PAGE_SIZE >> 9)) + 1;
2025 
2026 		max_segments = min_not_zero(max_segments, ctrl->max_segments);
2027 		blk_queue_max_hw_sectors(q, ctrl->max_hw_sectors);
2028 		blk_queue_max_segments(q, min_t(u32, max_segments, USHRT_MAX));
2029 	}
2030 	blk_queue_virt_boundary(q, NVME_CTRL_PAGE_SIZE - 1);
2031 	blk_queue_dma_alignment(q, 3);
2032 	blk_queue_write_cache(q, vwc, vwc);
2033 }
2034 
nvme_update_disk_info(struct gendisk * disk,struct nvme_ns * ns,struct nvme_id_ns * id)2035 static void nvme_update_disk_info(struct gendisk *disk,
2036 		struct nvme_ns *ns, struct nvme_id_ns *id)
2037 {
2038 	sector_t capacity = nvme_lba_to_sect(ns, le64_to_cpu(id->nsze));
2039 	unsigned short bs = 1 << ns->lba_shift;
2040 	u32 atomic_bs, phys_bs, io_opt = 0;
2041 
2042 	/*
2043 	 * The block layer can't support LBA sizes larger than the page size
2044 	 * yet, so catch this early and don't allow block I/O.
2045 	 */
2046 	if (ns->lba_shift > PAGE_SHIFT) {
2047 		capacity = 0;
2048 		bs = (1 << 9);
2049 	}
2050 
2051 	blk_integrity_unregister(disk);
2052 
2053 	atomic_bs = phys_bs = bs;
2054 	nvme_setup_streams_ns(ns->ctrl, ns, &phys_bs, &io_opt);
2055 	if (id->nabo == 0) {
2056 		/*
2057 		 * Bit 1 indicates whether NAWUPF is defined for this namespace
2058 		 * and whether it should be used instead of AWUPF. If NAWUPF ==
2059 		 * 0 then AWUPF must be used instead.
2060 		 */
2061 		if (id->nsfeat & NVME_NS_FEAT_ATOMICS && id->nawupf)
2062 			atomic_bs = (1 + le16_to_cpu(id->nawupf)) * bs;
2063 		else
2064 			atomic_bs = (1 + ns->ctrl->subsys->awupf) * bs;
2065 	}
2066 
2067 	if (id->nsfeat & NVME_NS_FEAT_IO_OPT) {
2068 		/* NPWG = Namespace Preferred Write Granularity */
2069 		phys_bs = bs * (1 + le16_to_cpu(id->npwg));
2070 		/* NOWS = Namespace Optimal Write Size */
2071 		io_opt = bs * (1 + le16_to_cpu(id->nows));
2072 	}
2073 
2074 	blk_queue_logical_block_size(disk->queue, bs);
2075 	/*
2076 	 * Linux filesystems assume writing a single physical block is
2077 	 * an atomic operation. Hence limit the physical block size to the
2078 	 * value of the Atomic Write Unit Power Fail parameter.
2079 	 */
2080 	blk_queue_physical_block_size(disk->queue, min(phys_bs, atomic_bs));
2081 	blk_queue_io_min(disk->queue, phys_bs);
2082 	blk_queue_io_opt(disk->queue, io_opt);
2083 
2084 	/*
2085 	 * Register a metadata profile for PI, or the plain non-integrity NVMe
2086 	 * metadata masquerading as Type 0 if supported, otherwise reject block
2087 	 * I/O to namespaces with metadata except when the namespace supports
2088 	 * PI, as it can strip/insert in that case.
2089 	 */
2090 	if (ns->ms) {
2091 		if (IS_ENABLED(CONFIG_BLK_DEV_INTEGRITY) &&
2092 		    (ns->features & NVME_NS_METADATA_SUPPORTED))
2093 			nvme_init_integrity(disk, ns->ms, ns->pi_type,
2094 					    ns->ctrl->max_integrity_segments);
2095 		else if (!nvme_ns_has_pi(ns))
2096 			capacity = 0;
2097 	}
2098 
2099 	set_capacity_revalidate_and_notify(disk, capacity, false);
2100 
2101 	nvme_config_discard(disk, ns);
2102 	nvme_config_write_zeroes(disk->queue, ns->ctrl);
2103 
2104 	if (id->nsattr & NVME_NS_ATTR_RO)
2105 		set_disk_ro(disk, true);
2106 }
2107 
nvme_first_scan(struct gendisk * disk)2108 static inline bool nvme_first_scan(struct gendisk *disk)
2109 {
2110 	/* nvme_alloc_ns() scans the disk prior to adding it */
2111 	return !(disk->flags & GENHD_FL_UP);
2112 }
2113 
nvme_set_chunk_sectors(struct nvme_ns * ns,struct nvme_id_ns * id)2114 static void nvme_set_chunk_sectors(struct nvme_ns *ns, struct nvme_id_ns *id)
2115 {
2116 	struct nvme_ctrl *ctrl = ns->ctrl;
2117 	u32 iob;
2118 
2119 	if ((ctrl->quirks & NVME_QUIRK_STRIPE_SIZE) &&
2120 	    is_power_of_2(ctrl->max_hw_sectors))
2121 		iob = ctrl->max_hw_sectors;
2122 	else
2123 		iob = nvme_lba_to_sect(ns, le16_to_cpu(id->noiob));
2124 
2125 	if (!iob)
2126 		return;
2127 
2128 	if (!is_power_of_2(iob)) {
2129 		if (nvme_first_scan(ns->disk))
2130 			pr_warn("%s: ignoring unaligned IO boundary:%u\n",
2131 				ns->disk->disk_name, iob);
2132 		return;
2133 	}
2134 
2135 	if (blk_queue_is_zoned(ns->disk->queue)) {
2136 		if (nvme_first_scan(ns->disk))
2137 			pr_warn("%s: ignoring zoned namespace IO boundary\n",
2138 				ns->disk->disk_name);
2139 		return;
2140 	}
2141 
2142 	blk_queue_chunk_sectors(ns->queue, iob);
2143 }
2144 
nvme_update_ns_info(struct nvme_ns * ns,struct nvme_id_ns * id)2145 static int nvme_update_ns_info(struct nvme_ns *ns, struct nvme_id_ns *id)
2146 {
2147 	unsigned lbaf = id->flbas & NVME_NS_FLBAS_LBA_MASK;
2148 	int ret;
2149 
2150 	blk_mq_freeze_queue(ns->disk->queue);
2151 	ns->lba_shift = id->lbaf[lbaf].ds;
2152 	nvme_set_queue_limits(ns->ctrl, ns->queue);
2153 
2154 	if (ns->head->ids.csi == NVME_CSI_ZNS) {
2155 		ret = nvme_update_zone_info(ns, lbaf);
2156 		if (ret)
2157 			goto out_unfreeze;
2158 	}
2159 
2160 	ret = nvme_configure_metadata(ns, id);
2161 	if (ret)
2162 		goto out_unfreeze;
2163 	nvme_set_chunk_sectors(ns, id);
2164 	nvme_update_disk_info(ns->disk, ns, id);
2165 	blk_mq_unfreeze_queue(ns->disk->queue);
2166 
2167 	if (blk_queue_is_zoned(ns->queue)) {
2168 		ret = nvme_revalidate_zones(ns);
2169 		if (ret && !nvme_first_scan(ns->disk))
2170 			return ret;
2171 	}
2172 
2173 #ifdef CONFIG_NVME_MULTIPATH
2174 	if (ns->head->disk) {
2175 		blk_mq_freeze_queue(ns->head->disk->queue);
2176 		nvme_update_disk_info(ns->head->disk, ns, id);
2177 		blk_stack_limits(&ns->head->disk->queue->limits,
2178 				 &ns->queue->limits, 0);
2179 		blk_queue_update_readahead(ns->head->disk->queue);
2180 		nvme_update_bdev_size(ns->head->disk);
2181 		blk_mq_unfreeze_queue(ns->head->disk->queue);
2182 	}
2183 #endif
2184 	return 0;
2185 
2186 out_unfreeze:
2187 	blk_mq_unfreeze_queue(ns->disk->queue);
2188 	return ret;
2189 }
2190 
nvme_pr_type(enum pr_type type)2191 static char nvme_pr_type(enum pr_type type)
2192 {
2193 	switch (type) {
2194 	case PR_WRITE_EXCLUSIVE:
2195 		return 1;
2196 	case PR_EXCLUSIVE_ACCESS:
2197 		return 2;
2198 	case PR_WRITE_EXCLUSIVE_REG_ONLY:
2199 		return 3;
2200 	case PR_EXCLUSIVE_ACCESS_REG_ONLY:
2201 		return 4;
2202 	case PR_WRITE_EXCLUSIVE_ALL_REGS:
2203 		return 5;
2204 	case PR_EXCLUSIVE_ACCESS_ALL_REGS:
2205 		return 6;
2206 	default:
2207 		return 0;
2208 	}
2209 };
2210 
nvme_pr_command(struct block_device * bdev,u32 cdw10,u64 key,u64 sa_key,u8 op)2211 static int nvme_pr_command(struct block_device *bdev, u32 cdw10,
2212 				u64 key, u64 sa_key, u8 op)
2213 {
2214 	struct nvme_ns_head *head = NULL;
2215 	struct nvme_ns *ns;
2216 	struct nvme_command c;
2217 	int srcu_idx, ret;
2218 	u8 data[16] = { 0, };
2219 
2220 	ns = nvme_get_ns_from_disk(bdev->bd_disk, &head, &srcu_idx);
2221 	if (unlikely(!ns))
2222 		return -EWOULDBLOCK;
2223 
2224 	put_unaligned_le64(key, &data[0]);
2225 	put_unaligned_le64(sa_key, &data[8]);
2226 
2227 	memset(&c, 0, sizeof(c));
2228 	c.common.opcode = op;
2229 	c.common.nsid = cpu_to_le32(ns->head->ns_id);
2230 	c.common.cdw10 = cpu_to_le32(cdw10);
2231 
2232 	ret = nvme_submit_sync_cmd(ns->queue, &c, data, 16);
2233 	nvme_put_ns_from_disk(head, srcu_idx);
2234 	return ret;
2235 }
2236 
nvme_pr_register(struct block_device * bdev,u64 old,u64 new,unsigned flags)2237 static int nvme_pr_register(struct block_device *bdev, u64 old,
2238 		u64 new, unsigned flags)
2239 {
2240 	u32 cdw10;
2241 
2242 	if (flags & ~PR_FL_IGNORE_KEY)
2243 		return -EOPNOTSUPP;
2244 
2245 	cdw10 = old ? 2 : 0;
2246 	cdw10 |= (flags & PR_FL_IGNORE_KEY) ? 1 << 3 : 0;
2247 	cdw10 |= (1 << 30) | (1 << 31); /* PTPL=1 */
2248 	return nvme_pr_command(bdev, cdw10, old, new, nvme_cmd_resv_register);
2249 }
2250 
nvme_pr_reserve(struct block_device * bdev,u64 key,enum pr_type type,unsigned flags)2251 static int nvme_pr_reserve(struct block_device *bdev, u64 key,
2252 		enum pr_type type, unsigned flags)
2253 {
2254 	u32 cdw10;
2255 
2256 	if (flags & ~PR_FL_IGNORE_KEY)
2257 		return -EOPNOTSUPP;
2258 
2259 	cdw10 = nvme_pr_type(type) << 8;
2260 	cdw10 |= ((flags & PR_FL_IGNORE_KEY) ? 1 << 3 : 0);
2261 	return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_acquire);
2262 }
2263 
nvme_pr_preempt(struct block_device * bdev,u64 old,u64 new,enum pr_type type,bool abort)2264 static int nvme_pr_preempt(struct block_device *bdev, u64 old, u64 new,
2265 		enum pr_type type, bool abort)
2266 {
2267 	u32 cdw10 = nvme_pr_type(type) << 8 | (abort ? 2 : 1);
2268 
2269 	return nvme_pr_command(bdev, cdw10, old, new, nvme_cmd_resv_acquire);
2270 }
2271 
nvme_pr_clear(struct block_device * bdev,u64 key)2272 static int nvme_pr_clear(struct block_device *bdev, u64 key)
2273 {
2274 	u32 cdw10 = 1 | (key ? 0 : 1 << 3);
2275 
2276 	return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_release);
2277 }
2278 
nvme_pr_release(struct block_device * bdev,u64 key,enum pr_type type)2279 static int nvme_pr_release(struct block_device *bdev, u64 key, enum pr_type type)
2280 {
2281 	u32 cdw10 = nvme_pr_type(type) << 8 | (key ? 0 : 1 << 3);
2282 
2283 	return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_release);
2284 }
2285 
2286 static const struct pr_ops nvme_pr_ops = {
2287 	.pr_register	= nvme_pr_register,
2288 	.pr_reserve	= nvme_pr_reserve,
2289 	.pr_release	= nvme_pr_release,
2290 	.pr_preempt	= nvme_pr_preempt,
2291 	.pr_clear	= nvme_pr_clear,
2292 };
2293 
2294 #ifdef CONFIG_BLK_SED_OPAL
nvme_sec_submit(void * data,u16 spsp,u8 secp,void * buffer,size_t len,bool send)2295 int nvme_sec_submit(void *data, u16 spsp, u8 secp, void *buffer, size_t len,
2296 		bool send)
2297 {
2298 	struct nvme_ctrl *ctrl = data;
2299 	struct nvme_command cmd;
2300 
2301 	memset(&cmd, 0, sizeof(cmd));
2302 	if (send)
2303 		cmd.common.opcode = nvme_admin_security_send;
2304 	else
2305 		cmd.common.opcode = nvme_admin_security_recv;
2306 	cmd.common.nsid = 0;
2307 	cmd.common.cdw10 = cpu_to_le32(((u32)secp) << 24 | ((u32)spsp) << 8);
2308 	cmd.common.cdw11 = cpu_to_le32(len);
2309 
2310 	return __nvme_submit_sync_cmd(ctrl->admin_q, &cmd, NULL, buffer, len,
2311 				      ADMIN_TIMEOUT, NVME_QID_ANY, 1, 0, false);
2312 }
2313 EXPORT_SYMBOL_GPL(nvme_sec_submit);
2314 #endif /* CONFIG_BLK_SED_OPAL */
2315 
2316 static const struct block_device_operations nvme_fops = {
2317 	.owner		= THIS_MODULE,
2318 	.ioctl		= nvme_ioctl,
2319 	.compat_ioctl	= nvme_compat_ioctl,
2320 	.open		= nvme_open,
2321 	.release	= nvme_release,
2322 	.getgeo		= nvme_getgeo,
2323 	.report_zones	= nvme_report_zones,
2324 	.pr_ops		= &nvme_pr_ops,
2325 };
2326 
2327 #ifdef CONFIG_NVME_MULTIPATH
nvme_ns_head_open(struct block_device * bdev,fmode_t mode)2328 static int nvme_ns_head_open(struct block_device *bdev, fmode_t mode)
2329 {
2330 	struct nvme_ns_head *head = bdev->bd_disk->private_data;
2331 
2332 	if (!kref_get_unless_zero(&head->ref))
2333 		return -ENXIO;
2334 	return 0;
2335 }
2336 
nvme_ns_head_release(struct gendisk * disk,fmode_t mode)2337 static void nvme_ns_head_release(struct gendisk *disk, fmode_t mode)
2338 {
2339 	nvme_put_ns_head(disk->private_data);
2340 }
2341 
2342 const struct block_device_operations nvme_ns_head_ops = {
2343 	.owner		= THIS_MODULE,
2344 	.submit_bio	= nvme_ns_head_submit_bio,
2345 	.open		= nvme_ns_head_open,
2346 	.release	= nvme_ns_head_release,
2347 	.ioctl		= nvme_ioctl,
2348 	.compat_ioctl	= nvme_compat_ioctl,
2349 	.getgeo		= nvme_getgeo,
2350 	.report_zones	= nvme_report_zones,
2351 	.pr_ops		= &nvme_pr_ops,
2352 };
2353 #endif /* CONFIG_NVME_MULTIPATH */
2354 
nvme_wait_ready(struct nvme_ctrl * ctrl,u64 cap,bool enabled)2355 static int nvme_wait_ready(struct nvme_ctrl *ctrl, u64 cap, bool enabled)
2356 {
2357 	unsigned long timeout =
2358 		((NVME_CAP_TIMEOUT(cap) + 1) * HZ / 2) + jiffies;
2359 	u32 csts, bit = enabled ? NVME_CSTS_RDY : 0;
2360 	int ret;
2361 
2362 	while ((ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts)) == 0) {
2363 		if (csts == ~0)
2364 			return -ENODEV;
2365 		if ((csts & NVME_CSTS_RDY) == bit)
2366 			break;
2367 
2368 		usleep_range(1000, 2000);
2369 		if (fatal_signal_pending(current))
2370 			return -EINTR;
2371 		if (time_after(jiffies, timeout)) {
2372 			dev_err(ctrl->device,
2373 				"Device not ready; aborting %s, CSTS=0x%x\n",
2374 				enabled ? "initialisation" : "reset", csts);
2375 			return -ENODEV;
2376 		}
2377 	}
2378 
2379 	return ret;
2380 }
2381 
2382 /*
2383  * If the device has been passed off to us in an enabled state, just clear
2384  * the enabled bit.  The spec says we should set the 'shutdown notification
2385  * bits', but doing so may cause the device to complete commands to the
2386  * admin queue ... and we don't know what memory that might be pointing at!
2387  */
nvme_disable_ctrl(struct nvme_ctrl * ctrl)2388 int nvme_disable_ctrl(struct nvme_ctrl *ctrl)
2389 {
2390 	int ret;
2391 
2392 	ctrl->ctrl_config &= ~NVME_CC_SHN_MASK;
2393 	ctrl->ctrl_config &= ~NVME_CC_ENABLE;
2394 
2395 	ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
2396 	if (ret)
2397 		return ret;
2398 
2399 	if (ctrl->quirks & NVME_QUIRK_DELAY_BEFORE_CHK_RDY)
2400 		msleep(NVME_QUIRK_DELAY_AMOUNT);
2401 
2402 	return nvme_wait_ready(ctrl, ctrl->cap, false);
2403 }
2404 EXPORT_SYMBOL_GPL(nvme_disable_ctrl);
2405 
nvme_enable_ctrl(struct nvme_ctrl * ctrl)2406 int nvme_enable_ctrl(struct nvme_ctrl *ctrl)
2407 {
2408 	unsigned dev_page_min;
2409 	int ret;
2410 
2411 	ret = ctrl->ops->reg_read64(ctrl, NVME_REG_CAP, &ctrl->cap);
2412 	if (ret) {
2413 		dev_err(ctrl->device, "Reading CAP failed (%d)\n", ret);
2414 		return ret;
2415 	}
2416 	dev_page_min = NVME_CAP_MPSMIN(ctrl->cap) + 12;
2417 
2418 	if (NVME_CTRL_PAGE_SHIFT < dev_page_min) {
2419 		dev_err(ctrl->device,
2420 			"Minimum device page size %u too large for host (%u)\n",
2421 			1 << dev_page_min, 1 << NVME_CTRL_PAGE_SHIFT);
2422 		return -ENODEV;
2423 	}
2424 
2425 	if (NVME_CAP_CSS(ctrl->cap) & NVME_CAP_CSS_CSI)
2426 		ctrl->ctrl_config = NVME_CC_CSS_CSI;
2427 	else
2428 		ctrl->ctrl_config = NVME_CC_CSS_NVM;
2429 	ctrl->ctrl_config |= (NVME_CTRL_PAGE_SHIFT - 12) << NVME_CC_MPS_SHIFT;
2430 	ctrl->ctrl_config |= NVME_CC_AMS_RR | NVME_CC_SHN_NONE;
2431 	ctrl->ctrl_config |= NVME_CC_IOSQES | NVME_CC_IOCQES;
2432 	ctrl->ctrl_config |= NVME_CC_ENABLE;
2433 
2434 	ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
2435 	if (ret)
2436 		return ret;
2437 	return nvme_wait_ready(ctrl, ctrl->cap, true);
2438 }
2439 EXPORT_SYMBOL_GPL(nvme_enable_ctrl);
2440 
nvme_shutdown_ctrl(struct nvme_ctrl * ctrl)2441 int nvme_shutdown_ctrl(struct nvme_ctrl *ctrl)
2442 {
2443 	unsigned long timeout = jiffies + (ctrl->shutdown_timeout * HZ);
2444 	u32 csts;
2445 	int ret;
2446 
2447 	ctrl->ctrl_config &= ~NVME_CC_SHN_MASK;
2448 	ctrl->ctrl_config |= NVME_CC_SHN_NORMAL;
2449 
2450 	ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
2451 	if (ret)
2452 		return ret;
2453 
2454 	while ((ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts)) == 0) {
2455 		if ((csts & NVME_CSTS_SHST_MASK) == NVME_CSTS_SHST_CMPLT)
2456 			break;
2457 
2458 		msleep(100);
2459 		if (fatal_signal_pending(current))
2460 			return -EINTR;
2461 		if (time_after(jiffies, timeout)) {
2462 			dev_err(ctrl->device,
2463 				"Device shutdown incomplete; abort shutdown\n");
2464 			return -ENODEV;
2465 		}
2466 	}
2467 
2468 	return ret;
2469 }
2470 EXPORT_SYMBOL_GPL(nvme_shutdown_ctrl);
2471 
nvme_configure_timestamp(struct nvme_ctrl * ctrl)2472 static int nvme_configure_timestamp(struct nvme_ctrl *ctrl)
2473 {
2474 	__le64 ts;
2475 	int ret;
2476 
2477 	if (!(ctrl->oncs & NVME_CTRL_ONCS_TIMESTAMP))
2478 		return 0;
2479 
2480 	ts = cpu_to_le64(ktime_to_ms(ktime_get_real()));
2481 	ret = nvme_set_features(ctrl, NVME_FEAT_TIMESTAMP, 0, &ts, sizeof(ts),
2482 			NULL);
2483 	if (ret)
2484 		dev_warn_once(ctrl->device,
2485 			"could not set timestamp (%d)\n", ret);
2486 	return ret;
2487 }
2488 
nvme_configure_acre(struct nvme_ctrl * ctrl)2489 static int nvme_configure_acre(struct nvme_ctrl *ctrl)
2490 {
2491 	struct nvme_feat_host_behavior *host;
2492 	int ret;
2493 
2494 	/* Don't bother enabling the feature if retry delay is not reported */
2495 	if (!ctrl->crdt[0])
2496 		return 0;
2497 
2498 	host = kzalloc(sizeof(*host), GFP_KERNEL);
2499 	if (!host)
2500 		return 0;
2501 
2502 	host->acre = NVME_ENABLE_ACRE;
2503 	ret = nvme_set_features(ctrl, NVME_FEAT_HOST_BEHAVIOR, 0,
2504 				host, sizeof(*host), NULL);
2505 	kfree(host);
2506 	return ret;
2507 }
2508 
nvme_configure_apst(struct nvme_ctrl * ctrl)2509 static int nvme_configure_apst(struct nvme_ctrl *ctrl)
2510 {
2511 	/*
2512 	 * APST (Autonomous Power State Transition) lets us program a
2513 	 * table of power state transitions that the controller will
2514 	 * perform automatically.  We configure it with a simple
2515 	 * heuristic: we are willing to spend at most 2% of the time
2516 	 * transitioning between power states.  Therefore, when running
2517 	 * in any given state, we will enter the next lower-power
2518 	 * non-operational state after waiting 50 * (enlat + exlat)
2519 	 * microseconds, as long as that state's exit latency is under
2520 	 * the requested maximum latency.
2521 	 *
2522 	 * We will not autonomously enter any non-operational state for
2523 	 * which the total latency exceeds ps_max_latency_us.  Users
2524 	 * can set ps_max_latency_us to zero to turn off APST.
2525 	 */
2526 
2527 	unsigned apste;
2528 	struct nvme_feat_auto_pst *table;
2529 	u64 max_lat_us = 0;
2530 	int max_ps = -1;
2531 	int ret;
2532 
2533 	/*
2534 	 * If APST isn't supported or if we haven't been initialized yet,
2535 	 * then don't do anything.
2536 	 */
2537 	if (!ctrl->apsta)
2538 		return 0;
2539 
2540 	if (ctrl->npss > 31) {
2541 		dev_warn(ctrl->device, "NPSS is invalid; not using APST\n");
2542 		return 0;
2543 	}
2544 
2545 	table = kzalloc(sizeof(*table), GFP_KERNEL);
2546 	if (!table)
2547 		return 0;
2548 
2549 	if (!ctrl->apst_enabled || ctrl->ps_max_latency_us == 0) {
2550 		/* Turn off APST. */
2551 		apste = 0;
2552 		dev_dbg(ctrl->device, "APST disabled\n");
2553 	} else {
2554 		__le64 target = cpu_to_le64(0);
2555 		int state;
2556 
2557 		/*
2558 		 * Walk through all states from lowest- to highest-power.
2559 		 * According to the spec, lower-numbered states use more
2560 		 * power.  NPSS, despite the name, is the index of the
2561 		 * lowest-power state, not the number of states.
2562 		 */
2563 		for (state = (int)ctrl->npss; state >= 0; state--) {
2564 			u64 total_latency_us, exit_latency_us, transition_ms;
2565 
2566 			if (target)
2567 				table->entries[state] = target;
2568 
2569 			/*
2570 			 * Don't allow transitions to the deepest state
2571 			 * if it's quirked off.
2572 			 */
2573 			if (state == ctrl->npss &&
2574 			    (ctrl->quirks & NVME_QUIRK_NO_DEEPEST_PS))
2575 				continue;
2576 
2577 			/*
2578 			 * Is this state a useful non-operational state for
2579 			 * higher-power states to autonomously transition to?
2580 			 */
2581 			if (!(ctrl->psd[state].flags &
2582 			      NVME_PS_FLAGS_NON_OP_STATE))
2583 				continue;
2584 
2585 			exit_latency_us =
2586 				(u64)le32_to_cpu(ctrl->psd[state].exit_lat);
2587 			if (exit_latency_us > ctrl->ps_max_latency_us)
2588 				continue;
2589 
2590 			total_latency_us =
2591 				exit_latency_us +
2592 				le32_to_cpu(ctrl->psd[state].entry_lat);
2593 
2594 			/*
2595 			 * This state is good.  Use it as the APST idle
2596 			 * target for higher power states.
2597 			 */
2598 			transition_ms = total_latency_us + 19;
2599 			do_div(transition_ms, 20);
2600 			if (transition_ms > (1 << 24) - 1)
2601 				transition_ms = (1 << 24) - 1;
2602 
2603 			target = cpu_to_le64((state << 3) |
2604 					     (transition_ms << 8));
2605 
2606 			if (max_ps == -1)
2607 				max_ps = state;
2608 
2609 			if (total_latency_us > max_lat_us)
2610 				max_lat_us = total_latency_us;
2611 		}
2612 
2613 		apste = 1;
2614 
2615 		if (max_ps == -1) {
2616 			dev_dbg(ctrl->device, "APST enabled but no non-operational states are available\n");
2617 		} else {
2618 			dev_dbg(ctrl->device, "APST enabled: max PS = %d, max round-trip latency = %lluus, table = %*phN\n",
2619 				max_ps, max_lat_us, (int)sizeof(*table), table);
2620 		}
2621 	}
2622 
2623 	ret = nvme_set_features(ctrl, NVME_FEAT_AUTO_PST, apste,
2624 				table, sizeof(*table), NULL);
2625 	if (ret)
2626 		dev_err(ctrl->device, "failed to set APST feature (%d)\n", ret);
2627 
2628 	kfree(table);
2629 	return ret;
2630 }
2631 
nvme_set_latency_tolerance(struct device * dev,s32 val)2632 static void nvme_set_latency_tolerance(struct device *dev, s32 val)
2633 {
2634 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
2635 	u64 latency;
2636 
2637 	switch (val) {
2638 	case PM_QOS_LATENCY_TOLERANCE_NO_CONSTRAINT:
2639 	case PM_QOS_LATENCY_ANY:
2640 		latency = U64_MAX;
2641 		break;
2642 
2643 	default:
2644 		latency = val;
2645 	}
2646 
2647 	if (ctrl->ps_max_latency_us != latency) {
2648 		ctrl->ps_max_latency_us = latency;
2649 		if (ctrl->state == NVME_CTRL_LIVE)
2650 			nvme_configure_apst(ctrl);
2651 	}
2652 }
2653 
2654 struct nvme_core_quirk_entry {
2655 	/*
2656 	 * NVMe model and firmware strings are padded with spaces.  For
2657 	 * simplicity, strings in the quirk table are padded with NULLs
2658 	 * instead.
2659 	 */
2660 	u16 vid;
2661 	const char *mn;
2662 	const char *fr;
2663 	unsigned long quirks;
2664 };
2665 
2666 static const struct nvme_core_quirk_entry core_quirks[] = {
2667 	{
2668 		/*
2669 		 * This Toshiba device seems to die using any APST states.  See:
2670 		 * https://bugs.launchpad.net/ubuntu/+source/linux/+bug/1678184/comments/11
2671 		 */
2672 		.vid = 0x1179,
2673 		.mn = "THNSF5256GPUK TOSHIBA",
2674 		.quirks = NVME_QUIRK_NO_APST,
2675 	},
2676 	{
2677 		/*
2678 		 * This LiteON CL1-3D*-Q11 firmware version has a race
2679 		 * condition associated with actions related to suspend to idle
2680 		 * LiteON has resolved the problem in future firmware
2681 		 */
2682 		.vid = 0x14a4,
2683 		.fr = "22301111",
2684 		.quirks = NVME_QUIRK_SIMPLE_SUSPEND,
2685 	},
2686 	{
2687 		/*
2688 		 * This Kioxia CD6-V Series / HPE PE8030 device times out and
2689 		 * aborts I/O during any load, but more easily reproducible
2690 		 * with discards (fstrim).
2691 		 *
2692 		 * The device is left in a state where it is also not possible
2693 		 * to use "nvme set-feature" to disable APST, but booting with
2694 		 * nvme_core.default_ps_max_latency=0 works.
2695 		 */
2696 		.vid = 0x1e0f,
2697 		.mn = "KCD6XVUL6T40",
2698 		.quirks = NVME_QUIRK_NO_APST,
2699 	},
2700 	{
2701 		/*
2702 		 * The external Samsung X5 SSD fails initialization without a
2703 		 * delay before checking if it is ready and has a whole set of
2704 		 * other problems.  To make this even more interesting, it
2705 		 * shares the PCI ID with internal Samsung 970 Evo Plus that
2706 		 * does not need or want these quirks.
2707 		 */
2708 		.vid = 0x144d,
2709 		.mn = "Samsung Portable SSD X5",
2710 		.quirks = NVME_QUIRK_DELAY_BEFORE_CHK_RDY |
2711 			  NVME_QUIRK_NO_DEEPEST_PS |
2712 			  NVME_QUIRK_IGNORE_DEV_SUBNQN,
2713 	}
2714 };
2715 
2716 /* match is null-terminated but idstr is space-padded. */
string_matches(const char * idstr,const char * match,size_t len)2717 static bool string_matches(const char *idstr, const char *match, size_t len)
2718 {
2719 	size_t matchlen;
2720 
2721 	if (!match)
2722 		return true;
2723 
2724 	matchlen = strlen(match);
2725 	WARN_ON_ONCE(matchlen > len);
2726 
2727 	if (memcmp(idstr, match, matchlen))
2728 		return false;
2729 
2730 	for (; matchlen < len; matchlen++)
2731 		if (idstr[matchlen] != ' ')
2732 			return false;
2733 
2734 	return true;
2735 }
2736 
quirk_matches(const struct nvme_id_ctrl * id,const struct nvme_core_quirk_entry * q)2737 static bool quirk_matches(const struct nvme_id_ctrl *id,
2738 			  const struct nvme_core_quirk_entry *q)
2739 {
2740 	return q->vid == le16_to_cpu(id->vid) &&
2741 		string_matches(id->mn, q->mn, sizeof(id->mn)) &&
2742 		string_matches(id->fr, q->fr, sizeof(id->fr));
2743 }
2744 
nvme_init_subnqn(struct nvme_subsystem * subsys,struct nvme_ctrl * ctrl,struct nvme_id_ctrl * id)2745 static void nvme_init_subnqn(struct nvme_subsystem *subsys, struct nvme_ctrl *ctrl,
2746 		struct nvme_id_ctrl *id)
2747 {
2748 	size_t nqnlen;
2749 	int off;
2750 
2751 	if(!(ctrl->quirks & NVME_QUIRK_IGNORE_DEV_SUBNQN)) {
2752 		nqnlen = strnlen(id->subnqn, NVMF_NQN_SIZE);
2753 		if (nqnlen > 0 && nqnlen < NVMF_NQN_SIZE) {
2754 			strlcpy(subsys->subnqn, id->subnqn, NVMF_NQN_SIZE);
2755 			return;
2756 		}
2757 
2758 		if (ctrl->vs >= NVME_VS(1, 2, 1))
2759 			dev_warn(ctrl->device, "missing or invalid SUBNQN field.\n");
2760 	}
2761 
2762 	/* Generate a "fake" NQN per Figure 254 in NVMe 1.3 + ECN 001 */
2763 	off = snprintf(subsys->subnqn, NVMF_NQN_SIZE,
2764 			"nqn.2014.08.org.nvmexpress:%04x%04x",
2765 			le16_to_cpu(id->vid), le16_to_cpu(id->ssvid));
2766 	memcpy(subsys->subnqn + off, id->sn, sizeof(id->sn));
2767 	off += sizeof(id->sn);
2768 	memcpy(subsys->subnqn + off, id->mn, sizeof(id->mn));
2769 	off += sizeof(id->mn);
2770 	memset(subsys->subnqn + off, 0, sizeof(subsys->subnqn) - off);
2771 }
2772 
nvme_release_subsystem(struct device * dev)2773 static void nvme_release_subsystem(struct device *dev)
2774 {
2775 	struct nvme_subsystem *subsys =
2776 		container_of(dev, struct nvme_subsystem, dev);
2777 
2778 	if (subsys->instance >= 0)
2779 		ida_simple_remove(&nvme_instance_ida, subsys->instance);
2780 	kfree(subsys);
2781 }
2782 
nvme_destroy_subsystem(struct kref * ref)2783 static void nvme_destroy_subsystem(struct kref *ref)
2784 {
2785 	struct nvme_subsystem *subsys =
2786 			container_of(ref, struct nvme_subsystem, ref);
2787 
2788 	mutex_lock(&nvme_subsystems_lock);
2789 	list_del(&subsys->entry);
2790 	mutex_unlock(&nvme_subsystems_lock);
2791 
2792 	ida_destroy(&subsys->ns_ida);
2793 	device_del(&subsys->dev);
2794 	put_device(&subsys->dev);
2795 }
2796 
nvme_put_subsystem(struct nvme_subsystem * subsys)2797 static void nvme_put_subsystem(struct nvme_subsystem *subsys)
2798 {
2799 	kref_put(&subsys->ref, nvme_destroy_subsystem);
2800 }
2801 
__nvme_find_get_subsystem(const char * subsysnqn)2802 static struct nvme_subsystem *__nvme_find_get_subsystem(const char *subsysnqn)
2803 {
2804 	struct nvme_subsystem *subsys;
2805 
2806 	lockdep_assert_held(&nvme_subsystems_lock);
2807 
2808 	/*
2809 	 * Fail matches for discovery subsystems. This results
2810 	 * in each discovery controller bound to a unique subsystem.
2811 	 * This avoids issues with validating controller values
2812 	 * that can only be true when there is a single unique subsystem.
2813 	 * There may be multiple and completely independent entities
2814 	 * that provide discovery controllers.
2815 	 */
2816 	if (!strcmp(subsysnqn, NVME_DISC_SUBSYS_NAME))
2817 		return NULL;
2818 
2819 	list_for_each_entry(subsys, &nvme_subsystems, entry) {
2820 		if (strcmp(subsys->subnqn, subsysnqn))
2821 			continue;
2822 		if (!kref_get_unless_zero(&subsys->ref))
2823 			continue;
2824 		return subsys;
2825 	}
2826 
2827 	return NULL;
2828 }
2829 
2830 #define SUBSYS_ATTR_RO(_name, _mode, _show)			\
2831 	struct device_attribute subsys_attr_##_name = \
2832 		__ATTR(_name, _mode, _show, NULL)
2833 
nvme_subsys_show_nqn(struct device * dev,struct device_attribute * attr,char * buf)2834 static ssize_t nvme_subsys_show_nqn(struct device *dev,
2835 				    struct device_attribute *attr,
2836 				    char *buf)
2837 {
2838 	struct nvme_subsystem *subsys =
2839 		container_of(dev, struct nvme_subsystem, dev);
2840 
2841 	return snprintf(buf, PAGE_SIZE, "%s\n", subsys->subnqn);
2842 }
2843 static SUBSYS_ATTR_RO(subsysnqn, S_IRUGO, nvme_subsys_show_nqn);
2844 
2845 #define nvme_subsys_show_str_function(field)				\
2846 static ssize_t subsys_##field##_show(struct device *dev,		\
2847 			    struct device_attribute *attr, char *buf)	\
2848 {									\
2849 	struct nvme_subsystem *subsys =					\
2850 		container_of(dev, struct nvme_subsystem, dev);		\
2851 	return sysfs_emit(buf, "%.*s\n",				\
2852 			   (int)sizeof(subsys->field), subsys->field);	\
2853 }									\
2854 static SUBSYS_ATTR_RO(field, S_IRUGO, subsys_##field##_show);
2855 
2856 nvme_subsys_show_str_function(model);
2857 nvme_subsys_show_str_function(serial);
2858 nvme_subsys_show_str_function(firmware_rev);
2859 
2860 static struct attribute *nvme_subsys_attrs[] = {
2861 	&subsys_attr_model.attr,
2862 	&subsys_attr_serial.attr,
2863 	&subsys_attr_firmware_rev.attr,
2864 	&subsys_attr_subsysnqn.attr,
2865 #ifdef CONFIG_NVME_MULTIPATH
2866 	&subsys_attr_iopolicy.attr,
2867 #endif
2868 	NULL,
2869 };
2870 
2871 static struct attribute_group nvme_subsys_attrs_group = {
2872 	.attrs = nvme_subsys_attrs,
2873 };
2874 
2875 static const struct attribute_group *nvme_subsys_attrs_groups[] = {
2876 	&nvme_subsys_attrs_group,
2877 	NULL,
2878 };
2879 
nvme_discovery_ctrl(struct nvme_ctrl * ctrl)2880 static inline bool nvme_discovery_ctrl(struct nvme_ctrl *ctrl)
2881 {
2882 	return ctrl->opts && ctrl->opts->discovery_nqn;
2883 }
2884 
nvme_validate_cntlid(struct nvme_subsystem * subsys,struct nvme_ctrl * ctrl,struct nvme_id_ctrl * id)2885 static bool nvme_validate_cntlid(struct nvme_subsystem *subsys,
2886 		struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id)
2887 {
2888 	struct nvme_ctrl *tmp;
2889 
2890 	lockdep_assert_held(&nvme_subsystems_lock);
2891 
2892 	list_for_each_entry(tmp, &subsys->ctrls, subsys_entry) {
2893 		if (nvme_state_terminal(tmp))
2894 			continue;
2895 
2896 		if (tmp->cntlid == ctrl->cntlid) {
2897 			dev_err(ctrl->device,
2898 				"Duplicate cntlid %u with %s, rejecting\n",
2899 				ctrl->cntlid, dev_name(tmp->device));
2900 			return false;
2901 		}
2902 
2903 		if ((id->cmic & NVME_CTRL_CMIC_MULTI_CTRL) ||
2904 		    nvme_discovery_ctrl(ctrl))
2905 			continue;
2906 
2907 		dev_err(ctrl->device,
2908 			"Subsystem does not support multiple controllers\n");
2909 		return false;
2910 	}
2911 
2912 	return true;
2913 }
2914 
nvme_init_subsystem(struct nvme_ctrl * ctrl,struct nvme_id_ctrl * id)2915 static int nvme_init_subsystem(struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id)
2916 {
2917 	struct nvme_subsystem *subsys, *found;
2918 	int ret;
2919 
2920 	subsys = kzalloc(sizeof(*subsys), GFP_KERNEL);
2921 	if (!subsys)
2922 		return -ENOMEM;
2923 
2924 	subsys->instance = -1;
2925 	mutex_init(&subsys->lock);
2926 	kref_init(&subsys->ref);
2927 	INIT_LIST_HEAD(&subsys->ctrls);
2928 	INIT_LIST_HEAD(&subsys->nsheads);
2929 	nvme_init_subnqn(subsys, ctrl, id);
2930 	memcpy(subsys->serial, id->sn, sizeof(subsys->serial));
2931 	memcpy(subsys->model, id->mn, sizeof(subsys->model));
2932 	subsys->vendor_id = le16_to_cpu(id->vid);
2933 	subsys->cmic = id->cmic;
2934 	subsys->awupf = le16_to_cpu(id->awupf);
2935 #ifdef CONFIG_NVME_MULTIPATH
2936 	subsys->iopolicy = NVME_IOPOLICY_NUMA;
2937 #endif
2938 
2939 	subsys->dev.class = nvme_subsys_class;
2940 	subsys->dev.release = nvme_release_subsystem;
2941 	subsys->dev.groups = nvme_subsys_attrs_groups;
2942 	dev_set_name(&subsys->dev, "nvme-subsys%d", ctrl->instance);
2943 	device_initialize(&subsys->dev);
2944 
2945 	mutex_lock(&nvme_subsystems_lock);
2946 	found = __nvme_find_get_subsystem(subsys->subnqn);
2947 	if (found) {
2948 		put_device(&subsys->dev);
2949 		subsys = found;
2950 
2951 		if (!nvme_validate_cntlid(subsys, ctrl, id)) {
2952 			ret = -EINVAL;
2953 			goto out_put_subsystem;
2954 		}
2955 	} else {
2956 		ret = device_add(&subsys->dev);
2957 		if (ret) {
2958 			dev_err(ctrl->device,
2959 				"failed to register subsystem device.\n");
2960 			put_device(&subsys->dev);
2961 			goto out_unlock;
2962 		}
2963 		ida_init(&subsys->ns_ida);
2964 		list_add_tail(&subsys->entry, &nvme_subsystems);
2965 	}
2966 
2967 	ret = sysfs_create_link(&subsys->dev.kobj, &ctrl->device->kobj,
2968 				dev_name(ctrl->device));
2969 	if (ret) {
2970 		dev_err(ctrl->device,
2971 			"failed to create sysfs link from subsystem.\n");
2972 		goto out_put_subsystem;
2973 	}
2974 
2975 	if (!found)
2976 		subsys->instance = ctrl->instance;
2977 	ctrl->subsys = subsys;
2978 	list_add_tail(&ctrl->subsys_entry, &subsys->ctrls);
2979 	mutex_unlock(&nvme_subsystems_lock);
2980 	return 0;
2981 
2982 out_put_subsystem:
2983 	nvme_put_subsystem(subsys);
2984 out_unlock:
2985 	mutex_unlock(&nvme_subsystems_lock);
2986 	return ret;
2987 }
2988 
nvme_get_log(struct nvme_ctrl * ctrl,u32 nsid,u8 log_page,u8 lsp,u8 csi,void * log,size_t size,u64 offset)2989 int nvme_get_log(struct nvme_ctrl *ctrl, u32 nsid, u8 log_page, u8 lsp, u8 csi,
2990 		void *log, size_t size, u64 offset)
2991 {
2992 	struct nvme_command c = { };
2993 	u32 dwlen = nvme_bytes_to_numd(size);
2994 
2995 	c.get_log_page.opcode = nvme_admin_get_log_page;
2996 	c.get_log_page.nsid = cpu_to_le32(nsid);
2997 	c.get_log_page.lid = log_page;
2998 	c.get_log_page.lsp = lsp;
2999 	c.get_log_page.numdl = cpu_to_le16(dwlen & ((1 << 16) - 1));
3000 	c.get_log_page.numdu = cpu_to_le16(dwlen >> 16);
3001 	c.get_log_page.lpol = cpu_to_le32(lower_32_bits(offset));
3002 	c.get_log_page.lpou = cpu_to_le32(upper_32_bits(offset));
3003 	c.get_log_page.csi = csi;
3004 
3005 	return nvme_submit_sync_cmd(ctrl->admin_q, &c, log, size);
3006 }
3007 
nvme_get_effects_log(struct nvme_ctrl * ctrl,u8 csi,struct nvme_effects_log ** log)3008 static int nvme_get_effects_log(struct nvme_ctrl *ctrl, u8 csi,
3009 				struct nvme_effects_log **log)
3010 {
3011 	struct nvme_effects_log	*cel = xa_load(&ctrl->cels, csi);
3012 	int ret;
3013 
3014 	if (cel)
3015 		goto out;
3016 
3017 	cel = kzalloc(sizeof(*cel), GFP_KERNEL);
3018 	if (!cel)
3019 		return -ENOMEM;
3020 
3021 	ret = nvme_get_log(ctrl, 0x00, NVME_LOG_CMD_EFFECTS, 0, csi,
3022 			cel, sizeof(*cel), 0);
3023 	if (ret) {
3024 		kfree(cel);
3025 		return ret;
3026 	}
3027 
3028 	xa_store(&ctrl->cels, csi, cel, GFP_KERNEL);
3029 out:
3030 	*log = cel;
3031 	return 0;
3032 }
3033 
3034 /*
3035  * Initialize the cached copies of the Identify data and various controller
3036  * register in our nvme_ctrl structure.  This should be called as soon as
3037  * the admin queue is fully up and running.
3038  */
nvme_init_identify(struct nvme_ctrl * ctrl)3039 int nvme_init_identify(struct nvme_ctrl *ctrl)
3040 {
3041 	struct nvme_id_ctrl *id;
3042 	int ret, page_shift;
3043 	u32 max_hw_sectors;
3044 	bool prev_apst_enabled;
3045 
3046 	ret = ctrl->ops->reg_read32(ctrl, NVME_REG_VS, &ctrl->vs);
3047 	if (ret) {
3048 		dev_err(ctrl->device, "Reading VS failed (%d)\n", ret);
3049 		return ret;
3050 	}
3051 	page_shift = NVME_CAP_MPSMIN(ctrl->cap) + 12;
3052 	ctrl->sqsize = min_t(u16, NVME_CAP_MQES(ctrl->cap), ctrl->sqsize);
3053 
3054 	if (ctrl->vs >= NVME_VS(1, 1, 0))
3055 		ctrl->subsystem = NVME_CAP_NSSRC(ctrl->cap);
3056 
3057 	ret = nvme_identify_ctrl(ctrl, &id);
3058 	if (ret) {
3059 		dev_err(ctrl->device, "Identify Controller failed (%d)\n", ret);
3060 		return -EIO;
3061 	}
3062 
3063 	if (id->lpa & NVME_CTRL_LPA_CMD_EFFECTS_LOG) {
3064 		ret = nvme_get_effects_log(ctrl, NVME_CSI_NVM, &ctrl->effects);
3065 		if (ret < 0)
3066 			goto out_free;
3067 	}
3068 
3069 	if (!(ctrl->ops->flags & NVME_F_FABRICS))
3070 		ctrl->cntlid = le16_to_cpu(id->cntlid);
3071 
3072 	if (!ctrl->identified) {
3073 		int i;
3074 
3075 		/*
3076 		 * Check for quirks.  Quirk can depend on firmware version,
3077 		 * so, in principle, the set of quirks present can change
3078 		 * across a reset.  As a possible future enhancement, we
3079 		 * could re-scan for quirks every time we reinitialize
3080 		 * the device, but we'd have to make sure that the driver
3081 		 * behaves intelligently if the quirks change.
3082 		 */
3083 		for (i = 0; i < ARRAY_SIZE(core_quirks); i++) {
3084 			if (quirk_matches(id, &core_quirks[i]))
3085 				ctrl->quirks |= core_quirks[i].quirks;
3086 		}
3087 
3088 		ret = nvme_init_subsystem(ctrl, id);
3089 		if (ret)
3090 			goto out_free;
3091 	}
3092 	memcpy(ctrl->subsys->firmware_rev, id->fr,
3093 	       sizeof(ctrl->subsys->firmware_rev));
3094 
3095 	if (force_apst && (ctrl->quirks & NVME_QUIRK_NO_DEEPEST_PS)) {
3096 		dev_warn(ctrl->device, "forcibly allowing all power states due to nvme_core.force_apst -- use at your own risk\n");
3097 		ctrl->quirks &= ~NVME_QUIRK_NO_DEEPEST_PS;
3098 	}
3099 
3100 	ctrl->crdt[0] = le16_to_cpu(id->crdt1);
3101 	ctrl->crdt[1] = le16_to_cpu(id->crdt2);
3102 	ctrl->crdt[2] = le16_to_cpu(id->crdt3);
3103 
3104 	ctrl->oacs = le16_to_cpu(id->oacs);
3105 	ctrl->oncs = le16_to_cpu(id->oncs);
3106 	ctrl->mtfa = le16_to_cpu(id->mtfa);
3107 	ctrl->oaes = le32_to_cpu(id->oaes);
3108 	ctrl->wctemp = le16_to_cpu(id->wctemp);
3109 	ctrl->cctemp = le16_to_cpu(id->cctemp);
3110 
3111 	atomic_set(&ctrl->abort_limit, id->acl + 1);
3112 	ctrl->vwc = id->vwc;
3113 	if (id->mdts)
3114 		max_hw_sectors = 1 << (id->mdts + page_shift - 9);
3115 	else
3116 		max_hw_sectors = UINT_MAX;
3117 	ctrl->max_hw_sectors =
3118 		min_not_zero(ctrl->max_hw_sectors, max_hw_sectors);
3119 
3120 	nvme_set_queue_limits(ctrl, ctrl->admin_q);
3121 	ctrl->sgls = le32_to_cpu(id->sgls);
3122 	ctrl->kas = le16_to_cpu(id->kas);
3123 	ctrl->max_namespaces = le32_to_cpu(id->mnan);
3124 	ctrl->ctratt = le32_to_cpu(id->ctratt);
3125 
3126 	if (id->rtd3e) {
3127 		/* us -> s */
3128 		u32 transition_time = le32_to_cpu(id->rtd3e) / USEC_PER_SEC;
3129 
3130 		ctrl->shutdown_timeout = clamp_t(unsigned int, transition_time,
3131 						 shutdown_timeout, 60);
3132 
3133 		if (ctrl->shutdown_timeout != shutdown_timeout)
3134 			dev_info(ctrl->device,
3135 				 "Shutdown timeout set to %u seconds\n",
3136 				 ctrl->shutdown_timeout);
3137 	} else
3138 		ctrl->shutdown_timeout = shutdown_timeout;
3139 
3140 	ctrl->npss = id->npss;
3141 	ctrl->apsta = id->apsta;
3142 	prev_apst_enabled = ctrl->apst_enabled;
3143 	if (ctrl->quirks & NVME_QUIRK_NO_APST) {
3144 		if (force_apst && id->apsta) {
3145 			dev_warn(ctrl->device, "forcibly allowing APST due to nvme_core.force_apst -- use at your own risk\n");
3146 			ctrl->apst_enabled = true;
3147 		} else {
3148 			ctrl->apst_enabled = false;
3149 		}
3150 	} else {
3151 		ctrl->apst_enabled = id->apsta;
3152 	}
3153 	memcpy(ctrl->psd, id->psd, sizeof(ctrl->psd));
3154 
3155 	if (ctrl->ops->flags & NVME_F_FABRICS) {
3156 		ctrl->icdoff = le16_to_cpu(id->icdoff);
3157 		ctrl->ioccsz = le32_to_cpu(id->ioccsz);
3158 		ctrl->iorcsz = le32_to_cpu(id->iorcsz);
3159 		ctrl->maxcmd = le16_to_cpu(id->maxcmd);
3160 
3161 		/*
3162 		 * In fabrics we need to verify the cntlid matches the
3163 		 * admin connect
3164 		 */
3165 		if (ctrl->cntlid != le16_to_cpu(id->cntlid)) {
3166 			dev_err(ctrl->device,
3167 				"Mismatching cntlid: Connect %u vs Identify "
3168 				"%u, rejecting\n",
3169 				ctrl->cntlid, le16_to_cpu(id->cntlid));
3170 			ret = -EINVAL;
3171 			goto out_free;
3172 		}
3173 
3174 		if (!nvme_discovery_ctrl(ctrl) && !ctrl->kas) {
3175 			dev_err(ctrl->device,
3176 				"keep-alive support is mandatory for fabrics\n");
3177 			ret = -EINVAL;
3178 			goto out_free;
3179 		}
3180 	} else {
3181 		ctrl->hmpre = le32_to_cpu(id->hmpre);
3182 		ctrl->hmmin = le32_to_cpu(id->hmmin);
3183 		ctrl->hmminds = le32_to_cpu(id->hmminds);
3184 		ctrl->hmmaxd = le16_to_cpu(id->hmmaxd);
3185 	}
3186 
3187 	ret = nvme_mpath_init_identify(ctrl, id);
3188 	kfree(id);
3189 
3190 	if (ret < 0)
3191 		return ret;
3192 
3193 	if (ctrl->apst_enabled && !prev_apst_enabled)
3194 		dev_pm_qos_expose_latency_tolerance(ctrl->device);
3195 	else if (!ctrl->apst_enabled && prev_apst_enabled)
3196 		dev_pm_qos_hide_latency_tolerance(ctrl->device);
3197 
3198 	ret = nvme_configure_apst(ctrl);
3199 	if (ret < 0)
3200 		return ret;
3201 
3202 	ret = nvme_configure_timestamp(ctrl);
3203 	if (ret < 0)
3204 		return ret;
3205 
3206 	ret = nvme_configure_directives(ctrl);
3207 	if (ret < 0)
3208 		return ret;
3209 
3210 	ret = nvme_configure_acre(ctrl);
3211 	if (ret < 0)
3212 		return ret;
3213 
3214 	if (!ctrl->identified && !nvme_discovery_ctrl(ctrl)) {
3215 		/*
3216 		 * Do not return errors unless we are in a controller reset,
3217 		 * the controller works perfectly fine without hwmon.
3218 		 */
3219 		ret = nvme_hwmon_init(ctrl);
3220 		if (ret == -EINTR)
3221 			return ret;
3222 	}
3223 
3224 	ctrl->identified = true;
3225 
3226 	return 0;
3227 
3228 out_free:
3229 	kfree(id);
3230 	return ret;
3231 }
3232 EXPORT_SYMBOL_GPL(nvme_init_identify);
3233 
nvme_dev_open(struct inode * inode,struct file * file)3234 static int nvme_dev_open(struct inode *inode, struct file *file)
3235 {
3236 	struct nvme_ctrl *ctrl =
3237 		container_of(inode->i_cdev, struct nvme_ctrl, cdev);
3238 
3239 	switch (ctrl->state) {
3240 	case NVME_CTRL_LIVE:
3241 		break;
3242 	default:
3243 		return -EWOULDBLOCK;
3244 	}
3245 
3246 	nvme_get_ctrl(ctrl);
3247 	if (!try_module_get(ctrl->ops->module)) {
3248 		nvme_put_ctrl(ctrl);
3249 		return -EINVAL;
3250 	}
3251 
3252 	file->private_data = ctrl;
3253 	return 0;
3254 }
3255 
nvme_dev_release(struct inode * inode,struct file * file)3256 static int nvme_dev_release(struct inode *inode, struct file *file)
3257 {
3258 	struct nvme_ctrl *ctrl =
3259 		container_of(inode->i_cdev, struct nvme_ctrl, cdev);
3260 
3261 	module_put(ctrl->ops->module);
3262 	nvme_put_ctrl(ctrl);
3263 	return 0;
3264 }
3265 
nvme_dev_user_cmd(struct nvme_ctrl * ctrl,void __user * argp)3266 static int nvme_dev_user_cmd(struct nvme_ctrl *ctrl, void __user *argp)
3267 {
3268 	struct nvme_ns *ns;
3269 	int ret;
3270 
3271 	down_read(&ctrl->namespaces_rwsem);
3272 	if (list_empty(&ctrl->namespaces)) {
3273 		ret = -ENOTTY;
3274 		goto out_unlock;
3275 	}
3276 
3277 	ns = list_first_entry(&ctrl->namespaces, struct nvme_ns, list);
3278 	if (ns != list_last_entry(&ctrl->namespaces, struct nvme_ns, list)) {
3279 		dev_warn(ctrl->device,
3280 			"NVME_IOCTL_IO_CMD not supported when multiple namespaces present!\n");
3281 		ret = -EINVAL;
3282 		goto out_unlock;
3283 	}
3284 
3285 	dev_warn(ctrl->device,
3286 		"using deprecated NVME_IOCTL_IO_CMD ioctl on the char device!\n");
3287 	kref_get(&ns->kref);
3288 	up_read(&ctrl->namespaces_rwsem);
3289 
3290 	ret = nvme_user_cmd(ctrl, ns, argp);
3291 	nvme_put_ns(ns);
3292 	return ret;
3293 
3294 out_unlock:
3295 	up_read(&ctrl->namespaces_rwsem);
3296 	return ret;
3297 }
3298 
nvme_dev_ioctl(struct file * file,unsigned int cmd,unsigned long arg)3299 static long nvme_dev_ioctl(struct file *file, unsigned int cmd,
3300 		unsigned long arg)
3301 {
3302 	struct nvme_ctrl *ctrl = file->private_data;
3303 	void __user *argp = (void __user *)arg;
3304 
3305 	switch (cmd) {
3306 	case NVME_IOCTL_ADMIN_CMD:
3307 		return nvme_user_cmd(ctrl, NULL, argp);
3308 	case NVME_IOCTL_ADMIN64_CMD:
3309 		return nvme_user_cmd64(ctrl, NULL, argp);
3310 	case NVME_IOCTL_IO_CMD:
3311 		return nvme_dev_user_cmd(ctrl, argp);
3312 	case NVME_IOCTL_RESET:
3313 		if (!capable(CAP_SYS_ADMIN))
3314 			return -EACCES;
3315 		dev_warn(ctrl->device, "resetting controller\n");
3316 		return nvme_reset_ctrl_sync(ctrl);
3317 	case NVME_IOCTL_SUBSYS_RESET:
3318 		if (!capable(CAP_SYS_ADMIN))
3319 			return -EACCES;
3320 		return nvme_reset_subsystem(ctrl);
3321 	case NVME_IOCTL_RESCAN:
3322 		if (!capable(CAP_SYS_ADMIN))
3323 			return -EACCES;
3324 		nvme_queue_scan(ctrl);
3325 		return 0;
3326 	default:
3327 		return -ENOTTY;
3328 	}
3329 }
3330 
3331 static const struct file_operations nvme_dev_fops = {
3332 	.owner		= THIS_MODULE,
3333 	.open		= nvme_dev_open,
3334 	.release	= nvme_dev_release,
3335 	.unlocked_ioctl	= nvme_dev_ioctl,
3336 	.compat_ioctl	= compat_ptr_ioctl,
3337 };
3338 
nvme_sysfs_reset(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)3339 static ssize_t nvme_sysfs_reset(struct device *dev,
3340 				struct device_attribute *attr, const char *buf,
3341 				size_t count)
3342 {
3343 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3344 	int ret;
3345 
3346 	ret = nvme_reset_ctrl_sync(ctrl);
3347 	if (ret < 0)
3348 		return ret;
3349 	return count;
3350 }
3351 static DEVICE_ATTR(reset_controller, S_IWUSR, NULL, nvme_sysfs_reset);
3352 
nvme_sysfs_rescan(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)3353 static ssize_t nvme_sysfs_rescan(struct device *dev,
3354 				struct device_attribute *attr, const char *buf,
3355 				size_t count)
3356 {
3357 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3358 
3359 	nvme_queue_scan(ctrl);
3360 	return count;
3361 }
3362 static DEVICE_ATTR(rescan_controller, S_IWUSR, NULL, nvme_sysfs_rescan);
3363 
dev_to_ns_head(struct device * dev)3364 static inline struct nvme_ns_head *dev_to_ns_head(struct device *dev)
3365 {
3366 	struct gendisk *disk = dev_to_disk(dev);
3367 
3368 	if (disk->fops == &nvme_fops)
3369 		return nvme_get_ns_from_dev(dev)->head;
3370 	else
3371 		return disk->private_data;
3372 }
3373 
wwid_show(struct device * dev,struct device_attribute * attr,char * buf)3374 static ssize_t wwid_show(struct device *dev, struct device_attribute *attr,
3375 		char *buf)
3376 {
3377 	struct nvme_ns_head *head = dev_to_ns_head(dev);
3378 	struct nvme_ns_ids *ids = &head->ids;
3379 	struct nvme_subsystem *subsys = head->subsys;
3380 	int serial_len = sizeof(subsys->serial);
3381 	int model_len = sizeof(subsys->model);
3382 
3383 	if (!uuid_is_null(&ids->uuid))
3384 		return sysfs_emit(buf, "uuid.%pU\n", &ids->uuid);
3385 
3386 	if (memchr_inv(ids->nguid, 0, sizeof(ids->nguid)))
3387 		return sysfs_emit(buf, "eui.%16phN\n", ids->nguid);
3388 
3389 	if (memchr_inv(ids->eui64, 0, sizeof(ids->eui64)))
3390 		return sysfs_emit(buf, "eui.%8phN\n", ids->eui64);
3391 
3392 	while (serial_len > 0 && (subsys->serial[serial_len - 1] == ' ' ||
3393 				  subsys->serial[serial_len - 1] == '\0'))
3394 		serial_len--;
3395 	while (model_len > 0 && (subsys->model[model_len - 1] == ' ' ||
3396 				 subsys->model[model_len - 1] == '\0'))
3397 		model_len--;
3398 
3399 	return sysfs_emit(buf, "nvme.%04x-%*phN-%*phN-%08x\n", subsys->vendor_id,
3400 		serial_len, subsys->serial, model_len, subsys->model,
3401 		head->ns_id);
3402 }
3403 static DEVICE_ATTR_RO(wwid);
3404 
nguid_show(struct device * dev,struct device_attribute * attr,char * buf)3405 static ssize_t nguid_show(struct device *dev, struct device_attribute *attr,
3406 		char *buf)
3407 {
3408 	return sysfs_emit(buf, "%pU\n", dev_to_ns_head(dev)->ids.nguid);
3409 }
3410 static DEVICE_ATTR_RO(nguid);
3411 
uuid_show(struct device * dev,struct device_attribute * attr,char * buf)3412 static ssize_t uuid_show(struct device *dev, struct device_attribute *attr,
3413 		char *buf)
3414 {
3415 	struct nvme_ns_ids *ids = &dev_to_ns_head(dev)->ids;
3416 
3417 	/* For backward compatibility expose the NGUID to userspace if
3418 	 * we have no UUID set
3419 	 */
3420 	if (uuid_is_null(&ids->uuid)) {
3421 		dev_warn_ratelimited(dev,
3422 			"No UUID available providing old NGUID\n");
3423 		return sysfs_emit(buf, "%pU\n", ids->nguid);
3424 	}
3425 	return sysfs_emit(buf, "%pU\n", &ids->uuid);
3426 }
3427 static DEVICE_ATTR_RO(uuid);
3428 
eui_show(struct device * dev,struct device_attribute * attr,char * buf)3429 static ssize_t eui_show(struct device *dev, struct device_attribute *attr,
3430 		char *buf)
3431 {
3432 	return sysfs_emit(buf, "%8ph\n", dev_to_ns_head(dev)->ids.eui64);
3433 }
3434 static DEVICE_ATTR_RO(eui);
3435 
nsid_show(struct device * dev,struct device_attribute * attr,char * buf)3436 static ssize_t nsid_show(struct device *dev, struct device_attribute *attr,
3437 		char *buf)
3438 {
3439 	return sysfs_emit(buf, "%d\n", dev_to_ns_head(dev)->ns_id);
3440 }
3441 static DEVICE_ATTR_RO(nsid);
3442 
3443 static struct attribute *nvme_ns_id_attrs[] = {
3444 	&dev_attr_wwid.attr,
3445 	&dev_attr_uuid.attr,
3446 	&dev_attr_nguid.attr,
3447 	&dev_attr_eui.attr,
3448 	&dev_attr_nsid.attr,
3449 #ifdef CONFIG_NVME_MULTIPATH
3450 	&dev_attr_ana_grpid.attr,
3451 	&dev_attr_ana_state.attr,
3452 #endif
3453 	NULL,
3454 };
3455 
nvme_ns_id_attrs_are_visible(struct kobject * kobj,struct attribute * a,int n)3456 static umode_t nvme_ns_id_attrs_are_visible(struct kobject *kobj,
3457 		struct attribute *a, int n)
3458 {
3459 	struct device *dev = container_of(kobj, struct device, kobj);
3460 	struct nvme_ns_ids *ids = &dev_to_ns_head(dev)->ids;
3461 
3462 	if (a == &dev_attr_uuid.attr) {
3463 		if (uuid_is_null(&ids->uuid) &&
3464 		    !memchr_inv(ids->nguid, 0, sizeof(ids->nguid)))
3465 			return 0;
3466 	}
3467 	if (a == &dev_attr_nguid.attr) {
3468 		if (!memchr_inv(ids->nguid, 0, sizeof(ids->nguid)))
3469 			return 0;
3470 	}
3471 	if (a == &dev_attr_eui.attr) {
3472 		if (!memchr_inv(ids->eui64, 0, sizeof(ids->eui64)))
3473 			return 0;
3474 	}
3475 #ifdef CONFIG_NVME_MULTIPATH
3476 	if (a == &dev_attr_ana_grpid.attr || a == &dev_attr_ana_state.attr) {
3477 		if (dev_to_disk(dev)->fops != &nvme_fops) /* per-path attr */
3478 			return 0;
3479 		if (!nvme_ctrl_use_ana(nvme_get_ns_from_dev(dev)->ctrl))
3480 			return 0;
3481 	}
3482 #endif
3483 	return a->mode;
3484 }
3485 
3486 static const struct attribute_group nvme_ns_id_attr_group = {
3487 	.attrs		= nvme_ns_id_attrs,
3488 	.is_visible	= nvme_ns_id_attrs_are_visible,
3489 };
3490 
3491 const struct attribute_group *nvme_ns_id_attr_groups[] = {
3492 	&nvme_ns_id_attr_group,
3493 #ifdef CONFIG_NVM
3494 	&nvme_nvm_attr_group,
3495 #endif
3496 	NULL,
3497 };
3498 
3499 #define nvme_show_str_function(field)						\
3500 static ssize_t  field##_show(struct device *dev,				\
3501 			    struct device_attribute *attr, char *buf)		\
3502 {										\
3503         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);				\
3504         return sysfs_emit(buf, "%.*s\n",					\
3505 		(int)sizeof(ctrl->subsys->field), ctrl->subsys->field);		\
3506 }										\
3507 static DEVICE_ATTR(field, S_IRUGO, field##_show, NULL);
3508 
3509 nvme_show_str_function(model);
3510 nvme_show_str_function(serial);
3511 nvme_show_str_function(firmware_rev);
3512 
3513 #define nvme_show_int_function(field)						\
3514 static ssize_t  field##_show(struct device *dev,				\
3515 			    struct device_attribute *attr, char *buf)		\
3516 {										\
3517         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);				\
3518         return sysfs_emit(buf, "%d\n", ctrl->field);				\
3519 }										\
3520 static DEVICE_ATTR(field, S_IRUGO, field##_show, NULL);
3521 
3522 nvme_show_int_function(cntlid);
3523 nvme_show_int_function(numa_node);
3524 nvme_show_int_function(queue_count);
3525 nvme_show_int_function(sqsize);
3526 
nvme_sysfs_delete(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)3527 static ssize_t nvme_sysfs_delete(struct device *dev,
3528 				struct device_attribute *attr, const char *buf,
3529 				size_t count)
3530 {
3531 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3532 
3533 	if (device_remove_file_self(dev, attr))
3534 		nvme_delete_ctrl_sync(ctrl);
3535 	return count;
3536 }
3537 static DEVICE_ATTR(delete_controller, S_IWUSR, NULL, nvme_sysfs_delete);
3538 
nvme_sysfs_show_transport(struct device * dev,struct device_attribute * attr,char * buf)3539 static ssize_t nvme_sysfs_show_transport(struct device *dev,
3540 					 struct device_attribute *attr,
3541 					 char *buf)
3542 {
3543 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3544 
3545 	return snprintf(buf, PAGE_SIZE, "%s\n", ctrl->ops->name);
3546 }
3547 static DEVICE_ATTR(transport, S_IRUGO, nvme_sysfs_show_transport, NULL);
3548 
nvme_sysfs_show_state(struct device * dev,struct device_attribute * attr,char * buf)3549 static ssize_t nvme_sysfs_show_state(struct device *dev,
3550 				     struct device_attribute *attr,
3551 				     char *buf)
3552 {
3553 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3554 	static const char *const state_name[] = {
3555 		[NVME_CTRL_NEW]		= "new",
3556 		[NVME_CTRL_LIVE]	= "live",
3557 		[NVME_CTRL_RESETTING]	= "resetting",
3558 		[NVME_CTRL_CONNECTING]	= "connecting",
3559 		[NVME_CTRL_DELETING]	= "deleting",
3560 		[NVME_CTRL_DELETING_NOIO]= "deleting (no IO)",
3561 		[NVME_CTRL_DEAD]	= "dead",
3562 	};
3563 
3564 	if ((unsigned)ctrl->state < ARRAY_SIZE(state_name) &&
3565 	    state_name[ctrl->state])
3566 		return sysfs_emit(buf, "%s\n", state_name[ctrl->state]);
3567 
3568 	return sysfs_emit(buf, "unknown state\n");
3569 }
3570 
3571 static DEVICE_ATTR(state, S_IRUGO, nvme_sysfs_show_state, NULL);
3572 
nvme_sysfs_show_subsysnqn(struct device * dev,struct device_attribute * attr,char * buf)3573 static ssize_t nvme_sysfs_show_subsysnqn(struct device *dev,
3574 					 struct device_attribute *attr,
3575 					 char *buf)
3576 {
3577 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3578 
3579 	return snprintf(buf, PAGE_SIZE, "%s\n", ctrl->subsys->subnqn);
3580 }
3581 static DEVICE_ATTR(subsysnqn, S_IRUGO, nvme_sysfs_show_subsysnqn, NULL);
3582 
nvme_sysfs_show_hostnqn(struct device * dev,struct device_attribute * attr,char * buf)3583 static ssize_t nvme_sysfs_show_hostnqn(struct device *dev,
3584 					struct device_attribute *attr,
3585 					char *buf)
3586 {
3587 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3588 
3589 	return snprintf(buf, PAGE_SIZE, "%s\n", ctrl->opts->host->nqn);
3590 }
3591 static DEVICE_ATTR(hostnqn, S_IRUGO, nvme_sysfs_show_hostnqn, NULL);
3592 
nvme_sysfs_show_hostid(struct device * dev,struct device_attribute * attr,char * buf)3593 static ssize_t nvme_sysfs_show_hostid(struct device *dev,
3594 					struct device_attribute *attr,
3595 					char *buf)
3596 {
3597 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3598 
3599 	return snprintf(buf, PAGE_SIZE, "%pU\n", &ctrl->opts->host->id);
3600 }
3601 static DEVICE_ATTR(hostid, S_IRUGO, nvme_sysfs_show_hostid, NULL);
3602 
nvme_sysfs_show_address(struct device * dev,struct device_attribute * attr,char * buf)3603 static ssize_t nvme_sysfs_show_address(struct device *dev,
3604 					 struct device_attribute *attr,
3605 					 char *buf)
3606 {
3607 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3608 
3609 	return ctrl->ops->get_address(ctrl, buf, PAGE_SIZE);
3610 }
3611 static DEVICE_ATTR(address, S_IRUGO, nvme_sysfs_show_address, NULL);
3612 
nvme_ctrl_loss_tmo_show(struct device * dev,struct device_attribute * attr,char * buf)3613 static ssize_t nvme_ctrl_loss_tmo_show(struct device *dev,
3614 		struct device_attribute *attr, char *buf)
3615 {
3616 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3617 	struct nvmf_ctrl_options *opts = ctrl->opts;
3618 
3619 	if (ctrl->opts->max_reconnects == -1)
3620 		return sysfs_emit(buf, "off\n");
3621 	return sysfs_emit(buf, "%d\n",
3622 			  opts->max_reconnects * opts->reconnect_delay);
3623 }
3624 
nvme_ctrl_loss_tmo_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)3625 static ssize_t nvme_ctrl_loss_tmo_store(struct device *dev,
3626 		struct device_attribute *attr, const char *buf, size_t count)
3627 {
3628 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3629 	struct nvmf_ctrl_options *opts = ctrl->opts;
3630 	int ctrl_loss_tmo, err;
3631 
3632 	err = kstrtoint(buf, 10, &ctrl_loss_tmo);
3633 	if (err)
3634 		return -EINVAL;
3635 
3636 	else if (ctrl_loss_tmo < 0)
3637 		opts->max_reconnects = -1;
3638 	else
3639 		opts->max_reconnects = DIV_ROUND_UP(ctrl_loss_tmo,
3640 						opts->reconnect_delay);
3641 	return count;
3642 }
3643 static DEVICE_ATTR(ctrl_loss_tmo, S_IRUGO | S_IWUSR,
3644 	nvme_ctrl_loss_tmo_show, nvme_ctrl_loss_tmo_store);
3645 
nvme_ctrl_reconnect_delay_show(struct device * dev,struct device_attribute * attr,char * buf)3646 static ssize_t nvme_ctrl_reconnect_delay_show(struct device *dev,
3647 		struct device_attribute *attr, char *buf)
3648 {
3649 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3650 
3651 	if (ctrl->opts->reconnect_delay == -1)
3652 		return sysfs_emit(buf, "off\n");
3653 	return sysfs_emit(buf, "%d\n", ctrl->opts->reconnect_delay);
3654 }
3655 
nvme_ctrl_reconnect_delay_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)3656 static ssize_t nvme_ctrl_reconnect_delay_store(struct device *dev,
3657 		struct device_attribute *attr, const char *buf, size_t count)
3658 {
3659 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3660 	unsigned int v;
3661 	int err;
3662 
3663 	err = kstrtou32(buf, 10, &v);
3664 	if (err)
3665 		return err;
3666 
3667 	ctrl->opts->reconnect_delay = v;
3668 	return count;
3669 }
3670 static DEVICE_ATTR(reconnect_delay, S_IRUGO | S_IWUSR,
3671 	nvme_ctrl_reconnect_delay_show, nvme_ctrl_reconnect_delay_store);
3672 
3673 static struct attribute *nvme_dev_attrs[] = {
3674 	&dev_attr_reset_controller.attr,
3675 	&dev_attr_rescan_controller.attr,
3676 	&dev_attr_model.attr,
3677 	&dev_attr_serial.attr,
3678 	&dev_attr_firmware_rev.attr,
3679 	&dev_attr_cntlid.attr,
3680 	&dev_attr_delete_controller.attr,
3681 	&dev_attr_transport.attr,
3682 	&dev_attr_subsysnqn.attr,
3683 	&dev_attr_address.attr,
3684 	&dev_attr_state.attr,
3685 	&dev_attr_numa_node.attr,
3686 	&dev_attr_queue_count.attr,
3687 	&dev_attr_sqsize.attr,
3688 	&dev_attr_hostnqn.attr,
3689 	&dev_attr_hostid.attr,
3690 	&dev_attr_ctrl_loss_tmo.attr,
3691 	&dev_attr_reconnect_delay.attr,
3692 	NULL
3693 };
3694 
nvme_dev_attrs_are_visible(struct kobject * kobj,struct attribute * a,int n)3695 static umode_t nvme_dev_attrs_are_visible(struct kobject *kobj,
3696 		struct attribute *a, int n)
3697 {
3698 	struct device *dev = container_of(kobj, struct device, kobj);
3699 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3700 
3701 	if (a == &dev_attr_delete_controller.attr && !ctrl->ops->delete_ctrl)
3702 		return 0;
3703 	if (a == &dev_attr_address.attr && !ctrl->ops->get_address)
3704 		return 0;
3705 	if (a == &dev_attr_hostnqn.attr && !ctrl->opts)
3706 		return 0;
3707 	if (a == &dev_attr_hostid.attr && !ctrl->opts)
3708 		return 0;
3709 	if (a == &dev_attr_ctrl_loss_tmo.attr && !ctrl->opts)
3710 		return 0;
3711 	if (a == &dev_attr_reconnect_delay.attr && !ctrl->opts)
3712 		return 0;
3713 
3714 	return a->mode;
3715 }
3716 
3717 static struct attribute_group nvme_dev_attrs_group = {
3718 	.attrs		= nvme_dev_attrs,
3719 	.is_visible	= nvme_dev_attrs_are_visible,
3720 };
3721 
3722 static const struct attribute_group *nvme_dev_attr_groups[] = {
3723 	&nvme_dev_attrs_group,
3724 	NULL,
3725 };
3726 
nvme_find_ns_head(struct nvme_subsystem * subsys,unsigned nsid)3727 static struct nvme_ns_head *nvme_find_ns_head(struct nvme_subsystem *subsys,
3728 		unsigned nsid)
3729 {
3730 	struct nvme_ns_head *h;
3731 
3732 	lockdep_assert_held(&subsys->lock);
3733 
3734 	list_for_each_entry(h, &subsys->nsheads, entry) {
3735 		if (h->ns_id == nsid && kref_get_unless_zero(&h->ref))
3736 			return h;
3737 	}
3738 
3739 	return NULL;
3740 }
3741 
nvme_subsys_check_duplicate_ids(struct nvme_subsystem * subsys,struct nvme_ns_ids * ids)3742 static int nvme_subsys_check_duplicate_ids(struct nvme_subsystem *subsys,
3743 		struct nvme_ns_ids *ids)
3744 {
3745 	struct nvme_ns_head *h;
3746 
3747 	lockdep_assert_held(&subsys->lock);
3748 
3749 	list_for_each_entry(h, &subsys->nsheads, entry) {
3750 		if (nvme_ns_ids_valid(ids) && nvme_ns_ids_equal(ids, &h->ids))
3751 			return -EINVAL;
3752 	}
3753 
3754 	return 0;
3755 }
3756 
nvme_alloc_ns_head(struct nvme_ctrl * ctrl,unsigned nsid,struct nvme_ns_ids * ids)3757 static struct nvme_ns_head *nvme_alloc_ns_head(struct nvme_ctrl *ctrl,
3758 		unsigned nsid, struct nvme_ns_ids *ids)
3759 {
3760 	struct nvme_ns_head *head;
3761 	size_t size = sizeof(*head);
3762 	int ret = -ENOMEM;
3763 
3764 #ifdef CONFIG_NVME_MULTIPATH
3765 	size += num_possible_nodes() * sizeof(struct nvme_ns *);
3766 #endif
3767 
3768 	head = kzalloc(size, GFP_KERNEL);
3769 	if (!head)
3770 		goto out;
3771 	ret = ida_simple_get(&ctrl->subsys->ns_ida, 1, 0, GFP_KERNEL);
3772 	if (ret < 0)
3773 		goto out_free_head;
3774 	head->instance = ret;
3775 	INIT_LIST_HEAD(&head->list);
3776 	ret = init_srcu_struct(&head->srcu);
3777 	if (ret)
3778 		goto out_ida_remove;
3779 	head->subsys = ctrl->subsys;
3780 	head->ns_id = nsid;
3781 	head->ids = *ids;
3782 	kref_init(&head->ref);
3783 
3784 	ret = nvme_subsys_check_duplicate_ids(ctrl->subsys, &head->ids);
3785 	if (ret) {
3786 		dev_err(ctrl->device,
3787 			"duplicate IDs for nsid %d\n", nsid);
3788 		goto out_cleanup_srcu;
3789 	}
3790 
3791 	if (head->ids.csi) {
3792 		ret = nvme_get_effects_log(ctrl, head->ids.csi, &head->effects);
3793 		if (ret)
3794 			goto out_cleanup_srcu;
3795 	} else
3796 		head->effects = ctrl->effects;
3797 
3798 	ret = nvme_mpath_alloc_disk(ctrl, head);
3799 	if (ret)
3800 		goto out_cleanup_srcu;
3801 
3802 	list_add_tail(&head->entry, &ctrl->subsys->nsheads);
3803 
3804 	kref_get(&ctrl->subsys->ref);
3805 
3806 	return head;
3807 out_cleanup_srcu:
3808 	cleanup_srcu_struct(&head->srcu);
3809 out_ida_remove:
3810 	ida_simple_remove(&ctrl->subsys->ns_ida, head->instance);
3811 out_free_head:
3812 	kfree(head);
3813 out:
3814 	if (ret > 0)
3815 		ret = blk_status_to_errno(nvme_error_status(ret));
3816 	return ERR_PTR(ret);
3817 }
3818 
nvme_init_ns_head(struct nvme_ns * ns,unsigned nsid,struct nvme_ns_ids * ids,bool is_shared)3819 static int nvme_init_ns_head(struct nvme_ns *ns, unsigned nsid,
3820 		struct nvme_ns_ids *ids, bool is_shared)
3821 {
3822 	struct nvme_ctrl *ctrl = ns->ctrl;
3823 	struct nvme_ns_head *head = NULL;
3824 	int ret = 0;
3825 
3826 	mutex_lock(&ctrl->subsys->lock);
3827 	head = nvme_find_ns_head(ctrl->subsys, nsid);
3828 	if (!head) {
3829 		head = nvme_alloc_ns_head(ctrl, nsid, ids);
3830 		if (IS_ERR(head)) {
3831 			ret = PTR_ERR(head);
3832 			goto out_unlock;
3833 		}
3834 		head->shared = is_shared;
3835 	} else {
3836 		ret = -EINVAL;
3837 		if (!is_shared || !head->shared) {
3838 			dev_err(ctrl->device,
3839 				"Duplicate unshared namespace %d\n", nsid);
3840 			goto out_put_ns_head;
3841 		}
3842 		if (!nvme_ns_ids_equal(&head->ids, ids)) {
3843 			dev_err(ctrl->device,
3844 				"IDs don't match for shared namespace %d\n",
3845 					nsid);
3846 			goto out_put_ns_head;
3847 		}
3848 	}
3849 
3850 	list_add_tail(&ns->siblings, &head->list);
3851 	ns->head = head;
3852 	mutex_unlock(&ctrl->subsys->lock);
3853 	return 0;
3854 
3855 out_put_ns_head:
3856 	nvme_put_ns_head(head);
3857 out_unlock:
3858 	mutex_unlock(&ctrl->subsys->lock);
3859 	return ret;
3860 }
3861 
nvme_find_get_ns(struct nvme_ctrl * ctrl,unsigned nsid)3862 struct nvme_ns *nvme_find_get_ns(struct nvme_ctrl *ctrl, unsigned nsid)
3863 {
3864 	struct nvme_ns *ns, *ret = NULL;
3865 
3866 	down_read(&ctrl->namespaces_rwsem);
3867 	list_for_each_entry(ns, &ctrl->namespaces, list) {
3868 		if (ns->head->ns_id == nsid) {
3869 			if (!kref_get_unless_zero(&ns->kref))
3870 				continue;
3871 			ret = ns;
3872 			break;
3873 		}
3874 		if (ns->head->ns_id > nsid)
3875 			break;
3876 	}
3877 	up_read(&ctrl->namespaces_rwsem);
3878 	return ret;
3879 }
3880 EXPORT_SYMBOL_NS_GPL(nvme_find_get_ns, NVME_TARGET_PASSTHRU);
3881 
3882 /*
3883  * Add the namespace to the controller list while keeping the list ordered.
3884  */
nvme_ns_add_to_ctrl_list(struct nvme_ns * ns)3885 static void nvme_ns_add_to_ctrl_list(struct nvme_ns *ns)
3886 {
3887 	struct nvme_ns *tmp;
3888 
3889 	list_for_each_entry_reverse(tmp, &ns->ctrl->namespaces, list) {
3890 		if (tmp->head->ns_id < ns->head->ns_id) {
3891 			list_add(&ns->list, &tmp->list);
3892 			return;
3893 		}
3894 	}
3895 	list_add(&ns->list, &ns->ctrl->namespaces);
3896 }
3897 
nvme_alloc_ns(struct nvme_ctrl * ctrl,unsigned nsid,struct nvme_ns_ids * ids)3898 static void nvme_alloc_ns(struct nvme_ctrl *ctrl, unsigned nsid,
3899 		struct nvme_ns_ids *ids)
3900 {
3901 	struct nvme_ns *ns;
3902 	struct gendisk *disk;
3903 	struct nvme_id_ns *id;
3904 	char disk_name[DISK_NAME_LEN];
3905 	int node = ctrl->numa_node, flags = GENHD_FL_EXT_DEVT, ret;
3906 
3907 	if (nvme_identify_ns(ctrl, nsid, ids, &id))
3908 		return;
3909 
3910 	ns = kzalloc_node(sizeof(*ns), GFP_KERNEL, node);
3911 	if (!ns)
3912 		goto out_free_id;
3913 
3914 	ns->queue = blk_mq_init_queue(ctrl->tagset);
3915 	if (IS_ERR(ns->queue))
3916 		goto out_free_ns;
3917 
3918 	if (ctrl->opts && ctrl->opts->data_digest)
3919 		blk_queue_flag_set(QUEUE_FLAG_STABLE_WRITES, ns->queue);
3920 
3921 	blk_queue_flag_set(QUEUE_FLAG_NONROT, ns->queue);
3922 	if (ctrl->ops->flags & NVME_F_PCI_P2PDMA)
3923 		blk_queue_flag_set(QUEUE_FLAG_PCI_P2PDMA, ns->queue);
3924 
3925 	ns->queue->queuedata = ns;
3926 	ns->ctrl = ctrl;
3927 	kref_init(&ns->kref);
3928 
3929 	ret = nvme_init_ns_head(ns, nsid, ids, id->nmic & NVME_NS_NMIC_SHARED);
3930 	if (ret)
3931 		goto out_free_queue;
3932 	nvme_set_disk_name(disk_name, ns, ctrl, &flags);
3933 
3934 	disk = alloc_disk_node(0, node);
3935 	if (!disk)
3936 		goto out_unlink_ns;
3937 
3938 	disk->fops = &nvme_fops;
3939 	disk->private_data = ns;
3940 	disk->queue = ns->queue;
3941 	disk->flags = flags;
3942 	memcpy(disk->disk_name, disk_name, DISK_NAME_LEN);
3943 	ns->disk = disk;
3944 
3945 	if (nvme_update_ns_info(ns, id))
3946 		goto out_put_disk;
3947 
3948 	if ((ctrl->quirks & NVME_QUIRK_LIGHTNVM) && id->vs[0] == 0x1) {
3949 		ret = nvme_nvm_register(ns, disk_name, node);
3950 		if (ret) {
3951 			dev_warn(ctrl->device, "LightNVM init failure\n");
3952 			goto out_put_disk;
3953 		}
3954 	}
3955 
3956 	down_write(&ctrl->namespaces_rwsem);
3957 	nvme_ns_add_to_ctrl_list(ns);
3958 	up_write(&ctrl->namespaces_rwsem);
3959 	nvme_get_ctrl(ctrl);
3960 
3961 	device_add_disk(ctrl->device, ns->disk, nvme_ns_id_attr_groups);
3962 
3963 	nvme_mpath_add_disk(ns, id);
3964 	nvme_fault_inject_init(&ns->fault_inject, ns->disk->disk_name);
3965 	kfree(id);
3966 
3967 	return;
3968  out_put_disk:
3969 	/* prevent double queue cleanup */
3970 	ns->disk->queue = NULL;
3971 	put_disk(ns->disk);
3972  out_unlink_ns:
3973 	mutex_lock(&ctrl->subsys->lock);
3974 	list_del_rcu(&ns->siblings);
3975 	if (list_empty(&ns->head->list))
3976 		list_del_init(&ns->head->entry);
3977 	mutex_unlock(&ctrl->subsys->lock);
3978 	nvme_put_ns_head(ns->head);
3979  out_free_queue:
3980 	blk_cleanup_queue(ns->queue);
3981  out_free_ns:
3982 	kfree(ns);
3983  out_free_id:
3984 	kfree(id);
3985 }
3986 
nvme_ns_remove(struct nvme_ns * ns)3987 static void nvme_ns_remove(struct nvme_ns *ns)
3988 {
3989 	if (test_and_set_bit(NVME_NS_REMOVING, &ns->flags))
3990 		return;
3991 
3992 	set_capacity(ns->disk, 0);
3993 	nvme_fault_inject_fini(&ns->fault_inject);
3994 
3995 	mutex_lock(&ns->ctrl->subsys->lock);
3996 	list_del_rcu(&ns->siblings);
3997 	if (list_empty(&ns->head->list))
3998 		list_del_init(&ns->head->entry);
3999 	mutex_unlock(&ns->ctrl->subsys->lock);
4000 
4001 	synchronize_rcu(); /* guarantee not available in head->list */
4002 	nvme_mpath_clear_current_path(ns);
4003 	synchronize_srcu(&ns->head->srcu); /* wait for concurrent submissions */
4004 
4005 	if (ns->disk->flags & GENHD_FL_UP) {
4006 		del_gendisk(ns->disk);
4007 		blk_cleanup_queue(ns->queue);
4008 		if (blk_get_integrity(ns->disk))
4009 			blk_integrity_unregister(ns->disk);
4010 	}
4011 
4012 	down_write(&ns->ctrl->namespaces_rwsem);
4013 	list_del_init(&ns->list);
4014 	up_write(&ns->ctrl->namespaces_rwsem);
4015 
4016 	nvme_mpath_check_last_path(ns);
4017 	nvme_put_ns(ns);
4018 }
4019 
nvme_ns_remove_by_nsid(struct nvme_ctrl * ctrl,u32 nsid)4020 static void nvme_ns_remove_by_nsid(struct nvme_ctrl *ctrl, u32 nsid)
4021 {
4022 	struct nvme_ns *ns = nvme_find_get_ns(ctrl, nsid);
4023 
4024 	if (ns) {
4025 		nvme_ns_remove(ns);
4026 		nvme_put_ns(ns);
4027 	}
4028 }
4029 
nvme_validate_ns(struct nvme_ns * ns,struct nvme_ns_ids * ids)4030 static void nvme_validate_ns(struct nvme_ns *ns, struct nvme_ns_ids *ids)
4031 {
4032 	struct nvme_id_ns *id;
4033 	int ret = NVME_SC_INVALID_NS | NVME_SC_DNR;
4034 
4035 	if (test_bit(NVME_NS_DEAD, &ns->flags))
4036 		goto out;
4037 
4038 	ret = nvme_identify_ns(ns->ctrl, ns->head->ns_id, ids, &id);
4039 	if (ret)
4040 		goto out;
4041 
4042 	ret = NVME_SC_INVALID_NS | NVME_SC_DNR;
4043 	if (!nvme_ns_ids_equal(&ns->head->ids, ids)) {
4044 		dev_err(ns->ctrl->device,
4045 			"identifiers changed for nsid %d\n", ns->head->ns_id);
4046 		goto out_free_id;
4047 	}
4048 
4049 	ret = nvme_update_ns_info(ns, id);
4050 
4051 out_free_id:
4052 	kfree(id);
4053 out:
4054 	/*
4055 	 * Only remove the namespace if we got a fatal error back from the
4056 	 * device, otherwise ignore the error and just move on.
4057 	 *
4058 	 * TODO: we should probably schedule a delayed retry here.
4059 	 */
4060 	if (ret > 0 && (ret & NVME_SC_DNR))
4061 		nvme_ns_remove(ns);
4062 	else
4063 		revalidate_disk_size(ns->disk, true);
4064 }
4065 
nvme_validate_or_alloc_ns(struct nvme_ctrl * ctrl,unsigned nsid)4066 static void nvme_validate_or_alloc_ns(struct nvme_ctrl *ctrl, unsigned nsid)
4067 {
4068 	struct nvme_ns_ids ids = { };
4069 	struct nvme_ns *ns;
4070 
4071 	if (nvme_identify_ns_descs(ctrl, nsid, &ids))
4072 		return;
4073 
4074 	ns = nvme_find_get_ns(ctrl, nsid);
4075 	if (ns) {
4076 		nvme_validate_ns(ns, &ids);
4077 		nvme_put_ns(ns);
4078 		return;
4079 	}
4080 
4081 	switch (ids.csi) {
4082 	case NVME_CSI_NVM:
4083 		nvme_alloc_ns(ctrl, nsid, &ids);
4084 		break;
4085 	case NVME_CSI_ZNS:
4086 		if (!IS_ENABLED(CONFIG_BLK_DEV_ZONED)) {
4087 			dev_warn(ctrl->device,
4088 				"nsid %u not supported without CONFIG_BLK_DEV_ZONED\n",
4089 				nsid);
4090 			break;
4091 		}
4092 		if (!nvme_multi_css(ctrl)) {
4093 			dev_warn(ctrl->device,
4094 				"command set not reported for nsid: %d\n",
4095 				nsid);
4096 			break;
4097 		}
4098 		nvme_alloc_ns(ctrl, nsid, &ids);
4099 		break;
4100 	default:
4101 		dev_warn(ctrl->device, "unknown csi %u for nsid %u\n",
4102 			ids.csi, nsid);
4103 		break;
4104 	}
4105 }
4106 
nvme_remove_invalid_namespaces(struct nvme_ctrl * ctrl,unsigned nsid)4107 static void nvme_remove_invalid_namespaces(struct nvme_ctrl *ctrl,
4108 					unsigned nsid)
4109 {
4110 	struct nvme_ns *ns, *next;
4111 	LIST_HEAD(rm_list);
4112 
4113 	down_write(&ctrl->namespaces_rwsem);
4114 	list_for_each_entry_safe(ns, next, &ctrl->namespaces, list) {
4115 		if (ns->head->ns_id > nsid || test_bit(NVME_NS_DEAD, &ns->flags))
4116 			list_move_tail(&ns->list, &rm_list);
4117 	}
4118 	up_write(&ctrl->namespaces_rwsem);
4119 
4120 	list_for_each_entry_safe(ns, next, &rm_list, list)
4121 		nvme_ns_remove(ns);
4122 
4123 }
4124 
nvme_scan_ns_list(struct nvme_ctrl * ctrl)4125 static int nvme_scan_ns_list(struct nvme_ctrl *ctrl)
4126 {
4127 	const int nr_entries = NVME_IDENTIFY_DATA_SIZE / sizeof(__le32);
4128 	__le32 *ns_list;
4129 	u32 prev = 0;
4130 	int ret = 0, i;
4131 
4132 	if (nvme_ctrl_limited_cns(ctrl))
4133 		return -EOPNOTSUPP;
4134 
4135 	ns_list = kzalloc(NVME_IDENTIFY_DATA_SIZE, GFP_KERNEL);
4136 	if (!ns_list)
4137 		return -ENOMEM;
4138 
4139 	for (;;) {
4140 		struct nvme_command cmd = {
4141 			.identify.opcode	= nvme_admin_identify,
4142 			.identify.cns		= NVME_ID_CNS_NS_ACTIVE_LIST,
4143 			.identify.nsid		= cpu_to_le32(prev),
4144 		};
4145 
4146 		ret = nvme_submit_sync_cmd(ctrl->admin_q, &cmd, ns_list,
4147 					    NVME_IDENTIFY_DATA_SIZE);
4148 		if (ret)
4149 			goto free;
4150 
4151 		for (i = 0; i < nr_entries; i++) {
4152 			u32 nsid = le32_to_cpu(ns_list[i]);
4153 
4154 			if (!nsid)	/* end of the list? */
4155 				goto out;
4156 			nvme_validate_or_alloc_ns(ctrl, nsid);
4157 			while (++prev < nsid)
4158 				nvme_ns_remove_by_nsid(ctrl, prev);
4159 		}
4160 	}
4161  out:
4162 	nvme_remove_invalid_namespaces(ctrl, prev);
4163  free:
4164 	kfree(ns_list);
4165 	return ret;
4166 }
4167 
nvme_scan_ns_sequential(struct nvme_ctrl * ctrl)4168 static void nvme_scan_ns_sequential(struct nvme_ctrl *ctrl)
4169 {
4170 	struct nvme_id_ctrl *id;
4171 	u32 nn, i;
4172 
4173 	if (nvme_identify_ctrl(ctrl, &id))
4174 		return;
4175 	nn = le32_to_cpu(id->nn);
4176 	kfree(id);
4177 
4178 	for (i = 1; i <= nn; i++)
4179 		nvme_validate_or_alloc_ns(ctrl, i);
4180 
4181 	nvme_remove_invalid_namespaces(ctrl, nn);
4182 }
4183 
nvme_clear_changed_ns_log(struct nvme_ctrl * ctrl)4184 static void nvme_clear_changed_ns_log(struct nvme_ctrl *ctrl)
4185 {
4186 	size_t log_size = NVME_MAX_CHANGED_NAMESPACES * sizeof(__le32);
4187 	__le32 *log;
4188 	int error;
4189 
4190 	log = kzalloc(log_size, GFP_KERNEL);
4191 	if (!log)
4192 		return;
4193 
4194 	/*
4195 	 * We need to read the log to clear the AEN, but we don't want to rely
4196 	 * on it for the changed namespace information as userspace could have
4197 	 * raced with us in reading the log page, which could cause us to miss
4198 	 * updates.
4199 	 */
4200 	error = nvme_get_log(ctrl, NVME_NSID_ALL, NVME_LOG_CHANGED_NS, 0,
4201 			NVME_CSI_NVM, log, log_size, 0);
4202 	if (error)
4203 		dev_warn(ctrl->device,
4204 			"reading changed ns log failed: %d\n", error);
4205 
4206 	kfree(log);
4207 }
4208 
nvme_scan_work(struct work_struct * work)4209 static void nvme_scan_work(struct work_struct *work)
4210 {
4211 	struct nvme_ctrl *ctrl =
4212 		container_of(work, struct nvme_ctrl, scan_work);
4213 
4214 	/* No tagset on a live ctrl means IO queues could not created */
4215 	if (ctrl->state != NVME_CTRL_LIVE || !ctrl->tagset)
4216 		return;
4217 
4218 	if (test_and_clear_bit(NVME_AER_NOTICE_NS_CHANGED, &ctrl->events)) {
4219 		dev_info(ctrl->device, "rescanning namespaces.\n");
4220 		nvme_clear_changed_ns_log(ctrl);
4221 	}
4222 
4223 	mutex_lock(&ctrl->scan_lock);
4224 	if (nvme_scan_ns_list(ctrl) != 0)
4225 		nvme_scan_ns_sequential(ctrl);
4226 	mutex_unlock(&ctrl->scan_lock);
4227 }
4228 
4229 /*
4230  * This function iterates the namespace list unlocked to allow recovery from
4231  * controller failure. It is up to the caller to ensure the namespace list is
4232  * not modified by scan work while this function is executing.
4233  */
nvme_remove_namespaces(struct nvme_ctrl * ctrl)4234 void nvme_remove_namespaces(struct nvme_ctrl *ctrl)
4235 {
4236 	struct nvme_ns *ns, *next;
4237 	LIST_HEAD(ns_list);
4238 
4239 	/*
4240 	 * make sure to requeue I/O to all namespaces as these
4241 	 * might result from the scan itself and must complete
4242 	 * for the scan_work to make progress
4243 	 */
4244 	nvme_mpath_clear_ctrl_paths(ctrl);
4245 
4246 	/* prevent racing with ns scanning */
4247 	flush_work(&ctrl->scan_work);
4248 
4249 	/*
4250 	 * The dead states indicates the controller was not gracefully
4251 	 * disconnected. In that case, we won't be able to flush any data while
4252 	 * removing the namespaces' disks; fail all the queues now to avoid
4253 	 * potentially having to clean up the failed sync later.
4254 	 */
4255 	if (ctrl->state == NVME_CTRL_DEAD)
4256 		nvme_kill_queues(ctrl);
4257 
4258 	/* this is a no-op when called from the controller reset handler */
4259 	nvme_change_ctrl_state(ctrl, NVME_CTRL_DELETING_NOIO);
4260 
4261 	down_write(&ctrl->namespaces_rwsem);
4262 	list_splice_init(&ctrl->namespaces, &ns_list);
4263 	up_write(&ctrl->namespaces_rwsem);
4264 
4265 	list_for_each_entry_safe(ns, next, &ns_list, list)
4266 		nvme_ns_remove(ns);
4267 }
4268 EXPORT_SYMBOL_GPL(nvme_remove_namespaces);
4269 
nvme_class_uevent(struct device * dev,struct kobj_uevent_env * env)4270 static int nvme_class_uevent(struct device *dev, struct kobj_uevent_env *env)
4271 {
4272 	struct nvme_ctrl *ctrl =
4273 		container_of(dev, struct nvme_ctrl, ctrl_device);
4274 	struct nvmf_ctrl_options *opts = ctrl->opts;
4275 	int ret;
4276 
4277 	ret = add_uevent_var(env, "NVME_TRTYPE=%s", ctrl->ops->name);
4278 	if (ret)
4279 		return ret;
4280 
4281 	if (opts) {
4282 		ret = add_uevent_var(env, "NVME_TRADDR=%s", opts->traddr);
4283 		if (ret)
4284 			return ret;
4285 
4286 		ret = add_uevent_var(env, "NVME_TRSVCID=%s",
4287 				opts->trsvcid ?: "none");
4288 		if (ret)
4289 			return ret;
4290 
4291 		ret = add_uevent_var(env, "NVME_HOST_TRADDR=%s",
4292 				opts->host_traddr ?: "none");
4293 	}
4294 	return ret;
4295 }
4296 
nvme_aen_uevent(struct nvme_ctrl * ctrl)4297 static void nvme_aen_uevent(struct nvme_ctrl *ctrl)
4298 {
4299 	char *envp[2] = { NULL, NULL };
4300 	u32 aen_result = ctrl->aen_result;
4301 
4302 	ctrl->aen_result = 0;
4303 	if (!aen_result)
4304 		return;
4305 
4306 	envp[0] = kasprintf(GFP_KERNEL, "NVME_AEN=%#08x", aen_result);
4307 	if (!envp[0])
4308 		return;
4309 	kobject_uevent_env(&ctrl->device->kobj, KOBJ_CHANGE, envp);
4310 	kfree(envp[0]);
4311 }
4312 
nvme_async_event_work(struct work_struct * work)4313 static void nvme_async_event_work(struct work_struct *work)
4314 {
4315 	struct nvme_ctrl *ctrl =
4316 		container_of(work, struct nvme_ctrl, async_event_work);
4317 
4318 	nvme_aen_uevent(ctrl);
4319 
4320 	/*
4321 	 * The transport drivers must guarantee AER submission here is safe by
4322 	 * flushing ctrl async_event_work after changing the controller state
4323 	 * from LIVE and before freeing the admin queue.
4324 	*/
4325 	if (ctrl->state == NVME_CTRL_LIVE)
4326 		ctrl->ops->submit_async_event(ctrl);
4327 }
4328 
nvme_ctrl_pp_status(struct nvme_ctrl * ctrl)4329 static bool nvme_ctrl_pp_status(struct nvme_ctrl *ctrl)
4330 {
4331 
4332 	u32 csts;
4333 
4334 	if (ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts))
4335 		return false;
4336 
4337 	if (csts == ~0)
4338 		return false;
4339 
4340 	return ((ctrl->ctrl_config & NVME_CC_ENABLE) && (csts & NVME_CSTS_PP));
4341 }
4342 
nvme_get_fw_slot_info(struct nvme_ctrl * ctrl)4343 static void nvme_get_fw_slot_info(struct nvme_ctrl *ctrl)
4344 {
4345 	struct nvme_fw_slot_info_log *log;
4346 
4347 	log = kmalloc(sizeof(*log), GFP_KERNEL);
4348 	if (!log)
4349 		return;
4350 
4351 	if (nvme_get_log(ctrl, NVME_NSID_ALL, NVME_LOG_FW_SLOT, 0, NVME_CSI_NVM,
4352 			log, sizeof(*log), 0))
4353 		dev_warn(ctrl->device, "Get FW SLOT INFO log error\n");
4354 	kfree(log);
4355 }
4356 
nvme_fw_act_work(struct work_struct * work)4357 static void nvme_fw_act_work(struct work_struct *work)
4358 {
4359 	struct nvme_ctrl *ctrl = container_of(work,
4360 				struct nvme_ctrl, fw_act_work);
4361 	unsigned long fw_act_timeout;
4362 
4363 	if (ctrl->mtfa)
4364 		fw_act_timeout = jiffies +
4365 				msecs_to_jiffies(ctrl->mtfa * 100);
4366 	else
4367 		fw_act_timeout = jiffies +
4368 				msecs_to_jiffies(admin_timeout * 1000);
4369 
4370 	nvme_stop_queues(ctrl);
4371 	while (nvme_ctrl_pp_status(ctrl)) {
4372 		if (time_after(jiffies, fw_act_timeout)) {
4373 			dev_warn(ctrl->device,
4374 				"Fw activation timeout, reset controller\n");
4375 			nvme_try_sched_reset(ctrl);
4376 			return;
4377 		}
4378 		msleep(100);
4379 	}
4380 
4381 	if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_LIVE))
4382 		return;
4383 
4384 	nvme_start_queues(ctrl);
4385 	/* read FW slot information to clear the AER */
4386 	nvme_get_fw_slot_info(ctrl);
4387 }
4388 
nvme_handle_aen_notice(struct nvme_ctrl * ctrl,u32 result)4389 static void nvme_handle_aen_notice(struct nvme_ctrl *ctrl, u32 result)
4390 {
4391 	u32 aer_notice_type = (result & 0xff00) >> 8;
4392 
4393 	trace_nvme_async_event(ctrl, aer_notice_type);
4394 
4395 	switch (aer_notice_type) {
4396 	case NVME_AER_NOTICE_NS_CHANGED:
4397 		set_bit(NVME_AER_NOTICE_NS_CHANGED, &ctrl->events);
4398 		nvme_queue_scan(ctrl);
4399 		break;
4400 	case NVME_AER_NOTICE_FW_ACT_STARTING:
4401 		/*
4402 		 * We are (ab)using the RESETTING state to prevent subsequent
4403 		 * recovery actions from interfering with the controller's
4404 		 * firmware activation.
4405 		 */
4406 		if (nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING))
4407 			queue_work(nvme_wq, &ctrl->fw_act_work);
4408 		break;
4409 #ifdef CONFIG_NVME_MULTIPATH
4410 	case NVME_AER_NOTICE_ANA:
4411 		if (!ctrl->ana_log_buf)
4412 			break;
4413 		queue_work(nvme_wq, &ctrl->ana_work);
4414 		break;
4415 #endif
4416 	case NVME_AER_NOTICE_DISC_CHANGED:
4417 		ctrl->aen_result = result;
4418 		break;
4419 	default:
4420 		dev_warn(ctrl->device, "async event result %08x\n", result);
4421 	}
4422 }
4423 
nvme_complete_async_event(struct nvme_ctrl * ctrl,__le16 status,volatile union nvme_result * res)4424 void nvme_complete_async_event(struct nvme_ctrl *ctrl, __le16 status,
4425 		volatile union nvme_result *res)
4426 {
4427 	u32 result = le32_to_cpu(res->u32);
4428 	u32 aer_type = result & 0x07;
4429 
4430 	if (le16_to_cpu(status) >> 1 != NVME_SC_SUCCESS)
4431 		return;
4432 
4433 	switch (aer_type) {
4434 	case NVME_AER_NOTICE:
4435 		nvme_handle_aen_notice(ctrl, result);
4436 		break;
4437 	case NVME_AER_ERROR:
4438 	case NVME_AER_SMART:
4439 	case NVME_AER_CSS:
4440 	case NVME_AER_VS:
4441 		trace_nvme_async_event(ctrl, aer_type);
4442 		ctrl->aen_result = result;
4443 		break;
4444 	default:
4445 		break;
4446 	}
4447 	queue_work(nvme_wq, &ctrl->async_event_work);
4448 }
4449 EXPORT_SYMBOL_GPL(nvme_complete_async_event);
4450 
nvme_stop_ctrl(struct nvme_ctrl * ctrl)4451 void nvme_stop_ctrl(struct nvme_ctrl *ctrl)
4452 {
4453 	nvme_mpath_stop(ctrl);
4454 	nvme_stop_keep_alive(ctrl);
4455 	flush_work(&ctrl->async_event_work);
4456 	cancel_work_sync(&ctrl->fw_act_work);
4457 	if (ctrl->ops->stop_ctrl)
4458 		ctrl->ops->stop_ctrl(ctrl);
4459 }
4460 EXPORT_SYMBOL_GPL(nvme_stop_ctrl);
4461 
nvme_start_ctrl(struct nvme_ctrl * ctrl)4462 void nvme_start_ctrl(struct nvme_ctrl *ctrl)
4463 {
4464 	nvme_start_keep_alive(ctrl);
4465 
4466 	nvme_enable_aen(ctrl);
4467 
4468 	if (ctrl->queue_count > 1) {
4469 		nvme_queue_scan(ctrl);
4470 		nvme_start_queues(ctrl);
4471 		nvme_mpath_update(ctrl);
4472 	}
4473 }
4474 EXPORT_SYMBOL_GPL(nvme_start_ctrl);
4475 
nvme_uninit_ctrl(struct nvme_ctrl * ctrl)4476 void nvme_uninit_ctrl(struct nvme_ctrl *ctrl)
4477 {
4478 	nvme_hwmon_exit(ctrl);
4479 	nvme_fault_inject_fini(&ctrl->fault_inject);
4480 	dev_pm_qos_hide_latency_tolerance(ctrl->device);
4481 	cdev_device_del(&ctrl->cdev, ctrl->device);
4482 	nvme_put_ctrl(ctrl);
4483 }
4484 EXPORT_SYMBOL_GPL(nvme_uninit_ctrl);
4485 
nvme_free_cels(struct nvme_ctrl * ctrl)4486 static void nvme_free_cels(struct nvme_ctrl *ctrl)
4487 {
4488 	struct nvme_effects_log	*cel;
4489 	unsigned long i;
4490 
4491 	xa_for_each (&ctrl->cels, i, cel) {
4492 		xa_erase(&ctrl->cels, i);
4493 		kfree(cel);
4494 	}
4495 
4496 	xa_destroy(&ctrl->cels);
4497 }
4498 
nvme_free_ctrl(struct device * dev)4499 static void nvme_free_ctrl(struct device *dev)
4500 {
4501 	struct nvme_ctrl *ctrl =
4502 		container_of(dev, struct nvme_ctrl, ctrl_device);
4503 	struct nvme_subsystem *subsys = ctrl->subsys;
4504 
4505 	if (!subsys || ctrl->instance != subsys->instance)
4506 		ida_simple_remove(&nvme_instance_ida, ctrl->instance);
4507 
4508 	nvme_free_cels(ctrl);
4509 	nvme_mpath_uninit(ctrl);
4510 	__free_page(ctrl->discard_page);
4511 
4512 	if (subsys) {
4513 		mutex_lock(&nvme_subsystems_lock);
4514 		list_del(&ctrl->subsys_entry);
4515 		sysfs_remove_link(&subsys->dev.kobj, dev_name(ctrl->device));
4516 		mutex_unlock(&nvme_subsystems_lock);
4517 	}
4518 
4519 	ctrl->ops->free_ctrl(ctrl);
4520 
4521 	if (subsys)
4522 		nvme_put_subsystem(subsys);
4523 }
4524 
4525 /*
4526  * Initialize a NVMe controller structures.  This needs to be called during
4527  * earliest initialization so that we have the initialized structured around
4528  * during probing.
4529  */
nvme_init_ctrl(struct nvme_ctrl * ctrl,struct device * dev,const struct nvme_ctrl_ops * ops,unsigned long quirks)4530 int nvme_init_ctrl(struct nvme_ctrl *ctrl, struct device *dev,
4531 		const struct nvme_ctrl_ops *ops, unsigned long quirks)
4532 {
4533 	int ret;
4534 
4535 	ctrl->state = NVME_CTRL_NEW;
4536 	spin_lock_init(&ctrl->lock);
4537 	mutex_init(&ctrl->scan_lock);
4538 	INIT_LIST_HEAD(&ctrl->namespaces);
4539 	xa_init(&ctrl->cels);
4540 	init_rwsem(&ctrl->namespaces_rwsem);
4541 	ctrl->dev = dev;
4542 	ctrl->ops = ops;
4543 	ctrl->quirks = quirks;
4544 	ctrl->numa_node = NUMA_NO_NODE;
4545 	INIT_WORK(&ctrl->scan_work, nvme_scan_work);
4546 	INIT_WORK(&ctrl->async_event_work, nvme_async_event_work);
4547 	INIT_WORK(&ctrl->fw_act_work, nvme_fw_act_work);
4548 	INIT_WORK(&ctrl->delete_work, nvme_delete_ctrl_work);
4549 	init_waitqueue_head(&ctrl->state_wq);
4550 
4551 	INIT_DELAYED_WORK(&ctrl->ka_work, nvme_keep_alive_work);
4552 	memset(&ctrl->ka_cmd, 0, sizeof(ctrl->ka_cmd));
4553 	ctrl->ka_cmd.common.opcode = nvme_admin_keep_alive;
4554 
4555 	BUILD_BUG_ON(NVME_DSM_MAX_RANGES * sizeof(struct nvme_dsm_range) >
4556 			PAGE_SIZE);
4557 	ctrl->discard_page = alloc_page(GFP_KERNEL);
4558 	if (!ctrl->discard_page) {
4559 		ret = -ENOMEM;
4560 		goto out;
4561 	}
4562 
4563 	ret = ida_simple_get(&nvme_instance_ida, 0, 0, GFP_KERNEL);
4564 	if (ret < 0)
4565 		goto out;
4566 	ctrl->instance = ret;
4567 
4568 	device_initialize(&ctrl->ctrl_device);
4569 	ctrl->device = &ctrl->ctrl_device;
4570 	ctrl->device->devt = MKDEV(MAJOR(nvme_chr_devt), ctrl->instance);
4571 	ctrl->device->class = nvme_class;
4572 	ctrl->device->parent = ctrl->dev;
4573 	ctrl->device->groups = nvme_dev_attr_groups;
4574 	ctrl->device->release = nvme_free_ctrl;
4575 	dev_set_drvdata(ctrl->device, ctrl);
4576 	ret = dev_set_name(ctrl->device, "nvme%d", ctrl->instance);
4577 	if (ret)
4578 		goto out_release_instance;
4579 
4580 	nvme_get_ctrl(ctrl);
4581 	cdev_init(&ctrl->cdev, &nvme_dev_fops);
4582 	ctrl->cdev.owner = ops->module;
4583 	ret = cdev_device_add(&ctrl->cdev, ctrl->device);
4584 	if (ret)
4585 		goto out_free_name;
4586 
4587 	/*
4588 	 * Initialize latency tolerance controls.  The sysfs files won't
4589 	 * be visible to userspace unless the device actually supports APST.
4590 	 */
4591 	ctrl->device->power.set_latency_tolerance = nvme_set_latency_tolerance;
4592 	dev_pm_qos_update_user_latency_tolerance(ctrl->device,
4593 		min(default_ps_max_latency_us, (unsigned long)S32_MAX));
4594 
4595 	nvme_fault_inject_init(&ctrl->fault_inject, dev_name(ctrl->device));
4596 	nvme_mpath_init_ctrl(ctrl);
4597 
4598 	return 0;
4599 out_free_name:
4600 	nvme_put_ctrl(ctrl);
4601 	kfree_const(ctrl->device->kobj.name);
4602 out_release_instance:
4603 	ida_simple_remove(&nvme_instance_ida, ctrl->instance);
4604 out:
4605 	if (ctrl->discard_page)
4606 		__free_page(ctrl->discard_page);
4607 	return ret;
4608 }
4609 EXPORT_SYMBOL_GPL(nvme_init_ctrl);
4610 
nvme_start_ns_queue(struct nvme_ns * ns)4611 static void nvme_start_ns_queue(struct nvme_ns *ns)
4612 {
4613 	if (test_and_clear_bit(NVME_NS_STOPPED, &ns->flags))
4614 		blk_mq_unquiesce_queue(ns->queue);
4615 }
4616 
nvme_stop_ns_queue(struct nvme_ns * ns)4617 static void nvme_stop_ns_queue(struct nvme_ns *ns)
4618 {
4619 	if (!test_and_set_bit(NVME_NS_STOPPED, &ns->flags))
4620 		blk_mq_quiesce_queue(ns->queue);
4621 }
4622 
4623 /*
4624  * Prepare a queue for teardown.
4625  *
4626  * This must forcibly unquiesce queues to avoid blocking dispatch, and only set
4627  * the capacity to 0 after that to avoid blocking dispatchers that may be
4628  * holding bd_butex.  This will end buffered writers dirtying pages that can't
4629  * be synced.
4630  */
nvme_set_queue_dying(struct nvme_ns * ns)4631 static void nvme_set_queue_dying(struct nvme_ns *ns)
4632 {
4633 	if (test_and_set_bit(NVME_NS_DEAD, &ns->flags))
4634 		return;
4635 
4636 	blk_set_queue_dying(ns->queue);
4637 	nvme_start_ns_queue(ns);
4638 
4639 	set_capacity(ns->disk, 0);
4640 	nvme_update_bdev_size(ns->disk);
4641 }
4642 
4643 /**
4644  * nvme_kill_queues(): Ends all namespace queues
4645  * @ctrl: the dead controller that needs to end
4646  *
4647  * Call this function when the driver determines it is unable to get the
4648  * controller in a state capable of servicing IO.
4649  */
nvme_kill_queues(struct nvme_ctrl * ctrl)4650 void nvme_kill_queues(struct nvme_ctrl *ctrl)
4651 {
4652 	struct nvme_ns *ns;
4653 
4654 	down_read(&ctrl->namespaces_rwsem);
4655 
4656 	/* Forcibly unquiesce queues to avoid blocking dispatch */
4657 	if (ctrl->admin_q && !blk_queue_dying(ctrl->admin_q))
4658 		nvme_start_admin_queue(ctrl);
4659 
4660 	list_for_each_entry(ns, &ctrl->namespaces, list)
4661 		nvme_set_queue_dying(ns);
4662 
4663 	up_read(&ctrl->namespaces_rwsem);
4664 }
4665 EXPORT_SYMBOL_GPL(nvme_kill_queues);
4666 
nvme_unfreeze(struct nvme_ctrl * ctrl)4667 void nvme_unfreeze(struct nvme_ctrl *ctrl)
4668 {
4669 	struct nvme_ns *ns;
4670 
4671 	down_read(&ctrl->namespaces_rwsem);
4672 	list_for_each_entry(ns, &ctrl->namespaces, list)
4673 		blk_mq_unfreeze_queue(ns->queue);
4674 	up_read(&ctrl->namespaces_rwsem);
4675 }
4676 EXPORT_SYMBOL_GPL(nvme_unfreeze);
4677 
nvme_wait_freeze_timeout(struct nvme_ctrl * ctrl,long timeout)4678 int nvme_wait_freeze_timeout(struct nvme_ctrl *ctrl, long timeout)
4679 {
4680 	struct nvme_ns *ns;
4681 
4682 	down_read(&ctrl->namespaces_rwsem);
4683 	list_for_each_entry(ns, &ctrl->namespaces, list) {
4684 		timeout = blk_mq_freeze_queue_wait_timeout(ns->queue, timeout);
4685 		if (timeout <= 0)
4686 			break;
4687 	}
4688 	up_read(&ctrl->namespaces_rwsem);
4689 	return timeout;
4690 }
4691 EXPORT_SYMBOL_GPL(nvme_wait_freeze_timeout);
4692 
nvme_wait_freeze(struct nvme_ctrl * ctrl)4693 void nvme_wait_freeze(struct nvme_ctrl *ctrl)
4694 {
4695 	struct nvme_ns *ns;
4696 
4697 	down_read(&ctrl->namespaces_rwsem);
4698 	list_for_each_entry(ns, &ctrl->namespaces, list)
4699 		blk_mq_freeze_queue_wait(ns->queue);
4700 	up_read(&ctrl->namespaces_rwsem);
4701 }
4702 EXPORT_SYMBOL_GPL(nvme_wait_freeze);
4703 
nvme_start_freeze(struct nvme_ctrl * ctrl)4704 void nvme_start_freeze(struct nvme_ctrl *ctrl)
4705 {
4706 	struct nvme_ns *ns;
4707 
4708 	down_read(&ctrl->namespaces_rwsem);
4709 	list_for_each_entry(ns, &ctrl->namespaces, list)
4710 		blk_freeze_queue_start(ns->queue);
4711 	up_read(&ctrl->namespaces_rwsem);
4712 }
4713 EXPORT_SYMBOL_GPL(nvme_start_freeze);
4714 
nvme_stop_queues(struct nvme_ctrl * ctrl)4715 void nvme_stop_queues(struct nvme_ctrl *ctrl)
4716 {
4717 	struct nvme_ns *ns;
4718 
4719 	down_read(&ctrl->namespaces_rwsem);
4720 	list_for_each_entry(ns, &ctrl->namespaces, list)
4721 		nvme_stop_ns_queue(ns);
4722 	up_read(&ctrl->namespaces_rwsem);
4723 }
4724 EXPORT_SYMBOL_GPL(nvme_stop_queues);
4725 
nvme_start_queues(struct nvme_ctrl * ctrl)4726 void nvme_start_queues(struct nvme_ctrl *ctrl)
4727 {
4728 	struct nvme_ns *ns;
4729 
4730 	down_read(&ctrl->namespaces_rwsem);
4731 	list_for_each_entry(ns, &ctrl->namespaces, list)
4732 		nvme_start_ns_queue(ns);
4733 	up_read(&ctrl->namespaces_rwsem);
4734 }
4735 EXPORT_SYMBOL_GPL(nvme_start_queues);
4736 
nvme_stop_admin_queue(struct nvme_ctrl * ctrl)4737 void nvme_stop_admin_queue(struct nvme_ctrl *ctrl)
4738 {
4739 	if (!test_and_set_bit(NVME_CTRL_ADMIN_Q_STOPPED, &ctrl->flags))
4740 		blk_mq_quiesce_queue(ctrl->admin_q);
4741 }
4742 EXPORT_SYMBOL_GPL(nvme_stop_admin_queue);
4743 
nvme_start_admin_queue(struct nvme_ctrl * ctrl)4744 void nvme_start_admin_queue(struct nvme_ctrl *ctrl)
4745 {
4746 	if (test_and_clear_bit(NVME_CTRL_ADMIN_Q_STOPPED, &ctrl->flags))
4747 		blk_mq_unquiesce_queue(ctrl->admin_q);
4748 }
4749 EXPORT_SYMBOL_GPL(nvme_start_admin_queue);
4750 
nvme_sync_io_queues(struct nvme_ctrl * ctrl)4751 void nvme_sync_io_queues(struct nvme_ctrl *ctrl)
4752 {
4753 	struct nvme_ns *ns;
4754 
4755 	down_read(&ctrl->namespaces_rwsem);
4756 	list_for_each_entry(ns, &ctrl->namespaces, list)
4757 		blk_sync_queue(ns->queue);
4758 	up_read(&ctrl->namespaces_rwsem);
4759 }
4760 EXPORT_SYMBOL_GPL(nvme_sync_io_queues);
4761 
nvme_sync_queues(struct nvme_ctrl * ctrl)4762 void nvme_sync_queues(struct nvme_ctrl *ctrl)
4763 {
4764 	nvme_sync_io_queues(ctrl);
4765 	if (ctrl->admin_q)
4766 		blk_sync_queue(ctrl->admin_q);
4767 }
4768 EXPORT_SYMBOL_GPL(nvme_sync_queues);
4769 
nvme_ctrl_from_file(struct file * file)4770 struct nvme_ctrl *nvme_ctrl_from_file(struct file *file)
4771 {
4772 	if (file->f_op != &nvme_dev_fops)
4773 		return NULL;
4774 	return file->private_data;
4775 }
4776 EXPORT_SYMBOL_NS_GPL(nvme_ctrl_from_file, NVME_TARGET_PASSTHRU);
4777 
4778 /*
4779  * Check we didn't inadvertently grow the command structure sizes:
4780  */
_nvme_check_size(void)4781 static inline void _nvme_check_size(void)
4782 {
4783 	BUILD_BUG_ON(sizeof(struct nvme_common_command) != 64);
4784 	BUILD_BUG_ON(sizeof(struct nvme_rw_command) != 64);
4785 	BUILD_BUG_ON(sizeof(struct nvme_identify) != 64);
4786 	BUILD_BUG_ON(sizeof(struct nvme_features) != 64);
4787 	BUILD_BUG_ON(sizeof(struct nvme_download_firmware) != 64);
4788 	BUILD_BUG_ON(sizeof(struct nvme_format_cmd) != 64);
4789 	BUILD_BUG_ON(sizeof(struct nvme_dsm_cmd) != 64);
4790 	BUILD_BUG_ON(sizeof(struct nvme_write_zeroes_cmd) != 64);
4791 	BUILD_BUG_ON(sizeof(struct nvme_abort_cmd) != 64);
4792 	BUILD_BUG_ON(sizeof(struct nvme_get_log_page_command) != 64);
4793 	BUILD_BUG_ON(sizeof(struct nvme_command) != 64);
4794 	BUILD_BUG_ON(sizeof(struct nvme_id_ctrl) != NVME_IDENTIFY_DATA_SIZE);
4795 	BUILD_BUG_ON(sizeof(struct nvme_id_ns) != NVME_IDENTIFY_DATA_SIZE);
4796 	BUILD_BUG_ON(sizeof(struct nvme_id_ns_zns) != NVME_IDENTIFY_DATA_SIZE);
4797 	BUILD_BUG_ON(sizeof(struct nvme_id_ctrl_zns) != NVME_IDENTIFY_DATA_SIZE);
4798 	BUILD_BUG_ON(sizeof(struct nvme_lba_range_type) != 64);
4799 	BUILD_BUG_ON(sizeof(struct nvme_smart_log) != 512);
4800 	BUILD_BUG_ON(sizeof(struct nvme_dbbuf) != 64);
4801 	BUILD_BUG_ON(sizeof(struct nvme_directive_cmd) != 64);
4802 }
4803 
4804 
nvme_core_init(void)4805 static int __init nvme_core_init(void)
4806 {
4807 	int result = -ENOMEM;
4808 
4809 	_nvme_check_size();
4810 
4811 	nvme_wq = alloc_workqueue("nvme-wq",
4812 			WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0);
4813 	if (!nvme_wq)
4814 		goto out;
4815 
4816 	nvme_reset_wq = alloc_workqueue("nvme-reset-wq",
4817 			WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0);
4818 	if (!nvme_reset_wq)
4819 		goto destroy_wq;
4820 
4821 	nvme_delete_wq = alloc_workqueue("nvme-delete-wq",
4822 			WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0);
4823 	if (!nvme_delete_wq)
4824 		goto destroy_reset_wq;
4825 
4826 	result = alloc_chrdev_region(&nvme_chr_devt, 0, NVME_MINORS, "nvme");
4827 	if (result < 0)
4828 		goto destroy_delete_wq;
4829 
4830 	nvme_class = class_create(THIS_MODULE, "nvme");
4831 	if (IS_ERR(nvme_class)) {
4832 		result = PTR_ERR(nvme_class);
4833 		goto unregister_chrdev;
4834 	}
4835 	nvme_class->dev_uevent = nvme_class_uevent;
4836 
4837 	nvme_subsys_class = class_create(THIS_MODULE, "nvme-subsystem");
4838 	if (IS_ERR(nvme_subsys_class)) {
4839 		result = PTR_ERR(nvme_subsys_class);
4840 		goto destroy_class;
4841 	}
4842 	return 0;
4843 
4844 destroy_class:
4845 	class_destroy(nvme_class);
4846 unregister_chrdev:
4847 	unregister_chrdev_region(nvme_chr_devt, NVME_MINORS);
4848 destroy_delete_wq:
4849 	destroy_workqueue(nvme_delete_wq);
4850 destroy_reset_wq:
4851 	destroy_workqueue(nvme_reset_wq);
4852 destroy_wq:
4853 	destroy_workqueue(nvme_wq);
4854 out:
4855 	return result;
4856 }
4857 
nvme_core_exit(void)4858 static void __exit nvme_core_exit(void)
4859 {
4860 	class_destroy(nvme_subsys_class);
4861 	class_destroy(nvme_class);
4862 	unregister_chrdev_region(nvme_chr_devt, NVME_MINORS);
4863 	destroy_workqueue(nvme_delete_wq);
4864 	destroy_workqueue(nvme_reset_wq);
4865 	destroy_workqueue(nvme_wq);
4866 	ida_destroy(&nvme_instance_ida);
4867 }
4868 
4869 MODULE_LICENSE("GPL");
4870 MODULE_VERSION("1.0");
4871 module_init(nvme_core_init);
4872 module_exit(nvme_core_exit);
4873