1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Common code for the NVMe target.
4 * Copyright (c) 2015-2016 HGST, a Western Digital Company.
5 */
6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
7 #include <linux/module.h>
8 #include <linux/random.h>
9 #include <linux/rculist.h>
10 #include <linux/pci-p2pdma.h>
11 #include <linux/scatterlist.h>
12
13 #define CREATE_TRACE_POINTS
14 #include "trace.h"
15
16 #include "nvmet.h"
17
18 struct workqueue_struct *buffered_io_wq;
19 static const struct nvmet_fabrics_ops *nvmet_transports[NVMF_TRTYPE_MAX];
20 static DEFINE_IDA(cntlid_ida);
21
22 /*
23 * This read/write semaphore is used to synchronize access to configuration
24 * information on a target system that will result in discovery log page
25 * information change for at least one host.
26 * The full list of resources to protected by this semaphore is:
27 *
28 * - subsystems list
29 * - per-subsystem allowed hosts list
30 * - allow_any_host subsystem attribute
31 * - nvmet_genctr
32 * - the nvmet_transports array
33 *
34 * When updating any of those lists/structures write lock should be obtained,
35 * while when reading (popolating discovery log page or checking host-subsystem
36 * link) read lock is obtained to allow concurrent reads.
37 */
38 DECLARE_RWSEM(nvmet_config_sem);
39
40 u32 nvmet_ana_group_enabled[NVMET_MAX_ANAGRPS + 1];
41 u64 nvmet_ana_chgcnt;
42 DECLARE_RWSEM(nvmet_ana_sem);
43
errno_to_nvme_status(struct nvmet_req * req,int errno)44 inline u16 errno_to_nvme_status(struct nvmet_req *req, int errno)
45 {
46 u16 status;
47
48 switch (errno) {
49 case 0:
50 status = NVME_SC_SUCCESS;
51 break;
52 case -ENOSPC:
53 req->error_loc = offsetof(struct nvme_rw_command, length);
54 status = NVME_SC_CAP_EXCEEDED | NVME_SC_DNR;
55 break;
56 case -EREMOTEIO:
57 req->error_loc = offsetof(struct nvme_rw_command, slba);
58 status = NVME_SC_LBA_RANGE | NVME_SC_DNR;
59 break;
60 case -EOPNOTSUPP:
61 req->error_loc = offsetof(struct nvme_common_command, opcode);
62 switch (req->cmd->common.opcode) {
63 case nvme_cmd_dsm:
64 case nvme_cmd_write_zeroes:
65 status = NVME_SC_ONCS_NOT_SUPPORTED | NVME_SC_DNR;
66 break;
67 default:
68 status = NVME_SC_INVALID_OPCODE | NVME_SC_DNR;
69 }
70 break;
71 case -ENODATA:
72 req->error_loc = offsetof(struct nvme_rw_command, nsid);
73 status = NVME_SC_ACCESS_DENIED;
74 break;
75 case -EIO:
76 fallthrough;
77 default:
78 req->error_loc = offsetof(struct nvme_common_command, opcode);
79 status = NVME_SC_INTERNAL | NVME_SC_DNR;
80 }
81
82 return status;
83 }
84
85 static struct nvmet_subsys *nvmet_find_get_subsys(struct nvmet_port *port,
86 const char *subsysnqn);
87
nvmet_copy_to_sgl(struct nvmet_req * req,off_t off,const void * buf,size_t len)88 u16 nvmet_copy_to_sgl(struct nvmet_req *req, off_t off, const void *buf,
89 size_t len)
90 {
91 if (sg_pcopy_from_buffer(req->sg, req->sg_cnt, buf, len, off) != len) {
92 req->error_loc = offsetof(struct nvme_common_command, dptr);
93 return NVME_SC_SGL_INVALID_DATA | NVME_SC_DNR;
94 }
95 return 0;
96 }
97
nvmet_copy_from_sgl(struct nvmet_req * req,off_t off,void * buf,size_t len)98 u16 nvmet_copy_from_sgl(struct nvmet_req *req, off_t off, void *buf, size_t len)
99 {
100 if (sg_pcopy_to_buffer(req->sg, req->sg_cnt, buf, len, off) != len) {
101 req->error_loc = offsetof(struct nvme_common_command, dptr);
102 return NVME_SC_SGL_INVALID_DATA | NVME_SC_DNR;
103 }
104 return 0;
105 }
106
nvmet_zero_sgl(struct nvmet_req * req,off_t off,size_t len)107 u16 nvmet_zero_sgl(struct nvmet_req *req, off_t off, size_t len)
108 {
109 if (sg_zero_buffer(req->sg, req->sg_cnt, len, off) != len) {
110 req->error_loc = offsetof(struct nvme_common_command, dptr);
111 return NVME_SC_SGL_INVALID_DATA | NVME_SC_DNR;
112 }
113 return 0;
114 }
115
nvmet_max_nsid(struct nvmet_subsys * subsys)116 static unsigned int nvmet_max_nsid(struct nvmet_subsys *subsys)
117 {
118 unsigned long nsid = 0;
119 struct nvmet_ns *cur;
120 unsigned long idx;
121
122 xa_for_each(&subsys->namespaces, idx, cur)
123 nsid = cur->nsid;
124
125 return nsid;
126 }
127
nvmet_async_event_result(struct nvmet_async_event * aen)128 static u32 nvmet_async_event_result(struct nvmet_async_event *aen)
129 {
130 return aen->event_type | (aen->event_info << 8) | (aen->log_page << 16);
131 }
132
nvmet_async_events_failall(struct nvmet_ctrl * ctrl)133 static void nvmet_async_events_failall(struct nvmet_ctrl *ctrl)
134 {
135 u16 status = NVME_SC_INTERNAL | NVME_SC_DNR;
136 struct nvmet_req *req;
137
138 mutex_lock(&ctrl->lock);
139 while (ctrl->nr_async_event_cmds) {
140 req = ctrl->async_event_cmds[--ctrl->nr_async_event_cmds];
141 mutex_unlock(&ctrl->lock);
142 nvmet_req_complete(req, status);
143 mutex_lock(&ctrl->lock);
144 }
145 mutex_unlock(&ctrl->lock);
146 }
147
nvmet_async_events_process(struct nvmet_ctrl * ctrl)148 static void nvmet_async_events_process(struct nvmet_ctrl *ctrl)
149 {
150 struct nvmet_async_event *aen;
151 struct nvmet_req *req;
152
153 mutex_lock(&ctrl->lock);
154 while (ctrl->nr_async_event_cmds && !list_empty(&ctrl->async_events)) {
155 aen = list_first_entry(&ctrl->async_events,
156 struct nvmet_async_event, entry);
157 req = ctrl->async_event_cmds[--ctrl->nr_async_event_cmds];
158 nvmet_set_result(req, nvmet_async_event_result(aen));
159
160 list_del(&aen->entry);
161 kfree(aen);
162
163 mutex_unlock(&ctrl->lock);
164 trace_nvmet_async_event(ctrl, req->cqe->result.u32);
165 nvmet_req_complete(req, 0);
166 mutex_lock(&ctrl->lock);
167 }
168 mutex_unlock(&ctrl->lock);
169 }
170
nvmet_async_events_free(struct nvmet_ctrl * ctrl)171 static void nvmet_async_events_free(struct nvmet_ctrl *ctrl)
172 {
173 struct nvmet_async_event *aen, *tmp;
174
175 mutex_lock(&ctrl->lock);
176 list_for_each_entry_safe(aen, tmp, &ctrl->async_events, entry) {
177 list_del(&aen->entry);
178 kfree(aen);
179 }
180 mutex_unlock(&ctrl->lock);
181 }
182
nvmet_async_event_work(struct work_struct * work)183 static void nvmet_async_event_work(struct work_struct *work)
184 {
185 struct nvmet_ctrl *ctrl =
186 container_of(work, struct nvmet_ctrl, async_event_work);
187
188 nvmet_async_events_process(ctrl);
189 }
190
nvmet_add_async_event(struct nvmet_ctrl * ctrl,u8 event_type,u8 event_info,u8 log_page)191 void nvmet_add_async_event(struct nvmet_ctrl *ctrl, u8 event_type,
192 u8 event_info, u8 log_page)
193 {
194 struct nvmet_async_event *aen;
195
196 aen = kmalloc(sizeof(*aen), GFP_KERNEL);
197 if (!aen)
198 return;
199
200 aen->event_type = event_type;
201 aen->event_info = event_info;
202 aen->log_page = log_page;
203
204 mutex_lock(&ctrl->lock);
205 list_add_tail(&aen->entry, &ctrl->async_events);
206 mutex_unlock(&ctrl->lock);
207
208 schedule_work(&ctrl->async_event_work);
209 }
210
nvmet_add_to_changed_ns_log(struct nvmet_ctrl * ctrl,__le32 nsid)211 static void nvmet_add_to_changed_ns_log(struct nvmet_ctrl *ctrl, __le32 nsid)
212 {
213 u32 i;
214
215 mutex_lock(&ctrl->lock);
216 if (ctrl->nr_changed_ns > NVME_MAX_CHANGED_NAMESPACES)
217 goto out_unlock;
218
219 for (i = 0; i < ctrl->nr_changed_ns; i++) {
220 if (ctrl->changed_ns_list[i] == nsid)
221 goto out_unlock;
222 }
223
224 if (ctrl->nr_changed_ns == NVME_MAX_CHANGED_NAMESPACES) {
225 ctrl->changed_ns_list[0] = cpu_to_le32(0xffffffff);
226 ctrl->nr_changed_ns = U32_MAX;
227 goto out_unlock;
228 }
229
230 ctrl->changed_ns_list[ctrl->nr_changed_ns++] = nsid;
231 out_unlock:
232 mutex_unlock(&ctrl->lock);
233 }
234
nvmet_ns_changed(struct nvmet_subsys * subsys,u32 nsid)235 void nvmet_ns_changed(struct nvmet_subsys *subsys, u32 nsid)
236 {
237 struct nvmet_ctrl *ctrl;
238
239 lockdep_assert_held(&subsys->lock);
240
241 list_for_each_entry(ctrl, &subsys->ctrls, subsys_entry) {
242 nvmet_add_to_changed_ns_log(ctrl, cpu_to_le32(nsid));
243 if (nvmet_aen_bit_disabled(ctrl, NVME_AEN_BIT_NS_ATTR))
244 continue;
245 nvmet_add_async_event(ctrl, NVME_AER_TYPE_NOTICE,
246 NVME_AER_NOTICE_NS_CHANGED,
247 NVME_LOG_CHANGED_NS);
248 }
249 }
250
nvmet_send_ana_event(struct nvmet_subsys * subsys,struct nvmet_port * port)251 void nvmet_send_ana_event(struct nvmet_subsys *subsys,
252 struct nvmet_port *port)
253 {
254 struct nvmet_ctrl *ctrl;
255
256 mutex_lock(&subsys->lock);
257 list_for_each_entry(ctrl, &subsys->ctrls, subsys_entry) {
258 if (port && ctrl->port != port)
259 continue;
260 if (nvmet_aen_bit_disabled(ctrl, NVME_AEN_BIT_ANA_CHANGE))
261 continue;
262 nvmet_add_async_event(ctrl, NVME_AER_TYPE_NOTICE,
263 NVME_AER_NOTICE_ANA, NVME_LOG_ANA);
264 }
265 mutex_unlock(&subsys->lock);
266 }
267
nvmet_port_send_ana_event(struct nvmet_port * port)268 void nvmet_port_send_ana_event(struct nvmet_port *port)
269 {
270 struct nvmet_subsys_link *p;
271
272 down_read(&nvmet_config_sem);
273 list_for_each_entry(p, &port->subsystems, entry)
274 nvmet_send_ana_event(p->subsys, port);
275 up_read(&nvmet_config_sem);
276 }
277
nvmet_register_transport(const struct nvmet_fabrics_ops * ops)278 int nvmet_register_transport(const struct nvmet_fabrics_ops *ops)
279 {
280 int ret = 0;
281
282 down_write(&nvmet_config_sem);
283 if (nvmet_transports[ops->type])
284 ret = -EINVAL;
285 else
286 nvmet_transports[ops->type] = ops;
287 up_write(&nvmet_config_sem);
288
289 return ret;
290 }
291 EXPORT_SYMBOL_GPL(nvmet_register_transport);
292
nvmet_unregister_transport(const struct nvmet_fabrics_ops * ops)293 void nvmet_unregister_transport(const struct nvmet_fabrics_ops *ops)
294 {
295 down_write(&nvmet_config_sem);
296 nvmet_transports[ops->type] = NULL;
297 up_write(&nvmet_config_sem);
298 }
299 EXPORT_SYMBOL_GPL(nvmet_unregister_transport);
300
nvmet_port_del_ctrls(struct nvmet_port * port,struct nvmet_subsys * subsys)301 void nvmet_port_del_ctrls(struct nvmet_port *port, struct nvmet_subsys *subsys)
302 {
303 struct nvmet_ctrl *ctrl;
304
305 mutex_lock(&subsys->lock);
306 list_for_each_entry(ctrl, &subsys->ctrls, subsys_entry) {
307 if (ctrl->port == port)
308 ctrl->ops->delete_ctrl(ctrl);
309 }
310 mutex_unlock(&subsys->lock);
311 }
312
nvmet_enable_port(struct nvmet_port * port)313 int nvmet_enable_port(struct nvmet_port *port)
314 {
315 const struct nvmet_fabrics_ops *ops;
316 int ret;
317
318 lockdep_assert_held(&nvmet_config_sem);
319
320 ops = nvmet_transports[port->disc_addr.trtype];
321 if (!ops) {
322 up_write(&nvmet_config_sem);
323 request_module("nvmet-transport-%d", port->disc_addr.trtype);
324 down_write(&nvmet_config_sem);
325 ops = nvmet_transports[port->disc_addr.trtype];
326 if (!ops) {
327 pr_err("transport type %d not supported\n",
328 port->disc_addr.trtype);
329 return -EINVAL;
330 }
331 }
332
333 if (!try_module_get(ops->owner))
334 return -EINVAL;
335
336 /*
337 * If the user requested PI support and the transport isn't pi capable,
338 * don't enable the port.
339 */
340 if (port->pi_enable && !(ops->flags & NVMF_METADATA_SUPPORTED)) {
341 pr_err("T10-PI is not supported by transport type %d\n",
342 port->disc_addr.trtype);
343 ret = -EINVAL;
344 goto out_put;
345 }
346
347 ret = ops->add_port(port);
348 if (ret)
349 goto out_put;
350
351 /* If the transport didn't set inline_data_size, then disable it. */
352 if (port->inline_data_size < 0)
353 port->inline_data_size = 0;
354
355 port->enabled = true;
356 port->tr_ops = ops;
357 return 0;
358
359 out_put:
360 module_put(ops->owner);
361 return ret;
362 }
363
nvmet_disable_port(struct nvmet_port * port)364 void nvmet_disable_port(struct nvmet_port *port)
365 {
366 const struct nvmet_fabrics_ops *ops;
367
368 lockdep_assert_held(&nvmet_config_sem);
369
370 port->enabled = false;
371 port->tr_ops = NULL;
372
373 ops = nvmet_transports[port->disc_addr.trtype];
374 ops->remove_port(port);
375 module_put(ops->owner);
376 }
377
nvmet_keep_alive_timer(struct work_struct * work)378 static void nvmet_keep_alive_timer(struct work_struct *work)
379 {
380 struct nvmet_ctrl *ctrl = container_of(to_delayed_work(work),
381 struct nvmet_ctrl, ka_work);
382 bool reset_tbkas = ctrl->reset_tbkas;
383
384 ctrl->reset_tbkas = false;
385 if (reset_tbkas) {
386 pr_debug("ctrl %d reschedule traffic based keep-alive timer\n",
387 ctrl->cntlid);
388 schedule_delayed_work(&ctrl->ka_work, ctrl->kato * HZ);
389 return;
390 }
391
392 pr_err("ctrl %d keep-alive timer (%d seconds) expired!\n",
393 ctrl->cntlid, ctrl->kato);
394
395 nvmet_ctrl_fatal_error(ctrl);
396 }
397
nvmet_start_keep_alive_timer(struct nvmet_ctrl * ctrl)398 void nvmet_start_keep_alive_timer(struct nvmet_ctrl *ctrl)
399 {
400 if (unlikely(ctrl->kato == 0))
401 return;
402
403 pr_debug("ctrl %d start keep-alive timer for %d secs\n",
404 ctrl->cntlid, ctrl->kato);
405
406 INIT_DELAYED_WORK(&ctrl->ka_work, nvmet_keep_alive_timer);
407 schedule_delayed_work(&ctrl->ka_work, ctrl->kato * HZ);
408 }
409
nvmet_stop_keep_alive_timer(struct nvmet_ctrl * ctrl)410 void nvmet_stop_keep_alive_timer(struct nvmet_ctrl *ctrl)
411 {
412 if (unlikely(ctrl->kato == 0))
413 return;
414
415 pr_debug("ctrl %d stop keep-alive\n", ctrl->cntlid);
416
417 cancel_delayed_work_sync(&ctrl->ka_work);
418 }
419
nvmet_find_namespace(struct nvmet_ctrl * ctrl,__le32 nsid)420 struct nvmet_ns *nvmet_find_namespace(struct nvmet_ctrl *ctrl, __le32 nsid)
421 {
422 struct nvmet_ns *ns;
423
424 ns = xa_load(&ctrl->subsys->namespaces, le32_to_cpu(nsid));
425 if (ns)
426 percpu_ref_get(&ns->ref);
427
428 return ns;
429 }
430
nvmet_destroy_namespace(struct percpu_ref * ref)431 static void nvmet_destroy_namespace(struct percpu_ref *ref)
432 {
433 struct nvmet_ns *ns = container_of(ref, struct nvmet_ns, ref);
434
435 complete(&ns->disable_done);
436 }
437
nvmet_put_namespace(struct nvmet_ns * ns)438 void nvmet_put_namespace(struct nvmet_ns *ns)
439 {
440 percpu_ref_put(&ns->ref);
441 }
442
nvmet_ns_dev_disable(struct nvmet_ns * ns)443 static void nvmet_ns_dev_disable(struct nvmet_ns *ns)
444 {
445 nvmet_bdev_ns_disable(ns);
446 nvmet_file_ns_disable(ns);
447 }
448
nvmet_p2pmem_ns_enable(struct nvmet_ns * ns)449 static int nvmet_p2pmem_ns_enable(struct nvmet_ns *ns)
450 {
451 int ret;
452 struct pci_dev *p2p_dev;
453
454 if (!ns->use_p2pmem)
455 return 0;
456
457 if (!ns->bdev) {
458 pr_err("peer-to-peer DMA is not supported by non-block device namespaces\n");
459 return -EINVAL;
460 }
461
462 if (!blk_queue_pci_p2pdma(ns->bdev->bd_disk->queue)) {
463 pr_err("peer-to-peer DMA is not supported by the driver of %s\n",
464 ns->device_path);
465 return -EINVAL;
466 }
467
468 if (ns->p2p_dev) {
469 ret = pci_p2pdma_distance(ns->p2p_dev, nvmet_ns_dev(ns), true);
470 if (ret < 0)
471 return -EINVAL;
472 } else {
473 /*
474 * Right now we just check that there is p2pmem available so
475 * we can report an error to the user right away if there
476 * is not. We'll find the actual device to use once we
477 * setup the controller when the port's device is available.
478 */
479
480 p2p_dev = pci_p2pmem_find(nvmet_ns_dev(ns));
481 if (!p2p_dev) {
482 pr_err("no peer-to-peer memory is available for %s\n",
483 ns->device_path);
484 return -EINVAL;
485 }
486
487 pci_dev_put(p2p_dev);
488 }
489
490 return 0;
491 }
492
493 /*
494 * Note: ctrl->subsys->lock should be held when calling this function
495 */
nvmet_p2pmem_ns_add_p2p(struct nvmet_ctrl * ctrl,struct nvmet_ns * ns)496 static void nvmet_p2pmem_ns_add_p2p(struct nvmet_ctrl *ctrl,
497 struct nvmet_ns *ns)
498 {
499 struct device *clients[2];
500 struct pci_dev *p2p_dev;
501 int ret;
502
503 if (!ctrl->p2p_client || !ns->use_p2pmem)
504 return;
505
506 if (ns->p2p_dev) {
507 ret = pci_p2pdma_distance(ns->p2p_dev, ctrl->p2p_client, true);
508 if (ret < 0)
509 return;
510
511 p2p_dev = pci_dev_get(ns->p2p_dev);
512 } else {
513 clients[0] = ctrl->p2p_client;
514 clients[1] = nvmet_ns_dev(ns);
515
516 p2p_dev = pci_p2pmem_find_many(clients, ARRAY_SIZE(clients));
517 if (!p2p_dev) {
518 pr_err("no peer-to-peer memory is available that's supported by %s and %s\n",
519 dev_name(ctrl->p2p_client), ns->device_path);
520 return;
521 }
522 }
523
524 ret = radix_tree_insert(&ctrl->p2p_ns_map, ns->nsid, p2p_dev);
525 if (ret < 0)
526 pci_dev_put(p2p_dev);
527
528 pr_info("using p2pmem on %s for nsid %d\n", pci_name(p2p_dev),
529 ns->nsid);
530 }
531
nvmet_ns_revalidate(struct nvmet_ns * ns)532 void nvmet_ns_revalidate(struct nvmet_ns *ns)
533 {
534 loff_t oldsize = ns->size;
535
536 if (ns->bdev)
537 nvmet_bdev_ns_revalidate(ns);
538 else
539 nvmet_file_ns_revalidate(ns);
540
541 if (oldsize != ns->size)
542 nvmet_ns_changed(ns->subsys, ns->nsid);
543 }
544
nvmet_ns_enable(struct nvmet_ns * ns)545 int nvmet_ns_enable(struct nvmet_ns *ns)
546 {
547 struct nvmet_subsys *subsys = ns->subsys;
548 struct nvmet_ctrl *ctrl;
549 int ret;
550
551 mutex_lock(&subsys->lock);
552 ret = 0;
553
554 if (nvmet_passthru_ctrl(subsys)) {
555 pr_info("cannot enable both passthru and regular namespaces for a single subsystem");
556 goto out_unlock;
557 }
558
559 if (ns->enabled)
560 goto out_unlock;
561
562 ret = -EMFILE;
563 if (subsys->nr_namespaces == NVMET_MAX_NAMESPACES)
564 goto out_unlock;
565
566 ret = nvmet_bdev_ns_enable(ns);
567 if (ret == -ENOTBLK)
568 ret = nvmet_file_ns_enable(ns);
569 if (ret)
570 goto out_unlock;
571
572 ret = nvmet_p2pmem_ns_enable(ns);
573 if (ret)
574 goto out_dev_disable;
575
576 list_for_each_entry(ctrl, &subsys->ctrls, subsys_entry)
577 nvmet_p2pmem_ns_add_p2p(ctrl, ns);
578
579 ret = percpu_ref_init(&ns->ref, nvmet_destroy_namespace,
580 0, GFP_KERNEL);
581 if (ret)
582 goto out_dev_put;
583
584 if (ns->nsid > subsys->max_nsid)
585 subsys->max_nsid = ns->nsid;
586
587 ret = xa_insert(&subsys->namespaces, ns->nsid, ns, GFP_KERNEL);
588 if (ret)
589 goto out_restore_subsys_maxnsid;
590
591 subsys->nr_namespaces++;
592
593 nvmet_ns_changed(subsys, ns->nsid);
594 ns->enabled = true;
595 ret = 0;
596 out_unlock:
597 mutex_unlock(&subsys->lock);
598 return ret;
599
600 out_restore_subsys_maxnsid:
601 subsys->max_nsid = nvmet_max_nsid(subsys);
602 percpu_ref_exit(&ns->ref);
603 out_dev_put:
604 list_for_each_entry(ctrl, &subsys->ctrls, subsys_entry)
605 pci_dev_put(radix_tree_delete(&ctrl->p2p_ns_map, ns->nsid));
606 out_dev_disable:
607 nvmet_ns_dev_disable(ns);
608 goto out_unlock;
609 }
610
nvmet_ns_disable(struct nvmet_ns * ns)611 void nvmet_ns_disable(struct nvmet_ns *ns)
612 {
613 struct nvmet_subsys *subsys = ns->subsys;
614 struct nvmet_ctrl *ctrl;
615
616 mutex_lock(&subsys->lock);
617 if (!ns->enabled)
618 goto out_unlock;
619
620 ns->enabled = false;
621 xa_erase(&ns->subsys->namespaces, ns->nsid);
622 if (ns->nsid == subsys->max_nsid)
623 subsys->max_nsid = nvmet_max_nsid(subsys);
624
625 list_for_each_entry(ctrl, &subsys->ctrls, subsys_entry)
626 pci_dev_put(radix_tree_delete(&ctrl->p2p_ns_map, ns->nsid));
627
628 mutex_unlock(&subsys->lock);
629
630 /*
631 * Now that we removed the namespaces from the lookup list, we
632 * can kill the per_cpu ref and wait for any remaining references
633 * to be dropped, as well as a RCU grace period for anyone only
634 * using the namepace under rcu_read_lock(). Note that we can't
635 * use call_rcu here as we need to ensure the namespaces have
636 * been fully destroyed before unloading the module.
637 */
638 percpu_ref_kill(&ns->ref);
639 synchronize_rcu();
640 wait_for_completion(&ns->disable_done);
641 percpu_ref_exit(&ns->ref);
642
643 mutex_lock(&subsys->lock);
644
645 subsys->nr_namespaces--;
646 nvmet_ns_changed(subsys, ns->nsid);
647 nvmet_ns_dev_disable(ns);
648 out_unlock:
649 mutex_unlock(&subsys->lock);
650 }
651
nvmet_ns_free(struct nvmet_ns * ns)652 void nvmet_ns_free(struct nvmet_ns *ns)
653 {
654 nvmet_ns_disable(ns);
655
656 down_write(&nvmet_ana_sem);
657 nvmet_ana_group_enabled[ns->anagrpid]--;
658 up_write(&nvmet_ana_sem);
659
660 kfree(ns->device_path);
661 kfree(ns);
662 }
663
nvmet_ns_alloc(struct nvmet_subsys * subsys,u32 nsid)664 struct nvmet_ns *nvmet_ns_alloc(struct nvmet_subsys *subsys, u32 nsid)
665 {
666 struct nvmet_ns *ns;
667
668 ns = kzalloc(sizeof(*ns), GFP_KERNEL);
669 if (!ns)
670 return NULL;
671
672 init_completion(&ns->disable_done);
673
674 ns->nsid = nsid;
675 ns->subsys = subsys;
676
677 down_write(&nvmet_ana_sem);
678 ns->anagrpid = NVMET_DEFAULT_ANA_GRPID;
679 nvmet_ana_group_enabled[ns->anagrpid]++;
680 up_write(&nvmet_ana_sem);
681
682 uuid_gen(&ns->uuid);
683 ns->buffered_io = false;
684
685 return ns;
686 }
687
nvmet_update_sq_head(struct nvmet_req * req)688 static void nvmet_update_sq_head(struct nvmet_req *req)
689 {
690 if (req->sq->size) {
691 u32 old_sqhd, new_sqhd;
692
693 do {
694 old_sqhd = req->sq->sqhd;
695 new_sqhd = (old_sqhd + 1) % req->sq->size;
696 } while (cmpxchg(&req->sq->sqhd, old_sqhd, new_sqhd) !=
697 old_sqhd);
698 }
699 req->cqe->sq_head = cpu_to_le16(req->sq->sqhd & 0x0000FFFF);
700 }
701
nvmet_set_error(struct nvmet_req * req,u16 status)702 static void nvmet_set_error(struct nvmet_req *req, u16 status)
703 {
704 struct nvmet_ctrl *ctrl = req->sq->ctrl;
705 struct nvme_error_slot *new_error_slot;
706 unsigned long flags;
707
708 req->cqe->status = cpu_to_le16(status << 1);
709
710 if (!ctrl || req->error_loc == NVMET_NO_ERROR_LOC)
711 return;
712
713 spin_lock_irqsave(&ctrl->error_lock, flags);
714 ctrl->err_counter++;
715 new_error_slot =
716 &ctrl->slots[ctrl->err_counter % NVMET_ERROR_LOG_SLOTS];
717
718 new_error_slot->error_count = cpu_to_le64(ctrl->err_counter);
719 new_error_slot->sqid = cpu_to_le16(req->sq->qid);
720 new_error_slot->cmdid = cpu_to_le16(req->cmd->common.command_id);
721 new_error_slot->status_field = cpu_to_le16(status << 1);
722 new_error_slot->param_error_location = cpu_to_le16(req->error_loc);
723 new_error_slot->lba = cpu_to_le64(req->error_slba);
724 new_error_slot->nsid = req->cmd->common.nsid;
725 spin_unlock_irqrestore(&ctrl->error_lock, flags);
726
727 /* set the more bit for this request */
728 req->cqe->status |= cpu_to_le16(1 << 14);
729 }
730
__nvmet_req_complete(struct nvmet_req * req,u16 status)731 static void __nvmet_req_complete(struct nvmet_req *req, u16 status)
732 {
733 struct nvmet_ns *ns = req->ns;
734
735 if (!req->sq->sqhd_disabled)
736 nvmet_update_sq_head(req);
737 req->cqe->sq_id = cpu_to_le16(req->sq->qid);
738 req->cqe->command_id = req->cmd->common.command_id;
739
740 if (unlikely(status))
741 nvmet_set_error(req, status);
742
743 trace_nvmet_req_complete(req);
744
745 req->ops->queue_response(req);
746 if (ns)
747 nvmet_put_namespace(ns);
748 }
749
nvmet_req_complete(struct nvmet_req * req,u16 status)750 void nvmet_req_complete(struct nvmet_req *req, u16 status)
751 {
752 __nvmet_req_complete(req, status);
753 percpu_ref_put(&req->sq->ref);
754 }
755 EXPORT_SYMBOL_GPL(nvmet_req_complete);
756
nvmet_cq_setup(struct nvmet_ctrl * ctrl,struct nvmet_cq * cq,u16 qid,u16 size)757 void nvmet_cq_setup(struct nvmet_ctrl *ctrl, struct nvmet_cq *cq,
758 u16 qid, u16 size)
759 {
760 cq->qid = qid;
761 cq->size = size;
762 }
763
nvmet_sq_setup(struct nvmet_ctrl * ctrl,struct nvmet_sq * sq,u16 qid,u16 size)764 void nvmet_sq_setup(struct nvmet_ctrl *ctrl, struct nvmet_sq *sq,
765 u16 qid, u16 size)
766 {
767 sq->sqhd = 0;
768 sq->qid = qid;
769 sq->size = size;
770
771 ctrl->sqs[qid] = sq;
772 }
773
nvmet_confirm_sq(struct percpu_ref * ref)774 static void nvmet_confirm_sq(struct percpu_ref *ref)
775 {
776 struct nvmet_sq *sq = container_of(ref, struct nvmet_sq, ref);
777
778 complete(&sq->confirm_done);
779 }
780
nvmet_sq_destroy(struct nvmet_sq * sq)781 void nvmet_sq_destroy(struct nvmet_sq *sq)
782 {
783 struct nvmet_ctrl *ctrl = sq->ctrl;
784
785 /*
786 * If this is the admin queue, complete all AERs so that our
787 * queue doesn't have outstanding requests on it.
788 */
789 if (ctrl && ctrl->sqs && ctrl->sqs[0] == sq)
790 nvmet_async_events_failall(ctrl);
791 percpu_ref_kill_and_confirm(&sq->ref, nvmet_confirm_sq);
792 wait_for_completion(&sq->confirm_done);
793 wait_for_completion(&sq->free_done);
794 percpu_ref_exit(&sq->ref);
795
796 if (ctrl) {
797 /*
798 * The teardown flow may take some time, and the host may not
799 * send us keep-alive during this period, hence reset the
800 * traffic based keep-alive timer so we don't trigger a
801 * controller teardown as a result of a keep-alive expiration.
802 */
803 ctrl->reset_tbkas = true;
804 nvmet_ctrl_put(ctrl);
805 sq->ctrl = NULL; /* allows reusing the queue later */
806 }
807 }
808 EXPORT_SYMBOL_GPL(nvmet_sq_destroy);
809
nvmet_sq_free(struct percpu_ref * ref)810 static void nvmet_sq_free(struct percpu_ref *ref)
811 {
812 struct nvmet_sq *sq = container_of(ref, struct nvmet_sq, ref);
813
814 complete(&sq->free_done);
815 }
816
nvmet_sq_init(struct nvmet_sq * sq)817 int nvmet_sq_init(struct nvmet_sq *sq)
818 {
819 int ret;
820
821 ret = percpu_ref_init(&sq->ref, nvmet_sq_free, 0, GFP_KERNEL);
822 if (ret) {
823 pr_err("percpu_ref init failed!\n");
824 return ret;
825 }
826 init_completion(&sq->free_done);
827 init_completion(&sq->confirm_done);
828
829 return 0;
830 }
831 EXPORT_SYMBOL_GPL(nvmet_sq_init);
832
nvmet_check_ana_state(struct nvmet_port * port,struct nvmet_ns * ns)833 static inline u16 nvmet_check_ana_state(struct nvmet_port *port,
834 struct nvmet_ns *ns)
835 {
836 enum nvme_ana_state state = port->ana_state[ns->anagrpid];
837
838 if (unlikely(state == NVME_ANA_INACCESSIBLE))
839 return NVME_SC_ANA_INACCESSIBLE;
840 if (unlikely(state == NVME_ANA_PERSISTENT_LOSS))
841 return NVME_SC_ANA_PERSISTENT_LOSS;
842 if (unlikely(state == NVME_ANA_CHANGE))
843 return NVME_SC_ANA_TRANSITION;
844 return 0;
845 }
846
nvmet_io_cmd_check_access(struct nvmet_req * req)847 static inline u16 nvmet_io_cmd_check_access(struct nvmet_req *req)
848 {
849 if (unlikely(req->ns->readonly)) {
850 switch (req->cmd->common.opcode) {
851 case nvme_cmd_read:
852 case nvme_cmd_flush:
853 break;
854 default:
855 return NVME_SC_NS_WRITE_PROTECTED;
856 }
857 }
858
859 return 0;
860 }
861
nvmet_parse_io_cmd(struct nvmet_req * req)862 static u16 nvmet_parse_io_cmd(struct nvmet_req *req)
863 {
864 struct nvme_command *cmd = req->cmd;
865 u16 ret;
866
867 ret = nvmet_check_ctrl_status(req, cmd);
868 if (unlikely(ret))
869 return ret;
870
871 if (nvmet_req_passthru_ctrl(req))
872 return nvmet_parse_passthru_io_cmd(req);
873
874 req->ns = nvmet_find_namespace(req->sq->ctrl, cmd->rw.nsid);
875 if (unlikely(!req->ns)) {
876 req->error_loc = offsetof(struct nvme_common_command, nsid);
877 return NVME_SC_INVALID_NS | NVME_SC_DNR;
878 }
879 ret = nvmet_check_ana_state(req->port, req->ns);
880 if (unlikely(ret)) {
881 req->error_loc = offsetof(struct nvme_common_command, nsid);
882 return ret;
883 }
884 ret = nvmet_io_cmd_check_access(req);
885 if (unlikely(ret)) {
886 req->error_loc = offsetof(struct nvme_common_command, nsid);
887 return ret;
888 }
889
890 if (req->ns->file)
891 return nvmet_file_parse_io_cmd(req);
892 else
893 return nvmet_bdev_parse_io_cmd(req);
894 }
895
nvmet_req_init(struct nvmet_req * req,struct nvmet_cq * cq,struct nvmet_sq * sq,const struct nvmet_fabrics_ops * ops)896 bool nvmet_req_init(struct nvmet_req *req, struct nvmet_cq *cq,
897 struct nvmet_sq *sq, const struct nvmet_fabrics_ops *ops)
898 {
899 u8 flags = req->cmd->common.flags;
900 u16 status;
901
902 req->cq = cq;
903 req->sq = sq;
904 req->ops = ops;
905 req->sg = NULL;
906 req->metadata_sg = NULL;
907 req->sg_cnt = 0;
908 req->metadata_sg_cnt = 0;
909 req->transfer_len = 0;
910 req->metadata_len = 0;
911 req->cqe->status = 0;
912 req->cqe->sq_head = 0;
913 req->ns = NULL;
914 req->error_loc = NVMET_NO_ERROR_LOC;
915 req->error_slba = 0;
916
917 /* no support for fused commands yet */
918 if (unlikely(flags & (NVME_CMD_FUSE_FIRST | NVME_CMD_FUSE_SECOND))) {
919 req->error_loc = offsetof(struct nvme_common_command, flags);
920 status = NVME_SC_INVALID_FIELD | NVME_SC_DNR;
921 goto fail;
922 }
923
924 /*
925 * For fabrics, PSDT field shall describe metadata pointer (MPTR) that
926 * contains an address of a single contiguous physical buffer that is
927 * byte aligned.
928 */
929 if (unlikely((flags & NVME_CMD_SGL_ALL) != NVME_CMD_SGL_METABUF)) {
930 req->error_loc = offsetof(struct nvme_common_command, flags);
931 status = NVME_SC_INVALID_FIELD | NVME_SC_DNR;
932 goto fail;
933 }
934
935 if (unlikely(!req->sq->ctrl))
936 /* will return an error for any non-connect command: */
937 status = nvmet_parse_connect_cmd(req);
938 else if (likely(req->sq->qid != 0))
939 status = nvmet_parse_io_cmd(req);
940 else
941 status = nvmet_parse_admin_cmd(req);
942
943 if (status)
944 goto fail;
945
946 trace_nvmet_req_init(req, req->cmd);
947
948 if (unlikely(!percpu_ref_tryget_live(&sq->ref))) {
949 status = NVME_SC_INVALID_FIELD | NVME_SC_DNR;
950 goto fail;
951 }
952
953 if (sq->ctrl)
954 sq->ctrl->reset_tbkas = true;
955
956 return true;
957
958 fail:
959 __nvmet_req_complete(req, status);
960 return false;
961 }
962 EXPORT_SYMBOL_GPL(nvmet_req_init);
963
nvmet_req_uninit(struct nvmet_req * req)964 void nvmet_req_uninit(struct nvmet_req *req)
965 {
966 percpu_ref_put(&req->sq->ref);
967 if (req->ns)
968 nvmet_put_namespace(req->ns);
969 }
970 EXPORT_SYMBOL_GPL(nvmet_req_uninit);
971
nvmet_check_transfer_len(struct nvmet_req * req,size_t len)972 bool nvmet_check_transfer_len(struct nvmet_req *req, size_t len)
973 {
974 if (unlikely(len != req->transfer_len)) {
975 req->error_loc = offsetof(struct nvme_common_command, dptr);
976 nvmet_req_complete(req, NVME_SC_SGL_INVALID_DATA | NVME_SC_DNR);
977 return false;
978 }
979
980 return true;
981 }
982 EXPORT_SYMBOL_GPL(nvmet_check_transfer_len);
983
nvmet_check_data_len_lte(struct nvmet_req * req,size_t data_len)984 bool nvmet_check_data_len_lte(struct nvmet_req *req, size_t data_len)
985 {
986 if (unlikely(data_len > req->transfer_len)) {
987 req->error_loc = offsetof(struct nvme_common_command, dptr);
988 nvmet_req_complete(req, NVME_SC_SGL_INVALID_DATA | NVME_SC_DNR);
989 return false;
990 }
991
992 return true;
993 }
994
nvmet_data_transfer_len(struct nvmet_req * req)995 static unsigned int nvmet_data_transfer_len(struct nvmet_req *req)
996 {
997 return req->transfer_len - req->metadata_len;
998 }
999
nvmet_req_alloc_p2pmem_sgls(struct pci_dev * p2p_dev,struct nvmet_req * req)1000 static int nvmet_req_alloc_p2pmem_sgls(struct pci_dev *p2p_dev,
1001 struct nvmet_req *req)
1002 {
1003 req->sg = pci_p2pmem_alloc_sgl(p2p_dev, &req->sg_cnt,
1004 nvmet_data_transfer_len(req));
1005 if (!req->sg)
1006 goto out_err;
1007
1008 if (req->metadata_len) {
1009 req->metadata_sg = pci_p2pmem_alloc_sgl(p2p_dev,
1010 &req->metadata_sg_cnt, req->metadata_len);
1011 if (!req->metadata_sg)
1012 goto out_free_sg;
1013 }
1014
1015 req->p2p_dev = p2p_dev;
1016
1017 return 0;
1018 out_free_sg:
1019 pci_p2pmem_free_sgl(req->p2p_dev, req->sg);
1020 out_err:
1021 return -ENOMEM;
1022 }
1023
nvmet_req_find_p2p_dev(struct nvmet_req * req)1024 static struct pci_dev *nvmet_req_find_p2p_dev(struct nvmet_req *req)
1025 {
1026 if (!IS_ENABLED(CONFIG_PCI_P2PDMA) ||
1027 !req->sq->ctrl || !req->sq->qid || !req->ns)
1028 return NULL;
1029 return radix_tree_lookup(&req->sq->ctrl->p2p_ns_map, req->ns->nsid);
1030 }
1031
nvmet_req_alloc_sgls(struct nvmet_req * req)1032 int nvmet_req_alloc_sgls(struct nvmet_req *req)
1033 {
1034 struct pci_dev *p2p_dev = nvmet_req_find_p2p_dev(req);
1035
1036 if (p2p_dev && !nvmet_req_alloc_p2pmem_sgls(p2p_dev, req))
1037 return 0;
1038
1039 req->sg = sgl_alloc(nvmet_data_transfer_len(req), GFP_KERNEL,
1040 &req->sg_cnt);
1041 if (unlikely(!req->sg))
1042 goto out;
1043
1044 if (req->metadata_len) {
1045 req->metadata_sg = sgl_alloc(req->metadata_len, GFP_KERNEL,
1046 &req->metadata_sg_cnt);
1047 if (unlikely(!req->metadata_sg))
1048 goto out_free;
1049 }
1050
1051 return 0;
1052 out_free:
1053 sgl_free(req->sg);
1054 out:
1055 return -ENOMEM;
1056 }
1057 EXPORT_SYMBOL_GPL(nvmet_req_alloc_sgls);
1058
nvmet_req_free_sgls(struct nvmet_req * req)1059 void nvmet_req_free_sgls(struct nvmet_req *req)
1060 {
1061 if (req->p2p_dev) {
1062 pci_p2pmem_free_sgl(req->p2p_dev, req->sg);
1063 if (req->metadata_sg)
1064 pci_p2pmem_free_sgl(req->p2p_dev, req->metadata_sg);
1065 req->p2p_dev = NULL;
1066 } else {
1067 sgl_free(req->sg);
1068 if (req->metadata_sg)
1069 sgl_free(req->metadata_sg);
1070 }
1071
1072 req->sg = NULL;
1073 req->metadata_sg = NULL;
1074 req->sg_cnt = 0;
1075 req->metadata_sg_cnt = 0;
1076 }
1077 EXPORT_SYMBOL_GPL(nvmet_req_free_sgls);
1078
nvmet_cc_en(u32 cc)1079 static inline bool nvmet_cc_en(u32 cc)
1080 {
1081 return (cc >> NVME_CC_EN_SHIFT) & 0x1;
1082 }
1083
nvmet_cc_css(u32 cc)1084 static inline u8 nvmet_cc_css(u32 cc)
1085 {
1086 return (cc >> NVME_CC_CSS_SHIFT) & 0x7;
1087 }
1088
nvmet_cc_mps(u32 cc)1089 static inline u8 nvmet_cc_mps(u32 cc)
1090 {
1091 return (cc >> NVME_CC_MPS_SHIFT) & 0xf;
1092 }
1093
nvmet_cc_ams(u32 cc)1094 static inline u8 nvmet_cc_ams(u32 cc)
1095 {
1096 return (cc >> NVME_CC_AMS_SHIFT) & 0x7;
1097 }
1098
nvmet_cc_shn(u32 cc)1099 static inline u8 nvmet_cc_shn(u32 cc)
1100 {
1101 return (cc >> NVME_CC_SHN_SHIFT) & 0x3;
1102 }
1103
nvmet_cc_iosqes(u32 cc)1104 static inline u8 nvmet_cc_iosqes(u32 cc)
1105 {
1106 return (cc >> NVME_CC_IOSQES_SHIFT) & 0xf;
1107 }
1108
nvmet_cc_iocqes(u32 cc)1109 static inline u8 nvmet_cc_iocqes(u32 cc)
1110 {
1111 return (cc >> NVME_CC_IOCQES_SHIFT) & 0xf;
1112 }
1113
nvmet_start_ctrl(struct nvmet_ctrl * ctrl)1114 static void nvmet_start_ctrl(struct nvmet_ctrl *ctrl)
1115 {
1116 lockdep_assert_held(&ctrl->lock);
1117
1118 /*
1119 * Only I/O controllers should verify iosqes,iocqes.
1120 * Strictly speaking, the spec says a discovery controller
1121 * should verify iosqes,iocqes are zeroed, however that
1122 * would break backwards compatibility, so don't enforce it.
1123 */
1124 if (ctrl->subsys->type != NVME_NQN_DISC &&
1125 (nvmet_cc_iosqes(ctrl->cc) != NVME_NVM_IOSQES ||
1126 nvmet_cc_iocqes(ctrl->cc) != NVME_NVM_IOCQES)) {
1127 ctrl->csts = NVME_CSTS_CFS;
1128 return;
1129 }
1130
1131 if (nvmet_cc_mps(ctrl->cc) != 0 ||
1132 nvmet_cc_ams(ctrl->cc) != 0 ||
1133 nvmet_cc_css(ctrl->cc) != 0) {
1134 ctrl->csts = NVME_CSTS_CFS;
1135 return;
1136 }
1137
1138 ctrl->csts = NVME_CSTS_RDY;
1139
1140 /*
1141 * Controllers that are not yet enabled should not really enforce the
1142 * keep alive timeout, but we still want to track a timeout and cleanup
1143 * in case a host died before it enabled the controller. Hence, simply
1144 * reset the keep alive timer when the controller is enabled.
1145 */
1146 if (ctrl->kato)
1147 mod_delayed_work(system_wq, &ctrl->ka_work, ctrl->kato * HZ);
1148 }
1149
nvmet_clear_ctrl(struct nvmet_ctrl * ctrl)1150 static void nvmet_clear_ctrl(struct nvmet_ctrl *ctrl)
1151 {
1152 lockdep_assert_held(&ctrl->lock);
1153
1154 /* XXX: tear down queues? */
1155 ctrl->csts &= ~NVME_CSTS_RDY;
1156 ctrl->cc = 0;
1157 }
1158
nvmet_update_cc(struct nvmet_ctrl * ctrl,u32 new)1159 void nvmet_update_cc(struct nvmet_ctrl *ctrl, u32 new)
1160 {
1161 u32 old;
1162
1163 mutex_lock(&ctrl->lock);
1164 old = ctrl->cc;
1165 ctrl->cc = new;
1166
1167 if (nvmet_cc_en(new) && !nvmet_cc_en(old))
1168 nvmet_start_ctrl(ctrl);
1169 if (!nvmet_cc_en(new) && nvmet_cc_en(old))
1170 nvmet_clear_ctrl(ctrl);
1171 if (nvmet_cc_shn(new) && !nvmet_cc_shn(old)) {
1172 nvmet_clear_ctrl(ctrl);
1173 ctrl->csts |= NVME_CSTS_SHST_CMPLT;
1174 }
1175 if (!nvmet_cc_shn(new) && nvmet_cc_shn(old))
1176 ctrl->csts &= ~NVME_CSTS_SHST_CMPLT;
1177 mutex_unlock(&ctrl->lock);
1178 }
1179
nvmet_init_cap(struct nvmet_ctrl * ctrl)1180 static void nvmet_init_cap(struct nvmet_ctrl *ctrl)
1181 {
1182 /* command sets supported: NVMe command set: */
1183 ctrl->cap = (1ULL << 37);
1184 /* CC.EN timeout in 500msec units: */
1185 ctrl->cap |= (15ULL << 24);
1186 /* maximum queue entries supported: */
1187 ctrl->cap |= NVMET_QUEUE_SIZE - 1;
1188 }
1189
nvmet_ctrl_find_get(const char * subsysnqn,const char * hostnqn,u16 cntlid,struct nvmet_req * req)1190 struct nvmet_ctrl *nvmet_ctrl_find_get(const char *subsysnqn,
1191 const char *hostnqn, u16 cntlid,
1192 struct nvmet_req *req)
1193 {
1194 struct nvmet_ctrl *ctrl = NULL;
1195 struct nvmet_subsys *subsys;
1196
1197 subsys = nvmet_find_get_subsys(req->port, subsysnqn);
1198 if (!subsys) {
1199 pr_warn("connect request for invalid subsystem %s!\n",
1200 subsysnqn);
1201 req->cqe->result.u32 = IPO_IATTR_CONNECT_DATA(subsysnqn);
1202 goto out;
1203 }
1204
1205 mutex_lock(&subsys->lock);
1206 list_for_each_entry(ctrl, &subsys->ctrls, subsys_entry) {
1207 if (ctrl->cntlid == cntlid) {
1208 if (strncmp(hostnqn, ctrl->hostnqn, NVMF_NQN_SIZE)) {
1209 pr_warn("hostnqn mismatch.\n");
1210 continue;
1211 }
1212 if (!kref_get_unless_zero(&ctrl->ref))
1213 continue;
1214
1215 /* ctrl found */
1216 goto found;
1217 }
1218 }
1219
1220 ctrl = NULL; /* ctrl not found */
1221 pr_warn("could not find controller %d for subsys %s / host %s\n",
1222 cntlid, subsysnqn, hostnqn);
1223 req->cqe->result.u32 = IPO_IATTR_CONNECT_DATA(cntlid);
1224
1225 found:
1226 mutex_unlock(&subsys->lock);
1227 nvmet_subsys_put(subsys);
1228 out:
1229 return ctrl;
1230 }
1231
nvmet_check_ctrl_status(struct nvmet_req * req,struct nvme_command * cmd)1232 u16 nvmet_check_ctrl_status(struct nvmet_req *req, struct nvme_command *cmd)
1233 {
1234 if (unlikely(!(req->sq->ctrl->cc & NVME_CC_ENABLE))) {
1235 pr_err("got cmd %d while CC.EN == 0 on qid = %d\n",
1236 cmd->common.opcode, req->sq->qid);
1237 return NVME_SC_CMD_SEQ_ERROR | NVME_SC_DNR;
1238 }
1239
1240 if (unlikely(!(req->sq->ctrl->csts & NVME_CSTS_RDY))) {
1241 pr_err("got cmd %d while CSTS.RDY == 0 on qid = %d\n",
1242 cmd->common.opcode, req->sq->qid);
1243 return NVME_SC_CMD_SEQ_ERROR | NVME_SC_DNR;
1244 }
1245 return 0;
1246 }
1247
nvmet_host_allowed(struct nvmet_subsys * subsys,const char * hostnqn)1248 bool nvmet_host_allowed(struct nvmet_subsys *subsys, const char *hostnqn)
1249 {
1250 struct nvmet_host_link *p;
1251
1252 lockdep_assert_held(&nvmet_config_sem);
1253
1254 if (subsys->allow_any_host)
1255 return true;
1256
1257 if (subsys->type == NVME_NQN_DISC) /* allow all access to disc subsys */
1258 return true;
1259
1260 list_for_each_entry(p, &subsys->hosts, entry) {
1261 if (!strcmp(nvmet_host_name(p->host), hostnqn))
1262 return true;
1263 }
1264
1265 return false;
1266 }
1267
1268 /*
1269 * Note: ctrl->subsys->lock should be held when calling this function
1270 */
nvmet_setup_p2p_ns_map(struct nvmet_ctrl * ctrl,struct nvmet_req * req)1271 static void nvmet_setup_p2p_ns_map(struct nvmet_ctrl *ctrl,
1272 struct nvmet_req *req)
1273 {
1274 struct nvmet_ns *ns;
1275 unsigned long idx;
1276
1277 if (!req->p2p_client)
1278 return;
1279
1280 ctrl->p2p_client = get_device(req->p2p_client);
1281
1282 xa_for_each(&ctrl->subsys->namespaces, idx, ns)
1283 nvmet_p2pmem_ns_add_p2p(ctrl, ns);
1284 }
1285
1286 /*
1287 * Note: ctrl->subsys->lock should be held when calling this function
1288 */
nvmet_release_p2p_ns_map(struct nvmet_ctrl * ctrl)1289 static void nvmet_release_p2p_ns_map(struct nvmet_ctrl *ctrl)
1290 {
1291 struct radix_tree_iter iter;
1292 void __rcu **slot;
1293
1294 radix_tree_for_each_slot(slot, &ctrl->p2p_ns_map, &iter, 0)
1295 pci_dev_put(radix_tree_deref_slot(slot));
1296
1297 put_device(ctrl->p2p_client);
1298 }
1299
nvmet_fatal_error_handler(struct work_struct * work)1300 static void nvmet_fatal_error_handler(struct work_struct *work)
1301 {
1302 struct nvmet_ctrl *ctrl =
1303 container_of(work, struct nvmet_ctrl, fatal_err_work);
1304
1305 pr_err("ctrl %d fatal error occurred!\n", ctrl->cntlid);
1306 ctrl->ops->delete_ctrl(ctrl);
1307 }
1308
nvmet_alloc_ctrl(const char * subsysnqn,const char * hostnqn,struct nvmet_req * req,u32 kato,struct nvmet_ctrl ** ctrlp)1309 u16 nvmet_alloc_ctrl(const char *subsysnqn, const char *hostnqn,
1310 struct nvmet_req *req, u32 kato, struct nvmet_ctrl **ctrlp)
1311 {
1312 struct nvmet_subsys *subsys;
1313 struct nvmet_ctrl *ctrl;
1314 int ret;
1315 u16 status;
1316
1317 status = NVME_SC_CONNECT_INVALID_PARAM | NVME_SC_DNR;
1318 subsys = nvmet_find_get_subsys(req->port, subsysnqn);
1319 if (!subsys) {
1320 pr_warn("connect request for invalid subsystem %s!\n",
1321 subsysnqn);
1322 req->cqe->result.u32 = IPO_IATTR_CONNECT_DATA(subsysnqn);
1323 goto out;
1324 }
1325
1326 status = NVME_SC_CONNECT_INVALID_PARAM | NVME_SC_DNR;
1327 down_read(&nvmet_config_sem);
1328 if (!nvmet_host_allowed(subsys, hostnqn)) {
1329 pr_info("connect by host %s for subsystem %s not allowed\n",
1330 hostnqn, subsysnqn);
1331 req->cqe->result.u32 = IPO_IATTR_CONNECT_DATA(hostnqn);
1332 up_read(&nvmet_config_sem);
1333 status = NVME_SC_CONNECT_INVALID_HOST | NVME_SC_DNR;
1334 goto out_put_subsystem;
1335 }
1336 up_read(&nvmet_config_sem);
1337
1338 status = NVME_SC_INTERNAL;
1339 ctrl = kzalloc(sizeof(*ctrl), GFP_KERNEL);
1340 if (!ctrl)
1341 goto out_put_subsystem;
1342 mutex_init(&ctrl->lock);
1343
1344 nvmet_init_cap(ctrl);
1345
1346 ctrl->port = req->port;
1347
1348 INIT_WORK(&ctrl->async_event_work, nvmet_async_event_work);
1349 INIT_LIST_HEAD(&ctrl->async_events);
1350 INIT_RADIX_TREE(&ctrl->p2p_ns_map, GFP_KERNEL);
1351 INIT_WORK(&ctrl->fatal_err_work, nvmet_fatal_error_handler);
1352
1353 memcpy(ctrl->subsysnqn, subsysnqn, NVMF_NQN_SIZE);
1354 memcpy(ctrl->hostnqn, hostnqn, NVMF_NQN_SIZE);
1355
1356 kref_init(&ctrl->ref);
1357 ctrl->subsys = subsys;
1358 WRITE_ONCE(ctrl->aen_enabled, NVMET_AEN_CFG_OPTIONAL);
1359
1360 ctrl->changed_ns_list = kmalloc_array(NVME_MAX_CHANGED_NAMESPACES,
1361 sizeof(__le32), GFP_KERNEL);
1362 if (!ctrl->changed_ns_list)
1363 goto out_free_ctrl;
1364
1365 ctrl->sqs = kcalloc(subsys->max_qid + 1,
1366 sizeof(struct nvmet_sq *),
1367 GFP_KERNEL);
1368 if (!ctrl->sqs)
1369 goto out_free_changed_ns_list;
1370
1371 if (subsys->cntlid_min > subsys->cntlid_max)
1372 goto out_free_sqs;
1373
1374 ret = ida_simple_get(&cntlid_ida,
1375 subsys->cntlid_min, subsys->cntlid_max,
1376 GFP_KERNEL);
1377 if (ret < 0) {
1378 status = NVME_SC_CONNECT_CTRL_BUSY | NVME_SC_DNR;
1379 goto out_free_sqs;
1380 }
1381 ctrl->cntlid = ret;
1382
1383 ctrl->ops = req->ops;
1384
1385 /*
1386 * Discovery controllers may use some arbitrary high value
1387 * in order to cleanup stale discovery sessions
1388 */
1389 if ((ctrl->subsys->type == NVME_NQN_DISC) && !kato)
1390 kato = NVMET_DISC_KATO_MS;
1391
1392 /* keep-alive timeout in seconds */
1393 ctrl->kato = DIV_ROUND_UP(kato, 1000);
1394
1395 ctrl->err_counter = 0;
1396 spin_lock_init(&ctrl->error_lock);
1397
1398 nvmet_start_keep_alive_timer(ctrl);
1399
1400 mutex_lock(&subsys->lock);
1401 list_add_tail(&ctrl->subsys_entry, &subsys->ctrls);
1402 nvmet_setup_p2p_ns_map(ctrl, req);
1403 mutex_unlock(&subsys->lock);
1404
1405 *ctrlp = ctrl;
1406 return 0;
1407
1408 out_free_sqs:
1409 kfree(ctrl->sqs);
1410 out_free_changed_ns_list:
1411 kfree(ctrl->changed_ns_list);
1412 out_free_ctrl:
1413 kfree(ctrl);
1414 out_put_subsystem:
1415 nvmet_subsys_put(subsys);
1416 out:
1417 return status;
1418 }
1419
nvmet_ctrl_free(struct kref * ref)1420 static void nvmet_ctrl_free(struct kref *ref)
1421 {
1422 struct nvmet_ctrl *ctrl = container_of(ref, struct nvmet_ctrl, ref);
1423 struct nvmet_subsys *subsys = ctrl->subsys;
1424
1425 mutex_lock(&subsys->lock);
1426 nvmet_release_p2p_ns_map(ctrl);
1427 list_del(&ctrl->subsys_entry);
1428 mutex_unlock(&subsys->lock);
1429
1430 nvmet_stop_keep_alive_timer(ctrl);
1431
1432 flush_work(&ctrl->async_event_work);
1433 cancel_work_sync(&ctrl->fatal_err_work);
1434
1435 ida_simple_remove(&cntlid_ida, ctrl->cntlid);
1436
1437 nvmet_async_events_free(ctrl);
1438 kfree(ctrl->sqs);
1439 kfree(ctrl->changed_ns_list);
1440 kfree(ctrl);
1441
1442 nvmet_subsys_put(subsys);
1443 }
1444
nvmet_ctrl_put(struct nvmet_ctrl * ctrl)1445 void nvmet_ctrl_put(struct nvmet_ctrl *ctrl)
1446 {
1447 kref_put(&ctrl->ref, nvmet_ctrl_free);
1448 }
1449
nvmet_ctrl_fatal_error(struct nvmet_ctrl * ctrl)1450 void nvmet_ctrl_fatal_error(struct nvmet_ctrl *ctrl)
1451 {
1452 mutex_lock(&ctrl->lock);
1453 if (!(ctrl->csts & NVME_CSTS_CFS)) {
1454 ctrl->csts |= NVME_CSTS_CFS;
1455 schedule_work(&ctrl->fatal_err_work);
1456 }
1457 mutex_unlock(&ctrl->lock);
1458 }
1459 EXPORT_SYMBOL_GPL(nvmet_ctrl_fatal_error);
1460
nvmet_find_get_subsys(struct nvmet_port * port,const char * subsysnqn)1461 static struct nvmet_subsys *nvmet_find_get_subsys(struct nvmet_port *port,
1462 const char *subsysnqn)
1463 {
1464 struct nvmet_subsys_link *p;
1465
1466 if (!port)
1467 return NULL;
1468
1469 if (!strcmp(NVME_DISC_SUBSYS_NAME, subsysnqn)) {
1470 if (!kref_get_unless_zero(&nvmet_disc_subsys->ref))
1471 return NULL;
1472 return nvmet_disc_subsys;
1473 }
1474
1475 down_read(&nvmet_config_sem);
1476 list_for_each_entry(p, &port->subsystems, entry) {
1477 if (!strncmp(p->subsys->subsysnqn, subsysnqn,
1478 NVMF_NQN_SIZE)) {
1479 if (!kref_get_unless_zero(&p->subsys->ref))
1480 break;
1481 up_read(&nvmet_config_sem);
1482 return p->subsys;
1483 }
1484 }
1485 up_read(&nvmet_config_sem);
1486 return NULL;
1487 }
1488
nvmet_subsys_alloc(const char * subsysnqn,enum nvme_subsys_type type)1489 struct nvmet_subsys *nvmet_subsys_alloc(const char *subsysnqn,
1490 enum nvme_subsys_type type)
1491 {
1492 struct nvmet_subsys *subsys;
1493
1494 subsys = kzalloc(sizeof(*subsys), GFP_KERNEL);
1495 if (!subsys)
1496 return ERR_PTR(-ENOMEM);
1497
1498 subsys->ver = NVMET_DEFAULT_VS;
1499 /* generate a random serial number as our controllers are ephemeral: */
1500 get_random_bytes(&subsys->serial, sizeof(subsys->serial));
1501
1502 switch (type) {
1503 case NVME_NQN_NVME:
1504 subsys->max_qid = NVMET_NR_QUEUES;
1505 break;
1506 case NVME_NQN_DISC:
1507 subsys->max_qid = 0;
1508 break;
1509 default:
1510 pr_err("%s: Unknown Subsystem type - %d\n", __func__, type);
1511 kfree(subsys);
1512 return ERR_PTR(-EINVAL);
1513 }
1514 subsys->type = type;
1515 subsys->subsysnqn = kstrndup(subsysnqn, NVMF_NQN_SIZE,
1516 GFP_KERNEL);
1517 if (!subsys->subsysnqn) {
1518 kfree(subsys);
1519 return ERR_PTR(-ENOMEM);
1520 }
1521 subsys->cntlid_min = NVME_CNTLID_MIN;
1522 subsys->cntlid_max = NVME_CNTLID_MAX;
1523 kref_init(&subsys->ref);
1524
1525 mutex_init(&subsys->lock);
1526 xa_init(&subsys->namespaces);
1527 INIT_LIST_HEAD(&subsys->ctrls);
1528 INIT_LIST_HEAD(&subsys->hosts);
1529
1530 return subsys;
1531 }
1532
nvmet_subsys_free(struct kref * ref)1533 static void nvmet_subsys_free(struct kref *ref)
1534 {
1535 struct nvmet_subsys *subsys =
1536 container_of(ref, struct nvmet_subsys, ref);
1537
1538 WARN_ON_ONCE(!xa_empty(&subsys->namespaces));
1539
1540 xa_destroy(&subsys->namespaces);
1541 nvmet_passthru_subsys_free(subsys);
1542
1543 kfree(subsys->subsysnqn);
1544 kfree_rcu(subsys->model, rcuhead);
1545 kfree(subsys);
1546 }
1547
nvmet_subsys_del_ctrls(struct nvmet_subsys * subsys)1548 void nvmet_subsys_del_ctrls(struct nvmet_subsys *subsys)
1549 {
1550 struct nvmet_ctrl *ctrl;
1551
1552 mutex_lock(&subsys->lock);
1553 list_for_each_entry(ctrl, &subsys->ctrls, subsys_entry)
1554 ctrl->ops->delete_ctrl(ctrl);
1555 mutex_unlock(&subsys->lock);
1556 }
1557
nvmet_subsys_put(struct nvmet_subsys * subsys)1558 void nvmet_subsys_put(struct nvmet_subsys *subsys)
1559 {
1560 kref_put(&subsys->ref, nvmet_subsys_free);
1561 }
1562
nvmet_init(void)1563 static int __init nvmet_init(void)
1564 {
1565 int error;
1566
1567 nvmet_ana_group_enabled[NVMET_DEFAULT_ANA_GRPID] = 1;
1568
1569 buffered_io_wq = alloc_workqueue("nvmet-buffered-io-wq",
1570 WQ_MEM_RECLAIM, 0);
1571 if (!buffered_io_wq) {
1572 error = -ENOMEM;
1573 goto out;
1574 }
1575
1576 error = nvmet_init_discovery();
1577 if (error)
1578 goto out_free_work_queue;
1579
1580 error = nvmet_init_configfs();
1581 if (error)
1582 goto out_exit_discovery;
1583 return 0;
1584
1585 out_exit_discovery:
1586 nvmet_exit_discovery();
1587 out_free_work_queue:
1588 destroy_workqueue(buffered_io_wq);
1589 out:
1590 return error;
1591 }
1592
nvmet_exit(void)1593 static void __exit nvmet_exit(void)
1594 {
1595 nvmet_exit_configfs();
1596 nvmet_exit_discovery();
1597 ida_destroy(&cntlid_ida);
1598 destroy_workqueue(buffered_io_wq);
1599
1600 BUILD_BUG_ON(sizeof(struct nvmf_disc_rsp_page_entry) != 1024);
1601 BUILD_BUG_ON(sizeof(struct nvmf_disc_rsp_page_hdr) != 1024);
1602 }
1603
1604 module_init(nvmet_init);
1605 module_exit(nvmet_exit);
1606
1607 MODULE_LICENSE("GPL v2");
1608